plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
grPlot.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/synthesis/GrTheory/grPlot.m
| 7,525 |
utf_8
|
f359c5370461e7937b7b2498dc109cda
|
function h=grPlot(V,E,kind,vkind,ekind)
% Function h=grPlot(V,E,kind,vkind,ekind)
% draw the plot of the graph (digraph).
% Input parameters:
% V(n,2) or (n,3) - the coordinates of vertexes
% (1st column - x, 2nd - y) and, maybe, 3rd - the weights;
% n - number of vertexes.
% If V(n,2), we write labels: numbers of vertexes,
% if V(n,3), we write labels: the weights of vertexes.
% If V=[], use regular n-angle.
% E(m,2) or (m,3) - the edges of graph (arrows of digraph)
% and their weight; 1st and 2nd elements of each row
% is numbers of vertexes;
% 3rd elements of each row is weight of arrow;
% m - number of arrows.
% If E(m,2), we write labels: numbers of edges (arrows);
% if E(m,3), we write labels: weights of edges (arrows).
% For disconnected graph use E=[] or h=PlotGraph(V).
% kind - the kind of graph.
% kind = 'g' (to draw the graph) or 'd' (to draw digraph);
% (optional, 'g' default).
% vkind - kind of labels for vertexes (optional).
% ekind - kind of labels for edges or arrows (optional).
% For vkind and ekind use the format of function FPRINTF,
% for example, '%8.3f', '%14.10f' etc. Default value is '%d'.
% Use '' (empty string) for don't draw labels.
% Output parameter:
% h - handle of figure (optional).
% See also GPLOT.
% Author: Sergiy Iglin
% e-mail: [email protected]
% personal page: http://iglin.exponenta.ru
% Acknowledgements to Mr.Howard ([email protected])
% for testing of this algorithm.
% ============= Input data validation ==================
if nargin<1,
error('There are no input data!')
end
if (nargin==1) & isempty(V),
error('V is empty and E is not determined!')
end
if (nargin==2) & isempty(V) & isempty(E),
error('V and E are empty!')
end
if ~isempty(V),
if ~isnumeric(V),
error('The array V must be numeric!')
end
sv=size(V); % size of array V
if length(sv)~=2,
error('The array V must be 2D!')
end
if (sv(2)<2),
error('The array V must have 2 or 3 columns!'),
end
if nargin==1, % disconnected graph
E=[];
end
end
if ~isempty(E), % for connected graph
[m,n,newE]=grValidation(E);
we=min(3,size(E,2)); % 3 for weighed edges
E=newE;
if isempty(V), % regular n-angle
V=[cos(2*pi*[1:n]'/n) sin(2*pi*[1:n]'/n)];
sv=size(V); % size of array V
end
if n>sv(1),
error('Several vertexes is not determined!');
end
else
m=0;
end
% ============= Other arguments ==================
n=sv(1); % real number of vertexes
wv=min(3,sv(2)); % 3 for weighted vertexes
if nargin<3, % only 2 input parameters
kind1='g';
else
if isempty(kind),
kind='g';
kind1='g';
end
if ~ischar(kind),
error('The argument kind must be a string!')
else
kind1=lower(kind(1));
end
end
if nargin<4,
vkind1='%d';
else
if ~ischar(vkind),
error('The argument vkind must be a string!')
else
vkind1=lower(vkind);
end
end
if nargin<5,
ekind1='%d';
else
if ~ischar(ekind),
error('The argument ekind must be a string!')
else
ekind1=lower(ekind);
end
end
md=inf; % the minimal distance between vertexes
for k1=1:n-1,
for k2=k1+1:n,
md=min(md,sum((V(k1,:)-V(k2,:)).^2)^0.5);
end
end
if md<eps, % identical vertexes
error('The array V have identical rows!')
else
V(:,1:2)=V(:,1:2)/md; % normalization
end
r=0.1; % for multiple edges
tr=linspace(pi/4,3*pi/4);
xr=0.5-cos(tr)/2^0.5;
yr=(sin(tr)-2^0.5/2)/(1-2^0.5/2);
t=linspace(-pi/2,3*pi/2); % for loops
xc=0.1*cos(t);
yc=0.1*sin(t);
% we sort the edges
if ~isempty(E),
E=[zeros(m,1),[1:m]',E]; % 1st column for change, 2nd column is edge number
need2=find(E(:,4)<E(:,3)); % for replace v1<->v2
tmp=E(need2,3);
E(need2,3)=E(need2,4);
E(need2,4)=tmp;
E(need2,1)=1; % 1, if v1<->v2
[e1,ie1]=sort(E(:,3)); % sort by 1st vertex
E1=E(ie1,:);
for k2=E1(1,3):E1(end,3),
num2=find(E1(:,3)==k2);
if ~isempty(num2), % sort by 2nd vertex
E3=E1(num2,:);
[e3,ie3]=sort(E3(:,4));
E4=E3(ie3,:);
E1(num2,:)=E4;
end
end
ip=find(E1(:,3)==E1(:,4)); % we find loops
Ep=E1(ip,:); % loops
E2=E1(setdiff([1:m],ip),:); % edges without loops
end
% we paint the graph
hh=figure;
hold on
plot(V(:,1),V(:,2),'k.','MarkerSize',20)
axis equal
h1=get(gca); % handle of current figure
if ~isempty(vkind1), % labels of vertexes
for k=1:n,
if wv==3,
s=sprintf(vkind1,V(k,3));
else
s=sprintf(vkind1,k);
end
hhh=text(V(k,1)+0.05,V(k,2)-0.07,s);
% set(hhh,'FontName','Times New Roman Cyr','FontSize',18)
end
end
% edges (arrows)
if ~isempty(E),
k=0;
m2=size(E2,1); % number of edges without loops
while k<m2,
k=k+1; % current edge
MyE=V(E2(k,3:4),1:2); % numbers of vertexes 1, 2
k1=1; % we find the multiple edges
if k<m2,
while all(E2(k,3:4)==E2(k+k1,3:4)),
k1=k1+1;
if k+k1>m2,
break;
end
end
end
ry=r*[1:k1];
ry=ry-mean(ry); % radius
l=norm(MyE(1,:)-MyE(2,:)); % lenght of line
dx=MyE(2,1)-MyE(1,1);
dy=MyE(2,2)-MyE(1,2);
alpha=atan2(dy,dx); % angle of rotation
cosa=cos(alpha);
sina=sin(alpha);
MyX=xr*l;
for k2=1:k1, % we draw the edges (arrows)
MyY=yr*ry(k2);
MyXg=MyX*cosa-MyY*sina+MyE(1,1);
MyYg=MyX*sina+MyY*cosa+MyE(1,2);
plot(MyXg,MyYg,'k-');
if kind1=='d', % digraph with arrows
if E2(k+k2-1,1)==1,
[xa,ya]=CreateArrow(MyXg(1:2),MyYg(1:2));
fill(xa,ya,'k');
else
[xa,ya]=CreateArrow(MyXg(end:-1:end-1),MyYg(end:-1:end-1));
fill(xa,ya,'k');
end
end
if ~isempty(ekind1), % labels of edges (arrows)
if we==3,
s=sprintf(ekind1,E2(k+k2-1,5));
else
s=sprintf(ekind1,E2(k+k2-1,2));
end
text(MyXg(length(MyXg)/2),MyYg(length(MyYg)/2),s);
% set(hhh,'FontName','Times New Roman Cyr','FontSize',18)
end
end
k=k+k1-1;
end
% we draw the loops
k=0;
ml=size(Ep,1); % number of loops
while k<ml,
k=k+1; % current loop
MyV=V(Ep(k,3),1:2); % vertexes
k1=1; % we find the multiple loops
if k<ml,
while all(Ep(k,3:4)==Ep(k+k1,3:4)),
k1=k1+1;
if k+k1>ml,
break;
end
end
end
ry=[1:k1]+1; % radius
for k2=1:k1, % we draw the loop
MyX=xc*ry(k2)+MyV(1);
MyY=(yc+r)*ry(k2)+MyV(2);
plot(MyX,MyY,'k-');
if kind1=='d',
[xa,ya]=CreateArrow(MyX([1 10]),MyY([1 10]));
fill(xa,ya,'k');
end
if ~isempty(ekind1), % labels of edges (arrows)
if we==3,
s=sprintf(ekind1,Ep(k+k2-1,5));
else
s=sprintf(ekind1,Ep(k+k2-1,2));
end
hhh=text(MyX(length(MyX)/2),MyY(length(MyY)/2),s);
% set(hhh,'FontName','Times New Roman Cyr','FontSize',18)
end
end
k=k+k1-1;
end
end
hold off
axis off
if nargout==1,
h=hh;
end
return
function [xa,ya]=CreateArrow(x,y)
% create arrow with length 0.1 with tip x(1), y(1)
% and direction from x(2), y(2)
xa1=[0 0.1 0.08 0.1 0]';
ya1=[0 0.03 0 -0.03 0]';
dx=diff(x);
dy=diff(y);
alpha=atan2(dy,dx); % angle of rotation
cosa=cos(alpha);
sina=sin(alpha);
xa=xa1*cosa-ya1*sina+x(1);
ya=xa1*sina+ya1*cosa+y(1);
return
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
motionTemplateDTWRetrievalWeightedForClassification.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/andreas_index/motionTemplateDTWRetrievalWeightedForClassification.m
| 6,951 |
utf_8
|
0614d3d29e83f4920081220ac178e43d
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Motion Retrieval via substring DTW based on motion templates
% by Meinard Mueller, 10.11.2005
%
% V n times p matrix, data stream of length n with p dimensional feature vectors
% W m times p matrix, data stream of length n with p dimensional feature vectors
% hits struct array, see below
% costF 1 x p array containing the costs per feature
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [hits,C,D,Delta, classificationDelta]=motionTemplateDTWRetrievalWeightedForClassification(V,Vweights,W,Wweights,parameter,varargin)
di = [1 0 1];
dj = [1 1 0];
if (nargin>6)
dj = varargin{2};
end
if (nargin>5)
di = varargin{1};
end
if (nargin>7)
dWeights = varargin{3};
else
dWeights = ones(1,length(di));
end
if (parameter.expandV==1)
[V,Vweights] = expandWeightedVectorSequence(V,Vweights);
end
V = V';
W = W';
n = size(V,1);
p = size(V,2);
m = size(W,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Global cost matrix for matching i-th feature with j-th feature
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
V_0 = double(V==0)+double(V==0.5);
V_1 = double(V==1)+double(V==0.5);
C = V_1*W' + V_0*(1-W'); % #(concurrences)
C = p-C; % #(disagreements)
C = C/n; % disagreements per frame in V
%C = C/(p*n); % disagreements per feature and frame in V
%C = C_DTW_compute_C(V,W); % slower
num_V_nonfuzzy = max(1,sum(V~=0.5,2));
C = C.*((repmat(Vweights',1,m)+repmat(Wweights,n,1))./(2*repmat(num_V_nonfuzzy,1,m)));
%C = C.*((repmat(Vweights',1,m)+repmat(Wweights,n,1))/2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Computing optimal match by dynamic programming
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% tic;
% D = zeros(n,m);
% E = zeros(n,m);
%
% D(1,1) = C(1,1);
% for i=2:n
% D(i,1)=D(i-1,1)+C(i,1);
% end
% for j=2:m
% D(1,j)=C(1,j);
% end
%
% for i=2:n
% for j=2:m
% indices = sub2ind(size(D),max(i-di,1),max(j-dj,1));
% [val,E(i,j)] = min(D(indices));
%
% D(i,j) = val + dWeights(E(i,j))*C(i,j);
% end
% end
%%%%%%%% equivalent C code, improves efficiency by roughly a factor of 150
[D,E] = C_DTWpartial_compute_D_variablePathSteps(C,int32(di),int32(dj),dWeights);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%t=toc; fprintf('%f',t)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Matches
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Delta = D(n,:);
match_numMax = parameter.match_numMax;
match_thresh = parameter.match_thresh;
hits = struct('file_id',0,... % file ID, index into idx.files
'file_name','',...
'cost',0,...
'match',0,... % num x 2 array encoding the matched indices
'frame_first_matched_all',0,... % the first frame of this hit (using a continuous frame count for the entire database)
'frame_last_matched_all',0,... % the last frame of this hit (using a continuous frame count for the entire database)
'frame_first_matched',0,... % the first frame of this hit
'frame_last_matched',0,... % the last frame of this hit
'frame_length',0); % the length of this hit measured in frames
hits = repmat(hits,match_numMax,1);
Delta_help = Delta;
classificationDelta = inf*ones(1, length(Delta));
counter = 0;
[cost,pos] = min(Delta_help);
while counter<match_numMax && cost <= match_thresh
i=n;
j=pos;
match_temp = zeros(max(n,m),2);
k=0;
while ((i>1) && (j>1))
k=k+1;
match_temp(k,:)=[i j];
i2 = i - di(E(i,j));
j2 = j - dj(E(i,j));
i = i2;
j = j2;
end
k = k+1;
match_temp(k,:)=[i j];
while (i>1)
i = i-1;
k=k+1;
match_temp(k,:)=[i j];
end
match_temp = match_temp([1:k],:);
match_temp = flipud(match_temp)';
%set all positions in the range of this hit to the value cost if
%the value has not been set previously.
positionsNotSet = (classificationDelta==inf);
positionsMatch = false(1, length(positionsNotSet));
positionsMatch(match_temp(2,1):match_temp(2,end)) = true;
% do a posewiese AND function of both masks to get the positions
% where the new cost value may be set.
classificationDelta(positionsNotSet & positionsMatch) = cost;
counter = counter+1;
%hits(counter).match = match_temp;
hits(counter).frame_first_matched_all = match_temp(2,1);
hits(counter).frame_last_matched_all = match_temp(2,end);
hits(counter).cost = cost;
current_match_length = match_temp(2,end)-match_temp(2,1)+1;
% ind_start = match_temp(2,1);
% ind_end = match_temp(2,end);
%matches_length(ind_start:ind_end) = repmat(current_match_length,1,ind_end-ind_start+1);
%matches_length(ind_start:ind_end) = counter;
%pufferBackward = ceil(parameter.match_endExclusionBackward*current_match_length);
%pufferForward = ceil(parameter.match_endExclusionForward*current_match_length);
%ind_start = max(match_temp(2,end)-pufferBackward,1);
%ind_end = min(match_temp(2,end)+pufferForward,m);
pufferBackward = ceil(parameter.match_startExclusionBackward*current_match_length);
pufferForward = ceil(parameter.match_endExclusionForward*current_match_length);
ind_start = max(match_temp(2,1)-pufferBackward,1);
ind_end = min(match_temp(2,end)+pufferForward,m);
Delta_help(ind_start:ind_end)=Inf;
[cost,pos] = min(Delta_help);
end
hits = hits(1:counter);
if counter == match_numMax
error('The maximum number of hits did not suffice.');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Visualizations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if parameter.visCost == 1
figure;
set(gcf,'Position',[30 551 1210 398]);
subplot(2,1,1)
C_vis = C;
C_vis(isnan(C_vis))=max(max(C_vis));
imagesc(C_vis);
axis xy;
colormap(hot);
colorbar;
D_vis = D;
D_vis(isnan(D_vis))=max(max(D_vis));
subplot(2,1,2)
imagesc(D_vis);
axis xy;
colormap(hot);
colorbar;
hold on;
for k=1:length(hits)
plot(hits(k).match(2,:),hits(k).match(1,:),'.c');
end
% h=figure;
% plot(Delta);
% set(h,'position',[0 161 1275 229]);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
concatStringsInCell.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/andreas_index/concatStringsInCell.m
| 513 |
utf_8
|
5a8fec92a35f27858930bccd8617649a
|
% Thins function takes a cell array containing strings and conatenates the
% strings using a '_' sign as a delemiter between the strings.
% Example: Input: {'walkLeft', '4_30'} Output: 'walkLeft_4_30'
function string = concatStringsInCell(stringcell)
if (iscell(stringcell))
string = '';
for i=1:length(stringcell)
if (i==1)
string = stringcell{i};
else
string = [string '_' stringcell{i}];
end
end
else
string = stringcell;
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
classifyDatabaseWithMotionTemplates.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/andreas_index/classifyDatabaseWithMotionTemplates.m
| 7,740 |
utf_8
|
d4a78f25c0effa86c848af83ad460228
|
% FUNCTION classifyDatabaseWithMotionTemplates searches the Motion Database
% DB_name with the Feature set defined in feature_set for the motion
% classes defined in motionClasses. It returns the positions in the
% database where each motion class occurs.
% INPUT:
% DB_name: string: The name of the database that has previosly been calculated
% with DB_index_precompute as a DB_concat_ file
% feature_set: string: The name of the feature set that has been used to
% extract the features for the DB_concat_ file.
% motionClasses: A cell array containing strings. The strings are the
% motion classes that this function searches for in the
% DB_concat_ file.
% indexbased: boolean value. If true, than the occurences of the
% motion classes are determined on a database that has
% previously been cut down by an indexing method.
% maxHits: integer: don't return more than maxHits hits.
% intendedTakeIndices: This is a vector containing the indices of all
% files inside DB_name in which this function
% should search for hits. Leave this argument out
% of set it to [] if you want the whole DB_name
% to be searched.
% visualize: Set it to one if you want the database and results to be
% visualized. Leave out or set to zero if no
% visualization should be done.
%
% OUTPUT:
% A cell array POSITIONS of dimension
% size(POSITIONS)=[length(motionClasses),1].
% Each entry in POSITIONS is a vector v using the following contract:
% v_n = POSITIONS(n,1) = [start1 end1 start2 end2 start3 end3 ... ]
% The entries in v_n are the start- end end-frames of each occurence
% of motionClasses{n} in the Database.
function classPositions=classifyDatabaseWithMotionTemplates(DB_name, feature_set, motionClasses, indexbased, maxHits, intendedTakeIndices, visualize)
global VARS_GLOBAL;
% pre-allocate the cell array that will be returned
classPositions=cell(length(motionClasses), 1);
%define constants
basedir_templates = fullfile('HDM05_EG08_cut_amc_training','_templates','');
downsampling_fac = 4;
sampling_rate_string = num2str(120/downsampling_fac);
settings = ['5_0_' sampling_rate_string]; %settings of the dtw-template
feature_set_ranges = get_feature_set_ranges(feature_set);
if nargin < 7
visualize = false;
end
% load the Database in which this function will search for the
% motionClasses
if (indexbased)
[DB_concat,indexArray] = DB_index_load(DB_name,feature_set,downsampling_fac);
else
DB_concat = DB_index_load(DB_name,feature_set,downsampling_fac); % don't need index
end
% search the database for every motion class
for k=1:length(motionClasses)
category = motionClasses{k};
categoryName = concatStringsInCell(category);
if indexbased
%load the keyframes
[motionTemplateKeyframes, motionTemplateKeyframePositions, motionTemplateKeyframesIndex, motionTemplateKeyframeDistances, stiffness, templateLength] = manualKeyframes(categoryName);
extendLeft = 3*(motionTemplateKeyframePositions(1));
extendRight = 3*(templateLength - motionTemplateKeyframePositions(end) + 1);
%cut down DB_concat using the keyframes
%first find segments that fit to the keyframes
if (visualize)
[segments,framesTotalNum] = keyframeSearch(motionTemplateKeyframes,...
motionTemplateKeyframesIndex,...
diff(motionTemplateKeyframePositions),...
stiffness,...
indexArray, ...
extendLeft, ...
extendRight,...
DB_concat);
else
[segments,framesTotalNum] = keyframeSearchEfficient(motionTemplateKeyframes,...
motionTemplateKeyframesIndex,...
diff(motionTemplateKeyframePositions),...
stiffness,...
indexArray, ...
extendLeft, ...
extendRight);
end;
%then cut down the database
[DB_cut,segments_cut] = featuresCut(DB_concat,segments,indexArray,framesTotalNum,2);
end
%%%% load and threshold dtw-motion template
[motionTemplateReal,motionTemplateWeights] = motionTemplateLoadMatfile(basedir_templates,categoryName,feature_set,settings);
if (isempty(motionTemplateReal))
error(['Motion Template for category ' category ' could not be found.']);
end
param.thresh_lo = 0.1;
param.thresh_hi = 1-param.thresh_lo;
param.visBool = 0;
param.visReal = 0;
param.visBoolRanges = false;
param.visRealRanges = false;
param.feature_set_ranges = feature_set_ranges;
param.feature_set = feature_set;
param.flag = 0;
[motionTemplate,weights] = motionTemplateBool(motionTemplateReal,motionTemplateWeights,param);
%% compute matches with the motion template
parameter.visCost = false;
parameter.match_numMax = 500;
parameter.match_thresh = 0.1;
parameter.match_endExclusionForward = 0.1;
parameter.match_endExclusionBackward = 0.5;
parameter.match_startExclusionForward = 0.5;
parameter.match_startExclusionBackward = 0.1;
parameter.expandV = 1;
if indexbased
[hits,C,D,delta] = motionTemplateDTWRetrievalWeighted(...
motionTemplate,weights,DB_cut.features,...
ones(1,size(DB_cut.features,2)),...
parameter,...
[1 1 2],[1 2 1],[1 1 2]);
%post process hits
[hits_cut,hits] = hits_DTW_postprocessSegments(hits,DB_cut,segments_cut,DB_concat,segments);
else
[hits,C,D,delta] = motionTemplateDTWRetrievalWeighted(...
motionTemplate,weights,DB_concat.features,...
ones(1,size(DB_concat.features,2)),...
parameter,...
[1 1 2],[1 2 1],[1 1 2]);
%post process hits
hits = hits_DTW_postprocess(hits,DB_concat);
end
hits_num=(length(hits));
% now delete all hits that are outside of the intended takes
if nargin > 5 && ~isempty(intendedTakeIndices)
hitsIntended = zeros(1, hits_num);
hitsIntendedCounter = 0;
for h = 1:length(hits)
if ~isempty(find(hits(h).file_id == intendedTakeIndices, 1))
hitsIntendedCounter = hitsIntendedCounter +1;
hitsIntended(hitsIntendedCounter) = h;
end
end
hitsIntended = hitsIntended(1:hitsIntendedCounter);
if (indexbased)
hits_cut = hits_cut(hitsIntended);
end
hits = hits(hitsIntended);
end
if (visualize)
showHitsClickableRankingSegments(hits_cut,DB_cut,feature_set,feature_set_ranges,downsampling_fac);
end
hits_num = min(maxHits, length(hits));
positions=zeros(1, 2*hits_num);
for n=1:hits_num
positions(2*(n-1)+1) = hits(n).frame_first_matched_all;
positions(2*n) = hits(n).frame_last_matched_all;
end
%classPositions{k} = positions;
classPositions{k} = cell(hits_num,3);
for n=1:hits_num
classPositions{k}{n,1} = hits(n).file_name;
classPositions{k}{n,2} = hits(n).frame_first_matched;
classPositions{k}{n,3} = hits(n).frame_last_matched;
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
subsets_all.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/andreas_index/subsets_all.m
| 968 |
utf_8
|
bfeb0bc672d4b913de565f8bfd730392
|
% FUNCTION SUBSETS_ALL: compute all subsets of a given set.
%
% subsets = subsets_all(set, max_subset_size) enerates all possible
% subsets of the parameter set.
% Set has to be an (1xN) cell array containing set elements.
% Returned is a cell array subsets which contains all subsets
% of set. Each subset is again encapsulated in an one-row cell array.
% If max_subset_size is set only subsets of the length 1:max_subset_size
% are computed.
function subsets = subsets_all(set, max_subset_size)
if (nargin < 2)
max_subset_size = length(set);
end
subsets=cell(1,1);
count = 1;
for k=1:min(length(set), max_subset_size)
combis=nchoosek(set, k);
[num_combis,num_elements_per_combi]=size(combis);
for l=1:num_combis
combi=cell(1,num_elements_per_combi);
for m=1:num_elements_per_combi
combi{1,m}=combis{l,m};
end
subsets{1,count}= combi;
count = count+1;
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
logical_and_sum.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/andreas_index/logical_and_sum.m
| 568 |
utf_8
|
f1057054570a5065e637754c4a09311a
|
%LOGICAL_AND_SUM And-sum of elemtens
% S = LOGICAL_AND_SUM(X, DIM) is the sum of the elements of the vector X.
% along the dimension DIM. X is a matrix, S is a row vector with the and-sum
% over each column.
%
% Examples:
% If X = [0 0 0 1 1 0.5;
% 0 0.5 1 0.5 1 0.5]
%
% then logical_and_sum(X,1) is [0 0.5 0.5 0.5 1 0.5]
% and sum(X,2) is [ 0.5;
% 0.5 ]
function res = logical_and_sum(input, dimension)
res = sum(input, dimension)/size(input, dimension);
res(res ~= 0 & res ~= 1) = 0.5;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
keyframesChooseLeastGrayValuesEquallyDistributed.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/andreas_index/keyframesChooseLeastGrayValuesEquallyDistributed.m
| 1,188 |
utf_8
|
69246bae9b424ce98751200c12b0b56a
|
% Divides the keyframe template into keyframesNumMax sections of equal
% length. In each section the keyframe with the lease gray values will be
% selected.
function [keyframes,keyframesIndex] = keyframesChooseLeastGrayValuesEquallyDistributed(motionTemplate,motionTemplateWeights,par)
irgnoreBorderPortion = 0.1;
ignoredFrames = floor(size(motionTemplate, 2) * irgnoreBorderPortion);
motionTemplate = motionTemplate(:,ignoredFrames+1:end-ignoredFrames);
numFrames = size(motionTemplate,2);
keyframes = zeros(1, par.keyframesNumMax);
numGrayEntries = zeros(1,numFrames);
numGrayEntries(1,:) = sum(motionTemplate==0.5,1);
sectionLength = floor(numFrames / par.keyframesNumMax);
currentFrame = 1;
for k=1:par.keyframesNumMax-1
[numGrayEntriesSorted, sortIndex] = sort(numGrayEntries(currentFrame:currentFrame + (sectionLength-1)));
keyframes(1, k) = currentFrame-1 + sortIndex(1) + ignoredFrames;
currentFrame = currentFrame + sectionLength + 1;
end
[numGrayEntriesSorted, sortIndex] = sort(numGrayEntries(currentFrame:end));
keyframes(1, end) = currentFrame-1 + sortIndex(1) + ignoredFrames;
keyframesIndex = ones(size(keyframes));
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
getRotation.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/skelfit/aguiarJointPos/getRotation.m
| 2,804 |
utf_8
|
41f226921f8d8c4830728f4c83ff0558
|
function A = getRotation( points1, points2)
%
% gives the rotation that maps p2 to p1 and q2 to q1 by rotating around rotCenter
global VARS_GLOBAL;
if isfield(VARS_GLOBAL, 'getRotationLastResult')
lastResult = VARS_GLOBAL.getRotationLastResult;
else
lastResult = [];
end
startValue = [0 0 0];
LB = [0 0 0]; UB = [2*pi 2*pi 2*pi];
% OPTIONS = optimset('Diagnostics', 'off', 'Display', 'off', 'MaxIter', 10000, 'MaxFunEvals', 10000);
OPTIONS = optimset('MaxFunEvals', 1500);
% OPTIONS = [];
% x = fmincon(@costFun, startValue, [], [], [], [], LB,UB, [], OPTIONS, [p1 q1 r1], [p2 q2 r2]);
x = FMINSEARCH(@costFun, startValue, OPTIONS, points1, points2, lastResult);
VARS_GLOBAL.getRotationLastResult = x;
finalCosts = costFun(x, points1, points2, lastResult, true);
A = buildRotMatrixXYZ(x(1), x(2), x(3));
% -------------------------------------------------------------------------------------------------------
function costs = costFun(x, points1, points2, lastResult, trackCosts)
if nargin < 5
trackCosts = false;
end
if isempty(lastResult)
devPenalty = 0;
else
devPenalty = 5*norm(lastResult - x);
end
% disp(devPenalty);
A = buildRotMatrixXYZ(x(1), x(2), x(3));
p = A*points1;
t = mean(points2 - p, 2);
dist = 0;
for i=1:size(points1,2)
dist = dist + norm( p(:,i) + t - points2(:,i) );
end
% dist = norm( p(:,1) + t - points2(:,1) ) + norm( p(:,2) + t - points2(:,2) ) + norm( p(:,3) + t - points2(:,3) );
costs = 0;
for i=1:size(points1,2)-1
v = points2(:,i) - points2(:,i+1);
w = p(:,i) - p(:,i+1);
costs = costs - dot( v, w ) / norm(v) / norm(w);
end
% v1 = points2(:,1) - points2(:,2);
% w1 = p(:,1) - p(:,2);
% v2 = points2(:,1) - points2(:,3);
% w2 = p(:,1) - p(:,3);
% costs = - dot( v1, w1 ) / norm(v1) / norm(w1) - dot( v2, w2 ) / norm(v2) / norm(w2);
global VARS_GLOBAL;
if trackCosts
if isfield(VARS_GLOBAL, 'getRotation_devPenalties')
VARS_GLOBAL.getRotation_devPenalties(end+1) = devPenalty;
else
VARS_GLOBAL.getRotation_devPenalties = devPenalty;
end
if isfield(VARS_GLOBAL, 'getRotation_distCosts')
VARS_GLOBAL.getRotation_distCosts(end+1) = dist;
else
VARS_GLOBAL.getRotation_distCosts = dist;
end
if isfield(VARS_GLOBAL, 'getRotation_angleCosts')
VARS_GLOBAL.getRotation_angleCosts(end+1) = costs;
else
VARS_GLOBAL.getRotation_angleCosts = costs;
end
end
if isfield(VARS_GLOBAL, 'getRotation_devPenaltyWeight')
devPenaltyWeight = VARS_GLOBAL.getRotation_devPenaltyWeight;
else
devPenaltyWeight = 1.5;
end
costs = costs + 2*dist;
costs = costs + devPenaltyWeight*devPenalty;
% costs = - dot( points2(:,1) - points2(:,2), p(:,1) - p(:,2) ) - dot( points2(:,1) - points2(:,3), p(:,1) - p(:,3) );
% if costs < -1.5
% disp(costs);
% end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
corcond.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/NWAY/corcond.m
| 7,557 |
utf_8
|
ffe807511623eea9d4946f74601760ea
|
function [Consistency,G,stdG,Target]=corcond(X,Factors,Weights,Plot);
%CORCOND Core consistency for PARAFAC model
%
% See also:
% 'unimodal' 'monreg' 'fastnnls'
%
% CORe CONsistency DIAgnostics (corcondia)
% Performs corcondia of a PARAFAC model and returns the cocote plot
% as well as the degree of consistency (100 % is max).
%
% Consistency=corcond(X,Factors,Weights,Plot);
%
% INPUT
% X : Data array
% Factors : Factors given in standard format as a cell array
% Weights : Optional weights (otherwise skip input or give an empty array [])
% Plot = 0 or not given => no plots are produced
% = 1 => normal corcondia plot
% = 2 => corcondia plot with standard deviations
%
% OUTPUT
% The core consistency given as the percentage of variation in a Tucker3 core
% array consistent with the theoretical superidentity array. Max value is 100%
% Consistencies well below 70-90% indicates that either too many components
% are used or the model is otherwise mis-specified.
%
% Copyright (C) 1995-2006 Rasmus Bro & Claus Andersson
% Copenhagen University, DK-1958 Frederiksberg, Denmark, [email protected]
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
% $ Version 1.02 $ Date 28. July 1998 $ Not compiled $
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
% $ Version 2.01 $ Feb 2003 $ replaced regg with t3core when weights are used $ RB $ Not compiled $
DimX = size(X);
X = reshape(X,DimX(1),prod(DimX(2:end)));
Fac = size(Factors{1},2);
if nargin<4
Plot=0;
end
if nargin<3
Weights=0;
end
ord=length(DimX);
l_idx=0;
for i=1:ord
l_idx=[l_idx sum(DimX(1:i))*Fac];
end
% Scale all loadings to same magnitude
magn=ones(Fac,1);
for i=1:ord
L=Factors{i};
for f=1:Fac
magn(f)=magn(f)*norm(L(:,f));
L(:,f)=L(:,f)/norm(L(:,f));
end
Factors{i}=L;
end
% Magn holds the singular value of each component. Scale each loading vector by
% the cubic root (if three-way) so all loadings of a component have the same variance
magn = magn.^(1/ord);
for i=1:ord
L=Factors{i};
for f=1:Fac
L(:,f)=L(:,f)*magn(f);
end
Factors{i}=L;
end
% Make diagonal array holding the magnitudes
Ident=nident(Fac,ord);
if Fac>1
DimIdent=ones(1,ord)*Fac;
Ident=nshape(reshape(Ident,DimIdent),ord);
end
% Make matrix of Kronecker product of all loadings expect the large; Z = kron(C,B ... )
NewFac=[];
NewFacNo=[];
for i=ord:-1:1
Z=Factors{i};
% Check its of full rank or adjust core and use less columns
rankZ=rank(Z);
if rankZ<Fac
%OLD out=Z(:,rankZ+1:Fac);Z=Z(:,1:rankZ);H=[[eye(rankZ)] pinv(Z)*out];Ident=H*Ident;
[q,r]=qr(Z);
Ident=r*Ident;
Z=q;
DimIdent(i)=size(r,1);
end
if i>1&Fac>1
Ident=nshape(reshape(Ident,DimIdent([i:ord 1:i-1])),ord);
end
NewFac{i}=Z;
NewFacNo=[rankZ NewFacNo];
end
Factors=NewFac;
Fac=NewFacNo;
if nargin<3
[G,stdG]=regg(reshape(X,DimX),Factors,Weights); %Doesn't work with weights
else
G=t3core(reshape(X,DimX),Factors,Weights);
stdG = G; % Arbitrary (not used)
end
DimG = size(G);
G = G(:);
Ident=Ident(:);
Target=Ident;
[a,b]=sort(abs(Ident));
b=flipud(b);
Ident=Ident(b);
GG=G(b);
stdGG=stdG(b);
bNonZero=find(Ident);
bZero=find(~Ident);
ssG=sum(G(:).^2);
Consistency=100*(1-sum((Target-G).^2)/ssG);
if Plot
clf
Ver=version;
Ver=Ver(1);
if Fac>1
eval(['set(gcf,''Name'',''Diagonality test'');']);
if Ver>4
plot([Ident(bNonZero);Ident(bZero)],'y','LineWidth',3)
hold on
plot(GG(bNonZero),'ro','LineWidth',3)
plot(length(bNonZero)+1:prod(Fac),GG(bZero),'gx','LineWidth',3)
if Plot==2
line([[1:length(G)];[1:length(G)]],[GG GG+stdGG]','LineWidth',1,'Color',[0 0 0])
line([[1:length(G)];[1:length(G)]],[GG GG-stdGG]','LineWidth',1,'Color',[0 0 0])
end
hold off
title(['Core consistency ',num2str(Consistency),'% (yellow target)'],'FontWeight','bold','FontSize',12)
else
plot([Ident(bNonZero);Ident(bZero)],'y')
hold on
plot(GG(bNonZero),'ro')
plot(length(bNonZero)+1:prod(Fac),GG(bZero),'gx')
if Plot==2
line([[1:length(G)];[1:length(G)]],[GG GG+stdGG]','LineWidth',1,'Color',[0 0 1])
line([[1:length(G)];[1:length(G)]],[GG GG-stdGG]','LineWidth',1,'Color',[0 0 1])
end
hold off
title(['Core consistency ',num2str(Consistency),'% (yellow target)'])
end
xlabel('Core elements (green should be zero/red non-zero)')
ylabel('Core Size')
else
eval(['set(gcf,''Name'',''Diagonality test'');']);
title(['Core consistency ',num2str(Consistency),'% (yellow target)'])
xlabel('Core elements (green should be zero/red non-zero)')
ylabel('Size')
plot(GG(bNonZero),'ro')
title(['Core consistency ',num2str(Consistency),'%'])
xlabel('Core elements (red non-zero)')
ylabel('Core Size')
end
end
G = reshape(G,DimG);
function [G,stdG]=regg(X,Factors,Weights);
%REGG Calculate Tucker core
%
% Calculate Tucker3 core
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
DimX = size(X);
X = reshape(X,DimX(1),prod(DimX(2:end)));
Fac = size(Factors{1},2);
ord=length(DimX);
if ord<3
disp(' ')
disp(' !!Corcondia only applicable for three- and higher-way arrays!!')
return
end
if length(Fac)==1
for i=1:length(Factors)
Fac(i) = size(Factors{i},2);
end
end
vecX=X(:); % Vectorize X
% Make sure Weights are defined (as ones if none given)
if nargin<3
Weights=ones(size(X));
end
if length(Weights(:))~=length(X(:));
Weights=ones(size(X));
end
Weights=Weights(:);
% Set weights of missing elements to zero
id=find(isnan(vecX));
Weights(id)=zeros(size(id));
vecX(id)=zeros(size(id));
% Create Kronecker product of all but the last mode loadings
L2 = Factors{end-1};
L1 = Factors{end-2};
Z = kron(L2,L1);
for o=ord-3:-1:1
Z = kron(Z,Factors{o});
end
% Make last mode loadings, L
L=Factors{end};
% We want to fit the model ||vecX - Y*vecG||, where Y = kron(L,Z), but
% we calculate Y'Y and Y'vecX by summing over k
J=prod(DimX(1:ord-1));
Ytx = 0;
YtY = 0;
for k=1:DimX(ord)
W=Weights((k-1)*J+1:k*J);
WW=(W.^2*ones(1,prod(Fac)));
Yk = kron(L(k,:),Z);
Ytx = Ytx + Yk'*(W.*vecX((k-1)*J+1:k*J));
YtY = YtY + (Yk.*WW)'*Yk;
end
G=pinv(YtY)*Ytx;
if nargout>1
se = (sum(vecX.^2) + G'*YtY*G -G'*Ytx);
mse = se/(length(vecX)-length(G));
stdG=sqrt(diag(pinv(YtY))*mse);
end
G = reshape(G,Fac);
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
npls.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/NWAY/npls.m
| 47,188 |
utf_8
|
76fd53f195d27828c12b6d2e58d32537
|
function [Xfactors,Yfactors,Core,B,ypred,ssx,ssy,reg] = npls(X,Y,Fac,show);
%NPLS multilinear partial least squares regression
%
% See also:
% 'parafac' 'tucker'
%
%
% MULTILINEAR PLS - N-PLS
%
% INPUT
% X Array of independent variables
% Y Array of dependent variables
% Fac Number of factors to compute
%
% OPTIONAL
% show If show = NaN, no outputs are given
%
%
% OUTPUT
% Xfactors Holds the components of the model of X in a cell array.
