plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
sanghosuh/lens_nmf-matlab-master
|
compute_total_doc_cvrg.m
|
.m
|
lens_nmf-matlab-master/evaluation/total_document_coverage/compute_total_doc_cvrg.m
| 3,754 |
utf_8
|
04b200587eeed0ab2478d94ed634045a
|
% Total Document Coverage
%
% Written by Sangho Suh ([email protected])
% Dept. of Computer Science and Engineering,
% Korea University
%
% Reference:
%
% [1] Sangho Suh, Jaegul Choo, Joonseok Lee and Chandan K. Reddy.
% L-EnsNMF: Boosted Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization.
%
% Please send bug reports, comments, or questions to Sangho Suh.
% This comes with no guarantee or warranty of any kind.
%
% Last modified 11/04/2016
%
% this function returns a single value
% i.e. an average value from a number of pmi values
%
% <Inputs>
%
% A : [matrix] Input matrix (m x n)
% term_idx : [matrix] Wtopk matrix with corresponding indices
% min_nterm : [scalar] min number of keywords
%
% <Output>
%
% qualtopic : [vector] number of documents covered by each topic
% tot_covrg : [scalar] total number of documents covered by k topics
%
function [qualtopic,tot_covrg] = compute_total_doc_cvrg(A, term_idx, min_nterm)
% create 1 x k vector, where k is number of topics
qualtopic = zeros(1,size(term_idx,2));
% create k x n matrix, where n is number of documents
qualtopic_mat = zeros(size(term_idx,2), size(A,2));
% repeat k number of times (where k is number of topics)
for i=1:size(term_idx,2)
% get a scalar value that tells how many doc contain min_nterm(c2) number of keywords in a given single topic
qualtopic(i) = sum( sum( A(term_idx(:,i),:)~=0 )>=min_nterm ); % ... cf.[1]
% get a list of 0's and 1's where 1 indicates that corresponding column has number of keywords more than min_nterm
qualtopic_mat(i,:) = sum( A(term_idx(:,i),:)~=0 ) >=min_nterm; % ... cf.[2]
end
% calculate how many documents are covered by all topics
tot_covrg = sum( sum(qualtopic_mat) ~=0 ) / size(A,2); % ... cf.[3]
end
% Breakdown of [1]
% (1) term_idx(:,i) is e.g., 3, 32, 47, ... ,132 (where each number refers to index)
% (2) A(term_idx(:,i),:) is then e.g., A(3,:), A(32,:), A(47,:), ... , (132,:)
% (3) A(term_idx(:,i),:)~=0 is then e.g.,
% [1 0 1 1 0 1 0 0 0 ... ]
% [0 1 0 0 1 1 0 0 1 ... ]
% ...
% where 1 means it appears at least once in given doc
%
% (4) sum(A(term_idx(:,i),:)~=0) is a summation of the above stacked list to give single vector
% e.g., [4 2 10 3 0 0 2 ...] where each number
%
% represents the number of keywords each doc contains. So, above
% case means doc1 has 4 keywords of given topic, doc2 has 2 keywords of given topic, and so on.
%
% (5) sum(sum(A(term_idx(:,i),:)~=0)>=min_nterm) is a summation of the above single vector to give a scalar value,
% e.g. 350 where the number represents the total number of
% documents that has the same or more number of keywords than min_nterm
% thus, qualtopic(1) has the total number of documents covered by Topic 1
% So, it is a measure of how good each topic is.
% e.g. qualtopic(1) = 24, means, Topic 1's keywords appear in 24 documents in total.
% Breakdown of [2]
% qualtopic_mat is a matrix where each row represents documents per topic
% e.g. qualtopic_mat(1,:) is a 1 x n vector
% (containing 1's and 0's where 1 indicates that corresponding doc(column) has at least min_nterm keywords)
|
github
|
sanghosuh/lens_nmf-matlab-master
|
weakorthonmf.m
|
.m
|
lens_nmf-matlab-master/library/ramkis/weakorthonmf.m
| 33,961 |
utf_8
|
35a6c05d74c3570a95b513b216f63769
|
% Weakly Orthogonal Nonnegative Matrix Factorization
%
% Written by Jaegul Choo ([email protected])
% Dept. of Computer Science and Engineering,
% Korea University
%
% Please send bug reports, comments, or questions to Jingu Kim.
% This code comes with no guarantee or warranty of any kind.
%
% Reference:
% Jingu Kim and Haesun Park,
% Fast Nonnegative Matrix Factorization: An Active-set-like Method And Comparisons,
% SIAM Journal on Scientific Computing (SISC), 33(6), pp. 3261-3281, 2012
%
% Last modified on 08/24/2015
%
% <Inputs>
% A : Input data matrix (m x n)
% k : Target low-rank
%
% (Below are optional arguments: can be set by providing name-value pairs)
%
% METHOD : Algorithm for solving NMF. One of the following values:
% 'anls_bpp' 'hals' 'anls_asgroup' 'anls_asgivens' 'anls_pgrad' 'anls_pqn' 'als' 'mu'
% See above paper (and references therein) for the details of these algorithms.
% Default is 'anls_bpp'.
% TOL : Stopping tolerance. Default is 1e-3.
% If you want to obtain a more accurate solution, decrease TOL and increase MAX_ITER at the same time.
% MAX_ITER : Maximum number of iterations. Default is 500.
% MIN_ITER : Minimum number of iterations. Default is 20.
% MAX_TIME : Maximum amount of time in seconds. Default is 1,000,000.
% INIT : A struct containing initial values. INIT.W and INIT.H should contain initial values of
% W and H of size (m x k) and (k x n), respectively.
% VERBOSE : 0 (default) - No debugging information is collected.
% 1 (debugging/experimental purpose) - History of computation is returned. See 'REC' variable.
% 2 (debugging/experimental purpose) - History of computation is additionally printed on screen.
% REG_W, REG_H : Regularization parameters for W and H.
% Both REG_W and REG_H should be vector of two nonnegative numbers.
% The first component is a parameter with Frobenius norm regularization, and
% the second component is a parameter with L1-norm regularization.
% For example, to promote sparsity in H, one might set REG_W = [alpha 0] and REG_H = [0 beta]
% where alpha and beta are positive numbers. See above paper for more details.
% Defaut is [0 0] for both REG_W and REG_H, which means no regularization.
% <Outputs>
% W : Obtained basis matrix (m x k)
% H : Obtained coefficient matrix (k x n)
% iter : Number of iterations
% HIS : (debugging/experimental purpose) Auxiliary information about the execution
% <Usage Examples>
% nmf(A,10)
% nmf(A,20,'verbose',2)
% nmf(A,20,'verbose',1,'method','anls_bpp')
% nmf(A,20,'verbose',1,'method','hals')
% nmf(A,20,'verbose',1,'method','comp','n1',,'n2',,'k1',,'k2',,'ks',,'kd1',,'kd2',,'alpha',,'beta',)
% nmf(A,20,'verbose',1,'reg_w',[0.1 0],'reg_h',[0 0.5])
function [W,H,res,iter,REC]=weakorthonmf(A,Winit,Hinit,k,beta,varargin)
% parse parameters
params = inputParser;
params.addParamValue('method' ,'comp',@(x) ischar(x) );
% params.addParamValue('method' ,'anls_bpp',@(x) ischar(x) );
% params.addParamValue('method' ,'hals',@(x) ischar(x) );
% params.addParamValue('tol' ,1e-2 ,@(x) isscalar(x) & x > 0);
% params.addParamValue('min_iter' ,20 ,@(x) isscalar(x) & x > 0);
% params.addParamValue('max_iter' ,100 ,@(x) isscalar(x) & x > 0);
% params.addParamValue('max_time' ,1e6 ,@(x) isscalar(x) & x > 0);
% params.addParamValue('init' ,struct([]),@(x) isstruct(x));
% params.addParamValue('verbose' ,1 ,@(x) isscalar(x) & x >= 0);
% params.addParamValue('reg_w' ,[0 0] ,@(x) isvector(x) & length(x) == 2);
% params.addParamValue('reg_h' ,[0 0] ,@(x) isvector(x) & length(x) == 2);
% % The following options are reserved for debugging/experimental purposes.
% % Make sure to understand them before making changes
% params.addParamValue('subparams' ,struct([]),@(x) isstruct(x) );
% params.addParamValue('track_grad' ,1 ,@(x) isscalar(x) & x >= 0);
% params.addParamValue('track_prev' ,1 ,@(x) isscalar(x) & x >= 0);
% params.addParamValue('stop_criterion',0 ,@(x) isscalar(x) & x >= 0);
% params.parse(varargin{:});
params.addParamValue('tol' ,1e-18 ,@(x) isscalar(x) & x > 0);
params.addParamValue('min_iter' ,20 ,@(x) isscalar(x) & x > 0);
% params.addParamValue('max_iter' ,500 ,@(x) isscalar(x) & x > 0);
params.addParamValue('max_iter' ,2000 ,@(x) isscalar(x) & x > 0); % by sangho
params.addParamValue('max_time' ,1e6 ,@(x) isscalar(x) & x > 0);
params.addParamValue('init' ,struct([]),@(x) isstruct(x));
params.addParamValue('verbose' ,0 ,@(x) isscalar(x) & x >= 0);
params.addParamValue('reg_w' ,[0 0] ,@(x) isvector(x) & length(x) == 2);
params.addParamValue('reg_h' ,[0 0] ,@(x) isvector(x) & length(x) == 2);
% The following options are reserved for debugging/experimental purposes.
% Make sure to understand them before making changes
params.addParamValue('subparams' ,struct([]),@(x) isstruct(x) );
% params.addParamValue('track_grad' ,0 ,@(x) isscalar(x) & x >= 0); % by sangho
params.addParamValue('track_grad' ,1 ,@(x) isscalar(x) & x >= 0);
params.addParamValue('track_prev' ,1 ,@(x) isscalar(x) & x >= 0);
% params.addParamValue('stop_criterion',0 ,@(x) isscalar(x) & x >= 0); % by sangho
params.addParamValue('stop_criterion',3 ,@(x) isscalar(x) & x >= 0);
params.parse(varargin{:});
% % joyfull
% save tmp_data;
REC=0;
% if size(A,2)==3
% A=full(sparse(A(:,1),A(:,2),A(:,3)));
% size(A)
% % X=X(:,data_ind);
% % X=X((sum(abs(X),2)~=0)',:);
% % size(X)
% end
% X=X-repmat(mean(X,2),1,size(X,2));
% params
% copy from params object
[m,n] = size(A);
par = params.Results;
par.m = m;
par.n = n;
par.k = k;
par.beta = beta*n;
% Stopping criteria are based on the gradient information.
% Hence, 'track_grad' option needs to be turned on to use a criterion.
if par.stop_criterion > 0
par.track_grad = 1;
end
initializer= str2func([par.method,'_initializer']);
iterSolver = str2func([par.method,'_iterSolver']);
iterLogger = str2func([par.method,'_iterLogger']);
% initialize
W = rand(m,par.k); H = rand(par.k,n);
[W,H,par,val,ver] = feval(initializer,A,W,H,par);
if ~isempty(Winit)
W = Winit;
end
if ~isempty(Hinit)
H = Hinit;
end
init_time = tic;
res = struct;
res.obj = zeros(par.max_iter,1);
res.time = zeros(par.max_iter,1);
res.grad = zeros(par.max_iter,1);
residual_iter = zeros(par.max_iter,1);
tStart = cputime;, tTotal = 0;
for iter=1:par.max_iter
% iter
W_old = W;
% Actual work of this iteration is executed here.
convd = -1;
while (convd == -1)
[W_tmp,H_tmp,gradW,gradH,val,convd] = feval(iterSolver,A,W,H,iter,par,val);
par.beta = par.beta/2;
break;
end
W = W_tmp; H = H_tmp;
if (iter > par.min_iter)
if mean(abs(W(:) - W_old(:)))<par.tol
break;
end
% if (par.verbose && (tTotal > par.max_time)) || (~par.verbose && ((cputime-tStart)>par.max_time))
% break;
% elseif par.track_grad
% SC = getStopCriterion(par.stop_criterion,A,W,H,par,gradW,gradH);
% if (SC/initSC <= par.tol)
% SCconv = SCconv + 1;
% if (SCconv >= SC_COUNT), break;, end
% else
% SCconv = 0;
% end
% end
end
end
% plot(residual_iter);
error = norm(A-W*H,'fro')/par.n;
res.iter = iter;
[m,n]=size(A);
[W,H]=normalize_by_W(W,H);
end
%----------------------------------------------------------------------------
% Implementation of methods
%----------------------------------------------------------------------------
%
% %----------------- ANLS with Block Principal Pivoting Method --------------------------
%
% function [W,H,par,val,ver] = anls_bpp_initializer(A,W,H,par)
% H = zeros(size(H));
%
% ver.turnZr_W = 0;
% ver.turnZr_H = 0;
% ver.turnNz_W = 0;
% ver.turnNz_H = 0;
% ver.numChol_W = 0;
% ver.numChol_H = 0;
% ver.numEq_W = 0;
% ver.numEq_H = 0;
% ver.suc_W = 0;
% ver.suc_H = 0;
%
% val(1).WtA = W'*A;
% val.WtW = W'*W;
% end
%
% function [W,H,gradW,gradH,val] = anls_bpp_iterSolver(A,W,H,iter,par,val)
%
% WtW_reg = applyReg(val.WtW,par,par.reg_h);
% [H,temp,suc_H,numChol_H,numEq_H] = nnlsm_blockpivot(WtW_reg,val.WtA,1,H);
%
% HHt_reg = applyReg(H*H',par,par.reg_w);
% [W,gradW,suc_W,numChol_W,numEq_W] = nnlsm_blockpivot(HHt_reg,H*A',1,W');
% W = W';
%
% val.WtA = W'*A;
% val.WtW = W'*W;
%
% if par.track_grad
% gradW = gradW';
% gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
% else
% gradW = 0;gradH =0;
% end
%
% val(1).numChol_W = numChol_W;
% val.numChol_H = numChol_H;
% val.numEq_W = numEq_W;
% val.numEq_H = numEq_H;
% val.suc_W = suc_W;
% val.suc_H = suc_H;
% end
%
% function [ver] = anls_bpp_iterLogger(ver,par,val,W,H,prev_W,prev_H)
% if par.track_prev
% ver.turnZr_W = length(find( (prev_W>0) & (W==0) ))/(par.m*par.k);
% ver.turnZr_H = length(find( (prev_H>0) & (H==0) ))/(par.n*par.k);
% ver.turnNz_W = length(find( (prev_W==0) & (W>0) ))/(par.m*par.k);
% ver.turnNz_H = length(find( (prev_H==0) & (H>0) ))/(par.n*par.k);
% end
% ver.numChol_W = val.numChol_W;
% ver.numChol_H = val.numChol_H;
% ver.numEq_W = val.numEq_W;
% ver.numEq_H = val.numEq_H;
% ver.suc_W = val.suc_W;
% ver.suc_H = val.suc_H;
% end
%
% %----------------- ANLS with Active Set Method / Givens Updating --------------------------
%
% function [W,H,par,val,ver] = anls_asgivens_initializer(A,W,H,par)
% H = zeros(size(H));
%
% ver.turnZr_W = 0;
% ver.turnZr_H = 0;
% ver.turnNz_W = 0;
% ver.turnNz_H = 0;
% ver.numChol_W = 0;
% ver.numChol_H = 0;
% ver.suc_W = 0;
% ver.suc_H = 0;
%
% val(1).WtA = W'*A;
% val.WtW = W'*W;
% end
%
% function [W,H,gradW,gradH,val] = anls_asgivens_iterSolver(A,W,H,iter,par,val)
% WtW_reg = applyReg(val.WtW,par,par.reg_h);
% ow = 0;
% suc_H = zeros(1,size(H,2));
% numChol_H = zeros(1,size(H,2));
% for i=1:size(H,2)
% [H(:,i),temp,suc_H(i),numChol_H(i)] = nnls1_asgivens(WtW_reg,val.WtA(:,i),ow,1,H(:,i));
% end
%
% suc_W = zeros(1,size(W,1));
% numChol_W = zeros(1,size(W,1));
%
% HHt_reg = applyReg(H*H',par,par.reg_w);
% HAt = H*A';
% Wt = W';
% gradWt = zeros(size(Wt));
% for i=1:size(W,1)
% [Wt(:,i),gradWt(:,i),suc_W(i),numChol_W(i)] = nnls1_asgivens(HHt_reg,HAt(:,i),ow,1,Wt(:,i));
% end
% W = Wt';
%
% val.WtA = W'*A;
% val.WtW = W'*W;
%
% if par.track_grad
% gradW = gradWt';
% gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
% else
% gradW = 0; gradH =0;
% end
%
% val(1).numChol_W = sum(numChol_W);
% val.numChol_H = sum(numChol_H);
% val.suc_W = any(suc_W);
% val.suc_H = any(suc_H);
% end
%
% function [ver] = anls_asgivens_iterLogger(ver,par,val,W,H,prev_W,prev_H)
% if par.track_prev
% ver.turnZr_W = length(find( (prev_W>0) & (W==0) ))/(par.m*par.k);
% ver.turnZr_H = length(find( (prev_H>0) & (H==0) ))/(par.n*par.k);
% ver.turnNz_W = length(find( (prev_W==0) & (W>0) ))/(par.m*par.k);
% ver.turnNz_H = length(find( (prev_H==0) & (H>0) ))/(par.n*par.k);
% end
% ver.numChol_W = val.numChol_W;
% ver.numChol_H = val.numChol_H;
% ver.suc_W = val.suc_W;
% ver.suc_H = val.suc_H;
% end
%
% %----------- ANLS with Active Set Method / Column Grouping / No Overwrite -----------------
%
% function [W,H,par,val,ver] = anls_asgroup_initializer(A,W,H,par)
% [W,H,par,val,ver] = anls_bpp_initializer(A,W,H,par);
% end
%
% function [W,H,gradW,gradH,val] = anls_asgroup_iterSolver(A,W,H,iter,par,val)
% WtW_reg = applyReg(val.WtW,par,par.reg_h);
% ow = 0;
% [H,temp,suc_H,numChol_H,numEq_H] = nnlsm_activeset(WtW_reg,val.WtA,ow,1,H);
%
% HHt_reg = applyReg(H*H',par,par.reg_w);
% [W,gradW,suc_W,numChol_W,numEq_W] = nnlsm_activeset(HHt_reg,H*A',ow,1,W');
% W = W';
%
% val.WtA = W'*A;
% val.WtW = W'*W;
%
% if par.track_grad
% gradW = gradW';
% gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
% else
% gradW = 0; gradH =0;
% end
%
% val(1).numChol_W = numChol_W;
% val.numChol_H = numChol_H;
% val.numEq_W = numEq_W;
% val.numEq_H = numEq_H;
% val.suc_W = suc_W;
% val.suc_H = suc_H;
% end
%
% function [ver] = anls_asgroup_iterLogger(ver,par,val,W,H,prev_W,prev_H)
% ver = anls_bpp_iterLogger(ver,par,val,W,H,prev_W,prev_H);
% end
%
% %----------------- ANLS with Projected Gradient Method --------------------------
%
% function [W,H,par,val,ver] = anls_pgrad_initializer(A,W,H,par)
% if isempty(par.subparams)
% par.subparams(1).subtol_init = 0.1;
% par.subparams.reduce_factor = 0.1;
% par.subparams.num_warmup_iter = 5;
% par.subparams.min_subiter = 1;
% par.subparams.max_subiter = 100;
% par.subparams.min_tol = 1e-10;
% end
%
% [gradW,gradH] = getGradient(A,W,H,par);
% val(1).tol_W = par.subparams.subtol_init*norm(gradW,'fro');
% val.tol_H = par.subparams.subtol_init*norm(gradH,'fro');
%
% ver.subIter_W = 0;
% ver.subIter_H = 0;
% ver.numLineSearch_W = 0;
% ver.numLineSearch_H = 0;
% end
%
% function [W,H,gradW,gradH,val] = anls_pgrad_iterSolver(A,W,H,iter,par,val)
%
% if (iter>1 && iter<=par.subparams.num_warmup_iter)
% val.tol_W = val.tol_W * par.subparams.reduce_factor;
% val.tol_H = val.tol_H * par.subparams.reduce_factor;
% end
%
% WtW_reg = applyReg(W'*W,par,par.reg_h);
% WtA = W'*A;
% [H,gradHX,subIter_H,numLineSearch_H] = nnlssub_projgrad(WtW_reg,WtA,val.tol_H,H,par.subparams.max_subiter,1);
% if (iter > par.subparams.num_warmup_iter) && (subIter_H < par.subparams.min_subiter) && (val.tol_H >= par.subparams.min_tol)
% val.tol_H = par.subparams.reduce_factor * val.tol_H;
% [H,gradHX,subAddH,lsAddH] = nnlssub_projgrad(WtW_reg,WtA,val.tol_H,H,par.subparams.max_subiter,1);
% subIter_H = subIter_H + subAddH;
% numLineSearch_H = numLineSearch_H + lsAddH;
% end
%
% HHt_reg = applyReg(H*H',par,par.reg_w);
% HAt = H*A';
% [W,gradW,subIter_W,numLineSearch_W] = nnlssub_projgrad(HHt_reg,HAt,val.tol_W,W',par.subparams.max_subiter,1);
% if (iter > par.subparams.num_warmup_iter) && (subIter_W < par.subparams.min_subiter) && (val.tol_W >= par.subparams.min_tol)
% val.tol_W = par.subparams.reduce_factor * val.tol_W;
% [W,gradW,subAddW,lsAddW] = nnlssub_projgrad(HHt_reg,HAt,val.tol_W,W,par.subparams.max_subiter,1);
% subIter_W = subIter_W + subAddW;
% numLineSearch_W = numLineSearch_W + lsAddW;
% end
% W = W';
% if par.track_grad
% gradW = gradW';
% gradH = getGradientOne(W'*W,W'*A,H,par.reg_h,par);
% else
% gradH = 0; gradW = 0;
% end
%
% val(1).subIter_W = subIter_W;
% val.subIter_H = subIter_H;
% val.numLineSearch_W = numLineSearch_W;
% val.numLineSearch_H = numLineSearch_H;
% end
%
% function [ver] = anls_pgrad_iterLogger(ver,par,val,W,H,prev_W,prev_H)
% ver.tol_W = val.tol_W;
% ver.tol_H = val.tol_H;
% ver.subIter_W = val.subIter_W;
% ver.subIter_H = val.subIter_H;
% ver.numLineSearch_W = val.numLineSearch_W;
% ver.numLineSearch_H = val.numLineSearch_H;
% end
%
% %----------------- ANLS with Projected Quasi Newton Method --------------------------
%
% function [W,H,par,val,ver] = anls_pqn_initializer(A,W,H,par)
% [W,H,par,val,ver] = anls_pgrad_initializer(A,W,H,par);
% end
%
% function [W,H,gradW,gradH,val] = anls_pqn_iterSolver(A,W,H,iter,par,val)
%
% if (iter>1 && iter<=par.subparams.num_warmup_iter)
% val.tol_W = val.tol_W * par.subparams.reduce_factor;
% val.tol_H = val.tol_H * par.subparams.reduce_factor;
% end
%
% WtW_reg = applyReg(W'*W,par,par.reg_h);
% WtA = W'*A;
% [H,gradHX,subIter_H] = nnlssub_projnewton_mod(WtW_reg,WtA,val.tol_H,H,par.subparams.max_subiter,1);
% if (iter > par.subparams.num_warmup_iter) && (subIter_H/par.n < par.subparams.min_subiter) && (val.tol_H >= par.subparams.min_tol)
% val.tol_H = par.subparams.reduce_factor * val.tol_H;
% [H,gradHX,subAddH] = nnlssub_projnewton_mod(WtW_reg,WtA,val.tol_H,H,par.subparams.max_subiter,1);
% subIter_H = subIter_H + subAddH;
% end
%
% HHt_reg = applyReg(H*H',par,par.reg_w);
% HAt = H*A';
% [W,gradW,subIter_W] = nnlssub_projnewton_mod(HHt_reg,HAt,val.tol_W,W',par.subparams.max_subiter,1);
% if (iter > par.subparams.num_warmup_iter) && (subIter_W/par.m < par.subparams.min_subiter) && (val.tol_W >= par.subparams.min_tol)
% val.tol_W = par.subparams.reduce_factor * val.tol_W;
% [W,gradW,subAddW] = nnlssub_projnewton_mod(HHt_reg,HAt,val.tol_W,W,par.subparams.max_subiter,1);
% subIter_W = subIter_W + subAddW;
% end
% W = W';
%
% if par.track_grad
% gradW = gradW';
% gradH = getGradientOne(W'*W,W'*A,H,par.reg_h,par);
% else
% gradH = 0; gradW = 0;
% end
%
% val(1).subIter_W = subIter_W;
% val.subIter_H = subIter_H;
% end
%
% function [ver] = anls_pqn_iterLogger(ver,par,val,W,H,prev_W,prev_H)
% ver.tol_W = val.tol_W;
% ver.tol_H = val.tol_H;
% ver.subIter_W = val.subIter_W;
% ver.subIter_H = val.subIter_H;
% end
%
% %----------------- Alternating Least Squares Method --------------------------
%
% function [W,H,par,val,ver] = als_initializer(A,W,H,par)
% ver = struct([]);
%
% val.WtA = W'*A;
% val.WtW = W'*W;
% end
%
% function [W,H,gradW,gradH,val] = als_iterSolver(A,W,H,iter,par,val)
% WtW_reg = applyReg(val.WtW,par,par.reg_h);
% H = WtW_reg\val.WtA;
% H(H<0)=0;
%
% AHt = A*H';
% HHt_reg = applyReg(H*H',par,par.reg_w);
% Wt = HHt_reg\AHt'; W=Wt';
% W(W<0)=0;
%
% % normalize : necessary for ALS
% [W,H,weights] = normalize_by_W(W,H);
% D = diag(weights);
%
% val.WtA = W'*A;
% val.WtW = W'*W;
% AHt = AHt*D;
% HHt_reg = D*HHt_reg*D;
%
% if par.track_grad
% gradW = W*HHt_reg - AHt;
% gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
% else
% gradH = 0; gradW = 0;
% end
% end
%
% function [ver] = als_iterLogger(ver,par,val,W,H,prev_W,prev_H)
% end
%
% %----------------- Multiplicatve Updating Method --------------------------
%
% function [W,H,par,val,ver] = mu_initializer(A,W,H,par)
% ver = struct([]);
%
% val.WtA = W'*A;
% val.WtW = W'*W;
% end
%
% function [W,H,gradW,gradH,val] = mu_iterSolver(A,W,H,iter,par,val)
% epsilon = 1e-16;
%
% WtW_reg = applyReg(val.WtW,par,par.reg_h);
% H = H.*val.WtA./(WtW_reg*H + epsilon);
% % WtW_reg = W'*W;
% % H = H.*(W'*A)./(WtW_reg*H + epsilon);
%
% HHt_reg = applyReg(H*H',par,par.reg_w);
% AHt = A*H';
% W = W.*AHt./(W*HHt_reg + epsilon);
% % HHt_reg = H*H';
% % AHt = A*H';
% % W = W.*AHt./(W*HHt_reg+epsilon);
%
% val.WtA = W'*A;
% val.WtW = W'*W;
%
% if par.track_grad
% gradW = W*HHt_reg - AHt;
% gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
% else
% gradH = 0; gradW = 0;
% end
% % norm(A-W*H,'fro')
% end
%
% function [ver] = mu_iterLogger(ver,par,val,W,H,prev_W,prev_H)
% end
%
% %----------------- HALS Method : Algorith 2 of Cichocki and Phan -----------------------
%
% function [W,H,par,val,ver] = hals_initializer(A,W,H,par)
% [W,H]=normalize_by_W(W,H);
%
% val = struct([]);
% ver = struct([]);
% end
%
% function [W,H,gradW,gradH,val] = hals_iterSolver(A,W,H,iter,par,val)
% epsilon = 1e-16;
%
% WtA = W'*A;
% WtW = W'*W;
% WtW_reg = applyReg(WtW,par,par.reg_h);
% for i = 1:par.k
% H(i,:) = max(H(i,:) + WtA(i,:) - WtW_reg(i,:) * H,epsilon);
% end
%
% AHt = A*H';
% HHt_reg = applyReg(H*H',par,par.reg_w);
% for i = 1:par.k
% W(:,i) = max(W(:,i) * HHt_reg(i,i) + AHt(:,i) - W * HHt_reg(:,i),epsilon);
% if sum(W(:,i))>0
% W(:,i) = W(:,i)/norm(W(:,i));
% end
% end
%
% if par.track_grad
% gradW = W*HHt_reg - AHt;
% gradH = getGradientOne(W'*W,W'*A,H,par.reg_h,par);
% else
% gradH = 0; gradW = 0;
% end
% end
%
% function [ver] = hals_iterLogger(ver,par,val,W,H,prev_W,prev_H)
% end
%
% %----------------- new -----------------------
%
% function [W,H,U,V,par,val,ver] = fix_initializer(A,B,W,H,U,V,par)
% [W,H]=normalize_by_W(W,H);
% [U,V]=normalize_by_W(U,V);
% % par.max_iter =
%
% val = struct([]);
% ver = struct([]);
% end
%
% function [W,H,U,V,gradW,gradH,val] = fix_iterSolver(A,B,W,H,U,V,iter,par,val)
% epsilon = 1e-16;
%
% % for i = 1:par.ks
% % WtU = (W(:,i:par.k1))'*U(:,i:par.k2);
% % [C,I]=max(WtU); [C2,I2]=max(C); I1=I(I2);
% % W(:,[i I1+i-1]) = W(:,[I1+i-1 i]);
% % U(:,[i I2+i-1]) = U(:,[I2+i-1 i]);
% % end
%
% if iter == 10
% for i = 1:par.ks
% WtU = (W(:,i:par.k1))'*U(:,i:par.k2);
% [C,I]=max(WtU); [C2,I2]=max(C); I1=I(I2);
% W(:,[i I1+i-1]) = W(:,[I1+i-1 i]);
% U(:,[i I2+i-1]) = U(:,[I2+i-1 i]);
% end
% for i = 1:par.kd1
% WtU = (W(:,par.ks+i:par.k1))'*U(:,par.ks+1:par.k2);
% [C,I]=min(sum(WtU,2));
% W(:,[par.ks+i par.ks+i-1+I]) = W(:,[par.ks+i-1+I par.ks+i]);
% end
% for i = 1:par.kd2
% WtU = (W(:,par.ks+1:par.k1))'*U(:,par.ks+i:par.k2);
% [C,I]=min(sum(WtU));
% U(:,[par.ks+i par.ks+i-1+I]) = U(:,[par.ks+i-1+I par.ks+i]);
% end
% end
%
% error = norm(A-W*H,'fro') + norm(B-U*V,'fro') ;
% error1 = norm(W(:,1:par.ks)-U(:,1:par.ks),'fro');% * par.alpha;
% error2 = ones(1,par.kd1)*(W(:,par.ks+1:par.ks+par.kd1))'*U(:,par.ks+1:par.ks+par.kd2)*ones(par.kd2,1);% * par.beta;
% fprintf('%i error: %d,, %d,, %d,, total: %d %s \n', iter, error, error1, error2, error+error1+error2, 'before');
%
% WtA = W'*A;
% WtW = W'*W;
% WtW_reg = applyReg(WtW,par,par.reg_h);
% for i = 1:par.k1
% H(i,:) = max(H(i,:) + WtA(i,:) - WtW_reg(i,:) * H,epsilon);
% end
%
% error = norm(A-W*H,'fro') + norm(B-U*V,'fro') ;
% error1 = norm(W(:,1:par.ks)-U(:,1:par.ks),'fro');% * par.alpha;
% error2 = ones(1,par.kd1)*(W(:,par.ks+1:par.ks+par.kd1))'*U(:,par.ks+1:par.ks+par.kd2)*ones(par.kd2,1);% * par.beta;
% %fprintf('%s error: %d,, %d,, %d,, total: %d\n', 'H', error, error1, error2, error+error1+error2);
%
% AHt = A*H';
% HHt_reg = applyReg(H*H',par,par.reg_w);
% for i = 1:par.ks
% W(:,i) = max(W(:,i) * HHt_reg(i,i)/(HHt_reg(i,i)+par.alpha) + (AHt(:,i)+par.alpha*U(:,i)-W*HHt_reg(:,i)) / (HHt_reg(i,i)+par.alpha),epsilon);
% if sum(W(:,i))>0
% W(:,i) = W(:,i)/norm(W(:,i));
% end
% end
% for i = par.ks+1:par.ks+par.kd1
% W(:,i) = max(W(:,i) + (AHt(:,i) - W * HHt_reg(:,i)-par.beta/2*U(:,par.ks+1:par.ks+par.kd2)*ones(par.kd2,1))/HHt_reg(i,i),epsilon);
% if sum(W(:,i))>0
% W(:,i) = W(:,i)/norm(W(:,i));
% end
% end
% for i = par.ks+par.kd1+1:par.k1
% W(:,i) = max(W(:,i) + (AHt(:,i) - W * HHt_reg(:,i))/HHt_reg(i,i),epsilon);
% if sum(W(:,i))>0
% W(:,i) = W(:,i)/norm(W(:,i));
% end
% end
%
% error = norm(A-W*H,'fro') + norm(B-U*V,'fro') ;
% error1 = norm(W(:,1:par.ks)-U(:,1:par.ks),'fro');% * par.alpha;
% error2 = ones(1,par.kd1)*(W(:,par.ks+1:par.ks+par.kd1))'*U(:,par.ks+1:par.ks+par.kd2)*ones(par.kd2,1);% * par.beta;
% %fprintf('%s error: %d,, %d,, %d,, total: %d\n', 'W', error, error1, error2, error+error1+error2);
%
% UtB = U'*B;
% UtU = U'*U;
% UtU_reg = applyReg(UtU,par,par.reg_h);
% for i = 1:par.k2
% V(i,:) = max(V(i,:) + UtB(i,:) - UtU_reg(i,:) * V,epsilon);
% end
%
% error = norm(A-W*H,'fro') + norm(B-U*V,'fro') ;
% error1 = norm(W(:,1:par.ks)-U(:,1:par.ks),'fro');% * par.alpha;
% error2 = ones(1,par.kd1)*(W(:,par.ks+1:par.ks+par.kd1))'*U(:,par.ks+1:par.ks+par.kd2)*ones(par.kd2,1);% * par.beta;
% %fprintf('%s error: %d,, %d,, %d,, total: %d\n', 'V', error, error1, error2, error+error1+error2);
%
% BVt = B*V';
% VVt_reg = applyReg(V*V',par,par.reg_w);
% for i = 1:par.ks
% U(:,i) = max(U(:,i) * VVt_reg(i,i)/(VVt_reg(i,i)+par.alpha) + (BVt(:,i)+par.alpha*W(:,i)-U*VVt_reg(:,i)) / (VVt_reg(i,i)+par.alpha),epsilon);
% if sum(U(:,i))>0
% U(:,i) = U(:,i)/norm(U(:,i));
% end
% end
% for i = par.ks+1:par.ks+par.kd2
% U(:,i) = max(U(:,i) + (BVt(:,i) - U * VVt_reg(:,i)-par.beta/2*W(:,par.ks+1:par.ks+par.kd1)*ones(par.kd1,1))/VVt_reg(i,i),epsilon);
% if sum(U(:,i))>0
% U(:,i) = U(:,i)/norm(U(:,i));
% end
% end
% for i = par.ks+par.kd2+1:par.k2
% U(:,i) = max(U(:,i) + (BVt(:,i) - U * VVt_reg(:,i))/VVt_reg(i,i),epsilon);
% if sum(U(:,i))>0
% U(:,i) = U(:,i)/norm(U(:,i));
% end
% end
%
% error = norm(A-W*H,'fro') + norm(B-U*V,'fro') ;
% error1 = norm(W(:,1:par.ks)-U(:,1:par.ks),'fro') * par.alpha;
% error2 = ones(1,par.kd1)*(W(:,par.ks+1:par.ks+par.kd1))'*U(:,par.ks+1:par.ks+par.kd2)*ones(par.kd2,1) * par.beta;
% %fprintf('%s error: %d,, %d,, %d,, total: %d\n', 'U', error, error1, error2, error+error1+error2);
%
% if par.track_grad
% % gradW = [W*HHt_reg - AHt, U*VVt_reg - BVt];
% % gradH = [getGradientOne(W'*W,W'*A,H,par.reg_h,par);getGradientOne(U'*U,U'*B,V,par.reg_h,par)];
% gradH = 0; gradW = 0;
% else
% gradH = 0; gradW = 0;
% end
% end
%
% function [ver] = fix_iterLogger(ver,par,val,W,H,prev_W,prev_H)
% end
%----------------- Comp -----------------------
function [W,H,par,val,ver] = comp_initializer(A,W,H,par)
epsilon = 1e-16;
for iter=1:5
WtA = W'*A;
WtW = W'*W;
WtW_reg = applyReg(WtW,par,par.reg_h);
for i = 1:par.k
H(i,:) = max(H(i,:) + WtA(i,:) - WtW_reg(i,:) * H,epsilon);
end
AHt = A*H';
HHt_reg = applyReg(H*H',par,par.reg_w);
for i = 1:par.k
W(:,i) = max(W(:,i) * HHt_reg(i,i) + AHt(:,i) - W * HHt_reg(:,i),epsilon);
if sum(W(:,i))>0
W(:,i) = W(:,i)/norm(W(:,i));
end
end
end
[W,H]=normalize_by_W(W,H);
val = struct([]);
ver = struct([]);
end
function [W,H,gradW,gradH,val,convd] = comp_iterSolver(A,W,H,iter,par,val)
epsilon = 1e-16;
convd = 1;
% if iter == 10
% for i = 1:par.ks
% WtU = (W(:,i:par.k1))'*U(:,i:par.k2);
% [C,I]=max(WtU); [C2,I2]=max(C); I1=I(I2);
% W(:,[i I1+i-1]) = W(:,[I1+i-1 i]);
% U(:,[i I2+i-1]) = U(:,[I2+i-1 i]);
% end
% for i = 1:par.kd1
% WtU = (W(:,par.ks+i:par.k1))'*U(:,par.ks+1:par.k2);
% [C,I]=min(sum(WtU,2));
% W(:,[par.ks+i par.ks+i-1+I]) = W(:,[par.ks+i-1+I par.ks+i]);
% end
% for i = 1:par.kd2
% WtU = (W(:,par.ks+1:par.k1))'*U(:,par.ks+i:par.k2);
% [C,I]=min(sum(WtU));
% U(:,[par.ks+i par.ks+i-1+I]) = U(:,[par.ks+i-1+I par.ks+i]);
% end
% end
WtA = W'*A;
WtW = W'*W;
WtW_reg = applyReg(WtW,par,par.reg_h);
for i = 1:par.k
H(i,:) = max(H(i,:) + (WtA(i,:) - WtW_reg(i,:) * H)/WtW_reg(i,i),epsilon);
end
AHt = A*H';
HHt_reg = applyReg(H*H',par,par.reg_w);
for i = 1:par.k
% W(:,i) = max(W(:,i) + (AHt(:,i) - W * HHt_reg(:,i)-par.beta/2*sum(W(:,[(1:i-1) (i+1):end]),2))/HHt_reg(i,i),epsilon);
W(:,i) = max(W(:,i) + (AHt(:,i) - W * HHt_reg(:,i)-par.beta/2*sum(W(:,[(1:i-1) (i+1):end]),2))/HHt_reg(i,i),0);
if sum(W(:,i))==0
tttmp = floor(length(W(:,i))/par.k/2);
W(randsample(length(W(:,i)),tttmp,false),i) = rand(tttmp,1);
convd = -1;
% break;
end
% if sum(W(:,i))>0
W(:,i) = W(:,i)/norm(W(:,i));
% end
end
if par.track_grad
% gradW = [W*HHt_reg - AHt, U*VVt_reg - BVt];
% gradH = [getGradientOne(W'*W,W'*A,H,par.reg_h,par);getGradientOne(U'*U,U'*B,V,par.reg_h,par)];
gradH = 0; gradW = 0;
else
gradH = 0; gradW = 0;
end
end
function [ver] = comp_iterLogger(ver,par,val,W,H,prev_W,prev_H)
end
%----------------------------------------------------------------------------------------------
% Utility Functions
%----------------------------------------------------------------------------------------------
% This function prepares information about execution for a experiment purpose
function ver = prepareHIS(A,W,H,prev_W,prev_H,init,par,iter,elapsed,gradW,gradH)
ver.iter = iter;
ver.elapsed = elapsed;
sqErr = getSquaredError(A,W,H,init);
ver.rel_Error = sqrt(sqErr)/init.norm_A;
ver.rel_Obj = getObj(sqErr,W,H,par)/init.baseObj;
ver.norm_W = norm(W,'fro');
ver.norm_H = norm(H,'fro');
if par.track_prev
ver.rel_Change_W = norm(W-prev_W,'fro')/init.norm_W;
ver.rel_Change_H = norm(H-prev_H,'fro')/init.norm_H;
end
if par.track_grad
ver.rel_NrPGrad_W = norm(projGradient(W,gradW),'fro')/init.normGr_W;
ver.rel_NrPGrad_H = norm(projGradient(H,gradH),'fro')/init.normGr_H;
ver.SC_NM_PGRAD = getStopCriterion(1,A,W,H,par,gradW,gradH)/init.SC_NM_PGRAD;
ver.SC_PGRAD = getStopCriterion(2,A,W,H,par,gradW,gradH)/init.SC_PGRAD;
ver.SC_DELTA = getStopCriterion(3,A,W,H,par,gradW,gradH)/init.SC_DELTA;
end
ver.density_W = length(find(W>0))/(par.m*par.k);
ver.density_H = length(find(H>0))/(par.n*par.k);
end
% Execution information is collected in HIS variable
function HIS = saveHIS(idx,ver,HIS)
%idx = length(HIS.iter)+1;
fldnames = fieldnames(ver);
for i=1:length(fldnames)
flname = fldnames{i};
HIS.(flname)(idx) = ver.(flname);
end
end
%-------------------------------------------------------------------------------
function retVal = getInitCriterion(stopRule,A,W,H,par,gradW,gradH)
% STOPPING_RULE : 1 - Normalized proj. gradient
% 2 - Proj. gradient
% 3 - Delta by H. Kim
% 0 - None (want to stop by MAX_ITER or MAX_TIME)
if nargin~=7
[gradW,gradH] = getGradient(A,W,H,par);
end
[m,k]=size(W);, [k,n]=size(H);, numAll=(m*k)+(k*n);
switch stopRule
case 1
retVal = norm([gradW(:); gradH(:)])/numAll;
case 2
retVal = norm([gradW(:); gradH(:)]);
case 3
retVal = getStopCriterion(3,A,W,H,par,gradW,gradH);
case 0
retVal = 1;
end
end
%-------------------------------------------------------------------------------
function retVal = getStopCriterion(stopRule,A,W,H,par,gradW,gradH)
% STOPPING_RULE : 1 - Normalized proj. gradient
% 2 - Proj. gradient
% 3 - Delta by H. Kim
% 0 - None (want to stop by MAX_ITER or MAX_TIME)
if nargin~=7
[gradW,gradH] = getGradient(A,W,H,par);
end
switch stopRule
case 1
pGradW = projGradient(W,gradW);
pGradH = projGradient(H,gradH);
pGrad = [pGradW(:); pGradH(:)];
retVal = norm(pGrad)/length(pGrad);
case 2
pGradW = projGradient(W,gradW);
pGradH = projGradient(H,gradH);
pGrad = [pGradW(:); pGradH(:)];
retVal = norm(pGrad);
case 3
resmat=min(H,gradH); resvec=resmat(:);
resmat=min(W,gradW); resvec=[resvec; resmat(:)];
deltao=norm(resvec,1); %L1-norm
num_notconv=length(find(abs(resvec)>0));
retVal=deltao/num_notconv;
case 0
retVal = 1e100;
end
end
%-------------------------------------------------------------------------------
function sqErr = getSquaredError(A,W,H,init)
sqErr = max((init.norm_A)^2 - 2*trace(H*(A'*W))+trace((W'*W)*(H*H')),0 );
end
function retVal = getObj(sqErr,W,H,par)
retVal = 0.5 * sqErr;
retVal = retVal + par.reg_w(1) * sum(sum(W.*W));
retVal = retVal + par.reg_w(2) * sum(sum(W,2).^2);
retVal = retVal + par.reg_h(1) * sum(sum(H.*H));
retVal = retVal + par.reg_h(2) * sum(sum(H,1).^2);
end
function AtA = applyReg(AtA,par,reg)
% Frobenius norm regularization
if reg(1) > 0
AtA = AtA + 2 * reg(1) * eye(par.k);
end
% L1-norm regularization
if reg(2) > 0
AtA = AtA + 2 * reg(2) * ones(par.k,par.k);
end
end
function [grad] = modifyGradient(grad,X,reg,par)
if reg(1) > 0
grad = grad + 2 * reg(1) * X;
end
if reg(2) > 0
grad = grad + 2 * reg(2) * ones(par.k,par.k) * X;
end
end
function [grad] = getGradientOne(AtA,AtB,X,reg,par)
grad = AtA*X - AtB;
grad = modifyGradient(grad,X,reg,par);
end
function [gradW,gradH] = getGradient(A,W,H,par)
HHt = H*H';
HHt_reg = applyReg(HHt,par,par.reg_w);
WtW = W'*W;
WtW_reg = applyReg(WtW,par,par.reg_h);
gradW = W*HHt_reg - A*H';
gradH = WtW_reg*H - W'*A;
end
%-------------------------------------------------------------------------------
function pGradF = projGradient(F,gradF)
pGradF = gradF(gradF<0|F>0);
end
%-------------------------------------------------------------------------------
function [W,H,weights] = normalize_by_W(W,H)
norm2=sqrt(sum(W.^2,1));
toNormalize = norm2>0;
W(:,toNormalize) = W(:,toNormalize)./repmat(norm2(toNormalize),size(W,1),1);
H(toNormalize,:) = H(toNormalize,:).*repmat(norm2(toNormalize)',1,size(H,2));
weights = ones(size(norm2));
weights(toNormalize) = norm2(toNormalize);
end
|
github
|
sanghosuh/lens_nmf-matlab-master
|
fcnnls.m
|
.m
|
lens_nmf-matlab-master/library/nmf/fcnnls.m
| 4,407 |
utf_8
|
b1a8ecaaeeec231beb8a0a043366505e
|
% M. H. Van Benthem and M. R. Keenan, J. Chemometrics 2004; 18: 441-450
%
% Given A and C this algorithm solves for the optimal
% K in a least squares sense, using that
% A = C*K
% in the problem
% min ||A-C*K||, s.t. K>=0, for given A and C.
%
function [K, Pset, many_iter] = fcnnls(C, A)
% NNLS using normal equations and the fast combinatorial strategy
%
% I/O: [K, Pset] = fcnnls(C, A);
% K = fcnnls(C, A);
%
% C is the nObs x lVar coefficient matrix
% A is the nObs x pRHS matrix of observations
% K is the lVar x pRHS solution matrix
% Pset is the lVar x pRHS passive set logical array
%
% M. H. Van Benthem and M. R. Keenan
% Sandia National Laboratories
%
% Pset: set of passive sets, one for each column
% Fset: set of column indices for solutions that have not yet converged
% Hset: set of column indices for currently infeasible solutions
% Jset: working set of column indices for currently optimal solutions
%
% Check the input arguments for consistency and initialize
error(nargchk(2,2,nargin))
[nObs, lVar] = size(C);
if size(A,1)~= nObs, error('C and A have imcompatible sizes'), end
pRHS = size(A,2);
W = zeros(lVar, pRHS);
iter=0; maxiter=3*lVar;
% Precompute parts of pseudoinverse
CtC = C'*C; CtA = C'*A;
% Obtain the initial feasible solution and corresponding passive set
K = cssls(CtC, CtA);
Pset = K > 0;
K(~Pset) = 0;
D = K;
Fset = find(~all(Pset));
% Active set algorithm for NNLS main loop
oitr=0; % HKim
many_iter = 0;
while ~isempty(Fset)
many_iter = many_iter + 1;
if(many_iter == 5200)
many_iter = 1;
break;
end
oitr=oitr+1; if oitr > 5, fprintf('%d ',oitr);, end % HKim
% Solve for the passive variables (uses subroutine below)
K(:,Fset) = cssls(CtC, CtA(:,Fset), Pset(:,Fset));
% Find any infeasible solutions
Hset = Fset(find(any(K(:,Fset) < 0)));
% Make infeasible solutions feasible (standard NNLS inner loop)
if ~isempty(Hset)
nHset = length(Hset);
alpha = zeros(lVar, nHset);
while ~isempty(Hset) & (iter < maxiter)
iter = iter + 1;
alpha(:,1:nHset) = Inf;
% Find indices of negative variables in passive set
[i, j] = find(Pset(:,Hset) & (K(:,Hset) < 0));
if isempty(i), break, end
hIdx = sub2ind([lVar nHset], i, j);
if nHset==1, % HKim
negIdx = sub2ind(size(K), i, Hset*ones(length(j),1)); %HKim
else % HKim
negIdx = sub2ind(size(K), i, Hset(j)');
end % HKim
alpha(hIdx) = D(negIdx)./(D(negIdx) - K(negIdx));
[alphaMin,minIdx] = min(alpha(:,1:nHset));
alpha(:,1:nHset) = repmat(alphaMin, lVar, 1);
D(:,Hset) = D(:,Hset)-alpha(:,1:nHset).*(D(:,Hset)-K(:,Hset));
idx2zero = sub2ind(size(D), minIdx, Hset);
D(idx2zero) = 0;
Pset(idx2zero) = 0;
K(:, Hset) = cssls(CtC, CtA(:,Hset), Pset(:,Hset));
Hset = find(any(K < 0)); nHset = length(Hset);
end
end
%if
% Make sure the solution has converged
%if iter == maxiter, error('Maximum number iterations exceeded'), end
% Check solutions for optimality
W(:,Fset) = CtA(:,Fset)-CtC*K(:,Fset);
Jset = find(all(~Pset(:,Fset).*W(:,Fset) <= 0));
Fset = setdiff(Fset, Fset(Jset));
% For non-optimal solutions, add the appropriate variable to Pset
if ~isempty(Fset)
[mx, mxidx] = max(~Pset(:,Fset).*W(:,Fset));
Pset(sub2ind([lVar pRHS], mxidx, Fset)) = 1;
D(:,Fset) = K(:,Fset);
end
end
% ****************************** Subroutine****************************
function [K] = cssls(CtC, CtA, Pset)
% Solve the set of equations CtA = CtC*K for the variables in set Pset
% using the fast combinatorial approach
K = zeros(size(CtA));
if (nargin == 2) || isempty(Pset) || all(Pset(:))
K = CtC\CtA;
%K=pinv(CtC)*CtA;
else
[lVar pRHS] = size(Pset);
codedPset = 2.^(lVar-1:-1:0)*Pset;
[sortedPset, sortedEset] = sort(codedPset);
breaks = diff(sortedPset);
breakIdx = [0 find(breaks) pRHS];
for k = 1:length(breakIdx)-1
cols2solve = sortedEset(breakIdx(k)+1:breakIdx(k+1));
vars = Pset(:,sortedEset(breakIdx(k)+1));
K(vars,cols2solve) = CtC(vars,vars)\CtA(vars,cols2solve);
%K(vars,cols2solve) = pinv(CtC(vars,vars))*CtA(vars,cols2solve);
end
end
|
github
|
sanghosuh/lens_nmf-matlab-master
|
nmfsh_comb_original.m
|
.m
|
lens_nmf-matlab-master/library/nmf/nmfsh_comb_original.m
| 4,989 |
utf_8
|
033ed6a9348041d0caab80dc5834ee2b
|
%
% SNMF/R
%
% Author: Hyunsoo Kim and Haesun Park, Georgia Insitute of Technology
%
% Reference:
%
% Sparse Non-negative Matrix Factorizations via Alternating
% Non-negativity-constrained Least Squares for Microarray Data Analysis
% Hyunsoo Kim and Haesun Park, Bioinformatics, 2007, to appear.
%
% This software requires fcnnls.m, which can be obtained from
% M. H. Van Benthem and M. R. Keenan, J. Chemometrics 2004; 18: 441-450
%
% NMF: min_{W,H} (1/2) || A - WH ||_F^2 s.t. W>=0, H>=0
% SNMF/R: NMF with additional sparsity constraints on H
%
% min_{W,H} (1/2) (|| A - WH ||_F^2 + eta ||W||_F^2
% + beta (sum_(j=1)^n ||H(:,j)||_1^2))
% s.t. W>=0, H>=0
%
% A: m x n data matrix (m: features, n: data points)
% W: m x k basis matrix
% H: k x n coefficient matrix
%
% function [W,H,i]=nmfsh_comb(A,k,param,verbose,bi_conv,eps_conv)
%
% input parameters:
% A: m x n data matrix (m: features, n: data points)
% k: desired positive integer k
% param=[eta beta]:
% eta (for supressing ||W||_F)
% if eta < 0, software uses maxmum value in A as eta.
% beta (for sparsity control)
% Larger beta generates higher sparseness on H.
% Too large beta is not recommended.
% verbos: verbose = 0 for silence mode, otherwise print output
% eps_conv: KKT convergence test (default eps_conv = 1e-4)
% bi_conv=[wminchange iconv] biclustering convergence test
% wminchange: the minimal allowance of the change of
% row-clusters (default wminchange=0)
% iconv: decide convergence if row-clusters (within wminchange)
% and column-clusters have not changed for iconv convergence
% checks. (default iconv=10)
%
% output:
% W: m x k basis matrix
% H: k x n coefficient matrix
% i: the number of iterations
%
% sample usage:
% [W,H]=nmfsh_comb(amlall,3,[-1 0.01],1);
% [W,H]=nmfsh_comb(amlall,3,[-1 0.01],1,[3 10]);
% -- in the convergence check, the change of row-clusters to
% at most three rows is allowed.
%
%
function [W,H,i,total_iter]=nmfsh_comb_original(A,k,param,verbose,bi_conv,eps_conv)
if nargin<6, eps_conv=1e-4;, end
if nargin<5, bi_conv=[0 10];, end
if nargin<4, verbose=0;, end
if nargin<3, error('too small number of input arguments.');, end
maxiter = 500; % maximum number of iterations
total_iter = 0; % by Sangho
[m,n]=size(A); erravg1=[];
eta=param(1); beta=param(2);
maxA=max(A(:)); if eta<0, eta=maxA; end
eta2=eta^2;
wminchange=bi_conv(1); iconv=bi_conv(2);
% if verbose, fprintf('SNMF/R k=%d eta=%.4e beta (for sparse H)=%.4e wminchange=%d iconv=%d\n',...
% k,full(eta),beta,wminchange,iconv);, end
idxWold=zeros(m,1); idxHold=zeros(1,n); inc=0;
% initialize random W
W=rand(m,k);
W=W./repmat(sqrt(sum(W.^2,1)),m,1); % normalize
I_k=eta*eye(k); betavec=sqrt(beta)*ones(1,k); nrestart=0;
for i=1:maxiter
% min_h ||[[W; 1 ... 1]*H - [A; 0 ... 0]||, s.t. H>=0, for given A and W.
% H = fcnnls_original([W; betavec],[A; zeros(1,n)]);
if exist('H','var')
H = nnlsm_blockpivot( [W; betavec], [A; zeros(1,n)], 0, H );
else
H = nnlsm_blockpivot( [W; betavec], [A; zeros(1,n)], 0 );
end
if find(sum(H,2)==0),
fprintf('iter%d: 0 row in H eta=%.4e restart!\n',full(i),full(eta)); % modified by Sangho b/c of sparsity problem
% fprintf('iter%d: 0 row in H eta=%.4e restart!\n',i,eta); % original code
nrestart=nrestart+1;
if nrestart >= 10,
fprintf('[*Warning*] too many restarts due to too big beta value...\n');
i=-1;
break;
end
idxWold=zeros(m,1); idxHold=zeros(1,n); inc=0;
W=rand(m,k); W=W./repmat(sqrt(sum(W.^2,1)),m,1); % normalize
continue;
end
% min_w ||[H'; I_k]*W' - [A'; 0]||, s.t. W>=0, for given A and H.
% Wt=fcnnls([H'; I_k],[A'; zeros(k,m)]); W=Wt';
W = nnlsm_blockpivot( [H'; I_k], [A'; zeros(k,m)], 0, W' )';
% test convergence every 5 iterations
if(mod(i,5)==0) | (i==1)
[y,idxW]=max(W,[],2); [y,idxH]=max(H,[],1);
changedW=length(find(idxW ~= idxWold)); changedH=length(find(idxH ~= idxHold));
if (changedW<=wminchange) & (changedH==0), inc=inc+1;, else inc=0;, end
resmat=min(H,(W'*W)*H-W'*A+beta*ones(k,k)*H); resvec=resmat(:);
resmat=min(W,W*(H*H')-A*H'+eta2*W); resvec=[resvec; resmat(:)];
conv=norm(resvec,1); %L1-norm
convnum=length(find(abs(resvec)>0));
erravg=conv/convnum;
if i==1, erravg1=erravg;, end
% if verbose | (mod(i,1000)==0) % prints number of changing elements
% fprintf('\t%d\t%d\t%d %d --- erravg1: %.4e erravg: %.4e\n',...
% i,inc,changedW,changedH,erravg1,erravg);
% end
if (inc>=iconv) & (erravg<=eps_conv*erravg1), break, end
idxWold=idxW; idxHold=idxH;
end
total_iter = total_iter + 1; % by Sangho
end
return;
|
github
|
sanghosuh/lens_nmf-matlab-master
|
nmf.m
|
.m
|
lens_nmf-matlab-master/library/nmf/nmf.m
| 25,072 |
utf_8
|
6ff4cbae3d1bff8b4c05b0a8a3485728
|
% Nonnegative Matrix Factorization : Algorithms Toolbox
%
% Written by Jingu Kim ([email protected])
% School of Computational Science and Engineering,
% Georgia Institute of Technology
%
% Please send bug reports, comments, or questions to Jingu Kim.
% This code comes with no guarantee or warranty of any kind.
%
% Reference:
% Jingu Kim and Haesun Park,
% Fast Nonnegative Matrix Factorization: An Active-set-like Method And Comparisons,
% SIAM Journal on Scientific Computing (SISC), 33(6), pp. 3261-3281, 2011.
%
% Last modified on 02/22/2012
%
% <Inputs>
% A : Input data matrix (m x n)
% k : Target low-rank
%
% (Below are optional arguments: can be set by providing name-value pairs)
%
% METHOD : Algorithm for solving NMF. One of the following values:
% 'anls_bpp' 'hals' 'anls_asgroup' 'anls_asgivens' 'anls_pgrad' 'anls_pqn' 'als' 'mu'
% See above paper (and references therein) for the details of these algorithms.
% Default is 'anls_bpp'.
% TOL : Stopping tolerance. Default is 1e-3.
% If you want to obtain a more accurate solution, decrease TOL and increase MAX_ITER at the same time.
% MAX_ITER : Maximum number of iterations. Default is 500.
% MIN_ITER : Minimum number of iterations. Default is 20.
% MAX_TIME : Maximum amount of time in seconds. Default is 1,000,000.
% INIT : A struct containing initial values. INIT.W and INIT.H should contain initial values of
% W and H of size (m x k) and (k x n), respectively.
% VERBOSE : 0 (default) - No debugging information is collected.
% 1 (debugging/experimental purpose) - History of computation is returned. See 'REC' variable.
% 2 (debugging/experimental purpose) - History of computation is additionally printed on screen.
% REG_W, REG_H : Regularization parameters for W and H.
% Both REG_W and REG_H should be vector of two nonnegative numbers.
% The first component is a parameter with Frobenius norm regularization, and
% the second component is a parameter with L1-norm regularization.
% For example, to promote sparsity in H, one might set REG_W = [alpha 0] and REG_H = [0 beta]
% where alpha and beta are positive numbers. See above paper for more details.
% Defaut is [0 0] for both REG_W and REG_H, which means no regularization.
% <Outputs>
% W : Obtained basis matrix (m x k)
% H : Obtained coefficient matrix (k x n)
% iter : Number of iterations
% HIS : (debugging/experimental purpose) Auxiliary information about the execution
% <Usage Examples>
% nmf(A,10)
% nmf(A,20,'verbose',2)
% nmf(A,20,'verbose',1,'method','anls_bpp')
% nmf(A,20,'verbose',1,'method','hals')
% nmf(A,20,'verbose',1,'reg_w',[0.1 0],'reg_h',[0 0.5])
function [W,H,iter,REC]=nmf(A,k,varargin)
% parse parameters
params = inputParser;
params.addParamValue('method' ,'anls_bpp',@(x) ischar(x) );
% params.addParamValue('tol' ,1e-3 ,@(x) isscalar(x) & x > 0);
params.addParamValue('tol' ,1e-8 ,@(x) isscalar(x) & x > 0); % by sangho
params.addParamValue('min_iter' ,20 ,@(x) isscalar(x) & x > 0);
% params.addParamValue('max_iter' ,500 ,@(x) isscalar(x) & x > 0);
params.addParamValue('max_iter' ,1000 ,@(x) isscalar(x) & x > 0);
params.addParamValue('max_time' ,1e6 ,@(x) isscalar(x) & x > 0);
params.addParamValue('init' ,struct([]),@(x) isstruct(x));
params.addParamValue('verbose' ,0 ,@(x) isscalar(x) & x >= 0);
params.addParamValue('reg_w' ,[0 0] ,@(x) isvector(x) & length(x) == 2);
params.addParamValue('reg_h' ,[0 0] ,@(x) isvector(x) & length(x) == 2);
% The following options are reserved for debugging/experimental purposes.
% Make sure to understand them before making changes
params.addParamValue('subparams' ,struct([]),@(x) isstruct(x) );
params.addParamValue('track_grad' ,1 ,@(x) isscalar(x) & x >= 0);
params.addParamValue('track_prev' ,1 ,@(x) isscalar(x) & x >= 0);
params.addParamValue('stop_criterion',2 ,@(x) isscalar(x) & x >= 0);
params.parse(varargin{:});
% joyfull
% size(A)
% if size(A,2)==3
% A=sparse(A(:,1),A(:,2),A(:,3));
% end
% size(A)
% params
% copy from params object
[m,n] = size(A);
par = params.Results;
par.m = m;
par.n = n;
par.k = k;
% Stopping criteria are based on the gradient information.
% Hence, 'track_grad' option needs to be turned on to use a criterion.
if par.stop_criterion > 0
par.track_grad = 1;
end
% initialize
if isempty(par.init)
W = rand(m,k); H = rand(k,n);
else
W = par.init.W; H = par.init.H;
end
% This variable is for analysis/debugging, so it does not affect the output (W,H) of this program
REC = struct([]);
if par.verbose % Collect initial information for analysis/debugging
clear('init');
init.norm_A = norm(A,'fro');
init.norm_W = norm(W,'fro');
init.norm_H = norm(H,'fro');
init.baseObj = getObj((init.norm_A)^2,W,H,par);
if par.track_grad
[gradW,gradH] = getGradient(A,W,H,par);
init.normGr_W = norm(gradW,'fro');
init.normGr_H = norm(gradH,'fro');
init.SC_NM_PGRAD = getInitCriterion(1,A,W,H,par,gradW,gradH);
init.SC_PGRAD = getInitCriterion(2,A,W,H,par,gradW,gradH);
init.SC_DELTA = getInitCriterion(3,A,W,H,par,gradW,gradH);
else
gradW = 0; gradH = 0;
end
if par.track_prev
prev_W = W; prev_H = H;
else
prev_W = 0; prev_H = 0;
end
ver = prepareHIS(A,W,H,prev_W,prev_H,init,par,0,0,gradW,gradH);
REC(1).init = init;
REC.HIS = ver;
if par.verbose == 2
display(init);
end
tPrev = cputime;
end
initializer= str2func([par.method,'_initializer']);
iterSolver = str2func([par.method,'_iterSolver']);
iterLogger = str2func([par.method,'_iterLogger']);
[W,H,par,val,ver] = feval(initializer,A,W,H,par);
if par.verbose & ~isempty(ver)
tTemp = cputime;
REC.HIS = saveHIS(1,ver,REC.HIS);
tPrev = tPrev+(cputime-tTemp);
end
REC(1).par = par;
REC.start_time = datestr(now);
if par.verbose
display(par);
end
tStart = cputime;, tTotal = 0;
if par.track_grad
initSC = getInitCriterion(par.stop_criterion,A,W,H,par);
end
SCconv = 0; SC_COUNT = 3;
for iter=1:par.max_iter
% Actual work of this iteration is executed here.
[W,H,gradW,gradH,val] = feval(iterSolver,A,W,H,iter,par,val);
if par.verbose % Collect information for analysis/debugging
elapsed = cputime-tPrev;
tTotal = tTotal + elapsed;
clear('ver');
ver = prepareHIS(A,W,H,prev_W,prev_H,init,par,iter,elapsed,gradW,gradH);
ver = feval(iterLogger,ver,par,val,W,H,prev_W,prev_H);
REC.HIS = saveHIS(iter+1,ver,REC.HIS);
if par.track_prev, prev_W = W; prev_H = H; end
if par.verbose == 2, display(ver);, end
tPrev = cputime;
end
if (iter > par.min_iter)
if (par.verbose && (tTotal > par.max_time)) || (~par.verbose && ((cputime-tStart)>par.max_time))
break;
elseif par.track_grad
SC = getStopCriterion(par.stop_criterion,A,W,H,par,gradW,gradH);
if (SC/initSC <= par.tol)
SCconv = SCconv + 1;
if (SCconv >= SC_COUNT), break;, end
else
SCconv = 0;
end
end
end
end
[m,n]=size(A);
[W,H]=normalize_by_W(W,H);
if par.verbose
final.elapsed_total = sum(REC.HIS.elapsed);
else
final.elapsed_total = cputime-tStart;
end
final.iterations = iter;
% sqErr = getSquaredError(A,W,H,init);
% final.relative_error = sqrt(sqErr)/init.norm_A;
% final.relative_obj = getObj(sqErr,W,H,par)/init.baseObj;
final.W_density = length(find(W>0))/(m*k);
final.H_density = length(find(H>0))/(n*k);
if par.verbose
REC.final = final;
end
REC.finish_time = datestr(now);
if par.verbose
display(final);
end
end
%----------------------------------------------------------------------------
% Implementation of methods
%----------------------------------------------------------------------------
%----------------- ANLS with Block Principal Pivoting Method --------------------------
function [W,H,par,val,ver] = anls_bpp_initializer(A,W,H,par)
H = zeros(size(H));
ver.turnZr_W = 0;
ver.turnZr_H = 0;
ver.turnNz_W = 0;
ver.turnNz_H = 0;
ver.numChol_W = 0;
ver.numChol_H = 0;
ver.numEq_W = 0;
ver.numEq_H = 0;
ver.suc_W = 0;
ver.suc_H = 0;
val(1).WtA = W'*A;
val.WtW = W'*W;
end
function [W,H,gradW,gradH,val] = anls_bpp_iterSolver(A,W,H,iter,par,val)
WtW_reg = applyReg(val.WtW,par,par.reg_h);
[H,temp,suc_H,numChol_H,numEq_H] = nnlsm_blockpivot(WtW_reg,val.WtA,1,H);
HHt_reg = applyReg(H*H',par,par.reg_w);
[W,gradW,suc_W,numChol_W,numEq_W] = nnlsm_blockpivot(HHt_reg,H*A',1,W');
W = W';
val.WtA = W'*A;
val.WtW = W'*W;
if par.track_grad
gradW = gradW';
gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
else
gradW = 0;gradH =0;
end
val(1).numChol_W = numChol_W;
val.numChol_H = numChol_H;
val.numEq_W = numEq_W;
val.numEq_H = numEq_H;
val.suc_W = suc_W;
val.suc_H = suc_H;
end
function [ver] = anls_bpp_iterLogger(ver,par,val,W,H,prev_W,prev_H)
if par.track_prev
ver.turnZr_W = length(find( (prev_W>0) & (W==0) ))/(par.m*par.k);
ver.turnZr_H = length(find( (prev_H>0) & (H==0) ))/(par.n*par.k);
ver.turnNz_W = length(find( (prev_W==0) & (W>0) ))/(par.m*par.k);
ver.turnNz_H = length(find( (prev_H==0) & (H>0) ))/(par.n*par.k);
end
ver.numChol_W = val.numChol_W;
ver.numChol_H = val.numChol_H;
ver.numEq_W = val.numEq_W;
ver.numEq_H = val.numEq_H;
ver.suc_W = val.suc_W;
ver.suc_H = val.suc_H;
end
%----------------- ANLS with Active Set Method / Givens Updating --------------------------
function [W,H,par,val,ver] = anls_asgivens_initializer(A,W,H,par)
H = zeros(size(H));
ver.turnZr_W = 0;
ver.turnZr_H = 0;
ver.turnNz_W = 0;
ver.turnNz_H = 0;
ver.numChol_W = 0;
ver.numChol_H = 0;
ver.suc_W = 0;
ver.suc_H = 0;
val(1).WtA = W'*A;
val.WtW = W'*W;
end
function [W,H,gradW,gradH,val] = anls_asgivens_iterSolver(A,W,H,iter,par,val)
WtW_reg = applyReg(val.WtW,par,par.reg_h);
ow = 0;
suc_H = zeros(1,size(H,2));
numChol_H = zeros(1,size(H,2));
for i=1:size(H,2)
[H(:,i),temp,suc_H(i),numChol_H(i)] = nnls1_asgivens(WtW_reg,val.WtA(:,i),ow,1,H(:,i));
end
suc_W = zeros(1,size(W,1));
numChol_W = zeros(1,size(W,1));
HHt_reg = applyReg(H*H',par,par.reg_w);
HAt = H*A';
Wt = W';
gradWt = zeros(size(Wt));
for i=1:size(W,1)
[Wt(:,i),gradWt(:,i),suc_W(i),numChol_W(i)] = nnls1_asgivens(HHt_reg,HAt(:,i),ow,1,Wt(:,i));
end
W = Wt';
val.WtA = W'*A;
val.WtW = W'*W;
if par.track_grad
gradW = gradWt';
gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
else
gradW = 0; gradH =0;
end
val(1).numChol_W = sum(numChol_W);
val.numChol_H = sum(numChol_H);
val.suc_W = any(suc_W);
val.suc_H = any(suc_H);
end
function [ver] = anls_asgivens_iterLogger(ver,par,val,W,H,prev_W,prev_H)
if par.track_prev
ver.turnZr_W = length(find( (prev_W>0) & (W==0) ))/(par.m*par.k);
ver.turnZr_H = length(find( (prev_H>0) & (H==0) ))/(par.n*par.k);
ver.turnNz_W = length(find( (prev_W==0) & (W>0) ))/(par.m*par.k);
ver.turnNz_H = length(find( (prev_H==0) & (H>0) ))/(par.n*par.k);
end
ver.numChol_W = val.numChol_W;
ver.numChol_H = val.numChol_H;
ver.suc_W = val.suc_W;
ver.suc_H = val.suc_H;
end
%----------- ANLS with Active Set Method / Column Grouping / No Overwrite -----------------
function [W,H,par,val,ver] = anls_asgroup_initializer(A,W,H,par)
[W,H,par,val,ver] = anls_bpp_initializer(A,W,H,par);
end
function [W,H,gradW,gradH,val] = anls_asgroup_iterSolver(A,W,H,iter,par,val)
WtW_reg = applyReg(val.WtW,par,par.reg_h);
ow = 0;
[H,temp,suc_H,numChol_H,numEq_H] = nnlsm_activeset(WtW_reg,val.WtA,ow,1,H);
HHt_reg = applyReg(H*H',par,par.reg_w);
[W,gradW,suc_W,numChol_W,numEq_W] = nnlsm_activeset(HHt_reg,H*A',ow,1,W');
W = W';
val.WtA = W'*A;
val.WtW = W'*W;
if par.track_grad
gradW = gradW';
gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
else
gradW = 0; gradH =0;
end
val(1).numChol_W = numChol_W;
val.numChol_H = numChol_H;
val.numEq_W = numEq_W;
val.numEq_H = numEq_H;
val.suc_W = suc_W;
val.suc_H = suc_H;
end
function [ver] = anls_asgroup_iterLogger(ver,par,val,W,H,prev_W,prev_H)
ver = anls_bpp_iterLogger(ver,par,val,W,H,prev_W,prev_H);
end
%----------------- ANLS with Projected Gradient Method --------------------------
function [W,H,par,val,ver] = anls_pgrad_initializer(A,W,H,par)
if isempty(par.subparams)
par.subparams(1).subtol_init = 0.1;
par.subparams.reduce_factor = 0.1;
par.subparams.num_warmup_iter = 5;
par.subparams.min_subiter = 1;
par.subparams.max_subiter = 100;
par.subparams.min_tol = 1e-10;
end
[gradW,gradH] = getGradient(A,W,H,par);
val(1).tol_W = par.subparams.subtol_init*norm(gradW,'fro');
val.tol_H = par.subparams.subtol_init*norm(gradH,'fro');
ver.subIter_W = 0;
ver.subIter_H = 0;
ver.numLineSearch_W = 0;
ver.numLineSearch_H = 0;
end
function [W,H,gradW,gradH,val] = anls_pgrad_iterSolver(A,W,H,iter,par,val)
if (iter>1 && iter<=par.subparams.num_warmup_iter)
val.tol_W = val.tol_W * par.subparams.reduce_factor;
val.tol_H = val.tol_H * par.subparams.reduce_factor;
end
WtW_reg = applyReg(W'*W,par,par.reg_h);
WtA = W'*A;
[H,gradHX,subIter_H,numLineSearch_H] = nnlssub_projgrad(WtW_reg,WtA,val.tol_H,H,par.subparams.max_subiter,1);
if (iter > par.subparams.num_warmup_iter) && (subIter_H < par.subparams.min_subiter) && (val.tol_H >= par.subparams.min_tol)
val.tol_H = par.subparams.reduce_factor * val.tol_H;
[H,gradHX,subAddH,lsAddH] = nnlssub_projgrad(WtW_reg,WtA,val.tol_H,H,par.subparams.max_subiter,1);
subIter_H = subIter_H + subAddH;
numLineSearch_H = numLineSearch_H + lsAddH;
end
HHt_reg = applyReg(H*H',par,par.reg_w);
HAt = H*A';
[W,gradW,subIter_W,numLineSearch_W] = nnlssub_projgrad(HHt_reg,HAt,val.tol_W,W',par.subparams.max_subiter,1);
if (iter > par.subparams.num_warmup_iter) && (subIter_W < par.subparams.min_subiter) && (val.tol_W >= par.subparams.min_tol)
val.tol_W = par.subparams.reduce_factor * val.tol_W;
[W,gradW,subAddW,lsAddW] = nnlssub_projgrad(HHt_reg,HAt,val.tol_W,W,par.subparams.max_subiter,1);
subIter_W = subIter_W + subAddW;
numLineSearch_W = numLineSearch_W + lsAddW;
end
W = W';
if par.track_grad
gradW = gradW';
gradH = getGradientOne(W'*W,W'*A,H,par.reg_h,par);
else
gradH = 0; gradW = 0;
end
val(1).subIter_W = subIter_W;
val.subIter_H = subIter_H;
val.numLineSearch_W = numLineSearch_W;
val.numLineSearch_H = numLineSearch_H;
end
function [ver] = anls_pgrad_iterLogger(ver,par,val,W,H,prev_W,prev_H)
ver.tol_W = val.tol_W;
ver.tol_H = val.tol_H;
ver.subIter_W = val.subIter_W;
ver.subIter_H = val.subIter_H;
ver.numLineSearch_W = val.numLineSearch_W;
ver.numLineSearch_H = val.numLineSearch_H;
end
%----------------- ANLS with Projected Quasi Newton Method --------------------------
function [W,H,par,val,ver] = anls_pqn_initializer(A,W,H,par)
[W,H,par,val,ver] = anls_pgrad_initializer(A,W,H,par);
end
function [W,H,gradW,gradH,val] = anls_pqn_iterSolver(A,W,H,iter,par,val)
if (iter>1 && iter<=par.subparams.num_warmup_iter)
val.tol_W = val.tol_W * par.subparams.reduce_factor;
val.tol_H = val.tol_H * par.subparams.reduce_factor;
end
WtW_reg = applyReg(W'*W,par,par.reg_h);
WtA = W'*A;
[H,gradHX,subIter_H] = nnlssub_projnewton_mod(WtW_reg,WtA,val.tol_H,H,par.subparams.max_subiter,1);
if (iter > par.subparams.num_warmup_iter) && (subIter_H/par.n < par.subparams.min_subiter) && (val.tol_H >= par.subparams.min_tol)
val.tol_H = par.subparams.reduce_factor * val.tol_H;
[H,gradHX,subAddH] = nnlssub_projnewton_mod(WtW_reg,WtA,val.tol_H,H,par.subparams.max_subiter,1);
subIter_H = subIter_H + subAddH;
end
HHt_reg = applyReg(H*H',par,par.reg_w);
HAt = H*A';
[W,gradW,subIter_W] = nnlssub_projnewton_mod(HHt_reg,HAt,val.tol_W,W',par.subparams.max_subiter,1);
if (iter > par.subparams.num_warmup_iter) && (subIter_W/par.m < par.subparams.min_subiter) && (val.tol_W >= par.subparams.min_tol)
val.tol_W = par.subparams.reduce_factor * val.tol_W;
[W,gradW,subAddW] = nnlssub_projnewton_mod(HHt_reg,HAt,val.tol_W,W,par.subparams.max_subiter,1);
subIter_W = subIter_W + subAddW;
end
W = W';
if par.track_grad
gradW = gradW';
gradH = getGradientOne(W'*W,W'*A,H,par.reg_h,par);
else
gradH = 0; gradW = 0;
end
val(1).subIter_W = subIter_W;
val.subIter_H = subIter_H;
end
function [ver] = anls_pqn_iterLogger(ver,par,val,W,H,prev_W,prev_H)
ver.tol_W = val.tol_W;
ver.tol_H = val.tol_H;
ver.subIter_W = val.subIter_W;
ver.subIter_H = val.subIter_H;
end
%----------------- Alternating Least Squares Method --------------------------
function [W,H,par,val,ver] = als_initializer(A,W,H,par)
ver = struct([]);
val.WtA = W'*A;
val.WtW = W'*W;
end
function [W,H,gradW,gradH,val] = als_iterSolver(A,W,H,iter,par,val)
WtW_reg = applyReg(val.WtW,par,par.reg_h);
H = WtW_reg\val.WtA;
H(H<0)=0;
AHt = A*H';
HHt_reg = applyReg(H*H',par,par.reg_w);
Wt = HHt_reg\AHt'; W=Wt';
W(W<0)=0;
% normalize : necessary for ALS
[W,H,weights] = normalize_by_W(W,H);
D = diag(weights);
val.WtA = W'*A;
val.WtW = W'*W;
AHt = AHt*D;
HHt_reg = D*HHt_reg*D;
if par.track_grad
gradW = W*HHt_reg - AHt;
gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
else
gradH = 0; gradW = 0;
end
end
function [ver] = als_iterLogger(ver,par,val,W,H,prev_W,prev_H)
end
%----------------- Multiplicatve Updating Method --------------------------
function [W,H,par,val,ver] = mu_initializer(A,W,H,par)
ver = struct([]);
val.WtA = W'*A;
val.WtW = W'*W;
end
function [W,H,gradW,gradH,val] = mu_iterSolver(A,W,H,iter,par,val)
epsilon = 1e-16;
WtW_reg = applyReg(val.WtW,par,par.reg_h);
H = H.*val.WtA./(WtW_reg*H + epsilon);
HHt_reg = applyReg(H*H',par,par.reg_w);
AHt = A*H';
W = W.*AHt./(W*HHt_reg + epsilon);
val.WtA = W'*A;
val.WtW = W'*W;
if par.track_grad
gradW = W*HHt_reg - AHt;
gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par);
else
gradH = 0; gradW = 0;
end
end
function [ver] = mu_iterLogger(ver,par,val,W,H,prev_W,prev_H)
end
%----------------- HALS Method : Algorith 2 of Cichocki and Phan -----------------------
function [W,H,par,val,ver] = hals_initializer(A,W,H,par)
[W,H]=normalize_by_W(W,H);
val = struct([]);
ver = struct([]);
end
function [W,H,gradW,gradH,val] = hals_iterSolver(A,W,H,iter,par,val)
epsilon = 1e-16;
WtA = W'*A;
WtW = W'*W;
WtW_reg = applyReg(WtW,par,par.reg_h);
for i = 1:par.k
H(i,:) = max(H(i,:) + WtA(i,:) - WtW_reg(i,:) * H,epsilon);
end
AHt = A*H';
HHt_reg = applyReg(H*H',par,par.reg_w);
for i = 1:par.k
W(:,i) = max(W(:,i) * HHt_reg(i,i) + AHt(:,i) - W * HHt_reg(:,i),epsilon);
if sum(W(:,i))>0
W(:,i) = W(:,i)/norm(W(:,i));
end
end
if par.track_grad
gradW = W*HHt_reg - AHt;
gradH = getGradientOne(W'*W,W'*A,H,par.reg_h,par);
else
gradH = 0; gradW = 0;
end
end
function [ver] = hals_iterLogger(ver,par,val,W,H,prev_W,prev_H)
end
%----------------------------------------------------------------------------------------------
% Utility Functions
%----------------------------------------------------------------------------------------------
% This function prepares information about execution for a experiment purpose
function ver = prepareHIS(A,W,H,prev_W,prev_H,init,par,iter,elapsed,gradW,gradH)
ver.iter = iter;
ver.elapsed = elapsed;
sqErr = getSquaredError(A,W,H,init);
ver.rel_Error = sqrt(sqErr)/init.norm_A;
ver.rel_Obj = getObj(sqErr,W,H,par)/init.baseObj;
ver.norm_W = norm(W,'fro');
ver.norm_H = norm(H,'fro');
if par.track_prev
ver.rel_Change_W = norm(W-prev_W,'fro')/init.norm_W;
ver.rel_Change_H = norm(H-prev_H,'fro')/init.norm_H;
end
if par.track_grad
ver.rel_NrPGrad_W = norm(projGradient(W,gradW),'fro')/init.normGr_W;
ver.rel_NrPGrad_H = norm(projGradient(H,gradH),'fro')/init.normGr_H;
ver.SC_NM_PGRAD = getStopCriterion(1,A,W,H,par,gradW,gradH)/init.SC_NM_PGRAD;
ver.SC_PGRAD = getStopCriterion(2,A,W,H,par,gradW,gradH)/init.SC_PGRAD;
ver.SC_DELTA = getStopCriterion(3,A,W,H,par,gradW,gradH)/init.SC_DELTA;
end
ver.density_W = length(find(W>0))/(par.m*par.k);
ver.density_H = length(find(H>0))/(par.n*par.k);
end
% Execution information is collected in HIS variable
function HIS = saveHIS(idx,ver,HIS)
%idx = length(HIS.iter)+1;
fldnames = fieldnames(ver);
for i=1:length(fldnames)
flname = fldnames{i};
HIS.(flname)(idx) = ver.(flname);
end
end
%-------------------------------------------------------------------------------
function retVal = getInitCriterion(stopRule,A,W,H,par,gradW,gradH)
% STOPPING_RULE : 1 - Normalized proj. gradient
% 2 - Proj. gradient
% 3 - Delta by H. Kim
% 0 - None (want to stop by MAX_ITER or MAX_TIME)
if nargin~=7
[gradW,gradH] = getGradient(A,W,H,par);
end
[m,k]=size(W);, [k,n]=size(H);, numAll=(m*k)+(k*n);
switch stopRule
case 1
retVal = norm([gradW(:); gradH(:)])/numAll;
case 2
retVal = norm([gradW(:); gradH(:)]);
case 3
retVal = getStopCriterion(3,A,W,H,par,gradW,gradH);
case 0
retVal = 1;
end
end
%-------------------------------------------------------------------------------
function retVal = getStopCriterion(stopRule,A,W,H,par,gradW,gradH)
% STOPPING_RULE : 1 - Normalized proj. gradient
% 2 - Proj. gradient
% 3 - Delta by H. Kim
% 0 - None (want to stop by MAX_ITER or MAX_TIME)
if nargin~=7
[gradW,gradH] = getGradient(A,W,H,par);
end
switch stopRule
case 1
pGradW = projGradient(W,gradW);
pGradH = projGradient(H,gradH);
pGrad = [pGradW(:); pGradH(:)];
retVal = norm(pGrad)/length(pGrad);
case 2
pGradW = projGradient(W,gradW);
pGradH = projGradient(H,gradH);
pGrad = [pGradW(:); pGradH(:)];
retVal = norm(pGrad);
case 3
resmat=min(H,gradH); resvec=resmat(:);
resmat=min(W,gradW); resvec=[resvec; resmat(:)];
deltao=norm(resvec,1); %L1-norm
num_notconv=length(find(abs(resvec)>0));
retVal=deltao/num_notconv;
case 0
retVal = 1e100;
end
end
%-------------------------------------------------------------------------------
function sqErr = getSquaredError(A,W,H,init)
sqErr = max((init.norm_A)^2 - 2*trace(H*(A'*W))+trace((W'*W)*(H*H')),0 );
end
function retVal = getObj(sqErr,W,H,par)
retVal = 0.5 * sqErr;
retVal = retVal + par.reg_w(1) * sum(sum(W.*W));
retVal = retVal + par.reg_w(2) * sum(sum(W,2).^2);
retVal = retVal + par.reg_h(1) * sum(sum(H.*H));
retVal = retVal + par.reg_h(2) * sum(sum(H,1).^2);
end
function AtA = applyReg(AtA,par,reg)
% Frobenius norm regularization
if reg(1) > 0
AtA = AtA + 2 * reg(1) * eye(par.k);
end
% L1-norm regularization
if reg(2) > 0
AtA = AtA + 2 * reg(2) * ones(par.k,par.k);
end
end
function [grad] = modifyGradient(grad,X,reg,par)
if reg(1) > 0
grad = grad + 2 * reg(1) * X;
end
if reg(2) > 0
grad = grad + 2 * reg(2) * ones(par.k,par.k) * X;
end
end
function [grad] = getGradientOne(AtA,AtB,X,reg,par)
grad = AtA*X - AtB;
grad = modifyGradient(grad,X,reg,par);
end
function [gradW,gradH] = getGradient(A,W,H,par)
HHt = H*H';
HHt_reg = applyReg(HHt,par,par.reg_w);
WtW = W'*W;
WtW_reg = applyReg(WtW,par,par.reg_h);
gradW = W*HHt_reg - A*H';
gradH = WtW_reg*H - W'*A;
end
%-------------------------------------------------------------------------------
function pGradF = projGradient(F,gradF)
pGradF = gradF(gradF<0|F>0);
end
%-------------------------------------------------------------------------------
function [W,H,weights] = normalize_by_W(W,H)
norm2=sqrt(sum(W.^2,1));
toNormalize = norm2>0;
W(:,toNormalize) = W(:,toNormalize)./repmat(norm2(toNormalize),size(W,1),1);
H(toNormalize,:) = H(toNormalize,:).*repmat(norm2(toNormalize)',1,size(H,2));
weights = ones(size(norm2));
weights(toNormalize) = norm2(toNormalize);
end
|
github
|
sanghosuh/lens_nmf-matlab-master
|
nnlsm_blockpivot.m
|
.m
|
lens_nmf-matlab-master/library/nmf/nnlsm_blockpivot.m
| 4,547 |
utf_8
|
f7cbdd610f2388c434a4444f43bdc3f2
|
% Nonnegativity Constrained Least Squares with Multiple Righthand Sides
% using Block Principal Pivoting method
%
% This software solves the following problem: given A and B, find X such that
% minimize || AX-B ||_F^2 where X>=0 elementwise.