% Use fac2let to convert the parameters to scores and
% weight matrices. I.e., for a three-way array do
% [T,Wj,Wk]=fac2let(Xfactors);
% Yfactors Similar to Xfactors but for Y
% Core Core array used for calculating the model of X
% B The regression coefficients from which the scores in
% the Y-space are estimated from the scores in the X-
% space (U = TB);
% ypred The predicted values of Y for one to Fac components
% (array with dimension Fac in the last mode)
% ssx Variation explained in the X-space.
% ssx(f+1,1) is the sum-squared residual after first f factors.
% ssx(f+1,2) is the percentage explained by first f factors.
% ssy As above for the Y-space
% reg Cell array with regression coefficients for raw (preprocessed) X
%
%
% AUXILIARY
%
% If missing elements occur these must be represented by NaN.
%
%
% [Xfactors,Yfactors,Core,B,ypred,ssx,ssy,reg] = npls(X,y,Fac);
% or short
% [Xfactors,Yfactors,Core,B] = npls(X,y,Fac);
%
% Copyright (C) 1995-2006 Rasmus Bro & Claus Andersson
% Copenhagen University, DK-1958 Frederiksberg, Denmark, [email protected]
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
% $ Version 1.02 $ Date July 1998 $ Not compiled $
% $ Version 1.03 $ Date 4. December 1998 $ Not compiled $ Cosmetic changes
% $ Version 1.04 $ Date 4. December 1999 $ Not compiled $ Cosmetic changes
% $ Version 1.05 $ Date July 2000 $ Not compiled $ error caused weights not to be normalized for four-way and higher
% $ Version 1.06 $ Date November 2000 $ Not compiled $ increase max it and decrease conv crit to better handle difficult data
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
% $ Version 2.01 $ June 2001 $ Changed to handle new core in X $ RB $ Not compiled $
% $ Version 2.02 $ January 2002 $ Outputs all predictions (1 - LV components) $ RB $ Not compiled $
% $ Version 2.03 $ March 2004 $ Changed initialization of u $ RB $ Not compiled $
% $ Version 2.04 $ Jan 2005 $ Modified sign conventions of scores and loads $ RB $ Not compiled $
if nargin==0
disp(' ')
disp(' ')
disp(' THE N-PLS REGRESSION MODEL')
disp(' ')
disp(' Type <<help npls>> for more info')
disp(' ')
disp(' [Xfactors,Yfactors,Core,B,ypred,ssx,ssy] = npls(X,y,Fac);')
disp(' or short')
disp(' [Xfactors,Yfactors,Core,B] = npls(X,y,Fac);')
disp(' ')
return
elseif nargin<3
error(' The inputs X, y, and Fac must be given')
end
if ~exist('show')==1|nargin<4
show=1;
end
maxit=120;
DimX = size(X);
X = reshape(X,DimX(1),prod(DimX(2:end)));
ordX = length(DimX);if ordX==2&size(X,2)==1;ordX = 1;end
DimY = size(Y);
Y = reshape(Y,DimY(1),prod(DimY(2:end)));
ordY = length(DimY);if ordY==2&size(Y,2)==1;ordY = 1;end
[I,Jx]=size(X);
[I,Jy]=size(Y);
missX=0;
missy=0;
MissingX = 0;
MissingY = 0;
if any(isnan(X(:)))|any(isnan(Y(:)))
if any(isnan(X(:)))
MissingX=1;
else
MissingX=0;
end
if any(isnan(Y(:)))
MissingY=1;
else
MissingY=0;
end
if show~=0&~isnan(show)
disp(' ')
disp(' Don''t worry, missing values will be taken care of')
disp(' ')
end
missX=abs(1-isnan(X));
missy=abs(1-isnan(Y));
end
crit=1e-10;
B=zeros(Fac,Fac);
T=[];
U=[];
Qkron =[];
if MissingX
SSX=sum(sum(X(find(missX)).^2));
else
SSX=sum(sum(X.^2));
end
if MissingY
SSy=sum(sum(Y(find(missy)).^2));
else
SSy=sum(sum(Y.^2));
end
ssx=[];
ssy=[];
Xres=X;
Yres=Y;
xmodel=zeros(size(X));
Q=[];
W=[];
for num_lv=1:Fac
%init
% u=rand(DimX(1),1); Old version
if size(Yres,2)==1
u = Yres;
else
[u] = pcanipals(Yres,1,0);
end
t=rand(DimX(1),1);
tgl=t+2;it=0;
while (norm(t-tgl)/norm(t))>crit&it<maxit
tgl=t;
it=it+1;
% w=X'u
[wloads,wkron] = Xtu(X,u,MissingX,missX,Jx,DimX,ordX);
% t=Xw
if MissingX
for i=1:I,
m = find(missX(i,:));
t(i)=X(i,m)*wkron(m)/(wkron(m)'*wkron(m));
end
else
t=X*wkron;
end
% w=X'u
[qloads,qkron] = Xtu(Yres,t,MissingY,missy,Jy,DimY,ordY);
% u=yq
if MissingY
for i=1:I
m = find(missy(i,:));
u(i)=Yres(i,m)*qkron(m)/(qkron(m)'*qkron(m));
end
else
u=Yres*qkron;
end
end
% % Fix signs
% [Factors] = signswtch({t,wloads{:}},X);
% t = Factors{1};
% wloads = Factors(2:end);
% % Fix signs
% [Factors] = signswtch({u,qloads{:}},X);
% u = Factors{1};
% qloads = Factors(2:end);
% Arrange t scores so they positively correlated with u
cc = corrcoef([t u]);
if sign(cc(2,1))<0
t = -t;
for ii=1:length(wloads)
wloads{ii}=-wloads{ii};
end
end
T=[T t];
for i = 1:ordX-1
if num_lv == 1
W{i} = wloads{i};
else
W{i} = [W{i} wloads{i}];
end
end
U=[U u];
for i = 1:max(ordY-1,1)
if num_lv == 1
Q{i} = qloads{i};
else
Q{i} = [Q{i} qloads{i}];
end
end
Qkron = [Qkron qkron];
% Make core arrays
if ordX>1
Xfac{1}=T;Xfac(2:ordX)=W;
Core{num_lv} = calcore(reshape(X,DimX),Xfac,[],0,1);
else
Core{num_lv} = 1;
end
% if ordY>1
% Yfac{1}=U;Yfac(2:ordY)=Q;
% Ycore{num_lv} = calcore(reshape(Y,DimY),Yfac,[],0,1);
% else
% Ycore{num_lv} = 1;
% end
B(1:num_lv,num_lv)=inv(T'*T)*T'*U(:,num_lv);
if Jy > 1
if show~=0&~isnan(show)
disp(' ')
fprintf('number of iterations: %g',it);
disp(' ')
end
end
% Make X model
if ordX>2
Wkron = kron(W{end},W{end-1});
else
Wkron = W{end};
end
for i = ordX-3:-1:1
Wkron = kron(Wkron,W{i});
end
if num_lv>1
xmodel=T*reshape(Core{num_lv},num_lv,num_lv^(ordX-1))*Wkron';
else
xmodel = T*Core{num_lv}*Wkron';
end
% Make Y model
% if ordY>2
% Qkron = kron(Q{end},Q{end-1});
% else
% Qkron = Q{end};
% end
% for i = ordY-3:-1:1
% Qkron = kron(Qkron,Q{i});
% end
% if num_lv>1
% ypred=T*B(1:num_lv,1:num_lv)*reshape(Ycore{num_lv},num_lv,num_lv^(ordY-1))*Qkron';
% else
% ypred = T*B(1:num_lv,1:num_lv)*Ycore{num_lv}*Qkron';
% end
ypred=T*B(1:num_lv,1:num_lv)*Qkron';
Ypred(:,num_lv) = ypred(:); % Vectorize to avoid problems with different orders and the de-vectorize later on
Xres=X-xmodel;
Yres=Y-ypred;
if MissingX
ssx=[ssx;sum(sum(Xres(find(missX)).^2))];
else
ssx=[ssx;sum(sum(Xres.^2))];
end
if MissingY
ssy=[ssy;sum(sum((Y(find(missy))-ypred(find(missy))).^2))];
else
ssy=[ssy;sum(sum((Y-ypred).^2))];
end
end
ypred = reshape(Ypred',[size(Ypred,2) DimY]);
ypred = permute(ypred,[2:ordY+1 1]);
ssx= [ [SSX(1);ssx] [0;100*(1-ssx/SSX(1))]];
ssy= [ [SSy(1);ssy] [0;100*(1-ssy/SSy(1))]];
if show~=0&~isnan(show)
disp(' ')
disp(' Percent Variation Captured by N-PLS Model ')
disp(' ')
disp(' LV X-Block Y-Block')
disp(' ---- ------- -------')
ssq = [(1:Fac)' ssx(2:Fac+1,2) ssy(2:Fac+1,2)];
format = ' %3.0f %6.2f %6.2f';
for i = 1:Fac
tab = sprintf(format,ssq(i,:)); disp(tab)
end
end
Xfactors{1}=T;
for j = 1:ordX-1
Xfactors{j+1}=W{j};
end
Yfactors{1}=U;
for j = 1:max(ordY-1,1)
Yfactors{j+1}=Q{j};
end
% Calculate regression coefficients that apply directly to X
if nargout>7
if length(DimY)>2
error(' Regression coefficients are only calculated for models with vector Y or multivariate Y (not multi-way Y)')
end
R = outerm(W,0,1);
for iy=1:size(Y,2)
if length(DimX) == 2
dd = [DimX(2) 1];
else
dd = DimX(2:end);
end
for i=1:Fac
sR = R(:,1:i)*B(1:i,1:i)*diag(Q{1}(iy,1:i));
ssR = sum( sR',1)';
reg{iy,i} = reshape( ssR ,dd);
end
end
end
function [wloads,wkron] = Xtu(X,u,Missing,miss,J,DimX,ord);
% w=X'u
if Missing
for i=1:J
m = find(miss(:,i));
if (u(m)'*u(m))~=0
ww=X(m,i)'*u(m)/(u(m)'*u(m));
else
ww=X(m,i)'*u(m);
end
if length(ww)==0
w(i)=0;
else
w(i)=ww;
end
end
else
w=X'*u;
end
% Reshape to array
if length(DimX)>2
w_reshaped=reshape(w,DimX(2),prod(DimX(3:length(DimX))));
else
w_reshaped = w(:);
end
% Find one-comp decomposition
if length(DimX)==2
wloads{1} = w_reshaped/norm(w_reshaped);
elseif length(DimX)==3&~any(isnan(w_reshaped))
[w1,s,w2]=svd(w_reshaped);
wloads{1}=w1(:,1);
wloads{2}=w2(:,1);
else
wloads=parafac(reshape(w_reshaped,DimX(2:length(DimX))),1,[0 2 0 0 NaN]');
for j = 1:length(wloads);
wloads{j} = wloads{j}/norm(wloads{j});
end
end
% Apply sign convention
for i = 1:length(wloads)
sq = (wloads{i}.^2).*sign(wloads{i});
wloads{i} = wloads{i}*sign(sum(sq));
end
% Unfold solution
if length(wloads)==1
wkron = wloads{1};
else
wkron = kron(wloads{end},wloads{end-1});
for o = ord-3:-1:1
wkron = kron(wkron,wloads{o});
end
end
function [Factors,it,err,corcondia]=parafac(X,Fac,Options,const,OldLoad,FixMode,Weights);
% PARAFAC multiway parafac model
%
% See also:
% 'npls' 'tucker' 'dtld' 'gram'
%
%
% ___________________________________________________
%
% THE PARAFAC MODEL
% ___________________________________________________
%
% [Factors,it,err,corcondia,Weights] = parafac(X,Fac,Options,const,OldLoad,FixMode,Weights);
%
% or skipping optional in/outputs
%
% Factors = parafac(X,Fac);
%
% Algorithm for computing an N-way PARAFAC model. Optionally
% constraints can be put on individual modes for obtaining
% orthogonal, nonnegative, or unimodal solutions. The algorithm
% also handles missing data. For details of PARAFAC
% modeling see R. Bro, Chemom. Intell. Lab. Syst., 1997.
%
% Several possibilities exist for speeding up the algorithm.
% Compressing has been incorporated, so that large arrays can be
% compressed by using Tucker (see Bro & Andersson, Chemom.
% Intell. Lab. Syst., 1998).
% Another acceleration method incorporated here is to
% extrapolate the individual loading elements a number of
% iterations ahead after a specified number of iterations.
%
% A temporary MAT-file called TEMP.mat is saved for every
% 50 iterations. IF the computer breaks down or the model
% seems to be good enough, one can break the program and
% load the last saved estimate. The loadings in TEMP.MAT
% are given a cell array as described below and can be
% converted to A, B, C etc. by FAC2LET.M
%
% All loading vectors except in first mode are normalized,
% so that all variance is kept in the first mode (as is
% common in two-way PCA). The components are arranged as
% in PCA. After iterating, the most important component is
% made the first component etc.
%
%
%
% ----------------------INPUT---------------------
%
% X X is the input array, which can be from three- to N-way (also
% twoway if the third mode is interpreted as a onedimensional
% mode).
%
% Fac No of factors/components sought.
%
%
% ----------------OPTIONAL INPUT---------------------
%
% Options Optional parameters. If not given or set to zero or [],
% defaults will be used. If you want Options(5) to be 2 and
% not change others, simply write Options(5)=2. Even if Options
% hasn't been defined Options will contain zeros except its
% fifth element.
%
% Options(1) - Convergence criterion
% The relative change in fit for which the algorithm stops.
% Standard is 1e-6, but difficult data might require a lower value.
%
% Options(2) - Initialization method
% This option is ignored if PARAFAC is started with old values.
% If no default values are given the default Options(2) is 0.
% The advantage of using DTLD or SVD for initialization is that
% they often provide good starting values. However, since the
% initial values are then fixed, repeating the fitting will give
% the exact same solution. Therefore it is not possible to substantiate
% if a local minimum has been reached. To avoid that use an initialization
% based on random values (2).
%
% 0 = fit using DTLD/GRAM for initialization (default if three-way and no missing)
% 1 = fit using SVD vectors for initialization (default if higher than three-way or missing)
% 2 = fit using random orthogonalized values for initialization
% 10 = fit using the best-fitting models of several models
% fitted using a few iterations
%
% Options(3) - Plotting options
% 2=produces several graphical outputs (loadings shown during iterations)
% 1=as above, but graphics only shown after convergence
% 0=no plots
%
% Options(4) - Not user-accesible
%
% Options(5) - How often to show fit
% Determines how often the deviation between the model and the data
% is shown. This is helpful for adjusting the output to the number
% of iterations. Default is 10. If showfit is set to NaN, almost no
% outputs are given
%
% Options(6) - Maximal number of iterations
% Maximal number of iterations allowed. Default is 2500.
%
% const A vector telling type of constraints put on the loadings of the
% different modes. Same size as DimX but the i'th element tells
% what constraint is on that mode.
% 0 => no constraint,
% 1 => orthogonality
% 2 => nonnegativity
% 3 => unimodality (and nonnegativitiy)
% If const is not defined, no constraints are used.
% For no constraints in a threeway problem const = [0 0 0]
%
% OldLoad If initial guess of the loadings is available. OldLoad should be
% given a cell array where OldLoad{1}=A,OldLoad{2}=B etc.
%
% FixMode FixMode is a binary vector of same sixe as DimX. If
% FixMode(i) = 1 => Mode i is fixed (requires old values given)
% FixMode(i) = 0 => Mode i is not fixed hence estimated
% Ex.: FixMode = [0 1 1] find the scores of a data set given the loadings.
% When some modes are fixed, the numbering of the components will
% also be fixed. Normally components are sorted according to variance
% as in PCA, but this will not be performed if some modes are fixed.
%
% Weights If a matrix of the same size as X is given, weighted regression
% is performed using the weights in the matrix Weights.
%
% ---------------------OUTPUT---------------------
%
% Factors PARAFAC estimate of loadings in one matrix. For a 3 component
% solution to a 4 x 3 x 3 array the loadings A, B & C will be
% stored in a 3 element cell vector:
% Factors{1}=A,
% Factors{2}=B
% Factors{3}=C
% etc.
%
% Use FAC2LET.M for converting to "normal" output.
%
% it Number of iterations used. Can be helpful for checking if the algorithm
% has converged or simply hit the maximal number of iterations (default 2500).
%
% err The fit of the model = the sum of squares of errors (not including missing
% elements).
%
% Corcondia Core consistency test. Should ideally be 100%. If significantly below
% 100% the model is not valid
%
%
%
% OTHER STUFF
%
% Missing values are handled by expectation maximization only. Set all
% missing values to NaN
%
% COMMAND LINE (SHORT)
%
% Factors = parafac(X,Fac);
%
% Copyright, 1998 -
% This M-file and the code in it belongs to the holder of the
% copyrights and is made public under the following constraints:
% It must not be changed or modified and code cannot be added.
% The file must be regarded as read-only. Furthermore, the
% code can not be made part of anything but the 'N-way Toolbox'.
% In case of doubt, contact the holder of the copyrights.
%
% Rasmus Bro
% Chemometrics Group, Food Technology
% Department of Food and Dairy Science
% Royal Veterinary and Agricultutal University
% Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
% Phone +45 35283296
% Fax +45 35283245
% E-mail [email protected]
% $ Version 1.03 $ Date 1. October 1998 $ Not compiled $ Changed sign-convention because of problems with centered data
% $ Version 1.04 $ Date 18. February 1999 $ Not compiled $ Removed auxiliary line
% $ Version 1.06 $ Date 1. December 1999 $ Not compiled $ Fixed bug in low fit error handling
% $ Version 1.07 $ Date 17. January 2000 $ Not compiled $ Fixed bug in nnls handling so that the algorithm is not stopped until nonnegative appear
% $ Version 1.08 $ Date 21. January 2000 $ Not compiled $ Changed init DTLD so that primarily negative loadings are reflected if possible
% $ Version 1.09 $ Date 30. May 2000 $ Not compiled $ changed name noptioPF to noptiopf
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
% $ Version 2.001 $ June 2001 $ Fixed error in weighted regression $ RB $ Not compiled $
NumbIteraInitia=20;
if nargin==0
disp(' ')
disp(' ')
disp(' THE PARAFAC MODEL')
disp(' ')
disp(' Type <<help parafac>> for more info')
disp(' ')
disp(' [Factors,it,err,Corcondia] = parafac(X,Fac,Options,const,OldLoad,FixMode,Weights);')
disp(' or short')
disp(' Factors = parafac(X,Fac);')
disp(' ')
disp(' Options=[Crit Init Plot NotUsed ShowFit MaxIt]')
disp(' ')
disp(' ')
disp(' EXAMPLE:')
disp(' To fit a four-component PARAFAC model to X of size 6 x 2 x 200 x 3 type')
disp(' Factors=parafac(X,4)')
disp(' and to obtain the scores and loadings from the output type')
disp(' [A,B,C,D]=fac2let(Factors);')
return
elseif nargin<2
error(' The inputs X, and Fac must be given')
end
DimX = size(X);
X = reshape(X,DimX(1),prod(DimX(2:end)));
if nargin<3
load noptiopf
OptionsDefault=Options;
else
% Call the current Options OptionsHere and load default to use if some of the current settings should be default
Options=Options(:);
I=length(Options);
if I==0
Options=zeros(8,1);
end
I=length(Options);
if I<8
Options=[Options;zeros(8-I,1)];
end
OptionsHere=Options;
load noptiopf
OptionsDefault=Options;
Options=OptionsHere;
end
if ~exist('OldLoad')==1
OldLoad=0;
elseif length(OldLoad)==0
OldLoad=0;
end
% Convergence criteria
if Options(1,1)==0
Options(1,1)=OptionsDefault(1,1);
end
crit=Options(1);
% Initialization
if ~any(Options(2))
Options(2)=OptionsDefault(2);
end
Init=Options(2);
% Interim plotting
Plt=Options(3,1);
if ~any([0 1 2]==Plt)
error(' Options(3,1) - Plotting - not set correct; must be 0,1, or 2')
end
if Options(5,1)==0
Options(5,1)=OptionsDefault(5,1);
end
showfit=Options(5,1);
if isnan(showfit)
showfit=-1;
end
if showfit<-1|round(showfit)~=showfit
error(' Options(5,1) - How often to show fit - not set correct; must be positive integer or -1')
end
if Options(6,1)==0
Options(6,1)=OptionsDefault(6,1);
maxit=Options(6,1);
elseif Options(6)>0&round(Options(6))==Options(6)
maxit=Options(6,1);
else
error(' Options(6,1) - Maximal number of iterations - not set correct; must be positive integer')
end
ShowPhi=0; % Counter. Tuckers congruence coef/Multiple cosine/UUC shown every ShowPhiWhen'th time the fit is shown
ShowPhiWhen=10;
MissConvCrit=1e-4; % Convergence criterion for estimates of missing values
NumberOfInc=0; % Counter for indicating the number of iterations that increased the fit. ALS algorithms ALLWAYS decrease the fit, but using outside knowledge in some sense (approximate equality or iteratively reweighting might cause the algorithm to diverge
% INITIALIZE
if showfit~=-1
disp(' ')
disp(' PRELIMINARY')
disp(' ')
end
ord=length(DimX);
if showfit~=-1
disp([' A ',num2str(Fac),'-component model will be fitted'])
end
if exist('const')~=1
const=zeros(size(DimX));
elseif length(const)~=ord
const=zeros(size(DimX));
if showfit~=-1
disp(' Constraints are not given properly')
end
end
if showfit~=-1
for i=1:ord
if const(i)==0
disp([' No constraints on mode ',num2str(i)])
elseif const(i)==1
disp([' Orthogonality on mode ',num2str(i)])
elseif const(i)==2
disp([' Nonnegativity on mode ',num2str(i)])
elseif const(i)==3
disp([' Unimodality on mode ',num2str(i)])
end
end
end
% Check if orthogonality required on all modes
if max(max(const))==1
if min(min(const))==1,disp(' ')
disp(' Not possible to orthogonalize all modes in this implementation.')
error(' Contact the authors for further information')
end
end
if exist('FixMode')==1
if length(FixMode)~=ord
FixMode = zeros(1,ord);
end
else
FixMode = zeros(1,ord);
end
if showfit~=-1
if any(FixMode)
disp([' The loadings of mode : ',num2str(find(FixMode(:)')),' are fixed'])
end
end
if exist('Weights')~=1
Weights=[];
end
% Display convergence criterion
if showfit~=-1
disp([' The convergence criterion is ',num2str(crit)])
end
% Define loading as one ((r1*r2*r3*...*r7)*Fac x 1) vector [A(:);B(:);C(:);...].
% The i'th loading goes from lidx(i,1) to lidx(i,2)
lidx=[1 DimX(1)*Fac];
for i=2:ord
lidx=[lidx;[lidx(i-1,2)+1 sum(DimX(1:i))*Fac]];
end
% Check if weighted regression required
if size(Weights,1)==size(X,1)&prod(size(Weights))/size(X,1)==size(X,2)
Weights = reshape(Weights,size(Weights,1),prod(size(Weights))/size(X,1));
if showfit~=-1
disp(' Given weights will be used for weighted regression')
end
DoWeight=1;
else
if showfit~=-1
disp(' No weights given')
end
DoWeight=0;
end
% Make idx matrices if missing values
if any(isnan(X(:)))
MissMeth=1;
else
MissMeth=0;
end
if MissMeth
id=sparse(find(isnan(X)));
idmiss2=sparse(find(~isnan(X)));
if showfit~=-1
disp([' ', num2str(100*(length(id)/prod(DimX))),'% missing values']);
disp(' Expectation maximization will be used for handling missing values')
end
SSX=sum(sum(X(idmiss2).^2)); % To be used for evaluating the %var explained
% If weighting to zero should be used
% Replace missing with mean values or model estimates initially
if length(OldLoad)==sum(DimX)*Fac
model=nmodel(OldLoad);
model = reshape(model,DimX);
X(id)=model(id);
else
meanX=mean(X(find(~isnan(X))));
meanX=mean(meanX);
X(id)=meanX*ones(size(id));
end
else
if showfit~=-1
disp(' No missing values')
end
SSX=sum(sum(X.^2)); % To be used for evaluating the %var explained
end
% Check if weighting is tried used together with unimodality or orthogonality
if any(const==3)|any(const==1)
if DoWeight==1
disp(' ')
disp(' Weighting is not possible together with unimodality and orthogonality.')
disp(' It can be done using majorization, but has not been implemented here')
disp(' Please contact the authors for further information')
error
end
end
% Acceleration
acc=-5;
do_acc=1; % Do acceleration every do_acc'th time
acc_pow=2; % Extrapolate to the iteration^(1/acc_pow) ahead
acc_fail=0; % Indicate how many times acceleration have failed
max_fail=4; % Increase acc_pow with one after max_fail failure
if showfit~=-1
disp(' Line-search acceleration scheme initialized')
end
% Find initial guesses for the loadings if no initial values are given
% Use old loadings
if length(OldLoad)==ord % Use old values
if showfit~=-1
disp(' Using old values for initialization')
end
Factors=OldLoad;
% Use DTLD
elseif Init==0
if min(DimX)>1&ord==3&MissMeth==0
if showfit~=-1
disp(' Using direct trilinear decomposition for initialization')
end
[A,B,C]=dtld(reshape(X,DimX),Fac);
A=real(A);B=real(B);C=real(C);
% Check for signs and reflect if appropriate
for f=1:Fac
if sign(sum(A(:,f)))<0
if sign(sum(B(:,f)))<0
B(:,f)=-B(:,f);
A(:,f)=-A(:,f);
elseif sign(sum(C(:,f)))<0
C(:,f)=-C(:,f);
A(:,f)=-A(:,f);
end
end
if sign(sum(B(:,f)))<0
if sign(sum(C(:,f)))<0
C(:,f)=-C(:,f);
B(:,f)=-B(:,f);
end
end
end
Factors{1}=A;Factors{2}=B;Factors{3}=C;
else
if showfit~=-1
disp(' Using singular values for initialization')
end
Factors=ini(X,Fac,2);
end
% Use SVD
elseif Init==1
if showfit~=-1
disp(' Using singular values for initialization')
end
Factors=ini(X,Fac,2);
% Use random (orthogonal)
elseif Init==2
if showfit~=-1
disp(' Using orthogonal random for initialization')
end
Factors=ini(X,Fac,1);
elseif Init==3
error(' Initialization option set to three has been changed to 10')
% Use several small ones of the above
elseif Init==10
if showfit~=-1
disp(' Using several small runs for initialization')
end
Opt=Options;
Opt(5) = NaN;
Opt(6) = NumbIteraInitia;
Opt(2) = 0;
ERR=[];
[Factors,it,err] = parafac(X,Fac,Opt,const,[],[],Weights);
ERR = [ERR;err];
Opt(2) = 1;
[F,it,Err] = parafac(X,Fac,Opt,const,[],[],Weights);
ERR=[ERR;Err];
if Err<err
Factors=F;
err=Err;
end
Opt(2)=2;
for rep=1:3
[F,it,Err]=parafac(X,Fac,Opt,const,[],[],Weights);
ERR=[ERR;Err];
if Err<err
Factors=F;
err=Err;
end
end
if showfit~=-1
disp(' ')
disp(' Obtained fit-values')
disp([' Method Fit'])
disp([' DTLD ',num2str(ERR(1))])
disp([' SVD ',num2str(ERR(2))])
disp([' RandOrth ',num2str(ERR(3))])
disp([' RandOrth ',num2str(ERR(4))])
disp([' RandOrth ',num2str(ERR(5))])
end
else
error(' Problem in PARAFAC initialization - Not set correct')
end
% Convert to old format
ff = [];
for f=1:length(Factors)
ff=[ff;Factors{f}(:)];
end
Factors = ff;
% ALTERNATING LEAST SQUARES
err=SSX;
f=2*crit;
it=0;
connew=2;conold=1; % for missing values
ConstraintsNotRight = 0; % Just to ensure that iterations are not stopped if constraints are not yet fully imposed
if showfit~=-1
disp(' ')
disp(' Sum-of-Squares Iterations Explained')
disp(' of residuals variation')
end
while ((f>crit) | (norm(connew-conold)/norm(conold)>MissConvCrit) | ConstraintsNotRight) & it<maxit
conold=connew; % for missing values
it=it+1;
acc=acc+1;
if acc==do_acc;
Load_o1=Factors;
end
if acc==do_acc+1;
acc=0;Load_o2=Factors;
Factors=Load_o1+(Load_o2-Load_o1)*(it^(1/acc_pow));
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
model=nmodel(ff);
model = reshape(model,DimX(1),prod(DimX(2:end)));
if MissMeth
connew=model(id);
errX=X-model;
if DoWeight==0
nerr=sum(sum(errX(idmiss2).^2));
else
nerr=sum(sum((Weights(idmiss2).*errX(idmiss2)).^2));
end
else
if DoWeight==0
nerr=sum(sum((X-model).^2));
else
nerr=sum(sum((X.*Weights-model.*Weights).^2));
end
end
if nerr>err
acc_fail=acc_fail+1;
Factors=Load_o2;
if acc_fail==max_fail,
acc_pow=acc_pow+1+1;
acc_fail=0;
if showfit~=-1
disp(' Reducing acceleration');
end
end
else
if MissMeth
X(id)=model(id);
end
end
end
if DoWeight==0
for ii=ord:-1:1
if ii==ord;
i=1;
else
i=ii+1;
end
idd=[i+1:ord 1:i-1];
l_idx2=lidx(idd,:);
dimx=DimX(idd);
if ~FixMode(i)
L1=reshape(Factors(l_idx2(1,1):l_idx2(1,2)),dimx(1),Fac);
if ord>2
L2=reshape(Factors(l_idx2(2,1):l_idx2(2,2)),dimx(2),Fac);
Z=kr(L2,L1);
else
Z = L1;
end
for j=3:ord-1
L1=reshape(Factors(l_idx2(j,1):l_idx2(j,2)),dimx(j),Fac);
Z=kr(L1,Z);
end
ZtZ=Z'*Z;
ZtX=Z'*X';
OldLoad=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
L=pfls(ZtZ,ZtX,DimX(i),const(i),OldLoad,DoWeight,Weights);
Factors(lidx(i,1):lidx(i,2))=L(:);
end
x=zeros(prod(DimX([1:ii-1 ii+1:ord])),DimX(ii)); % Rotate X so the current last mode is the first
x(:)=X;
X=x';
end
else
for ii=ord:-1:1
if ii==ord;
i=1;
else
i=ii+1;
end
idd=[i+1:ord 1:i-1];
l_idx2=lidx(idd,:);
dimx=DimX(idd);
if ~FixMode(i)
L1=reshape(Factors(l_idx2(1,1):l_idx2(1,2)),dimx(1),Fac);
if ord>2
L2=reshape(Factors(l_idx2(2,1):l_idx2(2,2)),dimx(2),Fac);
Z=kr(L2,L1);
else
Z = L1;
end
for j=3:ord-1
L1=reshape(Factors(l_idx2(j,1):l_idx2(j,2)),dimx(j),Fac);
Z=kr(L1,Z);
end
OldLoad=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
L=pfls(Z,X,DimX(i),const(i),OldLoad,DoWeight,Weights);
Factors(lidx(i,1):lidx(i,2))=L(:);
end
x=zeros(prod(DimX([1:ii-1 ii+1:ord])),DimX(ii));
x(:)=X;
X=x';
x(:)=Weights;
Weights=x';
end
end
% EVALUATE SOFAR
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);
ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);
id1 = id2;
end
model=nmodel(ff);
model = reshape(model,DimX(1),prod(DimX(2:end)));
if MissMeth % Missing values present
connew=model(id);
X(id)=model(id);
errold=err;
errX=X-model;
if DoWeight==0
err=sum(sum(errX(idmiss2).^2));
else
err=sum(sum((Weights(idmiss2).*errX(idmiss2)).^2));
end
else
errold=err;
if DoWeight==0
err=sum(sum((X-model).^2));
else
err=sum(sum((Weights.*(X-model)).^2));
end
end
if err<1000*eps, % Getting close to the machine uncertainty => stop
disp(' WARNING')
disp(' The misfit is approaching the machine uncertainty')
disp(' If pure synthetic data is used this is OK, otherwise if the')
disp(' data elements are very small it might be appropriate ')
disp(' to multiply the whole array by a large number to increase')
disp(' numerical stability. This will only change the solution ')
disp(' by a scaling constant')
f = 0;
else
f=abs((err-errold)/err);
if f<crit % Convergence: then check that constraints are fulfilled
if any(const==2)|any(const==3) % If nnls or unimodality imposed
for i=1:ord % Extract the
if const(i)==2|const(i)==3 % If nnls or unimodality imposed
Loadd = Factors(sum(DimX(1:i-1))*Fac+1:sum(DimX(1:i))*Fac);
if any(Loadd<0)
ConstraintsNotRight=1;
else
ConstraintsNotRight=0;
end
end
end
end
end
end
if it/showfit-round(it/showfit)==0
if showfit~=-1,
ShowPhi=ShowPhi+1;
if ShowPhi==ShowPhiWhen,
ShowPhi=0;
if showfit~=-1,
disp(' '),
disp(' Tuckers congruence coefficient'),
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
[phi,out]=ncosine(ff,ff);
disp(phi),
if MissMeth
fprintf(' Change in estim. missing values %12.10f',norm(connew-conold)/norm(conold));
disp(' ')
disp(' ')
end
disp(' Sum-of-Squares Iterations Explained')
disp(' of residuals variation')
end
end
if DoWeight==0
PercentExpl=100*(1-err/SSX);
else
PercentExpl=100*(1-sum(sum((X-model).^2))/SSX);
end
fprintf(' %12.10f %g %3.4f \n',err,it,PercentExpl);
if Plt==2
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
pfplot(reshape(X,DimX),ff,Weights',[0 0 0 0 0 0 0 1]);
drawnow
end
end
end
% Make safety copy of loadings and initial parameters in temp.mat
if it/50-round(it/50)==0
save temp Factors
end
% JUDGE FIT
if err>errold
NumberOfInc=NumberOfInc+1;
end
end % while f>crit
% CALCULATE TUCKERS CONGRUENCE COEFFICIENT
if showfit~=-1 & DimX(1)>1
disp(' '),disp(' Tuckers congruence coefficient')
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
[phi,out]=ncosine(ff,ff);
disp(phi)
disp(' ')
if max(max(abs(phi)-diag(diag(phi))))>.85
disp(' ')
disp(' ')
disp(' WARNING, SOME FACTORS ARE HIGHLY CORRELATED.')
disp(' ')
disp(' You could decrease the number of components. If this')
disp(' does not help, try one of the following')
disp(' ')
disp(' - If systematic variation is still present you might')
disp(' wanna decrease your convergence criterion and run')
disp(' one more time using the loadings as initial guess.')
disp(' ')
disp(' - Or use another preprocessing (check for constant loadings)')
disp(' ')
disp(' - Otherwise try orthogonalising some modes,')
disp(' ')
disp(' - Or use Tucker3/Tucker2,')
disp(' ')
disp(' - Or a PARAFAC with some modes collapsed (if # modes > 3)')
disp(' ')
end
end
% SHOW FINAL OUTPUT
if DoWeight==0
PercentExpl=100*(1-err/SSX);
else
PercentExpl=100*(1-sum(sum((X-model).^2))/SSX);
end
if showfit~=-1
fprintf(' %12.10f %g %3.4f \n',err,it,PercentExpl);
if NumberOfInc>0
disp([' There were ',num2str(NumberOfInc),' iterations that increased fit']);
end
end
% POSTPROCES LOADINGS (ALL VARIANCE IN FIRST MODE)
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
for i=2:ord
B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
for ff=1:Fac
A(:,ff)=A(:,ff)*norm(B(:,ff));
B(:,ff)=B(:,ff)/norm(B(:,ff));
end
Factors(lidx(i,1):lidx(i,2))=B(:);
end
Factors(lidx(1,1):lidx(1,2))=A(:);
if showfit~=-1
disp(' ')
disp(' Components have been normalized in all but the first mode')
end
% PERMUTE SO COMPONENTS ARE IN ORDER AFTER VARIANCE DESCRIBED (AS IN PCA) IF NO FIXED MODES
if ~any(FixMode)
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
[out,order]=sort(diag(A'*A));
order=flipud(order);
A=A(:,order);
Factors(lidx(1,1):lidx(1,2))=A(:);
for i=2:ord
B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
B=B(:,order);
Factors(lidx(i,1):lidx(i,2))=B(:);
end
if showfit~=-1
disp(' Components have been ordered according to contribution')
end
elseif showfit ~= -1
disp(' Some modes fixed hence no sorting of components performed')
end
% APPLY SIGN CONVENTION IF NO FIXED MODES
% FixMode=1
if ~any(FixMode)&~(any(const==2)|any(const==3))
Sign = ones(1,Fac);
for i=ord:-1:2
A=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
Sign2=ones(1,Fac);
for ff=1:Fac
[out,sig]=max(abs(A(:,ff)));
Sign(ff) = Sign(ff)*sign(A(sig,ff));
Sign2(ff) = sign(A(sig,ff));
end
A=A*diag(Sign2);
Factors(lidx(i,1):lidx(i,2))=A(:);
end
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
A=A*diag(Sign);
Factors(lidx(1,1):lidx(1,2))=A(:);
if showfit~=-1
disp(' Components have been reflected according to convention')
end
end
% TOOLS FOR JUDGING SOLUTION
if nargout>3
x=X;
if MissMeth
x(id)=NaN*id;
end
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
corcondia=corcond(reshape(x,DimX),ff,Weights,1);
end
if Plt==1|Plt==2
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
pfplot(reshape(X,DimX),ff,Weights,ones(1,8));
end
% Show which criterion stopped the algorithm
if showfit~=-1
if ((f<crit) & (norm(connew-conold)/norm(conold)<MissConvCrit))
disp(' The algorithm converged')
elseif it==maxit
disp(' The algorithm did not converge but stopped because the')
disp(' maximum number of iterations was reached')
elseif f<eps
disp(' The algorithm stopped because the change in fit is now')
disp(' smaller than the machine uncertainty.')
else
disp(' Algorithm stopped for some mysterious reason')
end
end
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
Factors = ff;
function [A,B,C,fit]=dtld(X,F,SmallMode);
%DTLD direct trilinear decomposition
%
% See also:
% 'gram', 'parafac'
%
% Copyright, 1998 -
% This M-file and the code in it belongs to the holder of the
% copyrights and is made public under the following constraints:
% It must not be changed or modified and code cannot be added.
% The file must be regarded as read-only. Furthermore, the
% code can not be made part of anything but the 'N-way Toolbox'.
% In case of doubt, contact the holder of the copyrights.
%
% Rasmus Bro
% Chemometrics Group, Food Technology
% Department of Food and Dairy Science
% Royal Veterinary and Agricultutal University
% Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
% Phone +45 35283296
% Fax +45 35283245
% E-mail [email protected]
%
%
% DIRECT TRILINEAR DECOMPOSITION
%
% calculate the parameters of the three-
% way PARAFAC model directly. The model
% is not the least-squares but will be close
% to for precise data with little model-error
%
% This implementation works with an optimal
% compression using least-squares Tucker3 fitting
% to generate two pseudo-observation matrices that
% maximally span the variation of all samples. per
% default the mode of smallest dimension is compressed
% to two samples, while the remaining modes are
% compressed to dimension F.
%
% For large arrays it is fastest to have the smallest
% dimension in the first mode
%
% INPUT
% [A,B,C]=dtld(X,F);
% X is the I x J x K array
% F is the number of factors to fit
% An optional parameter may be given to enforce which
% mode is to be compressed to dimension two
%
% Copyright 1998
% Rasmus Bro, KVL
% [email protected]
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
% $ Version 1.02 $ Date 28. July 1998 $ Not compiled $
% $ Version 1.03 $ Date 25. April 1999 $ Not compiled $
DimX = size(X);
X = reshape(X,DimX(1),prod(DimX(2:end)));
DontShowOutput = 1;
%rearrange X so smallest dimension is in first mode
if nargin<4
[a,SmallMode] = min(DimX);
X = nshape(reshape(X,DimX),SmallMode);
DimX = DimX([SmallMode 1:SmallMode-1 SmallMode+1:3]);
Fac = [2 F F];
else
X = nshape(reshape(X,DimX),SmallMode);
DimX = DimX([SmallMode 1:SmallMode-1 SmallMode+1:3]);
Fac = [2 F F];
end
f=F;
if F==1;
Fac = [2 2 2];
f=2;
end
if DimX(1) < 2
error(' The smallest dimension must be > 1')
end
if any(DimX(2:3)-Fac(2:3)<0)
error(' This algorithm requires that two modes are of dimension not less the number of components')
end
% Compress data into a 2 x F x F array. Only 10 iterations are used since exact SL fit is insignificant; only obtaining good truncated bases is important
[Factors,Gt]=tucker(reshape(X,DimX),Fac,[0 0 0 0 NaN 10]);
% Convert to old format
Gt = reshape(Gt,size(Gt,1),prod(size(Gt))/size(Gt,1));
[At,Bt,Ct]=fac2let(Factors);
% Fit GRAM to compressed data
[Bg,Cg,Ag]=gram(reshape(Gt(1,:),f,f),reshape(Gt(2,:),f,f),F);
% De-compress data and find A
BB = Bt*Bg;
CC = Ct*Cg;
AA = X*pinv(kr(CC,BB)).';
if SmallMode == 1
A=AA;
B=BB;
C=CC;
elseif SmallMode == 2
A=BB;
B=AA;
C=CC;
elseif SmallMode == 3
A=BB;
B=CC;
C=AA;
end
fit = sum(sum(abs(X - AA*kr(CC,BB).').^2));
if ~DontShowOutput
disp([' DTLD fitted raw data with a sum-squared error of ',num2str(fit)])
end
function mwa = outerm(facts,lo,vect)
if nargin < 2
lo = 0;
end
if nargin < 3
vect = 0;
end
order = length(facts);
if lo == 0
mwasize = zeros(1,order);
else
mwasize = zeros(1,order-1);
end
k = 0;
for i = 1:order
if i ~= lo
[m,n] = size(facts{i});
k = k + 1;
mwasize(k) = m;
if k > 1
if nofac ~= n
error('All orders must have the same number of factors')
end
else
nofac = n;
end
end
end
mwa = zeros(prod(mwasize),nofac);
for j = 1:nofac
if lo ~= 1
mwvect = facts{1}(:,j);
for i = 2:order
if lo ~= i
%mwvect = kron(facts{i}(:,j),mwvect);
mwvect = mwvect*facts{i}(:,j)';
mwvect = mwvect(:);
end
end
elseif lo == 1
mwvect = facts{2}(:,j);
for i = 3:order
%mwvect = kron(facts{i}(:,j),mwvect);
mwvect = mwvect*facts{i}(:,j)';
mwvect = mwvect(:);
end
end
mwa(:,j) = mwvect;
end
% If vect isn't one, sum up the results of the factors and reshape
if vect ~= 1
mwa = sum(mwa,2);
mwa = reshape(mwa,mwasize);
end
function [t,p,Mean,Fit,RelFit] = pcanipals(X,F,cent);
% NIPALS-PCA WITH MISSING ELEMENTS
% 20-6-1999
%
% Calculates a NIPALS PCA model. Missing elements
% are denoted NaN. The solution is nested
%
% Comparison for data with missing elements
% NIPALS : Nested , not least squares, not orthogonal solutoin
% LSPCA : Non nested, least squares , orthogonal solution
%
% I/O
% [t,p,Mean,Fit,RelFit] = pcanipals(X,F,cent);
%
% X : Data with missing elements set to NaN
% F : Number of componets
% cent: One if centering is to be included, else zero
%
% Copyright
% Rasmus Bro
% KVL 1999
% [email protected]
%
[I,J]=size(X);
if any(sum(isnan(X))==I)|any(sum(isnan(X)')==J)
error(' One column or row only contains missing')
end
Xorig = X;
Miss = isnan(X);
NotMiss = ~isnan(X);
ssX = sum(X(find(NotMiss)).^2);
Mean = zeros(1,J);
if cent
Mean = nanmean(X);
end
X = X - ones(I,1)*Mean;
t=[];
p=[];
for f=1:F
Fit = 3;
OldFit = 6;
it = 0;
T = nanmean(X')';
P = nanmean(X)';
Fit = 2;
FitOld = 3;
while abs(Fit-FitOld)/FitOld>1e-7 & it < 1000;
FitOld = Fit;
it = it +1;
for j = 1:J
id=find(NotMiss(:,j));
P(j) = T(id)'*X(id,j)/(T(id)'*T(id));
end
P = P/norm(P);
for i = 1:I
id=find(NotMiss(i,:));
T(i) = P(id)'*X(i,id)'/(P(id)'*P(id));
end
Fit = X-T*P';
Fit = sum(Fit(find(NotMiss)).^2);
end
t = [t T];
p = [p P];
X = X - T*P';
end
Model = t*p' + ones(I,1)*Mean;
Fit = sum(sum( (Xorig(find(NotMiss)) - Model(find(NotMiss))).^2));
RelFit = 100*(1-Fit/ssX);
function y = nanmean(x)
if isempty(x) % Check for empty input.
y = NaN;
return
end
nans = isnan(x);
i = find(nans);
x(i) = zeros(size(i));
if min(size(x))==1,
count = length(x)-sum(nans);
else
count = size(x,1)-sum(nans);
end
i = find(count==0);
count(i) = ones(size(i));
y = sum(x)./count;
y(i) = i + NaN;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
ncrossreg.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/NWAY/ncrossreg.m
| 10,030 |
utf_8
|
c21e18a1fc80e44cb6fd7fcc43873fdb
|
function [XValResult,Model]=ncrossreg(X,y,MaxFac,Centering,SegmentsID);
%NCROSSREG cross-validation of regression model
%
% See also:
% 'ncrossdecomp'
%
% CROSS-VALIDATION OF BI- & MULTILINEAR REGRESSION MODELS
% Performs cross-validation of
% - NPLS Input multi-way array X
% - PLS Input two-way X
%
% The data are by default centered across the first mode, but no scaling
% is applied (this must be done beforehand)
%
% I/O
% [XValResult,Model]=ncrossreg(X,y,MaxFac,Centering);
%
% INPUT
% X : X array
% y : y array
% MaxFac : Maximal number of factors (from one to MaxFac factors will be investigated)
%
% OPTIONAL INPUT
% Centering : If not zero, centering is performed on every segment
% SegmentsID: Optional binary matrix. Rows as rows in X and i'th column defines i'th segment
% Rows in i'th column set to one are left out at
%
% OUTPUT
% XValResult
% Structured array with the following elements
% ypred : Cross-validated predictions
% ssX_Xval : Cross-validated sum of squares of residuals in X (f'th element for f-component model)
% ssX_Fit : Fitted sum of squares of residuals in X (f'th element for f-component model)
% ssY_Xval : Cross-validated sum of squares of residuals in Y (f'th element for f-component model)
% ssY_Fit : Fitted sum of squares of residuals in Y (f'th element for f-component model)
% Percent : Structured array holding Xexp and Yexp, each with fitted and X-validated % Variance captured.
% PRESS : Predicted REsidual Sum of Squares in Y
% RMSEP : Root Mean Square Error of Prediction (cross-validation)
%
% Model
% Structured array holding the NPLS model
% $ Version 1.0301 $ Date 26. June 1999
% $ Version 1.0302 $ Date 1. January 2000
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
% $ Version 2.01 $ jan 2003 $ Added option for skipping centering and added percentages in output $ RB $ Not compiled $
% $ Version 2.02 $ Sep 2003 $ Fixed bug in non-center option $ RB $ Not compiled $
% Copyright (C) 1995-2006 Rasmus Bro & Claus Andersson
% Copenhagen University, DK-1958 Frederiksberg, Denmark, [email protected]
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
I = size(X,1);
DimX = size(X);
DimY = size(y);
X = reshape(X,DimX(1),prod(DimX(2:end)));
y = reshape(y,DimY(1),prod(DimY(2:end)));
Ypred = zeros([MaxFac DimY]);
Ex = zeros([MaxFac DimX]);
Ey = zeros([MaxFac DimY]);
if nargin<4
Centering = 1;
elseif isempty(Centering)
Centering = 1;
end
%%%%%%%%%%%%%%%%%
%%MAKE SEGMENTS%%
%%%%%%%%%%%%%%%%%
if exist('SegmentsID')~=1
SegmentsID = MakeSegments(I);
end
%%%%%%%%%%%%%%%%%%%
%%MAKE SUB-MODELS%%
%%%%%%%%%%%%%%%%%%%
for i=1:size(SegmentsID,2)
In = find(~SegmentsID(:,i));
Out = find(SegmentsID(:,i));
% Offsets
if Centering
Mx = nanmean(X(In,:));
My = nanmean(y(In,:));
else
Mx = zeros(1,prod(DimX(2:end)));
My = zeros(1,prod(DimY(2:end)));
end
%Centered data
Xc = X(In,:)-repmat(Mx,length(In),1);
yc = y(In,:)-repmat(My,length(In),1);
% %Centered data
% Xc = X(In,:)-ones(length(In),1)*Mx;
% yc = y(In,:)-ones(length(In),1)*My;
% Calculate model
DimXc = DimX;DimXc(1)=size(Xc,1);
Xc = reshape(Xc,DimXc);
DimYc = DimY;DimYc(1)=size(yc,1);
yc = reshape(yc,DimYc);
[Xfactors,Yfactors,Core,B] = npls(Xc,yc,MaxFac,NaN);
%Predict left-out samples
for f=1:MaxFac
Xc = X(Out,:)-ones(length(Out),1)*Mx;
DimXc = DimX;
DimXc(1)=size(Xc,1);
Xc = reshape(Xc,DimXc);
[ypr,T,ssx,Xres] = npred(Xc,f,Xfactors,Yfactors,Core,B,NaN);
Ex(f,Out,:) = reshape(Xres,DimXc(1),prod(DimXc(2:end)));
Ypred(f,Out,:) = ypr+ones(length(Out),1)*My;
Ypredf = squeeze(Ypred(f,:,:));
if size(y,2) == 1
YpredfOut=Ypredf(Out);
else
YpredfOut=Ypredf(Out,:);
end
%size(Ey(f,Out,:)),size(y(Out,:)),size(YpredfOut)
if size(y,2)==1
Ey(f,Out,:) = squeeze(y(Out,:))'-squeeze(YpredfOut);
else
Ey(f,Out,:) = squeeze(y(Out,:))-squeeze(YpredfOut);
end
end
end
if Centering
Mx = nanmean(X(In,:));
My = nanmean(y(In,:));
else
Mx = zeros(1,prod(DimX(2:end)));
My = zeros(1,prod(DimY(2:end)));
end
%Centered data
Xc = X-repmat(Mx,size(X,1),1);
yc = y-repmat(My,size(y,1),1);
%%Centered data
%Xc = X-ones(I,1)*Mx;
%yc = y-ones(I,1)*My;
[Xfactors,Yfactors,Core,B,ypred,ssx,ssy] = npls(reshape(Xc,DimX),reshape(yc,DimY),MaxFac,NaN);
Model.Xfactors = Xfactors;
Model.Yfactors = Yfactors;
Model.Core = Core;
Model.B = B;
Model.Yfitted = ypred;
Model.MeanX = Mx;
Model.MeanY = My;
sseX_fit = ssx(2:end,1);
sseY_fit = ssy(2:end,1);
for f=1:MaxFac
id=find(~isnan(Ex(f,:)));sseX_xval(f) = sum(Ex(f,id).^2);
id=find(~isnan(Ey(f,:)));sseY_xval(f) = sum(Ey(f,id).^2);
PRESS(f) = sum(Ey(f,id).^2);
end
RMSEP = sqrt(PRESS/I);
Xval = [sseX_fit sseX_xval'];
Yval = [sseY_fit sseY_xval'];
Xval = 100*(1-Xval/sum(Xc(find(~isnan(X))).^2));
Yval = 100*(1-Yval/sum(yc(find(~isnan(y))).^2));
XValResult.ypred = Ypred;
XValResult.ssX_Xval = sseX_xval;
XValResult.ssX_Fit = sseX_fit';
XValResult.ssY_Xval = sseY_xval;
XValResult.ssY_Fit = sseY_fit';
XValResult.Percent.Xexp = Xval;
XValResult.Percent.Yexp = Yval;
XValResult.PRESS = PRESS;
XValResult.RMSEP = RMSEP;
XValResult.DefSegments = sparse(SegmentsID);
disp(' ')
disp(' Percent Variance Captured by N-PLS Model ')
disp(' ')
disp(' -----X-Block----- -----Y-Block-----')
disp(' LV # Fitted Xval Fitted Xval RMSEP')
disp(' ---- ------- ------- ------- ------- ---------')
format = ' %3.0f %6.2f %6.2f %6.2f %6.2f %6.4f';
for f = 1:MaxFac
tab = sprintf(format,[f Xval(f,:) Yval(f,:) RMSEP(f)]);
disp(tab)
end
disp(' ')
function SegmentsID = MakeSegments(I);
XvalMeth=questdlg('Which type of validation do you want to perform (ENTER => full Xval)?','Choose validation','Full X-validation','Segmented','Prespecified','Full X-validation');
switch XvalMeth
case 'Full X-validation'
SegmentsID = speye(I);
case 'Segmented'
prompt={'Enter the number of segments:'};
eval(['def={''',num2str(min(I,max(3,round(I/7)))),'''};'])
dlgTitle='Number of segments';
lineNo=1;
answer=inputdlg(prompt,dlgTitle,lineNo,def);
NumbSegm=eval(answer{1});
% Make sure the number of segments is OK
while NumbSegm<2|NumbSegm>I
prompt={'INCONSISTENT NUMBER CHOSEN (must be > 1 and <= samples)'};
eval(['def={''',num2str(min(I,max(3,round(I/7)))),'''};'])
dlgTitle='Number of segments';
lineNo=1;
answer=inputdlg(prompt,dlgTitle,lineNo,def);
NumbSegm=eval(answer{1})
NumbSegm<2|NumbSegm>I
end
XvalSegm=questdlg('How should segments be chosen?','Choose segmentation','111222333...','123123123...','Random','123123123...');
switch XvalSegm
case '111222333...'
SegmentsID = sparse(I,NumbSegm);
NumbInEachSegm = floor(I/NumbSegm);
Additional = I-NumbInEachSegm*NumbSegm;
currentsample = 1;
for i=1:NumbSegm
if i <=Additional
add = NumbInEachSegm+1;
elseif i<NumbSegm
add = NumbInEachSegm;
else
add = I-currentsample+1;
end
SegmentsID(currentsample:currentsample+add-1,i)=1;
currentsample = currentsample + add;
end
case '123123123...'
SegmentsID = sparse(I,NumbSegm);
NumbInEachSegm = floor(I/NumbSegm);
for i=1:NumbSegm
SegmentsID(i:NumbSegm:end,i)=1;
end
case 'Random'
% Make nonrandom and then randomize order
SegmentsID = sparse(I,NumbSegm);
NumbInEachSegm = floor(I/NumbSegm);
for i=1:NumbSegm
SegmentsID(i:NumbSegm:end,i)=1;
end
rand('state',sum(100*clock)) %Randomize randomizer
[a,b] = sort(rand(I,1))
SegmentsID = SegmentsID(b,:);
end
case 'Prespecified'
prompt={'Enter the name of the file defining the subsets'};
def={'SegmentsID'};
dlgTitle='Import definition';
lineNo=1;
answer=inputdlg(prompt,dlgTitle,lineNo,def);
SegmentsID=eval(answer{1});
end % switch
function y = nanmean(x)
%NANMEAN Average or mean ignoring NaNs.
% NANMEAN(X) returns the average treating NaNs as missing values.
% For vectors, NANMEAN(X) is the mean value of the non-NaN
% elements in X. For matrices, NANMEAN(X) is a row vector
% containing the mean value of each column, ignoring NaNs.
%
% See also NANMEDIAN, NANSTD, NANMIN, NANMAX, NANSUM.
% Copyright (c) 1993-98 by The MathWorks, Inc.
% $Revision: 2.8 $ $Date: 1997/11/29 01:45:53 $
if isempty(x) % Check for empty input.
y = NaN;
return
end
% Replace NaNs with zeros.
nans = isnan(x);
i = find(nans);
x(i) = zeros(size(i));
if min(size(x))==1,
count = length(x)-sum(nans);
else
count = size(x,1)-sum(nans);
end
% Protect against a column of all NaNs
i = find(count==0);
count(i) = ones(size(i));
y = sum(x)./count;
y(i) = i + NaN;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
ncrossdecomp.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/NWAY/ncrossdecomp.m
| 15,317 |
utf_8
|
aa69c33f01ff76b0ed5fc30a7729b342
|
function XvalResult = ncrossdecomp(Method,X,FacMin,FacMax,Segments,Cent,Show);
%NCROSSDECOMP crossvalidation of PARAFAC/Tucker/PCA
%
% See also:
% 'ncrossreg'
%
% This file performs cross-validation of decomposition models
% PARAFAC, PCA, and Tucker. The cross-validation is performed
% such that part of the data are set to missing, the model is
% fitted to the remaining data, and the residuals between fitted
% and true left-out elements is calculated. This is performed
% 'Segments' times such that all elements are left out once.
% The segments are chosen by taking every 'Segments' element of
% X(:), i.e. from the vectorized array. If X is of size 5 x 7,
% and three segemnts are chosen ('Segments' = 3), then in the
% first of three models, the model is fitted to the matrix
%
% |x 0 0 x 0 0 x|
% |0 x 0 0 x 0 0|
% |0 0 x 0 0 x 0|
% |x 0 0 x 0 0 x|
% |0 x 0 0 x 0 0|
%
% where x's indicate missing elements. After fitting the residuals
% in the locations of missing values are calculated. After fitting
% all three models, all residuals have been calculated.
%
% Note that the number of segments must be chosen such that no columns
% or rows contain only missing elements (the algorithm will check this).
% Using 'Segments' = 7, 9, or 13 will usually achieve that.
%
% I/O
% XvalResult = ncrossdecomp(Method,X,FacMin,FacMax,Segments,Cent,Show);
%
% INPUT
% Method : 'parafac', 'tucker', 'pca', or 'nipals'
% For PCA the least squares model is calculated.
% Thus, offsets and parameters are calculated in
% a least squares sense unlike the method NIPALS,
% which calculates the PCA model using an ad hoc
% approach for handling missing data (as in
% standard chemometric software).
% X : Multi-way array of data
% FacMin : Lowest number of factors to use
% FacMax : Highest number of factors (note that for Tucker only models
% with the same number of components in each mode are
% calculated currently
% Segments : The number of segments to use. Try many!
% Cent : If set of one, the data are centered across samples,
% i.e. ordinary centering. Note, however, that the centering
% is not performed in a least squares sense but as preprocessing.
% This is not optimal because the data have missing data because
% of the way the elements are left out. This can give
% significantly lower fit than reasonable if you have few samples
% or use few segments. Alternatively, you can center the data
% beforehand and perform cross-validation on the centered data
% Show : If set to 0, no plot is given
%
% OUTPUT
% Structure XvalResult holding:
% Fit: The fitted percentage of variation explaind (as a
% function of component number)
% Xval: The cross-validated percentage of variation explaind
% (as a function of component number)
% FittedModel: The fitted model (as a function of component number)
% XvalModel: The cross-validated model (as a function of component number)
%
% To visualize the output type "tucktest(XvalResult);"
% $ Version 1.0301 $ Date 28. June 1999 $ Not compiled $
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
% $ Version 2.01 $ Mar 2002 $ Fixed error in segmentation check $ RB $ Not compiled $
% Copyright (C) 1995-2006 Rasmus Bro & Claus Andersson
% Copenhagen University, DK-1958 Frederiksberg, Denmark, [email protected]
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
% uses NANSUM,
DimX = size(X);
ord = length(DimX);
X = reshape(X,DimX(1),prod(DimX(2:end)));
[I,J] = size(X);
if exist('Show')~=1
Show = 1;
end
if strcmp(lower(Method(1:3)),'tuc')
if length(FacMin)==1
FacMin = ones(1,ord)*FacMin;
elseif length(FacMin)~=ord
error('Error in FacMin: When fitting Tucker models, the number of factors should be given for each mode')
end
if length(FacMax)==1
FacMax = ones(1,ord)*FacMax;
elseif length(FacMax)~=ord
error('Error in FacMax: When fitting Tucker models, the number of factors should be given for each mode')
end
end
% Check if the selected segmentation works (does not produce rows/columns of only missing)
out = ones(I,J);
out(1:Segments:end)=NaN;
out2 = ones(size(X));
out(find(isnan(out2))) = NaN;
if any(sum(isnan(out))==I)
error(' The chosen segmentation leads to columns of only missing elements')
elseif any(sum(isnan(out'))==J)
error(' The chosen segmentation leads to rows of only missing elements')
end
if ~strcmp(lower(Method(1:3)),'tuc')
XvalResult.Fit = zeros(FacMax,2)*NaN;
XvalResult.Xval = zeros(FacMax,2)*NaN;
for f = 1:FacMin-1
XvalResult.XvalModel{f} = 'Not fitted';
XvalResult.FittedModel{f} = 'Not fitted';
end
for f = FacMin:FacMax
% Fitted model
disp([' Total model - Comp. ',num2str(f),'/',num2str(FacMax)])
[M,Mean,Param] = decomp(Method,X,DimX,f,1,Segments,Cent,I,J);
Model = M + ones(I,1)*Mean';
id = find(~isnan(X));
OffsetCorrectedData = X - ones(I,1)*Mean';
XvalResult.Fit(f,:) = [100*(1 - sum( (X(id) - Model(id)).^2)/sum(OffsetCorrectedData(id).^2)) f];
XvalResult.FittedModel{f} = Model;
% Xvalidated Model of data
ModelXval = zeros(I,J)*NaN;
for s = 1:Segments
disp([' Segment ',num2str(s),'/',num2str(Segments),' - Comp. ',num2str(f),'/',num2str(FacMax)])
Xnow = X;
Xnow(s:Segments:end) = NaN;
[M,Mean] = decomp(Method,Xnow,DimX,f,s,Segments,Cent,I,J,Param);
model = M + ones(I,1)*Mean';
ModelXval(s:Segments:end) = model(s:Segments:end);
end
XvalResult.Xval(f,:) = [100*(1 - sum( (X(id) - ModelXval(id)).^2)/sum(OffsetCorrectedData(id).^2)) f];
XvalResult.XvalModel{f} = ModelXval;
XvalResult.Factors(f)=f;
end
else % Do Tucker model
% Find all
PossibleNumber = [min(FacMin):max(FacMax)]'*ones(1,ord);
possibleCombs = unique(nchoosek(PossibleNumber(:),ord),'rows');
%remove useless
f2 = [];
for f1 = 1:size(possibleCombs,1)
if (prod(possibleCombs(f1,:))/max(possibleCombs(f1,:)))<max(possibleCombs(f1,:)) % Check that the largest mode is larger than the product of the other
f2 = [f2;f1];
elseif any(possibleCombs(f1,:)>FacMax) % Chk the model is desired,
f2 = [f2;f1];
end
end
possibleCombs(f2,:)=[];
[f1,f2]=sort(sum(possibleCombs'));
possibleCombs = [possibleCombs(f2,:) f1'];
XvalResult.Fit = zeros(size(possibleCombs,1),ord+1)*NaN;
XvalResult.Xval = zeros(size(possibleCombs,1),ord+1)*NaN;
for f = 1:size(possibleCombs,1)
XvalResult.XvalModel{f} = 'Not fitted';
XvalResult.FittedModel{f} = 'Not fitted';
end
for f1 = 1:size(possibleCombs,1)
% Fitted model
disp([' Total model - Comp. ',num2str(possibleCombs(f1,1:end-1)),'/',num2str(FacMax)])
[M,Mean,Param] = decomp(Method,X,DimX,possibleCombs(f1,1:end-1),1,Segments,Cent,I,J);
Model = M + ones(I,1)*Mean';
id = find(~isnan(X));
OffsetCorrectedData = X - ones(I,1)*Mean';
XvalResult.Fit(f1,:) = [100*(1 - sum( (X(id) - Model(id)).^2)/sum(OffsetCorrectedData(id).^2)) possibleCombs(f1,1:end-1)];
XvalResult.FittedModel{f1} = Model;
% Xvalidated Model of data
ModelXval = zeros(I,J)*NaN;
for s = 1:Segments
disp([' Segment ',num2str(s),'/',num2str(Segments),' - Comp. ',num2str(possibleCombs(f1,1:end-1)),'/',num2str(FacMax)])
Xnow = X;
Xnow(s:Segments:end) = NaN;
[M,Mean] = decomp(Method,Xnow,DimX,possibleCombs(f1,1:end-1),s,Segments,Cent,I,J,Param);
model = M + ones(I,1)*Mean';
ModelXval(s:Segments:end) = model(s:Segments:end);
end
XvalResult.Xval(f1,:) = [100*(1 - sum( (X(id) - ModelXval(id)).^2)/sum(OffsetCorrectedData(id).^2)) possibleCombs(f1,1:end-1)];
XvalResult.XvalModel{f1} = ModelXval;
XvalResult.Factors{f1}=possibleCombs(f1,1:end-1);
end
end
if Show&FacMin-FacMax~=0
if Method(1:3) == 'pca'
Nam = 'PCA';
elseif Method(1:3) == 'tuc'
Nam = 'Tucker';
elseif Method(1:3) == 'par'
Nam = 'PARAFAC';
elseif Method(1:3) == 'nip'
Nam = 'NIPALS';
end
figure
save jjj
if lower(Method(1:3))~='tuc'
bar(FacMin:FacMax,[XvalResult.Fit(FacMin:FacMax,1) XvalResult.Xval(FacMin:FacMax,1)],.76,'grouped')
else
% extract the ones with lowest Xval fit (for each # total comp) for plotting
fx = [];
f5 =[];
for f1 = 1:max(possibleCombs(:,end))
f2 = find(possibleCombs(:,end)==f1);
if length(f2)
[f3,f4] = max(XvalResult.Xval(f2));
f5 = [f5,f2(f4)];
end
end
fx = [possibleCombs(f5,end) XvalResult.Fit(f5,1) XvalResult.Xval(f5,1)];
bar(fx(:,1),fx(:,2:3),.76,'grouped')
for f1 = 1:size(fx,1)
f6=text(fx(f1,1),95,['[',num2str(possibleCombs(f5(f1),1:end-1)),']']);
set(f6,'Rotation',270)
end
end
g=get(gca,'YLim');
set(gca,'YLim',[max(-20,g(1)) 100])
legend('Fitted','Xvalidated',0)
titl = ['Xvalidation results (',Nam,')'];
if Cent
titl = [titl ,' - centering'];
else
titl = [titl ,' - no centering'];
end
title(titl,'FontWeight','Bold')
xlabel('Total number of components')
ylabel('Percent variance explained')
end
function [M,Mean,parameters] = decomp(Method,X,DimX,f,s,Segments,Cent,I,J,parameters);
Conv = 0;
it = 0;
maxit = 500;
% Initialize
if Cent
Mean = nanmean(X)';
else
Mean = zeros(J,1);
end
if lower(Method(1:3)) == 'par'
Xc = reshape(X- ones(I,1)*Mean',DimX);
if exist('parameters')==1
fact = parafac(Xc,f,[1e-5 10 0 0 NaN maxit],[],parameters.fact);
else
fact = parafac(Xc,f,[1e-5 10 0 0 NaN maxit]);
end
M = reshape(nmodel(fact),DimX(1),prod(DimX(2:end)));
parameters.fact=fact;
elseif lower(Method(1:3)) == 'tuc'
Xc = reshape(X- ones(I,1)*Mean',DimX);
if exist('parameters')==1
[fact,G] = tucker(Xc,f,[1e-2 0 0 0 NaN maxit],[],[],parameters.fact,parameters.G);
else
[fact,G] = tucker(Xc,f,[1e-2 0 0 0 NaN maxit]);
end
parameters.fact=fact;
parameters.G=G;
M = reshape(nmodel(fact,G),DimX(1),prod(DimX(2:end))) ;
elseif lower(Method) == 'nip'
Xc = reshape(X- ones(I,1)*Mean',DimX(1),prod(DimX(2:end)));
[t,p] = pcanipals(X- ones(I,1)*Mean',f,0);
parameters.t=t;
parameters.p=p;
M = t*p';
elseif lower(Method) == 'pca'
Xc = reshape(X- ones(I,1)*Mean',DimX(1),prod(DimX(2:end)));
[t,p] = pcals(X- ones(I,1)*Mean',f,0);
parameters.t=t;
parameters.p=p;
M = t*p';
else
error(' Name of method not recognized')
end
Fit = X - M - ones(I,1)*Mean';
Fit = sum(Fit(find(~isnan(X))).^2);
% Iterate
while ~Conv
it = it+1;
FitOld = Fit;
% Fit multilinear part
Xcent = X - ones(I,1)*Mean';
if Method(1:3) == 'par'
fact = parafac(reshape(Xcent,DimX),f,[1e-2 0 0 0 NaN maxit],[],fact);
M = reshape(nmodel(fact),DimX(1),prod(DimX(2:end)));
elseif Method(1:3) == 'tuc'
[fact,G] = tucker(reshape(Xcent,DimX),f,[1e-2 0 0 0 NaN maxit],[0 0 0],zeros(size(G)),fact,G);
M = reshape(nmodel(fact,G),DimX(1),prod(DimX(2:end)));
elseif Method == 'pca'
[t,p] = pcals(Xcent,f,0,t,p,0);
M = t*p';
elseif Method == 'nip'
[t,p] = pcanipals(Xcent,f,0);
M = t*p';
end
% Find offsets
if Cent
x = X;
mm=M+ones(I,1)*Mean';
x(find(isnan(X)))=mm(find(isnan(X)));
Mean = mean(x)';
end
%Find fit
Fit = X - M - ones(I,1)*Mean';
Fit = sum(Fit(find(~isnan(X))).^2);
if abs(Fit-FitOld)/FitOld<1e-8 | it > 1500
Conv = 1;
end
end
disp([' Fit ',num2str(Fit),' using ',num2str(it),' it.'])
function [t,p] = pcals(X,F,cent,t,p,show);
% LEAST SQUARES PCA WITH MISSING ELEMENTS
% 20-6-1999
%
% Calculates a least squares PCA model. Missing elements
% are denoted NaN. The solution is NOT nested, so one has
% to calculate a new model for each number of components.
ShowMeFitEvery = 20;
MaxIterations = 5;
[I,J]=size(X);
Xorig = X;
Miss = find(isnan(X));
NotMiss = find(~isnan(X));
m = t*p';
X(Miss) = m(Miss);
ssX = sum(X(NotMiss).^2);
Fit = 3;
OldFit = 6;
it = 0;
while abs(Fit-OldFit)/OldFit>1e-3 & it < MaxIterations;
it = it +1;
OldFit = Fit;
[t,s,p] = svds(X,F);
t = t*s;
Model = t*p';
X(Miss) = Model(Miss);
Fit = sum(sum( (Xorig(NotMiss) - Model(NotMiss)).^2));
if ~rem(it,ShowMeFitEvery)&show
disp([' Fit after ',num2str(it),' it. :',num2str(RelFit),'%'])
end
end
function [t,p,Mean] = pcanipals(X,F,cent);
% NIPALS-PCA WITH MISSING ELEMENTS
% cent: One if centering is to be included, else zero
[I,J]=size(X);
rand('state',sum(100*clock))
Xorig = X;
Miss = isnan(X);
NotMiss = ~isnan(X);
ssX = sum(X(find(NotMiss)).^2);
Mean = zeros(1,J);
if cent
Mean = nanmean(X);
end
X = X - ones(I,1)*Mean;
t=[];
p=[];
for f=1:F
Fit = 3;
OldFit = 6;
it = 0;
T = rand(I,1);
P = rand(J,1);
Fit = 2;
FitOld = 3;
while abs(Fit-FitOld)/FitOld>1e-7 & it < 100;
FitOld = Fit;
it = it +1;
for j = 1:J
try
id=find(NotMiss(:,j));
if length(id)==0
id,end
P(j) = T(id)'*X(id,j)/(T(id)'*T(id));
catch
P(j) = 0;
end
end
P = P/norm(P);
for i = 1:I
id=find(NotMiss(i,:));
T(i) = P(id)'*X(i,id)'/(P(id)'*P(id));
end
Fit = X-T*P';
Fit = sum(Fit(find(NotMiss)).^2);
end
t = [t T];
p = [p P];
X = X - T*P';
end
function Xc = nanmean(X)
if isempty(X)
Xc = NaN;
return
end
i = isnan(X);
j = find(i);
i = sum(i);
X(j) = 0;
Num = size(X,1)-i;
Xc = sum(X);
i = find(Num);
Xc(i) = Xc(i)./Num(i);
Xc(find(~Num))=NaN;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
parafac.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/NWAY/parafac.m
| 38,334 |
utf_8
|
3fea3384f1be9f57e339fa8f93e3ba4d
|
function [Factors,it,err,corcondia]=parafac(X,Fac,Options,const,OldLoad,FixMode,Weights);
% PARAFAC multiway parafac model
%
% See also:
% 'npls' 'tucker' 'dtld' 'gram'
%
%
% ___________________________________________________
%
% THE PARAFAC MODEL
% ___________________________________________________
%
% [Factors,it,err,corcondia] = parafac(X,Fac,Options,const,OldLoad,FixMode,Weights);
%
% or skipping optional in/outputs
%
% Factors = parafac(X,Fac);
%
% Algorithm for computing an N-way PARAFAC model. Optionally
% constraints can be put on individual modes for obtaining
% orthogonal, nonnegative, or unimodal solutions. The algorithm
% also handles missing data. For details of PARAFAC
% modeling see R. Bro, Chemom. Intell. Lab. Syst., 1997.
%
% Several possibilities exist for speeding up the algorithm.
% Compressing has been incorporated, so that large arrays can be
% compressed by using Tucker (see Bro & Andersson, Chemom.
% Intell. Lab. Syst., 1998).
% Another acceleration method incorporated here is to
% extrapolate the individual loading elements a number of
% iterations ahead after a specified number of iterations.
%
% A temporary MAT-file called TEMP.mat is saved for every
% 50 iterations. IF the computer breaks down or the model
% seems to be good enough, one can break the program and
% load the last saved estimate. The loadings in TEMP.MAT
% are given a cell array as described below and can be
% converted to A, B, C etc. by FAC2LET.M typing
% [A,B,C]=fac2let(Factors,size(X));
%
% All loading vectors except in first mode are normalized,
% so that all variance is kept in the first mode (as is
% common in two-way PCA). The components are arranged as
% in PCA. After iterating, the most important component is
% made the first component etc.
%
%
%
% ----------------------INPUT---------------------
%
% X X is the input array, which can be from three- to N-way (also
% twoway if the third mode is interpreted as a onedimensional
% mode).
%
% Fac No of factors/components sought.
%
%
% ----------------OPTIONAL INPUT---------------------
%
% Options Optional parameters. If not given or set to zero or [],
% defaults will be used. If you want Options(5) to be 2 and
% not change others, simply write Options(5)=2. Even if Options
% hasn't been defined Options will contain zeros except its
% fifth element.
%
% Options(1) - Convergence criterion
% The relative change in fit for which the algorithm stops.
% Standard is 1e-6, but difficult data might require a lower value.
%
% Options(2) - Initialization method
% This option is ignored if PARAFAC is started with old values.
% If no default values are given the default Options(2) is 0.
% The advantage of using DTLD or SVD for initialization is that
% they often provide good starting values. However, since the
% initial values are then fixed, repeating the fitting will give
% the exact same solution. Therefore it is not possible to substantiate
% if a local minimum has been reached. To avoid that use an initialization
% based on random values (2).