%
% Reference:
% Jingu Kim and Haesun Park, Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons,
% In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining (ICDM'08), 353-362, 2008
%
% Written by Jingu Kim ([email protected])
% Copyright 2008-2009 by Jingu Kim and Haesun Park,
% School of Computational Science and Engineering,
% Georgia Institute of Technology
%
% Check updated code at http://www.cc.gatech.edu/~jingu
% Please send bug reports, comments, or questions to Jingu Kim.
% This code comes with no guarantee or warranty of any kind. Note that this algorithm assumes that the
% input matrix A has full column rank.
%
% Modified Feb-20-2009
% Modified Mar-13-2011: numChol and numEq
%
% <Inputs>
% A : input matrix (m x n) (by default), or A'*A (n x n) if isInputProd==1
% B : input matrix (m x k) (by default), or A'*B (n x k) if isInputProd==1
% isInputProd : (optional, default:0) if turned on, use (A'*A,A'*B) as input instead of (A,B)
% init : (optional) initial value for X
% <Outputs>
% X : the solution (n x k)
% Y : A'*A*X - A'*B where X is the solution (n x k)
% success : 0 for success, 1 for failure.
% Failure could only happen on a numericall very ill-conditioned problem.
% numChol : number of unique cholesky decompositions done
% numEqs : number of systems of linear equations solved
function [ X,Y,success,numChol,numEq ] = nnlsm_blockpivot( A, B, isInputProd, init )
if nargin<3, isInputProd=0;, end
if isInputProd
AtA = A;, AtB = B;
else
AtA = A'*A;, AtB = A'*B;
end
[n,k]=size(AtB);
MAX_BIG_ITER = n*5;
% set initial feasible solution
X = zeros(n,k);
if nargin<4
Y = - AtB;
PassiveSet = false(n,k);
numChol = 0;
numEq = 0;
else
PassiveSet = (init > 0);
[ X,numChol,numEq] = normalEqComb(AtA,AtB,PassiveSet);
Y = AtA * X - AtB;
end
% parameters
pbar = 3;
P = zeros(1,k);, P(:) = pbar;
Ninf = zeros(1,k);, Ninf(:) = n+1;
NonOptSet = (Y < 0) & ~PassiveSet;
InfeaSet = (X < 0) & PassiveSet;
NotGood = sum(NonOptSet)+sum(InfeaSet);
NotOptCols = NotGood > 0;
bigIter = 0;, success=0;
while(~isempty(find(NotOptCols)))
bigIter = bigIter+1;
if ((MAX_BIG_ITER >0) && (bigIter > MAX_BIG_ITER)) % set max_iter for ill-conditioned (numerically unstable) case
success = 1;, break
end
Cols1 = NotOptCols & (NotGood < Ninf);
Cols2 = NotOptCols & (NotGood >= Ninf) & (P >= 1);
Cols3Ix = find(NotOptCols & ~Cols1 & ~Cols2);
if ~isempty(find(Cols1))
P(Cols1) = pbar;,Ninf(Cols1) = NotGood(Cols1);
PassiveSet(NonOptSet & repmat(Cols1,n,1)) = true;
PassiveSet(InfeaSet & repmat(Cols1,n,1)) = false;
end
if ~isempty(find(Cols2))
P(Cols2) = P(Cols2)-1;
PassiveSet(NonOptSet & repmat(Cols2,n,1)) = true;
PassiveSet(InfeaSet & repmat(Cols2,n,1)) = false;
end
if ~isempty(Cols3Ix)
for i=1:length(Cols3Ix)
Ix = Cols3Ix(i);
toChange = max(find( NonOptSet(:,Ix)|InfeaSet(:,Ix) ));
if PassiveSet(toChange,Ix)
PassiveSet(toChange,Ix)=false;
else
PassiveSet(toChange,Ix)=true;
end
end
end
[ X(:,NotOptCols),tempChol,tempEq ] = normalEqComb(AtA,AtB(:,NotOptCols),PassiveSet(:,NotOptCols));
numChol = numChol + tempChol;
numEq = numEq + tempEq;
X(abs(X)<1e-12) = 0; % One can uncomment this line for numerical stability.
Y(:,NotOptCols) = AtA * X(:,NotOptCols) - AtB(:,NotOptCols);
Y(abs(Y)<1e-12) = 0; % One can uncomment this line for numerical stability.
% check optimality
NotOptMask = repmat(NotOptCols,n,1);
NonOptSet = NotOptMask & (Y < 0) & ~PassiveSet;
InfeaSet = NotOptMask & (X < 0) & PassiveSet;
NotGood = sum(NonOptSet)+sum(InfeaSet);
NotOptCols = NotGood > 0;
end
end
|
github
|
sanghosuh/lens_nmf-matlab-master
|
nmfsh_comb.m
|
.m
|
lens_nmf-matlab-master/library/nmf/nmfsh_comb.m
| 4,550 |
utf_8
|
256156e36e548ecf054efe5ef6c2a532
|
%
% SNMF/R
%
% Author: Hyunsoo Kim and Haesun Park, Georgia Insitute of Technology
%
% Reference:
%
% Sparse Non-negative Matrix Factorizations via Alternating
% Non-negativity-constrained Least Squares for Microarray Data Analysis
% Hyunsoo Kim and Haesun Park, Bioinformatics, 2007, to appear.
%
% This software requires fcnnls.m, which can be obtained from
% M. H. Van Benthem and M. R. Keenan, J. Chemometrics 2004; 18: 441-450
%
% NMF: min_{W,H} (1/2) || A - WH ||_F^2 s.t. W>=0, H>=0
% SNMF/R: NMF with additional sparsity constraints on H
%
% min_{W,H} (1/2) (|| A - WH ||_F^2 + eta ||W||_F^2
% + beta (sum_(j=1)^n ||H(:,j)||_1^2))
% s.t. W>=0, H>=0
%
% A: m x n data matrix (m: features, n: data points)
% W: m x k basis matrix
% H: k x n coefficient matrix
%
% function [W,H,i]=nmfsh_comb(A,k,param,verbose,bi_conv,eps_conv)
%
% input parameters:
% A: m x n data matrix (m: features, n: data points)
% k: desired positive integer k
% param=[eta beta]:
% eta (for supressing ||W||_F)
% if eta < 0, software uses maxmum value in A as eta.
% beta (for sparsity control)
% Larger beta generates higher sparseness on H.
% Too large beta is not recommended.
% verbos: verbose = 0 for silence mode, otherwise print output
% eps_conv: KKT convergence test (default eps_conv = 1e-4)
% bi_conv=[wminchange iconv] biclustering convergence test
% wminchange: the minimal allowance of the change of
% row-clusters (default wminchange=0)
% iconv: decide convergence if row-clusters (within wminchange)
% and column-clusters have not changed for iconv convergence
% checks. (default iconv=10)
%
% output:
% W: m x k basis matrix
% H: k x n coefficient matrix
% i: the number of iterations
%
% sample usage:
% [W,H]=nmfsh_comb(amlall,3,[-1 0.01],1);
% [W,H]=nmfsh_comb(amlall,3,[-1 0.01],1,[3 10]);
% -- in the convergence check, the change of row-clusters to
% at most three rows is allowed.
%
%
function [W,H,i]=nmfsh_comb(A,k,param,verbose,bi_conv,eps_conv)
if nargin<6, eps_conv=1e-4;, end
if nargin<5, bi_conv=[0 10];, end
if nargin<4, verbose=0;, end
if nargin<3, error('too small number of input arguments.');, end
maxiter = 200; % maximum number of iterations
total_iter = 0; % by Sangho
[m,n]=size(A); erravg1=[];
eta=param(1); beta=param(2);
maxA=max(A(:)); if eta<0, eta=full(maxA); end
eta2=eta^2;
wminchange=bi_conv(1); iconv=bi_conv(2);
if verbose, fprintf('SNMF/R k=%d eta=%.4e beta (for sparse H)=%.4e wminchange=%d iconv=%d\n',...
k,eta,beta,wminchange,iconv);, end
idxWold=zeros(m,1); idxHold=zeros(1,n); inc=0;
% initialize random W
W=rand(m,k);
W=W./repmat(sqrt(sum(W.^2,1)),m,1); % normalize
I_k=eta*eye(k); betavec=sqrt(beta)*ones(1,k); nrestart=0;
for i=1:maxiter
% min_h ||[[W; 1 ... 1]*H - [A; 0 ... 0]||, s.t. H>=0, for given A and W.
[H, pset, many_iter] = fcnnls([W; betavec],[A; zeros(1,n)]);
total_iter = total_iter + 1; % by Sangho
if find(sum(H,2)==0),
fprintf('iter%d: 0 row in H eta=%.4e restart!\n',i,eta);
nrestart=nrestart+1;
if nrestart >= 10,
fprintf('[*Warning*] too many restarts due to too big beta value...\n');
i=-1;
break;
end
idxWold=zeros(m,1); idxHold=zeros(1,n); inc=0;
W=rand(m,k); W=W./repmat(sqrt(sum(W.^2,1)),m,1); % normalize
continue;
end
% min_w ||[H'; I_k]*W' - [A'; 0]||, s.t. W>=0, for given A and H.
Wt=fcnnls([H'; I_k],[A'; zeros(k,m)]); W=Wt';
% test convergence every 5 iterations
if(mod(i,5)==0) | (i==1)
[y,idxW]=max(W,[],2); [y,idxH]=max(H,[],1);
changedW=length(find(idxW ~= idxWold)); changedH=length(find(idxH ~= idxHold));
if (changedW<=wminchange) & (changedH==0), inc=inc+1;, else inc=0;, end
resmat=min(H,(W'*W)*H-W'*A+beta*ones(k,k)*H); resvec=resmat(:);
resmat=min(W,W*(H*H')-A*H'+eta2*W); resvec=[resvec; resmat(:)];
conv=norm(resvec,1); %L1-norm
convnum=length(find(abs(resvec)>0));
erravg=conv/convnum;
if i==1, erravg1=erravg;, end
if verbose | (mod(i,1000)==0) % prints number of changing elements
fprintf('\t%d\t%d\t%d %d --- erravg1: %.4e erravg: %.4e\n',...
i,inc,changedW,changedH,erravg1,erravg);
end
if (inc>=iconv) & (erravg<=eps_conv*erravg1), break, end
idxWold=idxW; idxHold=idxH;
end
end
return;
|
github
|
sanghosuh/lens_nmf-matlab-master
|
nnlsm_activeset.m
|
.m
|
lens_nmf-matlab-master/library/nmf/nnlsm_activeset.m
| 5,020 |
utf_8
|
5d51124cecf5c37d8ab6c1ec91dbad32
|
% Nonnegativity Constrained Least Squares with Multiple Righthand Sides
% using Active Set method
%
% This software solves the following problem: given A and B, find X such that
% minimize || AX-B ||_F^2 where X>=0 elementwise.
%
% Reference:
% Charles L. Lawson and Richard J. Hanson, Solving Least Squares Problems,
% Society for Industrial and Applied Mathematics, 1995
% M. H. Van Benthem and M. R. Keenan,
% Fast Algorithm for the Solution of Large-scale Non-negativity-constrained Least Squares Problems,
% J. Chemometrics 2004; 18: 441-450
%
% Written by Jingu Kim ([email protected])
% School of Computational Science and Engineering,
% Georgia Institute of Technology
%
% Updated Feb-20-2010
% Updated Mar-20-2011: numChol, numEq
%
% <Inputs>
% A : input matrix (m x n) (by default), or A'*A (n x n) if isInputProd==1
% B : input matrix (m x k) (by default), or A'*B (n x k) if isInputProd==1
% overwrite : (optional, default:0) if turned on, unconstrained least squares solution is computed in the beginning
% isInputProd : (optional, default:0) if turned on, use (A'*A,A'*B) as input instead of (A,B)
% init : (optional) initial value for X
% <Outputs>
% X : the solution (n x k)
% Y : A'*A*X - A'*B where X is the solution (n x k)
% iter : number of systems of linear equations solved
% success : 0 for success, 1 for failure.
% Failure could only happen on a numericall very ill-conditioned problem.
function [ X,Y,success,numChol,numEq ] = nnlsm_activeset( A, B, overwrite, isInputProd, init)
if nargin<3, overwrite=0;, end
if nargin<4, isInputProd=0;, end
if isInputProd
AtA=A;,AtB=B;
else
AtA=A'*A;, AtB=A'*B;
end
[n,k]=size(AtB);
MAX_ITER = n*5;
% set initial feasible solution
if overwrite
[X,numChol,numEq] = normalEqComb(AtA,AtB);
PassSet = (X > 0);
NotOptSet = any(X<0);
elseif nargin>=5
X = init;
X(X<0)=0;
PassSet = (X > 0);
NotOptSet = true(1,k);
numChol = 0;
numEq = 0;
else
X = zeros(n,k);
PassSet = false(n,k);
NotOptSet = true(1,k);
numChol = 0;
numEq = 0;
end
Y = zeros(n,k);
Y(:,~NotOptSet)=AtA*X(:,~NotOptSet) - AtB(:,~NotOptSet);
NotOptCols = find(NotOptSet);
bigIter = 0;, success=0;
while(~isempty(NotOptCols))
bigIter = bigIter+1;
if ((MAX_ITER >0) && (bigIter > MAX_ITER)) % set max_iter for ill-conditioned (numerically unstable) case
success = 1;, break
end
% find unconstrained LS solution for the passive set
%Z = zeros(n,length(NotOptCols));
[ Z,tempChol,tempEq ] = normalEqComb(AtA,AtB(:,NotOptCols),PassSet(:,NotOptCols));
numChol = numChol + tempChol;
numEq = numEq + tempEq;
Z(abs(Z)<1e-12) = 0; % One can uncomment this line for numerical stability.
InfeaSubSet = Z < 0;
InfeaSubCols = find(any(InfeaSubSet));
FeaSubCols = find(all(~InfeaSubSet));
if ~isempty(InfeaSubCols) % for infeasible cols
ZInfea = Z(:,InfeaSubCols);
InfeaCols = NotOptCols(InfeaSubCols);
Alpha = zeros(n,length(InfeaSubCols));, Alpha(:) = Inf;
%InfeaSubSet(:,InfeaSubCols);
[i,j] = find(InfeaSubSet(:,InfeaSubCols));
InfeaSubIx = sub2ind(size(Alpha),i,j);
if length(InfeaCols) == 1
InfeaIx = sub2ind([n,k],i,InfeaCols * ones(length(j),1));
else
InfeaIx = sub2ind([n,k],i,InfeaCols(j)');
end
Alpha(InfeaSubIx) = X(InfeaIx)./(X(InfeaIx)-ZInfea(InfeaSubIx));
[minVal,minIx] = min(Alpha);
Alpha(:,:) = repmat(minVal,n,1);
X(:,InfeaCols) = X(:,InfeaCols)+Alpha.*(ZInfea-X(:,InfeaCols));
IxToActive = sub2ind([n,k],minIx,InfeaCols);
X(IxToActive) = 0;
PassSet(IxToActive) = false;
end
if ~isempty(FeaSubCols) % for feasible cols
FeaCols = NotOptCols(FeaSubCols);
X(:,FeaCols) = Z(:,FeaSubCols);
Y(:,FeaCols) = AtA * X(:,FeaCols) - AtB(:,FeaCols);
Y( abs(Y)<1e-12 ) = 0; % One can uncomment this line for numerical stability.
NotOptSubSet = (Y(:,FeaCols) < 0) & ~PassSet(:,FeaCols);
NewOptCols = FeaCols(all(~NotOptSubSet));
UpdateNotOptCols = FeaCols(any(NotOptSubSet));
if ~isempty(UpdateNotOptCols)
[minVal,minIx] = min(Y(:,UpdateNotOptCols).*~PassSet(:,UpdateNotOptCols));
PassSet(sub2ind([n,k],minIx,UpdateNotOptCols)) = true;
end
NotOptSet(NewOptCols) = false;
NotOptCols = find(NotOptSet);
end
end
end
|
github
|
sanghosuh/lens_nmf-matlab-master
|
lens_nmf.m
|
.m
|
lens_nmf-matlab-master/library/lens_nmf/lens_nmf.m
| 3,937 |
utf_8
|
5cbdf2fafe4b052a4903068efafbcbf4
|
% Localizd Ensemble of Nonnegative Matrix Factorization (L-EnsNMF)
%
% Written by Sangho Suh ([email protected])
% Dept. of Computer Science and Engineering,
% Korea University
%
% Reference:
%
% [1] Sangho Suh et al.
% Boosted L-EnsNMF: Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization.
% IEEE International Conference on Data Mining 2016.
%
% [2] Da Kuang Haesun Park
% Fast Rank-2 Nonnegative Matrix Factorization for Hierarchical Document Clustering
% International conference on Knowledge Discovery and Data mining 2013
%
% Please send bug reports, comments, or questions to Sangho Suh.
% This code comes with no guarantee or warranty of any kind.
%
% Last modified 09/26/2016
%
% <Inputs>
%
% A : Input matrix
% k : Number of topics
% topk : Number of keywords
% total : Number of iterations
%
% <Outputs>
%
% Ws, Hs: Results of rank-2 NMF
% Drs : Set of stage-wise rows with cosine similarity values
% Dcs : Set of stage-wise columns with cosine similarity values
% As : Updated input matrix
%
% <Usage Example>
%
% [Ws, Hs, Drs, Dcs, As] = lens_nmf(A, k, topk, total);
function [Ws, Hs, Drs, Dcs, As] = lens_nmf(A, k, topk, total)
% apply l2-normalization and get row-wise and column-wise cosine similarity values
A_l2norm_row = bsxfun(@rdivide,A',sqrt(sum((A').^2)))';
A_cossim_row = A_l2norm_row*A_l2norm_row';
A_l2norm_col = bsxfun(@rdivide,A,sqrt(sum(A.^2)));
A_cossim_col = A_l2norm_col'*A_l2norm_col;
%%
% initialization
Ws = cell(total, 1);
Hs = cell(total, 1);
Rs = cell(total, 1);
As = A; Rs{1} = A;
vec_norm = 2.0;
normW = true;
anls_alg = @anls_entry_rank2_precompute;
tol = 1e-4;
maxiter = 10000;
params_r2 = [];
params_r2.vec_norm = vec_norm;
params_r2.normW = normW;
params_r2.anls_alg = anls_alg;
params_r2.tol = tol;
params_r2.maxiter = maxiter;
%%
for iter=1:(total) % loop for given number of iterations
if iter == 1
row_idx = datasample(1:size(A,1),1,'Replace',false);
else
% sample with weight to get one row index
row_idx = datasample(1:size(A,1),1,'Replace',false,'Weights', sum(cell2mat(Ws'),2));
end
% get one column index
col_idx = datasample(1:size(A,2),1,'Replace',false,'Weights', full(sum(abs(Rs{iter}))));
% update Drs, Dcs with cosine similarity
[Drs{iter}, Dcs{iter}] = getWeight(Rs{iter},A_cossim_row,A_cossim_col,row_idx,col_idx);
% update A matrix using Drs,Dcs
As = update(Rs{iter}, Drs{iter}, Dcs{iter});
[Ws{iter}, Hs{iter}] = nmfsh_comb_rank2(As, rand(size(As,1),2), rand(2,size(As,2)),params_r2);
if iter <= total
% fix W and use unweighted version of A to get H
[Hs{iter},temp,suc_H,numChol_H,numEq_H] = nnlsm_activeset(Ws{iter}'*Ws{iter},Ws{iter}'*A,0,1,bsxfun(@times,Hs{iter}',1./Dcs{iter})');
% update residual matrix
Rs{iter+1} = update_res_matrix(Rs{iter}, Ws{iter},Hs{iter});
end
end
end
%%
function [Dr_new, Dc_new] = getWeight(A,A_cossim_row,A_cossim_col,trm_idx,doc_idx)
row_smooth = .01;
col_smooth = .01;
Dr_new = A_cossim_row(:,trm_idx)*(1-row_smooth)+row_smooth;
Dc_new = A_cossim_col(:,doc_idx)*(1-col_smooth)+col_smooth;
end
%%
function [newA] = update(A, Dr, Dc)
newA = bsxfun(@times,A,Dr); % multiply each row of A with Dr row
newA = bsxfun(@times,newA',Dc)'; % multiply each column of A with Dc column
end
%%
function [newA] = update_res_matrix(A, W, H)
newA = A - W*H; % get residual matrix
newA (newA<0) = 0; % set any negative element to zero
end
|
github
|
sanghosuh/lens_nmf-matlab-master
|
lens_nmf.bak.m
|
.m
|
lens_nmf-matlab-master/library/lens_nmf/lens_nmf.bak.m
| 4,098 |
utf_8
|
2d70f47e31eb3f1cc1db8f894af46665
|
% NOTE: This version is NOT in use as it is outdated
% (It is before rank-2 NMF has been applied)
%
% Localizd Ensemble of Nonnegative Matrix Factorization (L-EnsNMF)
%
% Written by Sangho Suh ([email protected])
% Dept. of Computer Science and Engineering,
% Korea University
%
% Reference:
%
% [1] Sangho Suh et al.
% Boosted L-EnsNMF: Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization.
% IEEE International Conference on Data Mining 2016.
%
% [2] Da Kuang Haesun Park
% Fast Rank-2 Nonnegative Matrix Factorization for Hierarchical Document Clustering
% International conference on Knowledge Discovery and Data mining 2013
%
% Please send bug reports, comments, or questions to Sangho Suh.
% This code comes with no guarantee or warranty of any kind.
%
% Last modified 11/04/2016
%
% <Inputs>
%
% A : Input matrix
% k : Number of topics
% topk : Number of keywords
% iter : Number of iterations
%
% <Outputs>
%
% Ws, Hs: Results of standard NMF (rank-2 nmf is NOT applied here)
% Drs : Set of stage-wise rows with cosine similarity values
% Dcs : Set of stage-wise columns with cosine similarity values
% As : Updated input matrix
%
% <Usage Example>
%
% [Ws, Hs, Drs, Dcs, As] = lens_nmf(A, k, topk, iter);
function [Ws, Hs, Drs, Dcs, As] = lens_nmf(A, k, topk, iter)
params = inputParser;
params.addParamValue('method','absolute',@(x) ischar(x) );
par = params.Results;
% apply l2-normalization and get row-wise and column-wise cosine similarity values
A_l2norm_row = bsxfun(@rdivide,A',sqrt(sum((A').^2)))';
A_cossim_row = A_l2norm_row*A_l2norm_row';
A_l2norm_col = bsxfun(@rdivide,A,sqrt(sum(A.^2)));
A_cossim_col = A_l2norm_col'*A_l2norm_col;
Ws = cell(iter, 1);
Hs = cell(iter, 1);
Rs = cell(iter, 1);
As = A; Rs{1} = A;
for iter=1:(iter)
if iter == 1
row_idx = datasample(1:size(A,1),1,'Replace',false);
else
% sample with weight to get one row index
row_idx = datasample(1:size(A,1),1,'Replace',false,'Weights', full(sum(abs(Rs{iter}),2)));
end
% get one column index
col_idx = datasample(1:size(A,2),1,'Replace',false,'Weights', full(sum(abs(Rs{iter}))));
% update Drs, Dcs with cosine similarity
[Drs{iter}, Dcs{iter}] = getWeight(Rs{iter},A_cossim_row,A_cossim_col,row_idx,col_idx);
% update A matrix using Drs,Dcs
As = update(Rs{iter}, Drs{iter}, Dcs{iter});
if exist('method','var') & strcmp(method,'hals') % if 'method' variable exists and it is 'hals', then do the following
[Ws{iter}, Hs{iter}] = nmf(As, k,'verbose',0,'method','hals');
else
[Ws{iter}, Hs{iter}] = nmf(As, k,'verbose',0);
end
if iter <= iter
% fix W and use unweighted version of A to get H
[Hs{iter},temp,suc_H,numChol_H,numEq_H] = nnlsm_activeset(Ws{iter}'*Ws{iter},Ws{iter}'*A,0,1,bsxfun(@times,Hs{iter}',1./Dcs{iter})');
% update residual matrix
Rs{iter+1} = update_res_matrix(Rs{iter}, Ws{iter},Hs{iter});
end
end
end
%%
function [Dr_new, Dc_new] = getWeight(A,A_cossim_row,A_cossim_col,trm_idx,doc_idx)
row_smooth = .01;
col_smooth = .01;
Dr_new = A_cossim_row(:,trm_idx)*(1-row_smooth)+row_smooth;
Dc_new = A_cossim_col(:,doc_idx)*(1-col_smooth)+col_smooth;
end
function [newA] = update(A, Dr, Dc)
newA = bsxfun(@times,A,Dr); % multiply each row of A with Dr row
newA = bsxfun(@times,newA',Dc)'; % multiply each column of A with Dc column
end
function [newA] = update_res_matrix(A, W, H)
newA = A - W*H; % get residual matrix
newA (newA<0) = 0; % set any negative element to zero
end
|
github
|
sanghosuh/lens_nmf-matlab-master
|
tfidf2.m
|
.m
|
lens_nmf-matlab-master/library/topictoolbox/tfidf2.m
| 794 |
utf_8
|
7e53767d9b5be3579b2c33e015e1991e
|
function [Y w] = tfidf2( X )
% FUNCTION applies TF-IDF weighting to word count vector matrix.
%
% [Y w] = tfidf2( X );
%
% INPUT :
% X - word count vectors (one column = one document)
%
% OUTPUT :
% Y - TF-IDF weighted document-term matrix
% w - IDF weights (useful to process other documents)
%
% get inverse document frequencies
w = idf( X );
% TF * IDF
Y = tf( X ) .* repmat( w, 1, size(X,2) );
function Y = tf( X )
% SUBFUNCTION computes word frequencies
Y = X ./ repmat( sum(X,1), size(X,1), 1 );
Y( isnan(Y) ) = 0;
function I = idf(X)
% SUBFUNCTION computes inverse document frequencies
% count DF (document frequency, i.e., the number of words in corpus)
nz = sum( ( X > 0 ), 2 );
% compute idf for each document
I = log( size(X,2) ./ (nz(:) + 1) );
|
github
|
masa-nudt/KCFDPT-master
|
run_tracker.m
|
.m
|
KCFDPT-master/run_tracker.m
| 4,772 |
utf_8
|
01f944bd59d3493d2df3bc098150dc22
|
% KCFDPT enhances KCFDP with "Background Suppression"
% KCFDP is the visual object tracker presented in:
% "Enable Scale and Aspect Ratio Adaptability in Visual Tracking with Detection Proposals" BMVC, 2015
%
% Dafei Huang, Lei Luo, Mei Wen, Zhaoyun Chen and Chunyuan Zhang
%
% Utilization of EdgeBoxes to enable scale and aspect ratio adaptibility
% "Exploiting the Circulant Structure of Tracking-by-detection with Kernels" ECCV, 2012
%
% J. F. Henriques, R. Caseiro, P. Martins and J. Batista
%
% Original CSK tracker implementation
% "High-Speed Tracking with Kernelized Correlation Filters" TPAMI, 2015
% http://www.isr.uc.pt/~henriques/circulant/
%
% J. F. Henriques, R. Caseiro, P. Martins, J. Batista
%
% Original KCF and DCF tracker implementation
% "Online Object Tracking: A Benchmark", CVPR, 2013.
% http://visual-tracking.net/
%
% Y. Wu, J. Lim, M.-H. Yang
%
% Benchmark sequences and toolkit
% "Piotr's Image and Video Matlab Toolbox (PMT)"
% http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
%
% P. Dollar
%
% Tools untilized
% "Adaptive Color Attributes for Real-Time Visual Tracking" CVPR, 2014.
%
% Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg and Joost van de Weijer
%
% Extended CSK tracker implementation with color attributes, new updating scheme and adaptive dimensionality reduction
% "Structured Forests for Fast Edge Detection", ICCV 2013
%
% P. Dollar and C. Zitnick
%
% Very fast edge detector (up to 60 fps depending on parameter settings) that achieves excellent accuracy
% "Edge Boxes: Locating Object Proposals from Edges", ECCV 2014.
%
% C. Zitnick and P. Dollar
%
% Edge Boxes object proposal generation
% Codes above are integrated and modified by Dafei Huang
function run_tracker()
addpath(genpath('/Users/dafei/Projects/toolbox-master/'));
close all
bSaveImage = 0;
res_path = './result';
if bSaveImage & ~exist(res_path,'dir')
mkdir(res_path);
end
% config sequence:
seq=struct('name','Skating1','path','/Users/dafei/D11BAK/data_seq/Skating1/','startFrame',1,'endFrame',400,'nz',4,'ext','jpg','init_rect', [0,0,0,0]);
seq.len = seq.endFrame - seq.startFrame + 1;
seq.s_frames = cell(seq.len,1);
nz = strcat('%0',num2str(seq.nz),'d'); %number of zeros in the name of image
for i=1:seq.len
image_no = seq.startFrame + (i-1);
id = sprintf(nz,image_no);
seq.s_frames{i} = strcat(seq.path,'img/',id,'.',seq.ext); % add 'img/' in every image path
end
rect_anno = dlmread(['./' seq.name '/groundtruth_rect.txt']);
seq.init_rect = rect_anno(seq.startFrame,:);
s_frames = seq.s_frames;
% parameters according to the paper
padding = 1.5; %extra area surrounding the target
lambda = 1e-4; %regularization
% output_sigma_factor = 0.1; %spatial bandwidth (proportional to target)
output_sigma_factor = 0.06; %spatial bandwidth (proportional to target)
% interp_factor = 0.02;
interp_factor = 0.01;
sigma = 0.5;
hog_orientations = 9;
cell_size = 4;
target_sz = [seq.init_rect(1,4), seq.init_rect(1,3)];
pos = floor([seq.init_rect(1,2), seq.init_rect(1,1)]) + floor(target_sz/2);
% general parameters
params.visualization = 1;
params.init_pos = pos;
params.wsize = floor(target_sz);
params.video_path = seq.path;
params.s_frames = s_frames;
params.bSaveImage = bSaveImage;
params.res_path = res_path;
% load pre-trained edge detection model and set opts
model = load('./models/forest/modelBsds');
model = model.model;
model.opts.multiscale = 0;
model.opts.sharpen = 0;
model.opts.nThreads = 4;
% set up parameters for edgeBoxes (see edgeBoxesTrackParam.m)
opts = edgeBoxesTrackParam;
opts.alpha = .65; % step size of sliding window search
opts.beta = .75; % nms threshold for object proposals
%opts.maxBoxes = 1e4; % max number of boxes to detect
opts.maxBoxes = 1e3; % don't need that many proposals (default is 1e4)
opts.minScore = 0.0005; % min score of boxes to detect
opts.kappa = 1.4; % 1.5 as default, can be changed for larger overlapping
opts.minBoxArea = 200;
opts.edgeMinMag = 0.1;
% set up parameters for using edgeBoxes in scale and aspect ratio detection
scale_params.scale_detect_window_factor = 1.4;
scale_params.proposal_num_limit = 200;
scale_params.pos_shift_damping = 0.7;
scale_params.rescale_damping = 0.7;
scale_params.EB_maxAR_factor = 1.5;
scale_params.EB_minArea_factor = 0.3;
scale_params.backSup_size = 64;
[rect_position, fps] = tracker(params, ...
padding, sigma, lambda, output_sigma_factor, interp_factor, ...
cell_size, hog_orientations, ...
model, opts, scale_params);
disp(['fps: ' num2str(fps)])
end
|
github
|
masa-nudt/KCFDPT-master
|
run_KCFDPT.m
|
.m
|
KCFDPT-master/run_KCFDPT.m
| 4,286 |
utf_8
|
50eee1de0783f61cec78a3c38ae0e7e7
|
% KCFDPT enhances KCFDP with "Background Suppression"
% KCFDP is the visual object tracker presented in:
% "Enable Scale and Aspect Ratio Adaptability in Visual Tracking with Detection Proposals" BMVC, 2015
%
% Dafei Huang, Lei Luo, Mei Wen, Zhaoyun Chen and Chunyuan Zhang
%
% Utilization of EdgeBoxes to enable scale and aspect ratio adaptibility
% "Exploiting the Circulant Structure of Tracking-by-detection with Kernels" ECCV, 2012
%
% J. F. Henriques, R. Caseiro, P. Martins and J. Batista
%
% Original CSK tracker implementation
% "High-Speed Tracking with Kernelized Correlation Filters" TPAMI, 2015
% http://www.isr.uc.pt/~henriques/circulant/
%
% J. F. Henriques, R. Caseiro, P. Martins, J. Batista
%
% Original KCF and DCF tracker implementation
% "Online Object Tracking: A Benchmark", CVPR, 2013.
% http://visual-tracking.net/
%
% Y. Wu, J. Lim, M.-H. Yang
%
% Benchmark sequences and toolkit
% "Piotr's Image and Video Matlab Toolbox (PMT)"
% http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
%
% P. Dollar
%
% Tools untilized
% "Adaptive Color Attributes for Real-Time Visual Tracking" CVPR, 2014.
%
% Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg and Joost van de Weijer
%
% Extended CSK tracker implementation with color attributes, new updating scheme and adaptive dimensionality reduction
% "Structured Forests for Fast Edge Detection", ICCV 2013
%
% P. Dollar and C. Zitnick
%
% Very fast edge detector (up to 60 fps depending on parameter settings) that achieves excellent accuracy
% "Edge Boxes: Locating Object Proposals from Edges", ECCV 2014.
%
% C. Zitnick and P. Dollar
%
% Edge Boxes object proposal generation
% Codes above are integrated and modified by Dafei Huang
function results=run_KCFDPT(seq, res_path, bSaveImage)
% 'res=run_' t.name '(subS, rp, bSaveImage);' sequence info, result path: ./tmp/evalType/sequence name_SCKCF_1.mat, whether to save result image
addpath(genpath('/Users/dafei/Projects/toolbox-master/'));
addpath(('../../rstEval'));
close all
s_frames = seq.s_frames;
% parameters according to the paper
padding = 1.5; %extra area surrounding the target
lambda = 1e-4; %regularization
% output_sigma_factor = 0.1; %spatial bandwidth (proportional to target)
output_sigma_factor = 0.06; %spatial bandwidth (proportional to target)
% interp_factor = 0.02;
interp_factor = 0.01;
sigma = 0.5;
hog_orientations = 9;
cell_size = 4;
target_sz = [seq.init_rect(1,4), seq.init_rect(1,3)];
pos = floor([seq.init_rect(1,2), seq.init_rect(1,1)]) + floor(target_sz/2);
% general parameters
params.visualization = 0;
params.init_pos = pos;
params.wsize = floor(target_sz);
params.video_path = seq.path;
params.s_frames = s_frames;
params.bSaveImage = bSaveImage;
params.res_path = res_path;
% load pre-trained edge detection model and set opts
model = load('./models/forest/modelBsds');
model = model.model;
model.opts.multiscale = 0;
model.opts.sharpen = 0;
model.opts.nThreads = 4;
% set up parameters for edgeBoxes (see edgeBoxesTrackParam.m)
opts = edgeBoxesTrackParam;
opts.alpha = .65; % step size of sliding window search
opts.beta = .75; % nms threshold for object proposals
%opts.maxBoxes = 1e4; % max number of boxes to detect
opts.maxBoxes = 1e3; % don't need that many proposals (default is 1e4)
opts.minScore = 0.0005; % min score of boxes to detect
opts.kappa = 1.4; % 1.5 as default, can be changed for larger overlapping
opts.minBoxArea = 200;
opts.edgeMinMag = 0.1;
% set up parameters for using edgeBoxes in scale and aspect ratio detection
scale_params.scale_detect_window_factor = 1.4;
scale_params.proposal_num_limit = 200;
scale_params.damping_factor = 0.7;
scale_params.pos_shift_damping = scale_params.damping_factor;
scale_params.rescale_damping = scale_params.damping_factor;
scale_params.EB_maxAR_factor = 1.5;
scale_params.EB_minArea_factor = 0.3;
scale_params.backSup_size = 64;
[rect_position, fps] = tracker(params, ...
padding, sigma, lambda, output_sigma_factor, interp_factor, ...
cell_size, hog_orientations, ...
model, opts, scale_params);
disp(['fps: ' num2str(fps)])
results.type = 'rect';
results.res = rect_position;%each row is a rectangle
results.fps = fps;
end
|
github
|
masa-nudt/KCFDPT-master
|
tracker.m
|
.m
|
KCFDPT-master/tracker.m
| 12,152 |
utf_8
|
03823a16cd4562c9c8895d265bfebe8f
|
% Original code is from Kernelized/Dual Correlation Filter (KCF/DCF)
% by Joao F. Henriques, 2015
% Integrated and modified by Dafei Huang
function [rect_position, fps] = tracker(params, ...
padding, sigma, lambda, output_sigma_factor, interp_factor, ...
cell_size, hog_orientations, ...
model, opts, scale_params)
% general parameters
bSaveImage = params.bSaveImage;
res_path = params.res_path;
video_path = params.video_path;
s_frames = params.s_frames;
pos = floor(params.init_pos);
target_sz = floor(params.wsize);
visualization = params.visualization;
% scale detection parameters
scale_detect_window_factor = scale_params.scale_detect_window_factor;
proposal_num_limit = scale_params.proposal_num_limit;
pos_shift_damping = scale_params.pos_shift_damping;
rescale_damping = scale_params.rescale_damping;
EB_maxAR_factor = scale_params.EB_maxAR_factor;
EB_minArea_factor = scale_params.EB_minArea_factor;
backSup_size = scale_params.backSup_size;
num_frames = numel(s_frames);
%if the target is large, lower the resolution, we don't need that much
%detail
resize_image = (sqrt(prod(target_sz)) >= 100); %diagonal size >= threshold
if resize_image,
pos = floor(pos / 2);
target_sz = floor(target_sz / 2);
end
org_target_sz = target_sz;
%window size, taking padding into account
window_sz = floor(target_sz * (1 + padding));
org_window_sz = window_sz;
% %we could choose a size that is a power of two, for better FFT
% %performance. in practice it is slower, due to the larger window size.
% window_sz = 2 .^ nextpow2(window_sz);
%create regression labels, gaussian shaped, with a bandwidth
%proportional to target size
output_sigma = sqrt(prod(target_sz)) * output_sigma_factor / cell_size;
yf = fft2(gaussian_shaped_labels(output_sigma, floor(window_sz / cell_size)));
%store pre-computed cosine window
cos_window = hann(size(yf,1)) * hann(size(yf,2))';
rect_position = zeros(numel(s_frames), 4);
temp = load('w2crs');
w2c = temp.w2crs;
%note: variables ending with 'f' are in the Fourier domain.
time = 0; %to calculate FPS
for frame = 1:numel(s_frames),
%load image
im = imread(s_frames{frame});
org_im = imread(s_frames{frame});
if size(im,3) > 1,
im = rgb2gray(im);
end
if resize_image,
im = imresize(im, 0.5);
org_im = imresize(org_im, 0.5, 'bilinear');
end
tic()
if frame > 1,
%obtain a subwindow for detection at the position from last
%frame, and convert to Fourier domain (its size is unchanged)
patch = get_subwindow(im, pos, window_sz);
patch = imresize(patch, org_window_sz, 'bilinear'); % scale its size to original size
org_patch = get_subwindow(org_im, pos, window_sz);
org_patch = imresize(org_patch, org_window_sz, 'bilinear');
zf = fft2(get_features(patch, org_patch, hog_orientations, cell_size, cos_window, w2c));
%calculate response of the classifier at all shifts
kzf = gaussian_correlation(zf, model_xf, sigma);
response = real(ifft2(model_alphaf .* kzf)); %equation for fast detection
%target location is at the maximum response. we must take into
%account the fact that, if the target doesn't move, the peak
%will appear at the top-left corner, not at the center (this is
%discussed in the paper). the responses wrap around cyclically.
max_response = max(response(:));
[vert_delta, horiz_delta] = find(response == max_response, 1);
if vert_delta > size(zf,1) / 2, %wrap around to negative half-space of vertical axis
vert_delta = vert_delta - size(zf,1);
end
if horiz_delta > size(zf,2) / 2, %same for horizontal axis
horiz_delta = horiz_delta - size(zf,2);
end
scale = window_sz ./ org_window_sz;
pos = pos + ( (cell_size * [vert_delta - 1, horiz_delta - 1]) .* scale );
pre_target_rect = [pos([2,1]) - target_sz([2,1])/2, target_sz([2,1])];
% begin scale detection
detect_sz = floor(target_sz * scale_detect_window_factor); % window size for scale detection
mid_pt = detect_sz * 0.5; % center position in the window for scale detection
% get the window for scale detection
edgeBoxes_window = get_subwindow(org_im, pos, detect_sz);
if size(org_im,3) == 1 % for gray sequences
edgeBoxes_window = single(edgeBoxes_window / 255);
edgeBoxes_window = cat(3, edgeBoxes_window, edgeBoxes_window, edgeBoxes_window);
end
% dynamically adjust edgeBoxes parameters
opts.maxAspectRatio = max([target_sz(1)/target_sz(2), target_sz(2)/target_sz(1)]) * EB_maxAR_factor;
opts.minBoxArea = floor( prod(target_sz) * EB_minArea_factor);
% edgeBoxes proposals
% Background Suppression is implemented within edgeBoxesTrackParam.m and edgeBoxesTrackParamMex.cpp
edgeBoxes_window_proposals = edgeBoxesTrackParam(edgeBoxes_window, model, backSup_size, opts);
% choose candidate proposals
num_of_proposals = 0;
proposals = zeros(proposal_num_limit,4); % center_y, center_x, rows, cols
proposals_xywh = zeros(proposal_num_limit,4);
target_in_edgeBoxes_window = [mid_pt([2,1]) - target_sz([2,1])/2, target_sz([2,1])];
% find candidate proposals among the top proposal_num_limit proposals detected by edgeBoxes
for i = 1 : min([size(edgeBoxes_window_proposals,1) proposal_num_limit])
if calcRectInt(edgeBoxes_window_proposals(i,[1:4]), target_in_edgeBoxes_window) > 0.6 && ...
calcRectInt(edgeBoxes_window_proposals(i,[1:4]), target_in_edgeBoxes_window) < 0.9
proposal_sz = [edgeBoxes_window_proposals(i,4) edgeBoxes_window_proposals(i,3)];
proposal_pos = [edgeBoxes_window_proposals(i,2) edgeBoxes_window_proposals(i,1)] + floor(proposal_sz/2);
num_of_proposals = num_of_proposals + 1;
proposals(num_of_proposals,:) = [pos+proposal_pos-mid_pt, proposal_sz];
proposals_xywh(num_of_proposals,:) = [proposals(num_of_proposals,[2,1]) - proposal_sz([2,1])/2, proposal_sz([2,1])];
end
end
% evaluate all the candidate proposals using kernel correlation
model_alpha = ifft2(model_alphaf);
max_proposal_response = max_response;
new_pos = pos;
new_target_sz = target_sz;
for j = 1 : num_of_proposals
proposal_patch = get_subwindow( im, proposals(j,1:2), proposals(j,3:4)*(1 + padding) );
proposal_patch = imresize(proposal_patch, org_window_sz, 'bilinear');
proposal_org_patch = get_subwindow( org_im, proposals(j,1:2), proposals(j,3:4)*(1 + padding) );
proposal_org_patch = imresize(proposal_org_patch, org_window_sz, 'bilinear');
proposal_zf = fft2(get_features(proposal_patch, proposal_org_patch, hog_orientations, cell_size, cos_window, w2c));
proposal_kz = gaussian_correlation_nofft(proposal_zf, model_xf, sigma); % no fft needed here
% calculate the response of the classifier without considering the cyclic shifts
proposal_response = model_alpha(:)' * proposal_kz(:);
if proposal_response > max_proposal_response
max_proposal_response = proposal_response;
new_pos = proposals(j,1:2);
new_target_sz = proposals(j,3:4);
end
end
chosen_proposal = [new_pos([2,1]) - new_target_sz([2,1])/2, new_target_sz([2,1])];
pos = floor( ( 1 - pos_shift_damping ) * pos + pos_shift_damping * new_pos );
target_sz = floor( ( 1 - rescale_damping ) * target_sz + rescale_damping * new_target_sz );
window_sz = floor( target_sz * (1 + padding) );
end
%obtain a subwindow for training at newly estimated target position
patch = get_subwindow(im, pos, window_sz);
org_patch = get_subwindow(org_im, pos, window_sz);
if frame > 1
patch = imresize(patch, org_window_sz, 'bilinear'); % resize to original window size then train the new model
org_patch = imresize(org_patch, org_window_sz, 'bilinear');
end
xf = fft2(get_features(patch, org_patch, hog_orientations, cell_size, cos_window, w2c));
%Kernel Ridge Regression, calculate alphas (in Fourier domain)
kf = gaussian_correlation(xf, xf, sigma);
% alphaf = yf ./ (kf + lambda); %equation for fast training
%utilize the updating scheme proposed in ACT
new_alphaf_num = yf .* kf;
new_alphaf_den = kf .* (kf + lambda);
if frame == 1, %first frame, train with a single image
% model_alphaf = alphaf;
%utilize the updating scheme proposed in ACT
alphaf_num = new_alphaf_num;
alphaf_den = new_alphaf_den;
model_xf = xf;
else
%subsequent frames, interpolate model
% model_alphaf = (1 - interp_factor) * model_alphaf + interp_factor * alphaf;
%utilize the updating scheme proposed in ACT
alphaf_num = (1 - interp_factor) * alphaf_num + interp_factor * new_alphaf_num;
alphaf_den = (1 - interp_factor) * alphaf_den + interp_factor * new_alphaf_den;
model_xf = (1 - interp_factor) * model_xf + interp_factor * xf;
end
model_alphaf = alphaf_num ./ alphaf_den;
%save position and timing
rect_position(frame,:) = [pos([2,1]) - target_sz([2,1])/2, target_sz([2,1])];
time = time + toc();
%visualization (uncomment the commented code below for detailed visual effects)
if visualization >= 1
if frame == 1, %first frame, create GUI
figure('Number','off', 'Name',['Tracker - ' video_path]);
im_handle = imshow(uint8(org_im), 'Border','tight', 'InitialMag', 100 + 100 * (length(im) < 500));
rect_handle = rectangle('Position',rect_position(frame,:), 'EdgeColor','g', 'LineWidth', 5);
% top scored proposals
% for j = 1 : 4
% proposal_handle(j) = rectangle('Position',[0,0,1,1], 'EdgeColor', 'r', 'LineWidth', 3);
% end
% preniminary location and previous size
% pre_target_handle = rectangle('Position', [0,0,1,1], 'EdgeColor', [0.3,0.3,1], 'LineWidth', 4, 'lineStyle', '--');
% the most promising proposal
% chosen_proposal_handle = rectangle('Position', [0,0,1,1], 'EdgeColor', [1,1,0], 'LineWidth', 3);
% frame index
% text_handle = text(30, 30, ['# ' int2str(frame)]);
% set(text_handle, 'color', [0 1 1], 'FontSize', 30, 'FontWeight', 'Bold');
else
try %subsequent frames, update GUI
set(im_handle, 'CData', org_im)
set(rect_handle, 'Position', rect_position(frame,:));
% for j = 1 : min([num_of_proposals 4])
% set(proposal_handle(j), 'Position', proposals_xywh(j,:));
% end
% for j = (min([num_of_proposals 4])+1) : 4
% set(proposal_handle(j), 'Position', [0,0,1,1]);
% end
% set(pre_target_handle, 'Position', pre_target_rect);
% set(chosen_proposal_handle, 'Position', chosen_proposal);
% set(text_handle, 'string', ['# ' int2str(frame)]);
catch
return
end
end
drawnow
% pause
end
if bSaveImage == 1
imwrite(frame2im(getframe(gcf)),['../.' res_path num2str(frame) '.jpg']);
end
end
if resize_image,
rect_position = rect_position * 2;
end
fps = num_frames/time;
end
|
github
|
masa-nudt/KCFDPT-master
|
edgeBoxesTrackParam.m
|
.m
|
KCFDPT-master/edgeBoxesTrackParam.m
| 4,994 |
utf_8
|
aae1f43113514db72a60c1023b1543cb
|
function bbs = edgeBoxesTrackParam( I, model, backSup_size, varargin )
% Generate Edge Boxes object proposals in given image(s).
%
% Compute Edge Boxes object proposals as described in:
% C. Lawrence Zitnick and Piotr Doll?
% "Edge Boxes: Locating Object Proposals from Edges", ECCV 2014.
% The proposal boxes are fast to compute and give state-of-the-art recall.
% Please cite the above paper if you end up using the code.
%
% The most important params are alpha and beta. The defaults are optimized
% for detecting boxes at intersection over union (IoU) of 0.7. For other
% settings of alpha/beta see the ECCV paper. In general larger alpha/beta
% improve results at higher IoU (but using large alpha can be quite slow).
% minScore/maxBoxes control the number of boxes returned and impact speed.
% Finally, a number of additional params listed below are set to reasonable
% defaults and in most cases should not need to be altered.
%
% For a faster version the proposal code runs at ~10 fps on average use:
% model.opts.sharpen=0; opts.alpha=.625; opts.minScore=.02;
%
% The code uses the Structured Edge Detector to compute edge strength and
% orientation. See edgesDetect.m for details. Alternatively, the code could
% be altered to use any other edge detector such as Canny.
%
% The input 'I' can either be a single (color) image (or filename) or a
% cell array of images (or filenames). In the first case, the return is a
% set of bbs where each row has the format [x y w h score] and score is the
% confidence of detection. If the input is a cell array, the output is a
% cell array where each element is a set of bbs in the form above (in this
% case a parfor loop is used to speed execution).
%
% USAGE
% opts = edgeBoxes()
% bbs = edgeBoxes( I, model, opts )
%
% INPUTS
% I - input image(s) of filename(s) of input image(s)
% model - Structured Edge model trained with edgesTrain
% opts - parameters (struct or name/value pairs)
% (1) main parameters, see above for details
% .name - [] target filename (if specified return is 1)
% .alpha - [.65] step size of sliding window search
% .beta - [.75] nms threshold for object proposals
% .minScore - [.01] min score of boxes to detect //boxes with score smaller than .minScore will be removed and not refined
% .maxBoxes - [1e4] max number of boxes to detect //used in boxesNms, together with .beta to decide the number of output boxes
% (2) additional parameters, safe to ignore and leave at default vals
% .edgeMinMag - [.1] increase to trade off accuracy for speed //eliminate weak edge pixels
% .edgeMergeThr - [.5] increase to trade off accuracy for speed //form edge pixels into edge groups
% .clusterMinMag - [.5] increase to trade off accuracy for speed //any edge pixel in a edge group whose response sum smaller than _clusterMinMag, will be removed or merged to anoter group
% .maxAspectRatio - [3] max aspect ratio of boxes
% .minBoxArea - [1000] minimum area of boxes
% .gamma - [2] affinity sensitivity, see equation 1 in paper
% .kappa - [1.5] scale sensitivity, see equation 3 in paper
%
% OUTPUTS
% bbs - [nx5] array containing proposal bbs [x y w h score]
%
% EXAMPLE
%
% See also edgeBoxesDemo, edgesDetect
%
% Structured Edge Detection Toolbox Version 3.0
% Copyright 2014 P. Dollar and L. Zitnick. [pdollar-at-microsoft.com]
% Please email me if you find bugs, or have suggestions or questions!
% Licensed under the MSR-LA Full Rights License [see license.txt]
% Modified by Dafei Huang to introduce Background Suppression
% get default parameters (unimportant parameters are undocumented)
dfs={'name','', 'alpha',.65, 'beta',.75, 'minScore',.01, 'maxBoxes',1e4,...
'edgeMinMag',.1, 'edgeMergeThr',.5, 'clusterMinMag',.5, ...
'maxAspectRatio',3, 'minBoxArea',1000, 'gamma',2, 'kappa',1.5 };
o=getPrmDflt(varargin,dfs,1); if(nargin==0), bbs=o; return; end
% run detector possibly over multiple images and optionally save results
f=o.name; if(~isempty(f) && exist(f,'file')), bbs=1; return; end
if(~iscell(I)), bbs=edgeBoxesImg(I,model,o,backSup_size); else n=length(I);
bbs=cell(n,1); parfor i=1:n, bbs{i}=edgeBoxesImg(I{i},model,o,backSup_size); end; end
d=fileparts(f); if(~isempty(d)&&~exist(d,'dir')), mkdir(d); end
if(~isempty(f)), save(f,'bbs'); bbs=1; end
end
function bbs = edgeBoxesImg( I, model, o, backSup_size )
% Generate Edge Boxes object proposals in single image.
if(all(ischar(I))), I=imread(I); end
model.opts.nms=0; [E,O]=edgesDetect(I,model);
if(0), E=gradientMag(convTri(single(I),4)); E=E/max(E(:)); end
E=edgesNmsMex(E,O,2,0,1,model.opts.nThreads);
bbs=edgeBoxesTrackParamMex(E,O,o.alpha,o.beta,o.minScore,o.maxBoxes,...
o.edgeMinMag,o.edgeMergeThr,o.clusterMinMag,...
o.maxAspectRatio,o.minBoxArea,o.gamma,o.kappa,backSup_size);
end
|
github
|
masa-nudt/KCFDPT-master
|
find_scale_change_level_seqs.m
|
.m
|
KCFDPT-master/anno_tool/find_scale_change_level_seqs.m
| 1,502 |
utf_8
|
ff2265e4bcedb5b56bfa05372b7d4d16
|
% Use 2.0, 1.8, 1.6 as parameter to find out sequences with different scale variation levels
function find_scale_change_level_seqs(scale_exam_thres)
pathAnno = './anno/';
attPath = './anno/att/';
addpath('./util/');
seqs = configSeqs;
total_sc_variation = 0;
total_frame = 0;
count_variation_seqs = 0;
for idxSeq=1:length(seqs)
s = seqs{idxSeq};
att_anno = dlmread([attPath s.name '.txt']);
% Make sure the sequence is annotated as "scale variation" in OTB
if att_anno(3) == 0
continue;
end
s.len = s.endFrame - s.startFrame + 1;
s.s_frames = cell(s.len,1);
rect_anno = dlmread([pathAnno s.name '.txt']);
numSeg = 20;
[subSeqs, subAnno]=splitSeqTRE(s,numSeg,rect_anno);
anno=subAnno{1};
count_sc_variation = 0;
for i = 1 : size(anno,1)
j = 1;
j(i>30) = i-30 ;
for k = j : i
if anno(i,3)*anno(i,4) > scale_exam_thres * anno(k,3)*anno(k,4) || anno(i,3)*anno(i,4) < 1/scale_exam_thres * anno(k,3)*anno(k,4)
count_sc_variation = count_sc_variation+1;
break;
end
end
end
if count_sc_variation/size(anno,1) >= 0.1
disp(s.name);
total_sc_variation = total_sc_variation + count_sc_variation;
count_variation_seqs = count_variation_seqs + 1;
total_frame = total_frame + size(anno,1);
end
end
|
github
|
masa-nudt/KCFDPT-master
|
find_aspect_ratio_change_seqs.m
|
.m
|
KCFDPT-master/anno_tool/find_aspect_ratio_change_seqs.m
| 1,666 |
utf_8
|
484a19e57cc10a9eb4bc3da64a0835ff
|
% Find out and annotate sequences with obvious aspect ratio variation
function find_aspect_ratio_change_seqs()
pathAnno = './anno/';
attPath = './anno/att/';
addpath('./util/');
seqs = configSeqs;
total_ar_variation = 0;
total_frame = 0;
for idxSeq=1:length(seqs)
s = seqs{idxSeq};
s.len = s.endFrame - s.startFrame + 1;
s.s_frames = cell(s.len,1);
rect_anno = dlmread([pathAnno s.name '.txt']);
numSeg = 20;
[subSeqs, subAnno]=splitSeqTRE(s,numSeg,rect_anno);
anno=subAnno{1};
aspect_ratio_att = 0;
count_ar_variation = 0;
for i = 1 : size(anno,1)
j = 1;
j(i>30) = i-30 ;
for k = j : i
if anno(i,3)/anno(i,4) > 1.4 * anno(k,3)/anno(k,4) || anno(i,3)/anno(i,4) < 1/1.4 * anno(k,3)/anno(k,4)
count_ar_variation = count_ar_variation+1;
break;
end
end
end
if count_ar_variation/size(anno,1) >= 0.1
aspect_ratio_att = 1;
disp(s.name);
total_ar_variation = total_ar_variation + count_ar_variation;
total_frame = total_frame + size(anno,1);
end
% Uncomment the commented code below to write into annotation files.
% Use ONCE ONLY to prevent duplicate annotation.
% att_anno = dlmread([attPath s.name '.txt']);
% att_anno = [att_anno, aspect_ratio_att];
% dlmwrite([attPath s.name '.txt'], att_anno);
end
disp([num2str(total_ar_variation) ' frames undergoing aspect ratio variation out of ' ...
num2str(total_frame) ' total frames.']);
|
github
|
masa-nudt/KCFDPT-master
|
find_aspect_ratio_change_level_seqs.m
|
.m
|
KCFDPT-master/anno_tool/find_aspect_ratio_change_level_seqs.m
| 1,266 |
utf_8
|
d7d2537ca8c5744e27546ffddf18a76c
|
% Use 1.6, 1.5, 1.4 as parameter to find out sequences with different aspect ratio variation levels
function find_aspect_ratio_change_level_seqs(aspect_ratio_exam_thres)
pathAnno = './anno/';
attPath = './anno/att/';
addpath('./util/');
seqs = configSeqs;
total_ar_variation = 0;
total_frame = 0;
for idxSeq=1:length(seqs)
s = seqs{idxSeq};
s.len = s.endFrame - s.startFrame + 1;
s.s_frames = cell(s.len,1);
rect_anno = dlmread([pathAnno s.name '.txt']);
numSeg = 20;
[subSeqs, subAnno]=splitSeqTRE(s,numSeg,rect_anno);
anno=subAnno{1};
count_ar_variation = 0;
for i = 1 : size(anno,1)
j = 1;
j(i>30) = i-30 ;
for k = j : i
if anno(i,3)/anno(i,4) > aspect_ratio_exam_thres * anno(k,3)/anno(k,4) || anno(i,3)/anno(i,4) < 1/aspect_ratio_exam_thres * anno(k,3)/anno(k,4)
count_ar_variation = count_ar_variation+1;
break;
end
end
end
if count_ar_variation/size(anno,1) >= 0.1
disp(s.name);
total_ar_variation = total_ar_variation + count_ar_variation;
total_frame = total_frame + size(anno,1);
end
end
|
github
|
masa-nudt/KCFDPT-master
|
find_scale_change_rate_seqs.m
|
.m
|
KCFDPT-master/anno_tool/find_scale_change_rate_seqs.m
| 1,502 |
utf_8
|
8cd0438817329932aab7fd4f6f2dc435
|
% Use 10, 20, 30 as parameter to find out sequences with different scale variation rates
function find_scale_change_rate_seqs(scale_exam_window)
pathAnno = './anno/';
attPath = './anno/att/';
addpath('./util/');
seqs = configSeqs;
total_sc_variation = 0;
total_frame = 0;
count_variation_seqs = 0;
for idxSeq=1:length(seqs)
s = seqs{idxSeq};
att_anno = dlmread([attPath s.name '.txt']);
% Make sure the sequence is annotated as "scale variation" in OTB
if att_anno(3) == 0
continue;
end
s.len = s.endFrame - s.startFrame + 1;
s.s_frames = cell(s.len,1);
rect_anno = dlmread([pathAnno s.name '.txt']);
numSeg = 20;
[subSeqs, subAnno]=splitSeqTRE(s,numSeg,rect_anno);
anno=subAnno{1};
count_sc_variation = 0;
for i = 1 : size(anno,1)
j = 1;
j(i>scale_exam_window) = i-scale_exam_window ;
for k = j : i
if anno(i,3)*anno(i,4) > 1.6 * anno(k,3)*anno(k,4) || anno(i,3)*anno(i,4) < 1/1.6 * anno(k,3)*anno(k,4)
count_sc_variation = count_sc_variation+1;
break;
end
end
end
if count_sc_variation/size(anno,1) >= 0.1
disp(s.name);
total_sc_variation = total_sc_variation + count_sc_variation;
count_variation_seqs = count_variation_seqs + 1;
total_frame = total_frame + size(anno,1);
end
end
|
github
|
masa-nudt/KCFDPT-master
|
find_aspect_ratio_change_rate_seqs.m
|
.m
|
KCFDPT-master/anno_tool/find_aspect_ratio_change_rate_seqs.m
| 1,266 |
utf_8
|
2b76b2d3af9ff02bb8bf9677ee8f35ea
|
% Use 10, 20, 30 as parameter to find out sequences with different aspect ratio variation rates
function find_aspect_ratio_change_rate_seqs(aspect_ratio_exam_window)
pathAnno = './anno/';
attPath = './anno/att/';
addpath('./util/');
seqs = configSeqs;
total_ar_variation = 0;
total_frame = 0;
for idxSeq=1:length(seqs)
s = seqs{idxSeq};
s.len = s.endFrame - s.startFrame + 1;
s.s_frames = cell(s.len,1);
rect_anno = dlmread([pathAnno s.name '.txt']);
numSeg = 20;
[subSeqs, subAnno]=splitSeqTRE(s,numSeg,rect_anno);
anno=subAnno{1};
count_ar_variation = 0;
for i = 1 : size(anno,1)
j = 1;
j(i>aspect_ratio_exam_window) = i-aspect_ratio_exam_window ;
for k = j : i
if anno(i,3)/anno(i,4) > 1.4 * anno(k,3)/anno(k,4) || anno(i,3)/anno(i,4) < 1/1.4 * anno(k,3)/anno(k,4)
count_ar_variation = count_ar_variation+1;
break;
end
end
end
if count_ar_variation/size(anno,1) >= 0.1
disp(s.name);
total_ar_variation = total_ar_variation + count_ar_variation;
total_frame = total_frame + size(anno,1);
end
end
|
github
|
tsajed/nmr-pred-master
|
s2spinach.m
|
.m
|
nmr-pred-master/spinach/etc/s2spinach.m
| 5,215 |
utf_8
|
66d7be1c0060b13e05fc7e6e10f05a32
|
% Reads SIMPSON spin system specification file and converts the
% information into Spinach data structures. Syntax:
%
% [sys,inter]=s2spinach(filename)
%
% [email protected]
function [sys,inter]=s2spinach(filename)
% Check consistency
grumble(filename);
% Read the file
fid=fopen(filename);
simpson_file=textscan(fid,'%s','delimiter','\n');
simpson_file=simpson_file{:}; fclose(fid);
% Locate the boundaries of the spinsys{} field
for n=1:length(simpson_file)
current_line=deblank(char(simpson_file{n}));
if (length(current_line)>=7)&&strcmp(current_line(1:7),'spinsys')
spinsys_start=n;
for k=(n+1):length(simpson_file)
current_line=deblank(char(simpson_file{k}));
if strcmp(current_line,'}')
spinsys_end=k; break
end
end
end
end
% Tell the user if we found the spinsys{} section
if exist('spinsys_start','var')&&exist('spinsys_end','var')
disp(['SIMPSON spinsys{} section located between lines ' num2str(spinsys_start) ' and ' num2str(spinsys_end) '.']);
else
error('could not locate SIMPSON spinsys{} section');
end
% Search for the isotope information
for n=spinsys_start:spinsys_end
current_line=deblank(char(simpson_file{n}));
if (length(current_line)>=6)&&strcmp(current_line(1:6),'nuclei')
sys.isotopes=textscan(current_line(7:end),'%s');
sys.isotopes=sys.isotopes{:}';
end
end
% Preallocate the coupling arrays
nspins=length(sys.isotopes);
inter.zeeman.matrix=mat2cell(zeros(3*nspins,3),3*ones(nspins,1))';
inter.coupling.matrix=mat2cell(zeros(3*nspins),3*ones(nspins,1),3*ones(nspins,1));
% Absorb the couplings
for n=spinsys_start:spinsys_end
% Kill the spaces at either end
current_line=deblank(char(simpson_file{n}));
% Parse the specification
if (length(current_line)>=5)&&strcmp(current_line(1:5),'shift')
% Bomb out if the Zeeman tensor is not in ppm
if nnz(current_line(6:end)=='p')~=2
error('only ppm specification (# #p #p # # # #) is supported for Zeeman tensors.');
end
% Get the ppm Zeeman tensor information
zeeman_line=textscan(current_line(6:end),'%n %np %np %n %n %n %n');
eigvals=[zeeman_line{2}-zeeman_line{3}*(1+zeeman_line{4})/2
zeeman_line{2}-zeeman_line{3}*(1-zeeman_line{4})/2
zeeman_line{3}+zeeman_line{2}];
S=euler2dcm(pi*[zeeman_line{5} zeeman_line{6} zeeman_line{7}]/180);
inter.zeeman.matrix{zeeman_line{1}}=inter.zeeman.matrix{zeeman_line{1}}+S*diag(eigvals)*S';
elseif (length(current_line)>=6)&&strcmp(current_line(1:6),'dipole')
% Get the dipole-dipole coupling information
dipole_line=textscan(current_line(7:end),'%n %n %n %n %n %n');
eigvals=[-dipole_line{3}/2 -dipole_line{3}/2 dipole_line{3}];
S=euler2dcm(pi*[dipole_line{4} dipole_line{5} dipole_line{6}]/180);
inter.coupling.matrix{dipole_line{1},dipole_line{2}}=inter.coupling.matrix{dipole_line{1},dipole_line{2}}+S*diag(eigvals)*S';
elseif (length(current_line)>=9)&&strcmp(current_line(1:9),'jcoupling')
% Get the generic coupling information
coupling_line=textscan(current_line(10:end),'%n %n %n %n %n %n %n %n');
eigvals=[coupling_line{3}-coupling_line{4}*(1+coupling_line{5})/2
coupling_line{3}-coupling_line{4}*(1-coupling_line{5})/2
coupling_line{4}+coupling_line{3}];
S=euler2dcm(pi*[coupling_line{6} coupling_line{7} coupling_line{8}]/180);
inter.coupling.matrix{coupling_line{1},coupling_line{2}}=inter.coupling.matrix{coupling_line{1},coupling_line{2}}+S*diag(eigvals)*S';
elseif (length(current_line)>=10)&&strcmp(current_line(1:10),'quadrupole')
% Bomb out if the quadrupole tensor is not in Hz
if nnz(current_line(11:end)=='p')~=0
error('only Hz specification (# # # # # # #) is supported for quadrupole tensors.');
end
% Get the quadrupole tensor information
quad_line=textscan(current_line(11:end),'%n %n %n %n %n %n %n');
eigvals=[-quad_line{3}*(1+quad_line{4})/2
-quad_line{3}*(1-quad_line{4})/2
quad_line{3}];
S=euler2dcm(pi*[quad_line{5} quad_line{6} quad_line{7}]/180);
inter.coupling.matrix{quad_line{1},quad_line{1}}=inter.coupling.matrix{quad_line{1},quad_line{1}}+S*diag(eigvals)*S';
end
end
end
% Consistency enforcement
function grumble(filename)
if ~ischar(filename)
error('filename must be a character string.');
end
end
% According to a trade rumour, the 1983 vacancy for a Lecturer post
% at Corpus Christi College, Oxford, was contested, amongst others,
% by three candidates: Geoffrey Bodenhausen, Peter Hore and Malcolm
% Levitt. Scrolling the Scopus database to that year and sorting the
% results by citation numbers would provide much food for thought to
% any young researcher seeking to further his academic career.
|
github
|
tsajed/nmr-pred-master
|
fid2ascii.m
|
.m
|
nmr-pred-master/spinach/etc/fid2ascii.m
| 2,254 |
utf_8
|
d290db1a84bcaac9d24a144a520fdb7a
|
% Writes free induction decays into ASCII files.
%
% <http://spindynamics.org/wiki/index.php?title=Fid2ascii.m>
function fid2ascii(file_name,fid)
% Check consistency
grumble(fid)
% Open the file for writing
file_id=fopen(file_name,'w');
% Decide data dimensions
if isvector(fid)
% Interleave real and imaginary parts
for n=1:numel(fid)
fprintf(file_id,'%d %12.8E \n',[n real(fid(n))]);
end
for n=1:numel(fid)
fprintf(file_id,'%d %12.8E \n',[(n+numel(fid)) imag(fid(n))]);
end
elseif ismatrix(fid)
% Write out the fid
for k=1:size(fid,2)
% Interleave real and imaginary parts
for n=1:size(fid,1)
fprintf(file_id,'%d %d %12.8E \n',[n k real(fid(n,k))]);
end
for n=1:size(fid,1)
fprintf(file_id,'%d %d %12.8E \n',[(n+size(fid,1)) k imag(fid(n,k))]);
end
end
elseif ndims(fid)==3
% Write out the fid
for m=1:size(fid,3)
for k=1:size(fid,2)
% Interleave real and imaginary parts
for n=1:size(fid,1)
fprintf(file_id,'%d %d %d %12.8E \n',[n k m real(fid(n,k,m))]);
end
for n=1:size(fid,1)
fprintf(file_id,'%d %d %d %12.8E \n',[(n+size(fid,1)) k m imag(fid(n,k,m))]);
end
end
end
else
% Complain and bomb out
error('insupported data dimensionality.');
end
% Close the file
fclose(file_id);
end
% Consistency enforcement
function grumble(fid)
if ~isnumeric(fid), error('fid must be numeric.'); end
end
% To be a - I don't know if this phrase is an oxymoron - but to be a sensible
% theologian, or at least one who has a pretense of being scholarly, you at
% least have to have some vague idea of what's going on in science, how old
% the universe is, etc. But to do science you don't have to know anything
% about theology. Scientists don't read theology, they don't read philosophy,
% it doesn't make any difference to what they're doing - for better or worse,
% it may not be a value judgment, but it's true.
%
% Lawrence Krauss
|
github
|
tsajed/nmr-pred-master
|
destreak.m
|
.m
|
nmr-pred-master/spinach/etc/destreak.m
| 1,830 |
utf_8
|
e9cdee5122a200e1b85297391b7ffc4e
|
% Reduces streak artefacts in 2D and 3D NMR spectra.
%
% <http://spindynamics.org/wiki/index.php?title=Destreak.m>
function spectrum=destreak(spectrum)
% Process structures and cell arrays recursively
if isstruct(spectrum)
% Get the field names
struct_fieldnames=fieldnames(spectrum);
% Loop over field names
for n=1:length(struct_fieldnames)
% Call itself for each field name
spectrum.(struct_fieldnames{n})=destreak(spectrum.(struct_fieldnames{n}));
end
elseif iscell(spectrum)
% Loop over cells
parfor n=1:numel(spectrum)
% Call itself for each cell
spectrum{n}=destreak(spectrum{n});
end
end
% Check consistency
grumble(spectrum);
% Decide problem dimensionality
switch ndims(spectrum)
case 2
% Destreak the spectrum
spectrum=spectrum-kron(spectrum(:,1),ones(1,size(spectrum,2)));
spectrum=spectrum-kron(spectrum(1,:),ones(size(spectrum,1),1));
case 3
% Destreak the spectrum
spectrum=spectrum-repmat(spectrum(:,1,:),1,size(spectrum,2),1);
spectrum=spectrum-repmat(spectrum(1,:,:),size(spectrum,1),1,1);
spectrum=spectrum-repmat(spectrum(:,:,1),1,1,size(spectrum,3));
otherwise
% Complain and bomb out
error('unsupported spectrum dimensionality.');
end
end
% Consistency enforcement
function grumble(spectrum)
if ~isnumeric(spectrum)
error(['spectrum must be a numeric array, a cell array '...
'of numeric arrays or a structure with numeric arrays inside.']);
end
end
% If it flies, floats or fucks, you are better off renting it.
%
% Felix Dennis
|
github
|
tsajed/nmr-pred-master
|
guess_csa_pro.m
|
.m
|
nmr-pred-master/spinach/etc/guess_csa_pro.m
| 4,861 |
utf_8
|
fd23d5a9383a5e93c2cb219ad3f6e9c2
|
% Chemical shieft anisotropy estimates for peptide bond heteroatoms.
%
% <http://spindynamics.org/wiki/index.php?title=Guess_csa_pro.m>
function CSAs=guess_csa_pro(aa_nums,pdb_ids,coords)
% Check consistency
grumble(aa_nums,pdb_ids,coords);
% Preallocate CSA array
CSAs=cell(numel(pdb_ids),1);
% Number the atoms
numbers=1:numel(coords);
% Loop over amino acids
for n=2:(max(aa_nums)-1)
% Assign amide nitrogen CSAs
if ismember('C',pdb_ids(aa_nums==n))&&...
ismember('N',pdb_ids(aa_nums==(n+1)))&&...
ismember('H',pdb_ids(aa_nums==(n+1)))
% Get C coordinates
local_coords=coords(aa_nums==n);
C=local_coords{strcmp('C',pdb_ids(aa_nums==n))}; C=C(:);
% Get N coordinates
local_coords=coords(aa_nums==(n+1));
N=local_coords{strcmp('N',pdb_ids(aa_nums==(n+1)))}; N=N(:);
% Get H coordinates
local_coords=coords(aa_nums==(n+1));
H=local_coords{strcmp('H',pdb_ids(aa_nums==(n+1)))}; H=H(:);
% Get the primary directions
N_CO_vec=C-N; N_H_vec=H-N;
% Double-check the distances
if (norm(N_CO_vec)>2.0)||(norm(N_H_vec)>2.0)
error('Amino acid numbering is not sequential.');
end
% Make ZZ eigenvector collinear with N-CO bond
zz_eigvec=N_CO_vec;
zz_eigvec=zz_eigvec/norm(zz_eigvec);
% Make YY eigenvector perpendicular to the peptide plane
yy_eigvec=cross(N_CO_vec,N_H_vec);
yy_eigvec=yy_eigvec/norm(yy_eigvec);
% Make XX eigenvector perpendicular to the other two
xx_eigvec=cross(yy_eigvec,zz_eigvec);
xx_eigvec=xx_eigvec/norm(xx_eigvec);
% Build the eigenvalue matrix
D=diag([-125 45 80]);
% Build the eigenvector matrix
V=[xx_eigvec yy_eigvec zz_eigvec];
% Identify the nitrogen
local_numbers=numbers(aa_nums==(n+1));
nitrogen_number=local_numbers(strcmp('N',pdb_ids(aa_nums==(n+1))));
% Compose the tensor
CSAs{nitrogen_number}=V*D*V';
% Report to the user
disp(['Amide nitrogen CSA for residue ' num2str(n) ' guessed from local geometry.']);
end
% Assign C=O carbon CSAs
if ismember('C',pdb_ids(aa_nums==n))&&...
ismember('N',pdb_ids(aa_nums==(n+1)))&&...
ismember('CA',pdb_ids(aa_nums==n))
% Get C coordinates
local_coords=coords(aa_nums==n);
C=local_coords{strcmp('C',pdb_ids(aa_nums==n))}; C=C(:);
% Get N coordinates
local_coords=coords(aa_nums==(n+1));
N=local_coords{strcmp('N',pdb_ids(aa_nums==(n+1)))}; N=N(:);
% Get CA coordinates
local_coords=coords(aa_nums==n);
CA=local_coords{strcmp('CA',pdb_ids(aa_nums==n))}; CA=CA(:);
% Get the primary directions
N_C_vec=C-N; C_CA_vec=CA-C;
% Double-check the distances
if (norm(N_C_vec)>2.0)||(norm(C_CA_vec)>2.0)
error('Amino acid numbering is not sequential.');
end
% Make XX eigenvector collinear with C-CA bond
xx_eigvec=C_CA_vec;
xx_eigvec=xx_eigvec/norm(xx_eigvec);
% Make ZZ eigenvector perpendicular to the >C=O plane
zz_eigvec=cross(C_CA_vec,N_C_vec);
zz_eigvec=zz_eigvec/norm(zz_eigvec);
% Make YY eigenvector perpendicular to the other two
yy_eigvec=cross(xx_eigvec,zz_eigvec);
yy_eigvec=yy_eigvec/norm(yy_eigvec);
% Build the eigenvalue matrix
D=diag([70 5 -75]);
% Build the eigenvector matrix
V=[xx_eigvec yy_eigvec zz_eigvec];
% Identify the carbon
local_numbers=numbers(aa_nums==n);
carbon_number=local_numbers(strcmp('C',pdb_ids(aa_nums==n)));
% Compose the tensor
CSAs{carbon_number}=V*D*V';
% Report to the user
disp(['Carboxyl carbon CSA for residue ' num2str(n) ' guessed from local geometry.']);
end
end
end
% Consistency enforcement
function grumble(aa_nums,pdb_ids,coords)
if ~isnumeric(aa_nums)
error('aa_nums must be a vector of integers.');
end
if ~iscell(pdb_ids)
error('pdb_ids must be a cell array of character strings.');
end
if ~iscell(coords)
error('coords must be a cell array of 3-vectors.');
end
if (numel(aa_nums)~=numel(pdb_ids))||(numel(pdb_ids)~=numel(coords))
error('the input parameters must have the same number of elements.');
end
end
% "Where's the PCM solvent?"
%
% A 3rd year project student,
% rummaging through IK's sol-
% vent cabinet.
|
github
|
tsajed/nmr-pred-master
|
zfs_sampling.m
|
.m
|
nmr-pred-master/spinach/etc/zfs_sampling.m
| 1,871 |
utf_8
|
0641b3e36d23a8312fd27193983e1961
|
% Sampling function for ZFS parameter distributions.
%
% <http://spindynamics.org/wiki/index.php?title=Zfs_sampling.m>
function [D,E,W]=zfs_sampling(npoints_d,npoints_e,tol)
% Check consistency
grumble(npoints_d,npoints_e,tol);
% Generate Gauss-Legendre point set for D/D1
[X,WX]=lgwt(npoints_d,-2,2);
% Get the standard deviation for unit FWHM
sigma=1/(2*sqrt(2*log(2)));
% Refract weights through a double Gaussian
WX=WX.*(normpdf(X,-1,sigma)+normpdf(X,+1,sigma)); WX=WX/sum(WX);
% Plot the double Gaussian
subplot(1,2,1); plot(X,normpdf(X,-1,sigma)+normpdf(X,+1,sigma),'r-');
title('D/D0 distribution'); xlabel('D/D0');
ylabel('probability density'); axis tight;
% Generate Gauss-legendre point set for E/D
[Y,WY]=lgwt(npoints_e,0,1/3);
% Refract weights through a quadratic function
WY=WY.*(-(Y-0.25).^2+0.0625); WY=WY/sum(WY);
% Plot the quadratic function
subplot(1,2,2); plot(Y,-(Y-0.25).^2+0.0625,'r-');
title('E/D distribution'); xlabel('E/D');
ylabel('probability density'); axis tight;
% Kron the weights
D=kron(X,ones(size(Y)));
E=D.*kron(ones(size(X)),Y);
W=kron(WX,WY); W=W/sum(W);
% Ignore small weights
D(W<tol)=[]; E(W<tol)=[]; W(W<tol)=[];
end
% Consistency enforcement
function grumble(npoints_d,npoints_e,tol)
if (~isnumeric(npoints_d))||(~isreal(npoints_d))||...
(npoints_d<5)||(mod(npoints_d,1)~=0)
error('npoints_d must be a real integer greater than 5.');
end
if (~isnumeric(npoints_e))||(~isreal(npoints_e))||...
(npoints_e<5)||(mod(npoints_e,1)~=0)
error('npoints_e must be a real integer greater than 5.');
end
if (~isnumeric(tol))||(~isreal(tol))||(tol<0)
error('tol must be a positive real number much smaller than 1.');
end
end
% It is a cliche that most cliches are true, but
% then, like most cliches, that cliche is untrue.
%
% Stephen Fry
|
github
|
tsajed/nmr-pred-master
|
strychnine.m
|
.m
|
nmr-pred-master/spinach/etc/strychnine.m
| 6,944 |
utf_8
|
1ca29f49a8c2c448992a9ce45a75be9f
|
% Spin system of strychnine.
%
% <http://spindynamics.org/wiki/index.php?title=Strychnine.m>
function [sys,inter]=strychnine(spins)
% Check consistency
grumble(spins);
% Shorthands for human-readable coupling designations below
H1=1; H2=2; H3=3; H4=4; H8=5; H11a=6; H11b=7; H12=8; H13=9; H14=10;
H15a=11; H15b=12; H16=13; H17a=14; H17b=15; H18a=16; H18b=17; H20a=18;
H20b=19; H22=20; H23a=21; H23b=22;
% Hydrogen atoms
H_isotopes={'1H','1H','1H','1H','1H','1H','1H','1H','1H','1H','1H',...
'1H','1H','1H','1H','1H','1H','1H','1H','1H','1H','1H'};
numH=numel(H_isotopes);
% Proton chemical shifts
H_zeeman=cell(1,numH);
H_zeeman{H3}= 7.255; H_zeeman{H22}= 5.915;
H_zeeman{H2}= 7.098; H_zeeman{H1}= 7.167;
H_zeeman{H4}= 8.092; H_zeeman{H12}= 4.288;
H_zeeman{H23b}=4.066; H_zeeman{H23a}=4.148;
H_zeeman{H16}= 3.963; H_zeeman{H8}= 3.860;
H_zeeman{H20b}=2.745; H_zeeman{H20a}=3.716;
H_zeeman{H18a}=3.219; H_zeeman{H18b}=2.878;
H_zeeman{H13}= 1.276; H_zeeman{H17a}=1.890;
H_zeeman{H17b}=1.890; H_zeeman{H11a}=3.132;
H_zeeman{H11b}=2.670; H_zeeman{H14}= 3.150;
H_zeeman{H15b}=1.462; H_zeeman{H15a}=2.360;
% Proton J-couplings
H_coupling=cell(numH);
H_coupling{H3,H4}= 7.90; H_coupling{H22,H23a}= 7.00;
H_coupling{H22,H23b}= 6.10; H_coupling{H2,H3}= 7.44;
H_coupling{H2,H4}= 0.98; H_coupling{H1,H2}= 7.49;
H_coupling{H1,H3}= 1.08; H_coupling{H1,H4}= 0.23;
H_coupling{H12,H13}= 3.30; H_coupling{H23a,H23b}=-13.80;
H_coupling{H8,H13}= 10.41; H_coupling{H20a,H20b}=-14.80;
H_coupling{H20a,H22}= 1.79; H_coupling{H18a,H18b}=-13.90;
H_coupling{H13,H14}= 3.29; H_coupling{H17a,H17b}=-13.90;
H_coupling{H17a,H18a}= 5.50; H_coupling{H17a,H18b}= 7.20;
H_coupling{H17b,H18a}= 3.20; H_coupling{H17b,H18b}= 10.70;
H_coupling{H11a,H11b}=-17.34; H_coupling{H11a,H12}= 3.34;
H_coupling{H11b,H12}= 8.47; H_coupling{H14,H15a}= 4.11;
H_coupling{H14,H15b}= 1.96; H_coupling{H14,H22}= 0.47;
H_coupling{H14,H20a}= 1.61; H_coupling{H15a,H15b}=-14.35;
H_coupling{H15a,H16}= 4.33; H_coupling{H15b,H16}= 2.42;
% Proton coordinates
H_coordinates=cell(1,numH);
H_coordinates{H1}= [ 2.7336, -2.8961, -0.4256];
H_coordinates{H2}= [ 5.0747, -2.1373, -0.7803];
H_coordinates{H3}= [ 5.6630, 0.2547, -0.5015];
H_coordinates{H4}= [ 3.9144, 1.9280, 0.1137];
H_coordinates{H8}= [-0.6004, 0.4789, 1.3185];
H_coordinates{H11a}=[-0.3262, 4.0926, -0.0781];
H_coordinates{H11b}=[-0.6863, 3.1492, 1.3616];
H_coordinates{H12}= [-1.7489, 2.7068, -1.3360];
H_coordinates{H13}= [-0.0861, 1.0611, -1.5871];
H_coordinates{H14}= [-2.2234, 0.1869, -2.2835];
H_coordinates{H15a}=[ 0.0099, -1.0345, -2.4296];
H_coordinates{H15b}=[-1.3580, -2.1373, -2.4297];
H_coordinates{H16}= [ 0.3886, -2.9088, -0.8537];
H_coordinates{H17a}=[ 1.0318, -2.7083, 1.7742];
H_coordinates{H17b}=[ 0.6059, -1.1921, 2.5799];
H_coordinates{H18a}=[-1.2874, -3.1432, 2.3544];
H_coordinates{H18b}=[-1.7510, -1.4610, 2.0500];
H_coordinates{H20a}=[-2.9738, -2.8430, -1.0448];
H_coordinates{H20b}=[-3.4330, -2.5457, 0.6228];
H_coordinates{H22}= [-4.4597, -0.3928, 0.8115];
H_coordinates{H23a}=[-3.8532, 1.8278, -1.0768];
H_coordinates{H23b}=[-4.5333, 1.9818, 0.5498];
% Carbon and nitrogen atoms
CN_isotopes={'13C','13C','13C','13C','13C','13C','13C','13C','15N','13C',...