%
% 0 = fit using DTLD/GRAM for initialization (default if
% three-way and no missing and if sizes are
% largere than number of factors at least
% in two modes)
% 1 = fit using SVD vectors for initialization (default if higher than three-way or missing)
% 2 = fit using random orthogonalized values for initialization
% 10 = fit using the best-fitting models of several models
% fitted using a few iterations
%
% Options(3) - Plotting options
% 0 = no plots
% 1 = produces several graphical outputs
% 2 = produces several graphical outputs (loadings also shown during iterations)
% 3 = as 2 but no core consistency check (very slow for large arrays and/or many components)
%
% Options(4) - Scaling
% 0 or 1 = default scaling (columns in mode one carry the variance)
% 2 = no scaling applied (hence fixed elements will not be modified
%
% Options(5) - How often to show fit
% Determines how often the deviation between the model and the data
% is shown. This is helpful for adjusting the output to the number
% of iterations. Default is 10. If showfit is set to NaN, almost no
% outputs are given
%
% Options(6) - Maximal number of iterations
% Maximal number of iterations allowed. Default is 2500.
%
% const A vector telling type of constraints put on the loadings of the
% different modes. Same size as DimX but the i'th element tells
% what constraint is on that mode.
% 0 => no constraint,
% 1 => orthogonality
% 2 => nonnegativity
% 3 => unimodality (and nonnegativitiy)
% If const is not defined, no constraints are used.
% For no constraints in a threeway problem const = [0 0 0]
%
% OldLoad If initial guess of the loadings is available. OldLoad should be
% given a cell array where OldLoad{1}=A,OldLoad{2}=B etc.
%
% FixMode FixMode is a binary vector of same sixe as DimX. If
% FixMode(i) = 1 => Mode i is fixed (requires old values given)
% FixMode(i) = 0 => Mode i is not fixed hence estimated
% Ex.: FixMode = [0 1 1] find the scores of a data set given the loadings.
% When some modes are fixed, the numbering of the components will
% also be fixed. Normally components are sorted according to variance
% as in PCA, but this will not be performed if some modes are fixed.
%
% Weights If a matrix of the same size as X is given, weighted regression
% is performed using the weights in the matrix Weights. Statistically
% the weights will usually contain the inverse error standard
% deviation of the particular element
%
% ---------------------OUTPUT---------------------
%
% Factors PARAFAC estimate of loadings in one matrix. For a 3 component
% solution to a 4 x 3 x 3 array the loadings A, B & C will be
% stored in a 3 element cell vector:
% Factors{1}=A,
% Factors{2}=B
% Factors{3}=C
% etc.
%
% Use FAC2LET.M for converting to "normal" output or simply extract the
% components as e.g. A = Factors{1};
%
% it Number of iterations used. Can be helpful for checking if the algorithm
% has converged or simply hit the maximal number of iterations (default 2500).
%
% err The fit of the model = the sum of squares of errors (not including missing
% elements).
%
% Corcondia Core consistency test. Should ideally be 100%. If significantly below
% 100% the model is not valid
%
%
%
% OTHER STUFF
%
% Missing values are handled by expectation maximization only. Set all
% missing values to NaN
%
% COMMAND LINE (SHORT)
%
% Factors = parafac(X,Fac);
%
% Copyright (C) 1995-2006 Rasmus Bro & Claus Andersson
% Copenhagen University, DK-1958 Frederiksberg, Denmark, [email protected]
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
% $ Version 1.03 $ Date 1. October 1998 $ Not compiled $ Changed sign-convention because of problems with centered data
% $ Version 1.04 $ Date 18. February 1999 $ Not compiled $ Removed auxiliary line
% $ Version 1.06 $ Date 1. December 1999 $ Not compiled $ Fixed bug in low fit error handling
% $ Version 1.07 $ Date 17. January 2000 $ Not compiled $ Fixed bug in nnls handling so that the algorithm is not stopped until nonnegative appear
% $ Version 1.08 $ Date 21. January 2000 $ Not compiled $ Changed init DTLD so that primarily negative loadings are reflected if possible
% $ Version 1.09 $ Date 30. May 2000 $ Not compiled $ changed name noptioPF to noptiopf
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
% $ Version 2.001 $ June 2001 $ Fixed error in weighted regression $ RB $ Not compiled $
% $ Version 2.002 $ Jan 2002 $ Fixed scaling problem due to non-identifiability of DTLD(QZ) by scaling and normalizing after each iteration $ RB $ Not compiled $
% $ Version 2.003 $ Jan 2002 $ Fixed negative solutions when nonneg imposed $ RB $ Not compiled $
% $ Version 2.004 $ Jan 2002 $ Changed initialization when many components used $ RB $ Not compiled $
% $ Version 2.005 $ Jan 2002 $ Changed absolute fit criterion (approacing eps) into relative sse/ssx$ RB $ Not compiled $
% $ Version 2.006 $ Jan 2002 $ Fixed post-scaling when fixed loadings $ RB $ Not compiled $
% $ Version 2.01 $ Jan 2003 $ Removed corcondia for two-way data (doesn't work) and fixed a bug for data with dimension 2 $ RB $ Not compiled $
% $ Version 2.011 $ feb 2003 $ Added an option (4) for not post scaling components $ RB $ Not compiled $
% $ Version 2.10 $ jan 2004 $ Fixed a plotting error occuring when fitting model to old data $ RB $ Not compiled $
% $ Version 2.11 $ jan 2004 $ Fixed that PCA can be fitted $ RB $ Not compiled $
% $ Version 2.12 $ Jul 2004 $ Fixed initialization bug $ RB $ Not compiled $
% $ Version 2.13 $ Jan 2005 $ Modified sign conventions of scores and loads $ RB $ Not compiled $
% $ Version 2.14 $ Feb 2006 $ Fixed bug in sign-swicth when loadings are fixed $ RB $ Not compiled $
NumbIteraInitia=20;
if nargin==0
disp(' ')
disp(' ')
disp(' THE PARAFAC MODEL')
disp(' ')
disp(' Type <<help parafac>> for more info')
disp(' ')
disp(' [Factors,it,err,Corcondia] = parafac(X,Fac,Options,const,OldLoad,FixMode,Weights);')
disp(' or short')
disp(' Factors = parafac(X,Fac);')
disp(' ')
disp(' Options=[Crit Init Plot NotUsed ShowFit MaxIt]')
disp(' ')
disp(' ')
disp(' EXAMPLE:')
disp(' To fit a four-component PARAFAC model to X of size 6 x 2 x 200 x 3 type')
disp(' Factors=parafac(X,4)')
disp(' and to obtain the scores and loadings from the output type')
disp(' [A,B,C,D]=fac2let(Factors);')
return
elseif nargin<2
error(' The inputs X, and Fac must be given')
end
DimX = size(X);
X = reshape(X,DimX(1),prod(DimX(2:end)));
nonneg_obeyed = 1; % used to check if noneg is ok
if nargin<3
load noptiopf
OptionsDefault=Options;
else
% Call the current Options OptionsHere and load default to use if some of the current settings should be default
Options=Options(:);
I=length(Options);
if I==0
Options=zeros(8,1);
end
I=length(Options);
if I<8
Options=[Options;zeros(8-I,1)];
end
OptionsHere=Options;
load noptiopf
OptionsDefault=Options;
Options=OptionsHere;
end
if ~exist('OldLoad')==1
OldLoad=0;
elseif length(OldLoad)==0
OldLoad=0;
end
% Convergence criteria
if Options(1,1)==0
Options(1,1)=OptionsDefault(1,1);
end
crit=Options(1);
% Initialization
if ~any(Options(2))
Options(2)=OptionsDefault(2);
end
Init=Options(2);
% Interim plotting
Plt=Options(3,1);
if ~any([0 1 2 3]==Plt)
error(' Options(3,1) - Plotting - not set correct; must be 0,1,2 or 3')
end
if Options(5,1)==0
Options(5,1)=OptionsDefault(5,1);
end
showfit=Options(5,1);
if isnan(showfit)
showfit=-1;
end
if showfit<-1|round(showfit)~=showfit
error(' Options(5,1) - How often to show fit - not set correct; must be positive integer or -1')
end
if Options(6,1)==0
Options(6,1)=OptionsDefault(6,1);
maxit=Options(6,1);
elseif Options(6)>0&round(Options(6))==Options(6)
maxit=Options(6,1);
else
error(' Options(6,1) - Maximal number of iterations - not set correct; must be positive integer')
end
ShowPhi=0; % Counter. Tuckers congruence coef/Multiple cosine/UUC shown every ShowPhiWhen'th time the fit is shown
ShowPhiWhen=10;
MissConvCrit=1e-4; % Convergence criterion for estimates of missing values
NumberOfInc=0; % Counter for indicating the number of iterations that increased the fit. ALS algorithms ALLWAYS decrease the fit, but using outside knowledge in some sense (approximate equality or iteratively reweighting might cause the algorithm to diverge
% INITIALIZE
if showfit~=-1
disp(' ')
disp(' PRELIMINARY')
disp(' ')
end
ord=length(DimX);
if showfit~=-1
disp([' A ',num2str(Fac),'-component model will be fitted'])
end
if exist('const')~=1
const=zeros(size(DimX));
elseif length(const)~=ord
if length(DimX)==2 & length(const)==3
const = const(1:2);
else
const=zeros(size(DimX));
if showfit~=-1
disp(' Constraints are not given properly')
end
end
end
if showfit~=-1
for i=1:ord
if const(i)==0
disp([' No constraints on mode ',num2str(i)])
elseif const(i)==1
disp([' Orthogonality on mode ',num2str(i)])
elseif const(i)==2
disp([' Nonnegativity on mode ',num2str(i)])
elseif const(i)==3
disp([' Unimodality on mode ',num2str(i)])
end
end
end
% Check if orthogonality required on all modes
DoingPCA= 0;
if max(max(const))==1
if min(min(const))==1,
if length(DimX)>2
disp(' ')
disp(' Not possible to orthogonalize all modes in this implementation.')
error(' Contact the authors for further information')
else
const = [1 0]; % It's ok for PCA but do in one mode to get LS and then orthogonalize afterwards
DoingPCA = 1;
end
end
end
if exist('FixMode')==1
if length(FixMode)~=ord
FixMode = zeros(1,ord);
end
else
FixMode = zeros(1,ord);
end
if showfit~=-1
if any(FixMode)
disp([' The loadings of mode : ',num2str(find(FixMode(:)')),' are fixed'])
end
end
if exist('Weights')~=1
Weights=[];
end
% Display convergence criterion
if showfit~=-1
disp([' The convergence criterion is ',num2str(crit)])
end
% Define loading as one ((r1*r2*r3*...*r7)*Fac x 1) vector [A(:);B(:);C(:);...].
% The i'th loading goes from lidx(i,1) to lidx(i,2)
lidx=[1 DimX(1)*Fac];
for i=2:ord
lidx=[lidx;[lidx(i-1,2)+1 sum(DimX(1:i))*Fac]];
end
% Check if weighted regression required
if size(Weights,1)==size(X,1)&prod(size(Weights))/size(X,1)==size(X,2)
Weights = reshape(Weights,size(Weights,1),prod(size(Weights))/size(X,1));
if showfit~=-1
disp(' Given weights will be used for weighted regression')
end
DoWeight=1;
else
if showfit~=-1
disp(' No weights given')
end
DoWeight=0;
end
% Make idx matrices if missing values
if any(isnan(X(:)))
MissMeth=1;
else
MissMeth=0;
end
if MissMeth
id=sparse(find(isnan(X)));
idmiss2=sparse(find(~isnan(X)));
if showfit~=-1
disp([' ', num2str(100*(length(id)/prod(DimX))),'% missing values']);
disp(' Expectation maximization will be used for handling missing values')
end
SSX=sum(sum(X(idmiss2).^2)); % To be used for evaluating the %var explained
% If weighting to zero should be used
% Replace missing with mean values or model estimates initially
%Chk format ok.
dimisok = 1;
if length(OldLoad)==length(DimX)
for i=1:length(DimX)
if ~all(size(OldLoad{i})==[DimX(i) Fac])
dimisok = 0;
end
end
else
dimisok = 0;
end
if dimisok
model=nmodel(OldLoad);
model = reshape(model,DimX);
X(id)=model(id);
else
meanX=mean(X(find(~isnan(X))));
meanX=mean(meanX);
X(id)=meanX*ones(size(id));
end
else
if showfit~=-1
disp(' No missing values')
end
SSX=sum(sum(X.^2)); % To be used for evaluating the %var explained
end
% Check if weighting is tried used together with unimodality or orthogonality
if any(const==3)|any(const==1)
if DoWeight==1
disp(' ')
disp(' Weighting is not possible together with unimodality and orthogonality.')
disp(' It can be done using majorization, but has not been implemented here')
disp(' Please contact the authors for further information')
error
end
end
% Acceleration
acc=-5;
do_acc=1; % Do acceleration every do_acc'th time
acc_pow=2; % Extrapolate to the iteration^(1/acc_pow) ahead
acc_fail=0; % Indicate how many times acceleration have failed
max_fail=4; % Increase acc_pow with one after max_fail failure
if showfit~=-1
disp(' Line-search acceleration scheme initialized')
end
% Find initial guesses for the loadings if no initial values are given
% Use old loadings
if length(OldLoad)==ord % Use old values
if showfit~=-1
disp(' Using old values for initialization')
end
Factors=OldLoad;
% Use DTLD
elseif Init==0
if min(DimX)>1&ord==3&MissMeth==0
if sum(DimX<Fac)<2
if showfit~=-1
disp(' Using direct trilinear decomposition for initialization')
end
try
[A,B,C]=dtld(reshape(X,DimX),Fac);
catch
A = rand(DimX(1),Fac);B = rand(DimX(2),Fac);C = rand(DimX(3),Fac);
end
else
if showfit~=-1
disp(' Using random values for initialization')
end
for i=1:length(DimX)
Factors{i}=rand(DimX(i),Fac);
end
A = Factors{1};B=Factors{2};C = Factors{3};
end
A=real(A);B=real(B);C=real(C);
% Check for signs and reflect if appropriate
for f=1:Fac
if sign(sum(A(:,f)))<0
if sign(sum(B(:,f)))<0
B(:,f)=-B(:,f);
A(:,f)=-A(:,f);
elseif sign(sum(C(:,f)))<0
C(:,f)=-C(:,f);
A(:,f)=-A(:,f);
end
end
if sign(sum(B(:,f)))<0
if sign(sum(C(:,f)))<0
C(:,f)=-C(:,f);
B(:,f)=-B(:,f);
end
end
end
Factors{1}=A;Factors{2}=B;Factors{3}=C;
else
if showfit~=-1
disp(' Using singular values for initialization')
end
try
Factors=ini(reshape(X,DimX),Fac,2);
catch
Factors=[];
for i=1:length(DimX);
l = rand(DimX(i),Fac);
Factors{i} =l;
end
if showfit~=-1
disp(' Oops sorry - ended up with random instead')
end
end
end
% Use SVD
elseif Init==1
if all(DimX>=Fac)
if showfit~=-1
disp(' Using singular values for initialization')
end
try
Factors=ini(reshape(X,DimX),Fac,2);
catch
Factors=[];
for i=1:length(DimX);
l = rand(DimX(i),Fac);
Factors = [Factors;l(:)];
end
end
else
if showfit~=-1
disp(' Using random values for initialization')
end
for i=1:length(DimX)
Factors{i}=rand(DimX(i),Fac);
end
end
% Use random (orthogonal)
elseif Init==2
if showfit~=-1
disp(' Using orthogonal random for initialization')
end
Factors=ini(reshape(X,DimX),Fac,1);
elseif Init==3
error(' Initialization option set to three has been changed to 10')
% Use several small ones of the above
elseif Init==10
if showfit~=-1
disp(' Using several small runs for initialization')
end
Opt=Options;
Opt(5) = NaN;
Opt(6) = NumbIteraInitia;
Opt(2) = 0;
ERR=[];
[Factors,it,err] = parafac(reshape(X,DimX),Fac,Opt,const,[],[],Weights);
ERR = [ERR;err];
Opt(2) = 1;
[F,it,Err] = parafac(reshape(X,DimX),Fac,Opt,const,[],[],Weights);
ERR=[ERR;Err];
if Err<err
Factors=F;
err=Err;
end
Opt(2)=2;
for rep=1:3
[F,it,Err]=parafac(reshape(X,DimX),Fac,Opt,const,[],[],Weights);
ERR=[ERR;Err];
if Err<err
Factors=F;
err=Err;
end
end
if showfit~=-1
disp(' ')
disp(' Obtained fit-values')
disp([' Method Fit'])
disp([' DTLD ',num2str(ERR(1))])
disp([' SVD ',num2str(ERR(2))])
disp([' RandOrth ',num2str(ERR(3))])
disp([' RandOrth ',num2str(ERR(4))])
disp([' RandOrth ',num2str(ERR(5))])
end
else
error(' Problem in PARAFAC initialization - Not set correct')
end
% Check for signs and reflect if appropriate
for f=1:Fac
for m=1:ord-1
if sign(sum(Factors{m}(:,f)<0)) & FixMode(m)==0
contin=1;
for m2 = m+1:ord
if contin & FixMode(m2)==0
if sign(sum(Factors{m2}(:,f)<0))
Factors{m}(:,f)=-Factors{m}(:,f);
Factors{m2}(:,f)=-Factors{m2}(:,f);
contin=0;
end
end
end
end
end
end
% Convert to old format
if iscell(Factors)
ff = [];
for f=1:length(Factors)
ff=[ff;Factors{f}(:)];
end
Factors = ff;
end
% ALTERNATING LEAST SQUARES
err=SSX;
f=2*crit;
it=0;
connew=2;conold=1; % for missing values
ConstraintsNotRight = 0; % Just to ensure that iterations are not stopped if constraints are not yet fully imposed
if showfit~=-1
disp(' ')
disp(' Sum-of-Squares Iterations Explained')
disp(' of residuals variation')
end
while (((f>crit) | (norm(connew-conold)/norm(conold)>MissConvCrit) | ConstraintsNotRight) & it<maxit)|~ nonneg_obeyed
conold=connew; % for missing values
it=it+1;
acc=acc+1;
if acc==do_acc;
Load_o1=Factors;
end
if acc==do_acc+1;
acc=0;Load_o2=Factors;
Factors=Load_o1+(Load_o2-Load_o1)*(it^(1/acc_pow));
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
model=nmodel(ff);
model = reshape(model,DimX(1),prod(DimX(2:end)));
if MissMeth
connew=model(id);
errX=X-model;
if DoWeight==0
nerr=sum(sum(errX(idmiss2).^2));
else
nerr=sum(sum((Weights(idmiss2).*errX(idmiss2)).^2));
end
else
if DoWeight==0
nerr=sum(sum((X-model).^2));
else
nerr=sum(sum((X.*Weights-model.*Weights).^2));
end
end
if nerr>err
acc_fail=acc_fail+1;
Factors=Load_o2;
if acc_fail==max_fail,
acc_pow=acc_pow+1+1;
acc_fail=0;
if showfit~=-1
disp(' Reducing acceleration');
end
end
else
if MissMeth
X(id)=model(id);
end
end
end
if DoWeight==0
for ii=ord:-1:1
if ii==ord;
i=1;
else
i=ii+1;
end
idd=[i+1:ord 1:i-1];
l_idx2=lidx(idd,:);
dimx=DimX(idd);
if ~FixMode(i)
L1=reshape(Factors(l_idx2(1,1):l_idx2(1,2)),dimx(1),Fac);
if ord>2
L2=reshape(Factors(l_idx2(2,1):l_idx2(2,2)),dimx(2),Fac);
Z=kr(L2,L1);
else
Z = L1;
end
for j=3:ord-1
L1=reshape(Factors(l_idx2(j,1):l_idx2(j,2)),dimx(j),Fac);
Z=kr(L1,Z);
end
ZtZ=Z'*Z;
ZtX=Z'*X';
OldLoad=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
L=pfls(ZtZ,ZtX,DimX(i),const(i),OldLoad,DoWeight,Weights);
Factors(lidx(i,1):lidx(i,2))=L(:);
end
x=zeros(prod(DimX([1:ii-1 ii+1:ord])),DimX(ii)); % Rotate X so the current last mode is the first
x(:)=X;
X=x';
end
else
for ii=ord:-1:1
if ii==ord;
i=1;
else
i=ii+1;
end
idd=[i+1:ord 1:i-1];
l_idx2=lidx(idd,:);
dimx=DimX(idd);
if ~FixMode(i)
L1=reshape(Factors(l_idx2(1,1):l_idx2(1,2)),dimx(1),Fac);
if ord>2
L2=reshape(Factors(l_idx2(2,1):l_idx2(2,2)),dimx(2),Fac);
Z=kr(L2,L1);
else
Z = L1;
end
for j=3:ord-1
L1=reshape(Factors(l_idx2(j,1):l_idx2(j,2)),dimx(j),Fac);
Z=kr(L1,Z);
end
OldLoad=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
L=pfls(Z,X,DimX(i),const(i),OldLoad,DoWeight,Weights);
Factors(lidx(i,1):lidx(i,2))=L(:);
end
x=zeros(prod(DimX([1:ii-1 ii+1:ord])),DimX(ii));
x(:)=X;
X=x';
x(:)=Weights;
Weights=x';
end
end
% POSTPROCES LOADINGS (ALL VARIANCE IN FIRST MODE)
if ~any(FixMode)
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
for i=2:ord
B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
for ff=1:Fac
A(:,ff)=A(:,ff)*norm(B(:,ff));
B(:,ff)=B(:,ff)/norm(B(:,ff));
end
Factors(lidx(i,1):lidx(i,2))=B(:);
end
Factors(lidx(1,1):lidx(1,2))=A(:);
end
% APPLY SIGN CONVENTION IF NO FIXED MODES
% FixMode=1
if ~any(FixMode)&~(any(const==2)|any(const==3))
Sign = ones(1,Fac);
for i=ord:-1:2
A=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
Sign2=ones(1,Fac);
for ff=1:Fac
[out,sig]=max(abs(A(:,ff)));
Sign(ff) = Sign(ff)*sign(A(sig,ff));
Sign2(ff) = sign(A(sig,ff));
end
A=A*diag(Sign2);
Factors(lidx(i,1):lidx(i,2))=A(:);
end
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
A=A*diag(Sign);
Factors(lidx(1,1):lidx(1,2))=A(:);
end
% Check if nonneg_obeyed
for i=1:ord
if const(i)==2|const(i)==3
A=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
if any(A(:))<0
nonneg_obeyed=0;
end
end
end
% EVALUATE SOFAR
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);
ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);
id1 = id2;
end
model=nmodel(ff);
model = reshape(model,DimX(1),prod(DimX(2:end)));
if MissMeth % Missing values present
connew=model(id);
X(id)=model(id);
errold=err;
errX=X-model;
if DoWeight==0
err=sum(sum(errX(idmiss2).^2));
else
err=sum(sum((Weights(idmiss2).*errX(idmiss2)).^2));
end
else
errold=err;
if DoWeight==0
err=sum(sum((X-model).^2));
else
err=sum(sum((Weights.*(X-model)).^2));
end
end
if err/SSX<1000*eps, % Getting close to the machine uncertainty => stop
disp(' WARNING')
disp(' The misfit is approaching the machine uncertainty')
disp(' If pure synthetic data is used this is OK, otherwise if the')
disp(' data elements are very small it might be appropriate ')
disp(' to multiply the whole array by a large number to increase')
disp(' numerical stability. This will only change the solution ')
disp(' by a scaling constant')
f = 0;
else
f=abs((err-errold)/err);
if f<crit % Convergence: then check that constraints are fulfilled
if any(const==2)|any(const==3) % If nnls or unimodality imposed
for i=1:ord % Extract the
if const(i)==2|const(i)==3 % If nnls or unimodality imposed
Loadd = Factors(sum(DimX(1:i-1))*Fac+1:sum(DimX(1:i))*Fac);
if any(Loadd<0)
ConstraintsNotRight=1;
else
ConstraintsNotRight=0;
end
end
end
end
end
end
if it/showfit-round(it/showfit)==0
if showfit~=-1,
ShowPhi=ShowPhi+1;
if ShowPhi==ShowPhiWhen,
ShowPhi=0;
if showfit~=-1,
disp(' '),
disp(' Tuckers congruence coefficient'),
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
[phi,out]=ncosine(ff,ff);
disp(phi),
if MissMeth
fprintf(' Change in estim. missing values %12.10f',norm(connew-conold)/norm(conold));
disp(' ')
disp(' ')
end
disp(' Sum-of-Squares Iterations Explained')
disp(' of residuals variation')
end
end
if DoWeight==0
PercentExpl=100*(1-err/SSX);
else
PercentExpl=100*(1-sum(sum((X-model).^2))/SSX);
end
fprintf(' %12.10f %g %3.4f \n',err,it,PercentExpl);
if Plt==2|Plt==3
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
pfplot(reshape(X,DimX),ff,Weights',[0 0 0 0 0 0 0 1]);
drawnow
end
end
end
% Make safety copy of loadings and initial parameters in temp.mat
if it/50-round(it/50)==0
save temp Factors
end
% JUDGE FIT
if err>errold
NumberOfInc=NumberOfInc+1;
end
% POSTPROCESS. IF PCA on two-way enforce orth in both modes.
end % while f>crit
if DoingPCA
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
[u,s,v]=svd(A*B',0);
A = u(:,1:size(A,2))*s(1:size(A,2),1:size(A,2));
B = u(:,1:size(B,2));
Factors = [A(:);B(:)];
end
% CALCULATE TUCKERS CONGRUENCE COEFFICIENT
if showfit~=-1 & DimX(1)>1
disp(' '),disp(' Tuckers congruence coefficient')
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
[phi,out]=ncosine(ff,ff);
disp(phi)
disp(' ')
if max(max(abs(phi)-diag(diag(phi))))>.85
disp(' ')
disp(' ')
disp(' WARNING, SOME FACTORS ARE HIGHLY CORRELATED.')
disp(' ')
disp(' You could decrease the number of components. If this')
disp(' does not help, try one of the following')
disp(' ')
disp(' - If systematic variation is still present you might')
disp(' wanna decrease your convergence criterion and run')
disp(' one more time using the loadings as initial guess.')
disp(' ')
disp(' - Or use another preprocessing (check for constant loadings)')
disp(' ')
disp(' - Otherwise try orthogonalising some modes,')
disp(' ')
disp(' - Or use Tucker3/Tucker2,')
disp(' ')
disp(' - Or a PARAFAC with some modes collapsed (if # modes > 3)')
disp(' ')
end
end
% SHOW FINAL OUTPUT
if DoWeight==0
PercentExpl=100*(1-err/SSX);
else
PercentExpl=100*(1-sum(sum((X-model).^2))/SSX);
end
if showfit~=-1
fprintf(' %12.10f %g %3.4f \n',err,it,PercentExpl);
if NumberOfInc>0
disp([' There were ',num2str(NumberOfInc),' iterations that increased fit']);
end
end
% POSTPROCES LOADINGS (ALL VARIANCE IN FIRST MODE)
if Options(4)==0|Options(4)==1
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
for i=2:ord
B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
for ff=1:Fac
A(:,ff)=A(:,ff)*norm(B(:,ff));
B(:,ff)=B(:,ff)/norm(B(:,ff));
end
Factors(lidx(i,1):lidx(i,2))=B(:);
end
Factors(lidx(1,1):lidx(1,2))=A(:);
if showfit~=-1
disp(' ')
disp(' Components have been normalized in all but the first mode')
end
end
% PERMUTE SO COMPONENTS ARE IN ORDER AFTER VARIANCE DESCRIBED (AS IN PCA) IF NO FIXED MODES
if ~any(FixMode)
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
[out,order]=sort(diag(A'*A));
order=flipud(order);
A=A(:,order);
Factors(lidx(1,1):lidx(1,2))=A(:);
for i=2:ord
B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
B=B(:,order);
Factors(lidx(i,1):lidx(i,2))=B(:);
end
if showfit~=-1
disp(' Components have been ordered according to contribution')
end
elseif showfit ~= -1
disp(' Some modes fixed hence no sorting of components performed')
end
% TOOLS FOR JUDGING SOLUTION
if nargout>3
x=X;
if MissMeth
x(id)=NaN*id;
end
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
corcondia=corcond(reshape(x,DimX),ff,Weights,0);
end
% APPLY SIGN CONVENTION IF NO FIXED MODES
% FixMode=1
if ~any(FixMode)&~(any(const==2)|any(const==3))
Sign = ones(1,Fac);
for i=ord:-1:2
A=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
Sign2=ones(1,Fac);
for ff=1:Fac
[out,sig]=max(abs(A(:,ff)));
Sign(ff) = Sign(ff)*sign(A(sig,ff));
Sign2(ff) = sign(A(sig,ff));
end
A=A*diag(Sign2);
Factors(lidx(i,1):lidx(i,2))=A(:);
end
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
A=A*diag(Sign);
Factors(lidx(1,1):lidx(1,2))=A(:);
% % Instead of above, do signs so as to make them as "natural" as possible
% Factors = signswtch(Factors,reshape(X,DimX));
% DIDN't WORK (TOOK AGES FOR 7WAY DATA)
if showfit~=-1
disp(' Components have been reflected according to convention')
end
end
% Convert to new format
clear ff,id1 = 0;
for i = 1:length(DimX)
id2 = sum(DimX(1:i).*Fac);ff{i} = reshape(Factors(id1+1:id2),DimX(i),Fac);id1 = id2;
end
Factors = ff;
if Plt==1|Plt==2|Plt==3
% if Fac<6&Plt~=3&order>2&ord>2
if Fac<6&Plt~=3&ord>2
pfplot(reshape(X,DimX),ff,Weights,ones(1,8));
else
pfplot(reshape(X,DimX),ff,Weights,[1 1 0 1 1 1 1 1]);
if ord>2
disp(' Core consistency plot not shown because it requires large memory')
disp(' It can be made writing pfplot(X,Factors,[Weights],[0 0 1 0 0 0 0 0]');
else
disp(' Core consistency not applicable for two-way data')
end
end
end
% Show which criterion stopped the algorithm
if showfit~=-1
if ((f<crit) & (norm(connew-conold)/norm(conold)<MissConvCrit))
disp(' The algorithm converged')
elseif it==maxit
disp(' The algorithm did not converge but stopped because the')
disp(' maximum number of iterations was reached')
elseif f<eps
disp(' The algorithm stopped because the change in fit is now')
disp(' smaller than the machine uncertainty.')
else
disp(' Algorithm stopped for some mysterious reason')
end
end
function swloads = signswtch(loads,X);
%SIGNSWTCH switches sign of multilinear models so that signs are in
%accordance with majority of data
%
%
% I/O swloads = signswtch(loads,X);
%
% Factors must be a cell with the loadings. If Tucker or NPLS, then the
% last element of the cell must be the core array
try % Does not work in older versions of matlab
warning('off','MATLAB:divideByZero');
end
sizeX=size(X);
order = length(sizeX);
for i=1:order;
F(i) = size(loads{i},2);
end
if isa(X,'dataset')% Then it's a SDO
inc=X.includ;
X = X.data(inc{:});
end
% Compare centered X with center loading vector
if length(loads)==order % PARAFAC
% go through each component and then update in the end
for m = 1:order % For each mode determine the right sign
for f=1:F(1) % one factor at the time
s=[];
a = loads{m}(:,f);
x = permute(X,[m 1:m-1 m+1:order]);
for i=1:size(x(:,:),2); % For each column
id = find(~isnan(x(:,i)));
if length(id)>1
try
c = corrcoef(x(id,i),a(id));
catch
disp('Oops - something wrong in signswtch - please send a note to [email protected]')
whos
end
if isnan(c(2,1))
s(i)=0;
else
s(i) = c(2,1)*length(id); % Weigh correlation by number of elements so many-miss columns don't influence too much
end
else
s(i) = 0;
end
end
S(m,f) = sum(s);
end
end
% Use S to switch signs. If the signs of S (for each f) multiply to a
% positive number the switches are performed. If not, the mode of the
% negative one with the smallest absolute value is not switched.
for f = 1:F(1)
if sign(prod(S(:,f)))<1 % Problem: make the smallest negative positive to avoid switch of that
id = find(S(:,f)<0);
[a,b]=min(abs(S(id,f)));
S(id(b(1)),f)=-S(id(b(1)),f);
end
end
% Now ok, so switch what needs to be switched
for f = 1:F(1)
for m = 1:order
if sign(S(m,f))<1
loads{m}(:,f)=-loads{m}(:,f);
end
end
end
elseif length(loads)==(order+1) % NPLS/Tucker
% go through each mode and update and correct core accordinglu
for m = 1:order % For each mode determine the right sign
for f=1:F(m) % one factor at the time
a = loads{m}(:,f);
x = permute(X,[m 1:m-1 m+1:order]);
for i=1:size(x(:,:),2); % For each column
id = find(~isnan(x(:,i)));
if length(id)>1
c = corrcoef(x(id,i),a(id));
if isnan(c(2,1))
s(i)=0;
else
s(i) = c(2,1)*length(id); % Weigh correlation by number of elements so many-miss columns don't influence too much
end
else
s(i) = 0;
end
end
if sum(s) < 0
% turn around
loads{m}(:,f) = -loads{m}(:,f);
% Then switch the core accordingly
G = loads{order+1};
G = permute(G,[m 1:m-1 m+1:order]);
sizeG = size(G);
G = reshape(G,sizeG(1),prod(sizeG)/sizeG(1));
G(f,:) = -G(f,:);
G = reshape(G,sizeG);
G = ipermute(G,[m 1:m-1 m+1:order]);
loads{order+1} = G;
end
end
end
else
error('Unknown model type in SIGNS.M')
end
swloads = loads;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
ncrossdecompn.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/NWAY/ncrossdecompn.m
| 17,959 |
utf_8
|
0301a7a14a32ccf091dc76d066fd22e9
|
function XvalResult = ncrossdecomp(Method,X,FacMin,FacMax,Segments,Cent,Show);
%NCROSSDECOMP crossvalidation of PARAFAC/Tucker/PCA
%
% See also:
% 'ncrossreg'
%
% This file performs cross-validation of decomposition models
% PARAFAC, PCA, and Tucker. The cross-validation is performed
% such that part of the data are set to missing, the model is
% fitted to the remaining data, and the residuals between fitted
% and true left-out elements is calculated. This is performed
% 'Segments' times such that all elements are left out once.
% The segments are chosen by taking every 'Segments' element of
% X(:), i.e. from the vectorized array. If X is of size 5 x 7,
% and three segemnts are chosen ('Segments' = 3), then in the
% first of three models, the model is fitted to the matrix
%
% |x 0 0 x 0 0 x|
% |0 x 0 0 x 0 0|
% |0 0 x 0 0 x 0|
% |x 0 0 x 0 0 x|
% |0 x 0 0 x 0 0|
%
% where x's indicate missing elements. After fitting the residuals
% in the locations of missing values are calculated. After fitting
% all three models, all residuals have been calculated.
%
% Note that the number of segments must be chosen such that no columns
% or rows contain only missing elements (the algorithm will check this).
% Using 'Segments' = 7, 9, or 13 will usually achieve that.
%
% I/O
% XvalResult = ncrossdecomp(Method,X,FacMin,FacMax,Segments,Cent,Show);
%
% INPUT
% Method : 'parafac', 'tucker', 'pca', or 'nipals'
% For Tucker only Tucker3 models with equal
% number of components is currently available.
% For PCA the least squares model is calculated.
% Thus, offsets and parameters are calculated in
% a least squares sense unlike the method NIPALS,
% which calculates the PCA model using an ad hoc
% approach for handling missing data (as in
% standard chemometric software).
% X : Multi-way array of data
% FacMin : Lowest number of factors to use
% FacMax : Highest number of factors (note that for Tucker only models
% with the same number of components in each mode are
% calculated currently
% Segments : The number of segments to use. Try many!
% Cent : If set of one, the data are centered across samples,
% i.e. ordinary centering. Note, however, that the centering
% is not performed in a least squares sense but as preprocessing.