'13C','13C','13C','13C','13C','13C','13C','13C','15N','13C',...
'13C','13C','13C'};
numCN=numel(CN_isotopes);
% Carbon and nitrogen chemical shifts
CN_zeeman=cell(1,numCN);
CN_zeeman{10}= 169.28; CN_zeeman{9}= 155.00;
CN_zeeman{5}= 142.23; CN_zeeman{21}= 140.45;
CN_zeeman{6}= 132.72; CN_zeeman{3}= 128.56;
CN_zeeman{22}= 127.34; CN_zeeman{2}= 124.20;
CN_zeeman{1}= 122.26; CN_zeeman{4}= 116.23;
CN_zeeman{12}= 76.85; CN_zeeman{23}= 64.60;
CN_zeeman{16}= 60.28; CN_zeeman{8}= 60.10;
CN_zeeman{20}= 52.68; CN_zeeman{7}= 51.96;
CN_zeeman{18}= 50.35; CN_zeeman{13}= 48.22;
CN_zeeman{17}= 42.85; CN_zeeman{11}= 42.48;
CN_zeeman{19}= 35.00; CN_zeeman{14}= 31.60;
CN_zeeman{15}= 26.84;
% Carbon and nitrogen coordinates
CN_coordinates=cell(1,numCN+2);
CN_coordinates{4}= [ 3.6711, 0.8813, -0.0049];
CN_coordinates{3}= [ 4.6363, -0.0692, -0.3529];
CN_coordinates{2}= [ 4.3069, -1.4174, -0.5113];
CN_coordinates{1}= [ 2.9885, -1.8448, -0.3155];
CN_coordinates{6}= [ 2.0128, -0.9131, 0.0231];
CN_coordinates{5}= [ 2.3591, 0.4385, 0.1719];
CN_coordinates{8}= [ 0.0012, 0.3360, 0.4149];
CN_coordinates{7}= [ 0.5532, -1.1283, 0.3650];
CN_coordinates{9}= [ 1.2080, 1.1956, 0.4953];
CN_coordinates{17}=[ 0.3655, -1.8391, 1.7302];
CN_coordinates{18}=[-1.0998, -2.2803, 1.7028];
CN_coordinates{19}=[-1.3733, -2.6144, 0.2962];
CN_coordinates{16}=[-0.2694, -2.0788, -0.5579];
CN_coordinates{15}=[-0.8203, -1.4052, -1.8175];
CN_coordinates{14}=[-1.7397, -0.2431, -1.3932];
CN_coordinates{13}=[-0.8137, 0.8361, -0.7930];
CN_coordinates{10}=[ 1.0821, 2.5627, 0.3141];
CN_coordinates{11}=[-0.3587, 3.0755, 0.3170];
CN_coordinates{12}=[-1.4198, 2.2035, -0.4123];
CN_coordinates{23}=[-3.7138, 1.5364, -0.0219];
CN_coordinates{22}=[-3.7170, 0.0350, 0.1391];
CN_coordinates{21}=[-2.8213, -0.7674, -0.4478];
CN_coordinates{20}=[-2.7216, -2.2506, -0.1548];
% Combine the arrays
sys.isotopes=[H_isotopes, CN_isotopes];
inter.zeeman.scalar=[H_zeeman, CN_zeeman];
inter.coordinates=[H_coordinates, CN_coordinates];
inter.coupling.scalar=cell(numH+numCN);
inter.coupling.scalar(1:numH,1:numH)=H_coupling;
% Add 13C-1H J-couplings
inter.coupling.scalar{H3,3+numH}= 159.6;
inter.coupling.scalar{H22,22+numH}= 157.7;
inter.coupling.scalar{H2,2+numH}= 160.9;
inter.coupling.scalar{H1,1+numH}= 159.0;
inter.coupling.scalar{H4,4+numH}= 168.0;
inter.coupling.scalar{H12,12+numH}= 145.4;
inter.coupling.scalar{H23b,23+numH}=144.3;
inter.coupling.scalar{H23a,23+numH}=137.2;
inter.coupling.scalar{H16,16+numH}= 146.2;
inter.coupling.scalar{H8,8+numH}= 145.4;
inter.coupling.scalar{H20b,20+numH}=141.0;
inter.coupling.scalar{H20a,20+numH}=141.0;
inter.coupling.scalar{H18a,18+numH}=136.8;
inter.coupling.scalar{H18b,18+numH}=0;
inter.coupling.scalar{H13,13+numH}= 124.4;
inter.coupling.scalar{H17a,17+numH}=133.4;
inter.coupling.scalar{H17b,17+numH}=0;
inter.coupling.scalar{H11a,11+numH}=126.3;
inter.coupling.scalar{H11b,11+numH}=135.9;
inter.coupling.scalar{H14,14+numH}= 130.1;
inter.coupling.scalar{H15b,15+numH}=131.4;
inter.coupling.scalar{H15a,15+numH}=131.4;
% Prune the arrays
mask=ismember(sys.isotopes,spins);
sys.isotopes=sys.isotopes(mask);
inter.zeeman.scalar=inter.zeeman.scalar(mask);
inter.coordinates=inter.coordinates(mask);
inter.coupling.scalar=inter.coupling.scalar(mask,mask);
end
% Consistency enforcement
function grumble(spins)
if (~iscell(spins))||(~all(cellfun(@ischar,spins)))
error('spins argument must be a cell array of character strings.');
end
end
% Patience, n. - a minor form of despair, disguised as a virtue.
%
% Ambrose Bierce
|
github
|
tsajed/nmr-pred-master
|
read_pdb_nuc.m
|
.m
|
nmr-pred-master/spinach/etc/read_pdb_nuc.m
| 2,126 |
utf_8
|
39429a1bc93649e3031f4b00e94ac39b
|
% Reads DNA/RNA PDB files.
%
% <http://spindynamics.org/wiki/index.php?title=Read_pdb_nuc.m>
function [res_num,res_typ,pdb_id,coords]=read_pdb_nuc(pdb_file_name)
% Check consistency
grumble(pdb_file_name);
% Open the PDB file
file_id=fopen(pdb_file_name,'r');
% Get the outputs started
res_num=[]; res_typ={};
pdb_id={}; coords={};
% Parse the PDB file
while ~feof(file_id)
data_line=fgetl(file_id);
if ~isempty(data_line)
parsed_string=textscan(data_line,'ATOM %f %s %s %f %f %f %f %f %f %s','delimiter',' ','MultipleDelimsAsOne',1);
if all(~cellfun(@isempty,parsed_string))
res_num(end+1)=parsed_string{4}; %#ok<AGROW>
res_typ{end+1}=parsed_string{3}{1}; %#ok<AGROW>
pdb_id{end+1}=parsed_string{2}{1}; %#ok<AGROW>
coords{end+1}=[parsed_string{5:7}]; %#ok<AGROW>
end
end
end
% Capitalize amino acid type specifications
for n=1:numel(res_typ)
res_typ{n}=upper(res_typ{n}); %#ok<AGROW>
end
% Make outputs column vectors
res_num=res_num'; res_typ=res_typ';
pdb_id=pdb_id'; coords=coords';
% Close the PDB file
fclose(file_id);
end
% Consistency enforcement
function grumble(pdb_file_name)
if ~ischar(pdb_file_name)
error('pdb_file_name must be a character string.');
end
end
% I think that it might well be premature to make an award of
% a Prize to Watson and Crick, because of existing uncertainty
% about the detailed structure of nucleic acid. I myself feel
% that it is likely that the general nature of the Watson-Crick
% structure is correct, but that there is doubt about details.
% With respect to Wilkins, I may say that I recognize his virtu-
% osity in having grown better fibers of DNA than any that had
% been grown before and in having obtained [better] x-ray photo-
% graphs than were available before, but I doubt that this work
% represents a sufficient contribution to chemistry to permit
% him to be included among recipients of a Nobel Prize.
%
% Linus Pauling, in his letter to the Nobel Prize
% Committee, 15 March 1960.
|
github
|
tsajed/nmr-pred-master
|
g2spinach.m
|
.m
|
nmr-pred-master/spinach/etc/g2spinach.m
| 5,250 |
utf_8
|
0a51da6a3f1beb6f44e4a32f5bce5cc5
|
% Forms Spinach data structures from Gaussian parsing output returned by gparse.m function.
%
% <http://spindynamics.org/wiki/index.php?title=G2spinach.m>
function [sys,inter]=g2spinach(props,particles,references,options)
% Check consistency
grumble(props,particles,references,options);
% Index the particles to include
sys.isotopes={}; index=[]; ref_index=[];
for n=1:length(props.symbols) %#ok<*AGROW>
for k=1:length(particles)
if strcmp(props.symbols{n},particles{k}{1})
sys.isotopes=[sys.isotopes particles{k}{2}];
index=[index n]; ref_index=[ref_index k];
end
end
end
nspins=length(index);
% Decide whether to include coordinates
if nargin<4
include_xyz=true();
else
if ~isfield(options,'no_xyz')
include_xyz=true();
elseif ~options.no_xyz
include_xyz=true();
else
include_xyz=false();
end
end
% Process coordinates
if include_xyz
inter.coordinates=props.std_geom(index,:);
inter.coordinates=num2cell(inter.coordinates,2);
end
% Decide which magnetic parameters to return
switch ismember('E',[particles{:}])
% EPR parameterization
case 1
% Add the electron as the last spin in the isotope list
sys.isotopes=[sys.isotopes, 'E']; nspins=nspins+1;
% Electron coordinates should be treated as unknown
if include_xyz, inter.coordinates{end+1}=[]; end
% All Zeeman tensors are zero except for the g-tensor of the electron
inter.zeeman.matrix=cell(1,nspins);
inter.zeeman.matrix{nspins}=props.g_tensor.matrix;
% All couplings are zero except for the hyperfine couplings to the electron
inter.coupling.matrix=mat2cell(zeros(3*nspins,3*nspins),3*ones(nspins,1),3*ones(nspins,1));
for n=1:(nspins-1)
inter.coupling.matrix{n,end}=1e6*gauss2mhz(props.hfc.full.matrix{index(n)}/2);
inter.coupling.matrix{end,n}=1e6*gauss2mhz(props.hfc.full.matrix{index(n)}/2);
end
% Remove small hyperfine couplings
if (nargin==4)&&isfield(options,'min_hfc')
for n=1:nspins
for k=1:nspins
if norm(inter.coupling.matrix{n,k},'fro')<options.min_hfc
inter.coupling.matrix{n,k}=[];
end
end
end
end
% Remove the nuclei that are not coupled to the electron
if (nargin==4)&&isfield(options,'purge')&&strcmp(options.purge,'on')
killing_pattern=cellfun(@isempty,inter.coupling.matrix(:,nspins)); killing_pattern(end)=0;
inter.coupling.matrix(:,killing_pattern)=[];
inter.coupling.matrix(killing_pattern,:)=[];
inter.zeeman.matrix(killing_pattern)=[];
sys.isotopes(killing_pattern)=[];
end
% NMR parameterization
case 0
% Reference to bare nuclei if the user did not supply any reference values
if (nargin<3)||(~any(references)), references=zeros(size(particles)); end
% Absorb Zeeman tensors
if isfield(props,'cst')
inter.zeeman.matrix=cell(1,nspins);
for n=1:nspins
inter.zeeman.matrix{n}=-props.cst{index(n)}+eye(3)*references(ref_index(n));
end
end
% Absorb quadrupolar couplings
if isfield(props,'nqi')
inter.coupling.matrix=cell(nspins,nspins);
for n=1:nspins
inter.coupling.matrix{n,n}=props.nqi{index(n)};
end
end
% Absorb spin-rotation couplings
if isfield(props,'src')
inter.spinrot.matrix=cell(nspins);
for n=1:nspins
inter.spinrot.matrix{n}=props.src{index(n)};
end
end
% Absorb and prune scalar couplings
if isfield(props,'j_couplings')
inter.coupling.scalar=props.j_couplings(index,index)/2;
if (nargin==4)&&isfield(options,'min_j')
inter.coupling.scalar=inter.coupling.scalar.*(abs(inter.coupling.scalar)>options.min_j);
end
inter.coupling.scalar=num2cell(inter.coupling.scalar);
end
end
end
% Consistency enforcement
function grumble(props,nuclei,references,options) %#ok<INUSD>
if ~isstruct(props)
error('the first argument must be a structure returned by gparse().');
end
if ~iscell(nuclei)
error('the second argument must have the form {{''H'',''1H''},{''C'',''13C''},...}');
end
if (~isnumeric(references))||(numel(nuclei)~=numel(references))
error('references must be a numerical array with the same number of entries as nuclei.');
end
end
% ACHTUNG! ALLES LOOKENSPEEPERS
% Das Computermachine ist nicht fur gefingerpoken und mittengrabben.
% Ist easy schnappen der Springenwerk, blowenfusen und poppencorken
% mit Spitzensparken. Ist nicht fur gewerken bei das Dumpkopfen. Die
% rubbernecken Sichtseeren keepen Hands in die Pockets muss, relaxen
% und watchen die Blinkenlichten.
|
github
|
tsajed/nmr-pred-master
|
nuclacid.m
|
.m
|
nmr-pred-master/spinach/etc/nuclacid.m
| 6,159 |
utf_8
|
2f294048b43c8779677853ea1a7f6d1e
|
% Nucleic acid data import function.
%
% <http://spindynamics.org/wiki/index.php?title=Nuclacid.m>
function [sys,inter]=nuclacid(pdb_file,shift_file,options)
% Check consistency
grumble(pdb_file,shift_file,options);
% Parse the PDB file
[pdb_res_num,pdb_res_typ,pdb_atom_id,pdb_coords]=read_pdb_nuc(pdb_file);
% Open the shift file
file_id=fopen(shift_file,'r');
% Get the outputs started
bmrb_res_num=[]; bmrb_atom_id={}; bmrb_chemsh={};
% Parse the shift file
while ~feof(file_id)
data_line=fgetl(file_id);
if ~isempty(data_line)
parsed_string=textscan(data_line,'%f %s %f','delimiter','\t','MultipleDelimsAsOne',1);
if all(~cellfun(@isempty,parsed_string))
bmrb_res_num(end+1)=parsed_string{1}; %#ok<AGROW>
bmrb_atom_id{end+1}=parsed_string{2}{1}; %#ok<AGROW>
bmrb_chemsh{end+1}=parsed_string{3}; %#ok<AGROW>
end
end
end
% Make outputs column vectors
bmrb_res_num=bmrb_res_num';
bmrb_atom_id=bmrb_atom_id';
bmrb_chemsh=bmrb_chemsh';
% Close the shift file
fclose(file_id);
% Remove oxygen, phosphorus and the exchangeable protons
kill_mask=ismember(pdb_atom_id,{'O5''','O4''','O4','O6','O2','O2''','O3''','O1P','O2P','P','H2''','H5T','HO''2'});
pdb_res_num(kill_mask)=[]; pdb_atom_id(kill_mask)=[];
pdb_res_typ(kill_mask)=[]; pdb_coords(kill_mask)=[];
disp('WARNING: oxygen atoms will not appear in the simulation.');
% Match chemical shifts
pdb_chemsh=cell(numel(pdb_atom_id),1);
disp(' '); disp('############# CHEMICAL SHIFT IMPORT SUMMARY ###############');
for n=1:numel(pdb_atom_id)
% Pull the current amino acid from BMRB
select_mask=(bmrb_res_num==pdb_res_num(n));
bmrb_atoms=bmrb_atom_id(select_mask);
bmrb_shifts=bmrb_chemsh(select_mask);
% Match PDB and BMRB data
if ismember(pdb_atom_id{n},bmrb_atoms)
pdb_chemsh{n}=bmrb_shifts(strcmp(pdb_atom_id{n},bmrb_atoms)); pdb_chemsh{n}=pdb_chemsh{n}{1};
disp(['Imported chemical shift for ' pad([pdb_res_typ{n} '(' num2str(pdb_res_num(n)) '):' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
end
end
% Replace primes with 'p' symbols for convenience
for n=1:numel(pdb_atom_id)
pdb_atom_id{n}=strrep(pdb_atom_id{n},'''','p');
end
% Estimate J-couplings
scalar_couplings=guess_j_nuc(pdb_res_num,pdb_res_typ,pdb_atom_id,pdb_coords);
% CSA estimation goes here
% Assign isotopes and labels
isotopes=cell(1,numel(pdb_atom_id));
for n=1:numel(pdb_atom_id)
switch pdb_atom_id{n}(1)
case 'H'
isotopes{n}='1H';
case 'C'
isotopes{n}='13C';
case 'N'
isotopes{n}='15N';
case 'P'
isotopes{n}='31P';
otherwise
error('unknown atom type.');
end
end
% Find missing chemical shifts
missing_shifts=find(cellfun(@isempty,pdb_chemsh))';
disp(' '); disp('############# SUMMARY OF MISSING ASSIGNMENTS ###############');
% Process unassigned chemical shifts
subset=true(size(pdb_atom_id));
if strcmp(options.noshift,'keep')
% Put unassigned spins between -1.0 and 0.0 ppm
erzatz_shifts=linspace(-1,0,numel(missing_shifts));
for n=1:numel(missing_shifts)
disp(['Missing assignment of ' pdb_res_typ{missing_shifts(n)} '(' num2str(pdb_res_num(missing_shifts(n)))...
')-' pdb_atom_id{missing_shifts(n)} ': the spin is placed at ' num2str(erzatz_shifts(n)) ' ppm.']);
pdb_chemsh{missing_shifts(n)}=erzatz_shifts(n);
end
elseif strcmp(options.noshift,'delete')
% Delete unassigned spins
for n=missing_shifts
disp(['Missing assignment of ' pdb_res_typ{n} '(' num2str(pdb_res_num(n)) ')-' pdb_atom_id{n} ...
': the atom will not appear in the simulation.']);
end
subset=subset&(~cellfun(@isempty,pdb_chemsh));
else
% Complain and bomb out
error('incorrect value of options.noshift parameter.');
end
% Apply the selection
sys.isotopes=isotopes(subset);
inter.zeeman.scalar=pdb_chemsh(subset)';
inter.coupling.scalar=scalar_couplings(subset,subset);
inter.coordinates=pdb_coords(subset);
% Write detailed labels
pdb_atom_id=pdb_atom_id(subset);
pdb_res_num=pdb_res_num(subset);
pdb_res_typ=pdb_res_typ(subset);
sys.labels=cell(1,numel(pdb_atom_id));
for n=1:numel(pdb_atom_id)
sys.labels{n}=[pdb_res_typ{n} '(' num2str(pdb_res_num(n)) '):' pdb_atom_id{n}];
end
% Deuterate the atoms from the list supplied
disp(' '); disp('############# SUMMARY OF ISOTOPE REASSIGNMENTS ###############');
for n=1:numel(sys.labels)
if ismember([pdb_res_typ{n} ':' pdb_atom_id{n}],options.deut_list)
if ~strcmp(sys.isotopes{n},'1H')
error('the particle you are trying to deuterate is not a proton.');
else
sys.isotopes{n}='2H';
disp(['Isotope type for ' sys.labels{n} ' changed to deuterium, J-coupling guess modified accordingly.']);
inter.coupling.scalar(n,:)=inter.coupling.scalar(n,:)*(spin('2H')/spin('1H'));
inter.coupling.scalar(:,n)=inter.coupling.scalar(:,n)*(spin('2H')/spin('1H'));
end
end
end
end
% Consistency enforcement
function grumble(pdb_file,shift_file,options)
if ~ischar(pdb_file)
error('pdb_file must be a character string specifying a file name.');
end
if ~ischar(shift_file)
error('shift_file must be a character string specifying a file name.');
end
if ~isfield(options,'noshift')
error('options.noshift switch must be specfied.');
elseif ~ischar(options.noshift)
error('options.noshift must be a character string.');
elseif ~ismember(options.noshift,{'keep','delete'})
error('invalid value for options.noshift, please refer to the manual.');
end
if ~isfield(options,'deut_list')
error('options.deut_list must be supplied.');
elseif ~iscell(options.deut_list)
error('options.deut_list must be a cell array of character strings.');
end
end
% All money is a matter of belief.
%
% Adam Smith
|
github
|
tsajed/nmr-pred-master
|
karplus_fit.m
|
.m
|
nmr-pred-master/spinach/etc/karplus_fit.m
| 2,163 |
utf_8
|
88a96f6fa5b27b83469c881f014c0b4f
|
% Fits a Karplus curve to a Gaussian dihedral angle scan.
%
% <http://spindynamics.org/wiki/index.php?title=Karplus_fit.m>
function [A,B,C]=karplus_fit(dir_path,atoms)
% Get all log files in the directory
logfiles=dir([dir_path '/*.log']);
% Get the arrays going
phi=[]; J=[]; E=[];
% Extract parameters
for n=1:numel(logfiles)
try
props=gparse([dir_path '/' logfiles(n).name]);
current_phi=dihedral(props.std_geom(atoms(1),:),props.std_geom(atoms(2),:),...
props.std_geom(atoms(3),:),props.std_geom(atoms(4),:));
current_j=props.j_couplings(atoms(1),atoms(4));
phi=[phi current_phi]; J=[J current_j]; E=[E props.energy]; %#ok<AGROW>
catch
disp(['Gaussian log file ' logfiles(n).name ' could not be interpreted, skipped.']);
end
end
% Rotate phi into [0,360]
phi=mod(phi,360);
% Compute basis cosines
cosine_2=cosd(phi).^2;
cosine_1=cosd(phi);
cosine_0=ones(size(phi));
% Run linear least squares
result=[cosine_2' cosine_1' cosine_0']\J';
% Write the answer
A=result(1); B=result(2); C=result(3);
% Plot Karplus curve
figure(); subplot(2,1,1); plot(phi,J,'ro');
psi=linspace(0,360,128); hold on;
plot(psi,A*cosd(psi).^2+B*cosd(psi)+C,'b-');
xlabel('Dihedral angle, degrees');
ylabel('J-coupling, Hz'); axis tight;
% Plot probability histogram
E=hartree2joule(E); E=E-min(E(:));
P=exp(-E/(8.31*298)); P=P/sum(P);
[phi,order]=sort(phi); subplot(2,1,2);
stairs(phi,P(order));
xlabel('Dihedral angle, degrees');
ylabel('Probability at 298 K'); axis tight;
end
% If men learn this, it will implant forgetfulness in their souls; they will
% cease to exercise memory because they rely on that which is written [...]
% it is no true wisdom that you offer your disciples, but only its semblance,
% for by telling them of many things without teaching them you will make them
% seem to know much, while for the most part they know nothing, and as men
% filled, not with wisdom but with the conceit of wisdom, they will be a bur-
% den to their fellows.
%
% Plato (circa 429-347 BCE), about reading and writing.
|
github
|
tsajed/nmr-pred-master
|
guess_j_nuc.m
|
.m
|
nmr-pred-master/spinach/etc/guess_j_nuc.m
| 22,317 |
utf_8
|
f8b937a6d65affdaed2c42d5e0fa4f31
|
% Assigns J-couplings from literature values and Karplus curves.
%
% <http://spindynamics.org/wiki/index.php?title=Guess_j_nuc.m>
function jmatrix=guess_j_nuc(nuc_num,nuc_typ,pdb_id,coords)
% Check consistency
grumble(nuc_num,nuc_typ,pdb_id,coords);
% Preallocate the answer
jmatrix=cell(numel(coords),numel(coords));
% Number the atoms
numbers=1:numel(coords);
% Determine the connectivity graph
proxmatrix=false(numel(coords),numel(coords));
for n=1:numel(coords)
for k=1:numel(coords)
if (norm(coords{n}-coords{k},2)<1.55), proxmatrix(n,k)=1; end
end
end
% Get all connected subgraphs up to size 2
subgraphs=dfpt(sparse(proxmatrix),2);
% Set generic coupling values
J_NH=86.0; J_CN=20.0; J_CH=180.0; J_CC=65.0;
% Spec all ordered connected pairs
pairs_database={...
% RNA specific values from the literature
'C1p_N9' , 11.0; 'C1p_N1' , 12.0; 'H_N1' , 95.0; 'H3_N3' , 91.0;
'C6_N1' , 7.5; 'C4_N3' , 10.7; 'C4_C5' , 65.0; 'C5_H5' , 176;
'C8_H8' , 216.0; 'C6_H6' , 185.0; 'C5_C6' , 67.0; 'C2_N3' , 19.0;
'C2_N1' , 19.0; 'C4_N9' , 20.0; 'H41_N4' , 86.0; 'C4_N4' , 20.0;
'C8_N9' , 11.0; 'C1p_H1p' , 170.0; 'C_C5' , 55.0; 'H42_N4' , 86.0;
% Generics for the conjugated ring (to be replaced with DFT values - Zenawi)
'C2_H2' , J_CH; 'C5_N7' , J_CN; 'C8_N7' , J_CN; 'C6_N6' , J_CN;
'H61_N6' , J_NH; 'H62_N6' , J_NH; 'C2_N2' , J_CN; 'H21_N2' , J_NH;
'H1_N1' , J_NH; 'H22_N2' , J_NH; 'H61_N1' , J_NH;
% Generics for the sugar ring (to be replaced with DFT values - Zenawi)
'C1p_C2p' , J_CC; 'C2p_H2p' , J_CH; 'C3p_C4p' , J_CC; 'C4p_H4p' , J_CH;
'C4p_C5p' , J_CC; 'C5p_H5p' , J_CH; 'C5p_H5pp' , J_CH; 'C2p_C3p' , J_CC;
'C3p_H3p' , J_CH; 'C2p_H2pp' , J_CH; 'C2p_H2p1' , J_CH; 'C5p_H5p2' , J_CH
'C5p_H5p1' , J_CH};
% Loop over subgraphs
disp(' '); disp('############# ONE-BOND J-COUPLING SUMMARY ###############');
for n=1:size(subgraphs,1)
% Extract labels, residues and numbers
spin_labels=pdb_id(subgraphs(n,:));
spin_numbers=numbers(subgraphs(n,:));
spin_resnames=nuc_typ(subgraphs(n,:));
spin_resnums=nuc_num(subgraphs(n,:));
% Index the spins
[spin_labels,index]=sort(spin_labels);
spin_numbers=spin_numbers(index);
spin_resnames=spin_resnames(index);
spin_resnums=spin_resnums(index);
% Consult the database
if numel(spin_labels)==1
% Inform the user about solitary spins
disp(['WARNING: solitary spin detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1}]);
else
% Build specification string
spec_string=pairs_database(strcmp([spin_labels{1} '_' spin_labels{2}],pairs_database(:,1)),:);
% Assign the coupling
if isempty(spec_string)
% Complain if nothing found
disp(['WARNING: unknown atom pair or unphysical proximity, ' spin_labels{1} '_' spin_labels{2} ' in residues ' spin_resnames{1}...
'(' num2str(spin_resnums(1)) '), ' spin_resnames{2} '(' num2str(spin_resnums(2)) ')']);
elseif size(spec_string,1)>1
% Complain if multiple records found
error([spec_string{1} ' coupling has been specified multiple times in the coupling database.']);
else
% Write the array
jmatrix{spin_numbers(1),spin_numbers(2)}=spec_string{2};
% Report to the user
disp(['Estimated one-bond J-coupling from ' pad([spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1}],19) ' to ' ...
pad([spin_resnames{2} '(' num2str(spin_resnums(2)) '):' spin_labels{2}],19) ' ' ...
pad(num2str(spec_string{2},'%5.1f'),6,'left') ' Hz']);
end
end
end
% Get all connected subgraphs up to size 3
subgraphs=dfpt(sparse(proxmatrix),3);
% Set generic coupling values
J_CCC=-1.2; % Zenawi's DFT
J_CCH=0; % Literature reference
J_CCN=7.0; % Zenawi's DFT
J_NCN=0; % Literature reference
J_NCH=0; % Literature reference
J_CNH=0; % Literature reference
J_CNC=0; % Literature reference
J_HCH=-12.0; % Typical for CH2
J_HNH=-10.0; % Typical for NH2
% Spec all ordered connected triples (sorted atoms, bonding order, coupling from atom 1 to atom 3)
triples_database={...
% Backbone data from the literature
'C4p_C5p_H5p' 1, 2, 3, -5.5; 'C4p_C5p_H5pp' 1, 2, 3, 2.0; 'C4p_C5p_H4p' 3, 1, 2, -5.5;
'C2p_C3p_H3p' 1, 2, 3, -2.3; 'C2p_C3p_H2p' 3, 2, 1, 2.3;
% Conjugated ring data from the literature
'C4_C5_C6' 1, 2, 3, 9.5; 'C4_C8_N9' 1, 3, 2, 8.0; 'C2_C4_N3' 1, 3, 2, 10.0;
'C8_H8_N9' 2, 1, 3, 8.0; 'C8_H8_N7' 2, 1, 3, 11.0; 'C2_H2_N1' 2, 1, 3, 15.0;
'C2_H2_N3' 2, 1, 3, 15.0;
% Generic numbers for the conjugated ring (to be replaced with DFT values - Zenawi)
'C6_N1_N6' 2, 1, 3, J_NCN; 'C2_N1_N3' 2, 1, 3, J_NCN; 'C2_C6_N1' 1, 3, 2, J_CNC;
'C4_C5_N3' 2, 1, 3, J_CCN; 'C4_N3_N9' 2, 1, 3, J_NCN; 'C1p_C4_N9' 1, 3, 2, J_CNC;
'C4_C5_N9' 2, 1, 3, J_CCN; 'C5_C6_N6' 1, 2, 3, J_CCN; 'C5_C8_N7' 1, 3, 2, J_CNC;
'C4_C5_N7' 1, 2, 3, J_CCN; 'C5_C6_N7' 2, 1, 3, J_CCN; 'C6_H61_N6' 1, 3, 2, J_CNH;
'C6_H62_N6' 1, 3, 2, J_CNH; 'C8_N7_N9' 2, 1, 3, J_NCN; 'C1p_C8_N9' 2, 3, 1, J_CNC;
'C2_N1_N2' 2, 1, 3, J_NCN; 'C2_H1_N1' 1, 3, 2, J_CNH; 'C2_H21_N2' 1, 3, 2, J_CNH;
'C2_H22_N2' 1, 3, 2, J_CNH; 'C2_N2_N3' 3, 1, 2, J_NCN; 'C6_H1_N1' 1, 3, 2, J_CNH;
'C5_C6_N1' 2, 1, 3, J_CCN; 'C6_H6_N1' 3, 1, 2, J_NCH; 'C1p_C2_N1' 2, 3, 1, J_CNC;
'C4_N3_N4' 2, 1, 3, J_NCN; 'C4_H41_N4' 1, 3, 2, J_CNH; 'C4_H42_N4' 1, 3, 2, J_CNH;
'C4_C5_N4' 2, 1, 3, J_CCN; 'C5_C6_H6' 1, 2, 3, J_CCH; 'C1p_C6_N1' 2, 3, 1, J_CNC;
'C5_C6_H5' 2, 1, 3, J_CCH; 'C2_H3_N3' 1, 3, 2, J_CNH; 'C4_H3_N3' 1, 3, 2, J_CNH;
'C4_C5_H5' 1, 2, 3, J_CCH; 'C1p_H1p_N9' 2, 1, 3, J_NCH; 'C1p_C2p_N9' 2, 1, 3, J_CCN;
'H21_H22_N2' 1, 3, 2, J_HNH; 'C1p_H1p_N1' 2, 1, 3, J_NCH; 'C1p_C2p_N1' 2, 1, 3, J_CCN;
'H41_H42_N4' 1, 3, 2, J_HNH; 'H61_H62_N6' 1, 3, 2, J_HNH;
% Generic numbers for the backbone (to be replaced with DFT values - Zenawi)
'C1p_C2p_C3p' 1, 2, 3, J_CCC; 'C1p_C2p_H2p' 1, 2, 3, J_CCH; 'C2p_C3p_C4p' 1, 2, 3, J_CCC;
'C3p_C4p_H4p' 3, 1, 2, J_CCH; 'C3p_C4p_C5p' 1, 2, 3, J_CCC; 'C2p_C3p_H2p' 1, 2, 3, J_CCH;
'C3p_C4p_H3p' 2, 1, 3, J_CCH; 'C5p_H5p_H5pp' 2, 1, 3, J_HCH; 'C1p_C2p_H1p' 3, 1, 2, J_CCH;
'C1p_C2p_H2pp' 3, 2, 1, J_CCH; 'C2p_C3p_H2pp' 3, 1, 2, J_CCH;
'C2p_C3p_H2p1' 1, 2, 3, J_CCH; 'C1p_C2p_H2p1' 1, 2, 3, J_CCH; 'C4p_C5p_H5p2' 1, 2, 3, J_CCH;
'C4p_C5p_H5p1' 1, 2, 3, J_CCH; 'C5p_H5p1_H5p2' 2, 1, 3, J_HCH};
% Exception list for four-membered rings
allowed_collision_list={};
% Loop over subgraphs
disp(' '); disp('############# TWO-BOND J-COUPLING SUMMARY ###############');
for n=1:size(subgraphs,1)
% Extract labels, residues and numbers
spin_labels=pdb_id(subgraphs(n,:));
spin_numbers=numbers(subgraphs(n,:));
spin_resnames=nuc_typ(subgraphs(n,:));
spin_resnums=nuc_num(subgraphs(n,:));
% Index the spins
[spin_labels,index]=sort(spin_labels);
spin_numbers=spin_numbers(index);
spin_resnames=spin_resnames(index);
spin_resnums=spin_resnums(index);
% Consult the database
if numel(spin_labels)==1
% Inform the user about solitary spins
disp(['WARNING: solitary spin detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1}]);
elseif numel(spin_labels)==2
% Inform the user about isolated pairs
disp(['WARNING: isolated spin pair detected, ' spin_resnames{1} ':' spin_labels{1} ' and ' spin_resnames{2} ':' spin_labels{2}]);
else
% Build the specification string
spec_string=triples_database(strcmp([spin_labels{1} '_' spin_labels{2} '_' spin_labels{3}],triples_database(:,1)),:);
% Assign the coupling
if isempty(spec_string)
% Inform the user about missing data
disp(['WARNING: unknown atom triple or unphysical proximity, ' spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} ' in residues '...
spin_resnames{1} '(' num2str(spin_resnums(1)) '), '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '), '...
spin_resnames{3} '(' num2str(spin_resnums(3)) ')']);
elseif size(spec_string,1)>1
% Complain if multiple records found
error([spec_string{1} ' coupling has been specified multiple times in the coupling database.']);
else
% Extract spin numbers
spin_a=spin_numbers(spec_string{2}); spin_b=spin_numbers(spec_string{3}); spin_c=spin_numbers(spec_string{4});
% Match bonding pattern
if proxmatrix(spin_a,spin_b)&&proxmatrix(spin_b,spin_c)
% Check for collisions
if (~isempty(jmatrix{spin_a,spin_c}))&&(~ismember([spin_labels{1} '_' spin_labels{2} '_' spin_labels{3}],allowed_collision_list))
% Complain and bomb out
error(['Atom triple: ' spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} ' in amino acids '...
spin_resnames{1} '(' num2str(spin_resnums(1)) '), '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '), '...
spin_resnames{3} '(' num2str(spin_resnums(3)) ' collides with other data.']);
else
% Write the array
jmatrix{spin_a,spin_c}=spec_string{5};
end
% Inform the user
disp(['Estimated two-bond J-coupling from ' pad([nuc_typ{spin_a} '(' num2str(nuc_num(spin_a)) '):' pdb_id{spin_a}],19) ' to '...
pad([nuc_typ{spin_c} '(' num2str(nuc_num(spin_c)) '):' pdb_id{spin_c}],19) ' '...
pad(num2str(jmatrix{spin_a,spin_c},'%5.1f'),6,'left') ' Hz']);
end
end
end
end
% Get all connected subgraphs up to size 4
subgraphs=dfpt(sparse(proxmatrix),4);
% Remove T-shaped subgraphs
kill_mask=false(size(subgraphs,1),1);
for n=1:size(subgraphs,1)
if any(sum(proxmatrix(subgraphs(n,:),subgraphs(n,:)))==4)
kill_mask(n)=true();
end
end
subgraphs(kill_mask,:)=[];
% List of ordered connected quads (sorted atoms, bonding order, Karplus coefficients)
quads_database={...
'C3p_C4p_C5p_H5p', 4, 3, 2, 1, [0.0 0.0 0.0]; 'C4p_C5p_H4p_H5p', 4, 2, 1, 3, [0.0 0.0 10.42];
'C3p_C4p_C5p_H5pp', 4, 3, 2, 1, [0.0 0.0 0.0]; 'C4p_C5p_H4p_H5pp', 4, 2, 1, 3, [0.0 0.0 8.51];
'C1p_C8_H8_N9', 1, 4, 2, 3, [0.0 0.0 0.0]; 'C1p_C8_N7_N9', 1, 4, 2, 3, [0.0 0.0 0.0];
'C4_C8_H8_N9', 1, 4, 2, 3, [0.0 0.0 0.0]; 'C5_C8_N7_N9', 4, 2, 3, 1, [0.0 0.0 0.0];
'C4_C5_C8_N7', 3, 4, 2, 1, [0.0 0.0 0.0]; 'C5_C6_C8_N7', 3, 4, 1, 2, [0.0 0.0 9.00];
'C5_C6_N6_N7', 4, 1, 2, 3, [0.0 0.0 0.0]; 'C5_C6_N1_N7', 4, 1, 2, 3, [0.0 0.0 0.0];
'C4_C5_C6_N6', 1, 2, 3, 4, [0.0 0.0 0.0]; 'C4_C5_C6_N1', 1, 2, 3, 4, [0.0 0.0 0.0];
'C5_C6_H61_N6', 1, 2, 4, 3, [0.0 0.0 0.0]; 'C5_C6_H62_N6', 1, 2, 4, 3, [0.0 0.0 0.0];
'C6_H61_N1_N6', 3, 1, 4, 2, [0.0 0.0 0.0]; 'C6_H62_N1_N6', 3, 1, 4, 2, [0.0 0.0 0.0];
'C2_C6_N1_N6', 1, 3, 2, 4, [0.0 0.0 0.0]; 'C2_C6_N1_N3', 4, 1, 3, 2, [0.0 0.0 0.0];
'C2_C4_H2_N3', 2, 4, 1, 3, [0.0 0.0 0.0]; 'C2_C6_H2_N1', 3, 1, 4, 2, [0.0 0.0 0.0];
'C2_C4_C5_N3', 3, 2, 4, 1, [0.0 0.0 0.0]; 'C2_C4_N3_N9', 4, 2, 3, 1, [0.0 0.0 0.0];
'C4_C5_C6_N3', 3, 2, 1, 4, [0.0 0.0 0.0]; 'C4_C5_N3_N7', 4, 2, 1, 3, [0.0 0.0 0.0];
'C4_C5_C6_N9', 3, 2, 1, 4, [0.0 0.0 0.0]; 'C4_C8_N3_N9', 3, 1, 4, 2, [0.0 0.0 0.0];
'C2_C5_C6_N1', 1, 4, 3, 2, [0.0 0.0 0.0]; 'C5_C6_H1_N1', 3, 4, 2, 1, [0.0 0.0 0.0];
'C2_C6_N1_N2', 4, 1, 3, 2, [0.0 0.0 0.0]; 'C2_H1_N1_N2', 4, 1, 3, 2, [0.0 0.0 0.0];
'C2_H1_N1_N3', 4, 1, 3, 2, [0.0 0.0 0.0]; 'C2_H21_N2_N3', 4, 1, 3, 2, [0.0 0.0 0.0];
'C2_H21_N1_N2', 3, 1, 4, 2, [0.0 0.0 0.0]; 'C2_H22_N2_N1', 3, 1, 4, 2, [0.0 0.0 0.0];
'C2_C4_N2_N3', 2, 4, 1, 3, [0.0 0.0 0.0]; 'C1p_C4_C5_N9', 3, 2, 4, 1, [0.0 0.0 0.0];
'C1p_C4_N3_N9', 3, 2, 4, 1, [0.0 0.0 0.0]; 'C1p_C5_C6_N1', 1, 4, 3, 2, [0.0 0.0 0.0];
'C2_C6_H6_N1', 1, 4, 2, 3, [0.0 0.0 0.0]; 'C5_C6_H5_N1', 4, 2, 1, 3, [0.0 0.0 0.0];
'C4_C5_C6_H6', 4, 3, 2, 1, [0.0 0.0 0.0]; 'C5_C6_H5_H6', 4, 2, 1, 3, [0.0 0.0 7.00];
'C4_C5_C6_N4', 3, 2, 1, 4, [0.0 0.0 0.0]; 'C4_C5_H5_N3', 3, 2, 1, 4, [0.0 0.0 0.0];
'C4_C5_H5_N4', 3, 2, 1, 4, [0.0 0.0 0.0]; 'C2_H22_N2_N3', 4, 1, 3, 2, [0.0 0.0 0.0];
'C4_C5_H41_N4', 2, 1, 4, 3, [0.0 0.0 0.0]; 'C4_C5_H42_N4', 2, 1, 4, 3, [0.0 0.0 0.0];
'C4_H41_N3_N4', 3, 1, 4, 2, [0.0 0.0 0.0]; 'C4_H42_N3_N4', 3, 1, 4, 2, [0.0 0.0 0.0];
'C2_C4_N3_N4', 4, 2, 3, 1, [0.0 0.0 0.0]; 'C1p_C2_N1_N3', 4, 2, 3, 1, [0.0 0.0 0.0];
'C1p_C6_H6_N1', 1, 4, 2, 3, [0.0 0.0 0.0]; 'C4_C5_H3_N3', 2, 1, 4, 3, [0.0 0.0 0.0];
'C2_H3_N1_N3', 2, 4, 1, 3, [0.0 0.0 0.0]; 'C5_C8_H8_N7', 3, 2, 4, 1, [0.0 0.0 0.0];
'C1p_C2p_H2p_N1', 3, 2, 1, 4, [0.0 0.0 0.0]; 'C1p_C2p_H2p_N9', 3, 2, 1, 4, [0.0 0.0 0.0];
'C1p_C2p_C3p_N1', 3, 2, 1, 4, [0.0 0.0 0.0]; 'C1p_C2p_C3p_N9', 3, 2, 1, 4, [0.0 0.0 0.0];
'C2p_C3p_C4p_C5p', 4, 3, 2, 1, [0.0 0.0 0.0]; 'C3p_C4p_H3p_H4p', 4, 2, 1, 3, [0.0 0.0 5.79];
'C2p_C3p_C4p_H4p', 4, 3, 2, 1, [0.0 0.0 0.0]; 'C3p_C4p_C5p_H3p', 3, 2, 1, 4, [0.0 0.0 0.0];
'C1p_C2p_C3p_C4p', 4, 3, 2, 1, [0.0 0.0 0.0]; 'C2p_C3p_H2p_H3p', 4, 2, 1, 3, [0.0 0.0 0.0];
'C1p_C2p_C3p_H3p', 4, 3, 2, 1, [0.0 0.0 0.0]; 'C2p_C3p_C4p_H2p', 3, 2, 1, 4, [0.0 0.0 0.0];
'C2p_C3p_H2pp_H3p', 3, 1, 2, 4, [0.0 0.0 5.82]; 'C2_C4_N1_N3', 3, 1, 4, 2, [0.0 0.0 0.0];
'C1p_C2p_H2pp_N1', 4, 1, 2, 3, [0.0 0.0 0.0]; 'C1p_C2_C2p_N1', 2, 4, 1, 3, [0.0 0.0 0.0];
'C1p_C2p_C6_N1', 3, 4, 1, 2, [0.0 0.0 0.0]; 'C1p_C2p_C3p_H1p', 4, 1, 2, 3, [0.0 0.0 0.0];
'C1p_C2p_H1p_H2pp', 3, 1, 2, 4, [0.0 0.0 4.05]; 'C1p_C2_H1p_N1', 2, 4, 1, 3, [0.0 0.0 0.0];
'C1p_C6_H1p_N1', 2, 4, 1, 3, [0.0 0.0 0.0]; 'C2p_C3p_C4p_H2pp', 4, 1, 2, 3, [0.0 0.0 0.0];
'C2_H22_N1_N2', 3, 1, 4, 2, [0.0 0.0 0.0]; 'C4_C5_C8_N9', 3, 4, 1, 2, [0.0 0.0 0.0];
'C4_C5_N7_N9', 4, 1, 2, 3, [0.0 0.0 0.0]; 'C1p_C2p_H2pp_N9', 4, 1, 2, 3, [0.0 0.0 0.0];
'C1p_C2p_C8_N9', 3, 4, 1, 2, [0.0 0.0 0.0]; 'C1p_C2p_C4_N9', 3, 4, 1, 2, [0.0 0.0 0.0];
'C1p_C8_H1p_N9', 2, 4, 1, 3, [0.0 0.0 0.0]; 'C1p_C4_H1p_N9', 2, 4, 1, 3, [0.0 0.0 0.0];
'C4_C8_N7_N9', 3, 2, 4, 1, [0.0 0.0 0.0]; 'C2p_C3p_H2p1_H3p', 4, 2, 1, 3, [0.0 0.0 0.0];
'C1p_C2p_H2p1_N1', 3, 2, 1, 4, [0.0 0.0 0.0]; 'C1p_C2p_H1p_H2p1' 3, 1, 2, 4, [0.0 0.0 4.05];
'C2p_C3p_C4p_H2p1', 3, 2, 1, 4, [0.0 0.0 0.0]; 'C3p_C4p_C5p_H5p2', 4, 3, 2, 1, [0.0 0.0 0.0];
'C3p_C4p_C5p_H5p1', 4, 3, 2, 1, [0.0 0.0 0.0]; 'C4p_C5p_H4p_H5p2', 4, 2, 1, 3, [0.0 0.0 10.42];
'C1p_C2p_H2p1_N9', 3, 2, 1, 4, [0.0 0.0 0.0]; 'C4p_C5p_H4p_H5p1', 4, 2, 1, 3, [0.0 0.0 10.42];
};
% Exception list for five-membered rings
allowed_collision_list={'C4_C5_C6_N1','C4_C5_N7_N9','C1p_C4_H1p_N9'};
% Loop over subgraphs
disp(' '); disp('############# THREE-BOND J-COUPLING SUMMARY ###############');
for n=1:size(subgraphs,1)
% Extract labels, residues and numbers
spin_labels=pdb_id(subgraphs(n,:));
spin_numbers=numbers(subgraphs(n,:));
spin_resnames=nuc_typ(subgraphs(n,:));
spin_resnums=nuc_num(subgraphs(n,:));
% Index the spins
[spin_labels,index]=sort(spin_labels);
spin_numbers=spin_numbers(index);
spin_resnames=spin_resnames(index);
spin_resnums=spin_resnums(index);
% Consult the database
if numel(spin_labels)==1
% Inform the user if no J-coupling found
disp(['WARNING: solitary spin detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1}]);
elseif numel(spin_labels)==2
% Inform the user if no J-coupling found
disp(['WARNING: isolated spin pair detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1} ' and ' ...
spin_resnames{2} '(' num2str(spin_resnums(2)) '):' spin_labels{2}]);
elseif numel(spin_labels)==3
% Inform the user if no J-coupling found
disp(['WARNING: isolated spin triad detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1} ', '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '):' spin_labels{2} ' and '...
spin_resnames{3} '(' num2str(spin_resnums(3)) '):' spin_labels{3}]);
else
% Assemble specifiction string
spec_string=quads_database(strcmp([spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} '_' spin_labels{4}],quads_database(:,1)),:);
% Complain if nothing found
if isempty(spec_string)
disp(['WARNING: unknown atom quad or unphysical proximity, ' spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} '_' spin_labels{4} ' in residues '...
spin_resnames{1} '(' num2str(spin_resnums(1)) '), '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '), '...
spin_resnames{3} '(' num2str(spin_resnums(3)) '), '...
spin_resnames{4} '(' num2str(spin_resnums(4)) ')']);
elseif size(spec_string,1)>1
% Complain if multiple records found
error([spec_string{1} ' coupling has been specified multiple times in the coupling database.']);
else
% Extract spin numbers
spin_a=spin_numbers(spec_string{2}); spin_b=spin_numbers(spec_string{3});
spin_c=spin_numbers(spec_string{4}); spin_d=spin_numbers(spec_string{5});
% Get Karplus coefficients
A=spec_string{6}(1); B=spec_string{6}(2); C=spec_string{6}(3);
% Get dihedral angle
theta=dihedral(coords{spin_a},coords{spin_b},coords{spin_c},coords{spin_d});
% Assign the J-coupling
if (~isempty(jmatrix{spin_a,spin_d}))&&(~ismember([spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} '_' spin_labels{4}],allowed_collision_list))
% Complain and bomb out
error(['atom quad: ' spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} '_' spin_labels{4} ' in residues '...
spin_resnames{1} '(' num2str(spin_resnums(1)) '), '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '), '...
spin_resnames{3} '(' num2str(spin_resnums(3)) '), '...
spin_resnames{4} '(' num2str(spin_resnums(4)) ') collides with other data.']);
else
% Write the array
jmatrix{spin_a,spin_d}=A*cosd(theta)^2+B*cosd(theta)+C;
% Inform the user
disp(['Estimated three-bond J-coupling from ' pad([nuc_typ{spin_a} '(' num2str(nuc_num(spin_a)) '):' pdb_id{spin_a}],19) ' to '...
pad([nuc_typ{spin_d} '(' num2str(nuc_num(spin_d)) '):' pdb_id{spin_d}],19) ' ' pad(num2str(jmatrix{spin_a,spin_d},'%5.1f'),6,'left') ' Hz']);
end
end
end
end
end
% Consistency enforcement
function grumble(nuc_num,nuc_typ,pdb_id,coords)
if ~isnumeric(nuc_num)
error('nuc_num must be a vector of positive integers.');
end
if ~iscell(nuc_typ)
error('nuc_typ must be a cell array of strings.');
end
if ~iscell(pdb_id)
error('pdb_id must be a cell array of strings.');
end
if ~iscell(coords)
error('coords must be a cell array of 3-vectors.');
end
if (numel(nuc_num)~=numel(nuc_typ))||...
(numel(nuc_typ)~=numel(pdb_id))||...
(numel(pdb_id)~=numel(coords))
error('all four inputs must have the same number of elements.');
end
end
% It's a terrible thing, I think, in life to wait until you are
% ready. I have this feeling that actually no one is ever ready
% to do anything. There is almost no such thing as ready. There
% is only now.
%
% Hugh Laurie
|
github
|
tsajed/nmr-pred-master
|
read_bmrb.m
|
.m
|
nmr-pred-master/spinach/etc/read_bmrb.m
| 1,506 |
utf_8
|
9db070c1569393233d092fcb8cb1e771
|
% This function reads BMRB files.
%
% <http://spindynamics.org/wiki/index.php?title=Read_bmrb.m>
function [aa_num,aa_typ,pdb_id,chemsh]=read_bmrb(bmrb_file_name)
% Check consistency
grumble(bmrb_file_name);
% Open the BMRB file
file_id=fopen(bmrb_file_name,'r');
% Get the outputs started
aa_num=[]; aa_typ={};
pdb_id={}; chemsh=[];
% Parse the BMRB file
while ~feof(file_id)
data_line=fgetl(file_id);
if ~isempty(data_line)
parsed_string=textscan(data_line,'%f %f %s %s %s %f %f %f','delimiter',' ','MultipleDelimsAsOne',1);
if all(~cellfun(@isempty,parsed_string))
aa_num(end+1)=parsed_string{2}; %#ok<AGROW>
aa_typ{end+1}=parsed_string{3}{1}; %#ok<AGROW>
pdb_id{end+1}=parsed_string{4}{1}; %#ok<AGROW>
chemsh(end+1)=parsed_string{6}; %#ok<AGROW>
end
end
end
% Capitalize amino acid type specifications
for n=1:numel(aa_typ)
aa_typ{n}=upper(aa_typ{n}); %#ok<AGROW>
end
% Make outputs column vectors
aa_num=aa_num'; aa_typ=aa_typ';
pdb_id=pdb_id'; chemsh=chemsh';
% Close the BMRB file
fclose(file_id);
% Check for empty returns
if isempty(chemsh)
error('BMRB file could not be parsed - the data format is not canonical.');
end
end
% Consistency enforcement
function grumble(bmrb_file_name)
if ~ischar(bmrb_file_name)
error('bmrb_file_name must be a character string.');
end
end
% If it's not true, it's well invented.
%
% Dante
|
github
|
tsajed/nmr-pred-master
|
gparse.m
|
.m
|
nmr-pred-master/spinach/etc/gparse.m
| 11,883 |
utf_8
|
40b0d3197608f1798482b3597c8a2952
|
% A parser for Gaussian03 and Gaussian09 calculation logs.
%
% <http://spindynamics.org/wiki/index.php?title=Gparse.m>
function props=gparse(filename,options)
% Read the file
file_id=fopen(filename,'r');
g03_output=textscan(file_id,'%s','delimiter','\n');
fclose(file_id); g03_output=g03_output{1};
% Deblank all lines
for n=1:numel(g03_output), g03_output(n)=deblank(g03_output(n)); end
% Refuse to process files without #p option
for n=1:numel(g03_output)
current_line=char(g03_output(n));
if (numel(current_line)>=2)&&strcmp(current_line(1:2),'# ')
error('This Gaussian log has the detailed printing option switched off. Re-run with #p in the route line.');
end
end
% Set the default error flag
props.error=0;
% Set the default complete flag
props.complete=0;
% Parse the file
for n=1:length(g03_output)
% Read the input orientation and atomic numbers
if strcmp(g03_output(n),'Input orientation:')
k=n+5; m=1;
while ~strcmp(deblank(g03_output(k)),'---------------------------------------------------------------------')
S=eval(['[' char(g03_output(k)) ']']); atoms(m,:)=S(4:6); atomic_numbers(m)=S(2); k=k+1; m=m+1; %#ok<AGROW>
end
natoms=m-1; props.inp_geom=atoms; props.natoms=natoms;
disp('Gaussian import: found input orientation.');
end
% Read the standard orientation and atomic numbers
if strcmp(g03_output(n),'Standard orientation:')
k=n+5; m=1;
while ~strcmp(deblank(g03_output(k)),'---------------------------------------------------------------------')
S=eval(['[' char(g03_output(k)) ']']); atoms(m,:)=S(4:6); atomic_numbers(m)=S(2); k=k+1; m=m+1;
end
natoms=m-1; props.std_geom=atoms; props.natoms=natoms;
disp('Gaussian import: found standard orientation.');
end
% Read the SCF energy
current_line=char(g03_output(n));
if length(current_line)>10 && strcmp(current_line(1:9),'SCF Done:')
scan_data=textscan(current_line,'SCF Done: %s = %f','Delimiter',' ','MultipleDelimsAsOne',1);
props.method=char(scan_data{1}); props.method=props.method(3:(end-1)); props.energy=scan_data{2};
disp('Gaussian import: found SCF energy.');
end
% Read isotropic hyperfine couplings
if strcmp(g03_output(n),'Isotropic Fermi Contact Couplings')
props.hfc.iso=zeros(natoms,1);
for k=1:natoms
S=char(g03_output(n+1+k)); S=eval(['[' S(20:end) ']']); props.hfc.iso(k)=S(3);
end
disp('Gaussian import: found isotropic hyperfine couplings.');
end
% Read and symmetrize anisotropic hyperfine couplings
if strcmp(g03_output(n),'Anisotropic Spin Dipole Couplings in Principal Axis System')
props.hfc.full.eigvals=cell(natoms,1);
props.hfc.full.eigvecs=cell(natoms,1);
props.hfc.full.matrix=cell(natoms,1);
for k=1:natoms
baa=g03_output(n+4*k+1); baa=char(baa); baa=eval(['[' baa(4:end) ']']);
bbb=g03_output(n+4*k+2); bbb=char(bbb); bbb=eval(['[' bbb(15:end) ']']);
bcc=g03_output(n+4*k+3); bcc=char(bcc); bcc=eval(['[' bcc(4:end) ']']);
props.hfc.full.eigvals{k}=[baa(3) bbb(3) bcc(3)]+props.hfc.iso(k);
props.hfc.full.eigvecs{k}=[baa(5:7)' bbb(5:7)' bcc(5:7)'];
props.hfc.full.matrix{k}=props.hfc.full.eigvecs{k}*diag(props.hfc.full.eigvals{k})*props.hfc.full.eigvecs{k}';
if (~exist('options','var'))||(~ismember('hfc_nosymm',options))
props.hfc.full.matrix{k}=(props.hfc.full.matrix{k}+props.hfc.full.matrix{k}')/2;
end
end
disp('Gaussian import: found anisotropic hyperfine couplings.');
end
% Read and symmetrize the g-tensor (Gaussian03 for Unix)
if strcmp(g03_output(n),'g tensor [g = g_e + g_RMC + g_DC + g_OZ/SOC]:')
line1=char(deblank(g03_output(n+1))); line2=char(deblank(g03_output(n+2))); line3=char(deblank(g03_output(n+3)));
g=eval(['[' line1(5:18) ' ' line1(26:39) ' ' line1(46:60) '; '...
line2(5:18) ' ' line2(26:39) ' ' line2(46:60) '; '...
line3(5:18) ' ' line3(26:39) ' ' line3(46:60) ']']);
if (~exist('options','var'))||(~ismember('g_nosymm',options))
g=(g+g')/2;
end
[V,D]=eig(g);
props.g_tensor.eigvecs=V;
props.g_tensor.eigvals=diag(D)';
props.g_tensor.matrix=g;
disp('Gaussian import: found g-tensor.');
end
% Read and symmetrize the g-tensor (Gaussian03 for Windows)
if strcmp(g03_output(n),'g tensor (ppm):')
line1=char(deblank(g03_output(n+1))); line2=char(deblank(g03_output(n+2))); line3=char(deblank(g03_output(n+3)));
g=eval(['[' line1(4:15) ' ' line1(23:35) ' ' line1(42:54) '; '...
line2(4:15) ' ' line2(23:35) ' ' line2(42:54) '; '...
line3(4:15) ' ' line3(23:35) ' ' line3(42:54) ']']);
if (~exist('options','var'))||(~ismember('g_nosymm',options))
g=(g+g')/2;
end
[V,D]=eig(g);
props.g_tensor.eigvecs=V;
props.g_tensor.eigvals=diag(D)';
props.g_tensor.matrix=g;
disp('Gaussian import: found g-tensor.');
end
% Read and symmetrize chemical shielding tensors
if strcmp(g03_output(n),'SCF GIAO Magnetic shielding tensor (ppm):')||strcmp(g03_output(n),'Magnetic shielding (ppm):')
cst=cell(natoms,1);
for k=1:natoms
line1=char(g03_output(n+5*k-3)); line2=char(g03_output(n+5*k-2)); line3=char(g03_output(n+5*k-1));
cst{k}=[eval(['[' line1(4:14) ' ' line1(21:31) ' ' line1(38:48) ']']);
eval(['[' line2(4:14) ' ' line2(21:31) ' ' line2(38:48) ']']);
eval(['[' line3(4:14) ' ' line3(21:31) ' ' line3(38:48) ']'])];
if (~exist('options','var'))||(~ismember('cst_nosymm',options))
cst{k}=(cst{k}+cst{k}')/2;
end
end
props.cst=cst;
disp('Gaussian import: found chemical shielding tensors.');
end
% Read scalar couplings
if strcmp(g03_output(n),'Total nuclear spin-spin coupling J (Hz):')
j_couplings=zeros(natoms,ceil(natoms/5)*5);
for k=1:ceil(natoms/5)
lines_to_read=natoms-(k-1)*5;
current_block=zeros(natoms,5);
for m=(n+2):(n+1+lines_to_read)
current_line=eval(['[' char(g03_output(m)) ']']);
current_block(current_line(1),1:(length(current_line)-1))=current_line(2:end);
end
j_couplings(:,(5*(k-1)+1):(5*k))=current_block;
n=n+lines_to_read+1; %#ok<FXSET>
end
j_couplings=j_couplings(1:natoms,1:natoms); j_couplings=j_couplings+j_couplings';
props.j_couplings=j_couplings;
disp('Gaussian import: found isotropic J-couplings.');
end
% Read spin-rotation couplings
if strcmp(g03_output(n),'nuclear spin - molecular rotation tensor [C] (MHz):')
props.srt=cell(natoms,1);
for k=1:natoms
line3=char(g03_output(n+4*k)); line2=char(g03_output(n+4*k-1));
line1=char(g03_output(n+4*k-2)); line0=char(g03_output(n+4*k-3));
atom_num=regexp(line0,'^[0-9]*','match'); atom_num=eval(atom_num{1});
props.srt{atom_num}=[eval(['[' line1(4:14) ' ' line1(21:31) ' ' line1(38:48) ']']);
eval(['[' line2(4:14) ' ' line2(21:31) ' ' line2(38:48) ']']);
eval(['[' line3(4:14) ' ' line3(21:31) ' ' line3(38:48) ']'])]*1e6;
if strcmp(g03_output(n+4*k+1),'Dipole moment (Debye):'), break; end
if strcmp(g03_output(n+4*k+1),'Nuclear quadrupole coupling constants [Chi] (MHz):'), break; end
end
disp('Gaussian import: found nuclear spin-rotation tensors.');
end
% Read quadrupole couplings and kill their trace
if strcmp(g03_output(n),'Nuclear quadrupole coupling constants [Chi] (MHz):')
props.nqi=cell(natoms,1);
for k=1:natoms
line3=char(g03_output(n+4*k)); line2=char(g03_output(n+4*k-1));
line1=char(g03_output(n+4*k-2)); line0=char(g03_output(n+4*k-3));
atom_num=regexp(line0,'^[0-9]*','match'); atom_num=eval(atom_num{1});
props.nqi{atom_num}=[eval(['[' line1(4:14) ' ' line1(21:31) ' ' line1(38:48) ']']);
eval(['[' line2(4:14) ' ' line2(21:31) ' ' line2(38:48) ']']);
eval(['[' line3(4:14) ' ' line3(21:31) ' ' line3(38:48) ']'])]*1e6;
props.nqi{atom_num}=props.nqi{atom_num}-eye(3)*trace(props.nqi{atom_num})/3;
if strcmp(g03_output(n+4*k+1),'Dipole moment (Debye):'), break; end
end
disp('Gaussian import: found nuclear quadrupole tensors.');
end
% Read magnetic susceptibility tensor (GIAO)
if strcmp(g03_output(n),'Magnetic susceptibility tensor (cgs-ppm):')
line1=char(g03_output(n+1)); line2=char(g03_output(n+2)); line3=char(g03_output(n+3));
props.chi=[eval(['[' line1(4:19) ' ' line1(25:40) ' ' line1(46:end) ']']);
eval(['[' line2(4:19) ' ' line2(25:40) ' ' line2(46:end) ']']);
eval(['[' line3(4:19) ' ' line3(25:40) ' ' line3(46:end) ']'])];
props.chi=cgsppm2ang(props.chi);
disp('Gaussian import: found magnetic susceptibility.');
end
% Read magnetic susceptibility tensor (CSGT)
if strcmp(g03_output(n),'Magnetic susceptibility (cgs-ppm):')
line1=char(g03_output(n+2)); line2=char(g03_output(n+3)); line3=char(g03_output(n+4));
props.chi=[eval(['[' line1(4:14) ' ' line1(21:31) ' ' line1(38:48) ']']);
eval(['[' line2(4:14) ' ' line2(21:31) ' ' line2(38:48) ']']);
eval(['[' line3(4:14) ' ' line3(21:31) ' ' line3(38:48) ']'])];
props.chi=cgsppm2ang(props.chi);
disp('Gaussian import: found magnetic susceptibility.');
end
% Read Gibbs free energy
if (numel(g03_output{n})>43)&&strcmp(g03_output{n}(1:43),'Sum of electronic and thermal Free Energies')
props.gibbs=eval(g03_output{n}(45:end));
disp('Gaussian import: found Gibbs free energy.');
end
% Check for error flags
if (numel(g03_output{n})>17)&&strcmp(g03_output{n}(1:17),'Error termination')
props.error=1; disp('Gaussian import: error message detected.');
end
% Check for incomplete calculations
if (numel(g03_output{n})>18)&&strcmp(g03_output{n}(1:18),'Normal termination')
props.complete=1;
end
if (numel(g03_output{n})>24)&&strcmp(g03_output{n}(1:24),'Entering Gaussian System')
props.complete=0;
end
end
% Assign atomic symbols
periodic_table={'H','He','Li','Be','B','C','N','O','F','Ne','Na','Mg','Al','Si','P','S','Cl','Ar',...
'K','Ca','Sc','Ti','V','Cr','Mn','Fe','Co','Ni','Cu','Zn','Ga','Ge','As','Se','Br',...
'Kr','Rb','Sr','Y','Zr','Nb','Mo','Tc','Ru','Rh','Pd','Ag','Cd','In','Sn','Sb','Te',...
'I','Xe','Cs','Ba','La','Ce','Pr','Nd','Pm','Sm','Eu','Gd','Tb','Dy','Ho','Er','Tm',...
'Yb','Lu','Hf','Ta','W','Re','Os','Ir','Pt','Au','Hg','Tl','Pb','Bi','Po','At','Rn',...
'Fr','Ra','Ac','Th','Pa','U','Np','Pu','Am','Cm','Bk','Cf','Es','Fm','Md','No','Lr',...
'Rf','Db','Sg','Bh','Hs','Mt','Ds','Rg'};
if exist('atomic_numbers','var')
props.symbols=periodic_table(atomic_numbers);
props.atomic_numbers=atomic_numbers;
end
% Assign source information
props.filename=filename;
end
% Moral indignation is jealousy with a halo.
%
% H.G. Wells
|
github
|
tsajed/nmr-pred-master
|
read_pdb_pro.m
|
.m
|
nmr-pred-master/spinach/etc/read_pdb_pro.m
| 2,872 |
utf_8
|
525d354869dff389bc59cb97e181f54f
|
% Reads protein PDB data.
%
% <http://spindynamics.org/wiki/index.php?title=Read_pdb_pro.m>
function [aa_num,aa_typ,pdb_id,coords]=read_pdb_pro(pdb_file_name,instance)
% Check consistency
grumble(pdb_file_name,instance);
% Open the PDB file
file_id=fopen(pdb_file_name,'r');
% Scroll to the selected structure
while ~feof(file_id)
parsed_string=textscan(fgetl(file_id),'MODEL %d','delimiter',' ','MultipleDelimsAsOne',1);
if parsed_string{1}==instance
disp(['Reading structure ' num2str(instance) ' from ' pdb_file_name '...' ]); break;
end
end
% Get the outputs started
aa_num=[]; aa_typ={};
pdb_id={}; coords={};
% Parse the PDB file
while ~feof(file_id)
data_line=fgetl(file_id);
if (numel(data_line)>=6)&&strcmp('ENDMDL',data_line(1:6)), break; end
if ~isempty(data_line)
parsed_string=textscan(data_line,'ATOM %f %s %s %s %f %f %f %f %f %f','delimiter',' ','MultipleDelimsAsOne',1);
if all(~cellfun(@isempty,parsed_string))
aa_num(end+1)=parsed_string{5}; %#ok<AGROW>
aa_typ{end+1}=parsed_string{3}{1}; %#ok<AGROW>
pdb_id{end+1}=parsed_string{2}{1}; %#ok<AGROW>
coords{end+1}=[parsed_string{6:8}]; %#ok<AGROW>
end
end
end
% Capitalize amino acid type specifications
for n=1:numel(aa_typ)
aa_typ{n}=upper(aa_typ{n}); %#ok<AGROW>
end
% Make outputs column vectors
aa_num=aa_num'; aa_typ=aa_typ';
pdb_id=pdb_id'; coords=coords';
% Close the PDB file
fclose(file_id);
end
% Consistency enforcement
function grumble(pdb_file_name,instance)
if ~ischar(pdb_file_name)
error('pdb_file_name must be a character string.');
end
if (~isnumeric(instance))||(~isreal(instance))||...
(instance<1)||(mod(instance,1)~=0)
error('instance must be a positive real integer.');
end
end
% Heartless sterility, obliteration of all melody, all tonal charm, all
% music... This revelling in the destruction of all tonal essence, raging
% satanic fury in the orchestra, this demoniacal, lewd caterwauling,
% scandal-mongering, gun-toting music, with an orchestral accompaniment
% slapping you in the face... Hence, the secret fascination that makes it
% the darling of feeble-minded royalty... of the court monkeys covered with
% reptilian slime, and of the blase hysterical female court parasites who
% need this galvanic stimulation by massive instrumental treatment to throw
% their pleasure-weary frog-legs into violent convulsion... the diabolical
% din of this pig-headed man, stuffed with brass and sawdust, inflated, in
% an insanely destructive self-aggrandizement, by Mephistopheles' mephitic
% and most venomous hellish miasma, into Beelzebub's Court Composer and
% General Director of Hell's Music - Wagner!
%
% J.L. Klein, "Geschichte des Dramas", 1871.
|
github
|
tsajed/nmr-pred-master
|
cst_display.m
|
.m
|
nmr-pred-master/spinach/etc/cst_display.m
| 4,512 |
utf_8
|
511a7e959a0f8ca32ef4b579ddebcafd
|
% Ellipsoid plots of chemical shielding tensors and their eigensystems.
%
% <http://spindynamics.org/wiki/index.php?title=Cst_display.m>
function cst_display(props,atoms,scaling_factor,conmatrix)
% Check consistency
grumble(props,atoms,scaling_factor,conmatrix);
% Set up graphics
figure(); hold on; colormap hot; opengl software;
light('Position',[-2,2,20]); light('Position',[10,10,10]);
% Draw the molecule
molplot(props.std_geom,conmatrix);
% Get a unit sphere
k=4; n=2^k-1; theta=pi*(-n:2:n)/n; phi=(pi/2)*(-n:2:n)'/n;
X=cos(phi)*cos(theta); Y=cos(phi)*sin(theta);
Z=sin(phi)*ones(size(theta));
% Loop over atoms
for n=1:props.natoms
% Ignore atoms that are not on the user-supplied list
if ismember(props.symbols{n},atoms)
% Diagonalize the shielding tensor
[eigvecs,eigvals]=eig(props.cst{n}); eigvals=diag(eigvals);
% Do not plot tensors smaller than 0.1 ppm
if norm(eigvals)>0.1
% Stretch and scale sphere vertex coordinates
coords=[reshape(X*eigvals(1)*scaling_factor,1,length(phi)*length(theta));...
reshape(Y*eigvals(2)*scaling_factor,1,length(phi)*length(theta));...
reshape(Z*eigvals(3)*scaling_factor,1,length(phi)*length(theta))];
% Rotate sphere vertex coordinates
coords=eigvecs*coords;
% Fold back sphere vertex coordinates
Xd=reshape(coords(1,:),length(phi),length(theta));
Yd=reshape(coords(2,:),length(phi),length(theta));
Zd=reshape(coords(3,:),length(phi),length(theta));
% Color vertices by amplitude
Cd=sqrt(Xd.^2+Yd.^2+Zd.^2);
% Translate vertices
Xd=Xd+props.std_geom(n,1);
Yd=Yd+props.std_geom(n,2);
Zd=Zd+props.std_geom(n,3);
% Draw the surface
surf(Xd,Yd,Zd,Cd,'FaceAlpha',0.5,'EdgeAlpha',0.1);
% Scale eigenvectors
vector_a=eigvecs(:,1)*eigvals(1)*scaling_factor;
vector_b=eigvecs(:,2)*eigvals(2)*scaling_factor;
vector_c=eigvecs(:,3)*eigvals(3)*scaling_factor;
% Colour eigenvectors
col_a='r-'; col_b='r-'; col_c='r-';
if eigvals(1)<0, col_a='b-'; end
if eigvals(2)<0, col_b='b-'; end
if eigvals(3)<0, col_c='b-'; end
% Draw eigenvectors
plot3([props.std_geom(n,1)-vector_a(1) props.std_geom(n,1)+vector_a(1)],...
[props.std_geom(n,2)-vector_a(2) props.std_geom(n,2)+vector_a(2)],...
[props.std_geom(n,3)-vector_a(3) props.std_geom(n,3)+vector_a(3)],col_a,'LineWidth',1);
plot3([props.std_geom(n,1)-vector_b(1) props.std_geom(n,1)+vector_b(1)],...
[props.std_geom(n,2)-vector_b(2) props.std_geom(n,2)+vector_b(2)],...
[props.std_geom(n,3)-vector_b(3) props.std_geom(n,3)+vector_b(3)],col_b,'LineWidth',1);
plot3([props.std_geom(n,1)-vector_c(1) props.std_geom(n,1)+vector_c(1)],...
[props.std_geom(n,2)-vector_c(2) props.std_geom(n,2)+vector_c(2)],...
[props.std_geom(n,3)-vector_c(3) props.std_geom(n,3)+vector_c(3)],col_c,'LineWidth',1);
end
end
end
% Tidy up the picture
axis square; axis tight; axis equal;
set(gca,'Projection','perspective');
box on; grid on;
end
% Consistency enforcement
function grumble(props,atoms,scaling_factor,conmatrix)
if ~isfield(props,'std_geom')
error('props structure does not contain std_geom field with atomic coordinates.');
end
if ~isfield(props,'cst')
error('props structure does not contain cst field with chemical shielding tensors.');
end
if ~iscell(atoms)
error('atoms parameter must be a cell array of character strings.');
end
if (~isnumeric(scaling_factor))||(~isreal(scaling_factor))
error('scaling_factor must be a real number.');
end
if ~isempty(conmatrix)
if ~all(size(conmatrix)==[size(std_geom,1) size(std_geom,1)])
error('both dimensions of conmatrix must be equal to the number of atoms in the system.');
end
end
end
% I'll be more enthusiastic about encouraging thinking outside the box when
% there's evidence of any thinking going on inside it.
%
% Terry Pratchett
|
github
|
tsajed/nmr-pred-master
|
hfc_display.m
|
.m
|
nmr-pred-master/spinach/etc/hfc_display.m
| 4,543 |
utf_8
|
a50d0d45bec27c2e55cfe2c48509826f
|
% Ellipsoid plots of hyperfine coupling tensors.
%
% <http://spindynamics.org/wiki/index.php?title=Hfc_display.m>
function hfc_display(props,atoms,scaling_factor,conmatrix)
% Set up graphics
figure(); clf reset; hold on; colormap hot; opengl software;
light('Position',[-2,2,20]); light('Position',[10,10,10]);
% Draw the molecule
molplot(props.std_geom,conmatrix);
% Get a unit sphere
k=4; n=2^k-1; theta=pi*(-n:2:n)/n; phi=(pi/2)*(-n:2:n)'/n;
X=cos(phi)*cos(theta); Y=cos(phi)*sin(theta);
Z=sin(phi)*ones(size(theta));
% Loop over atoms
for n=1:props.natoms
% Ignore atoms that are not on the user-supplied list
if ismember(props.symbols{n},atoms)
% Do not plot tensors smaller than 0.1 Gauss
if norm(props.hfc.full.eigvals{n})>0.1
% Stretch and scale sphere vertex coordinates
coords=[reshape(X*props.hfc.full.eigvals{n}(1)*scaling_factor,1,length(phi)*length(theta));...
reshape(Y*props.hfc.full.eigvals{n}(2)*scaling_factor,1,length(phi)*length(theta));...
reshape(Z*props.hfc.full.eigvals{n}(3)*scaling_factor,1,length(phi)*length(theta))];
% Rotate sphere vertex coordinates
coords=props.hfc.full.eigvecs{n}*coords;
% Fold back sphere vertex coordinates
Xd=reshape(coords(1,:),length(phi),length(theta));
Yd=reshape(coords(2,:),length(phi),length(theta));
Zd=reshape(coords(3,:),length(phi),length(theta));
% Color vertices by amplitude
Cd=sqrt(Xd.^2+Yd.^2+Zd.^2);
% Translate vertices
Xd=Xd+props.std_geom(n,1);
Yd=Yd+props.std_geom(n,2);
Zd=Zd+props.std_geom(n,3);
% Draw the surface
surf(Xd,Yd,Zd,Cd,'FaceAlpha',0.5,'EdgeAlpha',0.1);
% Scale eigenvectors
vector_a=props.hfc.full.eigvecs{n}(:,1)*props.hfc.full.eigvals{n}(1)*scaling_factor;
vector_b=props.hfc.full.eigvecs{n}(:,2)*props.hfc.full.eigvals{n}(2)*scaling_factor;
vector_c=props.hfc.full.eigvecs{n}(:,3)*props.hfc.full.eigvals{n}(3)*scaling_factor;
% Color eigenvectors
col_a='r-'; col_b='r-'; col_c='r-';
if props.hfc.full.eigvals{n}(1)<0, col_a='b-'; end
if props.hfc.full.eigvals{n}(2)<0, col_b='b-'; end
if props.hfc.full.eigvals{n}(3)<0, col_c='b-'; end
% Draw eigenvectors
plot3([props.std_geom(n,1)-vector_a(1) props.std_geom(n,1)+vector_a(1)],...
[props.std_geom(n,2)-vector_a(2) props.std_geom(n,2)+vector_a(2)],...
[props.std_geom(n,3)-vector_a(3) props.std_geom(n,3)+vector_a(3)],col_a,'LineWidth',1);
plot3([props.std_geom(n,1)-vector_b(1) props.std_geom(n,1)+vector_b(1)],...
[props.std_geom(n,2)-vector_b(2) props.std_geom(n,2)+vector_b(2)],...
[props.std_geom(n,3)-vector_b(3) props.std_geom(n,3)+vector_b(3)],col_b,'LineWidth',1);
plot3([props.std_geom(n,1)-vector_c(1) props.std_geom(n,1)+vector_c(1)],...
[props.std_geom(n,2)-vector_c(2) props.std_geom(n,2)+vector_c(2)],...
[props.std_geom(n,3)-vector_c(3) props.std_geom(n,3)+vector_c(3)],col_c,'LineWidth',1);
end
end
end
% Tidy up the picture
axis square; axis tight; axis equal;
set(gca,'Projection','perspective');
box on; grid on;
end
% The record for the shortest ever postdoc term in IK's group belongs
% to Gaby Slavcheva - 6 hours. She had turned up on a Monday morning,
% went through a tour of the lab, a tour of the computing systems and
% an introduction to the SVN repositories that the group operates. IK
% explained that the repositories keep track of everyone's contributi-
% on to every project in a rigorous and objective way, making it easy
% to attribute credit, blame and to decide the author list of each pa-
% per. Gaby resigned her post that same evening, citing "draconian re-
% strictions" on her "academic freedom", and claiming two months' pay
% for "redundancy" from Southampton's hapless HR service.
%
% IK did not object. Last thing he heard many years down the line was
% that, with over 100 peer-reviewed papers and at the age of 56, Gaby
% was a postdoc at the University of Bath.
|
github
|
tsajed/nmr-pred-master
|
oparse.m
|
.m
|
nmr-pred-master/spinach/etc/oparse.m
| 3,011 |
utf_8
|
d644fff672c2bdc2ae87f74af0784137
|
% A parser for ORCA logs.
%
% <http://spindynamics.org/wiki/index.php?title=Oparse.m>
function props=oparse(file_name)
% Check consistency
grumble(file_name);
% Read the file
file_id=fopen(file_name,'r');
orca_log=textscan(file_id,'%s','delimiter','\n');
fclose(file_id); orca_log=orca_log{1};
props.filename=file_name;
% Deblank all lines
for n=1:numel(orca_log), orca_log(n)=deblank(orca_log(n)); end
% Parse the file
for n=1:length(orca_log)
% Read the input orientation and atomic symbols
if strcmp(orca_log{n},'CARTESIAN COORDINATES (ANGSTROEM)')
k=n+2; m=1;
while ~isempty(orca_log{k})
S=textscan(orca_log{k},'%s %f %f %f');
props.symbols{m}=S{1}{1};
props.std_geom(m,:)=[S{2:4}];
k=k+1; m=m+1;
end
props.natoms=m-1;
disp('ORCA import: found atomic coordinates.');
end
% Read the g-tensor
if strcmp(orca_log{n},'The g-matrix:')
props.g_tensor.matrix=zeros(3,3);
S=textscan(orca_log{n+1},'%f %f %f'); props.g_tensor.matrix(1,:)=S{1:3};
S=textscan(orca_log{n+2},'%f %f %f'); props.g_tensor.matrix(2,:)=S{1:3};
S=textscan(orca_log{n+3},'%f %f %f'); props.g_tensor.matrix(3,:)=S{1:3};
props.g_tensor.matrix=(props.g_tensor.matrix+...
props.g_tensor.matrix')/2;
disp('ORCA import: found the g-tensor.');
end
if strfind(orca_log{n},'Nucleus ')==1
atom=textscan(orca_log{n},'%*s %f%*s');
idx=atom{:}(1)+1;
k=n+1;
while isempty(strfind(orca_log{k},'Nucleus '))&&k<length(orca_log)
k=k+1;
if strcmp(orca_log{k},'Raw HFC matrix (all values in MHz):')==1
S=textscan(orca_log{k+2},'%f %f %f'); props.hfc.full.matrix{idx}(1,:)=[S{1} S{2} S{3}];
S=textscan(orca_log{k+3},'%f %f %f'); props.hfc.full.matrix{idx}(2,:)=[S{1} S{2} S{3}];
S=textscan(orca_log{k+4},'%f %f %f'); props.hfc.full.matrix{idx}(3,:)=[S{1} S{2} S{3}];
props.hfc.full.matrix{idx}=mhz2gauss(props.hfc.full.matrix{idx});
[A,B]=eig(props.hfc.full.matrix{idx});
props.hfc.full.eigvals{idx}=diag(B);
props.hfc.full.eigvecs{idx}=A;
end
if strcmp(orca_log{k},'Raw EFG matrix (all values in a.u.**-3):')==1
S=textscan(orca_log{k+1},'%f %f %f'); props.efg{idx}(1,:)=[S{1} S{2} S{3}];
S=textscan(orca_log{k+2},'%f %f %f'); props.efg{idx}(2,:)=[S{1} S{2} S{3}];
S=textscan(orca_log{k+3},'%f %f %f'); props.efg{idx}(3,:)=[S{1} S{2} S{3}];
end
end
end
end
end
% Consistency enforcement
function grumble(file_name)
if ~ischar(file_name)
error('file_name must be a character string.');
end
end
% I can't think that it would be terrible of me to say - and it
% is occasionally true - that I need physics more than friends.
%
% J. Robert Oppenheimer
|
github
|
tsajed/nmr-pred-master
|
protein.m
|
.m
|
nmr-pred-master/spinach/etc/protein.m
| 12,478 |
utf_8
|
00ed6a47c240f3078156f9a6da717d42
|
% Protein data import function.
%
% <http://spindynamics.org/wiki/index.php?title=Protein.m>
function [sys,inter]=protein(pdb_file,bmrb_file,options)
% Check consistency
grumble(pdb_file,bmrb_file,options);
% Parse the PDB file
[pdb_aa_num,pdb_aa_typ,pdb_atom_id,pdb_coords]=read_pdb_pro(pdb_file,options.pdb_mol);
% Parse the BMRB file
[bmrb_aa_num,bmrb_aa_typ,bmrb_atom_id,bmrb_chemsh]=read_bmrb(bmrb_file);
% Remove oxygens, sulphurs and terminal atoms
kill_mask=ismember(pdb_atom_id,{'O','OE','OE1','OE2','OD1','OD2','OG','OG1','HG1',...