% This is not optimal because the data have missing data because
% of the way the elements are left out. This can give
% significantly lower fit than reasonable if you have few samples
% or use few segments. Alternatively, you can center the data
% beforehand and perform cross-validation on the centered data
% Show : If set to 0, no plot is given
%
% OUTPUT
% Structure XvalResult holding:
% Fit: The fitted percentage of variation explaind (as a
% function of component number)
% Xval: The cross-validated percentage of variation explaind
% (as a function of component number)
% FittedModel: The fitted model (as a function of component number)
% XvalModel: The cross-validated model (as a function of component number)
% $ Version 1.0301 $ Date 28. June 1999 $ Not compiled $
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
% Copyright (C) 1995-2006 Rasmus Bro & Claus Andersson
% Copenhagen University, DK-1958 Frederiksberg, Denmark, [email protected]
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
% uses NANSUM,
%GT
Perm = [1:ndims(X)];
DimX = size(X);
ord = ndims(X);
delta = zeros(1,ndims(X));
for i = 1:ndims(X)
c(i) = isempty(intersect(factor(DimX(i)),factor(Segments)));
index{i} = 1:DimX(i);
end
delta = zeros(1,ndims(X));
for i = 1:ndims(X)
c(i) = isempty(intersect(factor(DimX(i)),factor(Segments)));
index{i} = 1:DimX(i);
end
P = find(~c);
if sum(c) < length(DimX) - 1
for i = 1:sum(~c)
while ~c(P(i)) & delta(P(i)) < (abs(DimX(P(i))- Segments) - 1)
if ~rem(DimX(P(i)),2) & ~rem(Segments,2) & delta(P(i)) > 0
Off = 2;
else
Off = 1;
end
delta(P(i)) = delta(P(i)) + Off;
c(P(i)) = isempty(intersect(factor(DimX(P(i)) + delta(P(i))),factor(Segments)));
end
if sum(c) == length(DimX) - 1
return
end
end
if sum(~c) > 1
error('The chosen segmentation leads to tubes of only missing values')
end
end
if sum(c) == length(DimX) - 1
[c,Perm] = sort(~c);
end
[nil,PermI] = sort(Perm);
X = reshape(X,DimX(1),prod(DimX(2:end)));
%GT end
[I,J] = size(X);
if exist('Show')~=1
Show = 1;
end
if lower(Method(1:3)=='tuc')
if length(FacMin)==1
FacMin = ones(1,ord)*FacMin;
elseif length(FacMin)~=ord
error('Error in FacMin: When fitting Tucker models, the number of factors should be given for each mode')
end
if length(FacMax)==1
FacMax = ones(1,ord)*FacMax;
elseif length(FacMax)~=ord
error('Error in FacMax: When fitting Tucker models, the number of factors should be given for each mode')
end
end
%RB
% Check if the selected segmentation works (does not produce rows/columns of only missing)
%out = ones(I,J);
%out(1:Segments:end)=NaN;
%out(find(isnan(X))) = NaN;
%if any(sum(isnan(out))==I)
% error(' The chosen segmentation leads to columns of only missing elements')
%elseif any(sum(isnan(out'))==J)
% error(' The chosen segmentation leads to rows of only missing elements')
%end
%RB end
if lower(Method(1:3)~='tuc')
XvalResult.Fit = zeros(FacMax,2)*NaN;
XvalResult.Xval = zeros(FacMax,2)*NaN;
for f = 1:FacMin-1
XvalResult.XvalModel{f} = 'Not fitted';
XvalResult.FittedModel{f} = 'Not fitted';
end
for f = FacMin:FacMax
% Fitted model
disp([' Total model - Comp. ',num2str(f),'/',num2str(FacMax)])
[M,Mean,Param] = decomp(Method,X,DimX,f,1,Segments,Cent,I,J);
Model = M + ones(I,1)*Mean';
id = find(~isnan(X));
OffsetCorrectedData = X - ones(I,1)*Mean';
XvalResult.Fit(f,:) = [100*(1 - sum( (X(id) - Model(id)).^2)/sum(OffsetCorrectedData(id).^2)) f];
XvalResult.FittedModel{f} = Model;
% Xvalidated Model of data
ModelXval = zeros(I,J)*NaN;
for s = 1:Segments
disp([' Segment ',num2str(s),'/',num2str(Segments),' - Comp. ',num2str(f),'/',num2str(FacMax)])
%GT
Xnow = permute(zeros(DimX),Perm);
dimsadd = size(Xnow);
for j = 1:length(DimX)
dimsadd(j) = delta(Perm(j));
Xnow = cat(j,Xnow,zeros(dimsadd));
index2{j} = 1:DimX(Perm(j));
dimsadd = size(Xnow);
end
Xnow(s:Segments:end) = NaN;
Xnow = reshape(permute(Xnow(index2{:}),PermI),DimX(1),prod(DimX(2:end)));
Pos = isnan(Xnow);
[M,Mean] = decomp(Method,Xnow + X,DimX,f,s,Segments,Cent,I,J,Param);
model = M + ones(I,1)*Mean';
ModelXval(Pos) = model(Pos);
%GT end
end
XvalResult.Xval(f,:) = [100*(1 - sum( (X(id) - ModelXval(id)).^2)/sum(OffsetCorrectedData(id).^2)) f];
XvalResult.XvalModel{f} = ModelXval;
end
else % Do Tucker model
%GT
if length(FacMin) ~= ord
FacMin = ones(1,ord)*min(FacMin);
end
if length(FacMax) ~= ord
FacMax = ones(1,ord)*min(FacMax);
end
for i=1:length(FacMin)
ind{i} = [FacMin(i):FacMax(i)]';
ind2{i} = ones(length(ind{i}),1);
end
NCombs = cellfun('length',ind);
for i=1:length(FacMin)
o = [1:i-1,i+1:length(FacMin)];
t = ipermute(ind{i}(:,ind2{o}),[i,o]);
possibleCombs(1:prod(NCombs),i) = t(:);
end
FeasCombs = sort(possibleCombs');
f2 = prod(FeasCombs(1:size(FeasCombs,1)-1,:))<FeasCombs(end,:);
possibleCombs(f2,:) = [];
possibleCombs(:,end+1) = find(~f2(:));
%GTend
%RB
% Find all
%PossibleNumber = [min(FacMin):max(FacMax)]'*ones(1,ord);
%possibleCombs = unique(nchoosek(PossibleNumber(:),ord),'rows');
%remove useless
%f2 = [];
%for f1 = 1:size(possibleCombs,1)
% if (prod(possibleCombs(f1,:))/max(possibleCombs(f1,:)))<max(possibleCombs(f1,:)) % Check that the largest mode is larger than the product of the other
% f2 = [f2;f1];
% elseif any(possibleCombs(f1,:)>FacMax) % Chk the model is desired,
% f2 = [f2;f1];
% end
%end
%possibleCombs(f2,:)=[];
%[f1,f2]=sort(sum(possibleCombs'));
%possibleCombs = [possibleCombs(f2,:) f1'];
%RBend
XvalResult.Fit = zeros(size(possibleCombs,1),ord+1)*NaN;
XvalResult.Xval = zeros(size(possibleCombs,1),ord+1)*NaN;
for f = 1:size(possibleCombs,1)
XvalResult.XvalModel{f} = 'Not fitted';
XvalResult.FittedModel{f} = 'Not fitted';
end
for f1 = 1:size(possibleCombs,1)
% Fitted model
%GT
disp([' Total model - Comp. ',num2str(possibleCombs(f1,:)),'/',num2str(FacMax)])
[M,Mean,Param] = decomp(Method,X,DimX,possibleCombs(f1,:),1,Segments,Cent,I,J);
%GTend
%RB
%disp([' Total model - Comp. ',num2str(possibleCombs(f1,1:end-1)),'/',num2str(FacMax)])
%[M,Mean,Param] = decomp(Method,X,DimX,possibleCombs(f1,1:end-1),1,Segments,Cent,I,J);
%RBend
Model = M + ones(I,1)*Mean';
id = find(~isnan(X));
OffsetCorrectedData = X - ones(I,1)*Mean';
XvalResult.Fit(f1,:) = [100*(1 - sum( (X(id) - Model(id)).^2)/sum(OffsetCorrectedData(id).^2)) possibleCombs(f1,1:end-1)];
XvalResult.FittedModel{f1} = Model;
% Xvalidated Model of data
ModelXval = zeros(I,J)*NaN;
for s = 1:Segments
disp([' Segment ',num2str(s),'/',num2str(Segments),' - Comp. ',num2str(possibleCombs(f1,1:end-1)),'/',num2str(FacMax)])
%GT
Xnow = permute(zeros(DimX),Perm);
dimsadd = DimX;
for j = 1:length(DimX)
dimsadd(j) = delta(j);
Xnow = cat(j,Xnow,zeros(dimsadd));
index2{j} = 1:DimX(j);
dimsadd(j) = dimsadd(j) + DimX(j);
end
Xnow(s:Segments:end) = NaN;
Xnow = reshape(permute(Xnow(index2{:}),PermI),DimX(1),prod(DimX(2:end)));
Pos = isnan(Xnow);
[M,Mean] = decomp(Method,Xnow + X,DimX,possibleCombs(f1,1:end-1),s,Segments,Cent,I,J,Param);
model = M + ones(I,1)*Mean';
ModelXval(Pos) = model(Pos);
%GT end
end
XvalResult.Xval(f1,:) = [100*(1 - sum( (X(id) - ModelXval(id)).^2)/sum(OffsetCorrectedData(id).^2)) possibleCombs(f1,1:end-1)];
XvalResult.XvalModel{f1} = ModelXval;
end
end
if Show&FacMin-FacMax~=0
if Method(1:3) == 'pca'
Nam = 'PCA';
elseif Method(1:3) == 'tuc'
Nam = 'Tucker';
elseif Method(1:3) == 'par'
Nam = 'PARAFAC';
elseif Method(1:3) == 'nip'
Nam = 'NIPALS';
end
figure
save jjj
if lower(Method(1:3))~='tuc'
bar(FacMin:FacMax,[XvalResult.Fit(FacMin:FacMax,1) XvalResult.Xval(FacMin:FacMax,1)],.76,'grouped')
else
% extract the ones with lowest Xval fit (for each # total comp) for plotting
fx = [];
f5 =[];
for f1 = 1:max(possibleCombs(:,end))
f2 = find(possibleCombs(:,end)==f1);
if length(f2)
[f3,f4] = max(XvalResult.Xval(f2));
f5 = [f5,f2(f4)];
end
end
fx = [possibleCombs(f5,end) XvalResult.Fit(f5,1) XvalResult.Xval(f5,1)];
bar(fx(:,1),fx(:,2:3),.76,'grouped')
for f1 = 1:size(fx,1)
f6=text(fx(f1,1),95,['[',num2str(possibleCombs(f5(f1),1:end-1)),']']);
set(f6,'Rotation',270)
end
end
g=get(gca,'YLim');
set(gca,'YLim',[max(-20,g(1)) 100])
legend('Fitted','Xvalidated',0)
titl = ['Xvalidation results (',Nam,')'];
if Cent
titl = [titl ,' - centering'];
else
titl = [titl ,' - no centering'];
end
title(titl,'FontWeight','Bold')
xlabel('Total number of components')
ylabel('Percent variance explained')
end
function [M,Mean,parameters] = decomp(Method,X,DimX,f,s,Segments,Cent,I,J,parameters);
Conv = 0;
it = 0;
maxit = 500;
% Initialize
if Cent
Mean = nanmean(X)';
else
Mean = zeros(J,1);
end
if lower(Method(1:3)) == 'par'
Xc = reshape(X- ones(I,1)*Mean',DimX);
if exist('parameters')==1
fact = parafac(Xc,f,[1e-5 10 0 0 NaN maxit],[],parameters.fact);
else
fact = parafac(Xc,f,[1e-5 10 0 0 NaN maxit]);
end
M = reshape(nmodel(fact),DimX(1),prod(DimX(2:end)));
parameters.fact=fact;
elseif lower(Method(1:3)) == 'tuc'
Xc = reshape(X- ones(I,1)*Mean',DimX);
if exist('parameters')==1
[fact,G] = tucker(Xc,f,[1e-2 0 0 0 NaN maxit],[],[],parameters.fact,parameters.G);
else
[fact,G] = tucker(Xc,f,[1e-2 0 0 0 NaN maxit]);
end
parameters.fact=fact;
parameters.G=G;
M = reshape(nmodel(fact,G),DimX(1),prod(DimX(2:end))) ;
elseif lower(Method) == 'pca'|lower(Method) == 'nip'
Xc = reshape(X- ones(I,1)*Mean',DimX(1),prod(DimX(2:end)));
[t,p] = pcanipals(X- ones(I,1)*Mean',f,0);
parameters.t=t;
parameters.p=p;
M = t*p';
else
error(' Name of method not recognized')
end
Fit = X - M - ones(I,1)*Mean';
Fit = sum(Fit(find(~isnan(X))).^2);
% Iterate
while ~Conv
it = it+1;
FitOld = Fit;
% Fit multilinear part
Xcent = X - ones(I,1)*Mean';
if Method(1:3) == 'par'
fact = parafac(reshape(Xcent,DimX),f,[1e-2 0 0 0 NaN maxit],[],fact);
M = reshape(nmodel(fact),DimX(1),prod(DimX(2:end)));
elseif Method(1:3) == 'tuc'
[fact,G] = tucker(reshape(Xcent,DimX),f,[1e-2 0 0 0 NaN maxit],[0 0 0],zeros(size(G)),fact,G);
M = reshape(nmodel(fact,G),DimX(1),prod(DimX(2:end)));
elseif Method == 'pca'
[t,p] = pcals(Xcent,f,0,t,p,0);
M = t*p';
elseif Method == 'nip'
[t,p] = pcanipals(Xcent,f,0);
M = t*p';
end
% Find offsets
if Cent
x = X;
mm=M+ones(I,1)*Mean';
x(find(isnan(X)))=mm(find(isnan(X)));
Mean = mean(x)';
end
%Find fit
Fit = X - M - ones(I,1)*Mean';
Fit = sum(Fit(find(~isnan(X))).^2);
if abs(Fit-FitOld)/FitOld<1e-8 | it > 1500
Conv = 1;
end
end
disp([' Fit ',num2str(Fit),' using ',num2str(it),' it.'])
function [t,p] = pcals(X,F,cent,t,p,show);
% LEAST SQUARES PCA WITH MISSING ELEMENTS
% 20-6-1999
%
% Calculates a least squares PCA model. Missing elements
% are denoted NaN. The solution is NOT nested, so one has
% to calculate a new model for each number of components.
ShowMeFitEvery = 20;
MaxIterations = 5;
[I,J]=size(X);
Xorig = X;
Miss = find(isnan(X));
NotMiss = find(~isnan(X));
m = t*p';
X(Miss) = m(Miss);
ssX = sum(X(NotMiss).^2);
Fit = 3;
OldFit = 6;
it = 0;
while abs(Fit-OldFit)/OldFit>1e-3 & it < MaxIterations;
it = it +1;
OldFit = Fit;
[t,s,p] = svds(X,F);
t = t*s;
Model = t*p';
X(Miss) = Model(Miss);
Fit = sum(sum( (Xorig(NotMiss) - Model(NotMiss)).^2));
if ~rem(it,ShowMeFitEvery)&show
disp([' Fit after ',num2str(it),' it. :',num2str(RelFit),'%'])
end
end
function [t,p,Mean] = pcanipals(X,F,cent);
% NIPALS-PCA WITH MISSING ELEMENTS
% cent: One if centering is to be included, else zero
[I,J]=size(X);
rand('state',sum(100*clock))
Xorig = X;
Miss = isnan(X);
NotMiss = ~isnan(X);
ssX = sum(X(find(NotMiss)).^2);
Mean = zeros(1,J);
if cent
Mean = nanmean(X);
end
X = X - ones(I,1)*Mean;
t=[];
p=[];
for f=1:F
Fit = 3;
OldFit = 6;
it = 0;
T = rand(I,1);
P = rand(J,1);
Fit = 2;
FitOld = 3;
while abs(Fit-FitOld)/FitOld>1e-7 & it < 100;
FitOld = Fit;
it = it +1;
for j = 1:J
id=find(NotMiss(:,j));
if length(id)==0
id,end
P(j) = T(id)'*X(id,j)/(T(id)'*T(id));
end
P = P/norm(P);
for i = 1:I
id=find(NotMiss(i,:));
T(i) = P(id)'*X(i,id)'/(P(id)'*P(id));
end
Fit = X-T*P';
Fit = sum(Fit(find(NotMiss)).^2);
end
t = [t T];
p = [p P];
X = X - T*P';
end
function Xc = nanmean(X)
if isempty(X)
Xc = NaN;
return
end
i = isnan(X);
j = find(i);
i = sum(i);
X(j) = 0;
Num = size(X,1)-i;
Xc = sum(X);
i = find(Num);
Xc(i) = Xc(i)./Num(i);
Xc(find(~Num))=NaN;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
unimodalcrossproducts.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/NWAY/unimodalcrossproducts.m
| 5,308 |
utf_8
|
a01635517eb192929d08cfdb95f5c5d1
|
function B=unimodalcrossproducts(XtX,XtY,Bold)
%UNIMODALCROSSPRODUCTS
% Solves the problem min|Y-XB'| subject to the columns of
% B are unimodal and nonnegative. The algorithm is iterative and
% only one iteration is given, hence the solution is only improving
% the current estimate
%
% I/O B=unimodalcrossproducts(XtX,XtY,Bold)
% Modified from unimodal.m to handle crossproducts in input 1999
% Reference
% Bro and Sidiropoulos, "Journal of Chemometrics", 1998, 12, 223-247.
% Copyright (C) 1995-2006 Rasmus Bro & Claus Andersson
% Copenhagen University, DK-1958 Frederiksberg, Denmark, [email protected]
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
B=Bold;
F=size(B,2);
for f=1:F
xty = XtY(f,:)-XtX(f,[1:f-1 f+1:F])*B(:,[1:f-1 f+1:F])';
beta=pinv(XtX(f,f))*xty;
B(:,f)=ulsr(beta',1);
end
function [b,All,MaxML]=ulsr(x,NonNeg);
% ------INPUT------
%
% x is the vector to be approximated
% NonNeg If NonNeg is one, nonnegativity is imposed
%
%
%
% ------OUTPUT-----
%
% b is the best ULSR vector
% All is containing in its i'th column the ULSRFIX solution for mode
% location at the i'th element. The ULSR solution given in All
% is found disregarding the i'th element and hence NOT optimal
% MaxML is the optimal (leftmost) mode location (i.e. position of maximum)
%
% ___________________________________________________________
%
%
% Copyright 1997
%
% Nikos Sidiroupolos
% University of Maryland
% Maryland, US
%
% &
%
% Rasmus Bro
% Royal Veterinary & Agricultural University
% Denmark
%
%
% ___________________________________________________________
% This file uses MONREG.M
x=x(:);
I=length(x);
xmin=min(x);
if xmin<0
x=x-xmin;
end
% THE SUBSEQUENT
% CALCULATES BEST BY TWO MONOTONIC REGRESSIONS
% B1(1:i,i) contains the monontonic increasing regr. on x(1:i)
[b1,out,B1]=monreg(x);
% BI is the opposite of B1. Hence BI(i:I,i) holds the monotonic
% decreasing regression on x(i:I)
[bI,out,BI]=monreg(flipud(x));
BI=flipud(fliplr(BI));
% Together B1 and BI can be concatenated to give the solution to
% problem ULSR for any modloc position AS long as we do not pay
% attention to the element of x at this position
All=zeros(I,I+2);
All(1:I,3:I+2)=B1;
All(1:I,1:I)=All(1:I,1:I)+BI;
All=All(:,2:I+1);
Allmin=All;
Allmax=All;
% All(:,i) holds the ULSR solution for modloc = i, disregarding x(i),
iii=find(x>=max(All)');
b=All(:,iii(1));
b(iii(1))=x(iii(1));
Bestfit=sum((b-x).^2);
MaxML=iii(1);
for ii=2:length(iii)
this=All(:,iii(ii));
this(iii(ii))=x(iii(ii));
thisfit=sum((this-x).^2);
if thisfit<Bestfit
b=this;
Bestfit=thisfit;
MaxML=iii(ii);
end
end
if xmin<0
b=b+xmin;
end
% Impose nonnegativity
if NonNeg==1
if any(b<0)
id=find(b<0);
% Note that changing the negative values to zero does not affect the
% solution with respect to nonnegative parameters and position of the
% maximum.
b(id)=zeros(size(id))+0;
end
end
function [b,B,AllBs]=monreg(x);
% Monotonic regression according
% to J. B. Kruskal 64
%
% b = min|x-b| subject to monotonic increase
% B = b, but condensed
% AllBs = All monotonic regressions, i.e. AllBs(1:i,i) is the
% monotonic regression of x(1:i)
%
%
% Copyright 1997
%
% Rasmus Bro
% Royal Veterinary & Agricultural University
% Denmark
% [email protected]
%
I=length(x);
if size(x,2)==2
B=x;
else
B=[x(:) ones(I,1)];
end
AllBs=zeros(I,I);
AllBs(1,1)=x(1);
i=1;
while i<size(B,1)
if B(i,1)>B(min(I,i+1),1)
summ=B(i,2)+B(i+1,2);
B=[B(1:i-1,:);[(B(i,1)*B(i,2)+B(i+1,1)*B(i+1,2))/(summ) summ];B(i+2:size(B,1),:)];
OK=1;
while OK
if B(i,1)<B(max(1,i-1),1)
summ=B(i,2)+B(i-1,2);
B=[B(1:i-2,:);[(B(i,1)*B(i,2)+B(i-1,1)*B(i-1,2))/(summ) summ];B(i+1:size(B,1),:)];
i=max(1,i-1);
else
OK=0;
end
end
bInterim=[];
for i2=1:i
bInterim=[bInterim;zeros(B(i2,2),1)+B(i2,1)];
end
No=sum(B(1:i,2));
AllBs(1:No,No)=bInterim;
else
i=i+1;
bInterim=[];
for i2=1:i
bInterim=[bInterim;zeros(B(i2,2),1)+B(i2,1)];
end
No=sum(B(1:i,2));
AllBs(1:No,No)=bInterim;
end
end
b=[];
for i=1:size(B,1)
b=[b;zeros(B(i,2),1)+B(i,1)];
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
nprocess.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/NWAY/nprocess.m
| 10,939 |
utf_8
|
251743bad479e490e243bd1285a1a1f6
|
function [Xnew,mX,sX]=nprocess(X,Cent,Scal,mX,sX,reverse,show,usemse);
%NPROCESS pre and postprocessing of multiway arrays
%
%
% CENTERING AND SCALING OF N-WAY ARRAYS
%
% This m-file works in two ways
% I. Calculate center and scale parameters and preprocess data
% II. Use given center and scale parameters for preprocessing data
%
% %%% I. Calculate center and scale parameters %%%
%
% [Xnew,Means,Scales]=nprocess(X,Cent,Scal);
%
% INPUT
% X Data array
% Cent is binary row vector with as many elements as DimX.
% If Cent(i)=1 the centering across the i'th mode is performed
% I.e cnt = [1 0 1] means centering across mode one and three.
% Scal is defined likewise. Scal(i)=1, means scaling to standard
% deviation one within the i'th mode
%
% OUTPUT
% Xnew The preprocessed data
% mX Sparse vector holding the mean-values
% sX Sparse vector holding the scales
%
% %%% II. Use given center and scale parameters %%%
%
% Xnew=nprocess(X,Cent,Scal,mX,sX,reverse);
%
% INPUT
% X Data array
% Cent is binary row vector with as many elements as DimX.
% If Cent(i)=1 the centering across the i'th mode is performed
% I.e Cent = [1 0 1] means centering across mode one and three.
% Scal is defined likewise. Scal(i)=1, means scaling to standard
% deviation one within the i'th mode
% mX Sparse vector holding the mean-values
% sX Sparse vector holding the scales
% reverse Optional input
% if reverse = 1 normal preprocessing is performed (default)
% if reverse = -1 inverse (post-)processing is performed
%
% OUTPUT
% Xnew The preprocessed data
%
% For convenience this m-file does not use iterative
% preprocessing, which is necessary for some combinations of scaling
% and centering. Instead the algorithm first standardizes the modes
% successively and afterwards centers. The prior standardization ensures
% that the individual variables are on similar scale (this might be slightly
% disturbed upon centering - unlike for two-way data).
%
% The full I/O for nprocess is
% [Xnew,mX,sX]=nprocess(X,Cent,Scal,mX,sX,reverse,show,usemse);
% where show set to zero avoids screen output and where usemse set
% to one uses RMSE instead of STD for scaling (more appropriate
% in some settings)
% Copyright, 1998 -
% This M-file and the code in it belongs to the holder of the
% copyrights and is made public under the following constraints:
% It must not be changed or modified and code cannot be added.
% The file must be regarded as read-only. Furthermore, the
% code can not be made part of anything but the 'N-way Toolbox'.
% In case of doubt, contact the holder of the copyrights.
%
% Rasmus Bro
% Chemometrics Group, Food Technology
% Department of Food and Dairy Science
% Royal Veterinary and Agricultutal University
% Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
% Phone +45 35283296
% Fax +45 35283245
% E-mail [email protected]
% $ Version 1.03 $ Date 6. May 1998 $ Drastic error in finding scale parameters corrected $ Not compiled $
% $ Version 1.031 $ Date 25. January 2000 $ Error in scaling part $ Not compiled $
% $ Version 1.032 $ Date 28. January 2000 $ Minor bug$ Not compiled $
% $ Version 1.033 $ Date 14. April 2001 $ Incorrect backscaling fixed.
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
% $ Version 2.00 $ May 2001 $ rewritten by Giorgio Tomasi $ RB $ Not compiled $
% $ Version 2.01 $ Feb 2002 $ Fixed errors occuring with one-slab inputs $ RB $ Not compiled $
% $ Version 2.02 $ Oct 2003 $ Added possibility for sclaing with RMSE $ RB $ Not compiled $
% $ Version 1.03 $ Date 6. May 1998 $ Drastic error in finding scale parameters corrected $ Not compiled $
% Copyright (C) 1995-2006 Rasmus Bro & Claus Andersson
% Copenhagen University, DK-1958 Frederiksberg, Denmark, [email protected]
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.
%
%
% CENTERING AND SCALING OF N-WAY ARRAYS
%
% This m-file works in two ways
% I. Calculate center and scale parameters and preprocess data
% II. Use given center and scale parameters for preprocessing data
%
% %%% I. Calculate center and scale parameters %%%
%
% [Xnew,Means,Scales]=nprocess(X,DimX,Cent,Scal);
%
% INPUT
% X Data array
% DimX Size of X
% Cent is binary row vector with as many elements as DimX.
% If Cent(i)=1 the centering across the i'th mode is performed
% I.e cnt = [1 0 1] means centering across mode one and three.
% Scal is defined likewise. Scal(i)=1, means scaling to standard
% deviation one within the i'th mode
%
% OUTPUT
% Xnew The preprocessed data
% mX Sparse vector holding the mean-values
% sX Sparse vector holding the scales
%
% %%% II. Use given center and scale parameters %%%
%
% Xnew=nprocess(X,DimX,Cent,Scal,mX,sX);
%
% INPUT
% X Data array
% DimX Size of X
% Cent is binary row vector with as many elements as DimX.
% If Cent(i)=1 the centering across the i'th mode is performed
% I.e Cent = [1 0 1] means centering across mode one and three.
% Scal is defined likewise. Scal(i)=1, means scaling to standard
% deviation one within the i'th mode
% mX Sparse vector holding the mean-values
% sX Sparse vector holding the scales
% reverse Optional input
% if reverse = 1 normal preprocessing is performed (default)
% if reverse = -1 inverse (post-)processing is performed
%
% OUTPUT
% Xnew The preprocessed data
%
% For convenience this m-file does not use iterative
% preprocessing, which is necessary for some combinations of scaling
% and centering. Instead the algorithm first standardizes the modes
% successively and afterwards centers. The prior standardization ensures
% that the individual variables are on similar scale (this might be slightly
% disturbed upon centering - unlike for two-way data).
%
% Copyright
% Rasmus Bro 1997
% Denmark
% E-mail [email protected]
ord = ndims(X);
DimX = size(X);
Xnew = X;
if nargin<3
error(' Three input arguments must be given')
end
if nargin==4
error(' You must input both mX and sX even if you are only doing centering')
end
if nargin<8
usemse=0;
end
if ~exist('mX','var')
mX = [];
end
if ~exist('sX','var')
sX = [];
end
MODE = isa(mX,'cell')&isa(sX,'cell');
if ~exist('show')==1
show=1;
end
if ~exist('reverse')==1
reverse=1;
end
if ~any([1 -1]==reverse)
error( 'The input <<reverse>> must be one or minus one')
end
if show~=-1
if ~MODE
disp(' Calculating mean and scale and processing data')
else
if reverse==1
disp(' Using given mean and scale values for preprocessing data')
elseif reverse==-1
disp(' Using given mean and scale values for postprocessing data')
end
end
end
for i=1:ndims(X)
Inds{i} = ones(size(Xnew,i),1);
end
Indm = repmat({':'},ndims(Xnew) - 1,1);
out=0;
if ~MODE
mX = cell(ord,1);
sX = cell(ord,1);
end
Ord2Patch = [2,1;1,2];
if reverse == 1
%Standardize
for j = ord:-1:1
o = [j 1:j-1 j+1:ord];
if Scal(j)
if show~=-1
disp([' Scaling mode ',num2str(j)])
end
if ~MODE
if ~usemse
sX{j} = (stdnan(nshape(Xnew,j)')').^-1;
else
sX{j} = (rmsenan(nshape(Xnew,j)')').^-1;
end
end
Xnew = Xnew.*ipermute(sX{j}(:,Inds{o(2:end)}),o);
end
end
%Center
for j = ord:-1:1
o = [1:j-1 j+1:ord,j];
if Cent(j)
if show~=-1
if ~MODE
disp([' Centering mode ',num2str(j)])
else
disp([' Subtracting off-sets in mode ',num2str(j)])
end
end
if ~MODE
if ord ~= 2
mmm = nshape(Xnew,j);
if min(size(mmm))==1
mmm = mmm;
else
mmm = missmean(mmm);
end
mX{j} = reshape(mmm,DimX(o(1:end-1)));
else
mX{j} = reshape(missmean(nshape(Xnew,j)),DimX(o(1)),1);
end
end
Xnew = Xnew - ipermute(mX{j}(Indm{:},Inds{j}),o);
end
end
else
%Center
for j = 1:ord
if Cent(j)
if show~=-1
disp([' Adding off-sets in mode ',num2str(j)])
end
Xnew = Xnew + ipermute(mX{j}(Indm{:},Inds{j}),[1:j-1 j+1:ord,j]);
end
end
%Standardize
for j = 1:ord
o = [1:j-1 j+1:ord];
if Scal(j)
if show~=-1
disp([' Rescaling back to original domain in mode ',num2str(j)])
end
Xnew = Xnew ./ ipermute(sX{j}(:,Inds{o}),[j o]);
end
end
end
function st=rmsenan(X);
%RMSENAN estimate RMSE with NaN's
%
% Estimates the RMSE of each column of X
% when there are NaN's in X.
%
% Columns with only NaN's get a standard deviation of zero
% $ Version 1.02 $ Date 28. July 1998 $ Not compiled $
%
%
% Copyright, 1998 -
% This M-file and the code in it belongs to the holder of the
% copyrights and is made public under the following constraints:
% It must not be changed or modified and code cannot be added.
% The file must be regarded as read-only. Furthermore, the
% code can not be made part of anything but the 'N-way Toolbox'.
% In case of doubt, contact the holder of the copyrights.
%
% Rasmus Bro
% Chemometrics Group, Food Technology
% Department of Food and Dairy Science
% Royal Veterinary and Agricultutal University
% Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
% E-mail: [email protected]
[I,J]=size(X);
st=[];
for j=1:J
id=find(~isnan(X(:,j)));
if length(id)
st=[st sqrt(mean(X(id,j).^2))];
else
st=[st 0];
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
jdqr.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/jdqr.m
| 73,068 |
utf_8
|
b45810ddb5b2767c9289909175d1dc04
|
function varargout=jdqr(varargin)
%JDQR computes a partial Schur decomposition of a square matrix or operator.
% Lambda = JDQR(A) returns the absolute largest eigenvalues in a K vector
% Lambda. Here K=min(5,N) (unless K has been specified), where N=size(A,1).
% JDQR(A) (without output argument) displays the K eigenvalues.
%
% [X,Lambda] = JDQR(A) returns the eigenvectors in the N by K matrix X and
% the eigenvalues in the K by K diagonal matrix Lambda. Lambda contains the
% Jordan structure if there are multiple eigenvalues.
%
% [X,Lambda,HISTORY] = JDQR(A) returns also the convergence history
% (that is, norms of the subsequential residuals).
%
% [X,Lambda,Q,S] = JDQR(A) returns also a partial Schur decomposition:
% S is an K by K upper triangular matrix and Q is an N by K orthonormal matrix
% such that A*Q = Q*S. The diagonal elements of S are eigenvalues of A.
%
% [X,Lambda,Q,S,HISTORY] = JDQR(A) returns also the convergence history.
%
% [X,Lambda,HISTORY] = JDQR('Afun')
% [X,Lambda,HISTORY] = JDQR('Afun',N)
% The first input argument is either a square matrix (which can be
% full or sparse, symmetric or nonsymmetric, real or complex), or a
% string containing the name of an M-file which applies a linear
% operator to a given column vector. In the latter case, the M-file must
% return the the order N of the problem with N = Afun([],'dimension') or
% N must be specified in the list of input arguments.
% For example, EIGS('fft',...) is much faster than EIGS(F,...)
% where F is the explicit FFT matrix.
%
% The remaining input arguments are optional and can be given in
% practically any order:
% ... = JDQR(A,K,SIGMA,OPTIONS)
% ... = JDQR('Afun',K,SIGMA,OPTIONS)
% where
%
% K An integer, the number of eigenvalues desired.
% SIGMA A scalar shift or a two letter string.
% OPTIONS A structure containing additional parameters.
%
% With one output argument, S is a vector containing K eigenvalues.
% With two output arguments, S is a K-by-K upper triangular matrix
% and Q is a matrix with K columns so that A*Q = Q*S and Q'*Q=I.
% With three output arguments, HISTORY contains the convergence history.
%
% If K is not specified, then K = MIN(N,5) eigenvalues are computed.
%
% If SIGMA is not specified, then the K-th eigenvalues largest in magnitude
% are computed. If SIGMA is zero, then the K-th eigenvalues smallest in
% magnitude are computed. If SIGMA is a real or complex scalar then the
% K-th eigenvalues nearest SIGMA are computed. If SIGMA is one of the
% following strings, then it specifies the desired eigenvalues.
%
% SIGMA Location wanted eigenvalues
%
% 'LM' Largest Magnitude (the default)
% 'SM' Smallest Magnitude (same as sigma = 0)
% 'LR' Largest Real part
% 'SR' Smallest Real part
% 'BE' Both Ends. Computes k/2 eigenvalues
% from each end of the spectrum (one more
% from the high end if k is odd.)
%
%
% The OPTIONS structure specifies certain parameters in the algorithm.
%
% Field name Parameter Default
%
% OPTIONS.Tol Convergence tolerance: 1e-8
% norm(A*Q-Q*S,1) <= tol * norm(A,1)
% OPTIONS.jmin minimum dimension search subspace k+5
% OPTIONS.jmax maximum dimension search subspace jmin+5
% OPTIONS.MaxIt Maximum number of iterations. 100
% OPTIONS.v0 Starting space ones+0.1*rand
% OPTIONS.Schur Gives schur decomposition 'no'
% also in case of 2 or 3 output
% arguments (X=Q, Lambda=R).
%
% OPTIONS.TestSpace For using harmonic Ritz values 'Standard'
% If 'TestSpace'='Harmonic' then
% sigma=0 is the default value for SIGMA
%
% OPTIONS.Disp Shows size of intermediate residuals 1
% and displays the appr. eigenvalues.
%
% OPTIONS.LSolver Linear solver 'GMRES'
% OPTIONS.LS_Tol Residual reduction linear solver 1,0.7,0.7^2,..
% OPTIONS.LS_MaxIt Maximum number it. linear solver 5
% OPTIONS.LS_ell ell for BiCGstab(ell) 4
%
% OPTIONS.Precond Preconditioner LU=[[],[]].
%
% For instance
%
% OPTIONS=STRUCT('Tol',1.0e-10,'LSolver','BiCGstab','LS_ell',2,'Precond',M);
%
% changes the convergence tolerance to 1.0e-10, takes BiCGstab(2) as linear
% solver and the preconditioner defined in M.m if M is the string 'M',
% or M = L*U if M is an n by 2*n matrix: M = [L,U].
%
% The preconditoner can be specified in the OPTIONS structure,
% but also in the argument list:
% ... = JDQR(A,K,SIGMA,M,OPTIONS)
% ... = JDQR(A,K,SIGMA,L,U,OPTIONS)
% ... = JDQR('Afun',K,SIGMA,'M',OPTIONS)
% ... = JDQR('Afun',K,SIGMA,'L','U',OPTIONS)
% as an N by N matrix M (then M is the preconditioner), or an N by 2*N
% matrix M (then L*U is the preconditioner, where M = [L,U]),
% or as N by N matrices L and U (then L*U is the preconditioner),
% or as one or two strings containing the name of M-files ('M', or
% 'L' and 'U') which apply a linear operator to a given column vector.
%
% JDQR (without input arguments) lists the options and the defaults.
% Gerard Sleijpen.
% Copyright (c) 98
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
global Qschur Rschur PinvQ Pinv_u Pu nm_operations
if nargin==0, possibilities, return, end
%%% Read/set parameters
[n,nselect,sigma,SCHUR,...
jmin,jmax,tol,maxit,V,INTERIOR,SHOW,PAIRS,JDV0,t_tol,...
lsolver,LSpar] = ReadOptions(varargin{1:nargin});
LSpar0=LSpar; JDV=0; tol0=tol; LOCK0=~ischar(sigma);
if nargout>3, SCHUR=0; end
tau=0; if INTERIOR>=1 & LOCK0, tau=sigma(1); end
n_tar=size(sigma,1); nt=1; FIG=gcf;
%%% Initiate global variables
Qschur = zeros(n,0); Rschur = [];
PinvQ = zeros(n,0); Pinv_u = zeros(n,1); Pu = [];
nm_operations = 0; history = [];
%%% Return if eigenvalueproblem is trivial
if n<2
if n==1, Qschur=1; Rschur=MV(1); end
if nargout == 0, eigenvalue=Rschur, else
[varargout{1:nargout}]=output(history,Qschur,Rschur); end,
return, end
String = ['\r#it=%i #MV=%i dim(V)=%i |r_%i|=%6.1e '];
StrinP = '--- Checking for conjugate pair ---\n';
time = clock;
%%% Initialize V, W:
%%% V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
[V,W,R,E,M]=SetInitialSpaces(V,nselect,tau,jmin,tol);
j=size(V,2); k=size(Rschur,1);
nit=0; nlit=0; SOLVED=0;
switch INTERIOR
case 0
%%% The JD loop (Standard)
%%% V orthogonal, V orthogonal to Qschur
%%% V*V=eye(j), Qschur'*V=0,
%%% W=A*V, M=V'*W
%%%
W=W*R; if tau ~=0; W=W+tau*V; end, M=M'*R; temptarget=sigma(nt,:);
while (k<nselect) & (nit < maxit)
%%% Compute approximate eigenpair and residual
[UR,S]=SortSchur(M,temptarget,j==jmax,jmin);
y=UR(:,1); theta=S(1,1); u=V*y; w=W*y;
r=w-theta*u; [r,s]=RepGS(Qschur,r,0); nr=norm(r); r_KNOWN=1;
if LOCK0 & nr<t_tol, temptarget=[theta;sigma(nt,:)]; end
% defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr);
% DispResult('defekt',defekt,3)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
history=[history;nr,nit,nm_operations]; %%%
if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%%
if SHOW == 2, LOCK = LOCK0 & nr<t_tol; %%%
if MovieTheta(n,nit,diag(S),jmin,sigma(nt,:),LOCK,j==jmax) %%%
break, end, end, end %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Check for convergence
if nr<tol
%%% Expand the partial Schur form
Qschur=[Qschur,u];
%% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
Rschur=[Rschur,s;zeros(1,k),theta]; k=k+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if SHOW, ShowLambda(theta,k), end %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if k>=nselect, break, end, r_KNOWN=0;
%%% Expand preconditioned Schur matrix PinvQ
SOLVED=UpdateMinv(u,SOLVED);
if j==1,
[V,W,R,E,M]=SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol);
k=size(Rschur,1); if k>=nselect, break, end
W=W*R; if tau ~=0; W=W+tau*V; end; M=M'*R; j=size(V,2);
else,
J=[2:j]; j=j-1; UR=UR(:,J);
M=S(J,J); V=V*UR; W=W*UR;
end
if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u)));
if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end
end
if EXPAND, temptarget=conj(theta); if SHOW, fprintf(StrinP), end
else, nlit=0; nt=min(nt+1,n_tar); temptarget=sigma(nt,:); end
end % nr<tol
%%% Check for shrinking the search subspace
if j>=jmax
j=jmin; J=[1:j]; UR=UR(:,J);
M=S(J,J); V=V*UR; W=W*UR;
end % if j>=jmax
if r_KNOWN
%%% Solve correction equation
v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); SOLVED=1;
nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1;
end % if r_KNOWN
if EXPAND
%%% Expand the subspaces of the interaction matrix
v=RepGS([Qschur,V],v);
if size(v,2)>0
w=MV(v);
M=[M,V'*w;v'*W,v'*w];
V=[V,v]; W=[W,w]; j=j+1; EXPAND=0; tol=tol0;
else
tol=2*tol;
end
end % if EXPAND
end % while (nit<maxit)
case 1
%%% The JD loop (Harmonic Ritz values)
%%% Both V and W orthonormal and orthogonal w.r.t. Qschur
%%% V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%%% (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%%%
temptarget=0; FIXT=1; lsolver0=lsolver;
while (k<nselect) & (nit<maxit)
%%% Compute approximate eigenpair and residual
[UR,UL,S,T]=SortQZ(R,M,temptarget,j>=jmax,jmin);
y=UR(:,1); theta=T(1,1)'*S(1,1);
u=V*y; w=W*(R*y); r=w-theta*u; nr=norm(r); r_KNOWN=1;
if nr<t_tol, temptarget=[theta;0]; end, theta=theta+tau;
% defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr);
% DispResult('defect',defekt,3)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
history=[history;nr,nit,nm_operations]; %%%
if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%%
if SHOW == 2, Lambda=diag(S)./diag(T)+tau; Lambda(1)=theta; %%%
if MovieTheta(n,nit,Lambda,jmin,sigma(nt,:),nr<t_tol,j==jmax) %%%
break, end, end, end %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Check for convergence
if nr<tol
%%% Expand the partial Schur form
Qschur=[Qschur,u];
%% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
Rschur=[Rschur,E*y;zeros(1,k),theta]; k=k+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if SHOW, ShowLambda(theta,k), end %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if k>=nselect, break, end, r_KNOWN=0; JDV=0;
%%% Expand preconditioned Schur matrix PinvQ
SOLVED=UpdateMinv(u,SOLVED);
if j==1,
[V,W,R,E,M]=...
SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol);
k=size(Rschur,1); if k>=nselect, break, end, j=size(V,2);
else
J=[2:j]; j=j-1; UR=UR(:,J); UL=UL(:,J);
R=S(J,J); M=T(J,J); V=V*UR; W=W*UL;
[r,a]=RepGS(u,r,0); E=[E*UR;(T(1,1)'-a/S(1,1))*S(1,J)];
s=(S(1,J)/S(1,1))/R; W=W+r*s; M=M+s'*(r'*V);
if (nr*norm(s))^2>eps, [W,R0]=qr(W,0); R=R0*R; M=R0'\M; end
end
if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u)));
if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end
end
if EXPAND, if SHOW, fprintf(StrinP), end
temptarget=[conj(theta)-tau;0];
else, nlit=0; temptarget=0;
if nt<n_tar
nt=nt+1; tau0=tau; tau=sigma(nt,1); tau0=tau0-tau;
[W,R]=qr(W*R+tau0*V,0); M=W'*V;
end
end
end
%%% Check for shrinking the search subspace
if j>=jmax
j=jmin; J=[1:j]; UR=UR(:,J); UL=UL(:,J);
R=S(J,J); M=T(J,J); V=V*UR; W=W*UL; E=E*UR;
end % if j>=jmax
if r_KNOWN
%%% Solve correction equation
if JDV, disp('Stagnation'),
LSpar(end-1)=(LSpar(end-1)+15)*2;
% lsolver='bicgstab'; LSpar=[1.e-2,300,4];
else
LSpar=LSpar0; JDV=0; lsolver=lsolver0;
end
if nr>0.001 & FIXT, theta=tau; else, FIXT=0; end
v=Solve_pce(theta,u,r,lsolver,LSpar,nlit);
nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1; SOLVED=1; JDV=0;
end
if EXPAND
%%% Expand the subspaces of the interaction matrix
[v,zeta]=RepGS([Qschur,V],v);
if JDV0 & abs(zeta(end,1))/norm(zeta)<0.06, JDV=JDV+1; end
if size(v,2)>0
w=MV(v); if tau ~=0, w=w-tau*v; end
[w,e]=RepGS(Qschur,w,0); [w,y]=RepGS(W,w);
R=[[R;zeros(1,j)],y]; M=[M,W'*v;w'*V,w'*v]; E=[E,e];
V=[V,v]; W=[W,w]; j=j+1; EXPAND=0; tol=tol0;
else
tol=2*tol;
end
end
end % while (nit<maxit)
case 1.1
%%% The JD loop (Harmonic Ritz values)
%%% V W AV.
%%% Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-tau*V
%%% V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%%% (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
%%%
AV=W*R; temptarget=0;
while (k<nselect) & (nit<maxit)
%%% Compute approximate eigenpair and residual
[UR,UL,S,T]=SortQZ(R,M,temptarget,j>=jmax,jmin);
y=UR(:,1); u=V*y; w=AV*y; theta=u'*w;
r=w-theta*u; [r,y]=RepGS(Qschur,r,0); nr=norm(r); r_KNOWN=1;
if nr<t_tol, temptarget=[theta;0]; end, theta=theta+tau;
% defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr);
% DispResult('defect',defekt,3)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
history=[history;nr,nit,nm_operations]; %%%
if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%%
if SHOW == 2,Lambda=diag(S)./diag(T)+tau; Lambda(1)=theta; %%%
if MovieTheta(n,nit,Lambda,jmin,sigma(nt,:),nr<t_tol,j==jmax) %%%
break, end, end, end %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Check for convergence
if nr<tol
%%% Expand the partial Schur form
Qschur=[Qschur,u];
%% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
Rschur=[Rschur,y;zeros(1,k),theta]; k=k+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if SHOW, ShowLambda(theta,k), end %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if k>=nselect, break, end, r_KNOWN=0;
%%% Expand preconditioned Schur matrix PinvQ
SOLVED=UpdateMinv(u,SOLVED);
if j==1
[V,W,R,E,M]=SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol);
k=size(Rschur,1); if k>=nselect, break, end
AV=W*R; j=size(V,2);
else
J=[2:j]; j=j-1; UR=UR(:,J); UL=UL(:,J);
AV=AV*UR; R=S(J,J); M=T(J,J); V=V*UR; W=W*UL;
end
if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u)));
if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end
end
if EXPAND,if SHOW, fprintf(StrinP), end
temptarget=[conj(theta)-tau;0];
else, nlit=0; temptarget=0;
if nt<n_tar
nt=nt+1; tau0=tau; tau=sigma(nt,1); tau0=tau0-tau;
AV=AV+tau0*V; [W,R]=qr(W*R+tau0*V,0); M=W'*V;
end
end
end
%%% Check for shrinking the search subspace
if j>=jmax
j=jmin; J=[1:j]; UR=UR(:,J); UL=UL(:,J);
AV=AV*UR; R=S(J,J); M=T(J,J); V=V*UR; W=W*UL;
end % if j>=jmax
if r_KNOWN
%%% Solve correction equation
v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); SOLVED=1;
nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1;
end
if EXPAND
%%% Expand the subspaces of the interaction matrix
v=RepGS([Qschur,V],v);
if size(v,2)>0
w=MV(v); if tau ~=0, w=w-tau*v;end
AV=[AV,w]; R=[R,W'*w];
w=RepGS([Qschur,W],w);
R=[R;w'*AV]; M=[M,W'*v;w'*V,w'*v];
V=[V,v]; W=[W,w]; j=j+1; EXPAND=0; tol=tol0;
else
tol=2*tol;
end
end
end % while (nit<maxit)
case 1.2
%%% The JD loop (Harmonic Ritz values)
%%% W orthonormal, V and W orthogonal to Qschur,
%%% W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%%% W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
%%% M=W'*V
V=V/R; M=M/R; temptarget='LM'; E=E/R;
while (k<nselect) & (nit<maxit)
%%% Compute approximate eigenpair and residual
[UR,S]=SortSchur(M,temptarget,j==jmax,jmin);
y=UR(:,1); u=V*y; nrm=norm(u); y=y/nrm; u=u/nrm;
theta=S(1,1)'/(nrm*nrm); w=W*y; r=w-theta*u; nr=norm(r); r_KNOWN=1;
if nr<t_tol, temptarget=[S(1,1);inf]; end, theta=theta+tau;
% defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr);
% DispResult('defect',defekt,3)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
history=[history;nr,nit,nm_operations]; %%%
if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%%
if SHOW == 2, Lambda=1./diag(S)+tau; Lambda(1)=theta; %%%
if MovieTheta(n,nit,Lambda,jmin,sigma(nt,:),nr<t_tol,j==jmax) %%%
break, end, end, end %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Check for convergence
if nr<tol
%%% Expand the partial Schur form
Qschur=[Qschur,u];
%% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
y=E*y; Rschur=[Rschur,y;zeros(1,k),theta]; k=k+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if SHOW, ShowLambda(theta,k), end %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if k>=nselect, break, end, r_KNOWN=0;
%%% Expand preconditioned Schur matrix PinvQ
SOLVED=UpdateMinv(u,SOLVED);
if j==1
[V,W,R,E,M]=SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol);
k=size(Rschur,1); if k>=nselect, break, end
V=V/R; j=size(V,2); M=M/R; E=E/R;
else
J=[2:j]; j=j-1; UR=UR(:,J); M=S(J,J);
V=V*UR; W=W*UR; [r,a]=RepGS(u,r,0);
s=u'*V; V=V-u*s; W=W-r*s; M=M-s'*(r'*V)-(W'*u)*s;
E=[E*UR-y*s;(tau-theta-a)*s];
if (nr*norm(s))^2>eps, [W,R]=qr(W,0); V=V/R; M=(R'\M)/R; E=E/R; end
end
if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u)));
if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end
end
if EXPAND, if SHOW, fprintf(StrinP), end
temptarget=[1/(conj(theta)-tau);inf];
else, nlit=0; temptarget='LM';
if nt<n_tar
nt=nt+1; tau0=tau; tau=sigma(nt,1);
[W,R]=qr(W+(tau0-tau)*V,0); V=V/R; M=W'*V; E=E/R;
end
end
end
%%% Check for shrinking the search subspace
if j>=jmax
j=jmin; J=[1:j]; UR=UR(:,J);
M=S(J,J); V=V*UR; W=W*UR; E=E*UR;
end % if j>=jmax
if r_KNOWN
%%% Solve correction equation
v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); SOLVED=1;
nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1;
end
if EXPAND
%%% Expand the subspaces of the interaction matrix
v=RepGS(Qschur,v,0);
if size(v,2)>0
w=MV(v); if tau ~=0, w=w-tau*v; end
[w,e]=RepGS(Qschur,w,0); [w,y]=RepGS(W,w);
nrw=y(j+1,1); y=y(1:j,:);
v=v-V*y; v=v/nrw; e=e-E*y; e=e/nrw;
M=[M,W'*v;w'*V,w'*v];
V=[V,v]; W=[W,w]; j=j+1; E=[E,e];
if 1/cond(M)<10*tol
[V,W,R,E,M]=SetInitialSpaces(V,nselect,tau,jmin,tol,W,E);
k=size(Rschur,1); if k>=nselect, break, end
V=V/R; M=M/R; j=size(V,2);temptarget='LM'; E=E/R;
end
EXPAND=0; tol=tol0;
else
tol=2*tol;
end
end
end % while (nit<maxit)
end % case
time_needed=etime(clock,time);
Refine([Qschur,V],1);% 2-SCHUR);
CheckSortSchur(sigma);
Lambda=[]; X=zeros(n,0);
if ~SCHUR & k>0, [z,Lambda]=Jordan(Rschur); X=Qschur*z; end
%-------------- display results ----------------------------
if SHOW == 2, MovieTheta, figure(FIG), end
if SHOW & size(history,1)>0
switch INTERIOR
case 0
testspace='V, V orthonormal';
case 1
testspace='A*V-sigma*V, V and W orthonormal';
case 1.1
testspace='A*V-sigma*V, V and W orthonormal, AV';
case 1.2
testspace='A*V-sigma*V, W orthogonal';
otherwise
testspace='Experimental';
end
StringT=sprintf('The test subspace W is computed as W = %s.',testspace);
StringX=sprintf('JDQZ with jmin=%g, jmax=%g, residual tolerance %g.',...
jmin,jmax,tol);
StringY=sprintf('Correction equation solved with %s.',lsolver);
date=fix(clock);
String=sprintf('\n%2i-%2i-%2i, %2i:%2i:%2i',date(3:-1:1),date(4:6));
StringL='log_{10} || r_{#it} ||_2';
for pl=1:SHOW
subplot(SHOW,1,pl), t=history(:,pl+1);
plot(t,log10(history(:,1)),'*-',t,log10(tol)+0*t,':')
legend(StringL), title(StringT)
StringL='log_{10} || r_{#MV} ||_2'; StringT=StringX;
end
if SHOW==2, xlabel([StringY,String])
else, xlabel([StringX,String]), ylabel(StringY), end
drawnow
end
if SHOW
str1=num2str(abs(k-nselect)); str='s';
if k>nselect,
if k==nselect+1, str1='one'; str=''; end
fprintf('\n\nDetected %s additional eigenpair%s.',str1,str)
end
if k<nselect,
if k==0, str1='any'; str=''; elseif k==nselect-1, str1='one'; str=''; end
fprintf('\n\nFailed detection of %s eigenpair%s.',str1,str)
end
if k>0, ShowLambda(diag(Rschur)); else, fprintf('\n'); end
Str='time_needed'; DispResult(Str,eval(Str))
if (k>0)
if ~SCHUR
Str='norm(MV(X)-X*Lambda)'; DispResult(Str,eval(Str))
end
Str='norm(MV(Qschur)-Qschur*Rschur)'; DispResult(Str,eval(Str))
I=eye(k); Str='norm(Qschur''*Qschur-I)'; DispResult(Str,eval(Str))
end
fprintf('\n\n')
end
if nargout == 0, if ~SHOW, eigenvalues=diag(Rschur), end, return, end
[varargout{1:nargout}]=output(history,X,Lambda);
return
%===========================================================================
%======= PREPROCESSING =====================================================
%===========================================================================
%======= INITIALIZE SUBSPACE ===============================================
function [V,W,R,E,M]=SetInitialSpaces(V,nselect,tau,jmin,tol,W,E);
%[V,W,R,E,M]=SetInitialSpaces(VV,nselect,tau,jmin,tol);
% Output: V(:,1:SIZE(VV,2))=ORTH(VV),
% V'*V=W'*W=EYE(JMIN), M=W'*V;
% such that A*V-tau*V=W*R+Qschur*E,
% with R upper triangular, and E=Qschur'*(A*V-tau*V).
%
%[V,W,R,E,M]=SetInitialSpaces(VV,nselect,tau,jmin,tol,AV,EE);
% Input such that
% A*VV-tau*VV=AV+Qschur*EE, EE=Qschur'*(A*VV-tau*VV);
%
% Output: V(:,1:SIZE(VV,2))=ORTH(VV),
% V'*V=W'*W=EYE(JMIN), M=W'*V;
% such that A*V-tau*V=W*R+Qschur*E,
% with R upper triangular, and E=Qschur'*(A*V-tau*V).
global Qschur Rschur
[n,j]=size(V); k=size(Qschur,2);
if j>1,
[V,R]=qr(V,0);
if nargin <6,
W=MV(V); R=eye(j); if tau~=0, W=W-tau*V; end
if k>0, E=Qschur'*W; W=W-Qschur*E; else, E=zeros(0,j); end
end
[V,W,R,E,M]=CheckForNullSpace(V,nselect,tau,tol,W,E,R);
l=size(Qschur,2); j=size(V,2);
if l>=nselect, if size(V,2)==0; R=1; M=1; return, end, end
if l>k, UpdateMinv(Qschur(:,k+1:l),0); end, k=l;
end
if j==0, nr=0;
while nr==0
V = ones(n,1)+0.1*rand(n,1); V=RepGS(Qschur,V); nr=norm(V);
end, j=1;
end
if j==1
[V,H,E]=Arnoldi(V,tau,jmin,nselect,tol);
l=size(Qschur,2); j=max(size(H,2),1);
if l>=nselect, W=V; R=eye(j); M=R; return, end
if l>k, UpdateMinv(Qschur(:,k+1:l),0); end
[Q,R]=qr(full(H),0);
W=V*Q; V(:,j+1)=[]; M=Q(1:j,:)';
%% W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
%% W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
end
return
%%%======== ARNOLDI (for initializing spaces) ===============================
function [V,H,E]=Arnoldi(v,tau,jmin,nselect,tol)
%
%[V,AV,H,nMV,tau]=ARNOLDI(A,V0,TAU,JMIN,NSELECT,TOL)
% ARNOLDI computes the Arnoldi factorization of dimenison JMIN+1:
% (A-tau)*V(:,1:JMIN)=V*H where V is n by JMIN+1 orthonormal with
% first column a multiple of V0, and H is JMIN+1 by JMIN Hessenberg.
%
% If an eigenvalue if H(1:j,1:j) is an eigenvalue of A
% within the required tolerance TOL then the Schurform
% A*Qschur=Qschur*Rschur is expanded and the Arnoldi factorization
% (A-tau)*V(:,1:j)=V(:,1:j+1)*H(1:j+1,1:j) is deflated.
% Returns if size(Qschur,2) = NSELECT or size(V,2) = JMIN+1
% (A-tau)*V(:,1:JMIN)=V*H+Qschur*E, Qschur'*V=0
% Coded November 5, 1998, G. Sleijpen
global Qschur Rschur
k=size(Qschur,2); [n,j]=size(v);
if ischar(tau), tau=0; end
H=zeros(1,0); V=zeros(n,0); E=[];
j=0; nr=norm(v);
while j<jmin & k<nselect & j+k<n
if nr>=tol
v=v/nr; V=[V,v]; j=j+1;
Av=MV(v);
end
if j==0
H=zeros(1,0); j=1;
nr=0; while nr==0, v=RepGS(Qschur,rand(n,1)); nr=norm(v); end
v=v/nr; V=v; Av=MV(v);
end
if tau~=0; Av=Av-tau*v; end, [v,e] = RepGS(Qschur,Av,0);
if k==0, E=zeros(0,j); else, E = [E,e(1:k,1)]; end
[v,y] = RepGS(V,v,0); H = [H,y(1:j,1)];
nr = norm(v); H = [H;zeros(1,j-1),nr];
[Q,U,H1] = DeflateHess(full(H),tol);
j=size(U,2); l=size(Q,2);
if l>0 %--- expand Schur form ------
Qschur=[Qschur,V*Q];
Rschur=[Rschur,E*Q; zeros(l,k),H1(1:l,1:l)+tau*eye(l)]; k=k+l;
E=[E*U;H1(1:l,l+1:l+j)];
if j>0, V=V*U; H=H1(l+1:l+j+1,l+1:l+j);
else, V=zeros(n,0); H=zeros(1,0); end
end
end % while
if nr>=tol
v=v/nr; V=[V,v];
end
return
%----------------------------------------------------------------------
function [Q,U,H]=DeflateHess(H,tol)
% H_in*[Q,U]=[Q,U]*H_out such that H_out(K,K) upper triangular
% where K=1:SIZE(Q,2) and ABS(Q(end,2)*H_in(j+1,j))<TOL, j=SIZE(H,2),
[j1,j]=size(H);
if j1==j, [Q,H]=schur(H); U=zeros(j,0); return, end
nr=H(j+1,j);
U=eye(j); i=1; J=i:j;
for l=1:j
[X,Lambda]=eig(H(J,J));
I=find(abs(X(size(X,1),:)*nr)<tol);
if isempty(I), break, end
q=X(:,I(1)); q=q/norm(q);
q(1,1)=q(1,1)+sign(q(1,1)); q=q/norm(q);
H(:,J)=H(:,J)-(2*H(:,J)*q)*q';
H(J,:)=H(J,:)-2*q*(q'*H(J,:));
U(:,J)=U(:,J)-(2*U(:,J)*q)*q';
i=i+1; J=i:j;
end
[Q,HH]=RestoreHess(H(i:j+1,J));
H(:,J)=H(:,J)*Q; H(J,:)=Q'*H(J,:);
U(:,J)=U(:,J)*Q;
Q=U(:,1:i-1); U=U(:,i:j);
return
%----------------------------------------------------------------------
function [Q,M]=RestoreHess(M)
[j1,j2]=size(M); Q=eye(j2);
for j=j1:-1:2
J=1:j-1;
q=M(j,J)'; q=q/norm(q);
q(j-1,1)=q(j-1,1)+sign(q(j-1,1));
q=q/norm(q);
M(:,J)=M(:,J)-2*(M(:,J)*q)*q';
M(J,:)=M(J,:)-2*q*q'*M(J,:);
Q(:,J)=Q(:,J)-2*Q(:,J)*q*q';
end
return
%%%=========== END ARNOLDI ============================================
function [V,W,R,E,M]=CheckForNullSpace(V,nselect,tau,tol,W,E,Rv);
% V,W orthonormal, A*V-tau*V=W*R+Qschur'*E
global Qschur Rschur
k=size(Rschur,1); j=size(V,2);
[W,R]=qr(W,0); E=E/Rv; R=R/Rv; M=W'*V;
%%% not accurate enough M=Rw'\(M/Rv);
if k>=nselect, return, end
CHECK=1; l=k;
[S,T,Z,Q]=qz(R,M); Z=Z';
while CHECK
I=SortEigPairVar(S,T,2); [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I(1));
s=abs(S(1,1)); t=min(abs(T(1,1)),1); CHECK=(s*sqrt(1-t*t)<tol);
if CHECK
V=V*Q; W=W*Z; E=E*Q;
u=V(:,1); [r,a]=RepGS(u,(W(:,1)-T(1,1)'*u)*S(1,1),0);
Qschur=[Qschur,u]; t=(T(1,1)'-a/S(1,1))*S(1,:);
Rschur=[Rschur,E(:,1);zeros(1,k),tau+t(1,1)]; k=k+1;
J=[2:j]; j=j-1;
V=V(:,J); W=W(:,J); E=[E(:,J);t(1,J)]; s=S(1,J)/S(1,1);
R=S(J,J); M=T(J,J); Q=eye(j); Z=eye(j);
s=s/R; nrs=norm(r)*norm(s);
if nrs>=tol,
W=W+r*s; M=M+s'*(r'*V);
if nrs^2>eps, [W,R0]=qr(W,0); R=R0*R; M=R0'\M; end
end
S=R; T=M;
CHECK=(k<nselect & j>0);
end
end
return
%===========================================================================
%======= POSTPROCESSING ====================================================
%===========================================================================
function Refine(V,gamma);
if gamma==0, return, end
global Qschur Rschur
J=1:size(Rschur,1);
if gamma==1,
[V,R]=qr(V(:,J),0); W=MV(V); M=V'*W;
[U,Rschur]=schur(M);
[U,Rschur]=rsf2csf(U,Rschur); Qschur=V*U;
return
elseif gamma==2
[V,R]=qr(V,0); W=MV(V); M=V'*W;
[U,S]=schur(M); [U,S]=rsf2csf(U,S);
R=R*U; F=R'*R-S'*S;
[X,Lambda]=Jordan(S);
% Xinv=inv(X); D=sqrt(diag(Xinv*Xinv')); X=X*diag(D);
[d,I]=sort(abs(diag(X'*F*X)));
[U,S]=SwapSchur(U,S,I(J));
Qschur=V*U(:,J); Rschur=S(J,J);
end
return
%===========================================================================
function CheckSortSchur(sigma)
global Qschur Rschur
k=size(Rschur,1); if k==0, return, end
I=SortEig(diag(Rschur),sigma);
if ~min((1:k)'==I)
[U,Rschur]=SwapSchur(eye(k),Rschur,I);
Qschur=Qschur*U;
end
return
%%%=========== COMPUTE SORTED JORDAN FORM ==================================
function [X,Jordan]=Jordan(S)
% [X,J]=JORDAN(S)
% For S k by k upper triangular matrix with ordered diagonal elements,
% JORDAN computes the Jordan decomposition.
% X is a k by k matrix of vectors spanning invariant spaces.
% If J(i,i)=J(i+1,i+1) then X(:,i)'*X(:,i+1)=0.
% J is a k by k matrix, J is Jordan such that S*X=X*J.
% diag(J)=diag(S) are the eigenvalues
% coded by Gerard Sleijpen, Januari 14, 1998
k=size(S,1); X=zeros(k);
if k==0, Jordan=[]; return, end
%%% accepted separation between eigenvalues:
delta=2*sqrt(eps)*norm(S,inf); delta=max(delta,10*eps);
T=eye(k); s=diag(S); Jordan=diag(s);
for i=1:k
I=[1:i]; e=zeros(i,1); e(i,1)=1;
C=S(I,I)-s(i,1)*T(I,I); C(i,i)=1;
j=i-1; q=[]; jj=0;
while j>0
if abs(C(j,j))<delta, jj=jj+1; j=j-1; else, j=0; end
end
q=X(I,i-jj:i-1);
C=[C,T(I,I)*q;q',zeros(jj)];
q=C\[e;zeros(jj,1)]; nrm=norm(q(I,1));
Jordan(i-jj:i-1,i)=-q(i+1:i+jj,1)/nrm;
X(I,i)=q(I,1)/nrm;
end
return
%========== OUTPUT =========================================================
function varargout=output(history,X,Lambda)
global Qschur Rschur
if nargout == 1, varargout{1}=diag(Rschur); return, end
if nargout > 2, varargout{nargout}=history; end
if nargout > 3, varargout{3} = Qschur; varargout{4} = Rschur; end
if nargout < 4 & size(X,2)<2
varargout{1}=Qschur; varargout{2}=Rschur; return
else
varargout{1}=X; varargout{2}=Lambda;
end
return
%===========================================================================
%===== UPDATE PRECONDITIONED SCHUR VECTORS =================================
%===========================================================================
function solved=UpdateMinv(u,solved)
global Qschur PinvQ Pinv_u Pu L_precond
if ~isempty(L_precond)
if ~solved, Pinv_u=SolvePrecond(u); end
Pu=[[Pu;u'*PinvQ],Qschur'*Pinv_u];
PinvQ=[PinvQ,Pinv_u];
solved=0;
end
return
%===========================================================================
%===== SOLVE CORRECTION EQUATION ===========================================
%===========================================================================
function t=Solve_pce(theta,u,r,lsolver,par,nit)
global Qschur PinvQ Pinv_u Pu L_precond
switch lsolver
case 'exact'
t = exact(theta,[Qschur,u],r);
case 'iluexact'
t = iluexact(theta,[Qschur,u],r);
case {'gmres','bicgstab','olsen'}
if isempty(L_precond) %%% no preconditioning
t = feval(lsolver,theta,...
[Qschur,u],[Qschur,u],1,r,spar(par,nit));
else %%% solve left preconditioned system
%%% compute vectors and matrices for skew projection
Pinv_u=SolvePrecond(u);
mu=[Pu,Qschur'*Pinv_u;u'*PinvQ,u'*Pinv_u];
%%% precondion and project r
r=SolvePrecond(r);
r=SkewProj([Qschur,u],[PinvQ,Pinv_u],mu,r);
%%% solve preconditioned system
t = feval(lsolver,theta,...
[Qschur,u],[PinvQ,Pinv_u],mu,r,spar(par,nit));
end
case {'cg','minres','symmlq'}
if isempty(L_precond) %%% no preconditioning
t = feval(lsolver,theta,...
[Qschur,u],[Qschur,u],1,r,spar(par,nit));
else %%% solve two-sided expl. precond. system
%%% compute vectors and matrices for skew projection
Pinv_u=SolvePrecond(u,'L');
mu=[Pu,Qschur'*Pinv_u;u'*PinvQ,u'*Pinv_u];
%%% precondion and project r
r=SolvePrecond(r,'L');
r=SkewProj([Qschur,u],[PinvQ,Pinv_u],mu,r);
%%% solve preconditioned system
t = feval(lsolver,theta,...
[Qschur,u],[PinvQ,Pinv_u],mu,r,spar(par,nit));
%%% "unprecondition" solution
t=SkewProj([PinvQ,Pinv_u],[Qschur,u],mu,t);
t=SolvePrecond(t,'U');
end
end
return
%=======================================================================
%======= LINEAR SOLVERS ================================================
%=======================================================================
function x = exact(theta,Q,r)
global A_operator
[n,k]=size(Q); [n,l]=size(r);
if ischar(A_operator)
[x,xtol]=bicgstab(theta,Q,Q,1,r,[5.0e-14/norm(r),200,4]);
return
end
x = [A_operator-theta*speye(n,n),Q;Q',zeros(k,k)]\[r;zeros(k,l)];
x = x(1:n,1:l);
return
%----------------------------------------------------------------------
function x = iluexact(theta,Q,r)
global L_precond U_precond
[n,k]=size(Q); [n,l]=size(r);
y = L_precond\[r,Q];
x = [U_precond,y(:,l+1:k+1);Q',zeros(k,k)]\[y(:,1:l);zeros(k,l)];
x = x(1:n,1:l);
return
%----------------------------------------------------------------------
function r = olsen(theta,Q,Z,M,r,par)
return
%
%======= Iterative methods =============================================
%
function x = bicgstab(theta,Q,Z,M,r,par)
% BiCGstab(ell)
% [x,rnrm] = bicgstab(theta,Q,Z,M,r,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=r
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% This function is specialized for use in JDQZ.
% integer nmv: number of matrix multiplications
% rnrm: relative residual norm
%
% par=[tol,mxmv,ell] where
% integer m: max number of iteration steps
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: ETNA
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization --
%
tol=par(1); max_it=par(2); l=par(3); n=size(r,1);
rnrm=1; nmv=0;
if max_it==0 | tol>=1, x=r; return, end
rnrm=norm(r); snrm=rnrm; tol=tol*rnrm;
sigma=1; omega=1;
x=zeros(n,1); u=zeros(n,1); tr=r;
% hist=rnrm;
% -- Iteration loop
while (rnrm > tol) & (nmv <= max_it)
sigma=-omega*sigma;
for j = 1:l,
rho=tr'*r(:,j); bet=rho/sigma;
u=r-bet*u;
%%%%%% u(:,j+1)=Atilde*u(:,j)
u(:,j+1)=mvp(theta,Q,Z,M,u(:,j));
sigma=tr'*u(:,j+1); alp=rho/sigma;
x=x+alp*u(:,1);
r=r-alp*u(:,2:j+1);
%%%%%% r(:,j+1)=Atilde*r(:,j)
r(:,j+1)=mvp(theta,Q,Z,M,r(:,j));
end
gamma=r(:,2:l+1)\r(:,1); omega=gamma(l,1);
x=x+r*[gamma;0]; u=u*[1;-gamma]; r=r*[1;-gamma];
rnrm = norm(r); nmv = nmv+2*l;
% hist=[hist,rnrm];
end
% figure(3),
% plot([0:length(hist)-1]*2*l,log10(hist/snrm),'-*'),
% drawnow,
rnrm = rnrm/snrm;
return
%----------------------------------------------------------------------
function v = gmres(theta,Q,Z,M,v,par)
% GMRES
% [x,rnrm] = gmres(theta,Q,Z,M,b,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Saad
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
tol=par(1); n = size(v,1); max_it=min(par(2),n);
rnrm = 1; nmv=0;
if max_it==0 | tol>=1, return, end
H = zeros(max_it +1,max_it); Rot=[ones(1,max_it);zeros(1,max_it)];
rnrm = norm(v); v = v/rnrm; V = [v];
tol = tol * rnrm; snrm = rnrm;
y = [ rnrm ; zeros(max_it,1) ];
j=0; % hist=rnrm;
while (nmv < max_it) & (rnrm > tol),
j=j+1; nmv=nmv+1;
v=mvp(theta,Q,Z,M,v);
% [v, H(1:j+1,j)] = RepGS(V,v);
[v,h] = RepGS(V,v); H(1:size(h,1),j)=h;
V = [V, v];
for i = 1:j-1,
a = Rot(:,i);
H(i:i+1,j) = [a'; -a(2) a(1)]*H(i:i+1,j);
end
J=[j, j+1];
a=H(J,j);
if a(2) ~= 0
cs = norm(a);
a = a/cs; Rot(:,j) = a;
H(J,j) = [cs; 0];
y(J) = [a'; -a(2) a(1)]*y(J);
end
rnrm = abs(y(j+1));
% hist=[hist,rnrm];
end
% figure(3)
% plot([0:length(hist)-1],log10(hist/snrm),'-*')
% drawnow, pause
J=[1:j];
v = V(:,J)*(H(J,J)\y(J));
rnrm = rnrm/snrm;
return
%======================================================================
%========== BASIC OPERATIONS ==========================================
%======================================================================
function v=MV(v)
global A_operator nm_operations
if ischar(A_operator)
v = feval(A_operator,v);
else
v = A_operator*v;
end
nm_operations = nm_operations+1;
return
%----------------------------------------------------------------------
function v=mvp(theta,Q,Z,M,v)
% v=Atilde*v
v = MV(v) - theta*v;
v = SolvePrecond(v);
v = SkewProj(Q,Z,M,v);
return
%----------------------------------------------------------------------
function u=SolvePrecond(u,flag);
global L_precond U_precond
if isempty(L_precond), return, end
if nargin<2
if ischar(L_precond)
if ischar(U_precond)
u=feval(L_precond,u,U_precond);
elseif isempty(U_precond)
u=feval(L_precond,u);
else
u=feval(L_precond,u,'L'); u=feval(L_precond,u,'U');
end
else
u=U_precond\(L_precond\u);
end
else
switch flag
case 'U'
if ischar(L_precond), u=feval(L_precond,u,'U'); else, u=U_precond\u; end
case 'L'
if ischar(L_precond), u=feval(L_precond,u,'L'); else, u=L_precond\u; end
end
end
return
%----------------------------------------------------------------------
function r=SkewProj(Q,Z,M,r);
if ~isempty(Q),
r=r-Z*(M\(Q'*r));
end
return
%----------------------------------------------------------------------
function ppar=spar(par,nit)
% Changes par=[tol(:),max_it,ell] to
% ppap=[TOL,max_it,ell] where
% if lenght(tol)==1
% TOL=tol
% else
% red=tol(end)/told(end-1); tole=tol(end);
% tol=[tol,red*tole,red^2*tole,red^3*tole,...]
% TOL=tol(nit);
% end
k=size(par,2)-2;
ppar=par(1,k:k+2);
if k>1
if nit>k
ppar(1,1)=par(1,k)*((par(1,k)/par(1,k-1))^(nit-k));
else
ppar(1,1)=par(1,max(nit,1));
end
end
ppar(1,1)=max(ppar(1,1),1.0e-8);
return
%
%======= Iterative methods for symmetric systems =======================
%
function x = cg(theta,Q,Z,M,r,par)
% CG
% [x,rnrm] = cg(theta,Q,Z,M,b,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Hestenes and Stiefel
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
tol=par(1); max_it=par(2); n = size(r,1);
rnrm = 1; nmv=0;
b=r;
if max_it ==0 | tol>=1, x=r; return, end
x= zeros(n,1); u=zeros(n,1);
rho = norm(r); snrm = rho; rho = rho*rho;
tol = tol*tol*rho;
sigma=1;
while ( rho > tol & nmv < max_it )
beta=rho/sigma;
u=r-beta*u;
y=smvp(theta,Q,Z,M,u); nmv=nmv+1;
sigma=y'*r; alpha=rho/sigma;
x=x+alpha*u;
r=r-alpha*y; sigma=-rho; rho=r'*r;
end % while
rnrm=sqrt(rho)/snrm;
return
%----------------------------------------------------------------------
function x = minres(theta,Q,Z,M,r,par)
% MINRES
% [x,rnrm] = minres(theta,Q,Z,M,b,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Paige and Saunders
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
tol=par(1); max_it=par(2); n = size(r,1);
rnrm = 1; nmv=0;
if max_it ==0 | tol>=1, x=r; return, end
x=zeros(n,1); rho = norm(r); v = r/rho; snrm=rho;
beta = 0; v_old = zeros(n,1);
beta_t = 0; c = -1; s = 0;
w = zeros(n,1); www = v;
tol=tol*rho;
while ( nmv < max_it & abs(rho) > tol )
wv =smvp(theta,Q,Z,M,v)-beta*v_old; nmv=nmv+1;
alpha = v'*wv; wv = wv-alpha*v;
beta = norm(wv); v_old = v; v = wv/beta;
l1 = s*alpha - c*beta_t; l2 = s*beta;
alpha_t = -s*beta_t - c*alpha; beta_t = c*beta;
l0 = sqrt(alpha_t*alpha_t+beta*beta);
c = alpha_t/l0; s = beta/l0;
ww = www - l1*w; www = v - l2*w; w = ww/l0;
x = x + (rho*c)*w; rho = s*rho;
end % while
rnrm=abs(rho)/snrm;
return
%----------------------------------------------------------------------
function x = symmlq(theta,Q,Z,M,r,par)
% SYMMLQ
% [x,rnrm] = symmlq(theta,Q,Z,M,b,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Paige and Saunders
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
tol=par(1); max_it=par(2); n = size(r,1);
rnrm = 1; nmv=0;
if max_it ==0 | tol>=1, x=r; return, end
x=zeros(n,1); rho = norm(r); v = r/rho; snrm=rho;
beta = 0; beta_t = 0; c = -1; s = 0;
v_old = zeros(n,1); w = v; gtt = rho; g = 0;
tol=tol*rho;
while ( nmv < max_it & rho > tol )
wv = smvp(theta,Q,Z,M,v) - beta*v_old; nmv=nmv+1;
alpha = v'*wv; wv = wv - alpha*v;
beta = norm(wv); v_old = v; v = wv/beta;
l1 = s*alpha - c*beta_t; l2 = s*beta;
alpha_t = -s*beta_t - c*alpha; beta_t = c*beta;
l0 = sqrt(alpha_t*alpha_t+beta*beta);
c = alpha_t/l0; s = beta/l0;
gt = gtt - l1*g; gtt = -l2*g; g = gt/l0;
rho = sqrt(gt*gt+gtt*gtt);
x = x + (g*c)*w + (g*s)*v;
w = s*w - c*v;
end % while
rnrm=rho/snrm;
return
%----------------------------------------------------------------------
function v=smvp(theta,Q,Z,M,v)
% v=Atilde*v
v = SkewProj(Z,Q,M,v);
v = SolvePrecond(v,'U');
v = MV(v) - theta*v;
v = SolvePrecond(v,'L');
v = SkewProj(Q,Z,M,v);
return
%=======================================================================
%========== Orthogonalisation ==========================================
%=======================================================================
function [v,y]=RepGS(V,v,gamma)
% [v,y]=REP_GS(V,w)
% If V orthonormal then [V,v] orthonormal and w=[V,v]*y;
% If size(V,2)=size(V,1) then w=V*y;
%
% The orthonormalisation uses repeated Gram-Schmidt
% with the Daniel-Gragg-Kaufman-Stewart (DGKS) criterion.