'OG2','OH','HH','SD','SG','OXT','O''','O'''''});
pdb_aa_num(kill_mask)=[]; pdb_atom_id(kill_mask)=[];
pdb_aa_typ(kill_mask)=[]; pdb_coords(kill_mask)=[];
disp('WARNING: oxygen, sulphur, and OH protons will not appear in the simulation.');
% Match chemical shifts
pdb_chemsh=cell(numel(pdb_atom_id),1);
disp(' '); disp('############# CHEMICAL SHIFT IMPORT SUMMARY ###############');
for n=1:numel(pdb_atom_id)
% Pull the current amino acid from BMRB
select_mask=(bmrb_aa_num==pdb_aa_num(n));
bmrb_atoms=bmrb_atom_id(select_mask);
bmrb_shifts=bmrb_chemsh(select_mask);
% Make sure amino acid types match
if ~all(strcmp(pdb_aa_typ{n},bmrb_aa_typ(select_mask)))
disp(pdb_aa_typ{n}); disp(bmrb_aa_typ(select_mask));
error('Amino acid type mismatch between PDB and BMRB files.');
end
% Ugly heuristics (sorry!) to match PDB and BMRB data
if ismember(pdb_atom_id{n},bmrb_atoms)
pdb_chemsh{n}=bmrb_shifts(strcmp(pdb_atom_id{n},bmrb_atoms));
disp(['Imported chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif strcmp(pdb_atom_id{n},'N')&&(pdb_aa_num(n)==1)
disp(['WARNING: N-terminal NH2 group of ' pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')' ' ignored.']);
elseif ismember(pdb_atom_id{n},{'HG'})&&ismember(pdb_aa_typ(n),{'SER'})
disp(['WARNING: OH group of ' pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')' ' ignored.']);
elseif ismember(pdb_atom_id{n},{'HG1'})&&ismember(pdb_aa_typ(n),{'THR'})
disp(['WARNING: OH group of ' pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')' ' ignored.']);
elseif ismember(pdb_atom_id{n},{'HB3'})&&ismember('HB2',bmrb_atoms)&&ismember(pdb_aa_typ{n},{'MET','GLU','GLN','LYS','LEU','SER','HIS','ARG'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HB2',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HB1','HB2','HB3'})&&ismember('HB',bmrb_atoms)&&ismember(pdb_aa_typ{n},{'ALA'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HB',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HG21','HG22','HG23','HG1','HG3'})&&ismember('HG2',bmrb_atoms)&&ismember(pdb_aa_typ{n},{'ILE','THR','VAL','GLU','LYS','PRO','GLN','ARG'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HG2',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HG11','HG12','HG13','HG2','HG3'})&&ismember('HG1',bmrb_atoms)&&ismember(pdb_aa_typ{n},{'VAL'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HG1',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HG13'})&&ismember('HG12',bmrb_atoms)&&ismember(pdb_aa_typ{n},{'ILE'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HG12',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HD11','HD12','HD13','HD2','HD3'})&&ismember('HD1',bmrb_atoms)&&ismember(pdb_aa_typ{n},{'ILE','LEU'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HD1',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HD21','HD22','HD23','HD1','HD3'})&&ismember('HD2',bmrb_atoms)&&ismember(pdb_aa_typ{n},{'LYS','LEU','PRO','ARG'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HD2',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HE3'})&&ismember('HE2',bmrb_atoms)&&ismember(pdb_aa_typ{n},{'LYS'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HE2',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HE1','HE2','HE3'})&&ismember('HE',bmrb_atoms)&&ismember(pdb_aa_typ{n},{'MET'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HE',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'CD2'})&&ismember('CD1',bmrb_atoms)&&ismember(pdb_aa_typ(n),{'PHE','TYR'})
pdb_chemsh{n}=bmrb_shifts(strcmp('CD1',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'CE2'})&&ismember('CE1',bmrb_atoms)&&ismember(pdb_aa_typ(n),{'PHE','TYR'})
pdb_chemsh{n}=bmrb_shifts(strcmp('CE1',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HD2'})&&ismember('HD1',bmrb_atoms)&&ismember(pdb_aa_typ(n),{'PHE','TYR'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HD1',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HE2'})&&ismember('HE1',bmrb_atoms)&&ismember(pdb_aa_typ(n),{'PHE','TYR'})
pdb_chemsh{n}=bmrb_shifts(strcmp('HE1',bmrb_atoms));
disp(['WARNING: replicated chemical shift for ' pad([pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ':'],15,'right') pad(num2str(pdb_chemsh{n},'%6.3f'),6,'left') ' ppm']);
elseif ismember(pdb_atom_id{n},{'HH'})&&ismember(pdb_aa_typ(n),{'TYR'})
disp(['WARNING: OH group of ' pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')' ' ignored.']);
elseif ismember(pdb_atom_id{n},{'HD1'})&&ismember(pdb_aa_typ(n),{'HIS'})
disp(['WARNING: ring NH group of ' pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')' ' ignored.']);
elseif ismember(pdb_atom_id{n},{'NZ','HZ1','HZ2','HZ3'})&&ismember(pdb_aa_typ(n),{'LYS'})
disp(['WARNING: side chain NH3+ group of ' pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')' ' ignored.']);
elseif ismember(pdb_atom_id{n},{'NE','CZ','NH1','NH2','HE','HH11','HH12','HH21','HH22'})&&ismember(pdb_aa_typ(n),{'ARG'})
disp(['WARNING: side chain nitrogen block of ' pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')' ' ignored.']);
end
end
% Estimate J-couplings
scalar_couplings=guess_j_pro(pdb_aa_num,pdb_aa_typ,pdb_atom_id,pdb_coords);
% Estimate chemical shielding anisotropies
CSAs=guess_csa_pro(pdb_aa_num,pdb_atom_id,pdb_coords);
% Assign isotopes and labels
isotopes=cell(1,numel(pdb_atom_id));
for n=1:numel(pdb_atom_id)
switch pdb_atom_id{n}(1)
case 'H'
isotopes{n}='1H';
case 'C'
isotopes{n}='13C';
case 'N'
isotopes{n}='15N';
otherwise
error('unknown atom type.');
end
end
% Process atom selection specification
if isnumeric(options.select)
% Numeric selection needs no special processing
elseif strcmp(options.select,'backbone')
% Import backbone up to CB and HB
subset=ismember(pdb_atom_id,{'H','N','C','CA','HA','CB','HB','HB1','HB2','HB3'});
elseif strcmp(options.select,'backbone-minimal')
% Import minimal backbone
subset=ismember(pdb_atom_id,{'H','N','C','CA','HA'});
elseif strcmp(options.select,'backbone-hsqc')
% Import backbone up to CB and HB and also ASN and GLN amide groups
subset=ismember(pdb_atom_id,{'H','N','C','CA','HA','NE2','HE21','HE22','CD','CG',...
'ND2','HD21','HD22','CB','HB','HB1','HB2','HB3'});
elseif strcmp(options.select,'all')
% Import everything
subset=true(size(pdb_atom_id));
else
% Complain and bomb out
error('incorrect subset selection specification.');
end
% Find missing chemical shifts
missing_shifts=find(cellfun(@isempty,pdb_chemsh))';
disp(' '); disp('############# SUMMARY OF MISSING ASSIGNMENTS ###############');
% Process unassigned chemical shifts
if strcmp(options.noshift,'keep')
% Put unassigned spins between -1.0 and 0.0 ppm
erzatz_shifts=linspace(-1,0,numel(missing_shifts));
for n=1:numel(missing_shifts)
disp(['Missing assignment of ' pdb_aa_typ{missing_shifts(n)} '(' num2str(pdb_aa_num(missing_shifts(n)))...
')-' pdb_atom_id{missing_shifts(n)} ': the spin is placed at ' num2str(erzatz_shifts(n)) ' ppm.']);
pdb_chemsh{missing_shifts(n)}=erzatz_shifts(n);
end
elseif strcmp(options.noshift,'delete')
% Delete unassigned spins
for n=missing_shifts
disp(['Missing assignment of ' pdb_aa_typ{n} '(' num2str(pdb_aa_num(n)) ')-' pdb_atom_id{n} ...
': the atom will not appear in the simulation.']);
end
subset=subset&(~cellfun(@isempty,pdb_chemsh));
else
% Complain and bomb out
error('incorrect value of options.noshift parameter.');
end
% Apply the selection
sys.isotopes=isotopes(subset);
sys.labels=pdb_atom_id(subset)';
inter.zeeman.scalar=pdb_chemsh(subset)';
inter.zeeman.matrix=CSAs(subset)';
inter.coupling.scalar=scalar_couplings(subset,subset);
inter.coordinates=pdb_coords(subset);
end
% Consistency enforcement
function grumble(pdb_file,bmrb_file,options)
if ~ischar(pdb_file)
error('pdb_file must be a character string specifying a file name.');
end
if ~ischar(bmrb_file)
error('bmrb_file must be a character string specifying a file name.');
end
if ~isfield(options,'select')
error('options.select switch must be specfied.');
elseif (~isnumeric(options.select))&&(~ismember(options.select,{'all','backbone','backbone-hsqc','backbone-minimal'}))
error('invalid value for options.select, please refer to the manual.');
end
if ~isfield(options,'pdb_mol')
error('options.pdb_mol switch must be specfied.');
elseif (~isnumeric(options.pdb_mol))
error('invalid value for options.pdb_mol, please refer to the manual.');
end
if ~isfield(options,'noshift')
error('options.noshift switch must be specfied.');
elseif (~isnumeric(options.noshift))&&(~ismember(options.noshift,{'keep','delete'}))
error('invalid value for options.noshift, please refer to the manual.');
end
end
% We saw that we'd been given a law to live by, a moral law, they called
% it, which punished those who observed it -- for observing it. The more
% you tried to live up to it, the more you suffered; the more you cheated
% it, the bigger reward you got.
%
% Ayn Rand, "Atlas Shrugged"
|
github
|
tsajed/nmr-pred-master
|
guess_j_pro.m
|
.m
|
nmr-pred-master/spinach/etc/guess_j_pro.m
| 43,552 |
utf_8
|
14f3a65cfff1df052e1f7bac2961da02
|
% Assigns J-couplings from literature values and Karplus curves.
%
% <http://spindynamics.org/wiki/index.php?title=Guess_j_pro.m>
function jmatrix=guess_j_pro(aa_num,aa_typ,pdb_id,coords)
% Check consistency
grumble(aa_num,aa_typ,pdb_id,coords);
% Preallocate the answer
jmatrix=cell(numel(coords),numel(coords));
% Number the atoms
numbers=1:numel(coords);
% Determine the connectivity graph
proxmatrix=false(numel(coords),numel(coords));
for n=1:numel(coords)
for k=1:numel(coords)
if (norm(coords{n}-coords{k},2)<1.60), proxmatrix(n,k)=1; end
end
end
% Get all connected subgraphs up to size 2
subgraphs=dfpt(sparse(proxmatrix),2);
% Set generic coupling values
J_NH=-90.0; J_CN=-15.0; J_CH=140.0; J_CC=35.0;
% Spec all ordered connected pairs
pairs_database={...
% Backbone has specific numbers
'CA_CB' , +35.0; 'CA_HA' , +140.0; 'CA_N' , -11.0;
'C_CA' , +55.0; 'C_N' , -15.0; 'H_N' , -90.0;
% The rest is generic
'CA_HA2' , J_CH; 'CA_HA3' , J_CH; 'CB_CG' , J_CC; 'CB_CG1' , J_CC;
'CB_CG2' , J_CC; 'CB_HB' , J_CH; 'CB_HB1' , J_CH; 'CB_HB2' , J_CH;
'CB_HB3' , J_CH; 'CD1_CE1' , J_CC; 'CD1_CG' , J_CC; 'CD1_CG1' , J_CC;
'CD1_HD1' , J_CH; 'CD1_HD11' , J_CH; 'CD1_HD12' , J_CH; 'CD1_HD13' , J_CH; 'CD1_NE1' , J_CN;
'CD2_CE2' , J_CC; 'CD2_CG' , J_CC; 'CD2_HD2' , J_CH; 'CD2_HD21' , J_CH; 'CD2_CE3' , J_CC;
'CD2_HD22' , J_CH; 'CD2_HD23' , J_CH; 'CD2_NE2' , J_CN; 'CD_CE' , J_CC; 'CE2_NE1' , J_CN;
'CD_CG' , J_CC; 'CD_HD2' , J_CH; 'CD_HD3' , J_CH; 'CD_N' , J_CN; 'HE1_NE1' , J_NH;
'CD_NE2' , J_CN; 'CE1_CZ' , J_CC; 'CE1_HE1' , J_CH; 'CE1_ND1' , J_CN; 'CE2_CZ2' , J_CC;
'CE1_NE2' , J_CN; 'CE2_CZ' , J_CC; 'CE2_HE2' , J_CH; 'CE_HE1' , J_CH; 'CE3_CZ3' , J_CC;
'CE_HE2' , J_CH; 'CE_HE3' , J_CH; 'CG1_HG11' , J_CH; 'CG1_HG12' , J_CH; 'CE3_HE3' , J_CH;
'CG1_HG13' , J_CH; 'CG2_HG21' , J_CH; 'CG2_HG22' , J_CH; 'CG2_HG23' , J_CH; 'CH2_CZ2' , J_CC;
'CG_HG' , J_CH; 'CH2_HH2' , J_CH; 'CG_HG2' , J_CH; 'CG_HG3' , J_CH; 'CG_ND1' , J_CN;
'CG_ND2' , J_CN; 'CZ_HZ' , J_CH; 'HD21_ND2' , J_NH; 'HD22_ND2' , J_NH; 'CZ3_HZ3' , J_CH;
'HE21_NE2' , J_NH; 'HE22_NE2' , J_NH; 'HH22_NH2' , J_NH; 'HH21_NH2' , J_NH; 'CH2_CZ3' , J_CC;
'HH12_NH1' , J_NH; 'HH11_NH1' , J_NH; 'CZ_NH2' , J_CN; 'CZ_NH1' , J_CN; 'CZ2_HZ2' , J_CH;
'CZ_NE' , J_CN; 'HE_NE' , J_NH; 'CD_NE' , J_CN; 'HZ3_NZ' , J_NH;
'HZ2_NZ' , J_NH; 'HZ1_NZ' , J_NH; 'CE_NZ' , J_CN; 'HD1_ND1' , J_NH;
'H_H' , 0.00; 'H1_N' , J_NH; 'H2_N' , J_NH; 'H3_N' , J_NH;
'CH2_HH2' , J_CH; 'CZ3_HZ3' , J_CH; 'CH2_CZ3' , J_CH; 'CZ2_HZ2' , J_CH;
'CH2_CZ2' , J_CH; 'CE3_HE3' , J_CH; 'CE3_CZ3' , J_CC; 'CE2_CZ2' , J_CC;
'HE1_NE1' , J_NH; 'CE2_NE1' , J_CN; 'CD2_CE3' , J_CC; 'CD1_NE1' , J_CN};
% Loop over subgraphs
disp(' '); disp('############# ONE-BOND J-COUPLING SUMMARY ###############');
for n=1:size(subgraphs,1)
% Extract labels, residues and numbers
spin_labels=pdb_id(subgraphs(n,:));
spin_numbers=numbers(subgraphs(n,:));
spin_resnames=aa_typ(subgraphs(n,:));
spin_resnums=aa_num(subgraphs(n,:));
% Index the spins
[spin_labels,index]=sort(spin_labels);
spin_numbers=spin_numbers(index);
spin_resnames=spin_resnames(index);
spin_resnums=spin_resnums(index);
% Consult the database
if numel(spin_labels)==1
% Inform the user about solitary spins
disp(['WARNING: solitary spin detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1}]);
else
% Build specification string
spec_string=pairs_database(strcmp([spin_labels{1} '_' spin_labels{2}],pairs_database(:,1)),:);
% Assign the coupling
if isempty(spec_string)
% Complain if nothing found
disp(['WARNING: unknown atom pair or unphysical proximity, ' spin_labels{1} '_' spin_labels{2} ' in residues ' spin_resnames{1}...
'(' num2str(spin_resnums(1)) '), ' spin_resnames{2} '(' num2str(spin_resnums(2)) ')']);
elseif size(spec_string,1)>1
% Complain if multiple records found
error([spec_string{1} ' coupling has been specified multiple times in the coupling database.']);
else
% Write the array
jmatrix{spin_numbers(1),spin_numbers(2)}=spec_string{2};
% Report to the user
disp(['Estimated one-bond J-coupling from ' pad([spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1}],19) ' to ' ...
pad([spin_resnames{2} '(' num2str(spin_resnums(2)) '):' spin_labels{2}],19) ' ' ...
pad(num2str(spec_string{2},'%5.1f'),6,'left') ' Hz']);
end
end
end
% Get all connected subgraphs up to size 3
subgraphs=dfpt(sparse(proxmatrix),3);
% Set generic coupling values
J_CCC=-1.2; % Zenawi's DFT
J_CCH=0; % Literature reference
J_CCN=7.0; % Zenawi's DFT
J_HCH=-12.0; % Literature reference
J_HNH=-1.5; % Zenawi's DFT
J_NCN=0; % Literature reference
J_NCH=0; % Literature reference
J_CNH=0; % Literature reference
J_CNC=0; % Literature reference
% Spec all ordered connected triples (sorted atoms, bonding order, coupling from atom 1 to atom 3)
triples_database={...
% Backbone has specific numbers
'C_CA_CB', 1, 2, 3, 0.0; 'C_CA_HA', 1, 2, 3, -5.0; 'C_CA_HA2', 1, 2, 3, -5.0; 'C_CA_HA3', 1, 2, 3, -5.0;
'C_CA_N', 2, 1, 3, 7.0; 'C_CD_N', 1, 3, 2, 0.0; 'C_H_N', 1, 3, 2, 0.0; 'CA_CB_HA', 2, 1, 3, 0.0;
'CA_CB_N', 2, 1, 3, 11.0; 'CA_H_N', 1, 3, 2, 0.0; 'CA_HA_N', 2, 1, 3, 0.0; 'CA_HA2_HA3', 2, 1, 3, -12.0;
'CA_HA2_N', 2, 1, 3, 0.0; 'CA_HA3_N', 2, 1, 3, 0.0; 'CA_CD_N', 1, 3, 2, 0.0;
% Everything else is generic
'CA_CB_CG', 1, 2, 3, -1.2; 'CA_CB_CG1', 1, 2, 3, -1.2; 'CA_CB_CG2', 1, 2, 3, J_CCC; 'CA_CB_HB', 1, 2, 3, J_CCH;
'CA_CB_HB1', 1, 2, 3, -7.5; 'CA_CB_HB2', 1, 2, 3, -4.2; 'CA_CB_HB3', 1, 2, 3, -2.2; 'CB_CD_CG', 1, 3, 2, J_CCC;
'CB_CD1_CG', 1, 3, 2, J_CCC; 'CB_CD1_CG1', 1, 3, 2, J_CCC; 'CB_CD2_CG', 1, 3, 2, J_CCC; 'CB_CG_HB2', 2, 1, 3, J_CCH;
'CB_CG_HB3', 2, 1, 3, J_CCH; 'CB_CG_HG', 1, 2, 3, J_CCH; 'CB_CG_HG2', 1, 2, 3, J_CCH; 'CB_CG_HG3', 1, 2, 3, J_CCH;
'CB_CG_ND1', 1, 2, 3, J_CCN; 'CB_CG_ND2', 1, 2, 3, J_CCN; 'CB_CG1_CG2', 2, 1, 3, J_CCC; 'CB_CG1_HB', 2, 1, 3, J_CCH;
'CB_CG1_HG11', 1, 2, 3, J_CCH; 'CB_CG1_HG12', 1, 2, 3, J_CCH; 'CB_CG1_HG13', 1, 2, 3, J_CCH; 'CB_CG2_HB', 2, 1, 3, J_CCH;
'CB_CG2_HG21', 1, 2, 3, J_CCH; 'CB_CG2_HG22', 1, 2, 3, J_CCH; 'CB_CG2_HG23', 1, 2, 3, J_CCH; 'CB_HB1_HB2', 2, 1, 3, J_HCH;
'CB_HB1_HB3', 2, 1, 3, J_HCH; 'CB_HB2_HB3', 2, 1, 3, J_HCH; 'CD_CE_CG', 2, 1, 3, J_CCC; 'CD_CE_HD2', 2, 1, 3, J_CCH;
'CD_CE_HD3', 2, 1, 3, J_CCH; 'CD_CE_HE2', 1, 2, 3, J_CCH; 'CD_CE_HE3', 1, 2, 3, J_CCH; 'CD_CG_HD2', 2, 1, 3, J_CCH;
'CD_CG_HD3', 2, 1, 3, J_CCH; 'CD_CG_HG2', 1, 2, 3, J_CCH; 'CD_CG_HG3', 1, 2, 3, J_CCH; 'CD_CG_N', 2, 1, 3, J_CCN;
'CD_CG_NE2', 2, 1, 3, J_CCN; 'CD_HD2_HD3', 2, 1, 3, J_HCH; 'CD_HD2_N', 2, 1, 3, J_NCH; 'CD_HD3_N', 2, 1, 3, J_NCH;
'CD_HE21_NE2', 1, 3, 2, J_CNH; 'CD_HE22_NE2', 1, 3, 2, J_CNH; 'CD1_CD2_CG', 1, 3, 2, J_CCC; 'CD1_CE1_CG', 2, 1, 3, J_CCC;
'CD1_CE1_CZ', 1, 2, 3, J_CCC; 'CD1_CE1_HD1', 2, 1, 3, J_CCH; 'CD1_CE1_HE1', 1, 2, 3, J_CCH; 'CD1_CG_HD1', 2, 1, 3, J_CCH;
'CD1_CG_HD11', 2, 1, 3, J_CCH; 'CD1_CG_HD12', 2, 1, 3, J_CCH; 'CD1_CG_HD13', 2, 1, 3, J_CCH; 'CD1_CG_HG', 1, 2, 3, J_CCH;
'CD1_CG1_HD11', 2, 1, 3, J_CCH; 'CD1_CG1_HD12', 2, 1, 3, J_CCH; 'CD1_CG1_HD13', 2, 1, 3, J_CCH; 'CD1_CG1_HG12', 1, 2, 3, J_CCH;
'CD1_CG1_HG13', 1, 2, 3, J_CCH; 'CD1_HD11_HD12', 2, 1, 3, J_HCH; 'CD1_HD11_HD13', 2, 1, 3, J_HCH; 'CD1_HD12_HD13', 2, 1, 3, J_HCH; 'CD2_CE2_CE3', 1, 2, 3, J_CCC;
'CD2_CE1_NE2', 1, 3, 2, J_CNC; 'CD2_CE2_CG', 2, 1, 3, J_CCC; 'CD2_CE2_CZ', 1, 2, 3, J_CCC; 'CD2_CE2_HD2', 2, 1, 3, J_CCH; 'CD2_CE2_CE3', 1, 2, 3, J_CCC;
'CD2_CE2_HE2', 1, 2, 3, J_CCH; 'CD2_CG_HD2', 2, 1, 3, J_CCH; 'CD2_CG_HD21', 2, 1, 3, J_CCH; 'CD2_CG_HD22', 2, 1, 3, J_CCH; 'CD2_CE2_CZ2', 1, 2, 3, J_CCC;
'CD2_CG_HD23', 2, 1, 3, J_CCH; 'CD2_CG_HG', 1, 2, 3, J_CCH; 'CD2_CG_ND1', 1, 2, 3, J_CCN; 'CD2_CG_NE2', 2, 1, 3, J_CCN; 'CD2_CE3_CZ3', 1, 2, 3, J_CCC;
'CD2_HD2_NE2', 2, 1, 3, J_NCH; 'CD2_HD21_HD22', 2, 1, 3, J_HCH; 'CD2_HD21_HD23', 2, 1, 3, J_HCH; 'CD2_HD22_HD23', 2, 1, 3, J_HCH; 'CD2_CE3_HE3', 1, 2, 3, J_CCH;
'CE_HE1_HE2', 2, 1, 3, J_HCH; 'CE_HE1_HE3', 2, 1, 3, J_HCH; 'CE_HE2_HE3', 2, 1, 3, J_HCH; 'CE1_CE2_CZ', 1, 3, 2, J_CCC; 'CE2_CZ2_NE1', 1, 2, 3, J_CCN;
'CE1_CG_ND1', 1, 3, 2, J_CNC; 'CE1_CZ_HE1', 2, 1, 3, J_CCH; 'CE1_CZ_HZ', 1, 2, 3, J_CCH; 'CE1_HE1_ND1', 2, 1, 3, J_NCH; 'CE2_HE1_NE1', 1, 3, 2, J_CNH;
'CE1_HE1_NE2', 2, 1, 3, J_NCH; 'CE1_ND1_NE2', 2, 1, 3, J_NCN; 'CE2_CZ_HE2', 2, 1, 3, J_CCH; 'CE2_CZ_HZ', 1, 2, 3, J_CCH; 'CE2_CH2_CZ2', 1, 2, 3, J_CCC;
'CG_HD21_ND2', 1, 3, 2, J_CNH; 'CG_HD22_ND2', 1, 3, 2, J_CNH; 'CG_HG2_HG3', 2, 1, 3, J_HCH; 'CG1_HG11_HG12', 2, 1, 3, J_HCH; 'CE2_CZ2_HZ2', 1, 2, 3, J_CCH;
'CG1_HG11_HG13', 2, 1, 3, J_HCH; 'CG1_HG12_HG13', 2, 1, 3, J_HCH; 'CG2_HG21_HG22', 2, 1, 3, J_HCH; 'CG2_HG21_HG23', 2, 1, 3, J_HCH; 'CE3_CH2_CZ3', 1, 2, 3, J_CCC;
'CG2_HG22_HG23', 2, 1, 3, J_HCH; 'HD21_HD22_ND2', 1, 3, 2, J_HNH; 'HE21_HE22_NE2', 1, 3, 2, J_HNH; 'HH21_HH22_NH2', 1, 3, 2, J_HNH; 'CE3_CZ3_HE3', 1, 2, 3, J_CCH;
'HH11_HH12_NH1', 1, 3, 2, J_HNH; 'CZ_HH22_NH2', 1, 3, 2, J_CNH; 'CZ_HH21_NH2', 1, 3, 2, J_CNH; 'CZ_NH1_NH2', 2, 1, 3, J_NCN; 'CE3_CZ3_HZ3', 1, 2, 3, J_CCH;
'CZ_HH12_NH1', 1, 3, 2, J_CNH; 'CZ_HH11_NH1', 1, 3, 2, J_CNH; 'CZ_NE_NH2', 2, 1, 3, J_NCN; 'CZ_NE_NH1', 2, 1, 3, J_NCN; 'CH2_CZ2_CZ3', 1, 2, 3, J_CCC;
'CZ_HE_NE', 1, 3, 2, J_CNH; 'CD_CZ_NE', 1, 3, 2, J_CNC; 'CD_HE_NE', 1, 3, 2, J_CNH; 'CD_HD3_NE', 2, 1, 3, J_NCH; 'CH2_CZ2_HZ2', 1, 2, 3, J_CCH;
'CD_HD2_NE', 2, 1, 3, J_NCH; 'CD_CG_NE', 2, 1, 3, J_CCN; 'HZ2_HZ3_NZ' 1, 3, 2, J_HNH; 'HZ1_HZ3_NZ', 1, 3, 2, J_HNH; 'CH2_CZ2_HH2', 1, 2, 3, J_CCH;
'HZ1_HZ2_NZ', 1, 3, 2, J_HNH; 'CE_HZ3_NZ', 1, 3, 2, J_CNH; 'CE_HZ2_NZ', 1, 3, 2, J_CNH; 'CE_HZ1_NZ', 1, 3, 2, J_CNH; 'CH2_CZ3_HZ3', 1, 2, 3, J_CCH;
'CE_HE3_NZ', 2, 1, 3, J_NCH; 'CE_HE2_NZ', 2, 1, 3, J_NCH; 'CD_CE_NZ', 1, 2, 3, J_CCN; 'CE1_HD1_ND1', 1, 3, 2, J_CNH; 'CH2_CZ3_HH2', 1, 2, 3, J_CCH;
'CG_HD1_ND1', 1, 3, 2, J_CNH; 'H_H_N', 1, 3, 2, J_HNH; 'H2_H3_N', 1, 3, 2, J_HNH; 'H1_H2_N', 1, 3, 2, J_HNH;
'H1_H3_N', 1, 3, 2, J_HNH; 'CA_H1_N', 1, 3, 2, J_CNH; 'CA_H2_N', 1, 3, 2, J_CNH; 'CA_H3_N', 1, 3, 2, J_CNH;
% Tryptophan side chain (GIAO DFT M06/cc-pVTZ data in PCM water)
'CH2_CZ3_HH2', 2, 1, 3, -1.82; 'CH2_CZ3_HZ3', 1, 2, 3, -1.13; 'CH2_CZ2_HH2', 2, 1, 3, -2.82; 'CH2_CZ2_HZ2', 1, 2, 3, -3.81;
'CH2_CZ2_CZ3', 2, 1, 3, -3.59; 'CE3_CZ3_HZ3', 1, 2, 3, -2.22; 'CE3_CZ3_HE3', 2, 1, 3, -3.50; 'CE3_CH2_CZ3', 1, 3, 2, -3.38;
'CE2_CZ2_HZ2', 1, 2, 3, -3.47; 'CE2_CH2_CZ2', 1, 3, 2, -1.27; 'CE2_HE1_NE1', 1, 3, 2, 2.36; 'CE2_CZ2_NE1', 2, 1, 3, 0.72;
'CD2_CE3_HE3', 1, 2, 3, -1.35; 'CD2_CE3_CZ3', 1, 2, 3, -2.69; 'CD2_CE2_CZ2', 1, 2, 3, 0.26; 'CD2_CE2_CE3', 2, 1, 3, 0.61;
'CD2_CE2_NE1', 1, 2, 3, 3.55; 'CD1_HE1_NE1', 1, 3, 2, 3.38; 'CD1_HD1_NE1', 2, 1, 3, 2.72; 'CD1_CE2_NE1', 1, 3, 2, 5.55;
'CD2_CE3_CG', 3, 1, 2, 1.08; 'CD1_CG_NE1', 2, 1, 3, 2.30};
% Collision detection exceptions (HIS and PRO, where two-bond and three-bond couplings collide)
allowed_collision_list={'H_H_N'};
% Loop over subgraphs
disp(' '); disp('############# TWO-BOND J-COUPLING SUMMARY ###############');
for n=1:size(subgraphs,1)
% Extract labels, residues and numbers
spin_labels=pdb_id(subgraphs(n,:));
spin_numbers=numbers(subgraphs(n,:));
spin_resnames=aa_typ(subgraphs(n,:));
spin_resnums=aa_num(subgraphs(n,:));
% Index the spins
[spin_labels,index]=sort(spin_labels);
spin_numbers=spin_numbers(index);
spin_resnames=spin_resnames(index);
spin_resnums=spin_resnums(index);
% Consult the database
if numel(spin_labels)==1
% Inform the user about solitary spins
disp(['WARNING: solitary spin detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1}]);
elseif numel(spin_labels)==2
% Inform the user about isolated pairs
disp(['WARNING: isolated spin pair detected, ' spin_resnames{1} ':' spin_labels{1} ' and ' spin_resnames{2} ':' spin_labels{2}]);
else
% Build the specification string
spec_string=triples_database(strcmp([spin_labels{1} '_' spin_labels{2} '_' spin_labels{3}],triples_database(:,1)),:);
% Assign the coupling
if isempty(spec_string)
% Inform the user about missing data
disp(['WARNING: unknown atom triple or unphysical proximity, ' spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} ' in amino acids '...
spin_resnames{1} '(' num2str(spin_resnums(1)) '), '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '), '...
spin_resnames{3} '(' num2str(spin_resnums(3)) ')']);
elseif size(spec_string,1)>1
% Complain if multiple records found
error([spec_string{1} ' coupling has been specified multiple times in the coupling database.']);
else
% Extract spin numbers
spin_a=spin_numbers(spec_string{2}); spin_b=spin_numbers(spec_string{3}); spin_c=spin_numbers(spec_string{4});
% Match bonding pattern
if proxmatrix(spin_a,spin_b)&&proxmatrix(spin_b,spin_c)
% Check for collisions
if (~isempty(jmatrix{spin_a,spin_c}))&&(~ismember([spin_labels{1} '_' spin_labels{2} '_' spin_labels{3}],allowed_collision_list))
% Complain and bomb out
error(['Atom triple: ' spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} ' in amino acids '...
spin_resnames{1} '(' num2str(spin_resnums(1)) '), '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '), '...
spin_resnames{3} '(' num2str(spin_resnums(3)) ' collides with other data.']);
else
% Write the array
jmatrix{spin_a,spin_c}=spec_string{5};
end
% Inform the user
disp(['Estimated two-bond J-coupling from ' pad([aa_typ{spin_a} '(' num2str(aa_num(spin_a)) '):' pdb_id{spin_a}],19) ' to '...
pad([aa_typ{spin_c} '(' num2str(aa_num(spin_c)) '):' pdb_id{spin_c}],19) ' '...
pad(num2str(jmatrix{spin_a,spin_c},'%5.1f'),6,'left') ' Hz']);
end
end
end
end
% Get all connected subgraphs up to size 4
subgraphs=dfpt(sparse(proxmatrix),4);
% Remove T-shaped subgraphs
kill_mask=false(size(subgraphs,1),1);
for n=1:size(subgraphs,1)
if any(sum(proxmatrix(subgraphs(n,:),subgraphs(n,:)))==4)
kill_mask(n)=true();
end
end
subgraphs(kill_mask,:)=[];
% Generic Karplus coefficients
J_CCCC_AL=[4.48 0.18 -0.57]; % Aliphatic C-C-C-C from http://dx.doi.org/10.1016/j.carres.2007.02.023
J_CCCH_AL=[3.83 -0.90 3.81]; % Aliphatic C-C-C-H from http://onlinelibrary.wiley.com/doi/10.1002/anie.198204491/pdf
J_HCCH_AL=[4.22 -0.50 4.50]; % Aliphatic H-C-C-H from http://pubs.acs.org/doi/abs/10.1021/ja00901a059
J_CCCC_AR=[0.00 0.00 5.00]; % Aromatic C-C-C-C from [literature reference]
J_CCCH_AR=[0.00 0.00 8.20]; % Aromatic C-C-C-H from [literature reference]
J_HCCH_AR=[0.00 0.00 10.2]; % Aromatic H-C-C-H from [literature reference]
% List of ordered connected quads (sorted atoms, bonding order, Karplus coefficients)
quads_database={...
% Backbone and its vicinity
'CA_CB_CG1_HA', 4, 1, 2, 3, [7.10 -1.00 0.70]; % Vuister, G. W. "J-couplings. Measurement and Usage in Structure Determination." [chi1 side-chain]
'CA_CB_CG2_HA', 4, 1, 2, 3, [7.10 -1.00 0.70]; % Vuister, G. W. "J-couplings. Measurement and Usage in Structure Determination." [chi1 side-chain]
'CA_CB_CG_H', 1, 2, 3, 4, [4.03 -0.87 4.50]; % http://dx.doi.org/10.1002/mrc.1260280513 chi2 ??? need to look at it later.
'CA_CB_CG1_HA', 4, 1, 2, 3, [10.2 -1.30 0.20]; % http://dx.doi.org/10.1021/bi00585a003 (checked)
'CA_CB_CG2_HA', 4, 1, 2, 3, [10.2 -1.30 0.20]; % http://dx.doi.org/10.1021/bi00585a003 (checked)
'CA_CB_CG1_HA', 4, 1, 2, 3, [10.2 -1.30 0.20]; % A. DeMarco and M. Llinas, Biochemistry 18, 3846 (1979) [chi1 side-chain] (checked)
'CA_CB_CG2_HA', 4, 1, 2, 3, [10.2 -1.30 0.20]; % A. DeMarco and M. Llinas, Biochemistry 18, 3846 (1979) [chi1 side-chain] (checked)
'CA_CB_CG_HA', 4, 1, 2, 3, [10.2 -1.30 0.20]; % A. DeMarco and M. Llinas, Biochemistry 18, 3846 (1979) [chi1 side-chain] (checked)
'C_CA_CB_CG', 1, 2, 3, 4, [3.42 -0.59 0.17]; % http://pubs.acs.org/doi/pdf/10.1021/ja029972s [chi1 side-chain] (checked)
'C_CA_CB_CG1', 1, 2, 3, 4, [3.42 -0.59 0.17]; % http://pubs.acs.org/doi/pdf/10.1021/ja029972s [chi1 side-chain] (checked)
'C_CA_CB_CG2', 1, 2, 3, 4, [3.30 -0.51 0.04]; % http://pubs.acs.org/doi/pdf/10.1021/ja029972s [chi1 side-chain] (checked)
'CA_CB_CG_N', 4, 1, 2, 3, [2.64 0.26 -0.22]; % http://pubs.acs.org/doi/pdf/10.1021/ja029972s [chi1 side-chain] (checked)
'CA_CB_CG1_N', 4, 1, 2, 3, [2.22 0.25 -0.06]; % http://pubs.acs.org/doi/pdf/10.1021/ja029972s [chi1 side-chain] (checked)
'CA_CB_CG2_N', 4, 1, 2, 3, [2.01 0.21 -0.12]; % http://pubs.acs.org/doi/pdf/10.1021/ja029972s [chi1 side-chain] (checked)
'C_CA_CB_HB3', 1, 2, 3, 4, [7.2 -2.04 0.60]; % http://pubs.acs.org/doi/pdf/10.1021/ja00528a004 [chi1 side-chain] (checked)
'C_CA_CB_HB2', 1, 2, 3, 4, [7.2 -2.04 0.60]; % http://pubs.acs.org/doi/pdf/10.1021/ja00528a004 [chi1 side-chain] (checked)
'C_CA_CB_HB1', 1, 2, 3, 4, [7.2 -2.04 0.60]; % http://pubs.acs.org/doi/pdf/10.1021/ja00528a004 [chi1 side-chain] (checked)
'C_CA_CB_HB', 1, 2, 3, 4, [7.2 -2.04 0.60]; % http://pubs.acs.org/doi/pdf/10.1021/ja00528a004 [chi1 side-chain] (checked)
'CA_CB_HA_HB', 3, 1, 2, 4, [ 9.5 -1.60 1.80]; % http://dx.doi.org/10.1006/jmbi.1998.1911 [chi1 side-chain] (checked)
'CA_CB_HA_HB1', 3, 1, 2, 4, [ 9.5 -1.60 1.80]; % http://dx.doi.org/10.1006/jmbi.1998.1911 [chi1 side-chain] (checked)
'CA_CB_HA_HB2', 3, 1, 2, 4, [ 9.5 -1.60 1.80]; % http://dx.doi.org/10.1006/jmbi.1998.1911 [chi1 side-chain] (checked)
'CA_CB_HA_HB3', 3, 1, 2, 4, [ 9.5 -1.60 1.80]; % http://dx.doi.org/10.1006/jmbi.1998.1911 [chi1 side-chain] (checked)
'CA_CB_HB1_N', 4, 1, 2, 3, [-4.40 1.20 0.10]; % http://dx.doi.org/10.1006/jmbi.1998.1911 [chi1 side-chain] (checked)
'CA_CB_HB2_N', 4, 1, 2, 3, [-4.40 1.20 0.10]; % http://dx.doi.org/10.1006/jmbi.1998.1911 [chi1 side-chain] (checked)
'CA_CB_HB3_N', 4, 1, 2, 3, [-4.40 1.20 0.10]; % http://dx.doi.org/10.1006/jmbi.1998.1911 [chi1 side-chain] (checked)
'CA_CB_HB_N', 4, 1, 2, 3, [-4.40 1.20 0.10]; % http://dx.doi.org/10.1006/jmbi.1998.1911 [chi1 side-chain] (checked)
'CA_H_HA3_N', 2, 4, 1, 3, [6.51 -1.76 1.60]; % http://dx.doi.org/10.1021/ja00070a024 [backbone phi] (checked)
'CA_H_HA_N', 2, 4, 1, 3, [6.51 -1.76 1.60]; % http://dx.doi.org/10.1021/ja00070a024 [backbone phi] (checked)
'CA_H_HA2_N', 2, 4, 1, 3, [6.51 -1.76 1.60]; % http://dx.doi.org/10.1021/ja00070a024 [backbone phi] (checked)
'CA_CB_H_N', 3, 4, 1, 2, [3.06 -0.074 0.13]; % http://pubs.acs.org/doi/pdf/10.1021/ja970067v [backbone phi] (checked)
'C_CA_H_N', 1, 2, 4, 3, [4.29 -1.01 0.00]; % http://pubs.acs.org/doi/pdf/10.1021/ja001798p [backbone phi] (checked)
'C_CA_HA2_N', 1, 4, 2, 3, [3.72 -2.18 1.28]; % http://pubs.acs.org/doi/pdf/10.1021/ja001798p [backbone phi] (checked)
'C_CA_HA3_N', 1, 4, 2, 3, [3.72 -2.18 1.28]; % http://pubs.acs.org/doi/pdf/10.1021/ja001798p [backbone phi] (checked)
'C_CA_HA_N', 1, 4, 2, 3, [3.72 -2.18 1.28]; % http://pubs.acs.org/doi/pdf/10.1021/ja001798p [backbone phi] (checked)
'C_CA_CB_N', 1, 4, 2, 3, [1.59 -0.67 0.27]; % http://spin.niddk.nih.gov/bax/lit/508/244.pdf [backbone phi] (checked)
'C_C_CA_N', 1, 4, 3, 2, [1.33 -0.88 0.06]; % http://pubs.acs.org/doi/pdf/10.1021/ja9616239 [backbone phi] (checked)
'C_CB_CA_N', 1, 4, 3, 2, [1.59 -0.67 0.27]; % http://spin.niddk.nih.gov/bax/lit/508/244.pdf [backbone phi] (checked)
'C_CA_HA2_N', 4, 1, 2, 3, [-0.88 -0.61 -0.27]; % http://pubs.acs.org/doi/pdf/10.1021/ja00111a021 [backbone psi] (checked)
'C_CA_HA3_N', 4, 1, 2, 3, [-0.88 -0.61 -0.27]; % http://pubs.acs.org/doi/pdf/10.1021/ja00111a021 [backbone psi] (checked)
'C_CA_HA_N', 4, 1, 2, 3, [-0.88 -0.61 -0.27]; % http://pubs.acs.org/doi/pdf/10.1021/ja00111a021 [backbone psi] (checked)
'C_CA_N_N', 3, 2, 1, 4, [0.0 0.0 0.0]; % To be filled in
'C_CA_N_N', 4, 2, 1, 3, [0.0 0.0 0.0]; % To be filled in
'C_CB_CA_N', 4, 1, 3, 2, [0.0 0.0 0.0]; % To be filled in
'C_CA_CA_N', 2, 1, 4, 3, [0.0 0.0 0.0]; % To be filled in
% Histidine ring (GIAO DFT M06/cc-pVTZ)
'CD2_CG_HD2_ND1', 3, 1, 2, 4, [0.0 0.0 2.8]; 'CD2_CG_ND1_NE2', 4, 1, 2, 3, [0.0 0.0 0.0];
'CB_CG_HB2_ND1', 3, 1, 2, 4, [0.0 0.0 0.0]; 'CB_CG_HB3_ND1', 3, 1, 2, 4, [0.0 0.0 0.0];
'CB_CE1_CG_ND1', 1, 3, 4, 2, [0.0 0.0 2.3]; 'CD2_CE1_HE1_NE2', 3, 2, 4, 1, [0.0 0.0 4.9];
'CD2_CE1_HD2_NE2', 3, 1, 4, 2, [0.0 0.0 6.6]; 'CD2_CE1_CG_NE2', 3, 1, 4, 2, [0.0 0.0 1.0];
'CD2_CE1_ND1_NE2', 1, 4, 2, 3, [0.0 0.0 0.0]; 'CD2_CE1_CG_ND1', 1, 3, 4, 2, [0.0 0.0 3.4];
'CE1_CG_HE1_ND1', 3, 1, 4, 2, [0.0 0.0 7.0]; 'CE1_CG_ND1_NE2', 2, 3, 1, 4, [0.0 0.0 1.4];
'CA_CB_CG_ND1', 1, 2, 3, 4, [0.0 0.0 1.0]; 'CB_CD2_CG_NE2', 1, 3, 2, 4, [0.0 0.0 0.0];
'CE1_HD1_HE1_ND1', 2, 4, 1, 3, [0.0 0.0 3.9]; 'CE1_HD1_ND1_NE2', 2, 3, 1, 4, [0.0 0.0 3.3];
'CD2_CG_HD1_ND1', 3, 4, 2, 1, [0.0 0.0 6.1]; 'CB_CG_HD1_ND1', 3, 4, 2, 1, [0.0 0.0 1.0];
% Proline ring (GIAO DFT M06/cc-pVTZ)
'CA_CD_HA_N', 3, 1, 4, 2, [0.0 0.0 0.0]; 'CA_CD_HD2_N', 1, 4, 2, 3, [0.0 0.0 2.5];
'CA_CD_HD3_N', 1, 4, 2, 3, [0.0 0.0 2.5]; 'CA_CD_CG_N', 1, 4, 2, 3, [0.0 0.0 0.0];
'CD_CG_HG2_N', 3, 2, 1, 4, [0.0 0.0 0.0]; 'CD_CG_HG3_N', 3, 2, 1, 4, [0.0 0.0 0.0];
'C_CD_CG_N', 1, 4, 2, 3, [0.0 0.0 2.5]; 'C_CA_CD_N', 1, 2, 4, 3, [0.0 0.0 1.1];
'C_CD_HD2_N', 1, 4, 2, 3, [0.0 0.0 1.0]; 'C_CD_HD3_N', 1, 4, 2, 3, [0.0 0.0 1.0];
'CA_CB_CD_N', 2, 1, 4, 3, [0.0 0.0 0.0]; 'CB_CD_CG_N', 4, 2, 3, 1, [0.0 0.0 1.1];
% Generic aliphatics
'CA_CB_CD1_CG', 1, 2, 4, 3, J_CCCC_AL; 'CA_CB_CD1_CG1', 1, 2, 4, 3, J_CCCC_AL;
'CA_CB_CD2_CG', 1, 2, 4, 3, J_CCCC_AL; 'CA_CB_CD_CG', 1, 2, 4, 3, J_CCCC_AL;
'CA_CB_CG2_HG21', 1, 2, 3, 4, J_CCCH_AL; 'CA_CB_CG_HG3', 1, 2, 3, 4, J_CCCH_AL;
'CA_CB_CG1_HG11', 1, 2, 3, 4, J_CCCH_AL; 'CA_CB_CG1_HG12', 1, 2, 3, 4, J_CCCH_AL;
'CA_CB_CG1_HG13', 1, 2, 3, 4, J_CCCH_AL; 'CD2_CG_HD21_HG', 4, 2, 1, 3, J_HCCH_AL;
'CA_CB_CG2_HG22', 1, 2, 3, 4, J_CCCH_AL; 'CA_CB_CG2_HG23', 1, 2, 3, 4, J_CCCH_AL;
'CA_CB_CG_HG', 1, 2, 3, 4, J_CCCH_AL; 'CA_CB_CG_HG2', 1, 2, 3, 4, J_CCCH_AL;
'CD_CG_HD3_HG2', 4, 2, 1, 3, J_HCCH_AL; 'CB_CD1_CG1_HD11', 1, 3, 2, 4, J_CCCH_AL;
'CB_CD1_CG1_CG2', 2, 3, 1, 4, J_CCCC_AL; 'CB_CD1_CG1_HB', 4, 1, 3, 2, J_CCCH_AL;
'CB_CD1_CG1_HD12', 1, 3, 2, 4, J_CCCH_AL; 'CB_CD1_CG1_HD13', 1, 3, 2, 4, J_CCCH_AL;
'CB_CD1_CG_HB2', 4, 1, 3, 2, J_CCCH_AL; 'CB_CD1_CG_HB3', 4, 1, 3, 2, J_CCCH_AL;
'CB_CD1_CG_HD1', 1, 2, 3, 4, J_CCCH_AL; 'CB_CD1_CG_HD11', 1, 2, 3, 4, J_CCCH_AL;
'CB_CD1_CG_HD12', 1, 2, 3, 4, J_CCCH_AL; 'CB_CD1_CG_HD13', 1, 2, 3, 4, J_CCCH_AL;
'CB_CD2_CE2_CG', 1, 4, 2, 3, J_CCCC_AL; 'CB_CD2_CG_HB2', 4, 1, 3, 2, J_CCCH_AL;
'CB_CD2_CG_HB3', 4, 1, 3, 2, J_CCCH_AL; 'CB_CD2_CG_HD2', 1, 3, 2, 4, J_CCCH_AL;
'CB_CD2_CG_HD21', 1, 3, 2, 4, J_CCCH_AL; 'CB_CD2_CG_HD22', 1, 3, 2, 4, J_CCCH_AL;
'CB_CD2_CG_HD23', 1, 3, 2, 4, J_CCCH_AL; 'CB_CD_CG_HD3', 1, 3, 2, 4, J_CCCH_AL;
'CB_CD_CE_CG', 1, 4, 2, 3, J_CCCC_AL; 'CB_CD_CG_HB2', 4, 1, 3, 2, J_CCCH_AL;
'CB_CD_CG_HB3', 4, 1, 3, 2, J_CCCH_AL; 'CB_CD_CG_HD2', 1, 3, 2, 4, J_CCCH_AL;
'CB_CG1_CG2_HG11', 4, 2, 1, 3, J_CCCH_AL; 'CB_CG1_CG2_HG12', 4, 2, 1, 3, J_CCCH_AL;
'CB_CG1_CG2_HG13', 4, 2, 1, 3, J_CCCH_AL; 'CB_CG1_CG2_HG21', 4, 3, 1, 2, J_CCCH_AL;
'CB_CG1_CG2_HG22', 4, 3, 1, 2, J_CCCH_AL; 'CB_CG1_CG2_HG23', 4, 3, 1, 2, J_CCCH_AL;
'CB_CG1_HB_HG11', 4, 2, 1, 3, J_HCCH_AL; 'CB_CG1_HB_HG12', 4, 2, 1, 3, J_HCCH_AL;
'CB_CG1_HB_HG13', 4, 2, 1, 3, J_HCCH_AL; 'CB_CG2_HB_HG21', 4, 2, 1, 3, J_HCCH_AL;
'CB_CG2_HB_HG22', 4, 2, 1, 3, J_HCCH_AL; 'CB_CG2_HB_HG23', 4, 2, 1, 3, J_HCCH_AL;
'CB_CG_HB2_HG', 4, 2, 1, 3, J_HCCH_AL; 'CB_CG_HB2_HG2', 4, 2, 1, 3, J_HCCH_AL;
'CB_CG_HB2_HG3', 4, 2, 1, 3, J_HCCH_AL; 'CB_CG_HB3_HG', 4, 2, 1, 3, J_HCCH_AL;
'CB_CG_HB3_HG2', 4, 2, 1, 3, J_HCCH_AL; 'CB_CG_HB3_HG3', 4, 2, 1, 3, J_HCCH_AL;
'CD1_CD2_CG_HD1', 4, 1, 3, 2, J_CCCH_AL; 'CD1_CD2_CG_HD11', 4, 1, 3, 2, J_CCCH_AL;
'CD1_CD2_CG_HD12', 4, 1, 3, 2, J_CCCH_AL; 'CD1_CD2_CG_HD13', 4, 1, 3, 2, J_CCCH_AL;
'CD1_CD2_CG_HD2', 4, 2, 3, 1, J_CCCH_AL; 'CD1_CD2_CG_HD21', 4, 2, 3, 1, J_CCCH_AL;
'CD1_CD2_CG_HD22', 4, 2, 3, 1, J_CCCH_AL; 'CD1_CD2_CG_HD23', 4, 2, 3, 1, J_CCCH_AL;
'CD1_CD2_CE1_CG', 3, 1, 4, 2, J_CCCC_AL; 'CD1_CD2_CE2_CG', 1, 4, 2, 3, J_CCCC_AL;
'CD1_CG1_HD11_HG12', 4, 2, 1, 3, J_HCCH_AL; 'CD1_CG1_HD11_HG13', 4, 2, 1, 3, J_HCCH_AL;
'CD1_CG1_HD12_HG12', 4, 2, 1, 3, J_HCCH_AL; 'CD1_CG1_HD12_HG13', 4, 2, 1, 3, J_HCCH_AL;
'CD1_CG1_HD13_HG12', 4, 2, 1, 3, J_HCCH_AL; 'CD1_CG1_HD13_HG13', 4, 2, 1, 3, J_HCCH_AL;
'CD1_CG_HD11_HG', 4, 2, 1, 3, J_HCCH_AL; 'CD1_CG_HD12_HG', 4, 2, 1, 3, J_HCCH_AL;
'CD1_CG_HD13_HG', 4, 2, 1, 3, J_HCCH_AL; 'CD_CG_HD3_HG3', 4, 2, 1, 3, J_HCCH_AL;
'CD2_CG_HD22_HG', 4, 2, 1, 3, J_HCCH_AL; 'CD2_CG_HD23_HG', 4, 2, 1, 3, J_HCCH_AL;
'CD_CE_CG_HE2', 4, 2, 1, 3, J_CCCH_AL; 'CD_CE_CG_HE3', 4, 2, 1, 3, J_CCCH_AL;
'CD_CE_CG_HG2', 4, 3, 1, 2, J_CCCH_AL; 'CD_CE_CG_HG3', 4, 3, 1, 2, J_CCCH_AL;
'CD_CE_HD2_HE2', 4, 2, 1, 3, J_HCCH_AL; 'CD_CE_HD2_HE3', 4, 2, 1, 3, J_HCCH_AL;
'CD_CE_HD3_HE2', 4, 2, 1, 3, J_HCCH_AL; 'CD_CE_HD3_HE3', 4, 2, 1, 3, J_HCCH_AL;
'CD_CG_HD2_HG2', 4, 2, 1, 3, J_HCCH_AL; 'CD_CG_HD2_HG3', 4, 2, 1, 3, J_HCCH_AL;
% Generic aromatics
'CE1_CE2_CZ_HE1', 4, 1, 3, 2, J_CCCH_AR; 'CE1_CE2_CZ_HE2', 4, 2, 3, 1, J_CCCH_AR;
'CE1_CZ_HE1_HZ', 4, 2, 1, 3, J_HCCH_AR; 'CE2_CZ_HE2_HZ', 4, 2, 1, 3, J_HCCH_AR
'CD2_CE2_CG_CZ', 3, 1, 2, 4, J_CCCC_AR; 'CB_CD1_CE1_CG', 1, 4, 2, 3, J_CCCC_AR;
'CD2_CE1_CE2_CZ', 1, 3, 4, 2, J_CCCC_AR; 'CD1_CE1_CG_CZ', 3, 1, 2, 4, J_CCCC_AR;
'CD1_CE1_CG_HE1', 4, 2, 1, 3, J_CCCH_AR; 'CD1_CE1_CZ_HD1', 4, 1, 2, 3, J_CCCH_AR;
'CD1_CE1_CZ_HZ', 4, 3, 2, 1, J_CCCH_AR; 'CD2_CE2_CG_HE2', 4, 2, 1, 3, J_CCCH_AR;
'CD2_CE2_CZ_HD2', 4, 1, 2, 3, J_CCCH_AR; 'CD2_CE2_CZ_HZ', 4, 3, 2, 1, J_CCCH_AR;
'CD2_CE2_HD2_HE2', 3, 1, 2, 4, J_HCCH_AR; 'CD1_CE1_HD1_HE1', 3, 1, 2, 4, J_HCCH_AR;
'CD1_CE1_CE2_CZ', 1, 2, 4, 3, J_CCCC_AR;
% Generic amides
'CB_CG_HB2_ND2', 3, 1, 2, 4, [3.1 -0.6 0.4]; % http://dx.doi.org/10.1016/j.carres.2007.02.023
'CB_CG_HB3_ND2', 3, 1, 2, 4, [3.1 -0.6 0.4]; % http://dx.doi.org/10.1016/j.carres.2007.02.023
'CB_CG_HD21_ND2', 1, 2, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CB_CG_HD22_ND2', 1, 2, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CG_HE21_NE2', 3, 4, 1, 2, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CG_HE22_NE2', 3, 4, 1, 2, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CG_HG2_NE2', 3, 2, 1, 4, [3.1 -0.6 0.4]; % http://dx.doi.org/10.1016/j.carres.2007.02.023
'CB_CD_CG_NE2', 1, 3, 2, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CA_CB_CG_ND2', 1, 2, 3, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CG_HG3_NE2', 3, 2, 1, 4, [3.1 -0.6 0.4]; % http://dx.doi.org/10.1016/j.carres.2007.02.023
% Extra parameters highlighted by the Boston visit
'CZ_HH22_NH1_NH2', 2, 4, 1, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CZ_HH21_NH1_NH2', 2, 4, 1, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CZ_HH12_NH1_NH2', 2, 3, 1, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CZ_HH11_NH1_NH2', 2, 3, 1, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CZ_HH22_NE_NH2', 2, 4, 1, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CZ_HH21_NE_NH2', 2, 4, 1, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CZ_HH12_NE_NH1', 2, 4, 1, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CZ_HH11_NE_NH1', 2, 4, 1, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CZ_HE_NE_NH2', 2, 3, 1, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CZ_HE_NE_NH1', 2, 3, 1, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CZ_NE_NH2', 1, 3, 2, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CZ_NE_NH1', 1, 3, 2, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CZ_HD3_NE', 3, 1, 4, 2, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CZ_HD2_NE', 3, 1, 4, 2, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_HD3_HE_NE', 2, 1, 4, 3, [4.22 -0.50 4.50]; % Tentative, needs checking
'CD_HD2_HE_NE', 2, 1, 4, 3, [4.22 -0.50 4.50]; % Tentative, needs checking
'CD_CG_CZ_NE', 2, 1, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CG_HE_NE', 2, 1, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CG_HG3_NE', 3, 2, 1, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CG_HG2_NE', 3, 2, 1, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CB_CD_CG_NE', 1, 3, 2, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CE_HE3_HZ3_NZ', 2, 1, 4, 3, [6.51 -1.76 1.60]; % Tentative, needs checking
'CE_HE2_HZ3_NZ', 2, 1, 4, 3, [6.51 -1.76 1.60]; % Tentative, needs checking
'CE_HE3_HZ2_NZ', 2, 1, 4, 3, [6.51 -1.76 1.60]; % Tentative, needs checking
'CE_HE2_HZ2_NZ', 2, 1, 4, 3, [6.51 -1.76 1.60]; % Tentative, needs checking
'CE_HE3_HZ1_NZ', 2, 1, 4, 3, [6.51 -1.76 1.60]; % Tentative, needs checking
'CE_HE2_HZ1_NZ', 2, 1, 4, 3, [6.51 -1.76 1.60]; % Tentative, needs checking
'CD_CE_HZ3_NZ', 1, 2, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CE_HZ2_NZ', 1, 2, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CE_HZ1_NZ', 1, 2, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CE_HD3_NZ', 3, 1, 2, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CE_HD2_NZ', 3, 1, 2, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CD_CE_CG_NZ', 3, 1, 2, 4, [0.0 0.0 0.0]; % Tentative, needs checking
'CA_H3_HA_N', 2, 4, 1, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CA_H2_HA_N', 2, 4, 1, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CA_H1_HA_N', 2, 4, 1, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CA_CB_H3_N', 2, 1, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CA_CB_H2_N', 2, 1, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'CA_CB_H1_N', 2, 1, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'C_CA_H3_N', 1, 2, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'C_CA_H2_N', 1, 2, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
'C_CA_H1_N', 1, 2, 4, 3, [0.0 0.0 0.0]; % Tentative, needs checking
% Tryptophan side chain (GIAO DFT M06/cc-pVTZ data in PCM water)
'CH2_CZ3_HH2_HZ3' 3, 1, 2, 4, [0.0 0.0 9.41]; 'CH2_CZ2_HH2_HZ2' 3, 1, 2, 4, [0.0 0.0 10.87];
'CH2_CZ2_CZ3_HZ3' 2, 1, 3, 4, [0.0 0.0 8.31]; 'CH2_CZ2_CZ3_HZ2' 3, 1, 2, 4, [0.0 0.0 7.63];
'CE3_CZ3_HE3_HZ3' 3, 1, 2, 4, [0.0 0.0 11.09]; 'CE3_CH2_CZ3_HH2' 1, 3, 2, 4, [0.0 0.0 8.12];
'CE3_CH2_CZ3_HE3' 2, 3, 1, 4, [0.0 0.0 8.56]; 'CE3_CH2_CZ2_CZ3' 1, 4, 2, 3, [0.0 0.0 8.07];
'CE2_CH2_CZ2_HH2' 1, 3, 2, 4, [0.0 0.0 9.67]; 'CE2_CH2_CZ2_CZ3' 1, 3, 2, 4, [0.0 0.0 10.44];
'CE2_CZ2_HZ2_NE1' 4, 1, 2, 3, [0.0 0.0 1.36]; 'CE2_CZ2_HE1_NE1' 2, 1, 4, 3, [0.0 0.0 1.31];
'CE2_CH2_CZ2_NE1' 2, 3, 1, 4, [0.0 0.0 1.48]; 'CD2_CE3_CZ3_HZ3' 1, 2, 3, 4, [0.0 0.0 8.32];
'CD2_CE3_CH2_CZ3' 1, 2, 4, 3, [0.0 0.0 8.85]; 'CD2_CE2_CZ2_HZ2' 1, 2, 3, 4, [0.0 0.0 5.17];
'CD2_CE2_CH2_CZ2' 1, 2, 4, 3, [0.0 0.0 8.85]; 'CD2_CE2_CE3_HE3' 2, 1, 3, 4, [0.0 0.0 7.92];
'CD2_CE2_CE3_CZ3' 2, 1, 3, 4, [0.0 0.0 10.44]; 'CD2_CE2_CE3_CZ2' 3, 1, 2, 4, [0.0 0.0 8.07];
'CD2_CE2_HE1_NE1' 1, 2, 4, 3, [0.0 0.0 6.80]; 'CD2_CE2_CE3_NE1' 3, 1, 2, 4, [0.0 0.0 1.01];
'CD1_HD1_HE1_NE1' 2, 1, 4, 3, [0.0 0.0 3.64]; 'CD1_CE2_HD1_NE1' 2, 4, 1, 3, [0.0 0.0 6.87];
'CD1_CE2_CZ2_NE1' 3, 2, 4, 1, [0.0 0.0 2.34]; 'CD1_CD2_CE2_NE1' 2, 3, 4, 1, [0.0 0.0 2.29];
'CD2_CE3_CG_HE3' 3, 1, 2, 4, [0.0 0.0 4.04]; 'CD2_CE3_CG_CZ3' 3, 1, 2, 4, [0.0 0.0 4.69];
'CD2_CE2_CG_CZ2' 3, 1, 2, 4, [0.0 0.0 2.56]; 'CD2_CE2_CG_NE1' 3, 1, 2, 4, [0.0 0.0 2.30];
'CD1_CG_HE1_NE1' 2, 1, 4, 3, [0.0 0.0 5.75]; 'CD1_CE2_CG_NE1' 3, 1, 4, 2, [0.0 0.0 3.34];
'CD1_CD2_CE3_CG' 1, 4, 2, 3, [0.0 0.0 5.66]; 'CD1_CD2_CG_NE1' 2, 3, 1, 4, [0.0 0.0 3.54];
'CB_CD2_CE3_CG' 1, 4, 2, 3, [0.0 0.0 1.70]; 'CB_CD1_CG_NE1' 1, 3, 2, 4, [0.0 0.0 1.21];
};
% Collision detection exceptions (TRP, HIS and PRO, where two-bond and three-bond couplings collide)
allowed_collision_list={'CD2_CE1_ND1_NE2','CE1_CG_ND1_NE2','CD2_CE1_CG_ND1','CD1_CE1_CG_CZ',...
'CD1_CD2_CE2_CG','CA_CB_CD_CG','CA_CD_CG_N','CA_CB_CD_N','CD2_CE1_CG_NE2',...
'CD2_CE2_CH2_CZ2','CD2_CE2_CE3_CZ3','CD1_CE2_CG_NE1','CA_CB_CG2_HA',...
'CA_CB_CG1_HA'};
% Loop over subgraphs
disp(' '); disp('############# THREE-BOND J-COUPLING SUMMARY ###############');
for n=1:size(subgraphs,1)
% Extract labels, residues and numbers
spin_labels=pdb_id(subgraphs(n,:));
spin_numbers=numbers(subgraphs(n,:));
spin_resnames=aa_typ(subgraphs(n,:));
spin_resnums=aa_num(subgraphs(n,:));
% Index the spins
[spin_labels,index]=sort(spin_labels);
spin_numbers=spin_numbers(index);
spin_resnames=spin_resnames(index);
spin_resnums=spin_resnums(index);
% Consult the database
if numel(spin_labels)==1
% Inform the user if no J-coupling found
disp(['WARNING: solitary spin detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1}]);
elseif numel(spin_labels)==2
% Inform the user if no J-coupling found
disp(['WARNING: isolated spin pair detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1} ' and ' ...
spin_resnames{2} '(' num2str(spin_resnums(2)) '):' spin_labels{2}]);
elseif numel(spin_labels)==3
% Inform the user if no J-coupling found
disp(['WARNING: isolated spin triad detected, ' spin_resnames{1} '(' num2str(spin_resnums(1)) '):' spin_labels{1} ', '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '):' spin_labels{2} ' and '...
spin_resnames{3} '(' num2str(spin_resnums(3)) '):' spin_labels{3}]);
else
% Assemble specifiction string
spec_strings=quads_database(strcmp([spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} '_' spin_labels{4}],quads_database(:,1)),:);
% Complain if nothing found
if isempty(spec_strings)
disp(['WARNING: unknown atom quad or unphysical proximity, ' spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} '_' spin_labels{4} ' in amino acids '...
spin_resnames{1} '(' num2str(spin_resnums(1)) '), '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '), '...
spin_resnames{3} '(' num2str(spin_resnums(3)) '), '...
spin_resnames{4} '(' num2str(spin_resnums(4)) ')']);
else
% Loop over specifications
for k=1:size(spec_strings,1)
% Extract spin numbers
spin_a=spin_numbers(spec_strings{k,2}); spin_b=spin_numbers(spec_strings{k,3});
spin_c=spin_numbers(spec_strings{k,4}); spin_d=spin_numbers(spec_strings{k,5});
% Match bonding pattern
if proxmatrix(spin_a,spin_b)&&proxmatrix(spin_b,spin_c)&&proxmatrix(spin_c,spin_d)
% Get Karplus coefficients
A=spec_strings{k,6}(1); B=spec_strings{k,6}(2); C=spec_strings{k,6}(3);
% Get dihedral angle
theta=dihedral(coords{spin_a},coords{spin_b},coords{spin_c},coords{spin_d});
% Assign the J-coupling
if (~isempty(jmatrix{spin_a,spin_d}))&&(~ismember([spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} '_' spin_labels{4}],allowed_collision_list))
% Complain and bomb out
error(['atom quad: ' spin_labels{1} '_' spin_labels{2} '_' spin_labels{3} '_' spin_labels{4} ' in amino acids '...
spin_resnames{1} '(' num2str(spin_resnums(1)) '), '...
spin_resnames{2} '(' num2str(spin_resnums(2)) '), '...
spin_resnames{3} '(' num2str(spin_resnums(3)) '), '...
spin_resnames{4} '(' num2str(spin_resnums(4)) ') collides with other data.']);
else
% Write the array
jmatrix{spin_a,spin_d}=A*cosd(theta)^2+B*cosd(theta)+C;
% Inform the user
disp(['Estimated three-bond J-coupling from ' pad([aa_typ{spin_a} '(' num2str(aa_num(spin_a)) '):' pdb_id{spin_a}],19) ' to '...
pad([aa_typ{spin_d} '(' num2str(aa_num(spin_d)) '):' pdb_id{spin_d}],19) ' '...
pad(num2str(jmatrix{spin_a,spin_d},'%5.1f'),6,'left') ' Hz']);
end
end
end
end
end
end
end
% Consistency enforcement
function grumble(aa_num,aa_typ,pdb_id,coords)
if ~isnumeric(aa_num)
error('aa_num must be a vector of positive integers.');
end
if ~iscell(aa_typ)
error('aa_typ must be a cell array of strings.');
end
if ~iscell(pdb_id)
error('pdb_id must be a cell array of strings.');
end
if ~iscell(coords)
error('coords must be a cell array of 3-vectors.');
end
if (numel(aa_num)~=numel(aa_typ))||...
(numel(aa_typ)~=numel(pdb_id))||...
(numel(pdb_id)~=numel(coords))
error('all four inputs must have the same number of elements.');
end
end
% Niels Bohr, on Dirac's equation:
%
% "Simply put an explanation of the theory on a poster, tack it up on a tree
% in the jungle, and any elephant (a beast noted for its wisdom) that passed
% by would immediately become so engrossed trying to figure it out that it
% could be packed up and delivered to the Copenhagen Zoo before it realized
% anything had happened."
|
github
|
tsajed/nmr-pred-master
|
ocparse.m
|
.m
|
nmr-pred-master/spinach/etc/ocparse.m
| 1,903 |
utf_8
|
4c4c8607b6468e09df40c3b31e69d269
|
% ORCA cube file parser. Extracts the normalised probability density and
% the associated metric information from ORCA cube files. Syntax:
%
% [density,ext,dx,dy,dz]=ocparse(filename)
%
% Outputs:
%
% density - probability density cube with dimensions
% ordered as [X Y Z]
%
% ext - grid extents in Angstrom, ordered as
% [xmin xmax ymin ymax zmin zmax]
%
% dx,dy,dz - grid steps in the three directions, Angstrom
%
% [email protected]
% [email protected]
function [density,ext,dx,dy,dz]=ocparse(filename,pad_factor)
% Inform the user
disp('Parsing ORCA cube...');
% Parse the file
A=importdata(filename);
% Get the number of points along [x y z]
npts=str2num(A.textdata{2}); %#ok<ST2NM>
% Make the probability density cube
density=reshape(abs(A.data),npts(2),npts(3),npts(1));
density=permute(density,[2 3 1]);
% Get the corner coordinates
corner_xyz=str2num(A.textdata{3}); %#ok<ST2NM>
% Get the grid spacing vector
dxdydz=str2num(A.textdata{4}); %#ok<ST2NM>
dx=dxdydz(1); dy=dxdydz(2); dz=dxdydz(3);
% Integrate and normalise probability density
total_prob=simps(simps(simps(density)))*dx*dy*dz;
density=density/total_prob;
% Compute grid extents
ext=[corner_xyz(1) (corner_xyz(1)+(npts(1)-1)*dx)...
corner_xyz(2) (corner_xyz(2)+(npts(2)-1)*dy)...
corner_xyz(3) (corner_xyz(3)+(npts(3)-1)*dz)];
% Pad the density with zeros
density=padarray(density,pad_factor*size(density),0,'both');
ext=(2*pad_factor+1)*ext;
end
% There is a cult of ignorance in the United States, and there
% has always been. The strain of anti-intellectualism has been
% a constant thread winding its way through our political and
% cultural life, nurtured by the false notion that democracy
% means that 'my ignorance is just as good as your knowledge'.
%
% Isaac Asimov
|
github
|
tsajed/nmr-pred-master
|
write_movie.m
|
.m
|
nmr-pred-master/spinach/interfaces/write_movie.m
| 501 |
utf_8
|
7cd0058285259cf5914ed341292b8b1f
|
% Orbits the camera around a 3D plot and writes a movie.
%
% [email protected]
function write_movie(file_name)
% Open the video writer object
writerObj=VideoWriter(file_name,'MPEG-4');
open(writerObj);
% Orbit the camera
for n=1:360
% Grab the frame
writeVideo(writerObj,getframe(gcf));
pause(0.05); camorbit(1,0);
end
% Close the writer object
close(writerObj);
end
% Love is [...] friendship inspired by beauty.
%
% Marcus Tullius Cicero
|
github
|
tsajed/nmr-pred-master
|
assume.m
|
.m
|
nmr-pred-master/spinach/kernel/assume.m
| 22,636 |
utf_8
|
2293a974f8af42896f8756162a65df48
|
% Sets case-specific assumptions for various simulation contexts. This
% function determines the behaviour of the Hamiltonian generation func-
% tion and should be called before the Hamiltonian is requested.
%
% The function text is self-explanatory -- interaction strength parame-
% ters are set in each section according to the physical requirements
% of each specific simulation context. Syntax:
%
% spin_system=assume(spin_system,assumptions,retention)
%
% where assumptions may be set to 'nmr' (high-field NMR), 'esr' (elec-
% tron rotating frame ESR), 'deer' (DEER spectroscopy), and some other
% more specialized assumption sets used by other Spinach functions.
%
% The retention argument may be set to 'zeeman' (in which case all spin-
% spin couplings are ignored) or 'couplings' (in which case all Zeeman
% interactions are ignored).
%
% [email protected]
function spin_system=assume(spin_system,assumptions,retention)
% Check consistency
if nargin==2
grumble(assumptions);
elseif nargin==3
grumble(assumptions,retention);
else
error('incorrect number of input arguments.');
end
% Report to the user
report(spin_system,['working assumptions for coherent Hamiltonian set to "' assumptions '".']);
% Preallocate the arrays
spin_system.inter.zeeman.strength=cell(1,spin_system.comp.nspins);
spin_system.inter.coupling.strength=cell(spin_system.comp.nspins);
% Set the approximations
switch assumptions
case {'nmr'}
% Do the reporting
report(spin_system,'rotating frame approximation for electrons.');
report(spin_system,'rotating frame approximation for nuclei.');
report(spin_system,'secular terms for electron Zeeman interactions.');
report(spin_system,'secular terms for nuclear Zeeman interactions.');
report(spin_system,'secular coupling terms for spins belonging to the same species.');
report(spin_system,'weak coupling terms for spins belonging to different species.');
report(spin_system,'secular coupling terms for quadratic couplings.');
% Process Zeeman interactions
for n=1:spin_system.comp.nspins
% All Zeeman interactions should be secular
spin_system.inter.zeeman.strength{n}='secular';
end
% Process couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if strcmp(spin_system.comp.isotopes{n},spin_system.comp.isotopes{k})
% Couplings between spins of the same type should be secular
spin_system.inter.coupling.strength{n,k}='secular';
else
% Couplings between spins of different types should be weak
spin_system.inter.coupling.strength{n,k}='weak';
end
end
end
case {'esr'}
% Do the reporting
report(spin_system,'rotating frame approximation for electrons.');
report(spin_system,'laboratory frame simulation for nuclei.');
report(spin_system,'secular terms for electron Zeeman interactions.');
report(spin_system,'all terms for nuclear Zeeman interactions.');
report(spin_system,'secular terms for inter-electron couplings.');
report(spin_system,'secular terms for electron zero-field splittings.');
report(spin_system,'weak and pseudosecular terms for hyperfine couplings.');
report(spin_system,'all terms for inter-nuclear couplings.');
report(spin_system,'all terms for nuclear quadrupolar couplings.');
% Process Zeeman interactions
for n=1:spin_system.comp.nspins
if strcmp(spin_system.comp.isotopes{n}(1),'E')
% Electron Zeeman interactions should be secular
spin_system.inter.zeeman.strength{n}='secular';
else
% Full Zeeman tensors should be used for nuclei
spin_system.inter.zeeman.strength{n}='full';
end
end
% Process couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if strcmp(spin_system.comp.isotopes{n}(1),'E')&&(~strcmp(spin_system.comp.isotopes{k}(1),'E'))
% Couplings from electrons to nuclei should be left-secular
spin_system.inter.coupling.strength{n,k}='z*';
elseif strcmp(spin_system.comp.isotopes{k}(1),'E')&&(~strcmp(spin_system.comp.isotopes{n}(1),'E'))
% Couplings from nuclei to electrons should be right-secular
spin_system.inter.coupling.strength{n,k}='*z';
elseif strcmp(spin_system.comp.isotopes{n}(1),'E')&&(strcmp(spin_system.comp.isotopes{k}(1),'E'))
% Couplings between electrons should be secular
spin_system.inter.coupling.strength{n,k}='secular';
else
% Couplings between nuclei should be strong
spin_system.inter.coupling.strength{n,k}='strong';
end
end
end
case {'deer'}
% Do the reporting
report(spin_system,'rotating frame approximation for electrons.');
report(spin_system,'laboratory frame simulation for nuclei.');
report(spin_system,'secular terms for electron Zeeman interactions.');
report(spin_system,'all terms for nuclear Zeeman interactions.');
report(spin_system,'weak terms for inter-electron couplings.');
report(spin_system,'secular terms for electron zero-field splittings.');
report(spin_system,'secular and pseudosecular terms for hyperfine couplings.');
report(spin_system,'all terms for inter-nuclear couplings.');
report(spin_system,'all terms for nuclear quadrupolar couplings.');
% Process Zeeman interactions
for n=1:spin_system.comp.nspins
if strcmp(spin_system.comp.isotopes{n}(1),'E')
% Electron Zeeman interactions should be secular
spin_system.inter.zeeman.strength{n}='secular';
else
% Full Zeeman tensors should be used for nuclei
spin_system.inter.zeeman.strength{n}='full';
end
end
% Process couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if strcmp(spin_system.comp.isotopes{n}(1),'E')&&(~strcmp(spin_system.comp.isotopes{k}(1),'E'))
% Couplings from electron to nucleus should be left-secular
spin_system.inter.coupling.strength{n,k}='z*';
elseif strcmp(spin_system.comp.isotopes{k}(1),'E')&&(~strcmp(spin_system.comp.isotopes{n}(1),'E'))
% Couplings from nucleus to electron should be right-secular
spin_system.inter.coupling.strength{n,k}='*z';
elseif strcmp(spin_system.comp.isotopes{n}(1),'E')&&(strcmp(spin_system.comp.isotopes{k}(1),'E'))&&(n~=k)
% Couplings between different electrons should be weak
spin_system.inter.coupling.strength{n,k}='weak';
elseif strcmp(spin_system.comp.isotopes{n}(1),'E')&&(strcmp(spin_system.comp.isotopes{k}(1),'E'))&&(n==k)
% Quadratic couplings on each electron should be secular
spin_system.inter.coupling.strength{n,k}='secular';
else
% Couplings between nuclei should be strong
spin_system.inter.coupling.strength{n,k}='strong';
end
end
end
case {'labframe'}
% Do the reporting
report(spin_system,'laboratory frame simulation for electrons.');
report(spin_system,'laboratory frame simulation for nuclei.');
report(spin_system,'all terms for electron Zeeman interactions.');
report(spin_system,'all terms for nuclear Zeeman interactions.');
report(spin_system,'all terms for all couplings.');
% Process Zeeman interactions
for n=1:spin_system.comp.nspins
% Full Zeeman tensors should be used for all spins
spin_system.inter.zeeman.strength{n}='full';
end
% Process couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
% Full coupling tensors should be used for all spins
spin_system.inter.coupling.strength{n,k}='strong';
end
end
case {'quad-only'}
% Do the reporting
report(spin_system,'laboratory frame ZFS for electrons.');
report(spin_system,'laboratory frame quadrupolar couplings for nuclei.');
report(spin_system,'all other interactions ignored.');
% Ignore all Zeeman interactions
for n=1:spin_system.comp.nspins
spin_system.inter.zeeman.strength{n}='ignore';
end
% Process couplings
for n=1:spin_system.comp.nspins
% Ignore all spin-spin couplings
for k=1:spin_system.comp.nspins
spin_system.inter.coupling.strength{n,k}='ignore';
end
% Keep lab frame quadratic couplings
spin_system.inter.coupling.strength{n,n}='strong';
end
case {'deer-labframe'}
% Do the reporting
report(spin_system,'laboratory frame simulation for electrons.');
report(spin_system,'laboratory frame simulation for nuclei.');
report(spin_system,'all terms for electron Zeeman interactions.');
report(spin_system,'all terms for nuclear Zeeman interactions.');
report(spin_system,'weak terms for inter-electron couplings.');
report(spin_system,'all terms for all other couplings.');
% Process Zeeman interactions
for n=1:spin_system.comp.nspins
% Full Zeeman tensors should be used for all spins
spin_system.inter.zeeman.strength{n}='full';
end
% Process couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if strcmp(spin_system.comp.isotopes{n}(1),'E')&&(strcmp(spin_system.comp.isotopes{k}(1),'E'))&&(n~=k)
% Couplings between different electrons should be weak
spin_system.inter.coupling.strength{n,k}='weak';
else
% All other couplings should be strong
spin_system.inter.coupling.strength{n,k}='strong';
end
end
end
case {'se_dnp_h+'}
% Do the reporting
report(spin_system,'H+ part of the solid effect DNP Hamiltonian.');
report(spin_system,'keeping EzNp parts of electron-nuclear couplings.');
report(spin_system,'keeping T(2,+1) parts of inter-nuclear couplings.');
report(spin_system,'all inter-electron interactions ignored.');
report(spin_system,'all quadratic interactions ignored.');
report(spin_system,'all Zeeman interactions ignored.');
% Ignore all Zeeman interactions
for n=1:spin_system.comp.nspins
spin_system.inter.zeeman.strength{n}='ignore';
end
% Process couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if n==k
% Ignore quadratic couplings
spin_system.inter.coupling.strength{n,k}='ignore';
elseif strcmp(spin_system.comp.isotopes{n}(1),'E')&&(~strcmp(spin_system.comp.isotopes{k}(1),'E'))
% Keep EzN+ for electron-nuclear couplings
spin_system.inter.coupling.strength{n,k}='z+';
elseif strcmp(spin_system.comp.isotopes{k}(1),'E')&&(~strcmp(spin_system.comp.isotopes{n}(1),'E'))
% Keep N+Ez for nuclear-electron couplings
spin_system.inter.coupling.strength{n,k}='+z';
elseif strcmp(spin_system.comp.isotopes{n}(1),'E')&&(strcmp(spin_system.comp.isotopes{k}(1),'E'))
% Ignore couplings between electrons
spin_system.inter.coupling.strength{n,k}='ignore';
elseif (~strcmp(spin_system.comp.isotopes{k}(1),'E'))&&(~strcmp(spin_system.comp.isotopes{n}(1),'E'))
% Keep the T(2,+1) component of inter-nuclear couplings
spin_system.inter.coupling.strength{n,k}='T(2,+1)';
end
end
end
case {'se_dnp_h-'}
% Do the reporting
report(spin_system,'H- part of the solid effect DNP Hamiltonian.');
report(spin_system,'keeping EzNm parts of electron-nuclear couplings.');
report(spin_system,'keeping T(2,-1) parts of inter-nuclear couplings.');
report(spin_system,'all inter-electron interactions ignored.');
report(spin_system,'all quadratic interactions ignored.');
report(spin_system,'all Zeeman interactions ignored.');
% Ignore all Zeeman interactions
for n=1:spin_system.comp.nspins
spin_system.inter.zeeman.strength{n}='ignore';
end
% Process couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if n==k
% Ignore quadratic couplings
spin_system.inter.coupling.strength{n,k}='ignore';
elseif strcmp(spin_system.comp.isotopes{n}(1),'E')&&(~strcmp(spin_system.comp.isotopes{k}(1),'E'))
% Keep EzN+ for electron-nuclear couplings
spin_system.inter.coupling.strength{n,k}='z-';
elseif strcmp(spin_system.comp.isotopes{k}(1),'E')&&(~strcmp(spin_system.comp.isotopes{n}(1),'E'))
% Keep N+Ez for nuclear-electron couplings
spin_system.inter.coupling.strength{n,k}='-z';
elseif strcmp(spin_system.comp.isotopes{n}(1),'E')&&(strcmp(spin_system.comp.isotopes{k}(1),'E'))
% Ignore couplings between electrons
spin_system.inter.coupling.strength{n,k}='ignore';
elseif (~strcmp(spin_system.comp.isotopes{k}(1),'E'))&&(~strcmp(spin_system.comp.isotopes{n}(1),'E'))
% Keep the T(2,-1) component of inter-nuclear couplings
spin_system.inter.coupling.strength{n,k}='T(2,-1)';
end
end
end
case {'se_dnp_h0'}
% Do the reporting
report(spin_system,'H0 part of the solid effect DNP Hamiltonian.');
report(spin_system,'keeping EzNz parts of electron-nuclear couplings.');
report(spin_system,'keeping secular parts of inter-nuclear couplings.');
report(spin_system,'all inter-electron interactions ignored.');
report(spin_system,'all quadratic interactions ignored.');
report(spin_system,'all Zeeman interactions ignored.');
% Ignore all Zeeman interactions
for n=1:spin_system.comp.nspins
spin_system.inter.zeeman.strength{n}='ignore';
end
% Process couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if n==k
% Ignore quadratic couplings
spin_system.inter.coupling.strength{n,k}='ignore';
elseif strcmp(spin_system.comp.isotopes{n}(1),'E')&&(~strcmp(spin_system.comp.isotopes{k}(1),'E'))
% Keep EzN+ for electron-nuclear couplings
spin_system.inter.coupling.strength{n,k}='zz';
elseif strcmp(spin_system.comp.isotopes{k}(1),'E')&&(~strcmp(spin_system.comp.isotopes{n}(1),'E'))
% Keep N+Ez for nuclear-electron couplings
spin_system.inter.coupling.strength{n,k}='zz';
elseif strcmp(spin_system.comp.isotopes{n}(1),'E')&&(strcmp(spin_system.comp.isotopes{k}(1),'E'))
% Ignore couplings between electrons
spin_system.inter.coupling.strength{n,k}='ignore';
elseif (~strcmp(spin_system.comp.isotopes{k}(1),'E'))&&(~strcmp(spin_system.comp.isotopes{n}(1),'E'))
% Keep the T(2,-1) component of inter-nuclear couplings
spin_system.inter.coupling.strength{n,k}='secular';
end
end
end
case 'qnmr'
% Do the reporting
report(spin_system,'rotating frame approximation for S=1/2 nuclei.');
report(spin_system,'laboratory frame simulation for S>1/2 nuclei.');
report(spin_system,'electrons disallowed by the approximation.');
report(spin_system,'secular Zeeman terms for S=1/2 nuclei.');
report(spin_system,'all Zeeman terms for S>1/2 nuclei.');
report(spin_system,'secular terms for couplings between S=1/2 nuclei.');
report(spin_system,'weak and pseudosecular terms for couplings between S=1/2 and S>1/2 nuclei.');
report(spin_system,'all terms for couplings between S>1/2 nuclei.');
report(spin_system,'all terms for nuclear quadrupolar couplings.');
% Process Zeeman interactions
for n=1:spin_system.comp.nspins
% Check for electrons
if strcmp(spin_system.comp.isotopes{n}(1),'E')
error('electrons are not permitted in overtone NMR simuilations.');
end
% Assign strength parameters
if spin_system.comp.mults(n)==2
% S=1/2 Zeeman interactions should be secular
spin_system.inter.zeeman.strength{n}='secular';
else
% All other Zeeman interactions should be strong
spin_system.inter.zeeman.strength{n}='full';
end
end
% Process couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
% Assign strength parameters
if (spin_system.comp.mults(n)==2)&&(spin_system.comp.mults(k)>2)
% Couplings from S=1/2 to S>1/2 nuclei should be left-secular
spin_system.inter.coupling.strength{n,k}='z*';
elseif (spin_system.comp.mults(n)>2)&&(spin_system.comp.mults(k)==2)
% Couplings from S>1/2 to S=1/2 nuclei should be right-secular
spin_system.inter.coupling.strength{n,k}='*z';
elseif (spin_system.comp.mults(n)==2)&&(spin_system.comp.mults(k)==2)
% Couplings between S=1/2 nuclei should be secular
spin_system.inter.coupling.strength{n,k}='secular';
else
% Couplings between S>1/2 nuclei should be strong
spin_system.inter.coupling.strength{n,k}='strong';
end
end
end
otherwise
% Complain and bomb out
error('unrecognized assumption set.')
end
% Choose the terms to retain
if exist('retention','var')&&strcmp(retention,'couplings')
for n=1:spin_system.comp.nspins
spin_system.inter.zeeman.strength{n}='ignore';
end
report(spin_system,'WARNING - all Zeeman interactions will be ignored.');
elseif exist('retention','var')&&strcmp(retention,'zeeman')
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
spin_system.inter.coupling.strength{n,k}='ignore';
end
end
report(spin_system,'WARNING - all couplings will be ignored.');
end
end
% Consistency enforcement
function grumble(assumptions,retention)
if ~ischar(assumptions)
error('assumptions argument muct be a character string.');
end
if exist('retention','var')&&(~ischar(retention))
error('retention argument must be a character string.');
end
end
% Humanity has advanced, when it has advanced, not because it has
% been sober, responsible, and cautious, but because it has been
% playful, rebellious, and immature.
%
% Tom Robbins
|
github
|
tsajed/nmr-pred-master
|
execute.m
|
.m
|
nmr-pred-master/spinach/kernel/execute.m
| 2,315 |
utf_8
|
707e4338d2a351b55fcbd04cc0d08cca
|
% Applies an event sequence to a state vector. Not very sophisticated
% or efficient at the moment, further improvements to come. Syntax:
%
% rho=execute(spin_system,operators,durations,rho)
%
% where operators is a cell array of Hamiltonians or Liouvilians and
% durations is a vector of times for which they act. The events are
% executed chronologically from left to right.
%
% [email protected]
function rho=execute(spin_system,operators,durations,rho)
% Check consistency
grumble(operators,durations);
% Apply the event sequence
for n=1:numel(operators)
% Estimate the number of steps
[timestep,nsteps]=stepsize(operators{n},durations(n));
% Decide how to proceed
if nsteps < 10
% For short time steps use Krylov propagation
rho=step(spin_system,operators{n},rho,durations(n));
else
% For long time steps use the evolution function
rho=evolution(spin_system,operators{n},[],rho,timestep,nsteps,'final');
end
end
end
% Consistency enforcement
function grumble(operators,durations)
if (~iscell(operators))||isempty(operators)||(~isrow(operators))
error('operators array must be a row cell array of matrices.');
end
if (~isnumeric(durations))||(~isrow(durations))||any(durations<=0)
error('durations array must be a row vector of positive numbers.');
end
if numel(operators)~=numel(durations)
error('operators and durations arrays must have the same number of elements.');
end
end
% In 1929, malaria caused by Plasmodium falciparum broke out in downtown
% Cairo, Egypt, due to needle sharing by local drug addicts. By the late
% 1930-es a similar heroin-driven malaria epidemic was spreading through
% New York City. Six percent of New York City prison inmates at the time
% had signs of malaria infection - all of them injecting drug users. One
% hundred and thirty-six New Yorkers died of malaria during the period,
% none of them had been bitten by mosquitoes. The epidemic stopped when
% the heroin retailers, concerned about losing their customers, started
% adding quinine to their cut heroin.
%
% D.P. Levine and J.D. Sobel, "Infections in Intravenous Drug Abusers",
% Oxford University Press, 1991.
|
github
|
tsajed/nmr-pred-master
|
step.m
|
.m
|
nmr-pred-master/spinach/kernel/step.m
| 5,336 |
utf_8
|
1af6dd98005186946f9b8d5c0e1bd018
|
% Propagation step function. Uses Krylov propagation and sparse exponenti-
% ation where appropriate. Syntax:
%
% rho=step(spin_system,L,rho,time_step)
%
% Arguments:
%
% L - Liouvillian or Hamiltonian to be used for propagation
%
% rho - state vector or density matrix to be propagated
%
% time_step - length of the time step to take
%
% Note: the peculiar sequence of algebraic operations in the Krylov proce-
% dure is designed to minimize the memory footprint.
%
% [email protected]
% [email protected]
function rho=step(spin_system,L,rho,time_step)
% Check consistency
grumble(L,time_step);
% Decide how to proceed
switch spin_system.bas.formalism
case {'sphten-liouv','zeeman-liouv'}
% Decide how to proceed
if ismember('expv',spin_system.sys.disable)||...
(size(L,1)<spin_system.tols.small_matrix)
% Use Matlab's expm if the user insists
rho=expm(-1i*L*time_step)*rho;
else
% Estimate the norm of the i*L*dt matrix
norm_mat=norm(L,1)*abs(time_step);
% Determine the number of time steps
nsteps=ceil(norm_mat/5);
% Warn the user if the number is too large
if nsteps>100
report(spin_system,['WARNING: ' num2str(nsteps) ' substeps required, consider using evolution() here.']);
end
% Run codistributed if appropriate
if (size(rho,2)>1)&&(~isworkernode)&&...
(~ismember('gpu',spin_system.sys.enable))
spmd
% Create codistributor object
codist=codistributor1d(2);
% Distribute the state vector stack
rho=codistributed(rho,codist);
% Get local part
rho_local=getLocalPart(rho);
% Estimate the scaling coefficient
scaling=max([1 norm(rho_local,1)]);
% Scale the vector and make it full
rho_local=full(rho_local/scaling);
% Run the Krylov procedure
for n=1:nsteps
next_term=rho_local; k=1;
while nnz(abs(next_term)>eps)>0
next_term=-1i*(L*next_term)*time_step/(k*nsteps);
rho_local=rho_local+next_term; k=k+1;
end
end
% Scale the vector back
rho_local=rho_local*scaling;
end
% Gather the array
rho=[rho_local{:}];
else
% Estimate the scaling coefficient
scaling=max([1 norm(rho,1)]);
% Scale the vector and make it full
rho=full(rho/scaling);
% Move to GPU if needed
if ismember('gpu',spin_system.sys.enable)
L=gpuArray(L); rho=gpuArray(rho);
end
% Run the Krylov procedure
for n=1:nsteps
next_term=rho; k=1;
while nnz(abs(next_term)>eps)>0
next_term=-1i*(time_step/(k*nsteps))*(L*next_term);
rho=rho+next_term; k=k+1;
end
end
% Scale the vector back
rho=gather(rho)*scaling;
end
end
case 'zeeman-hilb'
% Decide the propagator calculation method
if size(L,1)>spin_system.tols.small_matrix
% For large matrices and tensor trains use Spinach propagator module
P=propagator(spin_system,L,time_step);
else
% For small matrices use Matlab's expm
P=expm(-1i*L*time_step);
end
% Perform the propagation step
if iscell(rho)
parfor n=1:numel(rho)
rho{n}=P*rho{n}*P';
end
else
rho=P*rho*P';
end
otherwise
% Complain and bomb out
error('unknown formalism specification.');
end
end
% Consistency enforcement
function grumble(L,time_step)
if (~isnumeric(L))||(~isnumeric(time_step))
error('L and time_step must be numeric.');
end
if ~isscalar(time_step)
error('timestep must be a scalar.');
end
end
% Evans boldly put 50 atm of ethylene in a cell with 25 atm of oxygen. The
% apparatus subsequently blew up, but luckily not before he had obtained
% the spectra shown in Figure 8.
%
% A.J. Mehrer and R.S. Mulliken, Chem. Rev. 69 (1969) 639-656.
|
github
|
tsajed/nmr-pred-master
|
relaxation.m
|
.m
|
nmr-pred-master/spinach/kernel/relaxation.m
| 29,210 |
utf_8
|
1c4a5af71f148ab358fa540c512b7035
|
% The relaxation superoperator. All options are set during the call to
% create.m function. Syntax:
%
% R=relaxation(spin_system,euler_angles)
%
% where euler_angles should be used for solid state systems in which
% the thermal equilibrium state is orientation-dependent.
%
% Further information is available in the following papers:
%
% http://dx.doi.org/10.1016/j.jmr.2010.12.004 (Redfield)
% http://dx.doi.org/10.1002/mrc.1242 (Lindblad)
% http://dx.doi.org/10.1007/s00723-012-0367-0 (Nottingham DNP)
% http://dx.doi.org/10.1039/c2cp42897k (Weizmann DNP)
%
% Note: Nottingham relaxation theory is only applicable to cross effect
% DNP systems and Weizmann relaxation theory to solid effect and
% cross effect DNP systems.
%
% Note: The function has been written for minimal memory footprint and
% performs aggressive memory recycling. Relaxation superoperator dimen-
% sions in excess of 1,000,000 are in practice feasible.
%
% [email protected]
% [email protected]
function R=relaxation(spin_system,euler_angles)
% Set defaults
spin_system=defaults(spin_system);
% Check consistency
grumble(spin_system);
% Get the matrix going
R=mprealloc(spin_system,0);
% Do nothing if none specified
if isempty(spin_system.rlx.theories)
% Update the user
report(spin_system,'relaxation superoperator set to zero.');
% Exit the function
return;
end
% Add damping terms
if ismember('damp',spin_system.rlx.theories)
% Set up damping
switch spin_system.bas.formalism
case {'zeeman-hilb'}
% Update the user
report(spin_system,['isotropic damping at ' num2str(spin_system.rlx.damp_rate) ' Hz for all states.']);
% Damp everything at the rate specified
R=R-(spin_system.rlx.damp_rate/2)*unit_oper(spin_system);
case {'zeeman-liouv','sphten-liouv'}
% Update the user
report(spin_system,['isotropic damping at ' num2str(spin_system.rlx.damp_rate) ' Hz for all states except the unit state.']);
% Damp everything at the rate specified
R=R-spin_system.rlx.damp_rate*unit_oper(spin_system);
% Make sure the unit state is not damped
U=unit_state(spin_system);
R=R-(U'*R*U)*(U*U');
end
% Inform the user
report(spin_system,'isotropic damping terms have been incorporated.');
end
% Add H-strain terms
if ismember('hstrain',spin_system.rlx.theories)
% Compute the damp rate for the current orientation
n=euler2dcm(euler_angles(1),euler_angles(2),euler_angles(3))*[0; 0; 1];
hstrain_rates=sqrt(sum((spin_system.rlx.hstrain_rates.^2)*(n.^2)));
% Set up damping
switch spin_system.bas.formalism
case {'zeeman-hilb'}
% Update the user
report(spin_system,['anisotropic damping at ' num2str(spin_system.rlx.damp_rate) ' Hz for all states.']);
% Damp everything at the rate specified
R=R-(hstrain_rates/2)*unit_oper(spin_system);
case {'zeeman-liouv','sphten-liouv'}
% Update the user
report(spin_system,['anisotropic damping at ' num2str(spin_system.rlx.damp_rate) ' Hz for all states except the unit state.']);
% Damp everything at the rate specified
R=R-hstrain_rates*unit_oper(spin_system);
% Make sure the unit state is not damped
U=unit_state(spin_system);
R=R-(U'*R*U)*(U*U');
end
% Inform the user
report(spin_system,'anisotropic damping terms have been incorporated.');
end
% Add T1/T2 terms
if ismember('t1_t2',spin_system.rlx.theories)
% Update the user
report(spin_system,'extended T1,T2 relaxation theory with user-supplied R1 and R2 rates.');
% Prealocate the relaxation rate array
matrix_dim=size(spin_system.bas.basis,1);
relaxation_rates=zeros(matrix_dim,1);
% Compute the ranks and projections
[L,M]=lin2lm(spin_system.bas.basis);
% Extract rates
r1_rates=spin_system.rlx.r1_rates;
r2_rates=spin_system.rlx.r2_rates;
% Inspect every state and assign the relaxation rate
parfor n=1:matrix_dim
% Copy rate vectors to nodes
local_r1_rates=r1_rates;
local_r2_rates=r2_rates;
% Spins in unit state do not contribute
mask=(L(n,:)~=0);
% Spins in longitudinal states contribute their R1
r1_spins=(~logical(M(n,:)))&mask;
r1_sum=sum(local_r1_rates(r1_spins));
% Spins in transverse states contribute their R2
r2_spins=(logical(M(n,:)))&mask;
r2_sum=sum(local_r2_rates(r2_spins));
% Total relaxation rate for the state
relaxation_rates(n)=r1_sum+r2_sum;
end
% Deallocate the rank and projection arrays
clear('L','M');
% Form the relaxation superoperator
R=R-spdiags(relaxation_rates,0,matrix_dim,matrix_dim);
% Inform the user
report(spin_system,'extended T1,T2 terms have been incorporated.');
end
% Add Redfield terms
if ismember('redfield',spin_system.rlx.theories)&&(norm(spin_system.rlx.tau_c)>0)
% Update the user
report(spin_system,'Redfield theory with user-supplied anisotropies and correlation times.');
% Get the rotational basis, including the non-secular terms
report(spin_system,'computing the lab frame Hamiltonian superoperator...');
[L0,Q]=hamiltonian(assume(spin_system,'labframe'));
% Kill the terms in the static Liouvillian that are irrelevant on the time scale of the integration
timescale=max(spin_system.rlx.tau_c)*log(1/spin_system.tols.rlx_integration);
L0=clean_up(spin_system,L0,spin_system.tols.rlx_integration/timescale);
% Run the calculation in parallel
report(spin_system,'codistributing Hamiltonian components...');
spmd
% Distribute the work
kmpq=codistributed(1:625,codistributor1d(2));
% Preallocate local answer
R_loc=mprealloc(spin_system,10);
% Loop over the local multi-index array
for kmpq_local=getLocalPart(kmpq)
% Extract indices
[k,m,p,q]=ind2sub([5 5 5 5],kmpq_local);
% Get decay weights and rates for correlation function
[weights,rates]=corrfun(spin_system,k,m,p,q);
% Loop over correlation function exponentials
for j=1:numel(weights)
% Compute the term in the rotational expansion sum
if significant(Q{k,m},eps)&&significant(Q{p,q},eps)&&significant(weights(j),eps)
% Inform the user
report(spin_system,['integrating spherical component k=' num2str(3-k,'%+d') ', m=' num2str(3-m,'%+d') ...
', p=' num2str(3-p,'%+d') ', q=' num2str(3-q,'%+d') '...']);
% Set the upper integration limit according to the accuracy goal
upper_limit=-1.5*(1/rates(j))*log(1/spin_system.tols.rlx_integration);
% Compute the integral using the auxiliary matrix method
R_loc=R_loc-weights(j)*Q{k,m}*expmint(spin_system,L0,Q{p,q}',L0-1i*rates(j)*speye(size(L0)),upper_limit);
end
end
end
end
% Deallocate variables
clear('Q','L0');
% Gather data from the nodes
report(spin_system,'gathering data from the nodes...');
for n=1:numel(R_loc), R=R+R_loc{n}; R_loc{n}=[]; end
% Update the user
report(spin_system,'Redfield theory terms have been incorporated.');
end
% Add Lindblad terms
if ismember('lindblad',spin_system.rlx.theories)
% Update the user
report(spin_system,'Lindblad theory with user-supplied R1 and R2 rates.');
% Loop over spins
for n=1:spin_system.comp.nspins
% Get the basic superoperators
Lp_left=operator(spin_system,{'L+'},{n},'left');
Lp_right=operator(spin_system,{'L+'},{n},'right');
Lm_left=operator(spin_system,{'L-'},{n},'left');
Lm_right=operator(spin_system,{'L-'},{n},'right');
Lz_left=operator(spin_system,{'Lz'},{n},'left');
Lz_right=operator(spin_system,{'Lz'},{n},'right');
% Get the rates
Rpm=spin_system.rlx.lind_r1_rates(n)/4;
Rmp=spin_system.rlx.lind_r1_rates(n)/4;
Rzz=spin_system.rlx.lind_r2_rates(n)-...
spin_system.rlx.lind_r1_rates(n)/2;
% Build the superoperator
R=R+Rpm*(2*Lp_left*Lm_right-Lm_left*Lp_left-Lp_right*Lm_right)+...
Rmp*(2*Lm_left*Lp_right-Lp_left*Lm_left-Lm_right*Lp_right)+...
Rzz*(2*Lz_left*Lz_right-Lz_left*Lz_left-Lz_right*Lz_right);
end
% Inform the user
report(spin_system,'Lindblad theory terms have been incorporated.');
end
% Add Weizmann DNP theory terms
if ismember('weizmann',spin_system.rlx.theories)
% Update the user
report(spin_system,'Weizmann DNP theory with user-supplied R1e, R2e, R1n, R2n, R1d and R2d rates.');
% Get electron superoperators
Ep_L=operator(spin_system,'L+','electrons','left');
Ep_R=operator(spin_system,'L+','electrons','right');
Em_L=operator(spin_system,'L-','electrons','left');
Em_R=operator(spin_system,'L-','electrons','right');
Ez_L=operator(spin_system,'Lz','electrons','left');
Ez_R=operator(spin_system,'Lz','electrons','right');
% Get electron rates
Rpm=spin_system.rlx.weiz_r1e/4;
Rmp=spin_system.rlx.weiz_r1e/4;
Rzz=spin_system.rlx.weiz_r2e-...
spin_system.rlx.weiz_r1e/2;
% Add Lindblad type terms
R=R+Rpm*(2*Ep_L*Em_R-Em_L*Ep_L-Ep_R*Em_R)+...
Rmp*(2*Em_L*Ep_R-Ep_L*Em_L-Em_R*Ep_R)+...
Rzz*(2*Ez_L*Ez_R-Ez_L*Ez_L-Ez_R*Ez_R);
% Get nuclear superoperators
Np_L=operator(spin_system,'L+','nuclei','left');
Np_R=operator(spin_system,'L+','nuclei','right');
Nm_L=operator(spin_system,'L-','nuclei','left');
Nm_R=operator(spin_system,'L-','nuclei','right');
Nz_L=operator(spin_system,'Lz','nuclei','left');
Nz_R=operator(spin_system,'Lz','nuclei','right');
% Get nuclear rates
Rpm=spin_system.rlx.weiz_r1n/4;
Rmp=spin_system.rlx.weiz_r1n/4;
Rzz=spin_system.rlx.weiz_r2n-...
spin_system.rlx.weiz_r1n/2;
% Add Lindblad type terms
R=R+Rpm*(2*Np_L*Nm_R-Nm_L*Np_L-Np_R*Nm_R)+...
Rmp*(2*Nm_L*Np_R-Np_L*Nm_L-Nm_R*Np_R)+...
Rzz*(2*Nz_L*Nz_R-Nz_L*Nz_L-Nz_R*Nz_R);
% Add dipolar cross-relaxation terms
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
% Process longitudinal terms
if spin_system.rlx.weiz_r1d(n,k)~=0
% Generate flip-flop superoperator
FF_L=operator(spin_system,{'L+','L-'},{n,k},'left')+...
operator(spin_system,{'L-','L+'},{n,k},'left');
FF_R=operator(spin_system,{'L+','L-'},{n,k},'right')+...
operator(spin_system,{'L-','L+'},{n,k},'right');
% Add Lindblad type term
R=R+spin_system.rlx.weiz_r1d(n,k)*(2*FF_L*FF_R-FF_L*FF_L-FF_R*FF_R)/2;
end
% Process transverse terms
if spin_system.rlx.weiz_r2d(n,k)~=0
% Generate ZZ superoperator
ZZ_L=operator(spin_system,{'Lz','Lz'},{n,k},'left');
ZZ_R=operator(spin_system,{'Lz','Lz'},{n,k},'right');
% Add Lindblad type term
R=R+spin_system.rlx.weiz_r2d(n,k)*(2*ZZ_L*ZZ_R-ZZ_L*ZZ_L-ZZ_R*ZZ_R)/2;
end
end
end
% Inform the user
report(spin_system,'Weizmann DNP relaxation theory terms have been incorporated.');
end
% Add Nottingham DNP theory terms
if ismember('nottingham',spin_system.rlx.theories)
% Update the user
report(spin_system,'Nottingham DNP theory with user-supplied R1e, R1n, R2e and R2n rates.');
% Set shorthands
r1e=spin_system.rlx.nott_r1e; r2e=spin_system.rlx.nott_r2e;
r1n=spin_system.rlx.nott_r1n; r2n=spin_system.rlx.nott_r2n;
% Find electrons
electrons=find(strcmp('E',spin_system.comp.isotopes));
% Get basic electron operators
S1p=operator(spin_system,{'L+'},{electrons(1)});
S1z=operator(spin_system,{'Lz'},{electrons(1)});
S2p=operator(spin_system,{'L+'},{electrons(2)});
S2z=operator(spin_system,{'Lz'},{electrons(1)});
S1zS2z=operator(spin_system,{'Lz','Lz'},{electrons(1),electrons(2)});
S1zS2p=operator(spin_system,{'Lz','L+'},{electrons(1),electrons(2)});
S1pS2z=operator(spin_system,{'L+','Lz'},{electrons(1),electrons(2)});
% Form component operators
O11=0.5*(+S1z+S2z)+S1zS2z; O12=0.5*S2p+S1zS2p;
O22=0.5*(+S1z-S2z)-S1zS2z; O13=0.5*S1p+S1pS2z;
O33=0.5*(-S1z+S2z)-S1zS2z; O24=0.5*S1p-S1pS2z;
O44=0.5*(-S1z-S2z)+S1zS2z; O34=0.5*S2p-S1zS2p;
% Build the electron part of the relaxation superoperator
R=-0.25*r1e*(O12*O12' + O12'*O12 - O11*O11 - O22*O22 + O13*O13' + O13'*O13 - O11*O11 - O33*O33 +...
O24*O24' + O24'*O24 - O22*O22 - O44*O44 + O34*O34' + O34'*O34 - O33*O33 - O44*O44)+...
0.5*(r2e*(O11*O22 + O22*O11 + O11*O33 + O33*O11 + O44*O22 + O22*O44 + O33*O44 + O44*O33)+...
r2n*(O11*O44 + O44*O11 + O22*O33 + O33*O22));
% Find nuclei
nuclei=find(~cellfun(@(x)strncmp(x,'E',1),spin_system.comp.isotopes));
% Loop over nuclei
for n=nuclei
% Get basic nuclear operators
Iz=operator(spin_system,{'Lz'},{n});
Ip=operator(spin_system,{'L+'},{n});
% Build the nuclear part of the relaxation superoperator
R=R-0.25*r1n*(Ip*Ip'+Ip'*Ip)-r2n*Iz*Iz;
end
% Inform the user
report(spin_system,'Nottingham DNP relaxation theory terms have been incorporated.');
end
% Add scalar relaxation of the first kind
if ismember('SRFK',spin_system.rlx.theories)&&...
(spin_system.rlx.srfk_tau_c>0)
% Inform the user
report(spin_system,'scalar relaxation of the first kind...');
% Set local assumptions
spin_system_local=assume(spin_system,spin_system.rlx.srfk_assume);
% Get the background Hamiltonian
H0=hamiltonian(spin_system_local);
% Set local assumptions
spin_system_local=assume(spin_system,spin_system.rlx.srfk_assume,'couplings');
% Replace couplings with their modulation depths
[rows,cols]=find(~cellfun(@isempty,spin_system.rlx.srfk_mdepth));
spin_system_local.inter.coupling.matrix=cell(size(spin_system.inter.coupling.matrix));
for n=1:numel(rows)
spin_system_local.inter.coupling.matrix{rows(n),cols(n)}=...
2*pi*eye(3)*spin_system.rlx.srfk_mdepth{rows(n),cols(n)};
end
% Get the modulated coupling Hamiltonian
H1=hamiltonian(spin_system_local);
% Set the upper integration limit according to the accuracy goal
upper_limit=2*spin_system.rlx.srfk_tau_c*log(1/spin_system.tols.rlx_integration);
% Kill the terms in H0 that are irrelevant on the time scale of the integration
H0=clean_up(spin_system,H0,1e-2/upper_limit);
% Take the integral using the auxiliary matrix exponential technique
report(spin_system,'integrating the SRFK component...');
decay_rate=-1/spin_system.rlx.srfk_tau_c;
R=R-H1*expmint(spin_system,H0,H1',H0-1i*decay_rate*speye(size(H0)),upper_limit);
% Deallocate variables
clear('H0','H1','spin_system_local');
% Inform the user
report(spin_system,'SRFK terms have been incorporated.');
end
% Add scalar relaxation of the second kind
if ismember('SRSK',spin_system.rlx.theories)
% Inform the user
report(spin_system,'scalar relaxation of the second kind...');
% Preallocate the answers
R1=zeros(spin_system.comp.nspins); R2=zeros(spin_system.comp.nspins);
% Loop over pairs of spins
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
% Determine the J-coupling
J=0;
if ~isempty(spin_system.inter.coupling.matrix{n,k})
J=J+trace(spin_system.inter.coupling.matrix{n,k})/3;
end
if ~isempty(spin_system.inter.coupling.matrix{k,n})
J=J+trace(spin_system.inter.coupling.matrix{k,n})/3;
end
% Only process heteronuclear pairs
if (~strcmp(spin_system.comp.isotopes{n},spin_system.comp.isotopes{k}))&&(n>k)&&(abs(J)>0)
% Find relaxation rates for the spins in question
Lz_n=state(spin_system,{'Lz'},{n}); Lz_n=Lz_n/norm(Lz_n);
Lp_n=state(spin_system,{'L+'},{n}); Lp_n=Lp_n/norm(Lp_n);
R1n=-Lz_n'*R*Lz_n; R2n=-Lp_n'*R*Lp_n;
Lz_k=state(spin_system,{'Lz'},{k}); Lz_k=Lz_k/norm(Lz_k);
Lp_k=state(spin_system,{'L+'},{k}); Lp_k=Lp_k/norm(Lp_k);
R1k=-Lz_k'*R*Lz_k; R2k=-Lp_k'*R*Lp_k;
% Find multiplicities
In=spin_system.comp.mults(n); Ik=spin_system.comp.mults(k);
% Find frequency difference
delta_omega=spin_system.inter.basefrqs(n)-spin_system.inter.basefrqs(k);
% Compute Abragam's expressions
R1(n)=R1(n)+(8/3)*(J^2)*Ik*(Ik+1)*(R2k/(R2k^2+delta_omega^2));
R1(k)=R1(k)+(8/3)*(J^2)*In*(In+1)*(R2n/(R2n^2+delta_omega^2));
R2(n)=R2(n)+(4/3)*(J^2)*Ik*(Ik+1)*(1/R1k+R2k/(R2k^2+delta_omega^2));
R2(k)=R2(k)+(4/3)*(J^2)*Ik*(In+1)*(1/R1n+R2n/(R2n^2+delta_omega^2));
end
end
end
% Clone the spin system structure
spin_system_local=spin_system;
spin_system_local.rlx.theories={'t1_t2'};
spin_system_local.rlx.r1_rates=R1;
spin_system_local.rlx.r2_rates=R2;
% Issue a recursive call for SRSK
report(spin_system,'recursive call for SRSK relaxation terms...');
R=R+relaxation(spin_system_local);
% Inform the user
report(spin_system,'SRSK relaxation theory terms have been incorporated.');
end
% Print matrix density statistics
report(spin_system,['full relaxation superoperator density ' num2str(100*nnz(R)/numel(R))...
'%, nnz ' num2str(nnz(R)) ', sparsity ' num2str(issparse(R))]);
% Decide the fate of dynamic frequency shifts
switch spin_system.rlx.dfs
case 'keep'
% Do nothing and inform the user
report(spin_system,'dynamic frequency shifts have been kept.');
case 'ignore'
% Kill the dynamic frequency shifts
R=real(R);
% Inform the user
report(spin_system,'dynamic frequency shifts have been ignored.');
otherwise
% Complain and bomb out
error('invalid value of the inter.rlx_dfs parameter.');
end
% Decide the fate of the off-diagonal components
switch spin_system.rlx.keep
case 'diagonal'
% Pull out the diagonal
R=diag(diag(R));
% Inform the user
report(spin_system,'all cross-relaxation terms have been ignored.');
case 'kite'
% Refuse to process inappropriate cases
if ~strcmp(spin_system.bas.formalism,'sphten-liouv')
error('kite option is only available for sphten-liouv formalism.');
end
% Compile the index of all longitudinal spin orders
[~,M]=lin2lm(spin_system.bas.basis);
long_states=find(sum(abs(M),2)==0);
% Index the relaxation superoperator
[rows,cols,vals]=find(R);
% Keep self-relaxation and longitudinal cross-relaxation terms
vals=vals.*((ismember(rows,long_states)&ismember(cols,long_states))|(rows==cols));
% Recompose the relaxation superoperator
R=sparse(rows,cols,vals,length(R),length(R)); clear('rows','cols','vals');
% Inform the user
report(spin_system,'transverse cross-relaxation terms have been ignored.');
case 'secular'
% Refuse to process inappropriate cases
if ~strcmp(spin_system.bas.formalism,'sphten-liouv')
error('secular option is only available for sphten-liouv formalism.');
end
% Compute state carrier frequencies
[~,M]=lin2lm(spin_system.bas.basis);
matrix_dim=size(spin_system.bas.basis,1);
frequencies=sum(repmat(spin_system.inter.basefrqs,matrix_dim,1).*M,2);
% Index the relaxation superoperator
[rows,cols,vals]=find(R);
% Set the initial keep mask
keep_mask=false(size(vals));
% Loop over unique frequencies
for omega=unique(frequencies)'
% Find the states having the current frequency
current_frq_group=find(frequencies==omega);
% Update the keep mask
keep_mask=keep_mask|(ismember(rows,current_frq_group)&...
ismember(cols,current_frq_group));
end
% Recompose the relaxation superoperator
R=sparse(rows,cols,vals.*keep_mask,length(R),length(R)); clear('rows','cols','vals');
% Inform the user
report(spin_system,'non-secular cross-relaxation terms have been ignored.');
case 'labframe'
% Inform the user
report(spin_system,'returning complete relaxation superoperator (lab frame simulations only).');
end
% Print matrix density statistics
report(spin_system,['final relaxation superoperator density ' num2str(100*nnz(R)/numel(R))...
'%, nnz(R)=' num2str(nnz(R)) ', sparsity ' num2str(issparse(R))]);
% Choose the thermalization model
switch spin_system.rlx.equilibrium
case 'zero'
% Do nothing and inform the user
report(spin_system,'WARNING - the spin system will relax to the all-zero state.');
case 'levante'
% Inform the user
report(spin_system,'the system will relax to thermal equilibrium (Levante-Ernst formalism).');
% Use Levante-Ernst thermalization
if exist('euler_angles','var')
[H,Q]=hamiltonian(assume(spin_system,'labframe'),'left');
R(:,1)=-R*equilibrium(spin_system,H,Q,euler_angles);
report(spin_system,'equilibrium state was computed using anisotropic Hamiltonian at');
report(spin_system,['alpha=' num2str(euler_angles(1)) ', beta=' num2str(euler_angles(2)) ', gamma=' num2str(euler_angles(3))]);
else
H=hamiltonian(assume(spin_system,'labframe'),'left');
R(:,1)=-R*equilibrium(spin_system,H);
report(spin_system,'equilibrium state was computed using isotropic Hamiltonian.');
end
case 'dibari'
% Inform the user
report(spin_system,'the system will relax to thermal equilibrium (DiBari-Levitt formalism).');
% Get the temperature factor
beta=spin_system.tols.hbar/(spin_system.tols.kbol*spin_system.rlx.temperature);
% Use DiBari-Levitt thermalization
if exist('euler_angles','var')
[H,Q]=hamiltonian(assume(spin_system,'labframe'),'right');
R=R*propagator(spin_system,H+orientation(Q,euler_angles),1i*beta);
report(spin_system,'equilibrium state was computed using anisotropic Hamiltonian at');
report(spin_system,['alpha=' num2str(euler_angles(1)) ', beta=' num2str(euler_angles(2)) ', gamma=' num2str(euler_angles(3))]);
else
H=hamiltonian(assume(spin_system,'labframe'),'right');
R=R*propagator(spin_system,H,1i*beta);
report(spin_system,'equilibrium state was computed using isotropic Hamiltonian.');
end
otherwise
% Complain and bomb out
error('unknown equilibrium specification.');
end
% Perform final clean-up
R=clean_up(spin_system,R,spin_system.tols.liouv_zero);
end
% Default option values
function spin_system=defaults(spin_system)
if ~isfield(spin_system.rlx,'equilibrium')
report(spin_system,'relaxation destination not specified, assuming zero.');
spin_system.rlx.equilibrium='zero';
end
if ~isfield(spin_system.rlx,'dfs')
report(spin_system,'dynamic frequency shift policy not specified, DFS will be ignored.');
spin_system.rlx.dfs='ignore';
end
end
% Consistency enforcement
function grumble(spin_system)
if ~isfield(spin_system,'rlx')
error('relaxation data (.rlx) is missing from the spin_system structure.');
end
if ~isfield(spin_system.rlx,'theories')
error('relaxation data (.rlx.theories) is missing from the spin_system structure.');
end
if ~iscell(spin_system.rlx.theories)||any(~cellfun(@ischar,spin_system.rlx.theories))
error('spin_system.rlx.theories must be a cell array of character strings.');
end
for n=1:numel(spin_system.rlx.theories)
if ~ismember(spin_system.rlx.theories{n},{'none','damp','hstrain','t1_t2','SRSK','SRFK'...
'redfield','lindblad','nottingham','weizmann'})
error('unrecognised relaxation theory specification.');
end
end
if ( ismember('t1_t2',spin_system.rlx.theories))&&...
(~ismember(spin_system.bas.formalism,{'sphten-liouv'}))
error('extended T1,T2 relaxation theory is only available for sphten-liouv formalism.');
end
if ( ismember('redfield',spin_system.rlx.theories))&&...
(~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'}))
error('Redfield relaxation theory is only available in Liouville space.');
end
if ( ismember('lindblad',spin_system.rlx.theories))&&...
(~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'}))
error('Lindblad relaxation theory is only available in Liouville space.');
end
if ( ismember('nottingham',spin_system.rlx.theories))&&...
(~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'}))
error('Nottingham relaxation theory is only available in Liouville space.');
end
if ( ismember('weizmann',spin_system.rlx.theories))&&...
(~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'}))
error('Weizmann relaxation theory is only available in Liouville space.');
end
if ( ismember('SRFK',spin_system.rlx.theories))&&...
(~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'}))
error('SRFK relaxation theory is only available in Liouville space.');
end
if ( ismember('SRSK',spin_system.rlx.theories))&&...
(~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'}))
error('SRSK relaxation theory is only available in Liouville space.');
end
if ( strcmp(spin_system.rlx.equilibrium,'levante'))&&...
(~strcmp(spin_system.bas.formalism,'sphten-liouv'))
error('Levante-Ernst thermalization is only available for sphten-liouv formalism.');
end
if (strcmp(spin_system.rlx.equilibrium,'dibari'))&&...
(spin_system.rlx.temperature==0)
error('DiBari-Levitt thermalization cannot be used with the high-temperature approximation.')
end
end
% There are horrible people who, instead of solving a problem, tangle it up
% and make it harder to solve for anyone who wants to deal with it. Whoever
% does not know how to hit the nail on the head should be asked not to hit
% it at all.
%
% Friedrich Nietzsche
|
github
|
tsajed/nmr-pred-master
|
state.m
|
.m
|
nmr-pred-master/spinach/kernel/state.m
| 5,293 |
utf_8
|
65400ecadbbdef5c48ef7758937b9103
|
% State operators (Hilbert space) and state vectors (Liouville space).
%
% <http://spindynamics.org/wiki/index.php?title=State.m>
function rho=state(spin_system,states,spins,method)
% Validate the input
grumble(spin_system,states,spins);
% Default is to use consistent state norms
if ~exist('method','var'), method='exact'; end
% Decide how to proceed
switch spin_system.bas.formalism
case 'sphten-liouv'
% Choose the state vector generation methos
switch method
case 'cheap'
% Parse the specification
[opspecs,coeffs]=human2opspec(spin_system,states,spins);
% Compute correlation orders
correlation_orders=sum(logical(spin_system.bas.basis),2);
% Get the state vector by searching the state list
rho=spalloc(size(spin_system.bas.basis,1),1,numel(opspecs));
parfor n=1:numel(opspecs) %#ok<*PFBNS>
% Find states with the same correlation order
possibilities=(correlation_orders==nnz(opspecs{n}));
% Pin down the required state
for k=find(opspecs{n})
possibilities=and(possibilities,spin_system.bas.basis(:,k)==opspecs{n}(k));
end
% Double-check
if nnz(possibilities)>1
error('basis descriptor ambiguity detected.');
elseif nnz(possibilities)<1
error('the requested state is not present in the basis.');
end
% Add to the total
rho=rho+coeffs(n)*sparse(possibilities);
end
case 'exact'
% Apply a left side product superoperator to the unit state
rho=operator(spin_system,states,spins,'left')*unit_state(spin_system);
case 'chem'
% Parse the specification
[opspecs,coeffs]=human2opspec(spin_system,states,spins);
% Preallocate the state vector
rho=spalloc(size(spin_system.bas.basis,1),1,0);
% Sum the states with concentrations
for n=1:numel(opspecs)
% Identify active spins
active_spins=find(opspecs{n});
% Find out which chemical species they are in
species=true(1,numel(spin_system.chem.parts));
for k=1:numel(active_spins)
species=species&cellfun(@(x)ismember(active_spins(k),x),spin_system.chem.parts);
end
% Check state validity
if nnz(species)~=1
error('the spin state requested crosses chemical species boundaries.');
end
% Adjust the coefficient
coeffs(n)=coeffs(n)*spin_system.chem.concs(species);
% Get the state vector
rho=rho+coeffs(n)*p_superop(spin_system,opspecs{n},'left')*unit_state(spin_system);
end
otherwise
% Complain and bomb out
error('unknown state generation method.');
end
case 'zeeman-liouv'
% Apply a left side product superoperator to the unit state
rho=operator(spin_system,states,spins,'left')*unit_state(spin_system);
case 'zeeman-hilb'
% Generate a Hilbert space operator
rho=operator(spin_system,states,spins);
% Match normalization to Liouville space
rho=rho./sqrt(size(rho,1));
otherwise
% Complain and bomb out
error('unknown formalism specification.');
end
end
% Input validation function
function grumble(spin_system,states,spins)
if ~isfield(spin_system,'bas')
error('basis set information is missing, run basis() before calling this function.');
end
if (~(ischar(states)&&ischar(spins)))&&...
(~(iscell(states)&&iscell(spins)))&&...
(~(ischar(states)&&isnumeric(spins)))
error('invalid state specification.');
end
if iscell(states)&&iscell(spins)&&(numel(states)~=numel(spins))
error('spins and operators cell arrays should have the same number of elements.');
end
if iscell(states)&&any(~cellfun(@ischar,states))
error('all elements of the operators cell array should be strings.');
end
if iscell(spins)&&any(~cellfun(@isnumeric,spins))
error('all elements of the spins cell array should be integer numbers.');
end
end
% It worked.
%
% J. Robert Oppenheimer (after witnessing the first atomic detonation)
|
github
|
tsajed/nmr-pred-master
|
krylov.m
|
.m
|
nmr-pred-master/spinach/kernel/krylov.m
| 9,035 |
utf_8
|
39d4c50f6ad537a593fcb4dd160b1260
|
% Krylov propagation function. Avoids matrix exponentiation, but can be
% slow. Should be used when the Liouvillian exponential does not fit in-
% to the system memory, but the Liouvillian itself does. Syntax:
%
% answer=krylov(spin_system,L,coil,rho,time_step,nsteps,output)
%
% Arguments for Liouville space calculations:
%
% L - the Liouvillian to be used during evolution
%
% rho - the initial state vector or a horizontal stack thereof
%
% output - a string giving the type of evolution that is required
%
% 'final' - returns the final state vector or a horizontal
% stack thereof.
%
% 'trajectory' - returns the stack of state vectors giving
% the trajectory of the system starting from
% rho with the user-specified number of steps
% and step length.
%
% 'total' - returns the integral of the observable trace
% from the simulation start to infinity. This
% option requires the presence of relaxation.
%
% 'refocus' - evolves the first vector for zero steps,
% second vector for one step, third vector for
% two steps, etc., consistent with the second
% stage of evolution in the indirect dimension
% after a refocusing pulse.
%
% 'observable' - returns the time dynamics of an observable
% as a vector (if starting from a single ini-
% tial state) or a matrix (if starting from a
% stack of initial states).
%
% 'multichannel' - returns the time dynamics of several
% observables as rows of a matrix. Note
% that destination state screening may be
% less efficient when there are multiple
% destinations to screen against.
%
% coil - the detection state, used when 'observable' is specified as
% the output option. If 'multichannel' is selected, the coil
% should contain multiple columns corresponding to individual
% observable vectors.
%
% This function does not support Hilber space formalisms.
%
% [email protected]
function answer=krylov(spin_system,L,coil,rho,timestep,nsteps,output)
% Check consistency
grumble(L,coil,rho,timestep,nsteps,output);
% Inform the user about matrix densities
report(spin_system,['Liouvillian dimension ' num2str(size(L,1)) ', nnz ' num2str(nnz(L)) ...
', density ' num2str(100*nnz(L)/numel(L)) '%, sparsity ' num2str(issparse(L))]);
% Estimate the norm of i*L*dt
norm_mat=norm(L,1)*abs(timestep);
% Inform the user about the norm
report(spin_system,['norm of i*L*dt: ' num2str(norm_mat)]);
% Determine the number of substeps
nsubsteps=ceil(norm_mat);
% Inform the user about the schedule
report(spin_system,['taking ' num2str(nsteps) ' Krylov steps with '...
num2str(nsubsteps) ' substeps each.']);
% Warn about silly calls
if nsubsteps>100
report(spin_system,'WARNING - the number of substeps is large, consider using evolution() here.');
end
% Estimate the scaling coefficient
scaling=max([1 norm(rho,1)]);
% Scale the vector
rho=rho/scaling;
% Compute the generator matrix
A=-1i*L*(timestep/nsubsteps);
% Upload data to GPU or optimise layout
if ismember('gpu',spin_system.sys.enable)
A=gpuArray(A); rho=gpuArray(full(rho));
coil=gpuArray(coil); location='GPU';
else
location='CPU'; rho=full(rho);
end
% Decide the output type
switch output
case 'final'
% Loop over steps
for n=1:nsteps
% Inform the user
report(spin_system,[location ' Krylov step ' num2str(n) ' out of ' num2str(nsteps) '...']);
% Loop over substeps
for k=1:nsubsteps
% Taylor series
next_term=rho; m=1;
while nnz(abs(next_term)>eps)>0
next_term=(A*next_term)*(1/m);
rho=rho+next_term; m=m+1;
end
end
end
% Assign the answer
answer=gather(rho);
case 'trajectory'
% Preallocate the answer and set the starting point
answer=zeros(size(rho,1),nsteps+1);
answer(:,1)=gather(rho);
% Loop over steps
for n=1:nsteps
% Inform the user
report(spin_system,[location ' Krylov step ' num2str(n) ' out of ' num2str(nsteps) '...']);
% Loop over substeps
for k=1:nsubsteps
% Taylor series
next_term=rho; m=1;
while nnz(abs(next_term)>eps)>0
next_term=(A*next_term)*(1/m);
rho=rho+next_term; m=m+1;
end
end
% Assign the answer
answer(:,n+1)=gather(rho);
end
case 'refocus'
% Loop over steps
for n=2:size(rho,2)
% Inform the user
report(spin_system,[location ' Krylov step ' num2str(n) ' out of ' num2str(nsteps) '...']);
% Loop over substeps
for k=1:nsubsteps
% Taylor series
next_term=rho(:,n:end); m=1;
while nnz(abs(next_term)>eps)>0
next_term=(A*next_term)*(1/m);
rho(:,n:end)=rho(:,n:end)+next_term; m=m+1;
end
end
end
% Assign the answer
answer=gather(rho);
case 'observable'
% Preallocate the answer
answer=zeros(nsteps+1,size(rho,2));
% Set the initial point
answer(1,:)=gather(coil'*rho);
% Loop over steps
for n=1:nsteps
% Inform the user
report(spin_system,[location ' Krylov step ' num2str(n) ' out of ' num2str(nsteps) '...']);
% Loop over substeps
for k=1:nsubsteps
% Taylor series
next_term=rho; m=1;
while nnz(abs(next_term)>eps)>0
next_term=(A*next_term)*(1/m);
rho=rho+next_term; m=m+1;
end
end
% Assign the answer
answer(n+1,:)=gather(coil'*rho);
end
case 'multichannel'
% Preallocate the answer
answer=zeros(size(coil,2),nsteps+1);
% Set the initial point
answer(:,1)=answer(:,1)+gather(coil'*rho);
% Loop over steps
for n=1:nsteps
% Inform the user
report(spin_system,[location ' Krylov step ' num2str(n) ' out of ' num2str(nsteps) '...']);
% Loop over substeps
for k=1:nsubsteps
% Taylor series
next_term=rho; m=1;
while nnz(abs(next_term)>eps)>0
next_term=(A*next_term)*(1/m);
rho=rho+next_term; m=m+1;
end
end
% Assign the answer
answer(:,n+1)=gather(coil'*rho);
end
otherwise
error('unknown output option.');
end
end
% Consistency enforcement
function grumble(L,coil,rho,timestep,nsteps,output)
if ~isnumeric(L)
error('Liouvillian must be numeric.');
end
if ~isnumeric(coil)
error('coil argument must be numeric.');
end
if (~isnumeric(rho))&&(~iscell(rho))
error('rho argument must either be numeric or a cell array');
end
if ~isnumeric(timestep)
error('timestep argument must be numeric.');
end
if ~isnumeric(nsteps)
error('nsteps must be numeric.');
end
if (~ischar(output))||(~ismember(output,{'observable','final',...
'trajectory','total','multichannel','refocus'}))
error('observable argument must be a valid character string.');
end
end
% Health and Safety were a pair of rats that lived in
% the shrubbery in front of the Southampton Chemistry
% building. The little beasts have died of old age.
|
github
|
tsajed/nmr-pred-master
|
stateinfo.m
|
.m
|
nmr-pred-master/spinach/kernel/stateinfo.m
| 2,008 |
utf_8
|
d0fad609ddeb1759df04280a957482fb
|
% Prints the state vector norm and the list of the most populated basis
% states in the order of decreasing population. Syntax:
%
% stateinfo(spin_system,rho,npops)
% Parameters:
%
% rho - state vector
%
% npops - number of largest populations to print
%
% Note: this function requires a spherical tensor basis set.
%
% [email protected]
% [email protected]
function stateinfo(spin_system,rho,npops)
% Check consistency
grumble(spin_system,rho,npops);
% Report the state vector norm
report(spin_system,['state vector 2-norm: ' num2str(norm(rho,2))]);
% Locate npops most populated states and sort by amplitude
[~,sorting_index]=sort(abs(rho),1,'descend');
largest_elemts=rho(sorting_index(1:npops));
largest_states=spin_system.bas.basis(sorting_index(1:npops),:);
% Print the states and their populations
report(spin_system,[num2str(npops) ' most populated basis states (state, coeff, number)']);
for n=1:npops
state_string=cell(1,spin_system.comp.nspins);
for k=1:spin_system.comp.nspins
[l,m]=lin2lm(largest_states(n,k));
if l==0
state_string{k}=' .... ';
else
state_string{k}=[' (' num2str(l,'%d') ',' num2str(m,'%+d') ') '];
end
end
disp([cell2mat(state_string) ' ' num2str(largest_elemts(n),'%+5.3e') ' ' num2str(sorting_index(n))]);
end
end
% Consistency enforcement
function grumble(spin_system,rho,npops)
if ~ismember(spin_system.bas.formalism,{'sphten-liouv'})
error('state analysis is only available for sphten-liouv formalism.');
end
if (~isnumeric(rho))||(~iscolumn(rho))
error('rho parameter must be a column vector.');
end
if (~isnumeric(npops))||(~isscalar(npops))||(~isreal(npops))||...
(npops<1)||(mod(npops,1)~=0)
error('pops parameter must be a positive real integer.');
end
end
% "One man with a dream will beat a hundred men with a grudge."
%
% A Russian saying
|
github
|
tsajed/nmr-pred-master
|
evolution.m
|
.m
|
nmr-pred-master/spinach/kernel/evolution.m
| 39,585 |
utf_8
|
5015230a6b7861d68eaaaaad05dd6e63
|
% Time evolution function. Performs all types of time propagation with
% automatic trajectory level state space restriction. Syntax:
%
% answer=evolution(spin_system,L,coil,rho,timestep,...
% nsteps,output,destination)
%
% Arguments for Liouville space calculations:
%
% L - the Liouvillian to be used during evolution
%
% rho - the initial state vector or a horizontal stack thereof
%
% output - a string giving the type of evolution that is required
%
% 'final' - returns the final state vector or a horizontal
% stack thereof.
%
% 'trajectory' - returns the stack of state vectors giving
% the trajectory of the system starting from
% rho with the user-specified number of steps
% and step length.
%
% 'total' - returns the integral of the observable trace
% from the simulation start to infinity. This
% option requires the presence of relaxation.
%
% 'refocus' - evolves the first vector for zero steps,
% second vector for one step, third vector for
% two steps, etc., consistent with the second
% stage of evolution in the indirect dimension
% after a refocusing pulse.
%
% 'observable' - returns the time dynamics of an observable
% as a vector (if starting from a single ini-
% tial state) or a matrix (if starting from a
% stack of initial states).
%
% 'multichannel' - returns the time dynamics of several
% observables as rows of a matrix. Note
% that destination state screening may be
% less efficient when there are multiple
% destinations to screen against.
%
% coil - the detection state, used when 'observable' is specified as
% the output option. If 'multichannel' is selected, the coil
% should contain multiple columns corresponding to individual
% observable vectors.
%
% destination - (optional) the state to be used for destination state
% screening.
%
% Arguments for Hilbert space calculations:
%
% L - Hamiltonian matrix
%
% coil - observable operator (if any)
%
% rho - initial density matrix
%
% timestep - duration of a single time step (seconds)
%
% nsteps - number of steps to take
%
% output - a string giving the type of evolution that is required
%
% 'final' - returns the final density matrix.
%
% 'trajectory' - returns a cell array of density matrices
% giving the trajectory of the system star-
% ting from rho with the user-specified num-
% ber of steps and step length.
%
% 'refocus' - evolves the first matrix for zero steps,
% second matrix for one step, third matrix for
% two steps, etc., consistent with the second
% stage of evolution in the indirect dimension
% after a refocusing pulse.
%
% 'observable' - returns the time dynamics of an observable
% as a vector.
%
% destination - this argument is ignored.
%
% Calculation of final states and observables in Hilbert space is parallel-
% ized and tested all the way to 128-core (16 nodes, 8 cores each) configu-
% rations. Parallelization of the trajectory calculation does not appear to
% yield any benefits due to large amount of inter-thread communication.
%
% See http://dx.doi.org/10.1063/1.3679656 for further information.
%
% [email protected]
% [email protected]
% [email protected]
function answer=evolution(spin_system,L,coil,rho,timestep,nsteps,output,destination)
% Check consistency
grumble(L,coil,rho,timestep,nsteps,output);
% Decide how to proceed
switch spin_system.bas.formalism
case {'sphten-liouv','zeeman-liouv'}
% Decide whether to normalize the coils
if ~isempty(coil)
if ismember('norm_coil',spin_system.sys.disable)
report(spin_system,'coils have not been normalized.');
else
for n=1:size(coil,2)
coil(:,n)=coil(:,n)/norm(coil(:,n));
end
report(spin_system,'coils have been normalized.');
end
end
% Apply trajectory-level reduction algorithms
report(spin_system,'trying to reduce the problem dimension...');
% Decide the screening algorithm
if ismember('dss',spin_system.sys.disable)
% If DSS is disabled, run forward reduction
report(spin_system,'WARNING - destination state screening is disabled.');
projectors=reduce(spin_system,L,rho);
elseif exist('destination','var')&&(~isempty(destination))
% If destination state is supplied, use it for DSS
report(spin_system,'destination state screening using supplied state.');
projectors=reduce(spin_system,L',destination);
elseif ismember(output,{'observable'})
% If coil state is supplied, use it for DSS
report(spin_system,'destination state screening using coil state.');
projectors=reduce(spin_system,L',coil);
else
% Default to the usual forward screening
report(spin_system,'destination state screening is not applicable.');
projectors=reduce(spin_system,L,rho);
end
% Run the evolution
switch output
case 'final'
% Create arrays of projections
nsubs=numel(projectors); L_sub=cell(nsubs,1);
rho_sub=cell(nsubs,1); local_answers=cell(nsubs,1);
report(spin_system,'splitting the space...');
for sub=1:nsubs
L_sub{sub}=projectors{sub}'*L*projectors{sub};
rho_sub{sub}=projectors{sub}'*rho;
end
% Loop in parallel over independent subspaces
parfor sub=1:nsubs
% Inform the user
report(spin_system,['evolving subspace ' num2str(sub) ' of ' num2str(nsubs) '...']);
% Grab local copies
L_loc=L_sub{sub}; rho_loc=rho_sub{sub}; proj_loc=projectors{sub};
% Propagate the system
if ((nnz(L_loc)<spin_system.tols.krylov_switchover)||...
ismember('krylov',spin_system.sys.disable))&&...
(~ismember('krylov',spin_system.sys.enable))
% Get the exponential propagator
report(spin_system,'building the propagator...');
P=propagator(spin_system,L_loc,timestep);
% Move to GPU or optimise layout
if ismember('gpu',spin_system.sys.enable)
rho_loc=gpuArray(full(rho_loc)); P=gpuArray(P);
report(spin_system,'propagating the system on GPU...');
else
rho_loc=full(rho_loc);
report(spin_system,'propagating the system on CPU...');
end
% Propagate the system
for n=1:nsteps
rho_loc=P*rho_loc;
end
% Gather the answer
rho_loc=gather(rho_loc);
else
% For very large subspaces use Krylov propagation
report(spin_system,'large Liouvillian, propagating using Krylov algorithm... ');
rho_loc=krylov(spin_system,L_loc,[],rho_loc,timestep,nsteps,'final');
end
% Project back into the full space
rho_loc=clean_up(spin_system,rho_loc,spin_system.tols.zte_tol);
local_answers{sub}=proj_loc*sparse(rho_loc);
% Deallocate memory in a transparent way
rho_loc=[]; L_loc=[]; proj_loc=[]; P=[]; %#ok<NASGU>
% Update the user
report(spin_system,'propagation finished.');
end
% Sum up the results (no clean-up needed)
report(spin_system,'gathering data from the nodes...');
answer=spalloc(size(rho,1),size(rho,2),0);
for sub=1:numel(projectors)
answer=answer+local_answers{sub};
local_answers{sub}=[];
end
report(spin_system,'data retrieval finished.');
case 'total'
% Create arrays of projections
nsubs=numel(projectors); L_sub=cell(nsubs,1);
rho_sub=cell(nsubs,1); coil_sub=cell(nsubs,1);
report(spin_system,'splitting the space...');
for sub=1:nsubs
L_sub{sub}=projectors{sub}'*L*projectors{sub};
rho_sub{sub}=full(projectors{sub}'*rho);
coil_sub{sub}=projectors{sub}'*coil;
end
% Start with zero
answer=0;
% Loop in parallel over independent subspaces
parfor sub=1:numel(projectors)
% Inform the user
report(spin_system,['evolving subspace ' num2str(sub) ' of ' num2str(nsubs) '...']);
% Compute the integral
report(spin_system,'integrating the trajectory...');
answer_loc=real(coil_sub{sub}'*((1i*L_sub{sub})\rho_sub{sub}));
% Add the subspace to the total
answer=answer+answer_loc;
% Update the user
report(spin_system,'integration finished.');
end
% Make sure a full array is returned
answer=full(answer);
case 'trajectory'
% Create arrays of projections
nsubs=numel(projectors); L_sub=cell(nsubs,1);
rho_sub=cell(nsubs,1); local_answers=cell(nsubs,1);
report(spin_system,'splitting the space...');
for sub=1:nsubs
L_sub{sub}=projectors{sub}'*L*projectors{sub};
rho_sub{sub}=projectors{sub}'*rho;
end
% Loop in parallel over independent subspaces
parfor sub=1:nsubs
% Inform the user
report(spin_system,['evolving subspace ' num2str(sub) ' of ' num2str(nsubs) '...']);
% Grab local copies
L_loc=L_sub{sub}; rho_loc=rho_sub{sub}; proj_loc=projectors{sub};
% Propagate the system
if ((nnz(L_loc)<spin_system.tols.krylov_switchover)||...
ismember('krylov',spin_system.sys.disable))&&...
(~ismember('krylov',spin_system.sys.enable))
% Get the exponential propagator
report(spin_system,'building the propagator...');
P=propagator(spin_system,L_loc,timestep);
% Move to GPU or optimise layout
if ismember('gpu',spin_system.sys.enable)
rho_loc=gpuArray(full(rho_loc)); P=gpuArray(P);
answer=zeros(size(rho_loc,1),nsteps+1,'gpuArray');
report(spin_system,'propagating the system on GPU...');
else
rho_loc=full(rho_loc);
answer=zeros(size(rho_loc,1),nsteps+1);
report(spin_system,'propagating the system on CPU...');
end
% Set the starting point
answer(:,1)=rho_loc;
% Propagate the system
for n=1:nsteps
answer(:,n+1)=P*answer(:,n);
end
% Gather the answer
answer=gather(answer);
else
% For very large subspaces use Krylov propagation
report(spin_system,'large Liouvillian, propagating using Krylov algorithm... ');
answer=krylov(spin_system,L_loc,[],rho_loc,timestep,nsteps,'trajectory')
end
% Project back into the full space
answer=clean_up(spin_system,answer,spin_system.tols.zte_tol);
local_answers{sub}=proj_loc*sparse(answer);
% Deallocate memory in a transparent way
rho_loc=[]; L_loc=[]; proj_loc=[]; P=[]; answer=[]; %#ok<NASGU>
% Update the user
report(spin_system,'propagation finished.');
end
% Sum up the results (no clean-up needed)
report(spin_system,'gathering data from the nodes...');
answer=spalloc(size(rho,1),nsteps+1,0);
for sub=1:numel(projectors)
answer=answer+local_answers{sub};
local_answers{sub}=[];
end
report(spin_system,'data retrieval finished.');
case 'refocus'
% Create arrays of projections
nsubs=numel(projectors); L_sub=cell(nsubs,1);
rho_sub=cell(nsubs,1); local_answers=cell(nsubs,1);
report(spin_system,'splitting the space...');
for sub=1:nsubs
L_sub{sub}=projectors{sub}'*L*projectors{sub};
rho_sub{sub}=projectors{sub}'*rho;
end
% Loop over independent subspaces
parfor sub=1:nsubs
% Inform the user
report(spin_system,['evolving subspace ' num2str(sub) ' of ' num2str(nsubs) '...']);
% Grab local copies
L_loc=L_sub{sub}; rho_loc=rho_sub{sub}; proj_loc=projectors{sub};
% Propagate the system
if ((nnz(L_loc)<spin_system.tols.krylov_switchover)||...
ismember('krylov',spin_system.sys.disable))&&...
(~ismember('krylov',spin_system.sys.enable))
% Get the exponential propagator
report(spin_system,'building the propagator...');
P=propagator(spin_system,L_loc,timestep);
% Move to GPU or optimise layout
if ismember('gpu',spin_system.sys.enable)
rho_loc=gpuArray(full(rho_loc)); P=gpuArray(P);
report(spin_system,'propagating the system on GPU...');
else
rho_loc=full(rho_loc);
report(spin_system,'propagating the system on CPU...');
end
% Propagate the system
for n=2:size(rho_loc,2)
rho_loc(:,n:end)=P*rho_loc(:,n:end);
end
% Gather the answer
rho_loc=gather(rho_loc);
else
% For very large subspaces use Krylov propagation
report(spin_system,'large Liouvillian, propagating using Krylov algorithm... ');
rho_loc=krylov(spin_system,L_loc,[],rho_loc,timestep,'refocus');
end
% Project back into the full space
rho_loc=clean_up(spin_system,rho_loc,spin_system.tols.zte_tol);
local_answers{sub}=proj_loc*sparse(rho_loc);
% Deallocate memory in a transparent way
rho_loc=[]; L_loc=[]; proj_loc=[]; P=[]; %#ok<NASGU>
% Update the user
report(spin_system,'propagation finished.');
end
% Sum up the results (no clean-up needed)
report(spin_system,'gathering data from the nodes...');
answer=spalloc(size(rho,1),nsteps+1,0);
for sub=1:numel(projectors)
answer=answer+local_answers{sub};
local_answers{sub}=[];
end
report(spin_system,'data retrieval finished.');
case 'observable'
% Create arrays of projections
nsubs=numel(projectors); L_sub=cell(nsubs,1);
rho_sub=cell(nsubs,1); coil_sub=cell(nsubs,1);
report(spin_system,'splitting the space...');
for sub=1:nsubs
L_sub{sub}=projectors{sub}'*L*projectors{sub};
rho_sub{sub}=projectors{sub}'*rho;
coil_sub{sub}=projectors{sub}'*coil;
end
% Preallocate the answer
answer=zeros(nsteps+1,size(rho,2));
% Loop over independent subspaces
parfor sub=1:nsubs
% Inform the user
report(spin_system,['evolving subspace ' num2str(sub) ' of ' num2str(nsubs) '...']);
% Grab local copies
L_loc=L_sub{sub}; rho_loc=rho_sub{sub}; coil_loc=coil_sub{sub};
% Preallocate the local answer
answer_loc=zeros(nsteps+1,size(rho_loc,2));
% The first point does not require propagation
answer_loc(1,:)=answer_loc(1,:)+coil_loc'*rho_loc;
% Propagate the system
if ((nnz(L_loc)<spin_system.tols.krylov_switchover)||...
ismember('krylov',spin_system.sys.disable))&&...
(~ismember('krylov',spin_system.sys.enable))
% Get the exponential propagator
report(spin_system,'building the propagator...');
P=propagator(spin_system,L_loc,timestep);
% Move to GPU or optimise layout
if ismember('gpu',spin_system.sys.enable)
rho_loc=gpuArray(full(rho_loc));
coil_loc=gpuArray(full(coil_loc)); P=gpuArray(P);
report(spin_system,'propagating the system on GPU...');
else
rho_loc=full(rho_loc); coil_loc=full(coil_loc);
report(spin_system,'propagating the system on CPU...');
end
% Propagate the system
for n=1:nsteps
rho_loc=P*rho_loc;
answer_loc(n+1,:)=answer_loc(n+1,:)+gather(coil_loc'*rho_loc);
end
else
% For very large subspaces use Krylov propagation
report(spin_system,'large Liouvillian, propagating using Krylov algorithm... ');
answer_loc=krylov(spin_system,L_loc,coil_loc,rho_loc,timestep,nsteps,'observable');
end
% Add to the total
answer=answer+answer_loc;
% Deallocate memory in a transparent way
rho_loc=[]; L_loc=[]; P=[]; answer_loc=[]; %#ok<NASGU>
% Update the user
report(spin_system,'propagation finished.');
end
% Make sure a full array is returned
answer=full(answer);
case 'multichannel'
% Create arrays of projections
nsubs=numel(projectors); L_sub=cell(nsubs,1);
rho_sub=cell(nsubs,1); coil_sub=cell(nsubs,1);
report(spin_system,'splitting the space...');
for sub=1:nsubs
L_sub{sub}=projectors{sub}'*L*projectors{sub};
rho_sub{sub}=projectors{sub}'*rho;
coil_sub{sub}=projectors{sub}'*coil;
end
% Preallocate the answer
answer=zeros(size(coil,2),nsteps+1);
% Loop over independent subspaces
parfor sub=1:length(projectors)
% Inform the user
report(spin_system,['evolving subspace ' num2str(sub) ' of ' num2str(numel(projectors)) '...']);
% Grab local copies
L_loc=L_sub{sub}; rho_loc=rho_sub{sub}; coil_loc=coil_sub{sub};
% Propagate the system
if ((nnz(L_loc)<spin_system.tols.krylov_switchover)||...
ismember('krylov',spin_system.sys.disable))&&...
(~ismember('krylov',spin_system.sys.enable))
% Get the exponential propagator
report(spin_system,'building the propagator...');
P=propagator(spin_system,L_loc,timestep);
% Preallocate the local answer
answer_loc=zeros(size(coil_loc,2),nsteps+1);
% The first point does not require propagation
answer_loc(:,1)=answer_loc(:,1)+coil_loc'*rho_loc;
% Move to GPU or optimise layout
if ismember('gpu',spin_system.sys.enable)
rho_loc=gpuArray(full(rho_loc));
coil_loc=gpuArray(full(coil_loc)); P=gpuArray(P);
report(spin_system,'propagating the system on GPU...');
else
rho_loc=full(rho_loc); coil_loc=full(coil_loc);
report(spin_system,'propagating the system on CPU...');
end
% Propagate the system
for n=1:nsteps
rho_loc=P*rho_loc;
answer_loc(:,n+1)=answer_loc(:,n+1)+gather(coil_loc'*rho_loc);
end
else
% For very large subspaces use Krylov propagation
report(spin_system,'large Liouvillian, propagating using Krylov algorithm... ');
answer_loc=krylov(spin_system,L_loc,coil_loc,rho_loc,timestep,nsteps,'multichannel');
end
% Add to the total
answer=answer+answer_loc;
% Deallocate memory in a transparent way
rho_loc=[]; L_loc=[]; P=[]; answer_loc=[]; %#ok<NASGU>
% Update the user
report(spin_system,'propagation finished.');
end
% Make sure a full array is returned
answer=full(answer);
otherwise
error('invalid output option.');
end
case 'zeeman-hilb'
% Decide whether to normalize the coils
if ~isempty(coil)
if ismember('norm_coil',spin_system.sys.disable)
report(spin_system,'coil has not been normalized.');
else
coil=coil/norm(coil,'fro');
report(spin_system,'coil has been normalized.');
end
end
% Run the evolution
switch output
case 'final'
% Decide how to proceed
switch spin_system.bas.approximation
case 'none'
% Compute the exponential propagator
P=propagator(spin_system,L,timestep);
% Report to the user
report(spin_system,'propagating the system...');
% Decide parallelization style
if iscell(rho)
% Run in parallel over cells
parfor k=1:numel(rho)
for n=1:nsteps
rho{k}=P*rho{k}*P'
end
end
% Return the result
answer=rho;
else
% If inside a parallel loop, avoid spmd
if isworkernode
% Propagate vectors and covectors
for n=1:nsteps
rho=P*rho*P';
end
% Return the result
answer=rho;
else
% Create covector array
cov=speye(size(rho));
% Run in parallel over columns
spmd
% Slice density matrix and covectors
codist=codistributor('1d',2);
rho=codistributed(rho,codist);
cov=codistributed(cov,codist);
% Propagate vectors and covectors
for n=1:nsteps
rho=P*rho; cov=P*cov;
end
end
% Return the result
answer=gather(rho)*gather(cov)';
end
end
% Report to the user
report(spin_system,'propagation finished.');
otherwise
% Complain and bomb out
error('unrecognised approximation specification.');
end
case 'observable'
% Decide how to proceed
switch spin_system.bas.approximation
case 'none'
% Compute the exponential propagator
P=propagator(spin_system,L,timestep);
% Report to the user
report(spin_system,'propagating the system...');
% If a stack is received, run 2D acquisition
if iscell(rho)
% Preallocate the answer
answer=zeros(nsteps+1,numel(rho));
% Loop over the elements of the stack
parfor k=1:numel(rho)
% Grab a local copy
rho_local=rho{k};
% Loop over time steps
for n=1:(nsteps+1)
% Compute the observable
answer(n,k)=hdot(coil,rho_local);
% Step forward
rho_local=P*rho_local*P';
end
end
% If inside a parallel loop, avoid spmd
elseif isworkernode
% Preallocate the answer
answer=zeros(nsteps+1,1);
% Loop over time steps
for n=1:(nsteps+1)
% Compute the observable
answer(n)=hdot(coil,rho);
% Step forward
rho=P*rho*P';
end
% Otherwise use Kuprov-Edwards parallel split
else
% Create covector array
cov=speye(size(rho));
% Parallel processing
spmd
% Slice density matrix and covectors
codist=codistributor('1d',2);
rho=codistributed(rho,codist);
cov=codistributed(cov,codist);
% Localize the problem
rho_local=getLocalPart(rho);
cov_local=getLocalPart(cov);
fid_local=zeros(nsteps+1,1);
% Loop over time steps
for n=1:(nsteps+1)
% Write local fid
fid_local(n)=hdot(coil*cov_local,rho_local);
% Step forward on rho and cov
rho_local=P*rho_local;
cov_local=P*cov_local;
end
% Collect the results
answer=gplus(fid_local,1);
end
% Return the result
answer=answer{1};
end
% Report to the user
report(spin_system,'propagation finished.');
otherwise
% Complain and bomb out
error('unrecognised approximation specification.');
end
% Make sure a full array is returned
answer=full(answer);
case 'trajectory'
% Decide how to proceed
switch spin_system.bas.approximation
case 'none'
% Compute the exponential propagator
P=propagator(spin_system,L,timestep);
% Preallocate the answer
answer=cell(1,nsteps+1);
% Compute the trajectory
report(spin_system,'propagating the system...');
for n=1:(nsteps+1)
answer{n}=rho; rho=P*rho*P';
end
report(spin_system,'propagation finished.');
otherwise
% Complain and bomb out
error('unrecognised approximation specification.');
end
case 'refocus'
% Decide how to proceed
switch spin_system.bas.approximation
case 'none'
% Compute the exponential propagator
P=propagator(spin_system,L,timestep);
% Propagate the system
report(spin_system,'propagating the system...');
parfor k=2:numel(rho)
% Grab a local copy
rho_local=rho{k};
% Propagate local copy
for n=2:k
rho_local=P*rho_local*P';
end
% Return local copy
rho{k}=rho_local;
end
answer=rho; report(spin_system,'propagation finished.');
otherwise
% Complain and bomb out
error('unrecognised approximation specification.');
end
otherwise
% Complain and bomb out
error('unknown evolution option for zeeman-hilb formalism.');
end
otherwise
% Complain and bomb out
error('unknown formalism specification.');
end
end
% Consistency enforcement
function grumble(L,coil,rho,timestep,nsteps,output)
if ~isnumeric(L)
error('Liouvillian must be numeric.');
end
if ~isnumeric(coil)
error('coil argument must be numeric.');
end
if (~isnumeric(rho))&&(~iscell(rho))
error('rho argument must either be numeric or a cell array');
end
if ~isnumeric(timestep)
error('timestep argument must be numeric.');
end
if ~isnumeric(nsteps)
error('nsteps must be numeric.');
end
if (~ischar(output))||(~ismember(output,{'observable','final',...
'trajectory','total','multichannel','refocus'}))
error('observable argument must be a valid character string.');
end
end
% Degrees of ability vary, but the basic principle remains the same: the
% degree of a man's independence, initiative and personal love for his work
% determines his talent as a worker and his worth as a man. Independence is
% the only gauge of human virtue and value. What a man is and makes of him-
% self; not what he has or hasn't done for others. There is no substitute
% for personal dignity. There is no standard of personal dignity except
% independence.
%
% Ayn Rand, "The Fountainhead"
|
github
|
tsajed/nmr-pred-master
|
hamiltonian.m
|
.m
|
nmr-pred-master/spinach/kernel/hamiltonian.m
| 33,597 |
utf_8
|
45431ad588a9b53651e7adf0d3d0bff5
|
% Hamiltonian operator / superoperator and its rotational decomposition.
% Descriptor and operator generation is parallelized. Syntax:
%
% [H,Q]=hamiltonian(spin_system,operator_type)
%
% In Liouville space calculations, operator_type can be set to:
%
% 'left' - produces left side product superoperator
%
% 'right' - produces right side product superoperator
%
% 'comm' - produces commutation superoperator (default)
%
% 'acomm' - produces anticommutation superoperator
%
% In Hilbert space calculations operator_type parameter is ignored.
%
% Outputs:
% H - isotropic part
%
% Q - twenty-five matrices giving irreducible
% components of the anisotropic part
%
% Note: this function returns the full rotational basis that contains
% information about all orientations. Use orientation.m to gene-
% rate the Hamiltonian at a specific orientation.
%
% [email protected]
% [email protected]
% [email protected]
% [email protected]
function [H,Q]=hamiltonian(spin_system,operator_type)
% Check consistency
grumble(spin_system);
% Set the default for the type
if ~exist('operator_type','var'), operator_type='comm'; end
% Decide if the Q part is required
build_aniso=(nargout>1);
% Inform the user
report(spin_system,'building Hamiltonian descriptor...');
% Preallocate spin indices
spin_L=zeros(spin_system.comp.nspins,8);
spin_S=zeros(spin_system.comp.nspins,8);
% Preallocate operator specifications
oper_L(1:spin_system.comp.nspins,1:8)={'E'};
oper_S(1:spin_system.comp.nspins,1:8)={'E'};
% Preallocate isotropic Hamiltonian coefficients
H_coeff=zeros(spin_system.comp.nspins,8);
% Preallocate spherical tensor coefficients
T_coeff=zeros(spin_system.comp.nspins,8,5);
% Preallocate ireducible components
irrcomp=zeros(spin_system.comp.nspins,8,5);
% Process Zeeman interactions
for n=1:spin_system.comp.nspins
% Write the isotropic part
switch spin_system.inter.zeeman.strength{n}
case {'full','z_full'}
% Add the carrier frequency
zeeman_iso=trace(spin_system.inter.zeeman.matrix{n})/3+...
spin_system.inter.basefrqs(n);
% Update the Hamiltonian
if significant(zeeman_iso,spin_system.tols.inter_cutoff)
% Inform the user
report(spin_system,['complete isotropic Zeeman interaction for spin ' num2str(n) '...']);
report(spin_system,[' (Lz) x ' num2str(zeeman_iso/(2*pi)) ' Hz']);
% Update the Hamiltonian descriptor
spin_L(n,2)=n; oper_L(n,2)={'Lz'}; H_coeff(n,2)=zeeman_iso;
end
case {'secular','z_offs'}
% Skip the carrier frequency
zeeman_iso=trace(spin_system.inter.zeeman.matrix{n})/3;
% Update the Hamiltonian
if significant(zeeman_iso,spin_system.tols.inter_cutoff)
% Inform the user
report(spin_system,['offset isotropic Zeeman interaction for spin ' num2str(n) '...']);
report(spin_system,[' (Lz) x ' num2str(zeeman_iso/(2*pi)) ' Hz']);
% Update the Hamiltonian descriptor
spin_L(n,2)=n; oper_L(n,2)={'Lz'}; H_coeff(n,2)=zeeman_iso;
end
case {'ignore','+','-'}
% Inform the user
report(spin_system,['isotropic Zeeman interaction ignored for spin ' num2str(n) '.']);
otherwise
% Bomb out with unexpected strength parameters
error(['unknown strength specification for the Zeeman interaction of spin ' num2str(spin_L)]);
end
% Process anisotropic part if required
if build_aniso
% Get second rank spherical tensor components
[~,~,phi_zeeman]=mat2sphten(spin_system.inter.zeeman.matrix{n});
% Process Zeeman interactions
if significant(phi_zeeman,spin_system.tols.inter_cutoff)
% Store coefficients
for k=1:3, irrcomp(n,k,:)=phi_zeeman; end
% Write irreducible spherical tensors
switch spin_system.inter.zeeman.strength{n}
case 'full'
% Inform the user
report(spin_system,['complete anisotropic Zeeman interaction for spin ' num2str(n) '...']);
report(spin_system,[' -0.5*(Lp) x ' num2str(phi_zeeman(2)/(2*pi)) ' Hz']);
report(spin_system,[' sqrt(2/3)*(Lz) x ' num2str(phi_zeeman(3)/(2*pi)) ' Hz']);
report(spin_system,[' 0.5*(Lm) x ' num2str(phi_zeeman(4)/(2*pi)) ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,1)=n; oper_L(n,1)={'L+'}; T_coeff(n,1,2)=-0.5;
spin_L(n,2)=n; oper_L(n,2)={'Lz'}; T_coeff(n,2,3)=sqrt(2/3);
spin_L(n,3)=n; oper_L(n,3)={'L-'}; T_coeff(n,3,4)=+0.5;
case {'secular','z_full','z_offs'}
% Inform the user
report(spin_system,['Z part of the anisotropic Zeeman interaction for spin ' num2str(n) '...']);
report(spin_system,[' sqrt(2/3)*(Lz) x ' num2str(phi_zeeman(3)/(2*pi)) ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2)=n; oper_L(n,2)={'Lz'}; T_coeff(n,2,3)=sqrt(2/3);
case '+'
% Inform the user
report(spin_system,['"+" part of the anisotropic Zeeman interaction for spin ' num2str(n) '...']);
report(spin_system,[' -0.5*(Lp) x ' num2str(phi_zeeman(2)/(2*pi)) ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,1)=n; oper_L(n,1)={'L+'}; T_coeff(n,1,2)=-0.5;
case '-'
% Inform the user
report(spin_system,['"-" part of the anisotropic Zeeman interaction for spin ' num2str(n) '...']);
report(spin_system,[' 0.5*(Lm) x ' num2str(phi_zeeman(4)/(2*pi)) ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,3)=n; oper_L(n,3)={'L-'}; T_coeff(n,3,4)=+0.5;
case 'ignore'
% Inform the user
report(spin_system,['anisotropic Zeeman interaction ignored for spin ' num2str(n) '.']);
otherwise
% Bomb out with unexpected strength parameters
error(['unknown Zeeman interaction strength specification for spin ' num2str(n) '.']);
end
end
% Get second rank spherical tensor components
[~,~,phi_quad]=mat2sphten(spin_system.inter.coupling.matrix{n,n});
% Process quadrupolar interactions
if significant(phi_quad,spin_system.tols.inter_cutoff)
% Store coefficients
for k=4:8, irrcomp(n,k,:)=phi_quad; end
% Process the coupling
switch spin_system.inter.coupling.strength{n,n}
case 'strong'
% Inform the user
report(spin_system,['complete quadratic coupling for spin ' num2str(n) '...']);
report(spin_system,[' T(2,+2) x ' num2str(phi_quad(1)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' T(2,+1) x ' num2str(phi_quad(2)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' T(2, 0) x ' num2str(phi_quad(3)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' T(2,-1) x ' num2str(phi_quad(4)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' T(2,-2) x ' num2str(phi_quad(5)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,4)=n; oper_L(n,4)={'T2,+2'}; T_coeff(n,4,1)=1;
spin_L(n,5)=n; oper_L(n,5)={'T2,+1'}; T_coeff(n,5,2)=1;
spin_L(n,6)=n; oper_L(n,6)={'T2,0'}; T_coeff(n,6,3)=1;
spin_L(n,7)=n; oper_L(n,7)={'T2,-1'}; T_coeff(n,7,4)=1;
spin_L(n,8)=n; oper_L(n,8)={'T2,-2'}; T_coeff(n,8,5)=1;
case {'secular','T2,0'}
% Inform the user
report(spin_system,['secular part of the quadratic coupling for spin ' num2str(n) '...']);
report(spin_system,[' T(2, 0) x ' num2str(phi_quad(3)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,6)=n; oper_L(n,6)={'T2,0'}; T_coeff(n,6,3)=1;
case {'T2,+2'}
% Inform the user
report(spin_system,['T(2,+2) part of the quadratic coupling for spin ' num2str(n) '...']);
report(spin_system,[' T(2,+2) x ' num2str(phi_quad(1)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,4)=n; oper_L(n,4)={'T2,+2'}; T_coeff(n,4,1)=1;
case {'T2,-2'}
% Inform the user
report(spin_system,['T(2,-2) part of the quadratic coupling for spin ' num2str(n) '...']);
report(spin_system,[' T(2,-2) x ' num2str(phi_quad(5)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,8)=n; oper_L(n,8)={'T2,-2'}; T_coeff(n,8,5)=1;
case {'T2,+1'}
% Inform the user
report(spin_system,['T(2,+1) part of the quadratic coupling for spin ' num2str(n) '...']);
report(spin_system,[' T(2,+1) x ' num2str(phi_quad(2)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,5)=n; oper_L(n,5)={'T2,+1'}; T_coeff(n,5,2)=1;
case {'T2,-1'}
% Inform the user
report(spin_system,['T(2,-1) part of the quadratic coupling for spin ' num2str(n) '...']);
report(spin_system,[' T(2,-1) x ' num2str(phi_quad(4)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,7)=n; oper_L(n,7)={'T2,-1'}; T_coeff(n,7,4)=1;
case 'ignore'
% Inform the user
report(spin_system,['quadratic coupling ignored for spin ' num2str(n) '.']);
otherwise
% Bomb out with unexpected strength parameters
error(['unknown strength specification for the quadratic coupling of spin ' num2str(n)]);
end
end
end
end
% Pack single-spin descriptor table
D1=table(reshape(spin_L,[8*spin_system.comp.nspins 1]),reshape(spin_S,[8*spin_system.comp.nspins 1]),...
reshape(oper_L,[8*spin_system.comp.nspins 1]),reshape(oper_S,[8*spin_system.comp.nspins 1]),...
reshape(H_coeff,[8*spin_system.comp.nspins 1]),reshape(T_coeff,[8*spin_system.comp.nspins 5]),...
reshape(irrcomp,[8*spin_system.comp.nspins 5]),'VariableNames',{'L','S','opL','opS','H','T','phi'});
% Kill insignificant rows
tol1=spin_system.tols.inter_cutoff; tol2=eps;
D1((abs(D1.H)<tol1)&((sum(abs(D1.phi),2)<tol1)|(sum(abs(D1.T),2)<tol2)),:)=[];
% Clean up variables for re-use
clear('spin_L','spin_S','oper_L','oper_S','H_coeff','T_coeff','irrcomp');
% Discover significant bilinear couplings and build interacting spin pair list
[L,S]=find(cellfun(@norm,spin_system.inter.coupling.matrix)>spin_system.tols.inter_cutoff);
quad_couplings=(L==S); L(quad_couplings)=[]; S(quad_couplings)=[];
pair_list=[L S]; if isempty(pair_list), pair_list=[]; end
% Preallocate spin indices
spin_L=zeros(size(pair_list,1),3,3);
spin_S=zeros(size(pair_list,1),3,3);
% Preallocate operator specifications
oper_L(1:size(pair_list,1),1:3,1:3)={'E'};
oper_S(1:size(pair_list,1),1:3,1:3)={'E'};
% Preallocate isotropic Hamiltonian coefficients
H_coeff=zeros(size(pair_list,1),3,3);
% Preallocate spherical tensor coefficients
T_coeff=zeros(size(pair_list,1),3,3,5);
% Preallocate ireducible components
irrcomp=zeros(size(pair_list,1),3,3,5);
% Loop over the pair list
for n=1:size(pair_list,1)
% Extract spin numbers
L=pair_list(n,1); S=pair_list(n,2);
% Get the isotropic coupling constant
coupling_iso=trace(spin_system.inter.coupling.matrix{L,S})/3;
% Check if the coupling is significant
if significant(coupling_iso,spin_system.tols.inter_cutoff)
% Process the coupling
switch spin_system.inter.coupling.strength{L,S}
case {'strong','secular'}
% Inform the user
report(spin_system,['complete isotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' (LxSx+LySy+LzSz) x ' num2str(coupling_iso/(2*pi)) ' Hz']);
% Update the Hamiltonian descriptor
spin_L(n,2,2)=L; spin_S(n,2,2)=S; oper_L(n,2,2)={'Lz'}; oper_S(n,2,2)={'Lz'}; H_coeff(n,2,2)=coupling_iso;
spin_L(n,1,3)=L; spin_S(n,1,3)=S; oper_L(n,1,3)={'L+'}; oper_S(n,1,3)={'L-'}; H_coeff(n,1,3)=coupling_iso/2;
spin_L(n,3,1)=L; spin_S(n,3,1)=S; oper_L(n,3,1)={'L-'}; oper_S(n,3,1)={'L+'}; H_coeff(n,3,1)=coupling_iso/2;
case {'weak','z*','*z','zz'}
% Inform the user
report(spin_system,['(z,z) part of the isotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' (LzSz) x ' num2str(coupling_iso/(2*pi)) ' Hz']);
% Update the Hamiltonian descriptor
spin_L(n,2,2)=L; spin_S(n,2,2)=S; oper_L(n,2,2)={'Lz'}; oper_S(n,2,2)={'Lz'}; H_coeff(n,2,2)=coupling_iso;
case {'+-'}
% Inform the user
report(spin_system,['(+,-) part of the isotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' 0.5*(LpSm) x ' num2str(coupling_iso/(2*pi)) ' Hz']);
% Update the Hamiltonian descriptor
spin_L(n,1,3)=L; spin_S(n,1,3)=S; oper_L(n,1,3)={'L+'}; oper_S(n,1,3)={'L-'}; H_coeff(n,1,3)=coupling_iso/2;
case {'-+'}
% Inform the user
report(spin_system,['(-,+) part of the isotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' 0.5*(LmSp) x ' num2str(coupling_iso/(2*pi)) ' Hz']);
% Update the Hamiltonian descriptor
spin_L(n,3,1)=L; spin_S(n,3,1)=S; oper_L(n,3,1)={'L-'}; oper_S(n,3,1)={'L+'}; H_coeff(n,3,1)=coupling_iso/2;
case {'ignore','z+','z-','+z','-z','++','--','T2,0','T(2,+1)','T(2,-1)','T(2,+2)','T(2,-2)'}
% Inform the user
report(spin_system,['isotropic coupling ignored for spins ' num2str(L) ',' num2str(S) '.']);
otherwise
% Bomb out with unexpected strength parameters
error(['unknown strength specification for the bilinear coupling between spins ' num2str(L) ' and ' num2str(S)]);
end
end
% Process anisotropic part if required
if build_aniso
% Get second rank spherical tensor components
[~,~,phi_coupling]=mat2sphten(spin_system.inter.coupling.matrix{L,S});
% Check if it is significant
if significant(phi_coupling,spin_system.tols.inter_cutoff)
% Store coefficients
for k=1:3, for m=1:3, irrcomp(n,k,m,:)=phi_coupling; end; end
% Write irreducible spherical tensors
switch spin_system.inter.coupling.strength{L,S}
case 'strong'
% Inform the user
report(spin_system,['complete anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' 0.5*(LpSp) x ' num2str(phi_coupling(1)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' -0.5*(LzSp+LpSz) x ' num2str(phi_coupling(2)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' sqrt(2/3)*(LzSz-0.25*(LpSm+LmSp)) x ' num2str(phi_coupling(3)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' 0.5*(LzSm+LmSz) x ' num2str(phi_coupling(4)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' 0.5*(LmSm) x ' num2str(phi_coupling(5)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2,2)=L; spin_S(n,2,2)=S; oper_L(n,2,2)={'Lz'}; oper_S(n,2,2)={'Lz'}; T_coeff(n,2,2,3)=+sqrt(2/3);
spin_L(n,1,3)=L; spin_S(n,1,3)=S; oper_L(n,1,3)={'L+'}; oper_S(n,1,3)={'L-'}; T_coeff(n,1,3,3)=-sqrt(2/3)/4;
spin_L(n,3,1)=L; spin_S(n,3,1)=S; oper_L(n,3,1)={'L-'}; oper_S(n,3,1)={'L+'}; T_coeff(n,3,1,3)=-sqrt(2/3)/4;
spin_L(n,2,1)=L; spin_S(n,2,1)=S; oper_L(n,2,1)={'Lz'}; oper_S(n,2,1)={'L+'}; T_coeff(n,2,1,2)=-1/2;
spin_L(n,1,2)=L; spin_S(n,1,2)=S; oper_L(n,1,2)={'L+'}; oper_S(n,1,2)={'Lz'}; T_coeff(n,1,2,2)=-1/2;
spin_L(n,2,3)=L; spin_S(n,2,3)=S; oper_L(n,2,3)={'Lz'}; oper_S(n,2,3)={'L-'}; T_coeff(n,2,3,4)=+1/2;
spin_L(n,3,2)=L; spin_S(n,3,2)=S; oper_L(n,3,2)={'L-'}; oper_S(n,3,2)={'Lz'}; T_coeff(n,3,2,4)=+1/2;
spin_L(n,1,1)=L; spin_S(n,1,1)=S; oper_L(n,1,1)={'L+'}; oper_S(n,1,1)={'L+'}; T_coeff(n,1,1,1)=+1/2;
spin_L(n,3,3)=L; spin_S(n,3,3)=S; oper_L(n,3,3)={'L-'}; oper_S(n,3,3)={'L-'}; T_coeff(n,3,3,5)=+1/2;
case 'z*'
% Inform the user
report(spin_system,['(z,*) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' -0.5*(LzSp) x ' num2str(phi_coupling(2)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' sqrt(2/3)*(LzSz) x ' num2str(phi_coupling(3)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' 0.5*(LzSm) x ' num2str(phi_coupling(4)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2,2)=L; spin_S(n,2,2)=S; oper_L(n,2,2)={'Lz'}; oper_S(n,2,2)={'Lz'}; T_coeff(n,2,2,3)=+sqrt(2/3);
spin_L(n,2,1)=L; spin_S(n,2,1)=S; oper_L(n,2,1)={'Lz'}; oper_S(n,2,1)={'L+'}; T_coeff(n,2,1,2)=-1/2;
spin_L(n,2,3)=L; spin_S(n,2,3)=S; oper_L(n,2,3)={'Lz'}; oper_S(n,2,3)={'L-'}; T_coeff(n,2,3,4)=+1/2;
case '*z'
% Inform the user
report(spin_system,['(*,z) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' -0.5*(LpSz) x ' num2str(phi_coupling(2)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' sqrt(2/3)*(LzSz) x ' num2str(phi_coupling(3)/(2*pi),'%+0.5e') ' Hz']);
report(spin_system,[' 0.5*(LmSz) x ' num2str(phi_coupling(4)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2,2)=L; spin_S(n,2,2)=S; oper_L(n,2,2)={'Lz'}; oper_S(n,2,2)={'Lz'}; T_coeff(n,2,2,3)=+sqrt(2/3);
spin_L(n,1,2)=L; spin_S(n,1,2)=S; oper_L(n,1,2)={'L+'}; oper_S(n,1,2)={'Lz'}; T_coeff(n,1,2,2)=-1/2;
spin_L(n,3,2)=L; spin_S(n,3,2)=S; oper_L(n,3,2)={'L-'}; oper_S(n,3,2)={'Lz'}; T_coeff(n,3,2,4)=+1/2;
case {'secular','T2,0'}
% Inform the user
report(spin_system,['secular part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' sqrt(2/3)*(LzSz-0.25*(LpSm+LmSp)) x ' num2str(phi_coupling(3)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2,2)=L; spin_S(n,2,2)=S; oper_L(n,2,2)={'Lz'}; oper_S(n,2,2)={'Lz'}; T_coeff(n,2,2,3)=+sqrt(2/3);
spin_L(n,1,3)=L; spin_S(n,1,3)=S; oper_L(n,1,3)={'L+'}; oper_S(n,1,3)={'L-'}; T_coeff(n,1,3,3)=-sqrt(2/3)/4;
spin_L(n,3,1)=L; spin_S(n,3,1)=S; oper_L(n,3,1)={'L-'}; oper_S(n,3,1)={'L+'}; T_coeff(n,3,1,3)=-sqrt(2/3)/4;
case {'weak','zz'}
% Inform the user
report(spin_system,['(z,z) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' sqrt(2/3)*(LzSz) x ' num2str(phi_coupling(3)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2,2)=L; spin_S(n,2,2)=S; oper_L(n,2,2)={'Lz'}; oper_S(n,2,2)={'Lz'}; T_coeff(n,2,2,3)=+sqrt(2/3);
case 'z+'
% Inform the user
report(spin_system,['(z,+) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' -0.5*(LzSp) x ' num2str(phi_coupling(2)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2,1)=L; spin_S(n,2,1)=S; oper_L(n,2,1)={'Lz'}; oper_S(n,2,1)={'L+'}; T_coeff(n,2,1,2)=-1/2;
case '+z'
% Inform the user
report(spin_system,['(+,z) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' -0.5*(LpSz) x ' num2str(phi_coupling(2)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,1,2)=L; spin_S(n,1,2)=S; oper_L(n,1,2)={'L+'}; oper_S(n,1,2)={'Lz'}; T_coeff(n,1,2,2)=-1/2;
case 'T(2,+1)'
% Inform the user
report(spin_system,['T(2,+1) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' -0.5*(LpSz+LzSp) x ' num2str(phi_coupling(2)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2,1)=L; spin_S(n,2,1)=S; oper_L(n,2,1)={'Lz'}; oper_S(n,2,1)={'L+'}; T_coeff(n,2,1,2)=-1/2;
spin_L(n,1,2)=L; spin_S(n,1,2)=S; oper_L(n,1,2)={'L+'}; oper_S(n,1,2)={'Lz'}; T_coeff(n,1,2,2)=-1/2;
case 'z-'
% Inform the user
report(spin_system,['(z,-) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' 0.5*(LzSm) x ' num2str(phi_coupling(4)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2,3)=L; spin_S(n,2,3)=S; oper_L(n,2,3)={'Lz'}; oper_S(n,2,3)={'L-'}; T_coeff(n,2,3,4)=+1/2;
case '-z'
% Inform the user
report(spin_system,['(-,z) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' 0.5*(LmSz) x ' num2str(phi_coupling(4)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,3,2)=L; spin_S(n,3,2)=S; oper_L(n,3,2)={'L-'}; oper_S(n,3,2)={'Lz'}; T_coeff(n,3,2,4)=+1/2;
case 'T(2,-1)'
% Inform the user
report(spin_system,['T(2,-1) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' 0.5*(LmSz+LzSm) x ' num2str(phi_coupling(4)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,2,3)=L; spin_S(n,2,3)=S; oper_L(n,2,3)={'Lz'}; oper_S(n,2,3)={'L-'}; T_coeff(n,2,3,4)=+1/2;
spin_L(n,3,2)=L; spin_S(n,3,2)=S; oper_L(n,3,2)={'L-'}; oper_S(n,3,2)={'Lz'}; T_coeff(n,3,2,4)=+1/2;
case '+-'
% Inform the user
report(spin_system,['(+,-) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' -0.25*sqrt(2/3)*(LpSm) x ' num2str(phi_coupling(3)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,1,3)=L; spin_S(n,1,3)=S; oper_L(n,1,3)={'L+'}; oper_S(n,1,3)={'L-'}; T_coeff(n,1,3,3)=-sqrt(2/3)/4;
case '-+'
% Inform the user
report(spin_system,['(-,+) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' -0.25*sqrt(2/3)*(LmSp) x ' num2str(phi_coupling(3)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,3,1)=L; spin_S(n,3,1)=S; oper_L(n,3,1)={'L-'}; oper_S(n,3,1)={'L+'}; T_coeff(n,3,1,3)=-sqrt(2/3)/4;
case {'++','T2,+2'}
% Inform the user
report(spin_system,['(+,+) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' 0.5*(LpSp) x ' num2str(phi_coupling(1)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,1,1)=L; spin_S(n,1,1)=S; oper_L(n,1,1)={'L+'}; oper_S(n,1,1)={'L+'}; T_coeff(n,1,1,1)=+1/2;
case {'--','T2,-2'}
% Inform the user
report(spin_system,['(-,-) part of the anisotropic coupling for spins ' num2str(L) ',' num2str(S) '...']);
report(spin_system,[' 0.5*(LmSm) x ' num2str(phi_coupling(5)/(2*pi),'%+0.5e') ' Hz']);
% Prepare spherical tensor descriptors
spin_L(n,3,3)=L; spin_S(n,3,3)=S; oper_L(n,3,3)={'L-'}; oper_S(n,3,3)={'L-'}; T_coeff(n,3,3,5)=+1/2;
case 'ignore'
% Inform the user
report(spin_system,['anisotropic coupling ignored for spins ' num2str(L) ',' num2str(S) '.']);
otherwise
% Bomb out with unexpected strength parameters
error(['unknown strength specification for the bilinear coupling between spins ' num2str(L) ' and ' num2str(S)]);
end
end
end
end
% Pack two-spin descriptor table
D2=table(reshape(spin_L, [9*size(pair_list,1) 1]),reshape(spin_S, [9*size(pair_list,1) 1]),...
reshape(oper_L, [9*size(pair_list,1) 1]),reshape(oper_S, [9*size(pair_list,1) 1]),...
reshape(H_coeff,[9*size(pair_list,1) 1]),reshape(T_coeff,[9*size(pair_list,1) 5]),...
reshape(irrcomp,[9*size(pair_list,1) 5]),'VariableNames',{'L','S','opL','opS','H','T','phi'});
% Kill insignificant rows
tol1=spin_system.tols.inter_cutoff; tol2=eps;
D2((abs(D2.H)<tol1)&((sum(abs(D2.phi),2)<tol1)|(sum(abs(D2.T),2)<tol2)),:)=[];
% Merge descriptors and clean up
descr=[D1; D2]; clear('D1','D2'); nterms=size(descr,1);
clear('spin_L','spin_S','oper_L','oper_S','H_coeff','T_coeff','irrcomp');
report(spin_system,[num2str(nterms) ' unique operators in the Hamiltonian descriptor.']);
% Balance the descriptor
report(spin_system,'balancing descriptor for parallel processing...');
descr=descr(randperm(size(descr,1)),:);
% Build the Hamiltonian
report(spin_system,'building the Hamiltonian...');
spmd
% Localize the problem at the nodes
partition=codistributor1d.defaultPartition(nterms);
codistrib=codistributor1d(1,partition,[nterms 1]);
local_terms=getLocalPart(codistributed((1:nterms)',codistrib));
% Preallocate the local Hamiltonian
H=0*unit_oper(spin_system);
if build_aniso
Q=cell(5,5);
for m=1:5
for k=1:5
Q{k,m}=0*unit_oper(spin_system);
end
end
end
% Build the local Hamiltonian
for n=local_terms'
% Compute operator from the specification
if descr.S(n)==0
oper=operator(spin_system,descr.opL(n),{descr.L(n)},operator_type);
else
oper=operator(spin_system,[descr.opL(n),descr.opS(n)],{descr.L(n),descr.S(n)},operator_type);
end
% Add to relevant local arrays
H=H+descr.H(n)*oper;
if build_aniso
for m=1:5
for k=1:5
if abs(descr.T(n,k)*descr.phi(n,m))>spin_system.tols.inter_cutoff
Q{k,m}=Q{k,m}+descr.T(n,k)*descr.phi(n,m)*oper;
end
end
end
end
end
% Collect the result
H=gplus(H,1); if build_aniso, Q=gplus(Q,1); end
end
% Retrieve the result
H=H{1}; if build_aniso, Q=Q{1}; end
% Clean up the result
H=clean_up(spin_system,H,spin_system.tols.liouv_zero);
if build_aniso
for m=1:5
for k=1:5
Q{k,m}=clean_up(spin_system,Q{k,m},spin_system.tols.liouv_zero);
end
end
end
% Remind the user about the anisotropic part
if ~build_aniso
report(spin_system,'WARNING - only the isotropic part has been returned.');
end
end
% Consistency enforcement
function grumble(spin_system)
if ~isfield(spin_system,'bas')
error('basis set information is missing, run basis() before calling this function.');
end
if (~isfield(spin_system.inter.coupling,'strength'))||...