%
% [v,y]=REP_GS(V,w,GAMMA)
% GAMMA=1 (default) same as [v,y]=REP_GS(V,w)
% GAMMA=0, V'*v=zeros(size(V,2)) and w = V*y+v (v is not normalized).
% coded by Gerard Sleijpen, August 28, 1998
if nargin < 3, gamma=1; end
[n,d]=size(V);
if size(v,2)==0, y=zeros(d,0); return, end
nr_o=norm(v); nr=eps*nr_o; y=zeros(d,1);
if d==0
if gamma, v=v/nr_o; y=nr_o; else, y=zeros(0,1); end, return
end
y=V'*v; v=v-V*y; nr_n=norm(v); ort=0;
while (nr_n<0.5*nr_o & nr_n > nr)
s=V'*v; v=v-V*s; y=y+s;
nr_o=nr_n; nr_n=norm(v); ort=ort+1;
end
if nr_n <= nr, if ort>2, disp(' dependence! '), end
if gamma % and size allows, expand with a random vector
if d<n, v=RepGS(V,rand(n,1)); y=[y;0]; else, v=zeros(n,0); end
else, v=0*v; end
elseif gamma, v=v/nr_n; y=[y;nr_n]; end
return
%=======================================================================
%============== Sorts Schur form =======================================
%=======================================================================
function [Q,S]=SortSchur(A,sigma,gamma,kk)
%[Q,S]=SortSchur(A,sigma)
% A*Q=Q*S with diag(S) in order prescribed by sigma.
% If sigma is a scalar then with increasing distance from sigma.
% If sigma is string then according to string
% ('LM' with decreasing modulus, etc)
%
%[Q,S]=SortSchur(A,sigma,gamma,kk)
% if gamma==0, sorts only for the leading element
% else, sorts for the kk leading elements
l=size(A,1);
if l<2, Q=1;S=A; return,
elseif nargin==2, kk=l-1;
elseif gamma, kk=min(kk,l-1);
else, kk=1; sigma=sigma(1,:); end
%%%------ compute schur form -------------
[Q,S]=schur(A); %% A*Q=Q*S, Q'*Q=eye(size(A));
%%% transform real schur form to complex schur form
if norm(tril(S,-1),1)>0, [Q,S]=rsf2csf(Q,S); end
%%%------ find order eigenvalues ---------------
I = SortEig(diag(S),sigma);
%%%------ reorder schur form ----------------
[Q,S] = SwapSchur(Q,S,I(1:kk));
return
%----------------------------------------------------------------------
function I=SortEig(t,sigma);
%I=SortEig(T,SIGMA) sorts the indices of T.
%
% T is a vector of scalars,
% SIGMA is a string or a vector of scalars.
% I is a permutation of (1:LENGTH(T))' such that:
% if SIGMA is a vector of scalars then
% for K=1,2,...,LENGTH(T) with KK = MIN(K,SIZE(SIGMA,1))
% ABS( T(I(K))-SIGMA(KK) ) <= ABS( T(I(J))-SIGMA(KK) )
% SIGMA(kk)=INF: ABS( T(I(K)) ) >= ABS( T(I(J)) )
% for all J >= K
if ischar(sigma)
switch sigma
case 'LM'
[s,I]=sort(-abs(t));
case 'SM'
[s,I]=sort(abs(t));
case 'LR';
[s,I]=sort(-real(t));
case 'SR';
[s,I]=sort(real(t));
case 'BE';
[s,I]=sort(real(t)); I=twistdim(I,1);
end
else
[s,I]=sort(abs(t-sigma(1,1)));
ll=min(size(sigma,1),size(t,1)-1);
for j=2:ll
if sigma(j,1)==inf
[s,J]=sort(abs(t(I(j:end)))); J=flipdim(J,1);
else
[s,J]=sort(abs(t(I(j:end))-sigma(j,1)));
end
I=[I(1:j-1);I(J+j-1)];
end
end
return
%----------------------------------------------------------------------
function t=twistdim(t,k)
d=size(t,k); J=1:d; J0=zeros(1,2*d);
J0(1,2*J)=J; J0(1,2*J-1)=flipdim(J,2); I=J0(1,J);
if k==1, t=t(I,:); else, t=t(:,I); end
return
%----------------------------------------------------------------------
function [Q,S]=SwapSchur(Q,S,I)
% [Q,S]=SwapSchur(QQ,SS,P)
% QQ and SS are square matrices of size K by K
% P is the first part of a permutation of (1:K)'.
%
% If M = QQ*SS*QQ' and QQ'*QQ = EYE(K), SS upper triangular
% then M*Q = Q*S with Q'*Q = EYE(K), S upper triangular
% and D(1:LENGTH(P))=DD(P) where D=diag(S), DD=diag(SS)
%
% Computations uses Givens rotations.
kk=min(length(I),size(S,1)-1);
j=1; while (j<=kk & j==I(j)), j=j+1; end;
while j<=kk
i=I(j);
for k=i-1:-1:j
q = [S(k,k)-S(k+1,k+1),S(k,k+1)];
if q(1) ~= 0
q = q/norm(q);
G = [[q(2);-q(1)],q'];
J = [k,k+1];
Q(:,J) = Q(:,J)*G;
S(:,J) = S(:,J)*G;
S(J,:) = G'*S(J,:);
end
S(k+1,k) = 0;
end
I=I+(I<i);
j=j+1; while (j<=kk & j==I(j)), j=j+1; end
end
return
%----------------------------------------------------------------------
function [Q,Z,S,T]=SortQZ(A,B,sigma,gamma,kk)
%
% [Q,Z,S,T]=SORTQZ(A,B,SIGMA)
% A and B are K by K matrices, SIGMA is a complex scalar or string.
% SORTQZ computes the qz-decomposition of (A,B) with prescribed
% ordering: A*Q=Z*S, B*Q=Z*T;
% Q and Z are K by K unitary,
% S and T are K by K upper triangular.
% The ordering is as follows:
% (DAIG(S),DAIG(T)) are the eigenpairs of (A,B) ordered
% as prescribed by SIGMA.
%
% coded by Gerard Sleijpen, version Januari 12, 1998
l=size(A,1);
if l<2; Q=1; Z=1; S=A; T=B; return
elseif nargin==3, kk=l-1;
elseif gamma, kk=min(kk,l-1);
else, kk=1; sigma=sigma(1,:); end
%%%------ compute qz form ----------------
[S,T,Z,Q]=qz(A,B); Z=Z'; S=triu(S);
%%%------ sort eigenvalues ---------------
I=SortEigPair(diag(S),diag(T),sigma);
%%%------ sort qz form -------------------
[Q,Z,S,T]=SwapQZ(Q,Z,S,T,I(1:kk));
return
%----------------------------------------------------------------------
function I=SortEigPair(s,t,sigma)
% I=SortEigPair(S,T,SIGMA)
% S is a complex K-vectors, T a positive real K-vector
% SIGMA is a string or a vector of pairs of complex scalars.
% SortEigPair gives the index set I that sorts the pairs (S,T).
%
% If SIGMA is a pair of scalars then the sorting is
% with increasing "chordal distance" w.r.t. SIGMA.
%
% The chordal distance D between a pair A and a pair B is defined as follows.
% Scale A by a scalar F such that NORM(F*A)=1 and F*A(2)>=0,
% scale B by a scalar G such that NORM(G*B)=1 and G*B(2)>=0,
% then D(A,B)=ABS((F*A)*RROT(G*B)) where RROT(alpha,beta)=(beta,-alpha)
% coded by Gerard Sleijpen, version Januari 14, 1998
n=sign(t); n=n+(n==0); t=abs(t./n); s=s./n;
if ischar(sigma)
switch sigma
case {'LM','SM'}
case {'LR','SR','BE'}
s=real(s);
end
[s,I]=sort((-t./sqrt(s.*conj(s)+t.*t)));
switch sigma
case {'LM','LR'}
I=flipdim(I,1);
case {'SM','SR'}
case 'BE'
I=twistdim(I,1);
end
else
n=sqrt(sigma.*conj(sigma)+1); ll=size(sigma,1);
tau=[ones(ll,1)./n,-sigma./n]; tau=tau.';
n=sqrt(s.*conj(s)+t.*t); s=[s./n,t./n];
[t,I]=sort(abs(s*tau(:,1)));
ll = min(ll,size(I,1)-1);
for j=2:ll
[t,J]=sort(abs(s(I(j:end),:)*tau(:,j)));
I=[I(1:j-1);I(J+j-1)];
end
end
return
%----------------------------------------------------------------------
function [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I)
% [Q,Z,S,T]=SwapQZ(QQ,ZZ,SS,TT,P)
% QQ and ZZ are K by K unitary, SS and TT are K by K uper triangular.
% P is the first part of a permutation of (1:K)'.
%
% Then Q and Z are K by K unitary, S and T are K by K upper triangular,
% such that, for A = ZZ*SS*QQ' and B = ZZ*T*QQ', we have
% A*Q = Z*S, B*Q = Z*T and LAMBDA(1:LENGTH(P))=LLAMBDA(P) where
% LAMBDA=DIAG(S)./DIAGg(T) and LLAMBDA=DIAG(SS)./DIAG(TT).
%
% Computation uses Givens rotations.
%
% coded by Gerard Sleijpen, version October 12, 1998
kk=min(length(I),size(S,1)-1);
j=1; while (j<=kk & j==I(j)), j=j+1; end
while j<=kk
i=I(j);
for k = i-1:-1:j,
%%% i>j, move ith eigenvalue to position j
J = [k,k+1];
q = T(k+1,k+1)*S(k,J) - S(k+1,k+1)*T(k,J);
if q(1) ~= 0
q = q/norm(q);
G = [[q(2);-q(1)],q'];
Q(:,J) = Q(:,J)*G;
S(:,J) = S(:,J)*G; T(:,J) = T(:,J)*G;
end
if abs(S(k+1,k))<abs(T(k+1,k)), q=T(J,k); else q=S(J,k); end
if q(2) ~= 0
q=q/norm(q);
G = [q';q(2),-q(1)];
Z(:,J) = Z(:,J)*G';
S(J,:) = G*S(J,:); T(J,:) = G*T(J,:);
end
T(k+1,k) = 0;
S(k+1,k) = 0;
end
I=I+(I<i);
j=j+1; while (j<=kk & j==I(j)), j=j+1; end
end
return
%=======================================================================
%======= SET PARAMETERS ================================================
%=======================================================================
function [n,nselect,sigma,SCHUR,...
jmin,jmax,tol,maxit,V,INTERIOR,SHOW,PAIRS,JDV,OLD,...
lsolver,par] = ReadOptions(varargin)
% Read options and set defaults
global A_operator L_precond U_precond
A_operator = varargin{1};
%%% determine dimension
if ischar(A_operator)
n=-1;
if exist(A_operator) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',A_operator);
errordlg(msg,'MATRIX'),n=-2;
end
if n==-1, eval('n=feval(A_operator,[],''dimension'');','n=-1;'), end
else
[n,n] = size(A_operator);
if any(size(A_operator) ~= n)
msg=sprintf(' The operator must be a square matrix or a string. ');
errordlg(msg,'MATRIX'),n=-3;
end
end
%%% defaults
SCHUR = 0;
jmin = -1;
jmax = -1;
p0 = 5; % jmin=nselect+p0
p1 = 5; % jmax=jmin+p1
tol = 1e-8;
maxit = 200;
V = zeros(0,0);
INTERIOR= 0;
SHOW = 0;
PAIRS = 0;
JDV = 0;
OLD = 1e-4;
lsolver = 'gmres';
ls_maxit= 200;
ls_tol = [1,0.7];
ell = 4;
par = [ls_tol,ls_maxit,ell];
options=[]; sigma=[]; varg=[]; L_precond = []; U_precond = [];
for j = 2:nargin
if isstruct(varargin{j})
options = varargin{j};
elseif ischar(varargin{j})
if length(varargin{j}) == 2 & isempty(sigma)
sigma = varargin{j};
elseif isempty(L_precond)
L_precond=varargin{j};
elseif isempty(U_precond)
U_precond=varargin{j};
end
elseif length(varargin{j}) == 1
varg = [varg,varargin{j}];
elseif min(size(varargin{j}))==1
sigma = varargin{j}; if size(sigma,1)==1, sigma=conj(sigma'); end
elseif isempty(L_precond)
L_precond=varargin{j};
elseif isempty(U_precond)
U_precond=varargin{j};
end
end
if ischar(sigma)
sigma0=sigma; sigma=upper(sigma);
switch sigma
case {'LM','LR','SR','BE','SM'}
otherwise
if exist(sigma0)==2 & isempty(L_precond)
ok=1; eval('v=feval(sigma,zeros(n,1));','ok=0')
if ok, L_precond=sigma0; sigma=[]; end
end
end
end
[s,I]=sort(varg); I=flipdim(I,2);
J=[]; j=0;
while j<length(varg)
j=j+1; jj=I(j); s=varg(jj);
if isreal(s) & (s == fix(s)) & (s > 0)
if n==-1
n=s; eval('v=feval(A_operator,zeros(n,0));','n=-1;')
if n>-1, J=[J,jj]; end
end
else
if isempty(sigma), sigma=s;
elseif ischar(sigma) & isempty(L_precond)
ok=1; eval('v=feval(sigma0,zeros(n,1));','ok=0')
if ok, L_precond=sigma0; sigma=s; end
end, J=[J,jj];
end
end
varg(J)=[];
if n==-1,
msg1=sprintf(' Cannot find the dimension of ''%s''. \n',A_operator);
msg2=sprintf(' Put the dimension n in the parameter list: \n like');
msg3=sprintf('\t\n\n\t jdqr(''%s'',n,..), \n\n',A_operator);
msg4=sprintf(' or let\n\n\t n = %s(',A_operator);
msg5=sprintf('[],''dimension'')\n\n give n.');
msg=[msg1,msg2,msg3,msg4,msg5];
errordlg(msg,'MATRIX')
end
nselect=[];
if n<2, return, end
if length(varg) == 1
nselect=min(n,varg);
elseif length(varg)>1
if isempty(sigma), sigma=varg(end); varg(end)=[]; end
nselect=min(n,min(varg));
end
fopts = []; if ~isempty(options), fopts=fields(options); end
if isempty(L_precond)
if strmatch('Precond',fopts)
L_precond = options.Precond;
elseif strmatch('L_Precond',fopts)
L_precond = options.L_Precond;
end
end
if isempty(U_precond) & strmatch('U_Precond',fopts)
U_precond = options.U_Precond;
end
if isempty(L_precond), ls_tol = [0.7,0.49]; end
if ~isempty(L_precond) & ischar(L_precond)
if exist(L_precond) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',L_precond); n=-1;
elseif ~isempty(U_precond) & ~ischar(U_precond) & n>0
msg=sprintf(' L and U should both be strings or matrices'); n=-1;
elseif strcmp(L_precond,U_precond)
eval('v=feval(L_precond,zeros(n,1),''L'');','n=-1;')
eval('v=feval(L_precond,zeros(n,1),''U'');','n=-1;')
if n<0
msg='L and U use the same M-file';
msg1=sprintf(' %s.m \n',L_precond);
msg2='Therefore L and U are called';
msg3=sprintf(' as\n\n\tw=%s(v,''L'')',L_precond);
msg4=sprintf(' \n\tw=%s(v,''U'')\n\n',L_precond);
msg5=sprintf('Check the dimensions and/or\n');
msg6=sprintf('put this "switch" in %s.m.',L_precond);
msg=[msg,msg1,msg2,msg3,msg4,msg5,msg6];
else
U_precond=0;
end
elseif ischar(A_operator) & strcmp(A_operator,L_precond)
U_precond='preconditioner';
eval('v=feval(L_precond,zeros(n,1),U_precond);','n=-1;')
if n<0
msg='Preconditioner and matrix use the same M-file';
msg1=sprintf(' %s. \n',L_precond);
msg2='Therefore the preconditioner is called';
msg3=sprintf(' as\n\n\tw=%s(v,''preconditioner'')\n\n',L_precond);
msg4='Put this "switch" in the M-file.';
msg=[msg,msg1,msg2,msg3,msg4];
end
else
eval('v=feval(L_precond,zeros(n,1));','n=-1')
if n<0
msg=sprintf('''%s'' should produce %i-vectors',L_precond,n);
end
end
end
Ud=1;
if ~isempty(L_precond) & ~ischar(L_precond) & n>0
if ~isempty(U_precond) & ischar(U_precond)
msg=sprintf(' L and U should both be strings or matrices'); n=-1;
elseif ~isempty(U_precond)
if ~min([n,n]==size(L_precond) & [n,n]==size(U_precond))
msg=sprintf('Both L and U should be %iX%i.',n,n); n=-1;
end
elseif min([n,n]==size(L_precond))
U_precond=speye(n); Ud=0;
elseif min([n,2*n]==size(L_precond))
U_precond=L_precond(:,n+1:2*n); L_precond=L_precond(:,1:n);
else
msg=sprintf('The preconditioning matrix\n');
msg2=sprintf('should be %iX%i or %ix%i ([L,U]).\n',n,n,n,2*n);
msg=[msg,msg2]; n=-1;
end
end
if n<0, errordlg(msg,'PRECONDITIONER'), return, end
ls_tol0=ls_tol;
if strmatch('Tol',fopts), tol = options.Tol; end
if isempty(nselect), nselect=min(n,5); end
if strmatch('jmin',fopts), jmin=min(n,options.jmin); end
if strmatch('jmax',fopts)
jmax=min(n,options.jmax);
if jmin<0, jmin=max(1,jmax-p1); end
else
if jmin<0, jmin=min(n,nselect+p0); end
jmax=min(n,jmin+p1);
end
if strmatch('MaxIt',fopts), maxit = abs(options.MaxIt); end
if strmatch('v0',fopts);
V = options.v0;
[m,d]=size(V);
if m~=n | d==0
if m>n, V = V(1:n,:); end
nrV=norm(V); if nrV>0, V=V/nrV; end
d=max(d,1);
V = [V; ones(n-m,d) +0.1*rand(n-m,d)];
end
else
V = ones(n,1) +0.1*rand(n,1); d=1;
end
if strmatch('TestSpace',fopts), INTERIOR = boolean(options.TestSpace,...
[INTERIOR,0,1,1.1,1.2],strvcat('standard','harmonic'));
end
if isempty(sigma)
if INTERIOR, sigma=0; else, sigma = 'LM'; end
elseif ischar(sigma)
switch sigma
case {'LM','LR','SR','BE'}
case {'SM'}
sigma=0;
otherwise
if INTERIOR, sigma=0; else, sigma='LM'; end
end
end
if strmatch('Schur',fopts), SCHUR = boolean(options.Schur,SCHUR); end
if strmatch('Disp',fopts), SHOW = boolean(options.Disp,[SHOW,2]); end
if strmatch('Pairs',fopts), PAIRS = boolean(options.Pairs,PAIRS); end
if strmatch('AvoidStag',fopts),JDV = boolean(options.AvoidStag,JDV); end
if strmatch('Track',fopts)
OLD = boolean(options.Track,[OLD,0,OLD,inf],strvcat('no','yes')); end
OLD=max(abs(OLD),10*tol);
if strmatch('LSolver',fopts), lsolver = lower(options.LSolver); end
switch lsolver
case {'exact'}
L_precond=[];
if ischar(A_operator)
msg=sprintf('The operator must be a matrix for ''exact''.');
msg=[msg,sprintf('\nDo you want to solve the correction equation')];
msg=[msg,sprintf('\naccurately with an iterative solver (BiCGstab)?')];
button=questdlg(msg,'Solving exactly','Yes','No','Yes');
if strcmp(button,'No'), n=-1; return, end
end
case {'iluexact'}
if ischar(L_precond)
msg=sprintf('The preconditioner must be matrices for ''iluexact''.');
errordlg(msg,'Solving with ''iluexact''')
n=-1; return
end
case {'olsen'}
case {'cg','minres','symmlq'}
ls_tol=1.0e-12;
case 'gmres'
ls_maxit=5;
case 'bicgstab'
ls_tol=1.0e-10;
otherwise
error(['Unknown method ''' lsolver '''.']);
end
if strmatch('LS_MaxIt',fopts), ls_maxit=abs(options.LS_MaxIt); end
if strmatch('LS_Tol',fopts), ls_tol=abs(options.LS_Tol); end
if strmatch('LS_ell',fopts), ell=round(abs(options.LS_ell)); end
par=[ls_tol,ls_maxit,ell];
if SHOW
fprintf('\n'),fprintf('PROBLEM\n')
if ischar(A_operator)
fprintf(' A: ''%s''\n',A_operator);
elseif issparse(A_operator)
fprintf(' A: [%ix%i sparse]\n',n,n);
else
fprintf(' A: [%ix%i double]\n',n,n);
end
fprintf(' dimension: %i\n',n);
fprintf(' nselect: %i\n\n',nselect);
fprintf('TARGET\n')
if ischar(sigma)
fprintf(' sigma: ''%s''',sigma)
else
Str=ShowLambda(sigma);
fprintf(' sigma: %s',Str)
end
fprintf('\n\n')
fprintf('OPTIONS\n');
fprintf(' Schur: %i\n',SCHUR);
fprintf(' Tol: %g\n',tol);
fprintf(' Disp: %i\n',SHOW);
fprintf(' jmin: %i\n',jmin);
fprintf(' jmax: %i\n',jmax);
fprintf(' MaxIt: %i\n',maxit);
fprintf(' v0: [%ix%i double]\n',size(V));
fprintf(' TestSpace: %g\n',INTERIOR);
fprintf(' Pairs: %i\n',PAIRS);
fprintf(' AvoidStag: %i\n',JDV);
fprintf(' Track: %g\n',OLD);
fprintf(' LSolver: ''%s''\n',lsolver);
switch lsolver
case {'exact','iluexact','olsen'}
case {'cg','minres','symmlq','gmres','bicgstab'}
if length(ls_tol)>1
fprintf(' LS_Tol: ['); fprintf(' %g',ls_tol); fprintf(' ]\n');
else
fprintf(' LS_Tol: %g\n',ls_tol);
end
fprintf(' LS_MaxIt: %i\n',ls_maxit);
end
if strcmp(lsolver,'bicgstab')
fprintf(' LS_ell: %i\n',ell);
end
if isempty(L_precond)
fprintf(' Precond: []\n');
else
StrL='Precond'; StrU='U precond'; Us='double'; Ls=Us; ok=0;
if issparse(L_precond), Ls='sparse'; end
if ~isempty(U_precond) & Ud, StrL='L precond'; ok=1;
if issparse(U_precond), Us='sparse'; end
end
if ischar(L_precond)
fprintf('%13s: ''%s''\n',StrL,L_precond);
if ok
if U_precond~=0 & ~strcmp(U_precond,'preconditioner')
fprintf('%13s: ''%s''\n',StrU,U_precond);
else
fprintf('%13s: ''%s''\n',StrU,L_precond);
end
end
else
fprintf('%13s: [%ix%i %s]\n',StrL,n,n,Ls);
if ok & Ud, fprintf('%13s: [%ix%i %s]\n',StrU,n,n,Us); end
end
end
fprintf('\n')
string1='%13s: ''%s'''; string2='\n\t %s';
switch INTERIOR
case 0
fprintf(string1,'TestSpace','Standard, W = V ')
fprintf(string2,'V W: V orthogonal')
fprintf(string2,'W=A*V')
case 1
fprintf(string1,'TestSpace','Harmonic, W = A*V - sigma*V')
fprintf(string2,'V W: V and W orthogonal')
fprintf(string2,'AV-Q*E=W*R where AV=A*V-sigma*V and E=Q''*AV')
case 1.1
fprintf(string1,'TestSpace','Harmonic, W = A*V - sigma*V')
fprintf(string2,'V W AV: V and W orthogonal')
fprintf(string2,'AV=A*V-sigma*V, AV-Q*Q''*AV=W*R')
case 1.2
fprintf(string1,'TestSpace','Harmonic, W = A*V - sigma*V')
fprintf(string2,'V W: W orthogonal')
fprintf(string2,'W=AV-Q*E where AV=A*V-sigma*V and E=Q''*AV')
otherwise
fprintf(string1,'TestSpace','Experimental')
end % switch INTERIOR
fprintf('\n\n')
end % if SHOW
if ischar(sigma) & INTERIOR >=1
msg1=sprintf('\n The choice sigma = ''%s'' does not match',sigma);
msg2=sprintf('\n the search for INTERIOR eigenvalues.');
msg3=sprintf('\n Specify a numerical value for sigma');
msg4=sprintf(',\n for instance, a value that is ');
switch sigma
case {'LM'}
% sigma='SM';
msg5=sprintf('absolute large.\n');
msg4=[msg4,msg5];
case {'LR'}
% sigma='SP'; % smallest positive real
msg5=sprintf('positive large.\n');
msg4=[msg4,msg5];
case {'SR'}
% sigma='LN'; % largest negative real
msg5=sprintf('negative and absolute large.\n');
msg4=[msg4,msg5];
case {'BE'}
% sigma='AS'; % alternating smallest pos., largest neg
msg4=sprintf('.\n');
end
msg=[msg1,msg2,msg3,msg4];
msg5=sprintf(' Do you want to continue with sigma=0?');
msg=[msg,msg5];
button=questdlg(msg,'Finding Interior Eigenvalues','Yes','No','Yes');
if strcmp(button,'Yes'), sigma=0, else, n=-1; end
end
return
%-------------------------------------------------------------------
function x = boolean(x,gamma,string)
%Y = BOOLEAN(X,GAMMA,STRING)
% GAMMA(1) is the default.
% If GAMMA is not specified, GAMMA = 0.
% STRING is a matrix of accepted strings.
% If STRING is not specified STRING = ['no ';'yes']
% STRING(I,:) and GAMMA(I) are accepted expressions for X
% If X=GAMMA(I) then Y=X. If X=STRING(I,:), then Y=GAMMA(I+1).
% For other values of X, Y=GAMMA(1);
if nargin < 2, gamma=0; end
if nargin < 3, string=strvcat('no','yes'); gamma=[gamma,0,1]; end
if ischar(x)
i=strmatch(lower(x),string,'exact');
if isempty(i),i=1; else, i=i+1; end, x=gamma(i);
elseif max((gamma-x)==0)
elseif gamma(end) == inf
else, x=gamma(1);
end
return
%-------------------------------------------------------------------
function possibilities
fprintf('\n')
fprintf('PROBLEM\n')
fprintf(' A: [ square matrix | string ]\n');
fprintf(' nselect: [ positive integer {5} ]\n\n');
fprintf('TARGET\n')
fprintf(' sigma: [ scalar | vector of scalars |\n');
fprintf(' ''LM'' | {''SM''} | ''LR'' | ''SR'' | ''BE'' ]\n\n');
fprintf('OPTIONS\n');
fprintf(' Schur: [ yes | {no} ]\n');
fprintf(' Tol: [ positive scalar {1e-8} ]\n');
fprintf(' Disp: [ yes | {no} | 2 ]\n');
fprintf(' jmin: [ positive integer {nselect+5} ]\n');
fprintf(' jmax: [ positive integer {jmin+5} ]\n');
fprintf(' MaxIt: [ positive integer {200} ]\n');
fprintf(' v0: [ size(A,1) by p vector of scalars {rand(size(A,1),1)} ]\n');
fprintf(' TestSpace: [ Standard | {Harmonic} ]\n');
fprintf(' Pairs: [ yes | {no} ]\n');
fprintf(' AvoidStag: [ yes | {no} ]\n');
fprintf(' Track: [ {yes} | no | non-negative scalar {1e-4} ]\n');
fprintf(' LSolver: [ {gmres} | bicgstab ]\n');
fprintf(' LS_Tol: [ row of positive scalars {[1,0.7]} ]\n');
fprintf(' LS_MaxIt: [ positive integer {5} ]\n');
fprintf(' LS_ell: [ positive integer {4} ]\n');
fprintf(' Precond: [ n by 2n matrix | string {identity} ]\n');
fprintf('\n')
return
%===========================================================================
%============= OUTPUT FUNCTIONS ============================================
%===========================================================================
function varargout=ShowLambda(lambda,kk)
for k=1:size(lambda,1);
if k>1, Str=[Str,sprintf('\n%15s','')]; else, Str=[]; end
rlambda=real(lambda(k,1)); ilambda=imag(lambda(k,1));
Str=[Str,sprintf(' %+11.4e',rlambda)];
if abs(ilambda)>100*eps*abs(rlambda)
if ilambda>0
Str=[Str,sprintf(' + %10.4ei',ilambda)];
else
Str=[Str,sprintf(' - %10.4ei',-ilambda)];
end
end
end
if nargout == 0
if nargin == 2
Str=[sprintf('\nlambda(%i) =',kk),Str];
else
Str=[sprintf('\nDetected eigenvalues:\n\n%15s',''),Str];
end
fprintf('%s\n',Str)
else
varargout{1}=Str;
end
return
%===========================================================================
function DispResult(s,nr,gamma)
if nargin<3, gamma=0; end
extra='';
if nr > 100*eps & gamma
extra=' norm > 100*eps !!! ';
end
if gamma<2 | nr>100*eps
fprintf('\n %35s: %0.5g\t%s',s,nr,extra)
end
return
%===========================================================================
function STATUS0=MovieTheta(n,nit,Lambda,jmin,tau,LOCKED,SHRINK)
% MovieTheta(n,nit,Lambda,jmin,tau,nr<t_tol,j==jmax);
global A_operator Rschur EigMATLAB CIRCLE MovieAxis M_STATUS
f=256;
if nargin==0,
if ~isempty(CIRCLE)
%figure(f), buttons(f,-2); hold off, refresh
end
return
end
if nit==0
EigMATLAB=[];
if ~ischar(A_operator) & n<201
EigMATLAB=eig(full(A_operator));
end
CIRCLE=0:0.005:1; CIRCLE=exp(CIRCLE*2*pi*sqrt(-1));
if ischar(tau)
switch tau
case {'LR','SR'}
if ~ischar(A_operator)
CIRCLE=norm(A_operator,'inf')*[sqrt(-1),-sqrt(-1)]+1;
end
end
end
Explanation(~isempty(EigMATLAB),f-1)
end
%if gcf~=f, figure(f), end
jmin=min(jmin,length(Lambda));
%plot(real(Lambda(1:jmin)),imag(Lambda(1:jmin)),'bo');
if nit>0, axis(MovieAxis), end, hold on
pls='bo'; if SHRINK, pls='mo'; end
%plot(real(Lambda(jmin+1:end)),imag(Lambda(jmin+1:end)),pls)
%plot(real(EigMATLAB),imag(EigMATLAB),'cp');
THETA=diag(Rschur); %plot(real(THETA),imag(THETA),'k*');
x=real(Lambda(1)); y=imag(Lambda(1));
%plot(x,y,'kd'), pls='ks';
if LOCKED, plot(x,y,'ks'), pls='ms'; end
if ischar(tau), tau=0; end
delta=Lambda([1,jmin])-tau;
if length(CIRCLE)~=2, delta=abs(delta);
% plot(real(tau),imag(tau),pls)
else, delta=real(delta); end
for i=1:1+SHRINK,
zeta=delta(i)*CIRCLE+tau;
% plot(real(zeta),imag(zeta),'r:'),
end
if nit==0
buttons(f,-1); hold off, zoom on
end
title('legend see figure(255)')
if SHRINK, STATUS0=buttons(f,2); if STATUS0, return, end, end
STATUS0=buttons(f,1); drawnow, hold off
return
%=============================================================
function Explanation(E,f)
%if gcf~=f, figure(f), end
HL=plot(0,0,'kh',0,0,'bo'); hold on
StrL=str2mat('Detected eigenvalues','Approximate eigenvalues');
if E
HL=[HL;plot(0,0,'cp')];
StrL=str2mat(StrL,'Exact eigenvenvalues');
end
HL=[HL;plot(0,0,'kd',0,0,'ks',0,0,'r:')];
% StrL=str2mat(StrL,'Tracked app. eig.','target',...
% 'inner/outer bounds for restart');
StrL=str2mat(StrL,'Selected approximate eigenvalue','target',...
'inner/outer bounds for restart');
legend(HL,StrL), hold on, drawnow, hold off
title('legend for figure(256)')
return
%=============================================================
function STATUS0=buttons(f,push)
% push=0: do nothing
% push>0: check status buttons,
% STATUS0=1 if break else STATUS0=0.
% push=-1: make buttons for pause and break
% push=-2: remove buttons
global M_STATUS MovieAxis
if push>0 % check status buttons
ud = get(f,'UserData');
if ud.pause ==1, M_STATUS=1; end
if ud.break ==1, STATUS0=1;
ud.pause=0; ud.break=0; set(f,'UserData',ud); return,
else, STATUS0=0; end
if push>1
ud.pause=0; set(f,'UserData',ud);
while M_STATUS
ud = get(f,'UserData'); pause(0.1)
if ud.pause, M_STATUS=0; end
if ud.break, M_STATUS=0; STATUS0=1; end
MovieAxis=axis;
end
ud.pause=0; ud.break=0; set(f,'UserData',ud);
end
elseif push==0, STATUS0=0; return
elseif push==-1 % make buttons
ud = [];
h = findobj(f,'Tag','pause');
if isempty(h)
ud.pause = 0;
pos = get(0,'DefaultUicontrolPosition');
pos(1) = pos(1) - 15;
pos(2) = pos(2) - 15;
str = 'ud=get(gcf,''UserData''); ud.pause=1; set(gcf,''UserData'',ud);';
uicontrol( ...
'Style','push', ...
'String','Pause', ...
'Position',pos, ...
'Callback',str, ...
'Tag','pause');
else
set(h,'Visible','on'); % make sure it's visible
if ishold
oud = get(f,'UserData');
ud.pause = oud.pause; % don't change old ud.pause status
else
ud.pause = 0;
end
end
h = findobj(f,'Tag','break');
if isempty(h)
ud.break = 0;
pos = get(0,'DefaultUicontrolPosition');
pos(1) = pos(1) + 50;
pos(2) = pos(2) - 15;
str = 'ud=get(gcf,''UserData''); ud.break=1; set(gcf,''UserData'',ud);';
uicontrol( ...
'Style','push', ...
'String','Break', ...
'Position',pos, ...
'Callback',str, ...
'Tag','break');
else
set(h,'Visible','on'); % make sure it's visible
if ishold
oud = get(f,'UserData');
ud.break = oud.break; % don't change old ud.break status
else
ud.break = 0;
end
end
set(f,'UserData',ud); M_STATUS=0;
STATUS0=0; hold off, zoom on
MA=axis; nl=MA/10;
MovieAxis = MA-max(nl([2,4])-nl([1,3]))*[1,-1,1,-1];
else % remove buttons
set(findobj(f,'Tag','pause'),'Visible','off');
set(findobj(f,'Tag','break'),'Visible','off');
STATUS0=0; return, refresh
end
return
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
lmnn.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/lmnn.m
| 5,421 |
utf_8
|
8d5b80dee8cf8730a96c0c415c5876fc
|
function [M, L, Y, C] = lmnn(X, labels)
%LMNN Learns a metric using large-margin nearest neighbor metric learning
%
% [M, L, Y, C] = lmnn(X, labels)
%
% The function uses large-margin nearest neighbor (LMNN) metric learning to
% learn a metric on the data set specified by the NxD matrix X and the
% corresponding Nx1 vector labels. The metric is returned in M.
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
% Initialize some variables
[N, D] = size(X);
assert(length(labels) == N);
[lablist, ~, labels] = unique(labels);
K = length(lablist);
label_matrix = false(N, K);
label_matrix(sub2ind(size(label_matrix), (1:length(labels))', labels)) = true;
same_label = logical(double(label_matrix) * double(label_matrix'));
M = eye(D);
C = Inf; prev_C = Inf;
% Set learning parameters
min_iter = 50; % minimum number of iterations
max_iter = 1000; % maximum number of iterations
eta = .1; % learning rate
mu = .5; % weighting of pull and push terms
tol = 1e-3; % tolerance for convergence
best_C = Inf; % best error obtained so far
best_M = M; % best metric found so far
no_targets = 3; % number of target neighbors
% Select target neighbors
sum_X = sum(X .^ 2, 2);
DD = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (X * X')));
DD(~same_label) = Inf; DD(1:N + 1:end) = Inf;
[~, targets_ind] = sort(DD, 2, 'ascend');
targets_ind = targets_ind(:,1:no_targets);
targets = false(N, N);
targets(sub2ind([N N], vec(repmat((1:N)', [1 no_targets])), vec(targets_ind))) = true;
% Compute pulling term between target neigbhors to initialize gradient
slack = zeros(N, N, no_targets);
G = zeros(D, D);
for i=1:no_targets
G = G + (1 - mu) .* (X - X(targets_ind(:,i),:))' * (X - X(targets_ind(:,i),:));
end
% Perform main learning iterations
iter = 0;
while (prev_C - C > tol || iter < min_iter) && iter < max_iter
% Compute pairwise distances under current metric
sum_X = sum((X * M) .* X, 2);
DD = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * ((X * M) * X')));
% Compute value of slack variables
old_slack = slack;
for i=1:no_targets
slack(:,:,i) = ~same_label .* max(0, bsxfun(@minus, 1 + DD(sub2ind([N N], (1:N)', targets_ind(:,i))), DD));
end
% Compute value of cost function
prev_C = C;
C = (1 - mu) .* sum(DD(targets)) + ... % push terms between target neighbors
mu .* sum(slack(:)); % pull terms between impostors
% Maintain best solution found so far (subgradient method)
if C < best_C
best_C = C;
best_M = M;
end
% Perform gradient update
for i=1:no_targets
% Add terms for new violations
[r, c] = find(slack(:,:,i) > 0 & old_slack(:,:,i) == 0);
G = G + mu .* ((X(r,:) - X(targets_ind(r, i),:))' * ...