(~isfield(spin_system.inter.zeeman,'strength'))
error('assumption information is missing, run assume() before calling this function.');
end
end
% IK's favourite composer is Jeremy Soule -- much of Spinach
% coding was done with Skyrim, Guild Wars and Oblivion sound-
% tracks in the background. It is the sign of the times that
% a worthy successor to Ennio Morricone has emerged from the
% unlikeliest of locations: videogame music.
|
github
|
tsajed/nmr-pred-master
|
orientation.m
|
.m
|
nmr-pred-master/spinach/kernel/orientation.m
| 1,945 |
utf_8
|
d225044f72eed3cbc2036cc373a68f1b
|
% Anisotropic part of the Hamiltonian for a specific spin system
% orientation. Syntax:
%
% H=orientation(Q,euler_angles)
%
% Arguments:
%
% Q - rotational basis as returned by hamiltonian
% function.
%
% euler_angles - a 1x3 vector or a vertical stack of 1x3
% vectors specifying Euler angles (radians)
% relative to the input orientation.
%
% Output:
%
% H - anisotropic part of the Hamiltonian commutation
% superoperator (or a cell array thereof) for the
% specified Euler angles.
%
% This function may be used in both Hilbert and Liouville space
% because the H -> [H, ] adjoint map is linear.
%
% [email protected]
function H=orientation(Q,euler_angles)
% Check consistency
grumble(Q,euler_angles);
% Determine problem dimension
n_orientations=size(euler_angles,1);
% Preallocate the result array
H=cell(n_orientations,1);
for n=1:n_orientations
H{n}=0*Q{1,1};
end
% Compute Wigner matrices
D=cell(n_orientations,1);
for n=1:n_orientations
D{n}=euler2wigner(euler_angles(n,1),...
euler_angles(n,2),...
euler_angles(n,3));
end
% Compute Hamiltonian operators
for n=1:n_orientations
for k=1:5
for m=1:5
H{n}=H{n}+(D{n}(k,m))*Q{k,m};
end
end
H{n}=(H{n}+H{n}')/2;
end
% If there is only one operator to return, remove the cell
if numel(H)==1, H=H{1}; end
end
% Consistency enforcement
function grumble(Q,euler_angles)
if (~iscell(Q))||any(size(Q)~=[5 5])
error('Q parameter must be a 5x5 cell array of matrices.');
end
if (~isnumeric(euler_angles))||(size(euler_angles,2)~=3)
error('Euler angles must be supplied as a row vector or a vertical stack thereof.')
end
end
% 1f y0u c4n r34d 7h15, y0u r34||y n33d 70 637 |41d
|
github
|
tsajed/nmr-pred-master
|
splice.m
|
.m
|
nmr-pred-master/spinach/kernel/splice.m
| 4,118 |
utf_8
|
765f21f9b3ef8b6b23220e95dedbb5bd
|
% Merges timing tables of pulse sequence channels. Both timing tables
% should be given as row arrays of the following structure:
%
% A={A_1 A_2 ... A_n}; dtA=[dt_1 dt_2 ... dt_n];
%
% where A_k is a spin operator and dt_k is the time for which it acts.
% The sequence is assumed to be executed chronologically from left to
% right. The two event sequences can be aligned left, right or centre
% with respect to one another. Syntax:
%
% [C,dtC]=splice(A,dtA,B,dtB,alignment)
%
% [email protected]
function [C,dtC]=splice(A,dtA,B,dtB,alignment)
% Check consistency
grumble(A,dtA,B,dtB,alignment);
% Determine problem dimension
dim=size(A{1},1);
% Set the alignment type
switch alignment
case 'left'
% Find event edges
tA_edges=[0 cumsum(dtA)]; tB_edges=[0 cumsum(dtB)];
% Pad the shorter sequence with zero operators
if max(tA_edges)<max(tB_edges), A=[A {spalloc(dim,dim,0)}]; end
if max(tA_edges)>max(tB_edges), B=[B {spalloc(dim,dim,0)}]; end
% Build new timing diagram
tC_edges=unique([tA_edges tB_edges]);
% Build new operator list
C=cell(1,numel(tC_edges)-1);
for n=1:numel(C)
% Find values of A and B in the current period
current_time=(tC_edges(n)+tC_edges(n+1))/2;
A_part=A(find(tA_edges<current_time,1,'last'));
B_part=B(find(tB_edges<current_time,1,'last'));
% Assign the result
if isempty(A_part), A_part={spalloc(dim,dim,0)}; end
if isempty(B_part), B_part={spalloc(dim,dim,0)}; end
C{n}=A_part{1}+B_part{1};
end
% Compute new time increments
dtC=diff(tC_edges);
case 'right'
% Reverse the inputs
A=flip(A); dtA=flip(dtA);
B=flip(B); dtB=flip(dtB);
% Perform left-aligned splice
[C,dtC]=splice(A,dtA,B,dtB,'left');
% Reverse the output
C=flip(C); dtC=flip(dtC);
case 'centre'
% Find event edges
tA_right=cumsum(dtA); tB_right=cumsum(dtB);
% Pad the shorter sequence with zero operators
if tA_right(end)<tB_right(end)
dtA=[(tB_right(end)-tA_right(end))/2 dtA]; A=[{spalloc(dim,dim,0)} A];
elseif tA_right(end)>tB_right(end)
dtB=[(tA_right(end)-tB_right(end))/2 dtB]; B=[{spalloc(dim,dim,0)} B];
end
% Perform left-aligned splice
[C,dtC]=splice(A,dtA,B,dtB,'left');
otherwise
% Complain and bomb out
error('unknown alignment type.');
end
end
% Consistency enforcement
function grumble(A,dtA,B,dtB,alignment)
if (~iscell(A))||(~iscell(B))||isempty(A)||isempty(B)||(~isrow(A))||(~isrow(B))
error('A and B arguments must be row cell arrays of matrices.');
end
if (~all(cellfun(@issparse,A)))||(~all(cellfun(@issparse,B)))
error('all elements of A and B must be sparse.');
end
if (~isnumeric(dtA))||(~isnumeric(dtB))||(~isrow(dtA))||(~isrow(dtB))||any(dtA<=0)||any(dtB<=0)
error('dtA and dtB arguments must be row vectors of positive numbers.');
end
if ~ischar(alignment)
error('the alignment argument must be a character string.');
end
end
% The JEOL Student Prize, awarded at the annual conferences of the Royal Society
% of Chemistry ESR Group, had one winner in its history who got the Prize before
% she even started talking. As the laptop was being connected to the projection
% system and the usual technology gremlins refused to work, Petra Luders uncere-
% moniously pushed aside the lost-looking IT guy and got the thing to work in a
% few keystrokes on what appeared to be a Linux system. "And here's our winner"
% thought every Committee member with a quiet smile. The science and the presen-
% tation easily outshined every other competitor - Ms Luders got her JEOL Medal.
|
github
|
tsajed/nmr-pred-master
|
rotframe.m
|
.m
|
nmr-pred-master/spinach/kernel/rotframe.m
| 2,062 |
utf_8
|
e115fa73c9e879a9753f418c8537ee1a
|
% Rotating frame transformation with respect to a specified
% group of spins to specified order in perturbation theory.
% Syntax:
%
% H=rotframe(spin_system,H0,H,isotope,order)
%
% Parameters:
%
% H0 - carrier Hamiltonian with respect to which the
% rotating frame transformation is to be done
%
% H - laboratory frame Hamiltonian H0+H1 that is to
% be transformed into the rotating frame
%
% isotope - string, such as '1H', specifying the spins
% with respect to which the transformation is
% being computed
%
% order - perturbation theory order in the rotating
% frame transformation
%
% [email protected]
function Hr=rotframe(spin_system,H0,H,isotope,order)
% Check consistency
grumble(H0,H,order);
% Compute the period
switch spin_system.bas.formalism
case {'zeeman-liouv','sphten-liouv'}
% Liouville space period for H0
T=-2*pi/(spin(isotope)*spin_system.inter.magnet);
case {'zeeman-hilb'}
% Hilbert space period for H0
T=-4*pi/(spin(isotope)*spin_system.inter.magnet);
end
% Run the interaction representation transformation
Hr=intrep(spin_system,H0,H,T,order);
end
% Consistency enforcement
function grumble(H0,H,order)
if (~ishermitian(H))||(~ishermitian(H0))
error('both H and C must be Hermitian.');
end
if ((~isreal(order))||(order<1)||(mod(order,1)~=0))&&(~isinf(order))
error('unsupported rotating frame transformation theory order.');
end
end
% Finally, I acknowledge the financial support of EPSRC in its best,
% that is, the responsive mode. This Nobel Prize would be absolutely
% impossible without this mode. [...] However, I can offer no nice
% words for the EU Framework Programmes which, except for the Europe-
% an Research Council, can be praised only by europhobes for discre-
% diting the whole idea of an effectively working Europe.
%
% Andre Geim's Nobel Lecture, 2010
|
github
|
tsajed/nmr-pred-master
|
average.m
|
.m
|
nmr-pred-master/spinach/kernel/average.m
| 9,900 |
utf_8
|
b95fad736487064601cfde341ec9859b
|
% Average Hamiltonian theories under Zeeman interaction rotating frame
% transformations. Syntax:
%
% H=average(spin_system,Hp,H0,Hm,omega,theory)
%
% Parameters:
%
% Hp - the part of the rotating frame Hamiltonian that has positive
% frequency under the rotating frame transformation
%
% H0 - the part of the rotating frame Hamiltonian that has zero
% frequency under the rotating frame transformation
%
% Hm - the part of the rotating frame Hamiltonian that has negative
% frequency under the rotating frame transformation
%
% omega - the frequency of the rotating frame transformation, rad/s
%
% theory - the level of the average Hamiltonian theory:
%
% 'ah_first_order' - first order in Waugh theory
%
% 'ah_second_order' - second order in Waugh theory
%
% 'ah_third_order' - third order in Waugh theory
%
% 'matrix_log' - exact algorithm (very expensive,
% uses dense matrix algebra)
%
% 'kb_first_order' - first order in Krylov-Bogolyubov
% theory (DNP experiments only)
%
% 'kb_second_order' - second order in Krylov-Bogolyubov
% theory (DNP experiments only)
%
% 'kb_second_order' - third order in Krylov-Bogolyubov
% theory (DNP experiments only)
%
% Note: Krylov-Bogolyubov averging theory as applied to DNP systems is
% described in detail here:
%
% http://dx.doi.org/10.1039/C2CP23233B
% http://dx.doi.org/10.1007/s00723-012-0367-0
%
% [email protected]
% [email protected]
% [email protected]
function H=average(spin_system,Hp,H0,Hm,omega,theory)
% Check consistency
grumble(Hp,H0,Hm,omega,theory);
% Print diagnostics
report(spin_system,['H+ 1-norm: ' num2str(norm(Hp,1))]);
report(spin_system,['H0 1-norm: ' num2str(norm(H0,1))]);
report(spin_system,['H- 1-norm: ' num2str(norm(Hm,1))]);
report(spin_system,['frequency denominator ' num2str(omega/(2*pi)) ' Hz']);
% Run the averaging
switch theory
case 'kb_first_order'
H1=+(1/omega^1)*(Hp*Hm-Hm*Hp); H=H0+H1;
report(spin_system,['Krylov-Bogolyubov 0 order 1-norm: ' num2str(norm(H0,1))]);
report(spin_system,['Krylov-Bogolyubov 1 order 1-norm: ' num2str(norm(H1,1))]);
case 'kb_second_order'
H1=+(1/omega^1)*(Hp*Hm-Hm*Hp);
H2=-(1/omega^2)*(Hp*(Hm*H0-H0*Hm)+Hm*(Hp*H0-H0*Hp));
H=H0+H1+H2;
report(spin_system,['Krylov-Bogolyubov 0 order 1-norm: ' num2str(norm(H0,1))]);
report(spin_system,['Krylov-Bogolyubov 1 order 1-norm: ' num2str(norm(H1,1))]);
report(spin_system,['Krylov-Bogolyubov 2 order 1-norm: ' num2str(norm(H2,1))]);
case 'kb_third_order'
H1=+(1/omega^1)*(Hp*Hm-Hm*Hp);
H2=-(1/omega^2)*(Hp*(Hm*H0-H0*Hm)+Hm*(Hp*H0-H0*Hp));
H3=+(1/omega^3)*(0.5*(Hm*Hm*Hp*Hp-Hp*Hp*Hm*Hm)+...
(Hp*Hm+Hm*Hp)*(Hp*Hm-Hm*Hp)+...
Hp*(H0*(Hm*H0-H0*Hm)-(Hm*H0-H0*Hm)*H0)-...
Hm*(H0*(Hp*H0-H0*Hp)-(Hp*H0-H0*Hp)*H0));
H=H0+H1+H2+H3;
report(spin_system,['Krylov-Bogolyubov 0 order 1-norm: ' num2str(norm(H0,1))]);
report(spin_system,['Krylov-Bogolyubov 1 order 1-norm: ' num2str(norm(H1,1))]);
report(spin_system,['Krylov-Bogolyubov 2 order 1-norm: ' num2str(norm(H2,1))]);
report(spin_system,['Krylov-Bogolyubov 3 order 1-norm: ' num2str(norm(H3,1))]);
case 'ah_first_order'
H1=-(1/omega)*(H0*Hm-H0*Hp-Hm*H0+Hm*Hp+Hp*H0-Hp*Hm);
H=H0+H1;
report(spin_system,['average Hamiltonian 0 order 1-norm: ' num2str(norm(H0,1))]);
report(spin_system,['average Hamiltonian 1 order 1-norm: ' num2str(norm(H1,1))]);
case 'ah_second_order'
H1=-(1/omega^1)*(H0*Hm-H0*Hp-Hm*H0+Hm*Hp+Hp*H0-Hp*Hm);
H2=-(1/omega^2)*(2*H0*H0*Hm + 2*H0*H0*Hp - 4*H0*Hm*H0 - 1*H0*Hm*Hm + 2*H0*Hm*Hp - ...
4*H0*Hp*H0 + 2*H0*Hp*Hm - 1*H0*Hp*Hp + 2*Hm*H0*H0 + 2*Hm*H0*Hm - ...
4*Hm*H0*Hp - 1*Hm*Hm*H0 + 2*Hm*Hm*Hp + 2*Hm*Hp*H0 - 4*Hm*Hp*Hm + ...
2*Hm*Hp*Hp + 2*Hp*H0*H0 - 4*Hp*H0*Hm + 2*Hp*H0*Hp + 2*Hp*Hm*H0 + ...
2*Hp*Hm*Hm - 4*Hp*Hm*Hp - 1*Hp*Hp*H0 + 2*Hp*Hp*Hm)/2;
H=H0+H1+H2;
report(spin_system,['average Hamiltonian 0 order 1-norm: ' num2str(norm(H0,1))]);
report(spin_system,['average Hamiltonian 1 order 1-norm: ' num2str(norm(H1,1))]);
report(spin_system,['average Hamiltonian 2 order 1-norm: ' num2str(norm(H2,1))]);
case 'ah_third_order'
H1=-(1/omega^1)*(H0*Hm-H0*Hp-Hm*H0+Hm*Hp+Hp*H0-Hp*Hm);
H2=-(1/omega^2)*(2*H0*H0*Hm + 2*H0*H0*Hp - 4*H0*Hm*H0 - 1*H0*Hm*Hm + 2*H0*Hm*Hp - ...
4*H0*Hp*H0 + 2*H0*Hp*Hm - 1*H0*Hp*Hp + 2*Hm*H0*H0 + 2*Hm*H0*Hm - ...
4*Hm*H0*Hp - 1*Hm*Hm*H0 + 2*Hm*Hm*Hp + 2*Hm*Hp*H0 - 4*Hm*Hp*Hm + ...
2*Hm*Hp*Hp + 2*Hp*H0*H0 - 4*Hp*H0*Hm + 2*Hp*H0*Hp + 2*Hp*Hm*H0 + ...
2*Hp*Hm*Hm - 4*Hp*Hm*Hp - 1*Hp*Hp*H0 + 2*Hp*Hp*Hm)/2;
H3=+(1/omega^3)*(12*H0*H0*H0*Hm - 12*H0*H0*H0*Hp - 36*H0*H0*Hm*H0 - 9*H0*H0*Hm*Hm + ...
12*H0*H0*Hm*Hp + 36*H0*H0*Hp*H0 - 12*H0*H0*Hp*Hm + 9*H0*H0*Hp*Hp + ...
36*H0*Hm*H0*H0 + 18*H0*Hm*H0*Hm - 36*H0*Hm*H0*Hp + 2*H0*Hm*Hm*Hm + ...
18*H0*Hm*Hm*Hp + 12*H0*Hm*Hp*H0 - 36*H0*Hm*Hp*Hm - 36*H0*Hp*H0*H0 + ...
36*H0*Hp*H0*Hm - 18*H0*Hp*H0*Hp - 12*H0*Hp*Hm*H0 + 36*H0*Hp*Hm*Hp - ...
18*H0*Hp*Hp*Hm - 2*H0*Hp*Hp*Hp - 12*Hm*H0*H0*H0 + 36*Hm*H0*H0*Hp - ...
18*Hm*H0*Hm*H0 - 6*Hm*H0*Hm*Hm - 36*Hm*H0*Hp*H0 + 36*Hm*H0*Hp*Hm - ...
18*Hm*H0*Hp*Hp + 9*Hm*Hm*H0*H0 + 6*Hm*Hm*H0*Hm - 18*Hm*Hm*H0*Hp - ...
2*Hm*Hm*Hm*H0 + 6*Hm*Hm*Hm*Hp - 18*Hm*Hm*Hp*Hm + 18*Hm*Hm*Hp*Hp + ...
12*Hm*Hp*H0*H0 - 36*Hm*Hp*H0*Hm + 36*Hm*Hp*Hm*H0 + 18*Hm*Hp*Hm*Hm - ...
36*Hm*Hp*Hm*Hp + 18*Hm*Hp*Hp*H0 + 6*Hm*Hp*Hp*Hp + 12*Hp*H0*H0*H0 - ...
36*Hp*H0*H0*Hm + 36*Hp*H0*Hm*H0 + 18*Hp*H0*Hm*Hm - 36*Hp*H0*Hm*Hp + ...
18*Hp*H0*Hp*H0 + 6*Hp*H0*Hp*Hp - 12*Hp*Hm*H0*H0 + 36*Hp*Hm*H0*Hp - ...
18*Hp*Hm*Hm*H0 - 6*Hp*Hm*Hm*Hm - 36*Hp*Hm*Hp*H0 + 36*Hp*Hm*Hp*Hm - ...
18*Hp*Hm*Hp*Hp - 9*Hp*Hp*H0*H0 + 18*Hp*Hp*H0*Hm - 6*Hp*Hp*H0*Hp - ...
18*Hp*Hp*Hm*Hm + 18*Hp*Hp*Hm*Hp + 2*Hp*Hp*Hp*H0 - 6*Hp*Hp*Hp*Hm)/12;
H=H0+H1+H2+H3;
report(spin_system,['average Hamiltonian 0 order 1-norm: ' num2str(norm(H0,1))]);
report(spin_system,['average Hamiltonian 1 order 1-norm: ' num2str(norm(H1,1))]);
report(spin_system,['average Hamiltonian 2 order 1-norm: ' num2str(norm(H2,1))]);
report(spin_system,['average Hamiltonian 3 order 1-norm: ' num2str(norm(H3,1))]);
case 'matrix_log'
% Number of points
nslices=16;
% Set up the time grid
time_grid=linspace(0,2*pi/omega,nslices+1);
time_step=time_grid(2);
% Start with a unit propagator
P=eye(size(H0));
% Multiply up the slices
report(spin_system,'multiplying up slices...');
parfor n=1:nslices
report(spin_system,['slice ' num2str(n) ' out of ' num2str(nslices) '...']);
P=propagator(spin_system,(H0+exp(+1i*omega*(time_grid(n)+time_step/2))*Hp+...
exp(-1i*omega*(time_grid(n)+time_step/2))*Hm),time_step)*P;
end
% Take the matrix log
report(spin_system,'computing matrix logarithm...');
H=clean_up(spin_system,1i*(omega/(2*pi))*logm(P),spin_system.tols.liouv_zero);
% Report to the user
report(spin_system,['average Hamiltonian dimension ' num2str(size(H,1))...
', nnz ' num2str(nnz(H)) ', density ' num2str(100*nnz(H)/numel(H))...
'%, 1-norm ' num2str(norm(H,1)) ', sparsity ' num2str(issparse(H))]);
otherwise
error('unknown theory specification.');
end
% Clean up the result
H=clean_up(spin_system,H,spin_system.tols.liouv_zero);
% Force the result into sparse format
H=sparse(H);
end
% Consistency enforcement
function grumble(Hp,H0,Hm,omega,theory)
if (~isnumeric(Hp))||(~isnumeric(H0))||(~isnumeric(Hm))||...
(~ismatrix(Hp))||(~ismatrix(H0))||(~ismatrix(Hm))
error('the three Hamiltonian components must be matrices.');
end
if any(size(Hp)~=size(H0))||any(size(H0)~=size(Hm))
error('dimensions of the three Hamiltonian components must be the same.');
end
if (~isnumeric(omega))||(~isreal(omega))||(~isscalar(omega))
error('omega parameter must be a real number.');
end
if ~ischar(theory)
error('theory parameter must be a character string.');
end
end
% I save about twenty drafts - that's ten meg of disc space - and the last
% one contains all the final alterations. Once it has been printed out and
% received by the publishers, there's a cry here of "Tough shit, literary
% researchers of the future, try getting a proper job!" and the rest are
% wiped.
%
% Terry Pratchett
|
github
|
tsajed/nmr-pred-master
|
carrier.m
|
.m
|
nmr-pred-master/spinach/kernel/carrier.m
| 1,110 |
utf_8
|
aa5ea9c3a4ec0a4f321d12e31567ceb6
|
% Returns the "carrier" Hamiltonian - the part of the Zeeman
% interaction Hamiltonian that corresponds to all particles
% having the Zeeman frequency prescribed by their magnetogy-
% ric ratio and the magnet field specified by the user. This
% Hamiltonian is frequently used in rotating frame transfor-
% mations and average Hamiltonian theories. Syntax:
%
% H=carrier(spin_system,spins)
%
% [email protected]
function H=carrier(spin_system,spins)
% Preallocate the answer
H=mprealloc(spin_system,1);
% Find the spins
if strcmp(spins,'all')
spin_index=1:spin_system.comp.nspins;
else
spin_index=find(strcmp(spins,spin_system.comp.isotopes));
end
% Compute the answer
for n=1:numel(spin_index) %#ok<*PFBNS>
if significant(spin_system.inter.basefrqs(spin_index(n)),spin_system.tols.liouv_zero)
H=H+spin_system.inter.basefrqs(spin_index(n))*operator(spin_system,{'Lz'},{spin_index(n)});
end
end
% Clean up the answer
H=clean_up(spin_system,(H+H')/2,spin_system.tols.liouv_zero);
end
% Atelophobia - (n.) fear of imperfection
|
github
|
tsajed/nmr-pred-master
|
decouple.m
|
.m
|
nmr-pred-master/spinach/kernel/decouple.m
| 3,030 |
utf_8
|
7872a92a90308c8b6b7282e230084a90
|
% Obliterates all interactions and populations in the subspace of states
% that involve user-specified spins in any way. The specified spins would
% not contribute to the system dynamics until the Liouvillian is rebuilt
% from scratch. Syntax:
%
% [L,rho]=decouple(spin_system,L,rho,spins)
%
% spins: spins to be wiped, specified either by name, such as '13C',
% or by a list of numbers, such as [1 2 3].
%
% L: Liouvillian superoperator
%
% rho: state vector or a horizontal stack thereof
%
% Note: this function is an analytical equivalent of a running decoupling
% pulse sequence on the specified spins.
%
% Note: this function requires sphten-liouv formalism.
%
% [email protected]
function [L,rho]=decouple(spin_system,L,rho,spins)
% Return if the spin list is empty
if isempty(spins), return; end
% Check consistency
grumble(spin_system,L,rho,spins);
% Find the nuclei to be decoupled
if isnumeric(spins)
dec_mask=false(1,spin_system.comp.nspins);
dec_mask(spins)=true;
else
dec_mask=ismember(spin_system.comp.isotopes,spins);
end
% Inform the user
report(spin_system,[num2str(nnz(dec_mask)) ' spins to be frozen and depopulated.']);
% Get the list of states to be wiped
zero_mask=(sum(spin_system.bas.basis(:,dec_mask),2)~=0);
% Inform the user
report(spin_system,['zeroing ' num2str(nnz(zero_mask)) ' rows and columns in the Liouvillian.']);
% Zero the corresponding rows and columns of the Liouvillian
L(zero_mask,:)=0; L(:,zero_mask)=0;
% Zero the corresponding rows of the state vector stack
if nargout==2
report(spin_system,['zeroing ' num2str(nnz(zero_mask)) ' rows in the state vector.']);
rho(zero_mask,:)=0;
end
end
% Consistency enforcement
function grumble(spin_system,L,rho,spins)
if ~ismember(spin_system.bas.formalism,{'sphten-liouv'})
error('analytical decoupling is only available for sphten-liouv formalism.');
end
if (~isempty(rho))&&(size(L,2)~=size(rho,1))
error('matrix dimensions of L and rho must agree.');
end
if size(L,1)~=size(L,2)
error('Liouvillian must be a square matrix.');
end
if (~isnumeric(spins))&&(~iscell(spins))
error('spins parameter must either be a list of numbers or a cell array of strings.');
end
if iscell(spins)&&any(~ismember(spins,spin_system.comp.isotopes))
error('the system does not contain the spins specified.');
end
if isnumeric(spins)&&(size(spins,1)~=1)
error('if spins are specified by number, a row vector of numbers must be used.');
end
if isnumeric(spins)&&(max(spins)>spin_system.comp.nspins)
error('the spin number specified is greater than the number of spins in the system.');
end
if isnumeric(spins)&&(any(~isreal(spins))||any(spins<1))
error('spin numbers must be real positive integers.');
end
end
% It's not worth doing something unless you were doing something that
% someone, somewere, would much rather you weren't doing.
%
% Terry Pratchett
|
github
|
tsajed/nmr-pred-master
|
singlet.m
|
.m
|
nmr-pred-master/spinach/kernel/singlet.m
| 1,357 |
utf_8
|
c7fd78a536cdee077971bd06c921bfed
|
% Returns a two-spin singlet state. Syntax:
%
% rho=singlet(spin_system,spin_a,spin_b)
%
% Arguments:
%
% spin_a - the number of the first spin in the singlet state
%
% spin_b - the number of the second spin in the singlet state
%
% [email protected]
function rho=singlet(spin_system,spin_a,spin_b)
% Check consistency
grumble(spin_system,spin_a,spin_b);
% Build the component operators
unit=state(spin_system,{'E' ,'E' },{spin_a,spin_b},'exact');
LzSz=state(spin_system,{'Lz','Lz'},{spin_a,spin_b},'exact');
LmSp=state(spin_system,{'L-','L+'},{spin_a,spin_b},'exact');
LpSm=state(spin_system,{'L+','L-'},{spin_a,spin_b},'exact');
% Build the singlet state
rho=unit/4-(LzSz+0.5*(LpSm+LmSp));
end
% Consistency enforcement
function grumble(spin_system,spin_a,spin_b)
if (~isnumeric(spin_a))||(~isnumeric(spin_b))||(~isscalar(spin_a))||...
(~isscalar(spin_b))||(mod(spin_a,1)~=0)||(mod(spin_b,1)~=0)||...
(spin_a<1)||(spin_b<1)||(spin_a==spin_b)
error('spin_a and spin_b must be different positive real integers.');
end
if (spin_a>spin_system.comp.nspins)||(spin_b>spin_system.comp.nspins)
error('spin_a and spin_b must be smaller or equal to the number of spins in the system.');
end
end
% Physics is, hopefully, simple. Physicists are not.
%
% Edward Teller
|
github
|
tsajed/nmr-pred-master
|
create.m
|
.m
|
nmr-pred-master/spinach/kernel/create.m
| 66,689 |
utf_8
|
9d8a27fd29231970b6edabf2bc1145fd
|
% Spin system and interaction specification.
%
% <http://spindynamics.org/wiki/index.php?title=Spin_system_specification>
function spin_system=create(sys,inter)
% Close all open files
fclose('all');
% Locate the root and run sanity checks
if isempty(which('existentials'))
% Tell the user to RTFM
error(['paths have not been correctly set - please follow installation '...
'instructions (make sure you had included the subdirectories).']);
else
% Set the root directory
root_dir=which('existentials');
spin_system.sys.root_dir=root_dir(1:end-32);
% Run existential checks
existentials();
end
% Validate input
grumble(sys,inter);
% Decide output destination
if isfield(sys,'output')&&strcmp(sys.output,'hush')
% Hush the output
spin_system.sys.output='hush';
elseif (~isfield(sys,'output'))||strcmp(sys.output,'console')
% Print to the console
spin_system.sys.output=1;
else
% Print to a user-specified file
spin_system.sys.output=fopen(sys.output,'a');
end
% Decide scratch destination
if isfield(sys,'scratch')
% Scratch to a user-specified directory
spin_system.sys.scratch=sys.scratch;
else
% Scratch to the default directory
spin_system.sys.scratch=[spin_system.sys.root_dir '/scratch'];
end
% Show version banner
banner(spin_system,'version_banner');
% Internal algorithms to disable
if isfield(sys,'disable')
% Absorb user-specified values
spin_system.sys.disable=sys.disable;
else
% Disable nothing by default
spin_system.sys.disable={};
end
% Internal algorithms to enable
if isfield(sys,'enable')
% Absorb user-specified values
spin_system.sys.enable=sys.enable;
else
% Enable nothing by default
spin_system.sys.enable={};
end
% Cut-offs and tolerances
spin_system=tolerances(spin_system,sys);
% Disabled features report
if ~isempty(spin_system.sys.disable)
report(spin_system,'WARNING: the following functionality is disabled');
if ismember('pt',spin_system.sys.disable), report(spin_system,' > automatic detection of non-interacting subspaces'); end
if ismember('symmetry',spin_system.sys.disable), report(spin_system,' > permutation symmetry factorization'); end
if ismember('krylov',spin_system.sys.disable), report(spin_system,' > Krylov propagation inside evolution() function'); end
if ismember('clean-up',spin_system.sys.disable), report(spin_system,' > sparse array clean-up'); end
if ismember('dss',spin_system.sys.disable), report(spin_system,' > destination state screening inside evolution() function'); end
if ismember('expv',spin_system.sys.disable), report(spin_system,' > Krylov propagation inside step() function'); end
if ismember('trajlevel',spin_system.sys.disable), report(spin_system,' > trajectory analysis inside evolution() function'); end
if ismember('merge',spin_system.sys.disable), report(spin_system,' > small subspace merging in the evolution() function'); end
if ismember('norm_coil',spin_system.sys.disable), report(spin_system,' > coil normalization in the evolution() function'); end
if ismember('colorbar',spin_system.sys.disable), report(spin_system,' > colorbar drawing by plotting utilities'); end
end
% Enabled features report
if ~isempty(spin_system.sys.enable)
report(spin_system,'WARNING: the following functionality is enabled');
if ismember('gpu',spin_system.sys.enable), report(spin_system,' > GPU arithmetic'); end
if ismember('caching',spin_system.sys.enable), report(spin_system,' > propagator caching'); end
if ismember('greedy',spin_system.sys.enable), report(spin_system,' > greedy parallelisation'); end
if ismember('xmemlist',spin_system.sys.enable), report(spin_system,' > state-cluster cross-membership list generation'); end
if ismember('paranoia',spin_system.sys.enable), report(spin_system,' > paranoid accuracy settings'); end
end
% Control greedy parallelisation
warning('off','MATLAB:maxNumCompThreads:Deprecated');
if ismember('greedy',spin_system.sys.enable)
spmd
warning('off','MATLAB:maxNumCompThreads:Deprecated');
maxNumCompThreads(feature('numcores'));
end
maxNumCompThreads(feature('numcores'));
else
spmd
warning('off','MATLAB:maxNumCompThreads:Deprecated');
maxNumCompThreads(1);
end
maxNumCompThreads(feature('numcores'));
end
% Switch opengl to software on PCs
if ispc, opengl('software'); end
% GPU devices
if ismember('gpu',spin_system.sys.enable)
% Inform the user
report(spin_system,'looking for supported GPU devices...');
% See what user says
if isfield(sys,'gpuids')
% Absorb user-specified values
spin_system.sys.gpuids=sys.gpuids;
else
% Query the system
spin_system.sys.gpuids=1:gpuDeviceCount;
end
% Clean up and inform the user
if isempty(spin_system.sys.gpuids)
spin_system.sys.enable=setdiff(spin_system.sys.enable,{'gpu'});
report(spin_system,'WARNING - no CUDA capable GPUs detected');
else
report(spin_system,['GPU devices to be used ' num2str(spin_system.sys.gpuids)]);
end
else
% Set GPU devices to none
spin_system.sys.gpuids=[];
end
% Spin system banner
banner(spin_system,'spin_system_banner');
% Number and types of spins
spin_system.comp.isotopes=sys.isotopes;
spin_system.comp.nspins=numel(spin_system.comp.isotopes);
% Text labels for spins
if isfield(sys,'labels')
% Get labels from the user
spin_system.comp.labels=sys.labels;
else
% Set labels to empty
spin_system.comp.labels=cell(spin_system.comp.nspins,1);
end
% Multiplicities and magnetogyric ratios
spin_system.comp.mults=zeros(1,spin_system.comp.nspins);
spin_system.inter.gammas=zeros(1,spin_system.comp.nspins);
for n=1:spin_system.comp.nspins
[spin_system.inter.gammas(n),spin_system.comp.mults(n)]=spin(sys.isotopes{n});
end
report(spin_system,['a total of ' num2str(spin_system.comp.nspins) ' particles in the simulation, of which '...
num2str(nnz(spin_system.comp.mults==1)) ' have a zero spin.']);
% Order matrix
if isfield(inter,'order_matrix')
spin_system.inter.order_matrix=inter.order_matrix;
else
spin_system.inter.order_matrix=zeros(3);
end
% Primary magnet
spin_system.inter.magnet=sys.magnet;
report(spin_system,['magnetic induction of ' num2str(spin_system.inter.magnet,'%0.5g') ' Tesla ('...
num2str(-1e-6*spin_system.inter.magnet*spin('1H')/(2*pi),'%0.5g') ' MHz proton frequency, '...
num2str(-1e-9*spin_system.inter.magnet*spin('E' )/(2*pi),'%0.5g') ' GHz electron frequency).']);
% Compute carrier frequencies
spin_system.inter.basefrqs=-spin_system.inter.gammas*spin_system.inter.magnet;
% Preallocate Zeeman tensor array
spin_system.inter.zeeman.matrix=mat2cell(zeros(3*spin_system.comp.nspins,3),3*ones(spin_system.comp.nspins,1));
% Process Zeeman interactions
if isfield(inter,'zeeman')
% Absorb eigenvalues and Euler angles
if isfield(inter.zeeman,'eigs')
for n=1:spin_system.comp.nspins
if significant(inter.zeeman.eigs{n},0)
if (~isfield(inter.zeeman,'euler'))||isempty(inter.zeeman.euler{n})
S=eye(3,3);
else
S=euler2dcm(inter.zeeman.euler{n});
end
spin_system.inter.zeeman.matrix{n}=spin_system.inter.zeeman.matrix{n}+S*diag(inter.zeeman.eigs{n})*transpose(S);
end
end
end
% Absorb tensors
if isfield(inter.zeeman,'matrix')
for n=1:spin_system.comp.nspins
if significant(inter.zeeman.matrix{n},0)
spin_system.inter.zeeman.matrix{n}=spin_system.inter.zeeman.matrix{n}+inter.zeeman.matrix{n};
end
end
end
% Absorb scalars
if isfield(inter.zeeman,'scalar')
for n=1:spin_system.comp.nspins
if significant(inter.zeeman.scalar{n},0)
spin_system.inter.zeeman.matrix{n}=spin_system.inter.zeeman.matrix{n}+eye(3)*inter.zeeman.scalar{n};
end
end
end
% Report back to the user
summary(spin_system,'zeeman','summary of Zeeman interactions as supplied (ppm for nuclei, g-tensor for electrons)');
% Convert to angular frequencies
for n=1:spin_system.comp.nspins
switch spin_system.comp.isotopes{n}(1)
case 'E'
% For electrons, assume that the g-factor is given and compute the offset from the free electron g-factor
spin_system.inter.zeeman.matrix{n}=(spin_system.inter.zeeman.matrix{n}-eye(3)*spin_system.tols.freeg)*(spin_system.inter.basefrqs(n)/spin_system.tols.freeg);
otherwise
% For nuclei, assume that the chemical shift is given and compute the corresponding offset
spin_system.inter.zeeman.matrix{n}=(1e-6)*spin_system.inter.zeeman.matrix{n}*spin_system.inter.basefrqs(n);
end
end
% Clean up the result
for n=1:spin_system.comp.nspins
if negligible(spin_system.inter.zeeman.matrix{n},spin_system.tols.inter_cutoff)||(spin(spin_system.comp.isotopes{n})==0)
spin_system.inter.zeeman.matrix{n}=[];
end
end
else
% Warn the user that Zeeman tensors have not been found
report(spin_system,'WARNING - no Zeeman interactions supplied, magnet frequencies assumed.');
end
% Absorb reaction rates
if isfield(inter,'chem')&&...
isfield(inter.chem,'parts')&&...
isfield(inter.chem,'rates')&&...
isfield(inter.chem,'concs')
% Assign the data structure
spin_system.chem.parts=inter.chem.parts;
spin_system.chem.rates=inter.chem.rates;
spin_system.chem.concs=inter.chem.concs;
else
% No chemical reactions and unit concentration
spin_system.chem.parts={(1:spin_system.comp.nspins)};
spin_system.chem.rates=0;
spin_system.chem.concs=1;
end
% Absorb magnetization flux rates
if isfield(inter,'chem')&&...
isfield(inter.chem,'flux_rate')&&...
isfield(inter.chem,'flux_type')
% Assign the data structure
spin_system.chem.flux_rate=inter.chem.flux_rate;
spin_system.chem.flux_type=inter.chem.flux_type;
else
% No magnetization fluxes
spin_system.chem.flux_rate=spalloc(spin_system.comp.nspins,spin_system.comp.nspins,0);
spin_system.chem.flux_type='intramolecular';
end
% Report back to the user
summary(spin_system,'chemistry','chemical process summary');
% Preallocate coupling tensor array
report(spin_system,'initializing interaction arrays...');
spin_system.inter.coupling.matrix=mat2cell(zeros(3*spin_system.comp.nspins),3*ones(spin_system.comp.nspins,1),3*ones(spin_system.comp.nspins,1));
% Process coordinates
if isfield(inter,'coordinates')
% Absorb coordinates into data structure
spin_system.inter.coordinates=inter.coordinates;
% Report back to the user
summary(spin_system,'coordinates','atomic coordinates (Angstrom)');
% Process periodic boundary conditions
if isfield(inter,'pbc')
% Absorb translation vectors into the data structure
spin_system.inter.pbc=inter.pbc;
% Report back to the user
summary(spin_system,'pbc','PBC translation vectors (Angstrom)');
else
% Write an empty array
spin_system.inter.pbc={};
% Report back to the user
report(spin_system,'periodic boundary conditions not specified, assuming a standalone spin system.');
end
% Call dipolar coupling module
spin_system=dipolar(spin_system);
else
% Warn the user that coordinates have not been found
report(spin_system,'WARNING - no coordinates given, point dipolar interactions assumed to be zero.');
% Set an empty coordinate array
spin_system.inter.coordinates=cell(spin_system.comp.nspins,1);
% Set proximity matrix to isolated spins
spin_system.inter.proxmatrix=speye(spin_system.comp.nspins,spin_system.comp.nspins);
end
% Absorb user-specified couplings
if isfield(inter,'coupling')
% Inform the user
report(spin_system,'processing coupling data...');
% Absorb eigenvalues and Euler angles
if isfield(inter.coupling,'eigs')
[rows,cols,~]=find(cellfun(@norm,inter.coupling.eigs)>spin_system.tols.inter_cutoff);
for n=1:numel(rows)
if isempty(inter.coupling.euler{rows(n),cols(n)})
S=eye(3,3);
else
S=euler2dcm(inter.coupling.euler{rows(n),cols(n)});
end
spin_system.inter.coupling.matrix{rows(n),cols(n)}=...
spin_system.inter.coupling.matrix{rows(n),cols(n)}+2*pi*S*diag(inter.coupling.eigs{rows(n),cols(n)})*S';
end
end
% Absorb coupling tensors
if isfield(inter.coupling,'matrix')
[rows,cols,~]=find(cellfun(@norm,inter.coupling.matrix)>spin_system.tols.inter_cutoff);
for n=1:numel(rows)
spin_system.inter.coupling.matrix{rows(n),cols(n)}=...
spin_system.inter.coupling.matrix{rows(n),cols(n)}+2*pi*inter.coupling.matrix{rows(n),cols(n)};
end
end
% Absorb scalar couplings
if isfield(inter.coupling,'scalar')
[rows,cols,~]=find(cellfun(@norm,inter.coupling.scalar)>spin_system.tols.inter_cutoff);
for n=1:numel(rows)
spin_system.inter.coupling.matrix{rows(n),cols(n)}=...
spin_system.inter.coupling.matrix{rows(n),cols(n)}+2*pi*eye(3)*inter.coupling.scalar{rows(n),cols(n)};
end
end
else
% Warn the user that couplings have not been found
report(spin_system,'WARNING - no couplings given, zeros assumed.');
end
% Order up coupling tensors
[rows,cols,~]=find(cellfun(@norm,spin_system.inter.coupling.matrix)>0);
for n=1:numel(rows)
if rows(n)>cols(n)
spin_system.inter.coupling.matrix{cols(n),rows(n)}=...
spin_system.inter.coupling.matrix{cols(n),rows(n)}+spin_system.inter.coupling.matrix{rows(n),cols(n)};
spin_system.inter.coupling.matrix{rows(n),cols(n)}=zeros(3);
end
end
% Clean up the result
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if negligible(spin_system.inter.coupling.matrix{n,k},spin_system.tols.inter_cutoff)||...
(spin(spin_system.comp.isotopes{n})==0)||(spin(spin_system.comp.isotopes{k})==0)
spin_system.inter.coupling.matrix{n,k}=[];
end
end
end
% Check for inter-subsystem couplings
for n=1:numel(spin_system.chem.parts)
for k=1:numel(spin_system.chem.parts)
if (n~=k)
coupling_block=spin_system.inter.coupling.matrix(spin_system.chem.parts{n},spin_system.chem.parts{k});
if ~all(cellfun(@isempty,coupling_block(:)))
error('couplings detected between spins in different chemical species.');
end
end
end
end
% Report back to the user
summary(spin_system,'couplings','summary of spin-spin couplings (angular frequencies)');
% Temperature
if ~isfield(inter,'temperature')
% High-temperature approximation
inter.temperature=[];
% Print a warning to the user
report(spin_system,'WARNING - high-temperature approximation');
else
% Absorb the temperature specified
spin_system.rlx.temperature=inter.temperature;
% Report back to the user
report(spin_system,['spin temperature: ' num2str(spin_system.rlx.temperature) ' Kelvin']);
end
% Relaxation superoperator
if isfield(inter,'relaxation')
spin_system.rlx.theories=inter.relaxation;
for n=1:numel(spin_system.rlx.theories)
report(spin_system,['relaxation theory ' num2str(n) ': ' spin_system.rlx.theories{n}]);
end
else
spin_system.rlx.theories={};
report(spin_system,'WARNING - no relaxation theory specified');
end
% Rotational correlation times
if isfield(inter,'tau_c')
spin_system.rlx.tau_c=inter.tau_c;
report(spin_system,['rotational correlation time(s): ' num2str(spin_system.rlx.tau_c) ' seconds']);
else
spin_system.rlx.tau_c=0;
end
% Terms to keep in the relaxation superoperator
if ~isempty(spin_system.rlx.theories)
spin_system.rlx.keep=inter.rlx_keep;
report(spin_system,['terms to keep in the relaxation superoperator: ' spin_system.rlx.keep]);
end
% The fate of the dynamic frequency shift
if isfield(inter,'rlx_dfs')
spin_system.rlx.dfs=inter.rlx_dfs;
else
spin_system.rlx.dfs='ignore';
end
if ~isempty(spin_system.rlx.theories)
report(spin_system,['action to take on dynamic frequency shifts: ' spin_system.rlx.dfs]);
end
% SRFK correlation time
if isfield(inter,'srfk_tau_c')
spin_system.rlx.srfk_tau_c=inter.srfk_tau_c;
else
spin_system.rlx.srfk_tau_c=0;
end
if ismember('SRFK',spin_system.rlx.theories)
report(spin_system,['SRFK correlation time: ' num2str(spin_system.rlx.srfk_tau_c) ' seconds']);
end
% SRFK assumptions
if isfield(inter,'srfk_assume')
spin_system.rlx.srfk_assume=inter.srfk_assume;
else
spin_system.rlx.srfk_assume='';
end
if ismember('SRFK',spin_system.rlx.theories)
report(spin_system,['SRFK Hamiltonian assumptions: ' spin_system.rlx.srfk_assume]);
end
% SRFK modulation depths
if isfield(inter,'srfk_mdepth')
spin_system.rlx.srfk_mdepth=inter.srfk_mdepth;
else
spin_system.rlx.srfk_mdepth=[];
end
if ismember('SRFK',spin_system.rlx.theories)&&(~isempty(spin_system.rlx.srfk_mdepth))
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if ~isempty(spin_system.rlx.srfk_mdepth{n,k})
report(spin_system,['SRFK modulation depth for spins ' ...
num2str(n) ',' num2str(k) ': ' ...
num2str(spin_system.rlx.srfk_mdepth{n,k}) ' Hz']);
end
end
end
end
% Equilibrium state
if ~isempty(spin_system.rlx.theories)
% Absorb user setting
spin_system.rlx.equilibrium=inter.equilibrium;
% Print back the notice
report(spin_system,['thermalisation method: ' spin_system.rlx.equilibrium]);
end
% Isotropic damping
if isfield(inter,'damp_rate')
spin_system.rlx.damp_rate=inter.damp_rate;
report(spin_system,['isotropic damping rate: ' num2str(spin_system.rlx.damp_rate) ' Hz.']);
else
spin_system.rlx.damp_rate=[];
end
% Anisotropic damping
if isfield(inter,'hstrain_rates')
spin_system.rlx.hstrain_rates=inter.hstrain_rates;
report(spin_system,['anisotropic damping rates: ' num2str(spin_system.rlx.hstrain_rates) ' Hz.']);
else
spin_system.rlx.hstrain_rates=[];
end
% User-supplied R1 relaxation rates for T1/T2 model
if isfield(inter,'r1_rates')
spin_system.rlx.r1_rates=inter.r1_rates;
else
spin_system.rlx.r1_rates=[];
end
% User-supplied R2 relaxation rates for T1/T2 model
if isfield(inter,'r2_rates')
spin_system.rlx.r2_rates=inter.r2_rates;
else
spin_system.rlx.r2_rates=[];
end
% User-supplied R1 relaxation rates for Lindblad theory
if isfield(inter,'lind_r1_rates')
spin_system.rlx.lind_r1_rates=inter.lind_r1_rates;
else
spin_system.rlx.lind_r1_rates=[];
end
% User-supplied R2 relaxation rates for Lindblad theory
if isfield(inter,'lind_r2_rates')
spin_system.rlx.lind_r2_rates=inter.lind_r2_rates;
else
spin_system.rlx.lind_r2_rates=[];
end
% User-supplied Weizmann R1e relaxation rates
if isfield(inter,'weiz_r1e')
spin_system.rlx.weiz_r1e=inter.weiz_r1e;
else
spin_system.rlx.weiz_r1e=[];
end
% User-supplied Nottingham R1e relaxation rates
if isfield(inter,'nott_r1e')
spin_system.rlx.nott_r1e=inter.nott_r1e;
else
spin_system.rlx.nott_r1e=[];
end
% User-supplied Weizmann R1n relaxation rates
if isfield(inter,'weiz_r1n')
spin_system.rlx.weiz_r1n=inter.weiz_r1n;
else
spin_system.rlx.weiz_r1n=[];
end
% User-supplied Nottingham R1n relaxation rates
if isfield(inter,'nott_r1n')
spin_system.rlx.nott_r1n=inter.nott_r1n;
else
spin_system.rlx.nott_r1n=[];
end
% User-supplied Weizmann R1d relaxation rates
if isfield(inter,'weiz_r1d')
spin_system.rlx.weiz_r1d=inter.weiz_r1d;
else
spin_system.rlx.weiz_r1d=[];
end
% User-supplied Weizmann R2e relaxation rates
if isfield(inter,'weiz_r2e')
spin_system.rlx.weiz_r2e=inter.weiz_r2e;
else
spin_system.rlx.weiz_r2e=[];
end
% User-supplied Nottingham R2e relaxation rates
if isfield(inter,'nott_r2e')
spin_system.rlx.nott_r2e=inter.nott_r2e;
else
spin_system.rlx.nott_r2e=[];
end
% User-supplied Weizmann R2n relaxation rates
if isfield(inter,'weiz_r2n')
spin_system.rlx.weiz_r2n=inter.weiz_r2n;
else
spin_system.rlx.weiz_r2n=[];
end
% User-supplied Nottingham R2n relaxation rates
if isfield(inter,'nott_r2n')
spin_system.rlx.nott_r2n=inter.nott_r2n;
else
spin_system.rlx.nott_r2n=[];
end
% User-supplied Weizmann R2d relaxation rates
if isfield(inter,'weiz_r2d')
spin_system.rlx.weiz_r2d=inter.weiz_r2d;
else
spin_system.rlx.weiz_r2d=[];
end
% Report relaxation rates back to the user
if isfield(inter,'r1_rates')&&isfield(inter,'r2_rates')
summary(spin_system,'rlx_rates_t1_t2','relaxation rates (Hz) for T1/T2 theory');
end
if isfield(inter,'lind_r1_rates')&&isfield(inter,'lind_r2_rates')
summary(spin_system,'rlx_rates_lindblad','relaxation rates (Hz) for Lindblad theory');
end
if isfield(inter,'nott_r1e')&&isfield(inter,'nott_r2e')&&...
isfield(inter,'nott_r1n')&&isfield(inter,'nott_r2n')
summary(spin_system,'rlx_rates_nott','relaxation rates (Hz) for Nottingham DNP theory');
end
if isfield(inter,'weiz_r1e')&&isfield(inter,'weiz_r2e')&&...
isfield(inter,'weiz_r1n')&&isfield(inter,'weiz_r2n')&&...
isfield(inter,'weiz_r1d')&&isfield(inter,'weiz_r2d')
summary(spin_system,'rlx_rates_weiz','relaxation rates (Hz) for Weizmann DNP theory');
end
% Absorb radical recombination parameters
if isfield(inter,'chem')&&isfield(inter.chem,'rp_theory')
% Absorb theory
spin_system.chem.rp_theory=inter.chem.rp_theory;
report(spin_system,['radical recombination theory set to ' spin_system.chem.rp_theory]);
% Absorb spins
spin_system.chem.rp_electrons=inter.chem.rp_electrons;
report(spin_system,['recombining electrons at positions ' num2str(spin_system.chem.rp_electrons)]);
% Absorb rates
spin_system.chem.rp_rates=inter.chem.rp_rates;
report(spin_system,['singlet recombination rate ' num2str(spin_system.chem.rp_rates(1)) ' Hz.']);
report(spin_system,['triplet recombination rate ' num2str(spin_system.chem.rp_rates(2)) ' Hz.']);
else
spin_system.chem.rp_theory='';
spin_system.chem.rp_electrons=[];
spin_system.chem.rp_rates=[];
end
end
% Input validation function
function grumble(sys,inter)
% Check Matlab component versions
if verLessThan('matlab','9.0')
error('Spinach requires 64-bit Matlab R2016a or later.');
end
if verLessThan('distcomp','6.8')
error('Spinach requires Matlab Parallel Computing Toolbox version 6.8 or later.');
end
if verLessThan('optim','7.4')
error('Spinach requires Matlab Optimization Toolbox version 7.4 or later.');
end
% Check the output switch
if isfield(sys,'output')
if ~ischar(sys.output)
error('sys.output must be a character string.');
end
end
% Check the scratch folder
if isfield(sys,'scratch')
if ~ischar(sys.scratch)
error('sys.scratch must be a character string.');
end
if ~exist(sys.scratch,'dir')
error('the specified scratch directory does not exist.');
end
end
% Check the disable switch
if isfield(sys,'disable')
if (~iscell(sys.disable))||any(~cellfun(@ischar,sys.disable))
error('sys.disable must be a cell array of strings.');
end
if any(~ismember(sys.disable,{'zte','pt','symmetry','krylov','clean-up','dss','expv','trajlevel','merge','norm_coil','colorbar'}))
error(['allowed values for sys.disable are ''zte'', ''pt'', ''symmetry'', ''krylov'', ''clean-up'','...
' ''dss'', ''expv'', ''merge'', ''colorbar'', ''norm_coil'' and ''trajlevel''.']);
end
end
% Check the enable switch
if isfield(sys,'enable')
if (~iscell(sys.enable))||any(~cellfun(@ischar,sys.enable))
error('sys.enable must be a cell array of strings.');
end
if any(~ismember(sys.enable,{'gpu','caching','xmemlist','greedy','paranoia','cowboy'}))
error('allowed values for sys.enable are ''gpu'', ''xmemlist'', ''greedy'', ''paranoia'', ''cowboy'' and ''caching''.');
end
end
% Check GPU parameters
if isfield(sys,'gpuids')
% Check the specification
if ~isnumeric(sys.gpuids)||any(mod(sys.gpuids,1)~=0)
error('sys.gpuids must be a vector of integers.');
end
% Check if the devices are there
if any(sys.gpuids>gpuDeviceCount)
error('GPU device with the specified ID does not exist.');
end
end
% Check isotopes variable
if ~isfield(sys,'isotopes')
error('sys.isotopes subfield must be present.');
elseif isempty(sys.isotopes)
error('sys.isotopes cell array cannot be empty.');
elseif ~iscell(sys.isotopes)
error('sys.isotopes must be a cell array.');
elseif ~all(cellfun(@ischar,sys.isotopes))
error('all elements of sys.isotopes cell array must be character strings.');
end
% Check labels variable
if isfield(sys,'labels')
if ~iscell(sys.labels)
error('sys.labels must be a cell array.');
elseif isempty(sys.labels)
error('sys.labels cell array cannot be empty.');
elseif ~all(cellfun(@ischar,sys.labels))
error('all elements of sys.labels cell array must be character strings.');
elseif numel(sys.labels)~=numel(sys.isotopes)
error('the length of sys.labels must be the same as the length of sys.isotopes.');
end
end
% Check the order matrix
if isfield(inter,'order_matrix')
% Make sure we have a 3x3 matrix
if (~isnumeric(inter.order_matrix))||(~ismatrix(inter.order_matrix))||...
(any(size(inter.order_matrix)~=[3 3]))||(~isreal(inter.order_matrix))
error('inter.order_matrix must be a 3x3 matrix of real numbers.');
end
% Make sure the matrix is traceless
if trace(inter.order_matrix)>10*eps()
error('inter.order_matrix must be traceless.');
end
% Make sure the matrix is symmetric
if norm(inter.order_matrix-transpose(inter.order_matrix))>10*eps()
error('inter.order_matrix must be symmetric.');
end
end
% Check magnet induction
if ~isfield(sys,'magnet')
error('magnet induction must be specified in sys.magnet varaible.');
else
if (~isnumeric(sys.magnet))||(~isreal(sys.magnet))||(numel(sys.magnet)~=1)
error('sys.magnet must be a real number.');
end
end
% Check Zeeman interactions
if isfield(inter,'zeeman')
% Check eigenvalues / Euler angles specification
if isfield(inter.zeeman,'eigs')
% Check type
if (~iscell(inter.zeeman.eigs))||any(~cellfun(@isnumeric,inter.zeeman.eigs))
error('inter.zeeman.eigs must be a cell array of empty vectors or 1x3 vectors.');
end
% Check dimensions
if numel(inter.zeeman.eigs)~=numel(sys.isotopes)
error('the number of elements in inter.zeeman.eigs must match the number of spins.');
end
% Make sure eulers exist
if ~isfield(inter.zeeman,'euler')
error('inter.zeeman.euler variable must be set together with inter.zeeman.eigs.');
end
% Make sure eulers are cells
if (~iscell(inter.zeeman.euler))||any(~cellfun(@isnumeric,inter.zeeman.euler))
error('inter.zeeman.euler must be a cell array of empty vectors or 1x3 vectors.');
end
% Make sure eulers have the correct length
if ~all(size(inter.zeeman.eigs)==size(inter.zeeman.euler))
error('inter.zeeman.eigs and inter.zeeman.euler variables must have the same dimension.');
end
% Make sure all non-empty elements are real 1x3 vectors
for n=1:numel(sys.isotopes)
% For eigenvalues
if ~isempty(inter.zeeman.eigs{n})
if (~all(size(inter.zeeman.eigs{n})==[1 3]))||...
(~isnumeric(inter.zeeman.eigs{n}))||...
(~isreal(inter.zeeman.eigs{n}))
error('non-empty elements of inter.zeeman.eigs must be real 1x3 vectors.');
end
end
% For Euler angles
if ~isempty(inter.zeeman.euler{n})
if (~all(size(inter.zeeman.euler{n})==[1 3]))||...
(~isnumeric(inter.zeeman.euler{n}))||...
(~isreal(inter.zeeman.euler{n}))
error('non-empty elements of inter.zeeman.euler must be real 1x3 vectors.');
end
end
% For simultaneity
if (isempty(inter.zeeman.eigs{n})&&(~isempty(inter.zeeman.euler{n})))||...
(isempty(inter.zeeman.euler{n})&&(~isempty(inter.zeeman.eigs{n})))
error('inter.zeeman.eigs and inter.zeeman.euler must have identical non-empty cell patterns.');
end
end
end
% Check matrix specification
if isfield(inter.zeeman,'matrix')
% Check type
if ~iscell(inter.zeeman.matrix)
error('inter.zeeman.matrix must be a cell array of empty matrices or 3x3 matrices.');
elseif size(inter.zeeman.matrix,1)~=1
error('inter.zeeman.matrix cell array must have dimension 1 x nspins.');
elseif ~all(cellfun(@isnumeric,inter.zeeman.matrix))
error('all elements of inter.zeeman.matrix cell array must be numeric.');
end
% Check length
if numel(inter.zeeman.matrix)~=numel(sys.isotopes)
error('the number of elements in the inter.zeeman.matrix array should match the number of spins.');
end
% Make sure all non-empty elements are real 3x3 matrices
for n=1:numel(sys.isotopes)
if ~isempty(inter.zeeman.matrix{n})
if (~all(size(inter.zeeman.matrix{n})==[3 3]))||...
(~isnumeric(inter.zeeman.matrix{n}))||...
(~isreal(inter.zeeman.matrix{n}))
error('non-empty elements of inter.zeeman.matrix must be real 3x3 matrices.');
end
end
end
end
% Check scalars
if isfield(inter.zeeman,'scalar')
% Check type
if ~iscell(inter.zeeman.scalar)||any(~cellfun(@isnumeric,inter.zeeman.scalar))
error('inter.zeeman.scalar must be a cell array of empty matrices or 1x1 matrices.');
end
% Check length
if numel(inter.zeeman.scalar)~=numel(sys.isotopes)
error('the number of elements in the inter.zeeman.scalar array should match the number of spins.');
end
% Make sure all non-empty elements are real numbers
for n=1:numel(sys.isotopes)
if ~isempty(inter.zeeman.scalar{n})
if (numel(inter.zeeman.scalar{n})~=1)||...
(~isnumeric(inter.zeeman.scalar{n}))||...
(~isreal(inter.zeeman.scalar{n}))
error('non-empty elements of inter.zeeman.scalar must be numbers.');
end
end
end
end
end
% Check coordinates
if isfield(inter,'coordinates')
% Check type
if ~iscell(inter.coordinates)||any(~cellfun(@isnumeric,inter.coordinates))
error('inter.coordinates must be a cell array of empty vectors or 1x3 vectors.');
end
% Check size
if numel(inter.coordinates)~=numel(sys.isotopes)
error('the number of elements in inter.coordinates must match the number of spins.')
end
% Check contents
for n=1:numel(sys.isotopes)
% Make sure we have real 3-vectors
if ~isempty(inter.coordinates{n})
if (~all(size(inter.coordinates{n})==[1 3]))||...
(~isnumeric(inter.coordinates{n}))||...
(~isreal(inter.coordinates{n}))
error('non-empty elements of inter.coordinates must be real 1x3 vectors.');
end
end
end
end
% Check periodic boundary conditions
if isfield(inter,'pbc')
% Check type
if ~iscell(inter.pbc)||any(~cellfun(@isvector,inter.pbc))
error('inter.pbc must be a cell array of row vectors.');
end
% Check element numbers
if ~ismember(numel(inter.pbc),[0 1 2 3])
error('inter.pbc cell array must have zero, one, two or three row vectors as elements.');
end
% Check vector dimensions
for n=1:numel(inter.pbc)
if (~all(size(inter.pbc{n})==[1 3]))||(~isreal(inter.pbc{n}))
error('all elements of inter.pbc.cell array must be row vectors with three real elements.');
end
end
% Check linear independence
if ((numel(inter.pbc)==2)&&rank([inter.pbc{1}; inter.pbc{2}],1e-3)<2)||...
((numel(inter.pbc)==3)&&rank([inter.pbc{1}; inter.pbc{2}; inter.pbc{3}],1e-3)<3)
error('the vectors supplied in inter.pbc must be lineary independent.');
end
end
% Check couplings
if isfield(inter,'coupling')
% Check eigenvalues / Euler angles specification
if isfield(inter.coupling,'eigs')
% Check type
if (~iscell(inter.coupling.eigs))||any(any(~cellfun(@isnumeric,inter.coupling.eigs)))
error('inter.coupling.eigs must be a cell array of empty vectors or 1x3 vectors.');
end
% Check dimensions
if ~all(size(inter.coupling.eigs)==[numel(sys.isotopes) numel(sys.isotopes)])
error('both dimensions of inter.coupling.eigs must match the number of spins.');
end
% Check quadratic couplings
for n=1:numel(sys.isotopes)
[~,mult]=spin(sys.isotopes{n});
if (norm(inter.coupling.eigs{n,n})>0)&&(mult<3)
error('quadratic couplings cannot be specified for spin-1/2 particles.');
elseif abs(sum(inter.coupling.eigs{n,n}))>1e-6
error('quadratic couplings cannot have a non-zero trace.');
end
end
% Make sure eulers exist
if ~isfield(inter.coupling,'euler')
error('inter.coupling.euler array must be set together with inter.coupling.eigs.');
end
% Make sure eulers are cells
if ~iscell(inter.coupling.euler)||any(any(~cellfun(@isnumeric,inter.coupling.euler)))
error('inter.coupling.euler must be a cell array of empty vectors or 1x3 vectors.');
end
% Make sure eulers have the correct length
if ~all(size(inter.coupling.eigs)==size(inter.coupling.euler))
error('inter.coupling.eigs and inter.coupling.euler arrays must have the same dimension.');
end
% Make sure all non-empty elements are real 1x3 vectors
for n=1:numel(sys.isotopes)
for k=1:numel(sys.isotopes)
% For eigenvalues
if ~isempty(inter.coupling.eigs{n,k})
if (~all(size(inter.coupling.eigs{n,k})==[1 3]))||...
(~isnumeric(inter.coupling.eigs{n,k}))||...
(~isreal(inter.coupling.eigs{n,k}))
error('non-empty elements of inter.coupling.eigs must be real 1x3 vectors.');
end
end
% For Euler angles
if ~isempty(inter.coupling.euler{n,k})
if (~all(size(inter.coupling.euler{n,k})==[1 3]))||...
(~isnumeric(inter.coupling.euler{n,k}))||...
(~isreal(inter.coupling.euler{n,k}))
error('non-empty elements of inter.coupling.euler must be real 1x3 vectors.');
end
end
% For simultaneity
if (isempty(inter.coupling.eigs{n,k})&&(~isempty(inter.coupling.euler{n,k})))||...
(isempty(inter.coupling.euler{n,k})&&(~isempty(inter.coupling.eigs{n,k})))
error('inter.coupling.eigs and inter.coupling.euler must have identical non-empty cell patterns.');
end
end
end
end
% Check matrix specification
if isfield(inter.coupling,'matrix')
% Check type
if ~iscell(inter.coupling.matrix)||any(any(~cellfun(@isnumeric,inter.coupling.matrix)))
error('inter.coupling.matrix must be a cell array of empty matrices or 3x3 matrices.');
end
% Check dimensions
if ~all(size(inter.coupling.matrix)==[numel(sys.isotopes) numel(sys.isotopes)])
error('both dimensions of inter.coupling.matrix cell array should match the number of spins.');
end
% Check quadratic couplings
for n=1:numel(sys.isotopes)
[~,mult]=spin(sys.isotopes{n});
if (norm(inter.coupling.matrix{n,n})>0)&&(mult<3)
error('quadratic couplings cannot be specified for spin-1/2 particles.');
elseif abs(trace(inter.coupling.matrix{n,n}))>1e-6
error('quadratic couplings cannot have a non-zero trace.');
end
end
% Make sure all non-empty elements are real 3x3 matrices
for n=1:numel(sys.isotopes)
for k=1:numel(sys.isotopes)
if ~isempty(inter.coupling.matrix{n,k})
if (~all(size(inter.coupling.matrix{n,k})==[3 3]))||...
(~isnumeric(inter.coupling.matrix{n,k}))||...
(~isreal(inter.coupling.matrix{n,k}))
error('non-empty elements of inter.coupling.matrix must be real 3x3 matrices.');
end
end
end
end
end
% Check scalars
if isfield(inter.coupling,'scalar')
% Check type
if ~iscell(inter.coupling.scalar)||any(any(~cellfun(@isnumeric,inter.coupling.scalar)))
error('inter.coupling.scalar must be a cell array of empty matrices or 1x1 matrices.');
end
% Check dimensions
if ~all(size(inter.coupling.scalar)==[numel(sys.isotopes) numel(sys.isotopes)])
error('both dimensions of inter.coupling.scalar array should match the number of spins.');
end
% Make sure all non-empty elements are real numbers
if any(nonzeros(cellfun(@numel,inter.coupling.scalar))~=1)||...
any(nonzeros(~cellfun(@isnumeric,inter.coupling.scalar)))||...
any(nonzeros(~cellfun(@isreal,inter.coupling.scalar)))
error('non-empty elements of inter.coupling.scalar must be real numbers.');
end
% Disallow quadratic scalar couplings
for n=1:numel(sys.isotopes)
if norm(inter.coupling.scalar{n,n})~=0
error('scalar couplings cannot be quadratic.');
end
end
end
end
% Check temperature - negative and complex values allowed
if isfield(inter,'temperature')&&(~isempty(inter.temperature))
% Check type and dimension
if (~isnumeric(inter.temperature))||(numel(inter.temperature)~=1)
error('inter.tempearture must be a number.');
end
end
% Check relaxation theory
if isfield(inter,'relaxation')
% Check type
if (~iscell(inter.relaxation))||any(~cellfun(@ischar,inter.relaxation))
error('inter.relaxation must be a cell array of strings.');
end
% Check relaxation theories
if ~all(ismember(inter.relaxation,{'damp','hstrain','t1_t2','redfield','lindblad',...
'nottingham','weizmann','SRFK','SRSK'}))
error('unrecognised relaxation theory specification.');
end
% Enforce term retention policy specification
if ~isfield(inter,'rlx_keep')
error('relaxation superoperator term retention policy must be specified in inter.rlx_keep field.');
end
% Enforce relaxation destination
if ~isfield(inter,'equilibrium')
error('relaxation destination must be specified in inter.equilibrium variable.');
end
% Enforce correlation time with Redfield theory
if ismember('redfield',inter.relaxation)&&(~isfield(inter,'tau_c'))
error('correlation time(s) must be specified with Redfield theory.');
end
% Enforce damping rate with isotropic damping
if ismember('damp',inter.relaxation)&&(~isfield(inter,'damp_rate'))
error('damping rate must be specified with non-selective damping.');
end
% Enforce damping rate with anisotropic damping
if ismember('hstrain',inter.relaxation)&&(~isfield(inter,'hstrain_rates'))
error('damping rates must be specified with anisotropic damping.');
end
% Enforce R1 and R2 rates with T1,T2 approximation
if ismember('t1_t2',inter.relaxation)&&((~isfield(inter,'r1_rates'))||(~isfield(inter,'r2_rates')))
error('R1 and R2 rates must be specified with extended T1,T2 relaxation theory.');
end
% Enforce R1 and R2 rates with Lindblad theory
if ismember('lindblad',inter.relaxation)&&((~isfield(inter,'lind_r1_rates'))||(~isfield(inter,'lind_r2_rates')))
error('R1 and R2 rates must be specified with Lindblad relaxation theory.');
end
% Enforce R1e, R2e, R1n and R2n rates with Nottingham DNP theory
if ismember('nottingham',inter.relaxation)&&...
((~isfield(inter,'nott_r1e'))||(~isfield(inter,'nott_r2e'))||...
(~isfield(inter,'nott_r1n'))||(~isfield(inter,'nott_r2n')))
error(['R1e, R2e, R1n and R2n rates must be specified with '...
'Nottingham DNP relaxation theory.']);
end
% Enforce R1e, R2e, R1n and R2n rates with Weizmann DNP theory
if ismember('weizmann',inter.relaxation)&&...
((~isfield(inter,'weiz_r1e'))||(~isfield(inter,'weiz_r2e'))||...
(~isfield(inter,'weiz_r1n'))||(~isfield(inter,'weiz_r2n')))
error(['R1e, R2e, R1n and R2n rates must be specified with '...
'Weizmann DNP relaxation theory.']);
end
% Enforce R1d and R2d with Weizmann DNP theory
if ismember('weizmann',inter.relaxation)&&...
((~isfield(inter,'weiz_r1d'))||(~isfield(inter,'weiz_r2d')))
error('R1d and R2d rates must be specified with Weizmann DNP relaxation theory.');
end
% Enforce two electrons with Nottingham DNP theory
if ismember('nottingham',inter.relaxation)&&(nnz(strcmp('E',sys.isotopes))~=2)
error('Nottingham DNP relaxation theory requires two electrons.');
end
% Enforce correlation time with SRFK
if ismember('SRFK',inter.relaxation)&&(~isfield(inter,'srfk_tau_c'))
error('SRFK requires modulation correlation time to be specified in inter.srfk_tau_c variable.');
end
% Enforce modulation depth with SRFK
if ismember('SRFK',inter.relaxation)&&(~isfield(inter,'srfk_mdepth'))
error('SRFK requires modulation depths to be specified in inter.srfk_mdepth variable.');
end
% Enforce specific assumptions with SRFK
if ismember('SRFK',inter.relaxation)&&(~isfield(inter,'srfk_assume'))
error('SRFK requires assumptions to be specified in inter.srfk_assume variable.');
end
end
% Check rotational correlation time
if isfield(inter,'tau_c')
% Check type and dimension
if (~isnumeric(inter.tau_c))||(numel(inter.tau_c)>3)||(numel(inter.tau_c)==0)
error('inter.tau_c must be a vector of size 1, 2 or 3.');
end
% Check value
if (~isreal(inter.tau_c))||any(inter.tau_c<0)
error('inter.tau_c must have non-negative real elements.');
end
% Enforce Redfield theory if tau_c is specified
if (~isfield(inter,'relaxation'))||(~ismember('redfield',inter.relaxation))
error('inter.tau_c requires Redfield relaxation theory.');
end
end
% Check SRFK correlation time
if isfield(inter,'srfk_tau_c')
% Check type and dimension
if (~isnumeric(inter.srfk_tau_c))||(~isscalar(inter.srfk_tau_c))||(~isreal(inter.tau_c))||(inter.tau_c<0)
error('inter.srfk_tau_c must be a non-negative real number.');
end
% Enforce SRFK theory if srfk_tau_c is specified
if (~isfield(inter,'relaxation'))||(~ismember('SRFK',inter.relaxation))
error('inter.srfk_tau_c requires SRFK relaxation theory.');
end
end
% Check term retention
if isfield(inter,'rlx_keep')
% Check type
if ~ischar(inter.rlx_keep)
error('inter.rlx_keep must be a string.');
end
% Check contents
if ~ismember(inter.rlx_keep,{'diagonal','kite','secular','labframe'})
error('allowed values for inter.rlx_keep are ''diagonal'', ''kite'', ''secular'' and ''labframe''.');
end
end
% Check dynamic frequency shift retention
if isfield(inter,'rlx_dfs')
% Check type
if ~ischar(inter.rlx_dfs)
error('inter.rlx_dfs must be a string.');
end
% Check contents
if ~ismember(inter.rlx_dfs,{'keep','ignore'})
error('allowed values for inter.rlx_dfs are ''keep'' and ''ignore''.');
end
end
% Check SRFK assumptions
if isfield(inter,'srfk_assume')
% Check type
if ~ischar(inter.srfk_assume)
error('inter.srfk_assume must be a string.');
end
% Enforce SRFK if SRFK assumptions are specified
if (~isfield(inter,'relaxation'))||(~ismember('SRFK',inter.relaxation))
error('inter.srfk_assume requires SRFK relaxation theory.');
end
end
% Check SRFK modulation depths
if isfield(inter,'srfk_mdepth')
% Check type
if (~iscell(inter.srfk_mdepth))||(~all(cellfun(@isnumeric,inter.srfk_mdepth(:))))
error('inter.srfk_mdepth must be a cell array of empty matrices or scalars.');
end
% Check dimensions
if ~all(size(inter.srfk_mdepth)==[numel(sys.isotopes) numel(sys.isotopes)])
error('both dimensions of inter.srfk_mdepth array should match the number of spins.');
end
% Make sure all non-empty elements are non-negative real numbers
[rows,cols]=find(~cellfun(@isempty,inter.srfk_mdepth));
for n=1:numel(rows)
if (~isreal(inter.srfk_mdepth{rows(n),cols(n)}))||(inter.srfk_mdepth{rows(n),cols(n)}<0)
error('non-empty elements of inter.srfk_mdepth must be non-negative real numbers.');
end
end
% Disallow quadratic scalar couplings
for n=1:numel(sys.isotopes)
if norm(inter.srfk_mdepth{n,n})~=0
error('scalar couplings cannot be quadratic.');
end
end
% Enforce SRFK if SRFK modulation depths are specified
if (~isfield(inter,'relaxation'))||(~ismember('SRFK',inter.relaxation))
error('inter.srfk_mdepth requires SRFK relaxation theory.');
end
end
% Check equilibrium switch
if isfield(inter,'equilibrium')
% Check type
if ~ischar(inter.equilibrium)
error('inter.equilibrium must be a string.');
end
% Check contents
if ~ismember(inter.equilibrium,{'zero','levante','dibari'})
error('allowed values for inter.equilibrium are ''zero'', ''levante'' and ''dibari''.');
end
end
% Check isotropic damping rate
if isfield(inter,'damp_rate')
% Check value
if (~isnumeric(inter.damp_rate))||(numel(inter.damp_rate)~=1)||...
(~isreal(inter.damp_rate))||(inter.damp_rate<0)
error('inter.damp_rate must be a non-negative real number.');
end
% Enforce isotropic damping if damp_rate is specified
if ~ismember('damp',inter.relaxation)
error('inter.damp_rate can only be specified with damp relaxation theory.');
end
end
% Check anisotropic damping rates
if isfield(inter,'hstrain_rates')
% Check values
if (~isnumeric(inter.hstrain_rates))||(numel(inter.hstrain_rates)~=3)||...
(~isreal(inter.hstrain_rates))||any(inter.hstrain_rates<0)
error('inter.hstrain_rates must contain three non-negative real numbers.');
end
% Enforce anisotropic damping if damp_rate is specified
if ~ismember('hstrain',inter.relaxation)
error('inter.hstrain_rates can only be specified with damp relaxation theory.');
end
end
% Check R1 rates for T1/T2
if isfield(inter,'r1_rates')
% Check type and values
if (~isvector(inter.r1_rates))||(~isnumeric(inter.r1_rates))||...
any(inter.r1_rates<0)||any(~isreal(inter.r1_rates))
error('inter.r1_rates must be a vector of positive real numbers.');
end
% Check dimension
if numel(inter.r1_rates)~=numel(sys.isotopes)
error('the number of elements in inter.r1_rates must be equal to the number of spins.');
end
% Enforce T1,T2 theory if inter.r1_rates rates are specified
if ~ismember('t1_t2',inter.relaxation)
error('inter.r1_rates can only be specified with T1,T2 relaxation theory.');
end
end
% Check R1 rates for Lindblad
if isfield(inter,'lind_r1_rates')
% Check type and values
if (~isvector(inter.lind_r1_rates))||(~isnumeric(inter.lind_r1_rates))||...
any(inter.lind_r1_rates<0)||any(~isreal(inter.lind_r1_rates))
error('inter.lind_r1_rates must be a vector of positive real numbers.');
end
% Check dimension
if numel(inter.lind_r1_rates)~=numel(sys.isotopes)
error('the number of elements in inter.lind_r1_rates must be equal to the number of spins.');
end
% Enforce Lindblad theory if inter.lind_r1_rates rates are specified
if ~ismember('lindblad',inter.relaxation)
error('inter.lind_r1_rates can only be specified with Lindblad relaxation theory.');
end
end
% Check R2 rates for T1/T2
if isfield(inter,'r2_rates')
% Check type and values
if (~isvector(inter.r2_rates))||(~isnumeric(inter.r2_rates))||...
any(inter.r2_rates<0)||any(~isreal(inter.r2_rates))
error('inter.r2_rates must be a vector of positive real numbers.');
end
% Check dimension
if numel(inter.r2_rates)~=numel(sys.isotopes)
error('the number of elements in inter.r2_rates must be equal to the number of spins.');
end
% Enforce T1,T2 theory if inter.r2_rates rates are specified
if ~ismember('t1_t2',inter.relaxation)
error('inter.r2_rates can only be specified with T1,T2 relaxation theory.');
end
end
% Check R2 rates for Lindblad
if isfield(inter,'lind_r2_rates')
% Check type and values
if (~isvector(inter.lind_r2_rates))||(~isnumeric(inter.lind_r2_rates))||...
any(inter.lind_r2_rates<0)||any(~isreal(inter.lind_r2_rates))
error('inter.lind_r2_rates must be a vector of positive real numbers.');
end
% Check dimension
if numel(inter.lind_r2_rates)~=numel(sys.isotopes)
error('the number of elements in inter.lind_r2_rates must be equal to the number of spins.');
end
% Enforce Lindblad theory if inter.lind_r2_rates rates are specified
if ~ismember('lindblad',inter.relaxation)
error('inter.lind_r2_rates can only be specified with Lindblad relaxation theory.');
end
end
% Check R1e rate for Weizmann DNP theory
if isfield(inter,'weiz_r1e')
% Check type and value
if (~isnumeric(inter.weiz_r1e))||any(inter.weiz_r1e<0)||any(~isreal(inter.weiz_r1e))
error('inter.weiz_r1e must be a positive real number.');
end
% Check dimension
if numel(inter.weiz_r1e)~=1
error('inter.weiz_r1e must have a single element.');
end
% Enforce Weizmann theory if inter.weiz_r1e is specified
if ~ismember('weizmann',inter.relaxation)
error('inter.weiz_r1e can only be specified with Weizmann DNP relaxation theory.');
end
end
% Check R1e rate for Nottingham DNP theory
if isfield(inter,'nott_r1e')
% Check type and value
if (~isnumeric(inter.nott_r1e))||any(inter.nott_r1e<0)||any(~isreal(inter.nott_r1e))
error('inter.nott_r1e must be a positive real number.');
end
% Check dimension
if numel(inter.nott_r1e)~=1
error('inter.nott_r1e must have a single element.');
end
% Enforce Nottingham theory if inter.weiz_r1e is specified
if ~ismember('nottingham',inter.relaxation)
error('inter.nott_r1e can only be specified with Nottingham DNP relaxation theory.');
end
end
% Check R2e rate for Weizmann DNP theory
if isfield(inter,'weiz_r2e')
% Check type and value
if (~isnumeric(inter.weiz_r2e))||any(inter.weiz_r2e<0)||any(~isreal(inter.weiz_r2e))
error('inter.weiz_r2e must be a positive real number.');
end
% Check dimension
if numel(inter.weiz_r2e)~=1
error('inter.weiz_r1e must have a single element.');
end
% Enforce Weizmann theory if inter.weiz_r2e is specified
if ~ismember('weizmann',inter.relaxation)
error('inter.weiz_r2e can only be specified with Weizmann DNP relaxation theory.');
end
end
% Check R2e rate for Nottingham DNP theory
if isfield(inter,'nott_r2e')
% Check type and value
if (~isnumeric(inter.nott_r2e))||any(inter.nott_r2e<0)||any(~isreal(inter.nott_r2e))
error('inter.nott_r2e must be a positive real number.');
end
% Check dimension
if numel(inter.nott_r2e)~=1
error('inter.nott_r2e must have a single element.');
end
% Enforce Nottingham theory if inter.weiz_r1e is specified
if ~ismember('nottingham',inter.relaxation)
error('inter.nott_r2e can only be specified with Nottingham DNP relaxation theory.');
end
end
% Check R1n rate for Weizmann DNP theory
if isfield(inter,'weiz_r1n')
% Check type and value
if (~isnumeric(inter.weiz_r1n))||any(inter.weiz_r1n<0)||any(~isreal(inter.weiz_r1n))
error('inter.weiz_r1n must be a positive real number.');
end
% Check dimension
if numel(inter.weiz_r1n)~=1
error('inter.weiz_r1n must have a single element.');
end
% Enforce Weizmann theory if inter.weiz_r1n is specified
if ~ismember('weizmann',inter.relaxation)
error('inter.weiz_r1n can only be specified with Weizmann DNP relaxation theory.');
end
end
% Check R1n rate for Nottingham DNP theory
if isfield(inter,'nott_r1n')
% Check type and value
if (~isnumeric(inter.nott_r1n))||any(inter.nott_r1n<0)||any(~isreal(inter.nott_r1n))
error('inter.nott_r1n must be a positive real number.');
end
% Check dimension
if numel(inter.nott_r1n)~=1
error('inter.nott_r1n must have a single element.');
end
% Enforce Nottingham theory if inter.weiz_r1n is specified
if ~ismember('nottingham',inter.relaxation)
error('inter.nott_r1n can only be specified with Nottingham DNP relaxation theory.');
end
end
% Check R2n rate for Weizmann DNP theory
if isfield(inter,'weiz_r2n')
% Check type and value
if (~isnumeric(inter.weiz_r2n))||any(inter.weiz_r2n<0)||any(~isreal(inter.weiz_r2n))
error('inter.weiz_r2n must be a positive real number.');
end
% Check dimension
if numel(inter.weiz_r2n)~=1
error('inter.weiz_r1e must have a single element.');
end
% Enforce Weizmann theory if inter.weiz_r2n is specified
if ~ismember('weizmann',inter.relaxation)
error('inter.weiz_r2n can only be specified with Weizmann DNP relaxation theory.');
end
end
% Check R2n rate for Nottingham DNP theory
if isfield(inter,'nott_r2n')
% Check type and value
if (~isnumeric(inter.nott_r2n))||any(inter.nott_r2n<0)||any(~isreal(inter.nott_r2n))
error('inter.nott_r2n must be a positive real number.');
end
% Check dimension
if numel(inter.nott_r2n)~=1
error('inter.nott_r2n must have a single element.');
end
% Enforce Nottingham theory if inter.weiz_r1e is specified
if ~ismember('nottingham',inter.relaxation)
error('inter.nott_r2n can only be specified with Nottingham DNP relaxation theory.');
end
end
% Check R1d rates for Weizmann DNP theory
if isfield(inter,'weiz_r1d')
% Check type and values
if (~isnumeric(inter.weiz_r1d))||any(inter.weiz_r1d(:)<0)||(~isreal(inter.weiz_r1d))
error('inter.weiz_r1d must be a matrix of non-negative real numbers.');
end
% Check dimension
if any(size(inter.weiz_r1d)~=[numel(sys.isotopes) numel(sys.isotopes)])
error('both dimensions of inter.weiz_r1d must be equal to the number of spins.');
end
% Enforce Weizmann theory if inter.weiz_r1d rates are specified
if ~strcmp(inter.relaxation,'weizmann')
error('inter.weiz_r1d can only be specified with Weizmann DNP relaxation theory.');
end
end
% Check R2d rates
if isfield(inter,'weiz_r2d')
% Check type and values
if (~isnumeric(inter.weiz_r2d))||any(inter.weiz_r2d(:)<0)||(~isreal(inter.weiz_r2d))
error('inter.weiz_r2d must be a matrix of non-negative real numbers.');
end
% Check dimension
if any(size(inter.weiz_r2d)~=[numel(sys.isotopes) numel(sys.isotopes)])
error('both dimensions of inter.weiz_r2d must be equal to the number of spins.');
end
% Enforce Weizmann theory if R2d rates are specified
if ~strcmp(inter.relaxation,'weizmann')
error('inter.weiz_r2d can only be specified with Weizmann DNP relaxation theory.');
end
end
% Check chemical kinetics
if isfield(inter,'chem')
% Check reaction specifications
if isfield(inter.chem,'parts')&&(~isfield(inter.chem,'rates'))
error('reaction rates (inter.chem.rates) must be provided.');
elseif isfield(inter.chem,'rates')&&(~isfield(inter.chem,'parts'))
error('subsystem identifiers (inter.chem.parts) must be provided.');
elseif isfield(inter.chem,'rates')&&(~isfield(inter.chem,'concs'))
error('initial concentrations (inter.chem.concs) must be provided.');
elseif isfield(inter.chem,'concs')&&(~isfield(inter.chem,'rates'))
error('reaction rates (inter.chem.rates) must be provided.');
end
% Check chemical species specification
if isfield(inter.chem,'parts')
if ~iscell(inter.chem.parts)||(~all(cellfun(@isvector,inter.chem.parts)))
error('inter.chem.parts must be a cell array of vectors.');
end
for n=1:numel(inter.chem.parts)
for k=1:numel(inter.chem.parts)
if (n~=k)&&(~isempty(intersect(inter.chem.parts{n},inter.chem.parts{k})))
error('a given spin can only belong to one chemical subsystem in inter.chem.parts variable.');
end
end
if any(inter.chem.parts{n}<1)||any(inter.chem.parts{n}>numel(sys.isotopes))||...
any(mod(inter.chem.parts{n},1)~=0)||(numel(unique(inter.chem.parts{n}))~=numel(inter.chem.parts{n}))
error('elements of inter.chem.parts must be vectors of unique positive integers not exceeding the total number of spins.');
end
for k=1:numel(inter.chem.parts)
if numel(inter.chem.parts{n})~=numel(inter.chem.parts{k})
error('all chemical subsystems must have the same number of spins.');
end
end
for k=1:numel(inter.chem.parts)
for m=1:numel(inter.chem.parts{n})
if ~strcmp(sys.isotopes{inter.chem.parts{n}(m)},sys.isotopes{inter.chem.parts{k}(m)})
error('isotope sequences in all chemical subsystems must be the same.');
end
end
end
end
end
% Check reaction rate matrix
if isfield(inter.chem,'rates')
if (~isnumeric(inter.chem.rates))||(~isreal(inter.chem.rates))||(size(inter.chem.rates,1)~=size(inter.chem.rates,2))
error('inter.chem.rates must be a real square matrix.');
end
if any(size(inter.chem.rates)~=numel(inter.chem.parts))
error('both dimensions of inter.chem.rates matrix must be equal to the number of chemical subsystems.');
end
end
% Check initial concentrations
if isfield(inter.chem,'concs')
if (~isnumeric(inter.chem.concs))||(~isreal(inter.chem.concs))||any(inter.chem.concs(:)<0)
error('inter.chem.concs must be a vector of non-negative real numbers.');
end
if numel(inter.chem.concs)~=numel(inter.chem.parts)
error('the number of initial concentrations must be equal to the number of chemical species.');
end
end
% Check flux specifications
if isfield(inter.chem,'flux_rate')&&(~isfield(inter.chem,'flux_type'))
error('flux type (inter.chem.flux_type) must be provided.');
elseif isfield(inter.chem,'flux_type')&&(~isfield(inter.chem,'flux_rate'))
error('flux rates (inter.chem.flux_rate) must be provided.');
end
% Check flux rate matrix
if isfield(inter.chem,'flux_rate')
if (~isnumeric(inter.chem.flux_rate))||(~isreal(inter.chem.flux_rate))||...
(size(inter.chem.flux_rate,1)~=size(inter.chem.flux_rate,2))
error('inter.chem.flux_rate must be a real square matrix.');
end
if any(size(inter.chem.flux_rate)~=numel(sys.isotopes))
error('both dimensions of inter.chem.flux_rate matrix must be equal to the number of spins.');
end
end
% Check flux type
if isfield(inter.chem,'flux_type')
if ~ischar(inter.chem.flux_type)
error('inter.chem.flux_type must be a character string.');
end
if ~ismember(inter.chem.flux_type,{'intermolecular','intramolecular'})
error('incorrect flux type specification.');
end
end
% Check radical pair kinetics
if isfield(inter.chem,'rp_theory')
if ~ischar(inter.chem.rp_theory)
error('inter.chem.rp_theory must be a string.');
end
if ~ismember(inter.chem.rp_theory,{'haberkorn','jones-hore','exponential'})
error('allowed values for inter.chem.rp_theory are ''exponential'', ''haberkorn'' and ''jones-hore''.');
end
if (~isfield(inter.chem,'rp_electrons'))||(~isfield(inter.chem,'rp_rates'))
error('inter.chem.rp_electrons and inter.chem.rp_rates must be specified alongside inter.chem.rp_theory parameter.');
end
end
if isfield(inter.chem,'rp_electrons')
if (~isfield(inter.chem,'rp_theory'))||(~isfield(inter.chem,'rp_rates'))
error('inter.chem.rp_theory and inter.chem.rp_rates must be specified alongside inter.chem.rp_electrons parameter.');
end
if (~isnumeric(inter.chem.rp_electrons))||(numel(inter.chem.rp_electrons)~=2)||any(ceil(inter.chem.rp_electrons)~=floor(inter.chem.rp_electrons))||any(inter.chem.rp_electrons<1)
error('inter.chem.rp_electrons must be a vector of two positive integers.');
end
if any(inter.chem.rp_electrons>numel(sys.isotopes))||any(~cellfun(@(x)strcmp(x(1),'E'),sys.isotopes(inter.chem.rp_electrons)))
error('at least one of the elements of inter.chem.rp_electrons does not refer to an electron.');
end
end
if isfield(inter.chem,'rp_rates')
if (~isfield(inter.chem,'rp_theory'))||(~isfield(inter.chem,'rp_electrons'))
error('inter.chem.rp_theory and inter.chem.rp_electrons must be specified alongside inter.chem.rp_rates parameter.');
end
if (~isnumeric(inter.chem.rp_rates))||(numel(inter.chem.rp_rates)~=2)||(~isreal(inter.chem.rp_rates))||any(inter.chem.rp_rates<0)
error('inter.chem.rp_rates must be a vector of two non-negative real numbers.');
end
end
end
end
% Those who beat their swords into plowshares will till
% the soil for those who did not.
%
% Benjamin Franklin
|
github
|
tsajed/nmr-pred-master
|
spin.m
|
.m
|
nmr-pred-master/spinach/kernel/spin.m
| 33,566 |
utf_8
|
f7cdee02ee6b72e8e3619a7abc6b0029
|
% Database of multiplicities and magnetogyric ratios for sta-
% ble and long-lived isotopes with non-zero spin. Syntax:
%
% [gamma,multiplicity]=spin(name)
%
% where the name of the isotope is given in the standard way,
% e.g. 13C or 195Pt. High-spin electrons may be requested by
% supplying 'E' followed by multiplicity - 'E3' would request
% a spin-1 electron and so forth.
%
% Note: data with no source specified was sourced from Google
% and should be double-checked before running producti-
% on calculations.
%
% [email protected]
% [email protected]
% [email protected]
function [gamma,multiplicity]=spin(name)
if regexp(name,'^E\d')
% Treat high-spin electrons as a special case
multiplicity=str2double(name(2:end));
gamma=-1.760859708e11; % CODATA 2013
else
% Other cases come from the database
switch char(name)
case 'G' % Ghost spin
multiplicity=1;
gamma=0; % Spin zero particle
case 'E' % Electron
multiplicity=2;
gamma=-1.760859708e11; % CODATA 2013
case 'N' % Neutron
multiplicity=2;
gamma=-1.83247181e8; % http://dx.doi.org/10.1103/PhysRevC.63.037301
case 'M' % Muon
multiplicity=2;
gamma=-8.51615503e8; % CODATA 2010
case 'P' % Proton
multiplicity=2;
gamma= 2.675222005e8; % CODATA 2013
case '1H'
multiplicity=2;
gamma= 2.675222005e8; % CODATA 2013
case '2H'
multiplicity=3;
gamma= 4.10662791e7; % NMR Enc. 1996
case '3H'
multiplicity=2;
gamma= 2.85349779e8; % NMR Enc. 1996
case '3He'
multiplicity=2;
gamma=-2.03801587e8; % NMR Enc. 1996
case '4He'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '6Li'
multiplicity=3;
gamma= 3.9371709e7; % NMR Enc. 1996
case '7Li'
multiplicity=4;
gamma= 1.03977013e8; % NMR Enc. 1996
case '9Be'
multiplicity=4;
gamma=-3.759666e7; % NMR Enc. 1996
case '10B'
multiplicity=7;
gamma= 2.8746786e7; % NMR Enc. 1996
case '11B'
multiplicity=4;
gamma= 8.5847044e7; % NMR Enc. 1996
case '12C'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '13C'
multiplicity=2;
gamma= 6.728284e7; % NMR Enc. 1996
case '14N'
multiplicity=3;
gamma= 1.9337792e7; % NMR Enc. 1996
case '15N'
multiplicity=2;
gamma=-2.71261804e7; % NMR Enc. 1996
case '16O'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '17O'
multiplicity=6;
gamma=-3.62808e7; % NMR Enc. 1996
case '18O'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '19F'
multiplicity=2;
gamma= 2.518148e8; % NMR Enc. 1996
case '20Ne'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '21Ne'
multiplicity=4;
gamma=-2.11308e7; % NMR Enc. 1996
case '22Ne'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '23Na'
multiplicity=4;
gamma=7.0808493e7; % NMR Enc. 1996
case '24Mg'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '25Mg'
multiplicity=6;
gamma=-1.63887e7; % NMR Enc. 1996
case '26Mg'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '27Al'
multiplicity=6;
gamma=6.9762715e7; % NMR Enc. 1996
case '28Si'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '29Si'
multiplicity=2;
gamma=-5.3190e7; % NMR Enc. 1996
case '30Si'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '31P'
multiplicity=2;
gamma=10.8394e7; % NMR Enc. 1996
case '32S'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '33S'
multiplicity=4;
gamma=2.055685e7; % NMR Enc. 1996
case '34S'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '36S'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '35Cl'
multiplicity=4;
gamma=2.624198e7; % NMR Enc. 1996
case '37Cl'
multiplicity=4;
gamma=2.184368e7; % NMR Enc. 1996
case '36Ar'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '38Ar'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '39Ar'
multiplicity=8;
gamma=-1.78e7; % Needs checking
case '40Ar'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '39K'
multiplicity=4;
gamma= 1.2500608e7; % NMR Enc. 1996
case '40K'
multiplicity=9;
gamma=-1.5542854e7; % NMR Enc. 1996
case '41K'
multiplicity=4;
gamma= 0.68606808e7; % NMR Enc. 1996
case '40Ca'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '41Ca'
multiplicity=8;
gamma=-2.182305e7; % http://dx.doi.org/10.1103/PhysRevC.63.037301
case '42Ca'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '43Ca'
multiplicity=8;
gamma=-1.803069e7; % NMR Enc. 1996
case '44Ca'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '45Sc'
multiplicity=8;
gamma=6.5087973e7; % NMR Enc. 1996
case '46Ti'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '47Ti'
multiplicity=6;
gamma=-1.5105e7; % NMR Enc. 1996
case '48Ti'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '49Ti'
multiplicity=8;
gamma=-1.51095e7; % NMR Enc. 1996
case '50Ti'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '50V'
multiplicity=13;
gamma=2.6706490e7; % NMR Enc. 1996
case '51V'
multiplicity=8;
gamma=7.0455117e7; % NMR Enc. 1996
case '52Cr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '53Cr'
multiplicity=4;
gamma=-1.5152e7; % NMR Enc. 1996
case '54Cr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '55Mn'
multiplicity=6;
gamma=6.6452546e7; % NMR Enc. 1996
case '54Fe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '56Fe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '57Fe'
multiplicity=2;
gamma=0.8680624e7; % NMR Enc. 1996
case '58Fe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '59Co'
multiplicity=8;
gamma=6.332e7; % NMR Enc. 1996
case '60Ni'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '61Ni'
multiplicity=4;
gamma=-2.3948e7; % NMR Enc. 1996
case '62Ni'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '64Ni'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '63Cu'
multiplicity=4;
gamma=7.1117890e7; % NMR Enc. 1996
case '65Cu'
multiplicity=4;
gamma=7.60435e7; % NMR Enc. 1996
case '64Zn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '66Zn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '67Zn'
multiplicity=6;
gamma=1.676688e7; % NMR Enc. 1996
case '68Zn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '69Ga'
multiplicity=4;
gamma=6.438855e7; % NMR Enc. 1996
case '71Ga'
multiplicity=4;
gamma=8.181171e7; % NMR Enc. 1996
case '70Ge'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '72Ge'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '73Ge'
multiplicity=10;
gamma=-0.9722881e7; % NMR Enc. 1996
case '74Ge'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '75As'
multiplicity=4;
gamma=4.596163e7; % NMR Enc. 1996
case '74Se'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '76Se'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '77Se'
multiplicity=2;
gamma=5.1253857e7; % NMR Enc. 1996
case '78Se'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '79Br'
multiplicity=4;
gamma=6.725616e7; % NMR Enc. 1996
case '81Br'
multiplicity=4;
gamma=7.249776e7; % NMR Enc. 1996
case '80Kr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '82Kr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '83Kr'
multiplicity=10;
gamma=-1.03310e7; % NMR Enc. 1996
case '84Kr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '86Kr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '85Rb'
multiplicity=6;
gamma=2.5927050e7; % NMR Enc. 1996
case '87Rb'
multiplicity=4;
gamma=8.786400e7; % NMR Enc. 1996
case '84Sr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '86Sr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '87Sr'
multiplicity=10;
gamma=-1.1639376e7; % NMR Enc. 1996
case '88Sr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '89Y'
multiplicity=2;
gamma=-1.3162791e7; % NMR Enc. 1996
case '90Zr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '91Zr'
multiplicity=6;
gamma=-2.49743e7; % NMR Enc. 1996
case '92Zr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '94Zr'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '93Nb'
multiplicity=10;
gamma=6.5674e7; % NMR Enc. 1996
case '92Mo'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '94Mo'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '95Mo'
multiplicity=6;
gamma=-1.7514e7; % Needs checking
case '96Mo'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '97Mo'
multiplicity=6;
gamma=-1.7884e7; % Needs checking
case '98Mo'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '99Tc'
multiplicity=10;
gamma=6.0503e7; % Needs checking
case '96Ru'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '98Ru'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '99Ru'
multiplicity=6;
gamma=-1.2286e7; % Needs checking
case '100Ru'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '101Ru'
multiplicity=6;
gamma=-1.3773e7; % Needs checking
case '102Ru'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '104Ru'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '103Rh'
multiplicity=2;
gamma=-0.8468e7; % NMR Enc. 1996
case '102Pd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '104Pd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '105Pd'
multiplicity=6;
gamma=-1.2305e7; % Needs checking
case '106Pd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '108Pd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '110Pd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '107Ag'
multiplicity=2;
gamma=-1.0889181e7; % NMR Enc. 1996
case '109Ag'
multiplicity=2;
gamma=-1.2518634e7; % NMR Enc. 1996
case '106Cd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '108Cd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '110Cd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '111Cd'
multiplicity=2;
gamma=-5.6983131e7; % NMR Enc. 1996
case '112Cd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '113Cd'
multiplicity=2;
gamma=-5.9609153e7; % NMR Enc. 1996
case '114Cd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '116Cd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '113In'
multiplicity=10;
gamma=5.8845e7; % NMR Enc. 1996
case '115In'
multiplicity=10;
gamma=5.8972e7; % NMR Enc. 1996
case '112Sn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '114Sn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '115Sn'
multiplicity=2;
gamma=-8.8013e7; % NMR Enc. 1996
case '116Sn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '117Sn'
multiplicity=2;
gamma=-9.58879e7; % NMR Enc. 1996
case '118Sn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '119Sn'
multiplicity=2;
gamma=-10.0317e7; % NMR Enc. 1996
case '120Sn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '122Sn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '124Sn'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '121Sb'
multiplicity=6;
gamma=6.4435e7; % NMR Enc. 1996
case '123Sb'
multiplicity=8;
gamma=3.4892e7; % NMR Enc. 1996
case '120Te'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '122Te'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '123Te'
multiplicity=2;
gamma=-7.059098e7; % NMR Enc. 1996
case '124Te'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '125Te'
multiplicity=2;
gamma=-8.5108404e7; % NMR Enc. 1996
case '126Te'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '128Te'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '130Te'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '127I'
multiplicity=6;
gamma=5.389573e7; % NMR Enc. 1996
case '124Xe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '126Xe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '128Xe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '129Xe'
multiplicity=2;
gamma=-7.452103e7; % NMR Enc. 1996
case '130Xe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '131Xe'
multiplicity=4;
gamma=2.209076e7; % NMR Enc. 1996
case '132Xe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '134Xe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '136Xe'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '133Cs'
multiplicity=8;
gamma=3.5332539e7; % NMR Enc. 1996
case '130Ba'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '132Ba'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '134Ba'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '135Ba'
multiplicity=4;
gamma=2.65750e7; % NMR Enc. 1996
case '136Ba'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '137Ba'
multiplicity=4;
gamma=2.99295e7; % NMR Enc. 1996
case '138Ba'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '138La'
multiplicity=11;
gamma=3.557239e7; % NMR Enc. 1996
case '139La'
multiplicity=8;
gamma=3.8083318e7; % NMR Enc. 1996
case '136Ce'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '138Ce'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '139Ce'
multiplicity=6;
gamma= 2.906e7; % Needs checking
case '140Ce'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '142Ce'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '141Pr'
multiplicity=6;
gamma=8.1907e7; % NMR Enc. 1996
case '142Nd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '143Nd'
multiplicity=8;
gamma=-1.457e7; % NMR Enc. 1996
case '144Nd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '145Nd'
multiplicity=8;
gamma=-0.898e7; % NMR Enc. 1996
case '146Nd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '148Nd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '150Nd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '147Pm'
multiplicity=8;
gamma= 3.613e7; % NMR Enc. 1996
case '144Sm'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '147Sm'
multiplicity=8;
gamma=-1.115e7; % NMR Enc. 1996
case '148Sm'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '149Sm'
multiplicity=8;
gamma=-0.9192e7; % NMR Enc. 1996
case '150Sm'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '152Sm'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '154Sm'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '151Eu'
multiplicity=6;
gamma=6.6510e7; % NMR Enc. 1996
case '153Eu'
multiplicity=6;
gamma=2.9369e7; % NMR Enc. 1996
case '152Gd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '154Gd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '155Gd'
multiplicity=4;
gamma=-0.82132e7; % NMR Enc. 1996
case '156Gd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '157Gd'
multiplicity=4;
gamma=-1.0769e7; % NMR Enc. 1996
case '158Gd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '160Gd'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '159Tb'
multiplicity=4;
gamma=6.4306e7; % Needs checking
case '156Dy'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '158Dy'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '160Dy'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '161Dy'
multiplicity=6;
gamma=-0.9201e7; % NMR Enc. 1996
case '162Dy'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '163Dy'
multiplicity=6;
gamma=1.289e7; % NMR Enc. 1996
case '164Dy'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '165Ho'
multiplicity=8;
gamma=5.710e7; % NMR Enc. 1996
case '162Er'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '164Er'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '166Er'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '167Er'
multiplicity=8;
gamma=-0.77157e7; % NMR Enc. 1996
case '168Er'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '170Er'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '169Tm'
multiplicity=2;
gamma=-2.218e7; % NMR Enc. 1996
case '168Yb'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '170Yb'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '171Yb'
multiplicity=2;
gamma=4.7288e7; % NMR Enc. 1996
case '172Yb'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '173Yb'
multiplicity=6;
gamma=-1.3025e7; % NMR Enc. 1996
case '174Yb'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '176Yb'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '175Lu'
multiplicity=8;
gamma=3.0552e7; % NMR Enc. 1996
case '176Lu'
multiplicity=15;
gamma=2.1684e7; % NMR Enc. 1996
case '174Hf'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '176Hf'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '177Hf'
multiplicity=8;
gamma=1.086e7; % NMR Enc. 1996
case '178Hf'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '179Hf'
multiplicity=10;
gamma=-0.6821e7; % NMR Enc. 1996
case '180Hf'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '180Ta'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '181Ta'
multiplicity=8;
gamma=3.2438e7; % NMR Enc. 1996
case '180W'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '182W'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '183W'
multiplicity=2;
gamma=1.1282403e7; % NMR Enc. 1996
case '184W'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '186W'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '185Re'
multiplicity=6;
gamma=6.1057e7; % NMR Enc. 1996
case '187Re'
multiplicity=6;
gamma=6.1682e7; % NMR Enc. 1996
case '184Os'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '186Os'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '187Os'
multiplicity=2;
gamma=0.6192895e7; % NMR Enc. 1996
case '188Os'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '189Os'
multiplicity=4;
gamma=2.10713e7; % NMR Enc. 1996
case '190Os'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '192Os'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '191Ir'
multiplicity=4;
gamma=0.4812e7; % NMR Enc. 1996
case '193Ir'
multiplicity=4;
gamma=0.5227e7; % NMR Enc. 1996
case '190Pt'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '192Pt'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '194Pt'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '195Pt'
multiplicity=2;
gamma=5.8385e7; % NMR Enc. 1996
case '196Pt'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '198Pt'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '197Au'
multiplicity=4;
gamma=0.473060e7; % NMR Enc. 1996
case '196Hg'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '198Hg'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '199Hg'
multiplicity=2;
gamma=4.8457916e7; % NMR Enc. 1996
case '200Hg'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '201Hg'
multiplicity=4;
gamma=-1.788769e7; % NMR Enc. 1996
case '202Hg'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '204Hg'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '203Tl'
multiplicity=2;
gamma=15.5393338e7; % NMR Enc. 1996
case '205Tl'
multiplicity=2;
gamma=15.6921808e7; % NMR Enc. 1996
case '204Pb'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '206Pb'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '207Pb'
multiplicity=2;
gamma=5.58046e7; % NMR Enc. 1996
case '208Pb'
multiplicity=1;
gamma=0; % Spin 0 nucleus
case '209Bi'
multiplicity=10;
gamma=4.3750e7; % NMR Enc. 1996
case '209Po'
multiplicity=2;
gamma= 7.4e7; % NMR Enc. 1996
case '227Ac'
multiplicity=4;
gamma= 3.5e7; % NMR Enc. 1996
case '229Th'
multiplicity=6;
gamma= 0.40e7; % NMR Enc. 1996
case '231Pa'
multiplicity=4;
gamma=3.21e7; % NMR Enc. 1996
case '235U'
multiplicity=8;
gamma=-0.4926e7; % Needs checking
case '237Np'
multiplicity=6;
gamma=3.1e7; % NMR Enc. 1996
case '239Pu'
multiplicity=2;
gamma=0.972e7; % NMR Enc. 1996
case '241Am'
multiplicity=6;
gamma=1.54e7; % NMR Enc. 1996
case '243Am'
multiplicity=6;
gamma=1.54e7; % NMR Enc. 1996
case '247Cm'
multiplicity=10;
gamma=0.20e7; % NMR Enc. 1996
case {'210At', '222Rn', '223Fr', '226Ra', '247Bk', '251Cf', '252Es', '253Es', '257Fm', '258Md', '259No'}
error([name ' - no data available in the current NMR literature.']);
otherwise
error([name ' - unknown isotope.']);
end
end
end
% I mean that there is no way to disarm any man except through guilt.
% Through that which he himself has accepted as guilt. If a man has
% ever stolen a dime, you can impose on him the punishment intended
% for a bank robber and he will take it. He'll bear any form of mise-
% ry, he'll feel that he deserves no better. If there's not enough
% guilt in the world, we must create it. If we teach a man that it's
% evil to look at spring flowers and he believes us and then does it,
% we'll be able to do whatever we please with him. He won't defend
% himself. He won't feel he's worth it. He won't fight. But save us
% from the man who lives up to his own standards. Save us from the
% man of clean conscience. He's the man who'll beat us.
%
% Ayn Rand, "Atlas Shrugged"
|
github
|
tsajed/nmr-pred-master
|
trajan.m
|
.m
|
nmr-pred-master/spinach/kernel/trajan.m
| 8,616 |
utf_8
|
cfdb63f08f3d1bcf49595de836bc1b19
|
% Trajectory analysis function. Plots the time dependence of the densi-
% ty matrix norm, partitioned into user-specified property classes.
%
% Call syntax:
%
% trajan(spin_system,trajectory,property)
%
% Arguments:
%
% trajectory - a stack of state vectors of any length. The
% number of rows in the trajectory array must
% match the number of states in the basis.
%
% property - If set to 'correlation_order', returns the
% time dependence of the total populations of
% one-spin, two-spin, three-spin, etc. corre-
% lations in the system.
%
% If set to 'coherence_order', returns the ti-
% me dependence of different orders of coheren-
% ce in the system, where a coherence order is
% defined as the sum of projection quantum num-
% bers in the spherical tensor representation
% of each state.
%
% If set to 'total_each_spin', returns the ti-
% me dependence of total state space populati-
% on that involves each individual spin in the
% system in any way (all local populations and
% coherences of the spin as well as all of its
% correlations to all third party spins).
%
% If set to 'local_each_spin', returns the ti-
% me dependence of the population of the sub-
% space of states that are local to each indi-
% vidual spin and do not involve any correla-
% tions to other spins in the system.
%
% If set to 'level_populations', returns the
% populations of the Zeeman energy levels.
%
% The trajectory would usually come out of the evolution() run from a
% given starting point under a given Liouvillian.
%
% Note: this function is only applicable to the trajectories recorded
% in spherical tensor basis sets.
%
% [email protected]
% [email protected]
% [email protected]
function trajan(spin_system,trajectory,property)
% Check the input
grumble(spin_system,trajectory);
% Set the defaults
if ~exist('property','var'), property='correlation_order'; end
% Determine how to proceed
switch property
case 'correlation_order'
% Determine the correlation order of each state
correlation_orders=sum(logical(spin_system.bas.basis),2);
% Find out which correlation orders are present
unique_correlation_orders=unique(correlation_orders);
% Preallocate the norm trajectory array
result=zeros(numel(unique_correlation_orders),size(trajectory,2));
% Loop over the unique correlation orders that are present
for n=1:numel(unique_correlation_orders)
% Find the subspace of the given correlation order
subspace_mask=(correlation_orders==unique_correlation_orders(n));
% Get the part of the trajectory belonging to the subspace
subspace_trajectory=trajectory(subspace_mask,:);
% Get the norm of the trajectory
result(n,:)=sqrt(sum(subspace_trajectory.*conj(subspace_trajectory),1));
end
% Create a legend
legend_text=cell(numel(unique_correlation_orders),1);
for n=1:numel(unique_correlation_orders)
legend_text{n}=[num2str(unique_correlation_orders(n)) '-spin order'];
end
% Create an axis label
label_text='correlation order amplitude';
case 'coherence_order'
% Determine projection quantum numbers of the basis
[~,M]=lin2lm(spin_system.bas.basis);
% Determine the coherence order of each state
coherence_orders=sum(M,2);
% Find out which coherence orders are present
unique_coherence_orders=unique(coherence_orders);
% Preallocate the norm trajectory array
result=zeros(numel(unique_coherence_orders),size(trajectory,2));
% Loop over the unique coherence orders that are present
for n=1:numel(unique_coherence_orders)
% Find the subspace of the given coherence order
subspace_mask=(coherence_orders==unique_coherence_orders(n));
% Get the part of the trajectory belonging to the subspace
subspace_trajectory=trajectory(subspace_mask,:);
% Get the norm of the trajectory
result(n,:)=sqrt(sum(subspace_trajectory.*conj(subspace_trajectory),1));
end
% Create a legend
legend_text=cell(numel(unique_coherence_orders),1);
for n=1:numel(unique_coherence_orders)
legend_text{n}=['coherence order ' num2str(unique_coherence_orders(n))];
end
% Create an axis label
label_text='coherence order amplitude';
case 'total_each_spin'
% Preallocate the norm trajectory array
result=zeros(spin_system.comp.nspins,size(trajectory,2));
% Loop over spins in the system
for n=1:spin_system.comp.nspins
% Find the subspace of states that involve the current spin
subspace_mask=(spin_system.bas.basis(:,n)~=0);
% Get the part of the trajectory belonging to the subspace
subspace_trajectory=trajectory(subspace_mask,:);
% Get the norm of the trajectory
result(n,:)=sqrt(sum(subspace_trajectory.*conj(subspace_trajectory),1));
end
% Create an axis label
label_text='density touching each spin';
case 'local_each_spin'
% Preallocate the norm trajectory array
result=zeros(spin_system.comp.nspins,size(trajectory,2));
% Loop over spins in the system
for n=1:spin_system.comp.nspins
% Find the subspace of states that are local to current spin
subspace_mask=(spin_system.bas.basis(:,n)~=0)&...
(sum(spin_system.bas.basis,2)==spin_system.bas.basis(:,n));
% Get the part of the trajectory belonging to the subspace
subspace_trajectory=trajectory(subspace_mask,:);
% Get the norm of the trajectory
result(n,:)=sqrt(sum(subspace_trajectory.*conj(subspace_trajectory),1));
end
% Create an axis label
label_text='density local to each spin';
case 'level_populations'
% Move trajectory into the Zeeman basis set
trajectory=sphten2zeeman(spin_system)*trajectory;
% Find out the number of energy levels
nlevels=sqrt(size(trajectory,1));
% Preallocate population dynamics array
result=zeros(nlevels,size(trajectory,2));
% Extract the populations
for n=1:size(trajectory,2)
result(:,n)=real(diag(reshape(trajectory(:,n),[nlevels nlevels])));
end
% Create an axis label
label_text='energy level populations';
otherwise
% Complain and bomb out
error('unknown property.');
end
% Do the plotting
plot(result'); xlabel('time / points');
ylabel(label_text); axis tight;
set(gca,'yscale','log');
if exist('legend_text','var')
legend(legend_text,'Location','NorthEast');
end
end
% Consistency enforcement
function grumble(spin_system,trajectory)
if ~ismember(spin_system.bas.formalism,{'sphten-liouv'})
error('trajectory analysis is only available for sphten-liouv formalism.');
end
if ~isnumeric(trajectory)
error('trajectory should be an array of doubles.');
end
if size(trajectory,1)~=size(spin_system.bas.basis,1)
error('trajectory dimension should match basis dimension.');
end
end
% And this is the whole shabby secret: to some men, the sight of
% an achievement is a reproach, a reminder that their own lives
% are irrational, and that there is no loophole - no escape from
% reason and reality.
%
% Ayn Rand
|
github
|
tsajed/nmr-pred-master
|
frqoffset.m
|
.m
|
nmr-pred-master/spinach/kernel/frqoffset.m
| 3,566 |
utf_8
|
98b35ea109750bbae94e2ee05571b05d
|
% Adds offset frequencies to the Hamiltonian. Syntax:
%
% H=frqoffset(spin_system,H,parameters)
%
% where H is the Hamiltonian and parameters should contain
% the following subfields:
%
% parameters.spins - a cell array giving the
% spins that the pulse sequence works on, in
% the order of channels, e.g. {'1H','13C'}
%
% parameters.offset - a cell array giving
% transmitter offsets on each of the spins
% listed in parameters.spins array.
%
% If multiple channels operate on the same spins, the cor-
% responding offsets must be the same.
%
% [email protected]
function H=frqoffset(spin_system,H,parameters)
% Check consistency
grumble(spin_system,parameters);
% See if there are multiple channels on the same spin
[unique_spins,forward_index,backward_index]=unique(parameters.spins);
% Decide how to proceed
if numel(unique_spins)==numel(parameters.spins)
% Simply apply the offsets
for n=find(parameters.offset~=0)
report(spin_system,['applying ' num2str(parameters.offset(n)) ' Hz Zeeman frequency offset to ' parameters.spins{n} '...']);
H=H+2*pi*parameters.offset(n)*operator(spin_system,'Lz',parameters.spins{n});
end
else
% Get unique offsets
unique_offsets=parameters.offset(forward_index);
% Check offsets on duplicate channels
if ~all(unique_offsets(backward_index)==parameters.offset)
error('offsets on channels referring to the same spin must be the same.');
end
% Apply the offsets
for n=find(unique_offsets~=0)
report(spin_system,['applying ' num2str(unique_offsets(n)) ' Hz Zeeman frequency offset to ' unique_spins{n} '...']);
H=H+2*pi*unique_offsets(n)*operator(spin_system,'Lz',unique_spins{n});
end
end
end
% Consistency enforcement
function grumble(spin_system,parameters)
if isempty(parameters.spins)
error('parameters.spins variable cannot be empty.');
elseif ~iscell(parameters.spins)
error('parameters.spins variable must be a cell array.');
elseif ~all(cellfun(@ischar,parameters.spins))
error('all elements of parameters.spins cell array must be strings.');
elseif any(~ismember(parameters.spins,spin_system.comp.isotopes))
error('parameters.spins refers to a spin that is not present in the system.');
end
if isempty(parameters.offset)
error('parameters.offset variable cannot be empty.');
elseif ~isnumeric(parameters.offset)
error('parameters.offset variable must be an array of real numbers.');
elseif ~isfield(parameters,'spins')
error('parameters.spins variable must be specified alongside parameters.offset variable.');
elseif numel(parameters.offset)~=numel(parameters.spins)
error('parameters.offset variable must have the same number of elements as parameters.spins.');
end
end
% [...] this flaw was identified by the brilliant German philosopher
% Friedrich Nietzsche who described it as "an inversion of morality"
% whereby the weak, the poor, the meek, the oppressed and the wretch-
% ed are virtuous and blessed by God whereas the strong, the wealthy,
% the noble and the powerful are the immoral and damned by the venge-
% ful almighty Yahweh for eternity. Nietzsche, with great insight and
% perception, stated that Christianity would be abandoned en masse in
% the twentieth century but that Westerners would still cling to this
% inversion of morality.
%
% Anders Behring Breivik
|
github
|
tsajed/nmr-pred-master
|
homospoil.m
|
.m
|
nmr-pred-master/spinach/kernel/homospoil.m
| 2,499 |
utf_8
|
be97284024d04086a9e28d58d38f9c64
|
% Emulates a strong homospoil pulse - only zero-frequency states
% survive the process. Syntax:
%
% rho=homospoil(spin_system,rho,zqc_flag)
%
% Parameters:
%
% rho - a state vector or a horizontal stack thereof
%
% zqc_flag - a flag controlling the fate of zero-quantum
% coherences. If set to 'keep', causes ZQCs to
% survive the process, approximating experimen-
% tal behaviour. If set to 'destroy', wipes the
% zero-quantum coherences - only the longitudi-
% nal states survive the process.
%
% Note: this function is only available for sphten-liouv formalism.
%
% [email protected]
function rho=homospoil(spin_system,rho,zqc_flag)
% Check consistency
grumble(spin_system,rho,zqc_flag)
% Store dimension statistics
spn_dim=size(spin_system.bas.basis,1);
spc_dim=numel(rho)/spn_dim;
problem_dims=size(rho);
% Fold indirect dimensions
rho=reshape(rho,[spn_dim spc_dim]);
% Pull the projection information from the basis
[~,M]=lin2lm(spin_system.bas.basis);
% Filter the state vector
switch zqc_flag
case 'keep'
% Find the states that have zero carrier frequency and kill everything else
rho(abs(sum(repmat(spin_system.inter.basefrqs,size(spin_system.bas.basis,1),1).*M,2))>1e-6,:)=0;
case 'destroy'
% Find the longitudinal states and kill everything else
rho(sum(abs(M),2)>0,:)=0;
otherwise
% Complain and bomb out
error('unknown ZQC flag.');
end
% Unfold indirect dimensions
rho=reshape(rho,problem_dims);
% Report overly destructive calls
if norm(rho,1)<1e-10
report(spin_system,'WARNING - all magnetization appears to have been destroyed by this call.');
end
end
% Consistency enforcement
function grumble(spin_system,rho,zqc_flag)
if ~ismember(spin_system.bas.formalism,{'sphten-liouv'})
error('this function is only available for sphten-liouv formalism.');
end
if ~isnumeric(rho)
error('the state vector(s) must be numeric.');
end
if ~ischar(zqc_flag)
error('zqc_flag parameter must be a character string.');
end
if ~ismember(zqc_flag,{'keep','destroy'})
error('the available values for zqc_flag are ''keep'' and ''destroy''.');
end
end
% Rocket science has been mythologized all out of proportion to
% its true difficulty.
%
% John Carmack
|
github
|
tsajed/nmr-pred-master
|
basis.m
|
.m
|
nmr-pred-master/spinach/kernel/basis.m
| 25,413 |
utf_8
|
e849e7e3736fb8cf2344dbff1b2f1332
|
% Basis set control. This is the second mandatory function (after create.m)
% that must be executed in every calculation to get the Spinach kernel go-
% ing. See the Basis Selection section of the Spinach manual for the detail-
% ed description of the various options.
%
% Note: it is very important that you understand the factors that influence
% basis set selection in spin dynamics simulations -- see the following pa-
% per for further details on the subject:
%
% http://link.aip.org/link/doi/10.1063/1.3624564
%
% [email protected]
function spin_system=basis(spin_system,bas)
% Show the banner
banner(spin_system,'basis_banner');
% Check the input
grumble(spin_system,bas);
% Report the basis to the user
spin_system.bas.formalism=bas.formalism;
switch spin_system.bas.formalism
case 'zeeman-hilb'
report(spin_system,'Zeeman basis set using Hilbert space matrix formalism.');
case 'zeeman-liouv'
report(spin_system,'Zeeman basis set using Liouville space matrix formalism.');
case 'sphten-liouv'
report(spin_system,'spherical tensor basis set using Liouville space matrix formalism.');
otherwise
error('unrecognized formalism - see the basis preparation section of the manual.');
end
% Save bas.approximation field to the spin_system
spin_system.bas.approximation=bas.approximation;
% Process spherical tensor basis sets
if strcmp(spin_system.bas.formalism,'sphten-liouv')
% Report approximation level to the user
switch spin_system.bas.approximation
case 'IK-0'
report(spin_system,['IK-0 approximation - all correlations of all spins up to order ' num2str(bas.level)]);
case 'IK-1'
report(spin_system,['IK-1 approximation - spin correlations up to order ' num2str(bas.level) ' between directly coupled spins.']);
report(spin_system,['IK-1 approximation - spin correlations up to order ' num2str(bas.space_level) ' between all spins within ' num2str(spin_system.tols.prox_cutoff) ' Angstrom of each other.']);
case 'IK-2'
report(spin_system, 'IK-2 approximation - spin correlations involving all nearest neighbours of each spin on the coupling graph.');
report(spin_system,['IK-2 approximation - spin correlations up to order ' num2str(bas.space_level) ' between all spins within ' num2str(spin_system.tols.prox_cutoff) ' Angstrom of each other.']);
case 'ESR-1'
report(spin_system, 'ESR-1 approximation - complete basis on all electrons.');
report(spin_system, 'ESR-1 approximation - zero-quantum basis on all nuclei.');
case 'ESR-2'
report(spin_system, 'ESR-2 approximation - complete basis on all electrons.');
report(spin_system, 'ESR-2 approximation - complete basis on all nuclei with anisotropic HFC tensors.');
report(spin_system, 'ESR-2 approximation - zero-quantum basis on all nuclei with isotropic HFC tensors.');
case 'none'
report(spin_system, 'complete basis set on all spins.');
otherwise
error('unrecognized approximation level - see the basis set preparation manual.');
end
% Run connectivity analysis
if ismember(spin_system.bas.approximation,{'IK-1','IK-2'})
% Build connectivity and proximity matrices
switch bas.connectivity
case 'scalar_couplings'
report(spin_system,'scalar couplings will be used to build the coupling graph.');
spin_system.inter.conmatrix=sparse(abs(cellfun(@trace,spin_system.inter.coupling.matrix)/3)>spin_system.tols.inter_cutoff);
case 'full_tensors'
report(spin_system,'full coupling tensors will be used to build the coupling graph.');
spin_system.inter.conmatrix=sparse(cellfun(@norm,spin_system.inter.coupling.matrix)>spin_system.tols.inter_cutoff);
end
report(spin_system,['coupling tensors with norm below ' num2str(spin_system.tols.inter_cutoff) ' rad/s will be ignored.']);
% Make sure each spin is connected and proximate to itself
spin_system.inter.conmatrix=spin_system.inter.conmatrix|speye(size(spin_system.inter.conmatrix));
spin_system.inter.proxmatrix=spin_system.inter.proxmatrix|speye(size(spin_system.inter.proxmatrix));
% Make sure connectivity and proximity are reciprocal
spin_system.inter.conmatrix=spin_system.inter.conmatrix|transpose(spin_system.inter.conmatrix);
spin_system.inter.proxmatrix=spin_system.inter.proxmatrix|transpose(spin_system.inter.proxmatrix);
% Issue a report to the user
report(spin_system,['connectivity matrix density ' num2str(100*nnz(spin_system.inter.conmatrix)/numel(spin_system.inter.conmatrix)) '%']);
report(spin_system,['proximity matrix density ' num2str(100*nnz(spin_system.inter.proxmatrix)/numel(spin_system.inter.proxmatrix)) '%']);
% Determine the number of independent subsystems
n_subsystems=max(scomponents(spin_system.inter.conmatrix|spin_system.inter.proxmatrix));
% Print a notice to the user
if n_subsystems>1
report(spin_system,['WARNING - the system contains ' num2str(n_subsystems) ' non-interacting subsystems.']);
end
end
% Generate subgraphs for IK-0 basis
if strcmp(spin_system.bas.approximation,'IK-0')
% Find all possible groups of bas.level spins
col_index=combnk(1:spin_system.comp.nspins,bas.level);
% Get the number of groups
ngroups=size(col_index,1);
% Assign numbers to groups
row_index=kron((1:ngroups)',ones(1,bas.level));
% Generate the subgraph list
coupling_subgraphs=logical(sparse(row_index,col_index,ones(size(col_index)),ngroups,spin_system.comp.nspins));
report(spin_system,['' num2str(size(coupling_subgraphs,1)) ' subgraphs generated by combinatorial analysis.']);
% Do not run proximity analysis
proximity_subgraphs=[];
end
% Generate subgraphs for IK-1 basis
if strcmp(spin_system.bas.approximation,'IK-1')
% Run connectivity analysis
coupling_subgraphs=dfpt(spin_system.inter.conmatrix,bas.level);
report(spin_system,['' num2str(size(coupling_subgraphs,1)) ' subgraphs generated from coupling data.']);
% Run proximity analysis
proximity_subgraphs=dfpt(spin_system.inter.proxmatrix,bas.space_level);
report(spin_system,['' num2str(size(proximity_subgraphs,1)) ' subgraphs generated from proximity data.']);
end
% Generate subgraphs for IK-2 basis
if strcmp(spin_system.bas.approximation,'IK-2')
% Run connectivity analysis
coupling_subgraphs=spin_system.inter.conmatrix;
report(spin_system,['' num2str(size(coupling_subgraphs,1)) ' subgraphs generated from coupling data.']);
% Run proximity analysis
proximity_subgraphs=dfpt(spin_system.inter.proxmatrix,bas.space_level);
report(spin_system,['' num2str(size(proximity_subgraphs,1)) ' subgraphs generated from proximity data.']);
end
% Build IK-0,1,2 basis sets
if ismember(spin_system.bas.approximation,{'IK-0','IK-1','IK-2'})
% Include user-specified subgraphs
if (~isfield(bas,'manual'))||isempty(bas.manual)
manual_subgraphs=[];
else
manual_subgraphs=bas.manual;
report(spin_system,['added ' num2str(size(manual_subgraphs,1)) ' subgraphs specified by the user.']);
end
% Assemble the subgraph list
subgraphs=[coupling_subgraphs; proximity_subgraphs; manual_subgraphs];
clear('coupling_subgraphs','proximity_subgraphs','manual_subgraphs');
% Prune subgraphs involving spin zero particles
report(spin_system,'pruning subgraphs involving zero spin particles...');
subgraphs(:,spin_system.comp.mults==1)=0;
% Remove identical subgraphs
report(spin_system,'removing identical subgraphs...');
subgraphs=unique(subgraphs,'rows');
% Store subgraphs for future use
spin_system.bas.subgraphs=logical(subgraphs);
% Report back to the user
subgraph_sizes=sum(subgraphs,2);
for n=min(subgraph_sizes):max(subgraph_sizes)
if nnz(subgraph_sizes==n)>0
report(spin_system,['generated ' num2str(nnz(subgraph_sizes==n)) ' subgraphs of size ' num2str(n)]);
end
end
% Balance the subgraph list
subgraphs=subgraphs(randperm(size(subgraphs,1)),:);
% Populate the basis descriptor array
report(spin_system,'building basis descriptor...');
spmd
% Localize the problem at the nodes
subgraphs=codistributed(subgraphs,codistributor('1d',1));
subgraphs_loc=getLocalPart(subgraphs);
% Preallocate local basis descriptor array
nstates=0;
for n=1:size(subgraphs_loc,1)
nstates=nstates+prod(spin_system.comp.mults(logical(subgraphs_loc(n,:))))^2;
end
basis_spec=spalloc(nstates,spin_system.comp.nspins,nstates*max(subgraph_sizes));
% Populate local basis descriptor array
list_position=1;
for n=1:size(subgraphs_loc,1)
% Determine the total number of states in the current subgraph
nstates=prod(spin_system.comp.mults(logical(subgraphs_loc(n,:))))^2;
% Determine which spins belong to the current subgraph
spins_involved=find(subgraphs_loc(n,:));
% Build the basis table
for k=1:numel(spins_involved)
basis_spec(list_position:(list_position+nstates-1),spins_involved(k))=...
kron(kron(ones(prod(spin_system.comp.mults(spins_involved(1:(k-1))))^2,1),...
(0:(spin_system.comp.mults(spins_involved(k))^2-1))'),...
ones(prod(spin_system.comp.mults(spins_involved((k+1):end)))^2,1));
end
list_position=list_position+nstates;
end
% Prune local basis descriptor array
basis_spec=unique(basis_spec,'rows');
end
% Pull the basis descriptor from the nodes
try
basis_spec=vertcat(basis_spec{:});
catch
error('parpool appears to be stuck, check your parallel configuration.');
end
end
% Build ESR-1 basis set
if strcmp(spin_system.bas.approximation,'ESR-1')
% Prepare direct product components
components=cell(1,spin_system.comp.nspins);
for n=1:spin_system.comp.nspins
if strcmp(spin_system.comp.isotopes{n}(1),'E')
components{n}=(0:(spin_system.comp.mults(n)^2-1))';
report(spin_system,['ESR-1 approximation, complete basis set on spin ' num2str(n)]);
else
components{n}=((1:spin_system.comp.mults(n)).*((1:spin_system.comp.mults(n))-1))';
report(spin_system,['ESR-1 approximation, zero-quantum basis set on spin ' num2str(n)]);
end
end
% Preallocate basis table
basis_spec=zeros(prod(cellfun(@numel,components)),spin_system.comp.nspins);
% Generate basis specification
report(spin_system,'building basis descriptor...');
parfor n=1:spin_system.comp.nspins
dimension_before=prod(cellfun(@numel,components(1:(n-1)))); %#ok<PFBNS>
dimension_after=prod(cellfun(@numel,components((n+1):end)));
basis_spec(:,n)=kron(kron(ones(dimension_before,1),...
components{n}),ones(dimension_after,1));
end
end
% Process ESR-2 basis set
if strcmp(spin_system.bas.approximation,'ESR-2')
% Analyze coupling structure
spins_with_full_basis=false(1,spin_system.comp.nspins);
for n=1:spin_system.comp.nspins
% Use complete basis set on anything that has an anisotropic coupling
for k=1:spin_system.comp.nspins
if (norm(spin_system.inter.coupling.matrix{n,k})>spin_system.tols.inter_cutoff)&&...
norm(spin_system.inter.coupling.matrix{n,k}-eye(3)*trace(spin_system.inter.coupling.matrix{n,k})/3)>spin_system.tols.inter_cutoff
spins_with_full_basis(n)=true(); spins_with_full_basis(k)=true();
end
end
% Use complete basis set on all electrons
if strcmp(spin_system.comp.isotopes{n}(1),'E')
spins_with_full_basis(n)=true();
end
end
% Prepare direct product components
components=cell(1,spin_system.comp.nspins);
for n=1:spin_system.comp.nspins
if spins_with_full_basis(n)
components{n}=(0:(spin_system.comp.mults(n)^2-1))';
report(spin_system,['ESR-2 approximation - complete basis set on spin ' num2str(n)]);
else
components{n}=((1:spin_system.comp.mults(n)).*((1:spin_system.comp.mults(n))-1))';
report(spin_system,['ESR-2 approximation - zero-quantum basis set on spin ' num2str(n)]);
end
end
% Preallocate the basis table
basis_spec=zeros(prod(cellfun(@numel,components)),spin_system.comp.nspins);
% Generate the basis specification
report(spin_system,'building basis descriptor...');
parfor n=1:spin_system.comp.nspins
dimension_before=prod(cellfun(@numel,components(1:(n-1)))); %#ok<PFBNS>
dimension_after=prod(cellfun(@numel,components((n+1):end)));
basis_spec(:,n)=kron(kron(ones(dimension_before,1),...
components{n}),ones(dimension_after,1));
end
end
% Process complete basis set
if strcmp(spin_system.bas.approximation,'none')
% Preallocate basis table
basis_spec=zeros(prod(spin_system.comp.mults)^2,spin_system.comp.nspins);
% Build basis table
report(spin_system,'building basis descriptor...');
parfor k=1:spin_system.comp.nspins
basis_spec(:,k)=kron(kron(ones(prod(spin_system.comp.mults(1:(k-1)))^2,1),...
(0:(spin_system.comp.mults(k)^2-1))'),...
ones(prod(spin_system.comp.mults((k+1):end))^2,1)); %#ok<PFBNS>
end
end
% Apply coherence order filter
if isfield(bas,'projections')
% Inform the user
report(spin_system,['applying coherence order filter with M=[' num2str(bas.projections) ']...']);
% Compute coherence order for each basis element
[~,M]=lin2lm(basis_spec);
% Keep specified coherence orders and the unit state
state_mask=false(size(basis_spec,1),1);
state_mask(1)=true(); projection_numbers=sum(M,2);
for n=bas.projections
state_mask=state_mask|(projection_numbers==n);
end
basis_spec(~state_mask,:)=[];
end
% Apply zero-quantum filter
if isfield(bas,'longitudinals')
% Start with empty mask
state_mask=false(size(basis_spec,1),1);
% Loop over the specified spins
for n=1:numel(bas.longitudinals)
% Inform the user
report(spin_system,['applying longitudinal spin order filter on ' bas.longitudinals{n}]);
% Kill the specified transverse states
for k=find(strcmp(bas.longitudinals{n},spin_system.comp.isotopes))
% Analyze the basis
[~,M]=lin2lm(basis_spec(:,k));
% Update the mask
state_mask=or(state_mask,M~=0);
end
end
% Kill the states
basis_spec(state_mask,:)=[];
end
% Remove spin correlations between chemical subsystems
report(spin_system,'removing correlations between chemical reaction endpoints...');
for n=1:numel(spin_system.chem.parts)
for k=1:numel(spin_system.chem.parts)
if n~=k
% Find states involving the first subsystem
spins_a=spin_system.chem.parts{n};
states_a=logical(sum(basis_spec(:,spins_a),2));
% Find states involving the second subsystem
spins_b=spin_system.chem.parts{k};
states_b=logical(sum(basis_spec(:,spins_b),2));
% Remove the intersection
basis_spec(states_a&states_b,:)=[];
end
end
end
% Write the final basis specification
report(spin_system,'sorting the basis...');
spin_system.bas.basis=unique(basis_spec,'rows');
% Build state-cluster cross-membership list if needed
if ismember('xmemlist',spin_system.sys.enable)
% Report to the user
report(spin_system,'building state-subgraph cross-membership list... ');
% Localise variables
basis_loc=spin_system.bas.basis;
subgraphs_loc=spin_system.bas.subgraphs;
% Preallocate the result
nstates=size(basis_loc,1); nclusters=size(subgraphs_loc,1);
xmemlist=spalloc(nstates,nclusters,ceil(nstates*nclusters/spin_system.comp.nspins));
% Run the matching
parfor n=1:size(subgraphs_loc,1)
xmemlist(:,n)=~any(basis_loc(:,~subgraphs_loc(n,:)),2); %#ok<SPRIX,PFBNS>
end
% Store the result
spin_system.bas.xmemlist=xmemlist;
end
% Print the summary
summary(spin_system,'basis');
% Run the symmetry treatment
spin_system=symmetry(spin_system,bas);
end
% Process Hilbert space Zeeman basis
if strcmp(spin_system.bas.formalism,'zeeman-hilb')
% Preallocate basis set array
spin_system.bas.basis=zeros(prod(spin_system.comp.mults),spin_system.comp.nspins);
% Fill basis set array
for n=1:spin_system.comp.nspins
current_column=1;
for k=1:spin_system.comp.nspins
if n==k
current_column=kron(current_column,(1:spin_system.comp.mults(k))');
else
current_column=kron(current_column,ones(spin_system.comp.mults(k),1));
end
end
spin_system.bas.basis(:,n)=current_column;
end
% Run the symmetry treatment
spin_system=symmetry(spin_system,bas);
end
end
% Grumble function
function grumble(spin_system,bas)
% Check bas.formalism
if ~isfield(bas,'formalism')
error('basis specification in bas.formalism is required.');
elseif ~ischar(bas.formalism)
error('bas.formalism must be a string.');
elseif ~ismember(bas.formalism,{'zeeman-hilb','zeeman-liouv','sphten-liouv'})
error('unrecognized formalism - see the basis preparation section of the manual.');
end
% Check zeeman-hilb formalism options
if strcmp(bas.formalism,'zeeman-hilb')
% Check bas.approximation
if ~isfield(bas,'approximation')
error('approximation level must be specified in bas.approximation for zeeman-hilb formalism.');
elseif ~ischar(bas.approximation)
error('bas.approximation must be a string.');
elseif ~ismember(bas.approximation,{'none'})
error('bas.approximation should be set to ''none'' in zeeman-hilb formalism.');
end
end
% Check zeeman-liouv formalism options
if strcmp(bas.formalism,'zeeman-liouv')
% Check bas.approximation
if ~isfield(bas,'approximation')
error('approximation level must be specified in bas.approximation for zeeman-liouv formalism.');
elseif ~ischar(bas.approximation)
error('bas.approximation must be a string.');
elseif ~ismember(bas.approximation,{'none'})
error('bas.approximation should be set to ''none'' in zeeman-liouv formalism.');
end
end
% Check sphten-liouv formalism options
if strcmp(bas.formalism,'sphten-liouv')
% Check bas.approximation
if ~isfield(bas,'approximation')
error('approximation level must be specified in bas.approximation for sphten-liouv formalism.');
elseif ~ischar(bas.approximation)
error('bas.approximation must be a string.');
elseif ~ismember(bas.approximation,{'IK-0','IK-1','IK-2','ESR-1','ESR-2','none'})
error('unrecognized approximation - see the basis preparation section of the manual.');
end
% Check bas.connectivity
if ismember(bas.approximation,{'IK-1','IK-2'})
if ~isfield(bas,'connectivity')
error('connectivity type must be specified in bas.connectivity variable.');
elseif ~ischar(bas.connectivity)
error('bas.connectivity must be a string.');
elseif ~ismember(bas.connectivity,{'scalar_couplings','full_tensors'})
error('unknown connectivity type - see the basis preparation section of the manual.');
end
end
% Check bas.level
if ismember(bas.approximation,{'IK-0','IK-1'})&&(~isfield(bas,'level'))
error('connectivity tracing depth must be specified in bas.level variable.');
end
if isfield(bas,'level')
if (~isnumeric(bas.level))||(~isscalar(bas.level))||(mod(bas.level,1)~=0)||(bas.level<1)
error('bas.level must be a positive integer.');
end
end
% Check bas.space_level
if ismember(bas.approximation,{'IK-1','IK-2'})&&(~isfield(bas,'space_level'))
error('proximity tracing depth must be specified in bas.space_level variable.');
end
if isfield(bas,'space_level')
if (~isnumeric(bas.space_level))||(~isscalar(bas.space_level))||(mod(bas.space_level,1)~=0)||(bas.space_level<1)
error('bas.space_level must be a positive integer.');
end
end
% Check bas.manual
if isfield(bas,'manual')
if (~islogical(bas.manual))&&(~isnumeric(bas.manual))
error('bas.manual must be a logical matrix.');
elseif size(bas.manual,2)~=spin_system.comp.nspins
error('the number of rows in bas.manual must be equal to the number of spins in the system.')
end
end
% Check bas.projections
if isfield(bas,'projections')
if (~isnumeric(bas.projections))||(~isrow(bas.projections))||any(mod(bas.projections,1)~=0)
error('bas.projections must be a row vector of integers.');
end
end
% Check bas.longitudinals
if isfield(bas,'longitudinals')
if (~iscell(bas.longitudinals))||any(~cellfun(@ischar,bas.longitudinals))
error('bas.longitudinals must be a cell array of strings.');
end
if any(~ismember(bas.longitudinals,spin_system.comp.isotopes))
error('bas.longitudinals refers to spins that are not present in the system.');
end
end
end
% Disallow approximation options with exact formalism
if ~ismember(bas.approximation,{'IK-0','IK-1','IK-2'})
if isfield(bas,'level')||isfield(bas,'space_level')
error('bas.level and bas.space_level are only applicable to IK-0,1,2 basis sets.');
end
end
% Enforce sphten-liouv with projection selection
if isfield(bas,'projections')&&(~strcmp(bas.formalism,'sphten-liouv'))
error('bas.projections option is only available for sphten-liouv formalism.');
end
% Enforce sphten-liouv with chemical exchange
if (~isscalar(spin_system.chem.rates))&&(~strcmp(bas.formalism,'sphten-liouv'))
error('chemical reaction modelling is only available for sphten-liouv formalism.');
end
end
% In 1969, Robert Rathbun Wilson, the US physicist who headed Fermilab, the world's
% highest-energy particle accelerator laboratory, addressed the Congressional Joint
% Committee on Atomic Energy. Rhode Island Senator John Pastore asked Wilson to spell
% out what research into high-energy particle physics would do to improve the defence
% of the United States. Wilson gave a reply that went down in scientific history. Fer-
% milab, he said, had "nothing to do directly with defending our country, except to
% make it worth defending".
%
% http://www.theregister.co.uk/2009/02/09/woudhuysen_energise_1/
|
github
|
tsajed/nmr-pred-master
|
spinlock.m
|
.m
|
nmr-pred-master/spinach/kernel/spinlock.m
| 1,521 |
utf_8
|
e73d0f4759754be56c7a5fc9c1bd979a
|
% Analytical approximation to a spin locking process. This function oblite-
% rates all spin-spin correlations and all magnetization components other
% than those along the indicated direction. Parameters:
%
% Lx - X magnetization operator on the spins that
% should be locked
%
% Ly - Y magnetization operator on the spins that
% should be locked
%
% rho - state vector or a bookshelf stack thereof
%
% direction - direction in which the spins should be lo-
% cked, 'X' or 'Y'.
%
% The function destroys all magnetization except in the direction indicated,
% but does not prevent its subsequent evolution.
%
% [email protected]
function rho=spinlock(spin_system,Lx,Ly,rho,direction)
switch direction
case 'X'
% Destroy everything except for X magnetization
rho=step(spin_system,Ly,rho,pi/2);
rho=homospoil(spin_system,rho,'destroy');
rho=step(spin_system,Ly,rho,-pi/2);
case 'Y'
% Destroy everything except for Y magnetization
rho=step(spin_system,Lx,rho,pi/2);
rho=homospoil(spin_system,rho,'destroy');
rho=step(spin_system,Lx,rho,-pi/2);
otherwise
% Complain and bomb out
error('unrecognized spin locking direction.');
end
end
% To every dog - his bone and cage,
% To every wolf - his teeth and rage.
%
% Victor Tsoy
|
github
|
tsajed/nmr-pred-master
|
lindbladian.m
|
.m
|
nmr-pred-master/spinach/kernel/lindbladian.m
| 1,460 |
utf_8
|
dca11201c0d29cbfc36031996ac2f53d
|
% Generates a Lindblad superoperator from user-specified left-side and
% right-side product superoperators and calibrates it using the experi-
% mental relaxation rate of a user-specified state. Syntax:
%
% R=lindbladian(A_left,A_right,rho,rlx_rate)
%
% where A_left is the left side product superoperator of the interacti-
% on that is being modulated, A_right is the right side product super-
% operator of the same interaction, rho is the state vector whose rela-
% xation rate is known from the experiment and rlx_rate is that rate.
%
% [email protected]
function R=lindbladian(A_left,A_right,rho,rlx_rate)
% Check consistency
grumble(A_left,A_right,rho,rlx_rate);
% Generate a Lindbladian
R=A_left*A_right'-(A_left'*A_left+A_right*A_right')/2;
% Calibrate the Lindbladian
rho=rho/norm(rho,2); R=-rlx_rate*R/(rho'*R*rho);
end
% Consistency enforcement
function grumble(A_left,A_right,rho,rlx_rate)
if (~isnumeric(A_left))||(~isnumeric(A_right))||...
(~isnumeric(rho))||(~isnumeric(rlx_rate))
error('all inputs must be numeric.');
end
if (~isnumeric(rlx_rate))||(~isscalar(rlx_rate))||...
(~isreal(rlx_rate))||(nsteps<0)
error('rlx_rate must be a non-negative real number.');
end
end
% Morality, it could be argued, represents the way that people
% would like the world to work, wheareas economics represents
% how it actually does work.
%
% Steven D. Levitt, "Freakonomics"
|
github
|
tsajed/nmr-pred-master
|
propagator.m
|
.m
|
nmr-pred-master/spinach/kernel/propagator.m
| 7,103 |
utf_8
|
228cd2cfd371fa8680d2b3d433160043
|
% Calculates exponential propagators. Syntax:
%
% P=propagator(spin_system,L,timestep)
%
% returns exp(-i*L*t). The following calculation methods are
% supported:
%
% 'cpu' - Taylor series with scaling and squaring
% on CPU, spmd parallel if possible
%
% 'gpu' - Taylor series with scaling and squaring
% on GPU
%
% The propagator calculation method is chosen by setting the
% sys.enable parameter during the call to create.m function.
%
% Notes: we did have Chebyshev and Newton series here at one
% point, as well as the Pade method. None of them has
% lived up to their marketing.
%
% [email protected]
function P=propagator(spin_system,L,timestep)
% Check consistency
grumble(L,timestep);
% Inform the user about matrix densities
report(spin_system,['Liouvillian dimension ' num2str(size(L,1)) ', nnz ' num2str(nnz(L)) ...
', density ' num2str(100*nnz(L)/numel(L)) '%, sparsity ' num2str(issparse(L))]);
% Set a shorthand for -i*L*dt
A=-1i*L*timestep;
% Fast bypass for small matrices
if size(A,1)<spin_system.tols.small_matrix
P=expm(full(A)); return;
end
% Check the cache
if ismember('caching',spin_system.sys.enable)&&(size(A,1)>500)
% Generate the cache record name
filename=[spin_system.sys.scratch '/p_' md5_hash(A) '.mat'];
% Try loading the cache record
if exist(filename,'file')
report(spin_system,'cache record found and used.'); load(filename,'P');
report(spin_system,['propagator dimension ' num2str(size(P,1)) ', nnz ' num2str(nnz(P))...
', density ' num2str(100*nnz(P)/numel(P)) '%, sparsity ' num2str(issparse(P))]); %#ok<NODEF>
return;
else
report(spin_system,'cache record not found, computing from scratch...');
end
end
% Get the norm
mat_norm=norm(A,1);
% Warn the user if the norm is too big
if mat_norm>1024
% If the user is really pushing it, take precautionary measures
report(spin_system,'WARNING - the time step requested greatly exceeds the timescale of system dynamics.');
report(spin_system,'WARNING - exponentiation tolerance will be set to 1e-14.');
spin_system.tols.prop_chop=1e-14;
elseif mat_norm>16
% Inform the user just in case
report(spin_system,'WARNING - the time step requested exceeds the timescale of system dynamics.');
end
% Determine scaling and squaring parameters
n_squarings=max([0 ceil(log2(mat_norm))]); scaling_factor=2^n_squarings;
report(spin_system,['scaling by ' num2str(scaling_factor) ' and squaring ' num2str(n_squarings) ' times.']);
% Scale and clean up the matrix
if scaling_factor>1, A=A/scaling_factor; end
A=clean_up(spin_system,A,spin_system.tols.prop_chop);
% Get the propagator
if ismember('gpu',spin_system.sys.enable)&&(size(A,1)>500)
% Run Taylor series procedure on the GPU
A=gpuArray(A); P=speye(size(A));
next_term=gpuArray.speye(size(A)); n=1;
while nnz(next_term)>0
% Compute the next term
if issparse(A)
next_term=(1/n)*A*next_term;
else
next_term=(1/n)*next_term*A;
end
% Eliminate small elements
next_term=clean_up(spin_system,next_term,spin_system.tols.prop_chop);
% Add to the total and increment the counter
P=P+gather(next_term); n=n+1;
end
% Inform the user
report(spin_system,['Taylor series converged on GPU in ' num2str(n) ' iterations.']);
else
% Run Taylor series procedure on the CPU
P=speye(size(A)); next_term=P; n=1;
while nnz(next_term)>0
% Compute the next term
if issparse(A)
next_term=(1/n)*A*next_term;
else
next_term=(1/n)*next_term*A;
end
% Eliminate small elements
next_term=clean_up(spin_system,next_term,spin_system.tols.prop_chop);
% Add to the total and increment the counter
P=P+next_term; n=n+1;
end
% Inform the user
report(spin_system,['Taylor series converged on CPU in ' num2str(n) ' iterations.']);
end
% Reclaim memory
clear('A','next_term');
% Clean up the result
P=clean_up(spin_system,P,spin_system.tols.prop_chop);
% Run the squaring stage
if n_squarings>0
% Run the appropriate squaring process
if ismember('gpu',spin_system.sys.enable)&&(size(P,1)>500)
% Move the array to GPU
P=gpuArray(P);
% Run the squaring on the GPU
for n=1:n_squarings
% Inform the user
report(spin_system,['GPU squaring step ' num2str(n) '...']);
% Square the propagator
P=clean_up(spin_system,P*P,spin_system.tols.prop_chop);
end
elseif (~isworkernode)&&(nnz(P)>1e6)&&issparse(P)
% Run codistributed CPU squaring
spmd
% Codistribute the propagator
P=codistributed(P,codistributor2dbc());
% Run the squaring stage
for n=1:n_squarings
% Inform the user
report(spin_system,['codistributed CPU squaring step ' num2str(n) '...']);
% Square the propagator
P=clean_up(spin_system,P*P,spin_system.tols.prop_chop);
end
end
else
% Run serial CPU squaring
for n=1:n_squarings
% Inform the user
report(spin_system,['CPU squaring step ' num2str(n) '...']);
% Square the propagator
P=clean_up(spin_system,P*P,spin_system.tols.prop_chop);
end
end
end
% Gather the propagator
P=gather(P);
% Inform the user
report(spin_system,['propagator dimension ' num2str(size(P,1)) ', nnz ' num2str(nnz(P))...
', density ' num2str(100*nnz(P)/numel(P)) '%, sparsity ' num2str(issparse(P))]);
% Write the cache record
if ismember('caching',spin_system.sys.enable)&&any(size(P)>500)
% Save the propagator
save(filename,'P'); report(spin_system,'cache record saved.');
end
end
% Consistency enforcement
function grumble(L,timestep)
if (~isnumeric(L))||(~isnumeric(timestep))
error('both L and timestep must be numeric.');
end
if size(L,1)~=size(L,2)
error('L argument must be a square matrix.');
end
if ~isscalar(timestep)
error('timestep must be a scalar.');
end
end
% To preserve one's mind intact through a modern college education is a
% test of courage and endurance, but the battle is worth it and the sta-
% kes are the highest possible to man: the survival of reason.
%
% Ayn Rand
|
github
|
tsajed/nmr-pred-master
|
kinetics.m
|
.m
|
nmr-pred-master/spinach/kernel/kinetics.m
| 9,090 |
utf_8
|
ab73d88d3360660aa7174960706cdba9
|
% Chemical kinetics superoperator. All adjustable parameters are specified
% in the call to create.m function -- see the Input Preparation section of
% Spinach manual.
%
% [email protected]
% [email protected]
% [email protected]
function K=kinetics(spin_system)
% Preallocate the answer
K=0*unit_oper(spin_system);
% Find chemical reactions
[sources,destins,rates]=find(spin_system.chem.rates);
% Loop over chemical reactions
for n=1:numel(rates)
% Refuse to process inappropriate cases
if ~strcmp(spin_system.bas.formalism,'sphten-liouv')
error('chemical reaction treatment is only available for sphten-liouv formalism.');
end
% Get the spins involved
source_spins=spin_system.chem.parts{sources(n)};
destin_spins=spin_system.chem.parts{destins(n)};
% Get the states involved
source_states=logical(sum(spin_system.bas.basis(:,source_spins),2));
destin_states=logical(sum(spin_system.bas.basis(:,destin_spins),2));
% Make sure basis tables match
if ~isequal(spin_system.bas.basis(source_states,source_spins),...
spin_system.bas.basis(destin_states,destin_spins))
error('spin systems on either side of the reaction arrow have different topologies or basis sets.');
end
% Move to integer indexing
source_states=find(source_states);
destin_states=find(destin_states);
% Update the kinetics superoperator
K=K+rates(n)*sparse(source_states,destin_states,ones(size(source_states)),size(K,1),size(K,2));
end
% Find magnetization fluxes
[source_spins,destin_spins,flux_rate]=find(spin_system.chem.flux_rate);
% Process magnetization fluxes
if ~isempty(flux_rate)
% Refuse to process inappropriate cases
if ~strcmp(spin_system.bas.formalism,'sphten-liouv')
error('magnetization flux treatment is only available for sphten-liouv formalism.');
end
% Index single- and multi-spin orders (sso and mso)
sso_state_mask=(sum(logical(spin_system.bas.basis),2)==1);
mso_state_mask=(sum(logical(spin_system.bas.basis),2)>1 );
% Decide how to proceed
switch spin_system.chem.flux_type
case 'intramolecular'
report(spin_system,'intramolecular magnetization flux, correlations will be kept.');
case 'intermolecular'
report(spin_system,'intermolecular magnetization flux, correlations will be damped.');
otherwise
error('unrecognized magnetization flux type.')
end
% Loop over the fluxes
for n=1:numel(flux_rate)
% Find single-spin sources and destinations
sso_source_state_mask=sso_state_mask&(spin_system.bas.basis(:,source_spins(n))~=0);
sso_destin_state_mask=sso_state_mask&(spin_system.bas.basis(:,destin_spins(n))~=0);
% Identify stationary states
sso_static_state_mask=sso_source_state_mask&sso_destin_state_mask;
sso_source_state_mask=xor(sso_source_state_mask,sso_static_state_mask);
sso_destin_state_mask=xor(sso_destin_state_mask,sso_static_state_mask);
% Make sure subspaces match
if ~isequal(spin_system.bas.basis(sso_source_state_mask,source_spins),...
spin_system.bas.basis(sso_destin_state_mask,destin_spins))
error('spin systems on either side of the reaction arrow have different topology or basis sets.');
end
% Move to integer indexing
sso_source_state_index=find(sso_source_state_mask);
sso_destin_state_index=find(sso_destin_state_mask);
% Update the kinetics superoperator
K=K+flux_rate(n)*sparse(sso_destin_state_index,sso_source_state_index,ones(size(sso_source_state_index)),size(K,1),size(K,2));
K=K-flux_rate(n)*sparse(sso_source_state_index,sso_source_state_index,ones(size(sso_source_state_index)),size(K,1),size(K,2));
% Decide the fate of multi-spin orders
switch spin_system.chem.flux_type
case 'intramolecular'
% Find multi-spin sources and destinations
mso_source_state_mask=mso_state_mask&(spin_system.bas.basis(:,source_spins(n))~=0);
mso_destin_state_mask=mso_state_mask&(spin_system.bas.basis(:,destin_spins(n))~=0);
% Identify stationary states
mso_static_state_mask=mso_source_state_mask&mso_destin_state_mask;
mso_source_state_mask=xor(mso_source_state_mask,mso_static_state_mask);
mso_destin_state_mask=xor(mso_destin_state_mask,mso_static_state_mask);
% Make sure subspaces match
if ~isequal(spin_system.bas.basis(mso_source_state_mask,source_spins),...
spin_system.bas.basis(mso_destin_state_mask,destin_spins))
error('spin systems on either side of the reaction arrow have different topology or basis sets.');
end
% Move to integer indexing
mso_source_state_index=find(mso_source_state_mask);
mso_destin_state_index=find(mso_destin_state_mask);
% Update the kinetics superoperator
K=K+flux_rate(n)*sparse(mso_destin_state_index,mso_source_state_index,ones(size(mso_source_state_index)),size(K,1),size(K,2));
K=K-flux_rate(n)*sparse(mso_source_state_index,mso_source_state_index,ones(size(mso_source_state_index)),size(K,1),size(K,2));
case 'intermolecular'
% Find multi-spin sources
mso_source_state_mask=mso_state_mask&(spin_system.bas.basis(:,source_spins(n))~=0);
% Generate indices
mso_source_state_index=find(mso_source_state_mask);
% Update the kinetics superoperator
K=K-flux_rate(n)*sparse(mso_source_state_index,mso_source_state_index,ones(size(mso_source_state_index)),size(K,1),size(K,2));
otherwise
% Complain and bomb out
error('unrecognized type of magnetization flux.');
end
end
end
% Process radical pair recombination
if (~isempty(spin_system.chem.rp_theory))&&...
(~strcmp(spin_system.chem.rp_theory,'off'))
% Refuse to process inappropriate cases
if ~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'})
error('radical pair kinetics treatment is only available in Liouville space');
else
report(spin_system,['generating kinetics superoperator using the ' spin_system.chem.rp_theory ' model...']);
end
% Get the singlet and triplet projector product superoperators
unit=unit_oper(spin_system);
LzSz_l=operator(spin_system,{'Lz','Lz'},num2cell(spin_system.chem.rp_electrons),'left');
LzSz_r=operator(spin_system,{'Lz','Lz'},num2cell(spin_system.chem.rp_electrons),'right');
LpSm_l=operator(spin_system,{'L+','L-'},num2cell(spin_system.chem.rp_electrons),'left');
LpSm_r=operator(spin_system,{'L+','L-'},num2cell(spin_system.chem.rp_electrons),'right');
LmSp_l=operator(spin_system,{'L-','L+'},num2cell(spin_system.chem.rp_electrons),'left');
LmSp_r=operator(spin_system,{'L-','L+'},num2cell(spin_system.chem.rp_electrons),'right');
singlet_l=unit/4-(LzSz_l+0.5*(LpSm_l+LmSp_l)); triplet_l=unit-singlet_l;
singlet_r=unit/4-(LzSz_r+0.5*(LpSm_r+LmSp_r)); triplet_r=unit-singlet_r;
% Assemble the recombination kinetics superoperator
switch spin_system.chem.rp_theory
case 'exponential'
K=K-sum(spin_system.chem.rp_rates)*speye(size(K));
case 'haberkorn'
K=K-0.5*(spin_system.chem.rp_rates(1)*(singlet_l+singlet_r)+spin_system.chem.rp_rates(2)*(triplet_l+triplet_r));
case 'jones-hore'
K=K-sum(spin_system.chem.rp_rates)*unit+spin_system.chem.rp_rates(1)*triplet_l*triplet_r+spin_system.chem.rp_rates(2)*singlet_l*singlet_r;
otherwise
error('unknown radical pair kinetics model.');
end
end
end
% The egoist is the absolute sense is not the man who sacrifices others. He
% is the man who stands above the need of using others in any manner. He do-
% es not function through them. He is not concerned with them in any primary
% matter. Not in his aim, not in his motive, not in his thinking, not in his
% desires, not in the source of his energy. He does not exist for any other
% man - and he asks no other man to exist for him. This is the only form of
% brotherhood and mutual respect possible between men.
%
% Ayn Rand, "The Fountainhead"
|
github
|
tsajed/nmr-pred-master
|
operator.m
|
.m
|
nmr-pred-master/spinach/kernel/operator.m
| 3,563 |
utf_8
|
232e3910e3f858f1c9cd5d85ce3e8b6d
|
% Hilbert space operators and Liouville space superoperators.
%
% <http://spindynamics.org/wiki/index.php?title=Operator.m>
function A=operator(spin_system,operators,spins,operator_type)
% Validate the input
grumble(spin_system,operators,spins);
% The default type is commutation superoperator
if ~exist('operator_type','var'), operator_type='comm'; end
% Parse the specification
[opspecs,coeffs]=human2opspec(spin_system,operators,spins);
% Decide how to proceed
switch spin_system.bas.formalism
case 'sphten-liouv'
% Get the Liouville space superoperator
local_answers=cell(numel(opspecs),1);
parfor n=1:numel(opspecs)
local_answers{n}=coeffs(n)*p_superop(spin_system,opspecs{n},operator_type);
end
A=spalloc(size(local_answers{1}(1),1),...
size(local_answers{1}(2),2),...
sum(cellfun(@nnz,local_answers)));
for n=1:numel(opspecs)
A=A+local_answers{n};
end
case 'zeeman-hilb'
% Get the Hilbert space operator
local_answers=cell(numel(opspecs),1);
parfor n=1:numel(opspecs)
B=sparse(coeffs(n));
for k=1:numel(opspecs{n})
[L,M]=lin2lm(opspecs{n}(k));
ist=irr_sph_ten(spin_system.comp.mults(k),L); %#ok<PFBNS>
B=kron(B,ist{L-M+1});
end
local_answers{n}=B;
end
A=spalloc(size(local_answers{1}(1),1),...
size(local_answers{1}(2),2),...
sum(cellfun(@nnz,local_answers)));
for n=1:numel(opspecs)
A=A+local_answers{n};
end
case 'zeeman-liouv'
% Get the Liouville space superoperator
local_answers=cell(numel(opspecs),1);
parfor n=1:numel(opspecs)
B=sparse(coeffs(n));
for k=1:numel(opspecs{n})
[L,M]=lin2lm(opspecs{n}(k));
ist=irr_sph_ten(spin_system.comp.mults(k),L); %#ok<PFBNS>
B=kron(B,ist{L-M+1});
end
local_answers{n}=hilb2liouv(B,operator_type);
end
A=spalloc(size(local_answers{1}(1),1),...
size(local_answers{1}(2),2),...
sum(cellfun(@nnz,local_answers)));
for n=1:numel(opspecs)
A=A+local_answers{n};
end
otherwise
% Complain and bomb out
error('unknown operator type.');
end
end
% Input validation function
function grumble(spin_system,operators,spins)
if ~isfield(spin_system,'bas')
error('basis set information is missing, run basis() before calling this function.');
end
if (~(ischar(operators)&&ischar(spins)))&&...
(~(iscell(operators)&&iscell(spins)))&&...
(~(ischar(operators)&&isnumeric(spins)))
error('invalid operator specification.');
end
if iscell(operators)&&iscell(spins)&&(numel(operators)~=numel(spins))
error('spins and operators cell arrays should have the same number of elements.');
end
if iscell(operators)&&any(~cellfun(@ischar,operators))
error('all elements of the operators cell array should be strings.');
end
if iscell(spins)&&any(~cellfun(@isnumeric,spins))
error('all elements of the spins cell array should be integer numbers.');
end
end
% It is nice to know that the computer understands the problem. But I would
% like to understand it too.
%
% Eugene Wigner
|
github
|
tsajed/nmr-pred-master
|
residual.m
|
.m
|
nmr-pred-master/spinach/kernel/residual.m
| 2,306 |
utf_8
|
caf9051ccf62a2197e7a144614af7573
|
% Sets up interaction tensors under partial ordering in a liquid
% crystal with the user-supplied order matrix. All adjustable pa-
% rameters are set during the call to create.m function. Syntax:
%
% spin_system=residual(spin_system)
%
% Note: this function is only applicable to high-field NMR.
%
% Note: the function overwrites the interaction tensors supplied
% by the user. Relaxation superoperator, if required, must
% be computed before this function is called.
%
% [email protected]
% [email protected]
function spin_system=residual(spin_system)
% Check consistency
grumble(spin_system);
% Process Zeeman interactions
for n=1:spin_system.comp.nspins
if significant(spin_system.inter.zeeman.matrix{n},spin_system.tols.inter_cutoff)
% Obtain isotropic part
iso=eye(3)*trace(spin_system.inter.zeeman.matrix{n})/3;
% Calculate residual order
extra_zz=trace(spin_system.inter.order_matrix*(spin_system.inter.zeeman.matrix{n}-iso));
% Update Zeeman tensor
spin_system.inter.zeeman.matrix{n}=iso+diag([-extra_zz/3 -extra_zz/3 2*extra_zz/3]);
end
end
% Process spin-spin couplings
for n=1:spin_system.comp.nspins
for k=1:spin_system.comp.nspins
if significant(spin_system.inter.coupling.matrix{n,k},spin_system.tols.inter_cutoff)
% Obtain isotropic part
iso=trace(spin_system.inter.coupling.matrix{n,k})*eye(3)/3;
% Calculate residual order
extra_zz=trace(spin_system.inter.order_matrix*(spin_system.inter.coupling.matrix{n,k}-iso));
% Update coupling tensor
spin_system.inter.coupling.matrix{n,k}=iso+diag([-extra_zz/3 -extra_zz/3 2*extra_zz/3]);
end
end
end
% Report back to the user
report(spin_system,'all interaction anisotropies have been replaced by their residuals.');
end
% Consistency enforcement
function grumble(spin_system)
if ~isfield(spin_system.inter,'order_matrix')
error('order matrix infomation is missing from the spin_system structure.');
end
end
% If I'd observed all the rules, I'd never have got anywhere.
%
% Marilyn Monroe
|
github
|
tsajed/nmr-pred-master
|
thermalize.m
|
.m
|
nmr-pred-master/spinach/kernel/thermalize.m
| 1,058 |
utf_8
|
0202b4d5a16beaabe415ea39be31f719
|
% Modifies a symmetric relaxation superoperator to relax the system
% towards a user-specified state. Liouville space spherical tensor
% formalism only. Syntax:
%
% R=thermalize(spin_system,R,rho)
%
% [email protected]
function R=thermalize(spin_system,R,rho)
if strcmp(spin_system.bas.formalism,'sphten-liouv')
% Modify the relaxation superoperator
R(1,1)=1; R(:,1)=-R*rho;
else
% Complain and bomb out
error('this function is only available in sphten-liov formalism.');
end
end
% As for the review experience, remember that story about
% Pavlov's dogs? Conditional reflexes and things. There's
% a less well known experiment when dogs are punished and
% rewarded in a way that's uncorrelated with what they do.
% The dogs eventually develop schizophrenia... that's how
% that review made me feel.
%
% (from IK's email to the project team,
% after the final review meeting on an
% EU grant, in which the outcomes were
% praised by Brussels to high heaven)
|
github
|
tsajed/nmr-pred-master
|
trajsimil.m
|
.m
|
nmr-pred-master/spinach/kernel/trajsimil.m
| 5,910 |
utf_8
|
a3776b1fcac41800e2d9e696b6d9c9e2
|
% Computes trajectory similarity scores. Returns a function representing
% "similarity" of the two state space trajectories at different points in
% time. Trajectory must be supplied as nstates x nsteps matrix. Syntax:
%
% trajsimil(spin_system,trajectory_1,trajectory_2,method)
%
% Score functions:
%
% 'RSP' - running scalar product. Computes scalar products between the
% corresponding vectors of the two trajectories.
%
% 'RDN' - running difference norm. The two trajectories are subtracted
% and difference 2-norms returned.
%
% 'SG-' - prefix that switches on state grouping. T(l,m) and T(l,-m)
% states of each spin (standalone or in direct products with
% other operators) would be deemed equivalent.
%
% 'BSG-' - prefix that switches on broad state grouping. All states of
% a given spin (standalone or in direct products with other
% operators) would be deemed equivalent.
%
% The state grouping consists in summing the absolute squares of the co-
% efficients to be grouped and taking the square root.
%
% Note: SG and BSG options of this function require the spherical tensor
% basis set.
%
% [email protected]
% [email protected]
function score=trajsimil(spin_system,trajectory_1,trajectory_2,scorefcn)
% Validate the input
grumble(spin_system,trajectory_1,trajectory_2,scorefcn);
% Run state grouping
if strcmp(scorefcn(1:3),'SG-')||strcmp(scorefcn(1:3),'BSG')
% Grab the description of the current basis
state_list=spin_system.bas.basis;
% Tell the user we're started
report(spin_system,'collapsing equivalent subspaces...');
% Decide how to proceed
if strcmp(scorefcn(1:3),'SG-')
% Rename all T(l,-m) states into T(l,m) states
[L,M]=lin2lm(state_list); state_list=lm2lin(L,abs(M));
% Update the method variable
scorefcn=scorefcn(4:end);
elseif strcmp(scorefcn(1:3),'BSG')
% Rename all non-identity states into Lz
state_list(state_list~=0)=2;
% Update the method variable
scorefcn=scorefcn(5:end);
end
% Index all unique and repeated states on the modified state list
[grouped_state_list,index_forward,index_backward]=unique(state_list,'rows');
% Preallocate state-grouped trajectories
grouped_trajectory_1=zeros(length(index_forward),size(trajectory_1,2));
grouped_trajectory_2=zeros(length(index_forward),size(trajectory_2,2));
% Group trajectory tracks corresponding to the states that are
% flagged as identical in the indices (root-sum-square)
for n=1:length(index_forward)
grouped_trajectory_1(n,:)=sqrt(sum(abs(trajectory_1(index_backward==n,:)).^2,1));
grouped_trajectory_2(n,:)=sqrt(sum(abs(trajectory_2(index_backward==n,:)).^2,1));
end
% Update the variables
trajectory_1=grouped_trajectory_1;
trajectory_2=grouped_trajectory_2;
% Tell the user we're done
report(spin_system,[num2str(size(state_list,1)) ' states collected into ' num2str(size(grouped_state_list,1)) ' groups.']);
end
% Preallocate the result array
trajectory_length=size(trajectory_1,2);
score=zeros(1,trajectory_length);
% Compute the score function
switch scorefcn
case 'RSP'
% Compute running scalar product scores
for n=1:trajectory_length
score(n)=dot(trajectory_1(:,n),trajectory_2(:,n));
end
case 'RDN'
% Compute running difference norm scores
for n=1:trajectory_length
score(n)=1-norm(trajectory_1(:,n)-trajectory_2(:,n))/2;
end
otherwise
% Complain and bomb out
error('unknown similarity score function.');
end
end
% Consistency enforcement
function grumble(spin_system,trajectory_1,trajectory_2,scorefcn)
if ~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'})
error('this function is only available for Liouville space formalisms.');
end
if (strcmp(scorefcn(1:3),'SG-')||strcmp(scorefcn(1:3),'BSG'))&&...
(~ismember(spin_system.bas.formalism,{'sphten-liouv'}))
error('state grouping is only available for sphten-liouv formalism.');
end
if any(size(trajectory_1)~=size(trajectory_2))
error('matrix dimensions of the two trajectories should match.');
end
if (size(trajectory_1,1)~=size(spin_system.bas.basis,1))||...
(size(trajectory_2,1)~=size(spin_system.bas.basis,1))
error('trajectory dimension should be equal to the basis set dimension.');
end
if (~isnumeric(trajectory_1))||(~isnumeric(trajectory_2))
error('both trajectories should be arrays of doubles.');
end
if ~ismember(scorefcn,{'RSP','RDN','SG-RSP','SG-RDN','BSG-RSP','BSG-RDN'})
error('available score functions are RSP, RDN, SG-RSP, SG-RDN, BSG-RSP, and BSG-RDN.');
end
end
% How would we look for a new law? In general we look for a new law by the
% following process. First, we guess it. Then we... don't laugh. That's the
% damned truth. Then we compute the consequences of the guess... to see if
% this is right, to see if this law we guessed is right, to see what it
% would imply. And then we compare those computation results to nature. Or
% we say to compare it to experiment, or to experience. Compare it directly
% with observations to see if it works. If it disagrees with experiment,
% it's wrong. In that simple statement is the key to science. It doesn't
% make a difference how beautiful your guess is. It doesn't make a diffe-
% rence how smart you are, who made the guess or what his name is... If it
% disagrees with experiment, it's wrong. That's all there is to it.
%
% Richard Feynman
|
github
|
tsajed/nmr-pred-master
|
correlation.m
|
.m
|
nmr-pred-master/spinach/kernel/correlation.m
| 2,846 |
utf_8
|
2e85e82540e5c585bc1fc973376c35fa
|
% Correlation order selection function -- keeps only the specified orders
% of spin correlation in the state vector. Syntax:
%
% rho=correlation(spin_system,rho,correlation_orders,spins)
%
% Arguments:
%
% rho - a state vector or a horizontal stack thereof
%
% correlation_orders - a row vector of correlation orders to keep
%
% spins - which spins to count (e.g. '1H', '13C', 'all')
%
% [email protected]
% [email protected]
function rho=correlation(spin_system,rho,correlation_orders,spins)
% Set the default to all spins
if ~exist('spins','var'), spins='all'; end
% Check consistency
grumble(spin_system,rho,correlation_orders)
% Store dimension statistics
spn_dim=size(spin_system.bas.basis,1);
spc_dim=numel(rho)/spn_dim;
problem_dims=size(rho);
% Fold indirect dimensions
rho=reshape(rho,[spn_dim spc_dim]);
% Parse the spin specification
if ~isnumeric(spins)
if strcmp(spins,'all')
spins=1:length(spin_system.comp.isotopes);
else
spins=find(strcmp(spins,spin_system.comp.isotopes));
end
end
% Compute the order of correlation for each basis state
correlation_orders_present=sum(logical(spin_system.bas.basis(:,spins)),2);
% Wipe all correlation orders except those specified by the user
state_mask=zeros(size(spin_system.bas.basis,1),1);
for n=correlation_orders
state_mask=state_mask|(correlation_orders_present==n);
end
% Apply the mask
rho(~state_mask,:)=0;
% Unfold indirect dimensions
rho=reshape(rho,problem_dims);
% Report overly destructive calls
if norm(rho,1)<1e-10
report(spin_system,'WARNING - all magnetization appears to have been destroyed by this call.');
end
end
% Consistency enforcement
function grumble(spin_system,rho,correlation_orders)
if ~strcmp(spin_system.bas.formalism,'sphten-liouv')
error('analytical correlation order selection is only available for sphten-liouv formalism.');
end
if ~isnumeric(rho)
error('the state vector(s) must be numeric.');
end
if (~isnumeric(correlation_orders))||(~isvector(correlation_orders))||...
any(correlation_orders<0)||any(mod(correlation_orders,1)~=0)
error('correlation_orders parameter must be a vector of non-negative integers.');
end
end
% The first iteration of the Spin Dynamics course (http://spindynamics.org)
% was so difficult that every single student has dropped out by about Lecture
% 10. The rest of the course was read to Rusty, Dusty, Scratchy, Patchy and
% Scruffy, the five plastic chairs in IK's Durham office - they made for an
% excellent (if a bit shy so far as questions were concerned) audience. To
% this day, the total number of students who verifiably understood the whole
% of that course can be counted on the fingers of one hand.
|
github
|
tsajed/nmr-pred-master
|
stepsize.m
|
.m
|
nmr-pred-master/spinach/kernel/stepsize.m
| 1,987 |
utf_8
|
95cd54b97d90c922a925508e0b07cd84
|
% Optimal step for time propagation under a given Hamiltonian or a given
% Liouvillian superoperator. The function uses the 1-norm (which is the
% cheapest variety and the safest one in terms of matrix scaling).
%
% Syntax: [timestep,nsteps]=stepsize(L,interval)
%
% Parameters:
%
% L - Liouvillian operator or superoperator inder which the
% evolution is taking place.
%
% interval - the total evolution time, must be specified if the op-
% timal number of steps is also wanted in the output.
%
% Outputs:
%
% timestep - optimal time step
%
% nsteps - number of steps covering the interval, if the interval
% was specified
%
% Note: if a zero Liouvillian is supplied, the function would return the
% following values: timestep=0, nsteps=1
%
% [email protected]
function [timestep,nsteps]=stepsize(L,interval)
% Catch incorrect calls
if (nargin==1)&&(nargout==2)
error('time interval is required to compute the number of steps.');
elseif (~isnumeric(L))
error('L must be numeric.');
elseif (nargin==2)&&((~isnumeric(interval))||(~isreal(interval))||(~isscalar(interval)))
error('interval muust be a real number.');
end
% Estimate the scaling coefficient
scaling=max([1 norm(L,1)]);
% Adapt to the output style
switch nargout
case 1
% Get the optimal time step
timestep=1/scaling;
case 2
% Get the optimal integer number of steps
nsteps=ceil(abs(interval)*scaling);
% Get the time step
timestep=interval/nsteps;
end
end
% Whenever anyone accuses some person of being 'unfeeling' he means that
% that person is just. He means that that person has no causeless emotions
% and will not grant him a feeling which he does not deserve... justice is
% the opposite of charity.
%
% Ayn Rand, "Atlas Shrugged"
|
github
|
tsajed/nmr-pred-master
|
coherence.m
|
.m
|
nmr-pred-master/spinach/kernel/coherence.m
| 2,569 |
utf_8
|
0fee30c7e46dc64919bc2cc9f1691f15
|
% Coherence selection function.
%
% <http://spindynamics.org/wiki/index.php?title=Coherence.m>
function rho=coherence(spin_system,rho,spec)
% Check consistency
grumble(spin_system,rho,spec);
% Store dimension statistics
spn_dim=size(spin_system.bas.basis,1);
spc_dim=numel(rho)/spn_dim;
problem_dims=size(rho);
% Fold indirect dimensions
rho=reshape(rho,[spn_dim spc_dim]);
% Compute projection quantum numbers of basis states
[~,M]=lin2lm(spin_system.bas.basis);
% Preallocate state mask array
state_mask=false(spn_dim,numel(spec));
% Loop over specifications
for n=1:numel(spec)
% Parse spin specification
if ischar(spec{n}{1})
% Symbolic specification
if strcmp(spec{n}{1},'all')
spins=1:numel(spin_system.comp.isotopes);
else
spins=find(strcmp(spec{n}{1},spin_system.comp.isotopes));
end
else
% Specification by number
spins=spec{n}{1};
end
% Determine coherence order of each basis state
coherence_orders_present=sum(M(:,spins),2);
% Wipe all coherence orders except those specified by the user
state_mask(:,n)=ismember(coherence_orders_present,spec{n}{2});
end
% Intersect state masks
state_mask=all(state_mask,2);
% Apply the state mask
rho(~state_mask,:)=0;
% Unfold indirect dimensions
rho=reshape(rho,problem_dims);
% Report overly destructive calls
if norm(rho,1)<1e-10
report(spin_system,'WARNING - all magnetization appears to have been destroyed by this call.');
end
end
% Consistency enforcement
function grumble(spin_system,rho,spec) %#ok<INUSD>
if ~strcmp(spin_system.bas.formalism,'sphten-liouv')
error('analytical coherence order selection is only available for sphten-liouv formalism.');
end
if ~isnumeric(rho)
error('the state vector(s) must be numeric.');
end
if mod(numel(rho),size(spin_system.bas.basis))~=0
error('the number of elements in rho must be a multiple of the dimension of the spin state space.');
end
end
% There was a time when men were afraid that somebody would reveal
% some secret of theirs that was unknown to their fellows. Nowadays,
% they're afraid that somebody will name what everybody knows. Have
% you practical people ever thought that that's all it would take
% to blast your whole, big, complex structure, with all your laws
% and guns -- just somebody naming the exact nature of what it is
% you're doing?
%
% Ayn Rand, "Atlas Shrugged"
|
github
|
tsajed/nmr-pred-master
|
repulsion.m
|
.m
|
nmr-pred-master/spinach/kernel/grids/repulsion.m
| 3,473 |
utf_8
|
538e1a0c3c3f3c705c3cb1270630dafc
|
% Generates repulsion grids on a unit hypersphere. See the paper by
% Bak and Nielsen (http://dx.doi.org/10.1006/jmre.1996.1087) to get
% further information on the algorithm involved. Syntax:
%
% [alphas,betas,gammas,weights]=repulsion(npoints,ndims,niter)
%
% Parameters:
%
% npoints - number of points in the resulting spherical grid
%
% ndims - hypersphere dimension: 2 returns a single-angle
% (beta) grid, 3 returns a two-angle grid (alpha,
% beta), 4 returns a three-angle (alpha,beta,gam-
% ma) spherical grid
%
% niter - number of repulsion interations (simple clipped
% gradient descent at the moment)
%
% Outputs:
%
% alphas - alpha Euler angles of the grid, in radians,
% zeros for single-angle grids
%
% betas - beta Euler angles of the grid, in radians
%
% gammas - gamma Euler angles of the grid, in radians,
% zeros for two-angle grids
%
% weights - point weights of the grid
%
% Note: uniform weights are assigned at the moment, use the supp-
% lied SHREWD function to generate optimal weights.
%
% [email protected]
function [alphas,betas,gammas,weights]=repulsion(npoints,ndims,niter)
% Check consistency
grumble(npoints,ndims,niter);
% Generate guess points
R=rand(ndims,npoints)-0.5;
% Start the repulsion loop
for m=1:niter
% Compute the forces
F=zeros(size(R)); dots=R'*R;
parfor n=1:npoints
for k=1:npoints
if n~=k
distvec=(R(:,k)-R(:,n)); %#ok<PFBNS>
distvec=distvec/norm(distvec);
F(:,n)=F(:,n)+dots(n,k)*distvec;
end
end
end
% Apply the forces
R_new=R-F/npoints;
% Project points onto unit sphere
R_new=R_new./kron(ones(ndims,1),sqrt(sum(R_new.^2,1)));
% Report the difference
disp(['Iteration ' num2str(m) ', maximum point displacement: ' num2str(max(sqrt(sum((R-R_new).^2,2))))]);
% Close the loop
R=R_new;
end
% Get points
switch ndims
case 2
% In 2D case return polar angles
[phi,~]=cart2pol(R(1,:),R(2,:));
betas=phi'; alphas=0*betas; gammas=alphas;
case 3
% In 3D case return spherical angles
[phi,theta,~]=cart2sph(R(1,:),R(2,:),R(3,:));
betas=theta'+pi/2; alphas=phi'; gammas=0*alphas;
case 4
% In 4D case return Euler angles
[gammas,betas,alphas]=quat2angle(R','ZYZ');
end
% Get weights
weights=ones(npoints,1)/npoints;
end
% Consistency enforcement
function grumble(npoints,ndims,niter)
if (~isnumeric(npoints))||(~isreal(npoints))||(numel(npoints)~=1)||(npoints<1)||(mod(npoints,1)~=0)
error('npoints must be a positive integer.');
end
if (~isnumeric(niter))||(~isreal(niter))||(numel(niter)~=1)||(niter<1)||(mod(niter,1)~=0)
error('niter must be a positive integer.');
end
if (~isnumeric(ndims))||(~isreal(ndims))||(numel(ndims)~=1)||(~ismember(ndims,[2 3 4]))
error('ndims must be 2, 3 or 4.');
end
end
% Let us beware of saying that there are laws in nature. There
% are only necessities: there is nobody who commands, nobody
% who obeys, nobody who trespasses.
%
% Friedrich Nietzsche
|
github
|
tsajed/nmr-pred-master
|
shrewd.m
|
.m
|
nmr-pred-master/spinach/kernel/grids/shrewd.m
| 2,339 |
utf_8
|
099331e118ef28cc811358b6503178f2
|
% Computes SHREWD weights for a given two- or three-angle spherical
% grid. See the paper by Eden and Levitt for details on now the al-
% gorithm works: http://dx.doi.org/10.1006/jmre.1998.1427 Syntax:
%
% weights=shrewd(alphas,betas,gammas,max_rank,max_error)
%
% Parameters:
%
% alphas - alpha Euler angles of the grid, in radians
%
% betas - beta Euler angles of the grid, in radians
%
% gammas - gamma Euler angles of the grid,in radians,
% set to all-zeros for two-angle grids
%
% max_rank - maximum spherical rank to take into consi-
% deration when minimizing residuals
%
% max_error - maximum residual absolute error per spheri-
% cal function
%
% The output is a vector of grid weights for each [alpha beta gamma]
% point supplied.
%
% Note: for a given arrangement of angles, this is the most consis-
% tent weight selection procedure in the literature.
%
% [email protected]
function weights=shrewd(alphas,betas,gammas,max_rank,max_error)
% Decide the grid type
if all(gammas==0)
% Preallocate spherical harmonic matrix
H=zeros(lm2lin(max_rank,-max_rank)+1,numel(alphas));
% Fill spherical harmonic matrix
for k=1:numel(alphas)
for l=0:max_rank
D=wigner(l,alphas(k),betas(k),gammas(k));
for m=l:-1:-l
H(lm2lin(l,m)+1,k)=D(l+1,l+m+1);
end
end
end
% Get the right hand side vector
v=max_error*ones(lm2lin(max_rank,-max_rank)+1,1);
v(1)=1-max_error;
else
% Preallocate Wigner function matrix
H=zeros(lmn2lin(max_rank,-max_rank,-max_rank),numel(alphas));
% Fill Wigner function matrix
for k=1:numel(alphas)
for l=0:max_rank
D=wigner(l,alphas(k),betas(k),gammas(k));
for m=l:-1:-l
for n=l:-1:-l
H(lmn2lin(l,m,n),k)=D(l+m+1,l+n+1);
end
end
end
end
% Get the right hand side vector
v=max_error*ones(lmn2lin(max_rank,-max_rank,-max_rank),1);
v(1)=1-max_error;
end
% Compute the weights
weights=real(H\v);
weights=weights/sum(weights);
end
% A good theory explains a lot but postulates little.
%
% Richard Dawkins
|
github
|
tsajed/nmr-pred-master
|
grid_kron.m
|
.m
|
nmr-pred-master/spinach/kernel/grids/grid_kron.m
| 1,933 |
utf_8
|
90a14b2d08b8e62ae823a695b96a3246
|
% Spherical grid direct product. Tiles one grid using the rotations of
% the other. Grids should be supplied using Euler angles in three col-
% umns [alphas betas gammas] in radians. Syntax:
%
% [angles,weights]=grid_kron(angles1,weights1,angles2,weights2)
%
% Parameters:
%
% angles1 - angles of the first grid, as [alpha beta gamma], rad
%
% weights1 - weights of the first grid
%
% angles2 - angles of the second grid, as [alpha beta gamma], rad
%
% weights1 - weights of the second grid
%
% Outputs:
%
% angles - angles of the product grid, as [alpha beta gamma], rad
%
% weights - weights of the product grid
%
% [email protected]
function [angles,weights]=grid_kron(angles1,weights1,angles2,weights2)
% Convert both grids to quaternions
quats1=angle2quat(angles1(:,1),angles1(:,2),angles1(:,3),'ZYZ');
quats2=angle2quat(angles2(:,1),angles2(:,2),angles2(:,3),'ZYZ');
% Build a table of quaternion products
quats=[kron(quats1,ones(size(quats2,1),1)) kron(ones(size(quats1,1)),quats2)];
% Multiply up quaternions
quats=[quats(:,1).*quats(:,5)-quats(:,2).*quats(:,6)-quats(:,3).*quats(:,7)-quats(:,4).*quats(:,8),...
quats(:,1).*quats(:,6)+quats(:,2).*quats(:,5)+quats(:,3).*quats(:,8)-quats(:,4).*quats(:,7),...
quats(:,1).*quats(:,7)-quats(:,2).*quats(:,8)+quats(:,3).*quats(:,5)+quats(:,4).*quats(:,6),...
quats(:,1).*quats(:,8)+quats(:,2).*quats(:,7)-quats(:,3).*quats(:,6)+quats(:,4).*quats(:,5)];
% Convert quaternions into angles
[alphas,betas,gammas]=quat2angle(quats,'ZYZ'); angles=real([alphas betas gammas]);
% Tile the weights
weights=kron(weights1,weights2);
end
% Dostoevsky's lack of taste, his monotonous dealings with persons
% suffering with pre-Freudian complexes, the way he has of wallow-
% ing in the tragic misadventures of human dignity -- all this is
% difficult to admire.
%
% Vladimir Nabokov
|
github
|
tsajed/nmr-pred-master
|
gaussleg.m
|
.m
|
nmr-pred-master/spinach/kernel/grids/gaussleg.m
| 817 |
utf_8
|
9a921d02d31d116cc03d0d80493a2c52
|
% Computes Gauss-Legendre points and weights in [a,b] interval
% with accuracy order n.
%
% [email protected]
function [x,w]=gaussleg(a,b,n)
% Initial guess for the nodes in [-1 1]
x=cos((2*(0:n)'+1)*pi/(2*n+2))+(0.27/(n+1))*sin(pi*linspace(-1,1,n+1)'*n/(n+2));
% Newton-Raphson refinement
V=zeros(n+1,n+2); prev_x=0;
while max(abs(x-prev_x))>eps
V(:,1)=1; V(:,2)=x;
for k=2:(n+1)
V(:,k+1)=((2*k-1)*x.*V(:,k)-(k-1)*V(:,k-1))/k;
end
dV=(n+2)*(V(:,n+1)-x.*V(:,n+2))./(1-x.^2);
prev_x=x; x=x-V(:,n+2)./dV;
end
% Compute the weights
w=(b-a)./((1-x.^2).*dV.^2)*((n+2)/(n+1))^2;
% Map from [-1,1] to [a,b]
x=(a*(1-x)+b*(1+x))/2;
end
% Life is a fountain of delight; but where the rabble also
% drinks all wells are poisoned.
%
% Friedrich Nietzsche
|
github
|
tsajed/nmr-pred-master
|
grid_test.m
|
.m
|
nmr-pred-master/spinach/kernel/grids/grid_test.m
| 2,042 |
utf_8
|
f370fb0071661c47b7bcf44d41044696
|
% Plots grid integration quality as a function of spherical rank. The
% quality is defined as the norm of the residual of spherical harmon-
% ics or Wigner functions integrated using the grid provided. Syntax:
%
% grid_profile=grid_test(alphas,betas,gammas,weights,max_rank,sfun)
%
% Parameters:
%
% alphas - alpha Euler angles of the grid, in radians,
% zeros for single-angle grids
%
% betas - beta Euler angles of the grid, in radians
%
% gammas - gamma Euler angles of the grid, in radians,
% zeros for two-angle grids
%
% weights - point weights of the grid
%
% max_rank - maximum spherical rank to consider
%
% sfun - spherical function type: for three-angle
% grids use 'D_lmn', for two-angle grids use
% 'Y_lm', for single-angle grids use 'Y_l0'.
%
% The output is a vector of residual norms in each spherical rank.
%
% [email protected]
function grid_profile=grid_test(alphas,betas,gammas,weights,max_rank,sfun)
% Preallocate the answer
grid_profile=zeros(max_rank+1,1);
% Loop over spherical ranks
for l=0:max_rank
% Preallocate Wigner matrix
D=zeros(2*l+1);
% Loop over grid points
parfor n=1:numel(alphas)
D=D+weights(n)*wigner(l,alphas(n),betas(n),gammas(n));
end
% Update grid profile
if strcmp(sfun,'D_lmn')
grid_profile(l+1)=norm(D)-krondelta(0,l);
elseif strcmp(sfun,'Y_lm')
grid_profile(l+1)=norm(D(l+1,:))-krondelta(0,l);
elseif strcmp(sfun,'Y_l0')
grid_profile(l+1)=norm(D(l+1,l+1))-krondelta(0,l);
else
error('unknown diagnostics function.');
end
% Update the user
disp(['Spherical rank ' num2str(l) ', residual ' sfun ' norm: ' num2str(grid_profile(l+1))]);
end
% Do the plotting
plot(0:max_rank,abs(grid_profile));
xlabel('spherical rank');
ylabel('integration residual');
end
% Art is what you can get away with.
%
% Andy Warhol
|
github
|
tsajed/nmr-pred-master
|
fpl2rho.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/fpl2rho.m
| 626 |
utf_8
|
acb785abd725b06f1f125556bd9f68c9
|
% Integrates over the spatial degrees of freedom and returns the
% average spin state vector across the sample. Syntax:
%
% rho=fpl2rho(rho,dims)
%
% Parameters:
%
% rho - Fokker-Planck state vector
%
% dims - spatial dimensions of the
% Fokker-Planck problem
%
% [email protected]
function rho=fpl2rho(rho,dims)
% Expose the spin dimension
rho=reshape(rho,[numel(rho)/prod_dims prod(dims)]);
% Sum over the spatial coordinates
rho=sum(rho,2)/prod(dims);
end
% I would like to die on Mars, just not on impact.
%
% Elon Musk
|
github
|
tsajed/nmr-pred-master
|
binpack.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/binpack.m
| 870 |
utf_8
|
f10cfd77f138e0e0b946e6bb85b6f4c6
|
% A simple 1D bin packing algorithm.
%
% [email protected]
function bins=binpack(box_sizes,bin_size)
% Number the boxes
box_index=(1:numel(box_sizes))';
% Find boxes that are bigger than bins
big_boxes=(box_sizes>bin_size);
bins=num2cell(box_index(big_boxes));
box_sizes(big_boxes)=[];
box_index(big_boxes)=[];
% Pack the rest of the boxes
while numel(box_index)>0
% Get enough boxes to fill the bin
current_boxes=(cumsum(box_sizes)<bin_size);
% Stuff them into the bin
bins{end+1}=box_index(current_boxes); %#ok<AGROW>
box_sizes(current_boxes)=[];
box_index(current_boxes)=[];
end
end
% "Ford!" he said, "there's an infinite number of monkeys
% outside who want to talk to us about this script for
% Hamlet they've worked out."
%
% Douglas Adams, "The Hitchhiker's Guide to the Galaxy"
|
github
|
tsajed/nmr-pred-master
|
irr_sph_ten.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/irr_sph_ten.m
| 2,950 |
utf_8
|
edc07d4ae6e4da2dde5ff2487b9ebb14
|
% Returns a cell array of single-spin irreducible spherical tensor opera-
% tors T(k,m). A two-argument call
%
% T=irr_sph_ten(mult,k)
%
% where 'mult' is the multiplicity of the spin in question and 'k' is the
% irreducible spherical tensor rank required, returns a cell array of ten-
% sors of that rank in the order of decreasing projection. A single argu-
% ment call
% T=irr_sph_ten(mult)
%
% produces tensors of all ranks and concatenates them into a cell array in
% the order of ascending rank.
%
% The resulting spherical tensors are normalized in such a way as to obey
% the following commutation relation:
%
% [Lz,T_lm]=m*T_lm
%
% Note: operator normalization in spin dynamics is an old and thorny ques-
% tion. Many different conventions exist, but the only way to make the re-
% sulting formalism independent of the total spin quantum number is to im-
% pose identical commutation relations rather than equal matrix norms.
%
% [email protected]
% [email protected]
function T=irr_sph_ten(mult,k)
% Adapt to the input style
switch nargin
case 1
% Generate tensors of all ranks and put them into a cell array
if isnumeric(mult)&&(numel(mult)==1)&&(mult>0)&&(mod(mult,1)==0)
T=cell(mult^2,1);
for n=0:(mult-1)
T((n^2+1):((n+1)^2))=irr_sph_ten(mult,n);
end
else
error('mult must be a non-negative integer.');
end
case 2
% Generate spherical tensor operators of the specified rank
if isnumeric(mult)&&(numel(mult)==1)&&(mod(mult,1)==0)&&...
isnumeric(k)&&(numel(k)==1)&&(k>0)&&(k<mult)&&(mod(k,1)==0)
% Get Pauli matrices
L=pauli(mult);
% Preallocate the cell array
T=cell(2*k+1,1);
% Get the top state
T{1}=((-1)^k)*(2^(-k/2))*L.p^k;
% Apply sequential lowering using Racah's commutation rule
for n=2:(2*k+1)
q=k-n+2; T{n}=(1/sqrt((k+q)*(k-q+1)))*(L.m*T{n-1}-T{n-1}*L.m);
end
elseif isnumeric(mult)&&(numel(mult)==1)&&(mod(mult,1)==0)&&...
isnumeric(k)&&(numel(k)==1)&&(k==0)
% For zero rank, return a unit matrix
T={speye(mult)};
else
% For non-physical ranks, complain and bomb out
error('mult must be a non-negative integer and k must be an integer from [0, mult-1] interval.');
end
end
end
% I swear by my life and my love of it that I will never live for the sake
% of another man, nor ask another man to live for mine.
%
% Ayn Rand, "Atlas Shrugged"
|
github
|
tsajed/nmr-pred-master
|
human2opspec.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/human2opspec.m
| 5,635 |
utf_8
|
e938a5147583cb1af886ab53f438f170
|
% Converts user-friendly descriptions of spin states and operators into the
% formal description (opspec) used by Spinach kernel. The function supports
% two types of calls:
%
% 1. If both inputs are strings, e.g.
%
% [opspecs,coeffs]=human2opspec(spin_system,'Lz','13C')
%
% the function returns a list of single-spin opspecs for all spins with the
% specified name. In the example above, the list of Lz operator specificati-
% ons for all 13C nuclei in the system would be returned.
%
% Valid labels for operators in this type of call are 'E', 'Lz', 'L+', 'L-'
% and 'Tl,m'. In the latter case, l and m are integers. Valid labels for the
% spins are standard isotope names as well as 'electrons', 'nuclei', 'all'.
%
% 2. If the two inputs are a cell array of strings and a cell array of num-
% bers respectively, a product operator specification is produced, e.g.
%
% [opspecs,coeffs]=human2opspec(spin_system,{'Lz','L+'},{1,2})
%
% would return the LzL+ operator specification with Lz on spin 1 and L+ on
% spin 2. Valid labels for operators in the cell array are 'E', 'Lz', 'L+',
% 'L-' and 'Tl,m'. In the latter case, l and m are integers.
%
% [email protected]
% [email protected]
function [opspecs,coeffs]=human2opspec(spin_system,operators,spins)
% Check input validity
grumble(operators,spins);
% 'Lz','1H' type call returns a sum
if ischar(operators)&&ischar(spins)
% Parse the specification
switch spins
case 'all'
% Use all spins in the system
spin_numbers=1:spin_system.comp.nspins;
case 'electrons'
% Count electrons
spin_numbers=find(cellfun(@(x)strncmp(x,'E',1),spin_system.comp.isotopes));
case 'nuclei'
% Count non-electrons
spin_numbers=find(~cellfun(@(x)strncmp(x,'E',1),spin_system.comp.isotopes));
otherwise
% Count specific spins
spin_numbers=find(strcmp(spin_system.comp.isotopes,spins));
end
% Bomb out if the list of spins is empty
if numel(spin_numbers)==0, error('no such spins in the system.'); end
% Preallocate descriptors
coeffs=zeros(numel(spin_numbers),1);
opspecs=cell(numel(spin_numbers),1);
% Use recursive calls
for n=1:numel(spin_numbers)
[opspecs(n),coeffs(n)]=human2opspec(spin_system,{operators},{spin_numbers(n)});
end
% Return the outcome
return
% 'Lz',[1 2 4] type call returns a sum
elseif ischar(operators)&&isnumeric(spins)
% Preallocate descriptors
coeffs=zeros(numel(spins),1);
opspecs=cell(numel(spins),1);
% Use recursive calls
for n=1:numel(spins)
[opspecs(n),coeffs(n)]=human2opspec(spin_system,{operators},{spins(n)});
end
% Return the outcome
return
% {'Lz','L+'},{1,4} type call returns an operator
elseif iscell(operators)&&iscell(spins)
% Start with an empty opspec and a unit coefficient
opspecs={zeros(1,spin_system.comp.nspins)}; coeffs=1;
% Parse operator selection
for n=1:numel(operators)
switch operators{n}
case 'E'
% Unit operator
opspecs{1}(spins{n})=0; coeffs=1*coeffs;
case 'L+'
% Raising operator
opspecs{1}(spins{n})=1; coeffs=-sqrt(2)*coeffs;
case 'Lz'
% Z projection operator
opspecs{1}(spins{n})=2; coeffs=1*coeffs;
case 'L-'
% Lowering operator
opspecs{1}(spins{n})=3; coeffs=sqrt(2)*coeffs;
otherwise
% Validate the irreducible spherical tensor input
if isempty(regexp(operators{n},'^T([\+\-]?\d+),([\+\-]?\d+)$','once'))
error('unrecognized operator specification.');
end
% Extract the quantum numbers
indices=textscan(operators{n},'T%n,%n'); l=indices{1}; m=indices{2};
% Validate the quantum numbers
if (l<0)||(abs(m)>l)
error('invalid indices in irreducible spherical tensors.');
end
% Write the specification
opspecs{1}(spins{n})=lm2lin(l,m); coeffs=1*coeffs;
end
end
else
% Complain and bomb out
error('invalid operator or state specification.');
end
end
% Input validation
function grumble(operators,spins)
if (~(ischar(operators)&&ischar(spins)))&&...
(~(iscell(operators)&&iscell(spins)))&&...
(~(ischar(operators)&&isnumeric(spins)))
error('invalid operator or state specification.');
end
if iscell(operators)&&(~all(cellfun(@ischar,operators)))
error('if operators is a cell array, all elements must be strings.');
end
if iscell(spins)&&(~all(cellfun(@isnumeric,spins)))
error('if spins is a cell array, all elements must be numbers.');
end
end
% A "moral commandment" is a contradiction in terms. The moral is the
% chosen, not the forced; the understood, not the obeyed. The moral is
% the rational, and reason accepts no commandments.
%
% Ayn Rand
|
github
|
tsajed/nmr-pred-master
|
sphten2zeeman.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/sphten2zeeman.m
| 1,071 |
utf_8
|
4c8a7a1a8a92a3e13a0be77956ee37bf
|
% Returns a matrix that converts state vectors written in the
% spherical tensor basis set used by Spinach into state vectors
% written in the Zeeman basis set in Liouville space.
%
% Note: the matrix need not be square and may be huge.
%
% [email protected]
function P=sphten2zeeman(spin_system)
% Preallocate the answer
P=spalloc(prod(spin_system.comp.mults.^2),size(spin_system.bas.basis,1),0);
% Loop over the basis set
for n=1:size(spin_system.bas.basis,1)
% Get the state going
rho=sparse(1);
% Loop over the elements
for k=1:size(spin_system.bas.basis,2)
% Get the spherical tensors for the current spin
ists=irr_sph_ten(spin_system.comp.mults(k));
% Multiply into the state
rho=kron(rho,ists{spin_system.bas.basis(n,k)+1});
end
% Stretch and write down
P(:,n)=rho(:)/norm(rho(:),2); %#ok<SPRIX>
end
end
% Nurture your minds with great thoughts. To believe
% in the heroic makes heroes.
%
% Benjamin Disraeli
|
github
|
tsajed/nmr-pred-master
|
axrh2mat.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/axrh2mat.m
| 1,601 |
utf_8
|
b3d6cd0ee8ee8d3fdebe01b359d1fb5c
|
% Converts axiality and rhombicity representation of the anisotro-
% pic part of a 3x3 interaction tensor into the corresponding mat-
% rix. Euler angles should be specified in radians. Syntax:
%
% M=axrh2mat(iso,ax,rh,alp,bet,gam)
%
% Parameters:
%
% iso - isotropic part of the interaction
%
% ax - interaction axiality, defined as zz-(xx+yy)/2
% in terms of eigenvalues
%
% rh - interaction rhombicity, defined as (xx-yy) in
% terms of eigenvalues
%
% alp - alpha Euler angle in radians
%
% bet - beta Euler angle in radians
%
% gam - gamma Euler angle in radians
%
% [email protected]
function M=axrh2mat(iso,ax,rh,alp,bet,gam)
% Check consistency
grumble(iso,ax,rh,alp,bet,gam);
% Compute eigenvalues
xx=(2*iso-2*ax+3*rh)/6;
yy=(2*iso-2*ax-3*rh)/6;
zz=(1*iso+2*ax)/3;
% Rotate the matrix
R=euler2dcm(alp,bet,gam);
M=R*diag([xx yy zz])*R';
end
% Consistency enforcement
function grumble(iso,ax,rh,alp,bet,gam)
if (~isnumeric(iso))||(~isreal(iso))||(~isscalar(iso))||...
(~isnumeric(ax))||(~isreal(ax))||(~isscalar(ax))||...
(~isnumeric(rh))||(~isreal(rh))||(~isscalar(rh))||...
(~isnumeric(alp))||(~isreal(alp))||(~isscalar(alp))||...
(~isnumeric(bet))||(~isreal(bet))||(~isscalar(bet))||...
(~isnumeric(gam))||(~isreal(gam))||(~isscalar(gam))
error('all inputs must be real scalars.');
end
end
% I'm working to improve my methods, and every hour
% I save is an hour added to my life.
%
% Ayn Rand, "Atlas Shrugged"
|
github
|
tsajed/nmr-pred-master
|
existentials.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/existentials.m
| 12,935 |
utf_8
|
08d056cded782d586ea36dc417733567
|
% Kernel integrity control. Checks for collisions between Spinach func-
% tions and anything else that the user may have installed or written
% in the current Matlab instance.
%
% Do not switch this off -- collisions of function names and path probl-
% ems are the most frequent support topic at the forum.
%
% [email protected]
% [email protected] (David Goodwin)
function existentials()
% Do not run existential testing inside parallel pools
if isworkernode, return; end
% Locate Spinach
root_dir=which('existentials'); root_dir=root_dir(1:end-32);
% Check location of kernel functions
kernel_functions={'assume','average','basis','coherence','correlation','create',...
'carrier','decouple','equilibrium','evolution','execute',...
'hamiltonian','homospoil','kinetics','frqoffset','krylov',...
'lindbladian','operator','orientation','propagator','rotframe',...
'reduce','relaxation','residual','spin','splice','state',...
'step','trajan','trajsimil','spinlock','stateinfo','stepsize',...
'thermalize','singlet'};
for n=1:numel(kernel_functions)
expected_location=[root_dir filesep 'kernel' filesep kernel_functions{n} '.m'];
apparent_location=which(kernel_functions{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' kernel_functions{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
% Check location of kernel utilities
kernel_utilities={'absorb','anax2dcm','anax2quat','ang2cgsppm','apodization','axis_1d','axrh2mat','banner',...
'binpack','castep2nqi','cce','centroid','cgsppm2ang','clean_up','clebsch_gordan',...
'conmat','corrfun','crop_2d','dcm2euler','dcm2quat','dcm2wigner','dfpt','dihedral',...
'dilute','dipolar','dirdiff','eeqq2nqi','equilibrate','euler2dcm','euler2wigner',...
'existentials','expmint','fdhess','fdkup','fdlap','fdmat','fdvec','fdweights','fftdiff',...
'fourlap','fpl2phan','fpl2rho','fprint','frac2cart','gauss2mhz','gaussfun','hartree2joule',...
'hdot','hess_reorder','hilb2liouv','human2opspec','int_2d','interpmat','intrep',...
'irr_sph_ten','isworkernode','kill_spin','killcross','killdiag','krondelta','lcurve',...
'lin2lm','lin2lmn','lm2lin','lmn2lin','lorentzfun','mat2sphten','md5_hash','mhz2gauss',...
'molplot','mprealloc','mt2hz','negligible','p_superop','pad','path_trace','pauli',...
'perm_group','phan2fpl','plot_1d','plot_2d','plot_3d','probmax','quat2anax','quat2dcm',...
'relax_split','report','rotor_stack','scomponents','shift_iso','significant','slice_2d',...
'sniff','sparse2csr','spher_harmon','sphten2mat','sphten2oper','sphten2state','sphten2zeeman',...
'statmerge','stitch','summary','svd_shrink','sweep2ticks','symmetrize','symmetry',...
'tensor_analysis','tolerances','transfermat','unit_oper','unit_state','v2fplanck',...
'volplot','wigner','xyz2dd','xyz2hfc','xyz2sph','zeeman2sphten','zfs2mat','zte'};
for n=1:numel(kernel_utilities)
expected_location=[root_dir filesep 'kernel' filesep 'utilities' filesep kernel_utilities{n} '.m'];
apparent_location=which(kernel_utilities{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' kernel_utilities{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
% Check location of pulse shapes
kernel_shapes={'cartesian2polar','chirp_pulse_af','chirp_pulse_xy','grad_pulse','grad_sandw','polar2cartesian',...
'pulse_shape','read_wave','sawtooth','shaped_pulse_af','shaped_pulse_xy','sim_pulse','triwave',...
'vg_pulse','wave_basis'};
for n=1:numel(kernel_shapes)
expected_location=[root_dir filesep 'kernel' filesep 'pulses' filesep kernel_shapes{n} '.m'];
apparent_location=which(kernel_shapes{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' kernel_shapes{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
% Check location of optimal control functions
oc_functions={'control_sys','fminkrotov','fminnewton','fminsimplex','grape','hessprep','hessreg','krotov',...
'lbfgs','linesearch','optim_report','optim_tols','penalty','quasinewton'};
for n=1:numel(oc_functions)
expected_location=[root_dir filesep 'kernel' filesep 'optimcon' filesep oc_functions{n} '.m'];
apparent_location=which(oc_functions{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' oc_functions{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
% Check location of grid functions
grid_functions={'gaussleg','grid_kron','grid_test','repulsion','shrewd'};
for n=1:numel(grid_functions)
expected_location=[root_dir filesep 'kernel' filesep 'grids' filesep grid_functions{n} '.m'];
apparent_location=which(grid_functions{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' grid_functions{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
% Check location of external functions
ext_functions={'assofix','b2r','combnk','expv','fourdif','jacobianest','lgwt','lpredict','phantom3d','simps'};
for n=1:numel(ext_functions)
expected_location=[root_dir filesep 'kernel' filesep 'external' filesep ext_functions{n} '.m'];
apparent_location=which(ext_functions{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' ext_functions{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
% Check location of cache functions
cache_functions={'ist_product_table','sle_operators'};
for n=1:numel(cache_functions)
expected_location=[root_dir filesep 'kernel' filesep 'cache' filesep cache_functions{n} '.m'];
apparent_location=which(cache_functions{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' cache_functions{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
% Check location of context functions
context_functions={'crystal','doublerot','floquet','gridfree','hydrodynamics','imaging','liquid',...
'oscillator','powder','roadmap','singlerot'};
for n=1:numel(cache_functions)
expected_location=[root_dir filesep 'kernel' filesep 'contexts' filesep context_functions{n} '.m'];
apparent_location=which(context_functions{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' context_functions{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
% Check location of experiments functions
exp_functions={['hyperpol' filesep 'dnp_field_scan'],['hyperpol' filesep 'dnp_freq_scan'],...
['hyperpol' filesep 'masdnp'],['hyperpol' filesep 'solid_effect'],...
['overtone' filesep 'overtone_a'],['overtone' filesep 'overtone_cp'],...
['overtone' filesep 'overtone_dante'],['overtone' filesep 'overtone_pa'],...
['pseudocon' filesep 'cg_fast'],['pseudocon' filesep 'chi_eff'],...
['pseudocon' filesep 'hfc2pcs'],['pseudocon' filesep 'hfc2pms'],...
['pseudocon' filesep 'ilpcs'],['pseudocon' filesep 'ipcs'],...
['pseudocon' filesep 'ippcs'],['pseudocon' filesep 'kpcs'],...
['pseudocon' filesep 'logfactorial'],['pseudocon' filesep 'lpcs'],...
['pseudocon' filesep 'pcs_combi_fit'],['pseudocon' filesep 'pcs2chi'],...
['pseudocon' filesep 'pms2chi'],['pseudocon' filesep 'points2mult'],...
['pseudocon' filesep 'ppcs'],['pseudocon' filesep 'qform2sph'],...
'acquire','clip_hsqc','cn2d',...
'cosy','crazed','crosspol','dante','deer_3p_hard_deer','deer_3p_hard_echo','deer_3p_soft_deer',...
'deer_3p_soft_diag','deer_3p_soft_hole','deer_4p_soft_deer','deer_4p_soft_diag','deer_4p_soft_hole',...
'deer_analyt','dqf_cosy','endor_cw','endor_davies','endor_mims','eseem','fieldsweep','hetcor',...
'hmqc','hnco','hncoca','holeburn','hp_acquire','hsqc','hyscore','lcosy','levelpop','m2s',...
'noesy','noesyhsqc','oopeseem','rapidscan','roesy','rydmr','rydmr_exp','s2m','slowpass',...
'sp_acquire','traject','ufcosy','zerofield'};
for n=1:numel(exp_functions)
expected_location=[root_dir filesep 'experiments' filesep exp_functions{n} '.m'];
apparent_location=which(exp_functions{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' exp_functions{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
% Check location of miscellaneous functions
etc_functions={'cst_display','destreak','fid2ascii','g2spinach','gparse',...
'guess_csa_pro','guess_j_pro','guess_j_nuc','hfc_display','karplus_fit',...
'nuclacid','protein','read_bmrb','read_pdb_pro','read_pdb_nuc','s2spinach',...
'strychnine','zfs_sampling'};
for n=1:numel(etc_functions)
expected_location=[root_dir filesep 'etc' filesep etc_functions{n} '.m'];
apparent_location=which(etc_functions{n});
if ~strcmp(expected_location,apparent_location)
disp(['Function ' etc_functions{n}]);
disp(['Expected location ' expected_location]);
disp(['Apparent location ' apparent_location]);
error(['function name collision: either Matlab path is not set correctly or you '...
'have a file with the same name as one of the essential Spinach functions '...
'somewhere, and it prevents Spinach from running.']);
end
end
end
% It has been my observation that most people get ahead
% during the time that others waste.
%
% Henry Ford
|
github
|
tsajed/nmr-pred-master
|
wigner.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/wigner.m
| 1,432 |
utf_8
|
436429ecce79ecc2493a86cb52ec1c6a
|
% Computes Wigner matrices of user-specified ranks. Syntax:
%
% D=wigner(l,alp,bet,gam)
%
% where alp, bet and gam are Euler angles in radians. Rows and columns
% of the resulting Wigner matrix are sorted by descending ranks, e.g.:
%
% [D( 2,2) ... D( 2,-2)
% ... ... ...
% D(-2,2) ... D(-2,-2)]
%
% The resulting Wigner matrix is to be used as v=W*v, where v is a co-
% lumn vector of irreducible spherical tensor coefficients, listed ver-
% tically in the order: T(2,2), T(2,1), T(2,0), T(2,-1), T(2,-2).
%
% [email protected]
function D=wigner(l,alp,bet,gam)
% Check consistency
grumble(l,alp,bet,gam);
% Get Pauli matrices
L=pauli(2*l+1);
% Compute Wigner matrix (Brink & Satchler, Eq 2.13)
D=expm(-1i*L.z*alp)*expm(-1i*L.y*bet)*expm(-1i*L.z*gam);
end
% Consistency enforcement
function grumble(l,alp,bet,gam)
if (~isnumeric(l))||(~isreal(l))||(~isscalar(l))||(mod(l,1)~=0)||(l<0)
error('l must be a non-negative real integer.');
end
if (~isnumeric(alp))||(~isreal(alp))||(~isscalar(alp))||...
(~isnumeric(bet))||(~isreal(bet))||(~isscalar(bet))||...
(~isnumeric(gam))||(~isreal(gam))||(~isscalar(gam))
error('alp, bet and gam must be real scalars.');
end
end
% Every stink that fights the ventilator thinks it
% is Don Quixote.
%
% Stanistaw Lec
|
github
|
tsajed/nmr-pred-master
|
tensor_analysis.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/tensor_analysis.m
| 1,616 |
utf_8
|
207b76ff9b5e1527be86f6ea9132189d
|
% Returns diagnostic information about an interaction tensor. Syntax:
%
% [eigvals,dcm,iso]=tensor_analysis(spin_system,tensor)
%
% Parameters:
%
% tensor - a 3x3 Cartesian interaction tensor matrix
%
% Outputs:
%
% eigvals - eigenvalues of the tensor
%
% dcm - directional cosine matrix for the orientation
% of the tensor eigenframe relative to the fra-
% me it's been supplied in.
%
% iso - isotropic part of the tensor
%
% Note: directional cosine matrix is not unique. Although the function
% makes some effort at consistency, it cannot be guaranteed.
%
% [email protected]
function [eigvals,dcm,iso]=tensor_analysis(spin_system,tensor)
% Check consistency
grumble(tensor);
% Get the eigensystem
[dcm,eigvals]=eig(symmetrize(spin_system,full(tensor)));
% Sort the eigensystem
[~,index]=sort(abs(diag(eigvals)),1,'ascend');
% Rearrange the eigenvalues
eigvals=diag(eigvals);
eigvals=eigvals(index);
% Rearrange the eigenvectors
dcm=dcm(:,index);
% Kill the inversion component
dcm=dcm*det(dcm);
% Prefer upper half-space for positive directions
if dcm(3,3)<0
dcm(:,3)=-dcm(:,3);
dcm(:,1)=-dcm(:,1);
end
% Compute the isotropic part
iso=mean(eigvals);
end
% Consistency enforcement
function grumble(tensor)
if (~isnumeric(tensor))||(~ismatrix(tensor))||any(size(tensor)~=[3 3])||(~isreal(tensor))
error('interaction tensor must be a real 3x3 matrix.');
end
end
% He who dares not offend cannot be honest.
%
% Thomas Paine
|
github
|
tsajed/nmr-pred-master
|
zoom_3d.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/zoom_3d.m
| 1,556 |
utf_8
|
43f4854fa234f15ada77b68ae5be45ba
|
% Zooms a 3D data cube to the fractional limits specified
% by the user. Syntax:
%
% [density,ext]=zoom_3d(density,ext,zoom_ranges)
%
% Parameters:
%
% density - probability density cube with dimensions
% ordered as [X Y Z]
%
% ext - grid extents in Angstrom, ordered as
% [xmin xmax ymin ymax zmin zmax]
%
% zoom_ranges - zoom ranges along each axis as fractions,
% e.g. [0.3 0.6 0.1 0.2 0.5 0.8]
%
% [email protected]
function [density,ext]=zoom_3d(density,ext,zoom_ranges)
% Generate axis ticks
oldxvals=linspace(ext(1),ext(2),size(density,1));
oldyvals=linspace(ext(3),ext(4),size(density,2));
oldzvals=linspace(ext(5),ext(6),size(density,3));
% Get new range indices
xmin=max([1 floor(size(density,1)*zoom_ranges(1))]);
ymin=max([1 floor(size(density,2)*zoom_ranges(3))]);
zmin=max([1 floor(size(density,3)*zoom_ranges(5))]);
xmax=min([size(density,1) ceil(size(density,1)*zoom_ranges(2))]);
ymax=min([size(density,2) ceil(size(density,2)*zoom_ranges(4))]);
zmax=min([size(density,3) ceil(size(density,3)*zoom_ranges(6))]);
% Extract the subcube
density=density(xmin:xmax,ymin:ymax,zmin:zmax);
% Update the extents
ext=[oldxvals(xmin) oldxvals(xmax) ...
oldyvals(ymin) oldyvals(ymax) ...
oldzvals(zmin) oldzvals(zmax)];
end
% Either you think - or else others have to think for you and
% take power from you, pervert and discipline your natural ta-
% stes, civilize and sterilize you.
%
% F. Scott Fitzgerald
|
github
|
tsajed/nmr-pred-master
|
clebsch_gordan.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/clebsch_gordan.m
| 5,110 |
utf_8
|
6d77301826ebda2514757e13819586bb
|
% Calculates Clebsch-Gordan coefficients. Syntax:
%
% cg=clebsch_gordan(L,M,L1,M1,L2,M2)
%
% If physically inadmissible indices are supplied, a zero is returned.
%
% A very considerable amount of thought has been given to the accuracy
% and performance of this function.
%
% [email protected]
function cg=clebsch_gordan(L,M,L1,M1,L2,M2)
% Check consistency
grumble(L,M,L1,M1,L2,M2);
% Set the default answer
cg=0;
% Match the notation to Varshalovich, Section 8.2.1
c=L; gam=M; a=L1; alp=M1; b=L2; bet=M2;
% Run zero tests (Stage I)
prefactor_is_nonzero=(a+alp>=0)&&(a-alp>=0)&&...
(b+bet>=0)&&(b-bet>=0)&&...
(c+gam>=0)&&(c-gam>=0)&&...
krondelta(gam,alp+bet);
% Proceed if appropriate
if prefactor_is_nonzero
% Run zero tests (Stage II)
delta_is_nonzero=(a+b-c>=0)&&(a-b+c>=0)&&...
(-a+b+c>=0)&&(a+b+c+1>=0);
% Proceed if appropriate
if delta_is_nonzero
% Run zero tests (Stage III)
lower_sum_limit=max([alp-a, b+gam-a, 0]);
upper_sum_limit=min([c+b+alp, c+b-a, c+gam]);
sum_is_nonzero=(upper_sum_limit>=lower_sum_limit);
% Proceed if appropriate
if sum_is_nonzero
% Compile a look-up table of gamma functions
gamma(a+b+c+2)=java.math.BigInteger.ONE; gamma(:)=gamma(a+b+c+2);
for k=3:(a+b+c+2)
gamma(k)=gamma(k-1).multiply(java.math.BigInteger.valueOf(k-1));
end
% Compute prefactor numerator
numer=java.math.BigInteger.valueOf(2*c+1);
numer=numer.multiply(gamma(a-b+c+1));
numer=numer.multiply(gamma(-a+b+c+1));
numer=numer.multiply(gamma(c+gam+1));
numer=numer.multiply(gamma(c-gam+1));
numer=numer.multiply(gamma(a+b-c+1));
% Compute prefactor denominator
denom=gamma(a+b+c+2);
denom=denom.multiply(gamma(a+alp+1));
denom=denom.multiply(gamma(a-alp+1));
denom=denom.multiply(gamma(b+bet+1));
denom=denom.multiply(gamma(b-bet+1));
% Perform floating-point division
accur=length(denom.toString)-length(numer.toString)+64;
numer=java.math.BigDecimal(numer); denom=java.math.BigDecimal(denom);
prefactor=numer.divide(denom,accur,java.math.RoundingMode.HALF_UP);
% Compute the sum
z_sum=java.math.BigDecimal.ZERO;
for z=lower_sum_limit:upper_sum_limit
% Compute term numerator
numer=java.math.BigInteger.valueOf((-1)^(b+bet+z));
numer=numer.multiply(gamma(c+b+alp-z+1));
numer=numer.multiply(gamma(a-alp+z+1));
% Compute term denominator
denom=gamma(z+1);
denom=denom.multiply(gamma(c-a+b-z+1));
denom=denom.multiply(gamma(c+gam-z+1));
denom=denom.multiply(gamma(a-b-gam+z+1));
% Perform floating-point division
numer=java.math.BigDecimal(numer); denom=java.math.BigDecimal(denom);
sum_term=numer.divide(denom,accur,java.math.RoundingMode.HALF_UP);
% Add the term to the total
z_sum=z_sum.add(sum_term);
end
% Return to double precision
cg_sq=z_sum.multiply(z_sum).multiply(prefactor);
cg=z_sum.signum*sqrt(double(cg_sq));
end
end
end
end
% Consistency enforcement
function grumble(L,M,L1,M1,L2,M2)
if (~isnumeric(L))||(~isnumeric(L1))||(~isnumeric(L2))||...
(~isnumeric(M))||(~isnumeric(M1))||(~isnumeric(M2))
error('all arguments must be numeric.');
end
if (~isreal(L))||(~isreal(L1))||(~isreal(L2))||...
(~isreal(M))||(~isreal(M1))||(~isreal(M2))
error('all arguments must be real.');
end
if (numel(L)~=1)||(numel(L1)~=1)||(numel(L2)~=1)||...
(numel(M)~=1)||(numel(M1)~=1)||(numel(M2)~=1)
error('all arguments must have one element.');
end
if (mod(2*L+1,1)~=0)||(mod(2*L1+1,1)~=0)||(mod(2*L2+1,1)~=0)||...
(mod(2*M+1,1)~=0)||(mod(2*M1+1,1)~=0)||(mod(2*M2+1,1)~=0)
error('all arguments must be integer or half-integer.');
end
end
% The miracle of the appropriateness of the language of mathematics for the
% formulation of the laws of physics is a wonderful gift which we neither
% understand nor deserve. We should be grateful for it and hope that it will
% remain valid in future research and that it will extend, for better or for
% worse, to our pleasure, even though perhaps also to our bafflement, to
% wide branches of learning.
%
% Eugene Wigner, http://dx.doi.org/10.1002/cpa.3160130102
|
github
|
tsajed/nmr-pred-master
|
euler2wigner.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/euler2wigner.m
| 4,265 |
utf_8
|
d6513655695ef5113c4156054c60001a
|
% Second-rank Wigner rotation matrix as a function of Euler angles. Two
% possible input styles are:
%
% W=euler2wigner(alpha,beta,gamma)
% W=euler2wigner([alpha beta gamma])
%
% where alpha, beta and gamma are Euler angles in radians. Rows and columns
% of the resulting Wigner matrix are sorted by descending ranks, that is:
%
% [D( 2,2) ... D( 2,-2)
% ... ... ...
% D(-2,2) ... D(-2,-2)]
%
% The resulting Wigner matrix is to be used as v=W*v, where v is a column
% vector of irreducible spherical tensor coefficients, listed vertically in
% the following order: T(2,2), T(2,1), T(2,0), T(2,-1), T(2,-2).
%
% [email protected]
% [email protected]
function W=euler2wigner(arg1,arg2,arg3)
% Adapt to the input style
if nargin==1
% Assume that a single input is a 3-vector
alp=arg1(1); bet=arg1(2); gam=arg1(3);
elseif nargin==3
% Assume that three inputs are Euler angles
alp=arg1; bet=arg2; gam=arg3;
else
% Bomb out in all other cases
error('incorrect number of input arguments.');
end
% Check consistency
grumble(alp,bet,gam);
% Do the math, as per Brink and Satchler, Eq 2.17
W=[ exp(-1i*(+2)*alp)* (+cos(bet/2)^4)* exp(-1i*(+2)*gam), ...
exp(-1i*(+2)*alp)* (-sin(bet)*(cos(bet)+1)/2)* exp(-1i*(+1)*gam), ...
exp(-1i*(+2)*alp)* (+sqrt(3/8)*sin(bet)^2)* exp(-1i*( 0)*gam), ...
exp(-1i*(+2)*alp)* (+sin(bet)*(cos(bet)-1)/2)* exp(-1i*(-1)*gam), ...
exp(-1i*(+2)*alp)* (+sin(bet/2)^4)* exp(-1i*(-2)*gam); ...
exp(-1i*(+1)*alp)* (+sin(bet)*(cos(bet)+1)/2)* exp(-1i*(+2)*gam), ...
exp(-1i*(+1)*alp)* (+(2*cos(bet)-1)*(cos(bet)+1)/2)* exp(-1i*(+1)*gam), ...
exp(-1i*(+1)*alp)* (-sqrt(3/2)*sin(bet)*cos(bet))* exp(-1i*( 0)*gam), ...
exp(-1i*(+1)*alp)* (-(2*cos(bet)+1)*(cos(bet)-1)/2)* exp(-1i*(-1)*gam), ...
exp(-1i*(+1)*alp)* (+sin(bet)*(cos(bet)-1)/2)* exp(-1i*(-2)*gam); ...
exp(-1i*( 0)*alp)* (+sqrt(3/8)*sin(bet)^2)* exp(-1i*(+2)*gam), ...
exp(-1i*( 0)*alp)* (+sqrt(3/2)*sin(bet)*cos(bet))* exp(-1i*(+1)*gam), ...
exp(-1i*( 0)*alp)* (3*cos(bet)^2-1)/2* exp(-1i*( 0)*gam), ...
exp(-1i*( 0)*alp)* (-sqrt(3/2)*sin(bet)*cos(bet))* exp(-1i*(-1)*gam), ...
exp(-1i*( 0)*alp)* (+sqrt(3/8)*sin(bet)^2)* exp(-1i*(-2)*gam); ...
exp(-1i*(-1)*alp)* (-sin(bet)*(cos(bet)-1)/2)* exp(-1i*(+2)*gam), ...
exp(-1i*(-1)*alp)* (-(2*cos(bet)+1)*(cos(bet)-1)/2)* exp(-1i*(+1)*gam), ...
exp(-1i*(-1)*alp)* (+sqrt(3/2)*sin(bet)*cos(bet))* exp(-1i*( 0)*gam), ...
exp(-1i*(-1)*alp)* (+(2*cos(bet)-1)*(cos(bet)+1)/2)* exp(-1i*(-1)*gam), ...
exp(-1i*(-1)*alp)* (-sin(bet)*(cos(bet)+1)/2)* exp(-1i*(-2)*gam); ...
exp(-1i*(-2)*alp)* (+sin(bet/2)^4)* exp(-1i*(+2)*gam), ...
exp(-1i*(-2)*alp)* (-sin(bet)*(cos(bet)-1)/2)* exp(-1i*(+1)*gam), ...
exp(-1i*(-2)*alp)* (+sqrt(3/8)*sin(bet)^2)* exp(-1i*( 0)*gam), ...
exp(-1i*(-2)*alp)* (+sin(bet)*(cos(bet)+1)/2)* exp(-1i*(-1)*gam), ...
exp(-1i*(-2)*alp)* (+cos(bet/2)^4)* exp(-1i*(-2)*gam)];
end
% Consistency enforcement
function grumble(alp,bet,gam)
if (~isnumeric(alp))||(~isnumeric(bet))||(~isnumeric(gam))
error('all inputs must be numeric.');
end
if (~isreal(alp))||(~isreal(bet))||(~isreal(gam))
error('all inputs must be real.');
end
if (numel(alp)~=1)||(numel(bet)~=1)||(numel(gam)~=1)
error('all inputs must have one element.');
end
end
% There is nothing of any importance in life - except how well you do
% your work. Nothing. Only that. Whatever else you are, will come from
% that. It's the only measure of human value. All the codes of ethics
% they'll try to ram down your throat are just so much paper money put
% out by swindlers to fleece people of their virtues. The code of com-
% petence is the only system of morality that's on a gold standard.
% When you grow up, you'll know what I mean.
%
% Ayn Rand, "Atlas Shrugged"
|
github
|
tsajed/nmr-pred-master
|
probmax.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/probmax.m
| 563 |
utf_8
|
62b608e4801e9141cdaa24967600dc43
|
% Finds the maximum of the probability density.
%
% [email protected]
function [x,y,z]=probmax(probden,ranges)
% Get coordinate arrays
[X,Y,Z]=ndgrid(linspace(ranges(1),ranges(2),size(probden,1)),...
linspace(ranges(3),ranges(4),size(probden,2)),...
linspace(ranges(5),ranges(6),size(probden,3)));
% Get the max
[~,index]=max(probden(:));
% Get maximum coordinates
x=X(index); y=Y(index); z=Z(index);
end
% What exactly is your "fair share" of what
% someone else has worked for?
%
% Thomas Sowell
|
github
|
tsajed/nmr-pred-master
|
fdmat.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/fdmat.m
| 1,435 |
utf_8
|
b51a5ff829b47097c12e13a52b875ade
|
% Returns arbitrary-order central finite-difference differentiation
% matrix (sparse) with unit spacing and periodic boundary conditions.
% Syntax:
%
% D=fdmat(dim,npoints,order)
%
% Parameters:
%
% dim - dimension of the column vector to be
% differentiated
%
% nstenc - number of points in the finite diffe-
% rence stencil
%
% order - order of the derivative required
%
% [email protected]
function D=fdmat(dim,nstenc,order)
% Check consistency
grumble(dim,nstenc,order);
% Preallocate the answer
D=spalloc(dim,dim,dim*nstenc);
% Wraparound fill with centered schemes
stencil=((1-nstenc)/2):((nstenc-1)/2);
w=fdweights(0,stencil,order);
for n=1:dim
D(n,mod(stencil+n-1,dim)+1)=w(end,:); %#ok<SPRIX>
end
end
% Consistency enforcement
function grumble(dim,nstenc,order)
if (dim<1)||(nstenc<1)||(order<1)||(mod(dim,1)~=0)||(mod(nstenc,1)~=0)||(mod(order,1)~=0)
error('all input parameters must be positive integers.');
end
if dim<3
error('minimum differentiation matrix dimension is 3.');
end
if mod(nstenc,2)~=1
error('the number of stencil points must be odd.');
end
if order>=nstenc
error('derivative order must be smaller than the stencil size.');
end
end
% We may eventually come to realize that chastity
% is no more a virtue than malnutrition.
%
% Alex Comfort
|
github
|
tsajed/nmr-pred-master
|
hess_reorder.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/hess_reorder.m
| 2,292 |
utf_8
|
72c90d46e3eb7617e958eeb4cca8fb88
|
% The waveforms on different channels are assumed to be stored in the
% rows of the input array. The Hessian elements correspond to the ele-
% ments of the waveform array ordered as:
%
% [X1 Y1 Z1 X2 Y2 Z2 ... Xn Yn Zn]
%
% where X,Y,Z are different control channels and the index enumerates
% the time discretization points. Gradient dimensions and element or-
% der are the same as the input waveform dimensions and element order.
% Elements of the Hessian are reordered as to correspond to the wavef-
% orm array:
% [X1 X2 ... Xn Y1 Y2 ... Yn Z1 Z2 ... Zn]
%
% interchanging the order from controls then time point to time point
% then controls, or visa versa.
%
% Inputs:
% hess - the old Hessian matrix to be reordered, curre-
% ntly ordered K first then N.
%
% K - the first ordered variable of the old Hessian,
% control channels in the example above.
%
% N - the second ordered variable of the old Hessian,
% time points in the example above.
%
% Output:
% hess_new - the newly order Hessian with N first then K.
%
% [email protected]
function hess_new=hess_reorder(hess,K,N)
% Check consistency
grumble(hess,K,N)
% Pre-allocate space for new Hessian
hess_new=zeros(size(hess));
% Loop over the elements
parfor j=1:(N*K)^2
% Dummy variable for parfor to work
hess_temp=zeros(size(hess));
% Row and column of new Hessian
row=1+mod(j-1,N*K);
col=1+(j-1-mod(j-1,N*K))/(N*K);
% Variables corresponding to elements
k1=1+mod(row-1,N); k2=1+mod(col-1,N);
n1=1+(row-1-mod(row-1,N))/(N);
n2=1+(col-1-mod(col-1,N))/(N);
% Row and column of the old Hessian
row_old=n1+K*(k1-1);
col_old=n2+K*(k2-1);
% Allocate the old Hessian to its new place
hess_temp(row,col)=hess(row_old,col_old);
hess_new=hess_new+hess_temp;
end
end
% Consistency enforcement
function grumble(hess,dim1,dim2)
if numel(hess)~=(dim1*dim2)^2
error('Hessian size should be (K*N)^2')
end
end
% If it's true that our species is alone in the universe,
% then I'd have to say the universe aimed rather low and
% settled for very little.
%
% George Carlin
|
github
|
tsajed/nmr-pred-master
|
absorb.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/absorb.m
| 1,539 |
utf_8
|
cdff513e969bcc9b1960712d1a5aed1f
|
% Designates specific states as "dark" -- any population reaching
% them would end up being summed up and stored in them forever in
% a frozen state. Syntax:
%
% L=absorb(spin_system,L,dark_states)
%
% where L is the Liouvillian and dark_states contains the numbers
% of the states that should be switched into the absorption mode.
%
% Note: absorption functionality is only available in the sphten-
% liouv formalism.
%
% [email protected]
function L=absorb(spin_system,L,dark_states)
% Check consistency
grumble(spin_system,L,dark_states);
% Zero columns corresponding to dark states
L(:,dark_states)=0;
end
% Consistency enforcement
function grumble(spin_system,L,dark_states)
if ~strcmp(spin_system.bas.formalims,'sphten-liouv')
error('this function is only applicable to sphten-liouv formalism.');
end
if (~isnumeric(L))||(size(L,1)~=size(L,2))
error('L must be a square matrix.');
end
if any(size(L)~=size(spin_system.bas.basis,1))
error('Dimension of the Liouvillian must match the dimension of the basis set.');
end
if (~isnumeric(dark_states))||(~isvector(dark_states))||(~isreal(dark_states))||...
any(mod(dark_states,1)~=0)||any(dark_states<=0)
error('dark_states must be a vector of positive integers.');
end
if any(dark_states>size(spin_system.bas.basis,1))
error('an element of the dark_states vector exceeds the state space dimension.');
end
end
% Acting in a bad play is like spitting into eternity.
%
% Faina Ranevskaya
|
github
|
tsajed/nmr-pred-master
|
gauss2mhz.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/gauss2mhz.m
| 557 |
utf_8
|
866bc949d001ef3589f27a86a0d187de
|
% Converts hyperfine couplings from Gauss to MHz (linear
% frequency). Syntax:
%
% hfc_mhz=gauss2mhz(hfc_gauss)
%
% Arrays of any dimensions are supported.
%
% [email protected]
function hfc_mhz=gauss2mhz(hfc_gauss)
if isnumeric(hfc_gauss)&&isreal(hfc_gauss)
hfc_mhz=2.802495365*hfc_gauss;
else
error('the argument must be an array of real numbers.');
end
end
% A celibate clergy is an especially good idea, because it tends to
% suppress any hereditary propensity toward fanaticism.
%
% Carl Sagan
|
github
|
tsajed/nmr-pred-master
|
xyz2sph.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/xyz2sph.m
| 469 |
utf_8
|
4dcdd5ed3aa528bf792f9eb009a41d35
|
% Converts Cartesian coordinates [x y z] into spherical coordinates
% according to the ISO convention.
%
% [email protected]
function [r, theta, phi] = xyz2sph(x, y, z)
% Radius 0 <= r < Inf
r=sqrt(x.^2+y.^2+z.^2);
% Inclination 0 <= theta <= pi
theta=acos(z./r);
% Azimuth 0 <= phi < 2*pi
phi=atan2(y,x);
end
% Q: How would a theoretical physicist milk a cow?
% A: As a first approximation, consider a spherical cow in vacuum...
|
github
|
tsajed/nmr-pred-master
|
v2fplanck.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/v2fplanck.m
| 788 |
utf_8
|
59585d448a9939f4be64a18af42d9c64
|
% Translates a stationary 3D velocity field into a Fokker-Planck
% evolution generator.
%
% [email protected]
% [email protected]
function F=v2fplanck(U,V,W,parameters)
% Get the translation generators
[Fx,Fy,Fz]=hydrodynamics(parameters);
% Build the Fokker-Planck flow generator
F=spdiags(Fx*U(:)+Fy*V(:)+Fz*W(:),0,prod(parameters.npts),prod(parameters.npts))+...
spdiags(U(:),0,prod(parameters.npts),prod(parameters.npts))*Fx+...
spdiags(V(:),0,prod(parameters.npts),prod(parameters.npts))*Fy+...
spdiags(W(:),0,prod(parameters.npts),prod(parameters.npts))*Fz;
% Add the diffusion term
F=F-1i*parameters.diffc*(Fx*Fx+Fy*Fy+Fz*Fz);
end
% "He's spending a year dead for tax reasons."
%
% Douglas Adams, The Hitchhiker's Guide to the Galaxy
|
github
|
tsajed/nmr-pred-master
|
axis_1d.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/axis_1d.m
| 2,492 |
utf_8
|
72119cf2ebad8b04c7a2d58b49548c3e
|
% Generates axes for plotting.
%
% [email protected]
function [ax,ax_label]=axis_1d(spin_system,parameters)
% Build the axis and apply the offset
if numel(parameters.sweep)==1
ax=linspace(-parameters.sweep/2,parameters.sweep/2,parameters.zerofill)+parameters.offset;
else
ax=linspace(parameters.sweep(1),parameters.sweep(2),parameters.zerofill);
end
% Convert the units if necessary
switch parameters.axis_units
case 'ppm'
ax_label=[parameters.spins{1} ' chemical shift / ppm'];
ax=1000000*(2*pi)*ax/(spin(parameters.spins{1})*spin_system.inter.magnet);
case 'Gauss'
ax_label='Magnetic induction / Gauss';
ax=10000*(spin_system.inter.magnet-2*pi*ax/spin('E'));
case 'Gauss-labframe'
ax_label='Magnetic induction / Gauss';
ax=10000*(2*pi*ax/spin('E'));
case 'mT'
ax_label='Magnetic induction / mT';
ax=1000*(spin_system.inter.magnet-2*pi*ax/spin('E'));
case 'mT-labframe'
ax_label='Magnetic induction / mT';
ax=1000*(2*pi*ax/spin('E'));
case 'T'
ax_label='Magnetic induction / Tesla';
ax=spin_system.inter.magnet-2*pi*ax/spin('E');
case 'Hz'
ax_label=[parameters.spins{1} ' offset linear frequency / Hz'];
ax=1*ax;
case 'kHz'
ax_label=[parameters.spins{1} ' offset linear frequency / kHz'];
ax=0.001*ax;
case 'MHz'
ax_label=[parameters.spins{1} ' offset linear frequency / MHz'];
ax=0.000001*ax;
case 'MHz-labframe'
ax_label=[parameters.spins{1} ' linear frequency / MHz'];
ax=0.000001*(ax-spin_system.inter.magnet*spin(parameters.spins{1})/(2*pi));
case 'GHz'
ax_label=[parameters.spins{1} ' offset linear frequency / GHz'];
ax=0.000000001*ax;
case 'GHz-labframe'
ax_label=[parameters.spins{1} ' linear frequency / GHz'];
ax=0.000000001*(ax-spin_system.inter.magnet*spin(parameters.spins{1})/(2*pi));
otherwise
error('unknown axis units.');
end
end
% The God of the Old Testament is arguably the most unpleasant character in
% all fiction: jealous and proud of it; a petty, unjust, unforgiving control
% freak; a vindictive, bloodthirsty ethnic cleanser; a misogynistic, homopho-
% bic, racist, infanticidal, genocidal, filicidal, pestilential, megalomania-
% cal, sadomasochistic, capriciously malevolent bully.
%
% Richard Dawkins, "The God Delusion"
|
github
|
tsajed/nmr-pred-master
|
lmn2lin.m
|
.m
|
nmr-pred-master/spinach/kernel/utilities/lmn2lin.m
| 2,047 |
utf_8
|
e694562633c062dd42eb54db4d046c2a
|
% Converts L,M,N Wigner function specification to linear indexing speci-
% fication. In the linear indexing convention, the Wigner functions are
% listed in the order of increasing L rank. Within each L rank, the func-
% tions are listed in the order of decreasing left index, and, for each
% left index, in the order of decreasing right index. Syntax:
%
% I=lmn2lin(L,M,N)
%
% Wigner functions are enumerated using base one indexing, that is:
%
% (L=0,M=0,N=0) -> I=1
% (L=1,M=1,N=1) -> I=2
% (L=1,M=1,N=0) -> I=3, et cetera...
%
% Arrays of any dimension are accepted as arguments.
%
% [email protected]
function I=lmn2lin(L,M,N)
% Check consistency
grumble(L,M,N);
% Get the linear index
I=L.*(4*L.^2+6*(L-M)+5)/3-M-N+1;
end
% Consistency enforcement
function grumble(L,M,N)
if (~isnumeric(L))||(~isreal(L))||any(mod(L(:),1)~=0)||...
(~isnumeric(M))||(~isreal(M))||any(mod(M(:),1)~=0)||...
(~isnumeric(N))||(~isreal(N))||any(mod(N(:),1)~=0)
error('all elements of the inputs must be real integers.');
end
if any(abs(M(:))>L(:))
error('unacceptable M projection number.');
end
if any(abs(N(:))>L(:))
error('unacceptable N projection number.');
end
if any(L(:)<0)
error('unacceptable Wigner function rank.');
end
if any(size(L)~=size(M))||any(size(L)~=size(N))
error('array dimensions are inconsistent.');
end
end
% IK has compiled, over the years, a list of books that allow
% one to successfully withstand the toxic social atmosphere of
% academic establishments. In the approximate order of reading,
% the books are:
%
% - Ayn Rand, "Atlas Shrugged"
% - Ayn Rand, "The Fountainhead"
% - Friedrich Nietzsche, "Beyond Good and Evil"
% - David DeAngelo, "Deep Inner Game"
% - Ragnar Redbeard, "Might is Right"
%
% If you are starting your career in Academia, or think about
% applying for a faculty post, read these books.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.