(X(r,:) - X(targets_ind(r, i),:)) - ...
(X(r,:) - X(c,:))' * (X(r,:) - X(c,:)));
% Remove terms for resolved violations
[r, c] = find(slack(:,:,i) == 0 & old_slack(:,:,i) > 0);
G = G - mu .* ((X(r,:) - X(targets_ind(r, i),:))' * ...
(X(r,:) - X(targets_ind(r, i),:)) - ...
(X(r,:) - X(c,:))' * (X(r,:) - X(c,:)));
end
M = M - (eta ./ N) .* G;
% Project metric back onto the PSD cone
[V, L] = eig(M);
V = real(V); L = real(L);
ind = find(diag(L) > 0);
if isempty(ind)
warning('Projection onto PSD cone failed. All eigenvalues were negative.'); break
end
M = V(:,ind) * L(ind, ind) * V(:,ind)';
if any(isinf(M(:)))
warning('Projection onto PSD cone failed. Metric contains Inf values.'); break
end
if any(isnan(M(:)))
warning('Projection onto PSD cone failed. Metric contains NaN values.'); break
end
% Update learning rate
if prev_C > C
eta = eta * 1.01;
else
eta = eta * .5;
end
% Print out progress
iter = iter + 1;
no_slack = sum(slack(:) > 0);
if rem(iter, 10) == 0
[~, sort_ind] = sort(DD, 2, 'ascend');
disp(['Iteration ' num2str(iter) ': error is ' num2str(C ./ N) ...
', nearest neighbor error is ' num2str(sum(labels(sort_ind(:,2)) ~= labels) ./ N) ...
', number of constraints: ' num2str(no_slack)]);
end
end
% Return best metric and error
M = best_M;
C = best_C;
% Compute mapped data
[L, S, ~] = svd(M);
L = bsxfun(@times, sqrt(diag(S)), L);
Y = X * L;
end
function x = vec(x)
x = x(:);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
d2p.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/d2p.m
| 3,487 |
utf_8
|
0c7024a8039ea16b937d283585883fc3
|
function [P, beta] = d2p(D, u, tol)
%D2P Identifies appropriate sigma's to get kk NNs up to some tolerance
%
% [P, beta] = d2p(D, kk, tol)
%
% Identifies the required precision (= 1 / variance^2) to obtain a Gaussian
% kernel with a certain uncertainty for every datapoint. The desired
% uncertainty can be specified through the perplexity u (default = 15). The
% desired perplexity is obtained up to some tolerance that can be specified
% by tol (default = 1e-4).
% The function returns the final Gaussian kernel in P, as well as the
% employed precisions per instance in beta.
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
if ~exist('u', 'var') || isempty(u)
u = 15;
end
if ~exist('tol', 'var') || isempty(tol)
tol = 1e-4;
end
% Initialize some variables
n = size(D, 1); % number of instances
P = zeros(n, n); % empty probability matrix
beta = ones(n, 1); % empty precision vector
logU = log(u); % log of perplexity (= entropy)
% Run over all datapoints
for i=1:n
if ~rem(i, 500)
disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']);
end
% Set minimum and maximum values for precision
betamin = -Inf;
betamax = Inf;
% Compute the Gaussian kernel and entropy for the current precision
[H, thisP] = Hbeta(D(i, [1:i - 1, i + 1:end]), beta(i));
% Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while abs(Hdiff) > tol && tries < 50
% If not, increase or decrease precision
if Hdiff > 0
betamin = beta(i);
if isinf(betamax)
beta(i) = beta(i) * 2;
else
beta(i) = (beta(i) + betamax) / 2;
end
else
betamax = beta(i);
if isinf(betamin)
beta(i) = beta(i) / 2;
else
beta(i) = (beta(i) + betamin) / 2;
end
end
% Recompute the values
[H, thisP] = Hbeta(D(i, [1:i - 1, i + 1:end]), beta(i));
Hdiff = H - logU;
tries = tries + 1;
end
% Set the final row of P
P(i, [1:i - 1, i + 1:end]) = thisP;
end
disp(['Mean value of sigma: ' num2str(mean(sqrt(1 ./ beta)))]);
disp(['Minimum value of sigma: ' num2str(min(sqrt(1 ./ beta)))]);
disp(['Maximum value of sigma: ' num2str(max(sqrt(1 ./ beta)))]);
end
% Function that computes the Gaussian kernel values given a vector of
% squared Euclidean distances, and the precision of the Gaussian kernel.
% The function also computes the perplexity of the distribution.
function [H, P] = Hbeta(D, beta)
P = exp(-D * beta);
sumP = sum(P);
H = log(sumP) + beta * sum(D .* P) / sumP;
% why not: H = exp(-sum(P(P > 1e-5) .* log(P(P > 1e-5)))); ???
P = P / sumP;
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
cg_update.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/cg_update.m
| 3,715 |
utf_8
|
1556078ae7c31950ec738949384cf180
|
% Version 1.000
%
% Code provided by Ruslan Salakhutdinov and Geoff Hinton
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied. As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application. All use of these programs is entirely at the user's own risk.
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
function [f, df] = cg_update(VV, Dim, XX)
l1 = Dim(1);
l2 = Dim(2);
l3 = Dim(3);
l4 = Dim(4);
l5 = Dim(5);
l6 = Dim(6);
l7 = Dim(7);
l8 = Dim(8);
l9 = Dim(9);
N = size(XX, 1);
% Extract weights back from VV
w1 = reshape(VV(1:(l1 + 1) * l2), l1 + 1, l2);
xxx = (l1 + 1) * l2;
w2 = reshape(VV(xxx + 1:xxx + (l2 + 1) * l3), l2 + 1, l3);
xxx = xxx + (l2 + 1) * l3;
w3 = reshape(VV(xxx + 1:xxx + (l3 + 1) * l4), l3 + 1, l4);
xxx = xxx + (l3 + 1) * l4;
w4 = reshape(VV(xxx + 1:xxx + (l4 + 1) * l5), l4 + 1, l5);
xxx = xxx + (l4 + 1) * l5;
w5 = reshape(VV(xxx + 1:xxx + (l5 + 1) * l6), l5 + 1, l6);
xxx = xxx + (l5 + 1) * l6;
w6 = reshape(VV(xxx + 1:xxx + (l6 + 1) * l7), l6 + 1, l7);
xxx = xxx + (l6 + 1) * l7;
w7 = reshape(VV(xxx + 1:xxx + (l7 + 1) * l8), l7 + 1, l8);
xxx = xxx + (l7 + 1) * l8;
w8 = reshape(VV(xxx + 1:xxx + (l8 + 1) * l9), l8 + 1, l9);
% Evaluate points
XX = [XX ones(N, 1)];
w1probs = 1 ./ (1 + exp(-XX * w1)); w1probs = [w1probs ones(N,1)];
w2probs = 1 ./ (1 + exp(-w1probs * w2)); w2probs = [w2probs ones(N,1)];
w3probs = 1 ./ (1 + exp(-w2probs * w3)); w3probs = [w3probs ones(N,1)];
w4probs = w3probs * w4; w4probs = [w4probs ones(N,1)];
w5probs = 1 ./ (1 + exp(-w4probs * w5)); w5probs = [w5probs ones(N,1)];
w6probs = 1 ./ (1 + exp(-w5probs * w6)); w6probs = [w6probs ones(N,1)];
w7probs = 1 ./ (1 + exp(-w6probs * w7)); w7probs = [w7probs ones(N,1)];
XXout = 1 ./ (1 + exp(-w7probs * w8));
% Compute gradients
f = (-1 / N) * sum(sum(XX(:,1:end - 1) .* log(XXout) + (1 - XX(:,1:end - 1)) .* log(1 - XXout)));
IO = (1 / N) * (XXout - XX(:,1:end - 1));
Ix8 = IO;
dw8 = w7probs'*Ix8;
Ix7 = (Ix8 * w8') .* w7probs .* (1 - w7probs);
Ix7 = Ix7(:,1:end - 1);
dw7 = w6probs' * Ix7;
Ix6 = (Ix7*w7') .* w6probs .* (1 - w6probs);
Ix6 = Ix6(:,1:end - 1);
dw6 = w5probs' * Ix6;
Ix5 = (Ix6 * w6') .* w5probs .* (1 - w5probs);
Ix5 = Ix5(:,1:end - 1);
dw5 = w4probs' * Ix5;
Ix4 = (Ix5 * w5');
Ix4 = Ix4(:,1:end - 1);
dw4 = w3probs' * Ix4;
Ix3 = (Ix4 * w4') .* w3probs .* (1 - w3probs);
Ix3 = Ix3(:,1:end - 1);
dw3 = w2probs' * Ix3;
Ix2 = (Ix3 * w3') .* w2probs .* (1 - w2probs);
Ix2 = Ix2(:,1:end - 1);
dw2 = w1probs' * Ix2;
Ix1 = (Ix2 * w2') .* w1probs .* (1 - w1probs);
Ix1 = Ix1(:,1:end - 1);
dw1 = XX' * Ix1;
% Return gradients
df = [dw1(:)' dw2(:)' dw3(:)' dw4(:)' dw5(:)' dw6(:)' dw7(:)' dw8(:)']';
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
lmvu.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/lmvu.m
| 8,540 |
utf_8
|
c8003ed7ff0fd0e226776c42c72ad385
|
function [mappedX, mapping] = lmvu(X, no_dims, K, LL)
%LMVU Performs Landmark MVU on dataset X
%
% [mappedX, mapping] = lmvu(X, no_dims, k1, k2)
%
% The function performs Landmark MVU on the DxN dataset X. The value of k1
% represents the number of nearest neighbors that is employed in the MVU
% constraints. The value of k2 represents the number of nearest neighbors
% that is employed to compute the reconstruction weights (for embedding the
% non-landmark points).
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
if ~exist('K', 'var')
K = 3;
end
if ~exist('LL', 'var')
LL = 12;
end
% Save some data for out-of-sample extension
if ischar(K)
error('Adaptive neighborhood selection not supported for landmark MVU.');
end
mapping.k1 = K;
mapping.k2 = LL;
mapping.X = X;
% Initialize some variables
N = size(X, 2); % number of datapoints
B = ceil(0.02 * N); % number of landmark points
% Set some parameters parameters
pars.ep = eps;
pars.fastmode = 1;
pars.warmup = K * B / N;
pars.verify = 1;
pars.angles = 1;
pars.maxiter = 100;
pars.noise = 0;
pars.ignore = 0.1;
pars.penalty = 1;
pars.factor = 0.9999;
% Identify nearest neighbors
disp('Identifying nearest neighbors...');
KK = max(LL, K);
X = L2_distance(X, X); % memory-intensive: O(n^{2}) !!!
[foo, neighbors] = find_nn(X, KK);
neighbors = neighbors';
% Get inverse of reconstruction weight matrix
Pia = getPia(B, LL, X, neighbors);
% Generate SDP problem
disp('Generating SDP problem...');
neighbors = neighbors(1:K,:);
clear temp index sorted
nck = nchoosek(1:K + 1, 2);
AA = zeros(N * K, 2);
pos3 = 1;
for i=1:N
ne = neighbors(:,i);
nne = [ne; i];
pairs = nne(nck);
js = pairs(:,1);
ks = pairs(:,2);
AA(pos3:pos3 + length(js) - 1,:) = sort([js ks], 2);
pos3 = pos3 + length(js);
if i == B
AA = unique(AA, 'rows');
ForceC = size(AA, 1);
end
if pos3 > size(AA, 1) && i < N
AA = unique(AA, 'rows');
pos3 = size(AA, 1) + 1;
AA = [AA; zeros(round(N / (N - i) * pos3), 2)];
fprintf('.');
end
end
AA = unique(AA, 'rows');
AA = AA(2:end,:);
clear neighbors ne v2 v3 js ks
bb = zeros(1, size(AA, 1));
for i=1:size(AA, 1)
bb(i) = sum((X(:,AA(i, 1)) - X(:,AA(i, 2))) .^ 2);
end
disp(' ');
% Reduce the number of forced vectors
ii = (1:ForceC)';
jj = zeros(1, size(AA, 1));
jj(ii) = 1;
jj = find(jj == 0);
jj1 = jj(jj <= ForceC);
jj2 = jj(jj > ForceC);
jj2 = jj2(randperm(length(jj2)));
jj1 = jj1(randperm(length(jj1)));
corder = [ii; jj1'; jj2'];
AA = AA(corder,:);
bb = bb(corder);
ForceC = length(ii);
clear temp jj1 jj2 jj ii
Const = max(round(pars.warmup * size(AA, 1)), ForceC);
[A, b, AA, bb] = getConstraints(AA, Pia, bb, B, Const, pars);
Qt = sum(Pia, 1)' * sum(Pia, 1);
A = [Qt(:)'; A];
b = [0; b];
clear K;
solved = 0;
% Start SDP iterations
disp('Perform semi-definite programming...');
disp('CSDP OUTPUT =============================================================================');
while solved == 0
% Initialize some variables
c = -vec(Pia' * Pia);
flags.s = B;
flags.l = size(A, 1) - 1;
A = [[zeros(1,flags.l); speye(flags.l)] A];
% Set c (employ penalty)
c = [ones(ForceC, 1) .* max(max(c)); zeros(flags.l - ForceC, 1); c];
% Launch the CSDP solver
options.maxiter=pars.maxiter;
[x, d, z, info] = csdp(A, b, c, flags, options);
K = mat(x(flags.l + 1:flags.l + flags.s ^ 2));
% Check whether a solution is reached
solved = isempty(AA);
A = A(:,flags.l + 1:end);
xx = K(:);
if size(AA, 1)
Aold = size(A,1);
total = 0;
while size(A, 1) - Aold < Const && ~isempty(AA)
[newA, newb, AA, bb] = getConstraints(AA, Pia, bb, B, Const, pars);
jj = find(newA * xx - newb > pars.ignore * abs(newb));
if info == 2
jj = 1:size(newA, 1);
end
total = total + length(jj);
A(size(A,1) + 1:size(A,1) + length(jj),:) = newA(jj,:);
b(length(b) + 1:length(b) + length(jj)) = newb(jj);
end
if total == 0
solved = 1;
end
else
solved=1;
end
if solved == 1 && pars.maxiter < 100
pars.maxiter = 100;
end
end
disp('=========================================================================================');
% Perform eigendecomposition of kernel matrix to compute Y
disp('Perform eigendecomposition to obtain low-dimensional data representation...');
[V, D] = eig(K);
V = V * sqrt(D);
Y = (V(:,end:-1:1))';
mappedX = Y * Pia';
% Reorder data in original order
mappedX = mappedX(1:no_dims,:);
% Set some information for the out-of-sample extension
mapping.Y = Y;
mapping.D = X;
mapping.no_landmarks = B;
mapping.no_dims = no_dims;
% Function that computes LLE weight matrix
function Q = getPia(B, LL, X, neighbors)
% Initialize some variables
N = size(X,2);
% Compute reconstruction weights
disp('Computing reconstruction weights...');
tol = 1e-7;
Pia = sparse([], [], [], B, N);
for i=1:N
z = X(:,neighbors(:,i)) - repmat(X(:,i), 1, LL);
C = z' * z;
C = C + tol * trace(C) * eye(LL) / LL;
invC = inv(C);
Pia(neighbors(:,i),i) = sum(invC)' / sum(sum(invC));
end
% Fill sparse LLE weight matrix
M = speye(N) + sparse([], [], [], N, N, N * LL .^ 2);
for i=1:N
j = neighbors(:,i);
w = Pia(j, i);
M(i, j) = M(i, j) - w';
M(j, i) = M(j, i) - w;
M(j, j) = M(j, j) + w * w';
end
% Invert LLE weight matrix
disp('Invert reconstruction weight matrix...');
Q = -M(B + 1:end, B + 1:end) \ M(B + 1:end, 1:B);
Q = [eye(B); Q];
% Functions that constructs the constraints for the SDP
function [A, b, AAomit, bbomit] = getConstraints(AA, Pia, bb, B, Const, pars)
% Initialize some variables
pos2 = 0;
perm = 1:size(AA,1);
if size(AA, 1) > Const
AAomit = AA(perm(Const + 1:end),:);
bbomit = bb(perm(Const + 1:end));
AA = AA(perm(1:Const),:);
bb = bb(perm(1:Const));
else
AAomit = [];
bbomit = [];
end
% Allocate some memory
persistent reqmem;
if isempty(reqmem)
A2 = zeros(size(AA, 1) * B, 3);
else
A2 = zeros(reqmem, 3);
end
% Set the constraints
pos = 0;
for j=1:size(AA, 1)
% Evaluate for current row in AA
ii = AA(j, 1);
jj = AA(j, 2);
Q = Pia(ii,:)' * Pia(ii,:) - 2 .* Pia(jj,:)' * Pia(ii,:) + Pia(jj,:)' * Pia(jj,:);
Q = (Q + Q') ./ 2;
it = find(abs(Q) > pars.ep .^ 2);
% Constraint found
if ~isempty(it)
% Allocate more memory if needed
pos = pos + 1;
if pos2 + length(it) > size(A2, 1)
A2 = [A2; zeros(ceil((size(AA, 1) - j) / j * size(A2, 1)), 3)];
end
% Set constraint
A2(1 + pos2:pos2 + length(it), 1) = ones(length(it), 1) .* pos;
A2(1 + pos2:pos2 + length(it), 2) = it;
A2(1 + pos2:pos2 + length(it), 3) = full(Q(it));
pos2 = pos2 + length(it);
end
end
% Construct sparse constraint matrix
reqmem = pos2;
A2 = A2(1:pos2,:);
A = sparse(A2(:,1), A2(:,2), A2(:,3), size(AA,1), B .^ 2);
b = bb';
% Function that vectorizes a matrix
function v = vec(M)
v = M(:);
% Function that matrixizes a vector
function M = mat(C)
r = round(sqrt(size(C, 1)));
M = reshape(C, r, r);
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
cca.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/cca.m
| 14,846 |
utf_8
|
935e971ffe825a64e0eb80c535d71ebb
|
function [Z, ccaEigen, ccaDetails] = cca(X, Y, EDGES, OPTS)
%
% Function [Z, CCAEIGEN, CCADETAILS] = CCA(X, Y, EDGES, OPTS) computes a low
% dimensional embedding Z in R^d that maximally preserves angles among input
% data X that lives in R^D, with the algorithm Conformal Component Analysis.
%
% The embedding Z is constrained to be Z = L*Y where Y is a partial basis that
% spans the space of R^d. Such Y can be computed from graph Laplacian (such as
% the outputs of Laplacian eigenmap and Locally Linear Embedding, ie, LLE).
% The parameterization matrix L is found by this function as to maximally
% prserve angles between edges coded in the sparse matrix EDGES.
%
% A basic usage of this function is given below:
%
% Inputs:
% X: input data stored in matrix (D x N) where D is the dimensionality
%
% Y: partial basis stored in matrix (d x N)
%
% EDGES: a sparse matrix of (N x N). In each column i, the row indices j to
% nonzero entrices define data points that are in the nearest neighbors of
% data point i.
%
% OPTS:
% OPTS.method: 'CCA'
%
% Outputs:
% Z: low dimensional embedding (d X N)
% CCAEIGN: eigenspectra of the matrix P = L'*L. If P is low-rank (say d' < d),
% then Z can be cutoff at d' dimension as dimensionality reduced further.
%
% The CCA() function is fairly versatile. For more details, consult the file
% README.
%
% by [email protected] Aug 18, 2006
% Feel free to use it for educational and research purpose.
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
% sanity check
if nargin ~= 4
error('Incorrect number of inputs supplied to cca().');
end
N = size(X,2);
if (N~=size(Y,2)) || (N ~= size(EDGES,1)) || (N~=size(EDGES,2))
disp('Unmatched matrix dimensions in cca().');
fprintf('# of data points: %d\n', N);
fprintf('# of data points in Y: %d\n', size(Y,2));
fprintf('Size of the sparse matrix for edges: %d x %d\n', size(EDGES,1), size(EDGES,2));
error('All above 4 numbers should be the same.');
end
% check necessary programs
if exist('mexCCACollectData') ~= 3
error('Missing mexCCACollectData mex file on the path');
end
if exist('csdp') ~= 2
error('You will need CSDP solver to run cca(). Please make sure csdp.m is in your path');
end
% check options
OPTS = check_opt(OPTS);
D = size(X, 1);
d = size(Y, 1);
%disp('Step I. collect data needed for SDP formulation');
[tnn, vidx] = triangNN(EDGES, OPTS.CCA);
[erow, ecol, evalue] = sparse_nn(tnn);
irow = int32(erow); icol = int32(ecol);
ividx = int32(vidx); ivalue = int32(evalue);
[A,B, g] = mexCCACollectData(X,Y, irow, icol, int32(OPTS.relative), ivalue, ividx );
clear erow ecol irow icol tnn ividx ivalue evalue vidx;
lst = find(g~=0);
g = g(lst); B = B(:, lst);
if OPTS.CCA == 1
BG = B*spdiags(1./sqrt(g),0, length(g),length(g));
Q = A - BG*BG';
BIAS = OPTS.regularizer*reshape(eye(d), d^2,1);
else
Q = A; BIAS = 2*sum(B,2)+OPTS.regularizer*reshape(eye(d), d^2,1);
end
[V, E] = eig(Q+eye(size(Q))); % adding an identity matrix to Q for numerical
E = E-eye(size(Q)); % stability
E(E<0) = 0;
if ~isreal(diag(E))
warning('\tThe quadratic matrix is not positive definite..forced to be positive definite...\n');
E=real(E);
V = real(V);
S = sqrt(E)*V';
else
S = sqrt(E)*V';
end
% Formulate the SDP problem
[AA, bb, cc] = formulateSDP(S, d, BIAS, (OPTS.CCA==1));
sizeSDP = d^2+1 + d + 2*(OPTS.CCA==1);
csdppars.s = sizeSDP;
csdpopts.printlevel = 0;
% Solve it using CSDP
[xx, yy, zz, info] = csdp(AA, bb, cc, csdppars,csdpopts);
ccaDetails.sdpflag = info;
% The negate of yy is our solution
yy = -yy;
idx = 0;
P = zeros(d);
for col=1:d
for row = col:d
idx=idx+1;
P(row, col) = yy(idx);
end
end
% Convert P to a positive definite matrix
P = P + P' - diag(diag(P));
% Transform the original projection to the new projection
[V, E] = eig(P);
E(E < 0) = 0;
L = diag(sqrt(diag(E))) * V';
newY = L * Y;
% Eigenvalue of the new projection, doing PCA using covariance matrix
[newV, newE] = eig(newY * newY');
newE = diag(newE);
[dummy, idx] = sort(newE);
newE = newE(idx(end:-1:1));
newY = newV' * newY;
Z = newY(idx(end:-1:1),:);
ccaEigen = newE;
ccaDetails.cost = P(:)'*Q*P(:) - BIAS'*P(:) + sum(g(:))*(OPTS.MVU==1);
if OPTS.CCA == 1
ccaDetails.c = spdiags(1./sqrt(g),0, length(g),length(g))*B'*P(:);
else
ccaDetails.c = [];
end
ccaDetails.P = P;
ccaDetails.opts = OPTS;
%%%%%%%%%%%%%%%%%%%% FOLLOWING IS SUPPORTING MATLAB FUNCTIONS
function [A, b, c] = formulateSDP(S, D, bb, TRACE)
[F0, FI, c] = localformulateSDP(S, D, bb, TRACE);
[A, b, c] = sdpToSeDuMi(F0, FI, c);
function [F0, FI, c] = localformulateSDP(S, D, b, TRACE)
% formulate SDP problem
% each FI that corresponds to the LMI for the quadratic cost function has
% precisely 2*D^2 nonzero elements. But we need only D^2 storage for
% indexing these elements since the FI are symmetric
tempFidx = zeros(D^2, 3);
dimF = (D^2+1) + D + 2*TRACE;
idx= 0;
tracearray = ones(TRACE,1);
for col=1:D
for row=col:D
idx = idx+1;
lindx1 = sub2ind([D D], row, col);
lindx2 = sub2ind([D D], col, row);
tempFidx(:,1) = [1:D^2]';
tempFidx(:,2) = D^2+1;
if col==row
tempFidx(:,3) = S(:, lindx1) ;
FI{idx} = sparse([tempFidx(:,1); ... % for cost function
tempFidx(:,2); ... % symmetric
row+D^2+1; ... % for P being p.s.d
tracearray*(D^2+1+D+1); % for trace
tracearray*(D^2+1+D+2); % for negate trace
], ...
[tempFidx(:,2); ... % for cost function
tempFidx(:,1); ... % symmetric
row+D^2+1; ... % for P being p.s.d
tracearray*(D^2+1+D+1); % for trace
tracearray*(D^2+1+D+2); % for negate trace
],...
[tempFidx(:,3); ... % for cost function
tempFidx(:,3); ... % symmetric
1; % for P being p.s.d
tracearray*1; % for trace
tracearray*(-1); % for negate trace
], dimF, dimF);
else
tempFidx(:,3) = S(:, lindx1) + S(:, lindx2);
FI{idx} = sparse([tempFidx(:,1); ... % for cost function
tempFidx(:,2); ... % symmetric
row+D^2+1; ... % for P being p.s.d
col+D^2+1; ... % symmetric
], ...
[tempFidx(:,2); ... % for cost function
tempFidx(:,1); ... % symmetric
col+D^2+1; ... % for P being p.s.d
row+D^2+1; ... % being symmetric
],...
[tempFidx(:,3); ... % for cost function
tempFidx(:,3); ... % symmetric
1; % for P being p.s.d
1; % symmetric
], dimF, dimF);
end
end
end
idx=idx+1;
% for the F matrix corresponding to t
FI{idx} = sparse(D^2+1, D^2+1, 1, dimF, dimF);
% now for F0
if TRACE==1
F0 = sparse( [[1:D^2] dimF-1 dimF], [[1:D^2] dimF-1 dimF], [ones(1, D^2) -1 1], dimF, dimF);
else
F0 = sparse( [[1:D^2]], [[1:D^2]], [ones(1, D^2)], dimF, dimF);
end
% now for c
b = reshape(-b, D, D);
b = b*2 - diag(diag(b));
c = zeros(idx-1,1);
kdx=0;
%keyboard;
for col=1:D
for row=col:D
kdx = kdx+1;
c(kdx) = b(row, col);
end
end
%keyboard;
c = [c; 1]; % remember: we use only half of P
return;
function [A, b, c] = sdpToSeDuMi(F0, FI, cc)
% convert the canonical SDP dual formulation:
% (see Vandenberche and Boyd 1996, SIAM Review)
% max -Tr(F0 Z)
% s.t. Tr(Fi Z) = cci and Z is positive definite
%
% in which cc = (cc1, cc2, cc3,..) and FI = {F1, F2, F3,...}
%
% to SeDuMi format (formulated as vector decision variables ):
% min c'x
% s.t. Ax = b and x is positive definite (x is a vector, so SeDuMi
% really means that vec2mat(x) is positive definite)
%
% by [email protected], June, 10, 2004
if nargin < 3
error('Cannot convert SDP formulation to SeDuMi formulation in sdpToSeDumi!');
end
[m, n] = size(F0);
if m ~= n
error('F0 matrix must be squared matrix in sdpToSeDumi(F0, FI, b)');
end
p = length(cc);
if p ~= length(FI)
error('FI matrix cellarray must have the same length as b in sdpToSeDumi(F0,FI,b)');
end
% should check every element in the cell array FI...later..
% x = reshape(Z, n*n, 1); % optimization variables from matrix to vector
% converting objective function of the canonical SDP
c = reshape(F0', n*n,1);
% converting equality constraints of the canonical SDP
zz= 0;
for idx=1:length(FI)
zz= zz + nnz(FI{idx});
end
A = spalloc( n*n, p, zz);
for idx = 1:p
temp = reshape(FI{idx}, n*n,1);
lst = find(temp~=0);
A(lst, idx) = temp(lst);
end
% The SeDuMi solver actually expects the transpose of A as in following
% dual problem
% max b'y
% s.t. c - A'y is positive definite
% Therefore, we transpose A
% A = A';
% b doesn't need to be changed
b = cc;
return;
% Check OPTS that is passed into
function OPTS = check_opt(OPTS)
if isfield(OPTS,'method') == 0
OPTS.method = 'cca';
disp('Options does''t have method field, so running CCA');
end
if strncmpi(OPTS.method, 'MVU',3)==1
OPTS.CCA = 0; OPTS.MVU = 1;
else
OPTS.CCA = 1; OPTS.MVU = 0;
end
if isfield(OPTS, 'relative')==0
OPTS.relative = 0;
end
if OPTS.CCA==1 && OPTS.relative ==1
disp('Running CCA, so the .relative flag set to 0');
OPTS.relative = 0;
end
if isfield(OPTS, 'regularizer')==0
OPTS.regularizer = 0;
end
return
function [tnn vidx]= triangNN(snn, TRI)
% function [TNN VIDX]= triangNN(SNN) triangulates a sparse graph coded by spare matrix
% SNN. TNN records the original edges in SNN as well as those that are
% triangulated. Each edge is associated with a scaling factor that is specific
% to a vertex. And VIDX records the id of the vertex.
%
% by [email protected] Aug. 15, 2006.
N = size(snn,1);
%fprintf('The graph has %d vertices\n', N);
% figure out maximum degree a vertex has
connectivs = sum(snn,1);
maxDegree = max(connectivs);
tnn = spalloc(N, N, round(maxDegree*N)); % prealloc estimated storage for speedup
% triangulation
for idx=1:N
lst = find(snn(:, idx)>0);
for jdx=1:length(lst)
col = min (idx, lst(jdx));
row = max(idx, lst(jdx));
tnn(row, col) = tnn(row, col)+1;
if TRI == 1
for kdx = jdx+1:length(lst)
col = min(lst(jdx), lst(kdx));
row = max(lst(jdx), lst(kdx));
tnn(row, col) = tnn(row, col)+1;
end
end
end
end
numVertexIdx = full(sum(tnn(:)));
%fprintf('%d vertex entries are needed\n', numVertexIdx);
rowIdx = zeros(numVertexIdx,1);
colIdx = zeros(numVertexIdx,1);
vidx = zeros(numVertexIdx,1);
whichEdge = 0;
for idx=1:N
lst = find(snn(:, idx)>0);
for jdx=1:length(lst)
col = min(lst(jdx), idx);
row = max(lst(jdx), idx);
whichEdge = whichEdge+1;
rowIdx(whichEdge) = row;
colIdx(whichEdge) = col;
vidx(whichEdge) = idx;
if TRI==1
for kdx = jdx+1:length(lst)
col = min(lst(jdx), lst(kdx));
row = max(lst(jdx), lst(kdx));
whichEdge = whichEdge+1;
rowIdx(whichEdge) = row;
colIdx(whichEdge) = col;
vidx(whichEdge) = idx;
end
end
end
end
linearIdx = sub2ind([N N],rowIdx, colIdx);
[sa, sIdx] = sort(linearIdx);
vidx = vidx(sIdx);
return
% turn sparse graph snn into row and col indices
function [edgesrow, edgescol, value] = sparse_nn(snn)
N = size(snn,1);
edgescol = zeros(N+1,1);
nnzer = nnz(snn);
edgesrow = zeros(nnzer,1);
value = zeros(nnzer,1);
edgescol(1) = 0;
for jdx=1:N
lst = find(snn(:, jdx)>0);
%lst = lst(find(lst>jdx));
edgescol(jdx+1) = edgescol(jdx)+length(lst);
edgesrow(edgescol(jdx)+1:edgescol(jdx+1)) = lst-1;
value(edgescol(jdx)+1:edgescol(jdx+1)) = snn(lst, jdx);
end
return
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
x2p.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/x2p.m
| 3,597 |
utf_8
|
4a102e94922f4af38e36c374dccbc5a2
|
function [P, beta] = x2p(X, u, tol)
%X2P Identifies appropriate sigma's to get kk NNs up to some tolerance
%
% [P, beta] = x2p(xx, kk, tol)
%
% Identifies the required precision (= 1 / variance^2) to obtain a Gaussian
% kernel with a certain uncertainty for every datapoint. The desired
% uncertainty can be specified through the perplexity u (default = 15). The
% desired perplexity is obtained up to some tolerance that can be specified
% by tol (default = 1e-4).
% The function returns the final Gaussian kernel in P, as well as the
% employed precisions per instance in beta.
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
if ~exist('u', 'var') || isempty(u)
u = 15;
end
if ~exist('tol', 'var') || isempty(tol)
tol = 1e-4;
end
% Initialize some variables
n = size(X, 1); % number of instances
P = zeros(n, n); % empty probability matrix
beta = ones(n, 1); % empty precision vector
logU = log(u); % log of perplexity (= entropy)
% Compute pairwise distances
% disp('Computing pairwise distances...');
D = squareform(pdist(X, 'euclidean') .^ 2);
% Run over all datapoints
% disp('Computing P-values...');
for i=1:n
% if ~rem(i, 500)
% disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']);
% end
% Set minimum and maximum values for precision
betamin = -Inf;
betamax = Inf;
% Compute the Gaussian kernel and entropy for the current precision
Di = D(i, [1:i-1 i+1:end]);
[H, thisP] = Hbeta(Di, beta(i));
% Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while abs(Hdiff) > tol && tries < 50
% If not, increase or decrease precision
if Hdiff > 0
betamin = beta(i);
if isinf(betamax)
beta(i) = beta(i) * 2;
else
beta(i) = (beta(i) + betamax) / 2;
end
else
betamax = beta(i);
if isinf(betamin)
beta(i) = beta(i) / 2;
else
beta(i) = (beta(i) + betamin) / 2;
end
end
% Recompute the values
[H, thisP] = Hbeta(Di, beta(i));
Hdiff = H - logU;
tries = tries + 1;
end
% Set the final row of P
P(i, [1:i - 1, i + 1:end]) = thisP;
end
% disp(['Mean value of sigma: ' num2str(mean(sqrt(1 ./ beta)))]);
% disp(['Minimum value of sigma: ' num2str(min(sqrt(1 ./ beta)))]);
% disp(['Maximum value of sigma: ' num2str(max(sqrt(1 ./ beta)))]);
end
% Function that computes the Gaussian kernel values given a vector of
% squared Euclidean distances, and the precision of the Gaussian kernel.
% The function also computes the perplexity of the distribution.
function [H, P] = Hbeta(D, beta)
P = exp(-D * beta);
sumP = sum(P);
H = log(sumP) + beta * sum(D .* P) / sumP;
P = P / sumP;
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
sammon.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/sammon.m
| 7,108 |
utf_8
|
8a1fccbea9525bbebae4039127005ea6
|
function [y, E] = sammon(x, n, opts)
%SAMMON Performs Sammon's MDS mapping on dataset X
%
% Y = SAMMON(X) applies Sammon's nonlinear mapping procedure on
% multivariate data X, where each row represents a pattern and each column
% represents a feature. On completion, Y contains the corresponding
% co-ordinates of each point on the map. By default, a two-dimensional
% map is created. Note if X contains any duplicated rows, SAMMON will
% fail (ungracefully).
%
% [Y,E] = SAMMON(X) also returns the value of the cost function in E (i.e.
% the stress of the mapping).
%
% An N-dimensional output map is generated by Y = SAMMON(X,N) .
%
% A set of optimisation options can also be specified using a third
% argument, Y = SAMMON(X,N,OPTS) , where OPTS is a structure with fields:
%
% MaxIter - maximum number of iterations
% TolFun - relative tolerance on objective function
% MaxHalves - maximum number of step halvings
% Input - {'raw','distance'} if set to 'distance', X is
% interpreted as a matrix of pairwise distances.
% Display - {'off', 'on', 'iter'}
% Initialisation - {'pca', 'random'}
%
% The default options structure can be retrieved by calling SAMMON with
% no parameters.
%
% References :
%
% [1] Sammon, John W. Jr., "A Nonlinear Mapping for Data Structure
% Analysis", IEEE Transactions on Computers, vol. C-18, no. 5,
% pp 401-409, May 1969.
%
% See also : SAMMON_TEST
%
% File : sammon.m
%
% Date : Monday 12th November 2007.
%
% Author : Gavin C. Cawley and Nicola L. C. Talbot
%
% Description : Simple vectorised MATLAB implementation of Sammon's non-linear
% mapping algorithm [1].
%
% References : [1] Sammon, John W. Jr., "A Nonlinear Mapping for Data
% Structure Analysis", IEEE Transactions on Computers,
% vol. C-18, no. 5, pp 401-409, May 1969.
%
% History : 10/08/2004 - v1.00
% 11/08/2004 - v1.10 Hessian made positive semidefinite
% 13/08/2004 - v1.11 minor optimisation
% 12/11/2007 - v1.20 initialisation using the first n principal
% components.
%
% Thanks : Dr Nick Hamilton ([email protected]) for supplying the
% code for implementing initialisation using the first n
% principal components (introduced in v1.20).
%
% To do : The current version does not take advantage of the symmetry
% of the distance matrix in order to allow for easy
% vectorisation. This may not be a good choice for very large
% datasets, so perhaps one day I'll get around to doing a MEX
% version using the BLAS library etc. for very large datasets.
%
% Copyright : (c) Dr Gavin C. Cawley, November 2007.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
% use the default options structure
if nargin < 3
opts.Display = 'iter';
opts.Input = 'raw';
opts.MaxHalves = 20;
opts.MaxIter = 500;
opts.TolFun = 1e-9;
opts.Initialisation = 'random';
end
% the user has requested the default options structure
if nargin == 0
y = opts;
return;
end
% Create a two-dimensional map unless dimension is specified
if nargin < 2
n = 2;
end
% Set level of verbosity
if strcmp(opts.Display, 'iter')
display = 2;
elseif strcmp(opts.Display, 'on')
display = 1;
else
display = 0;
end
% Create distance matrix unless given by parameters
if strcmp(opts.Input, 'distance')
D = x;
else
D = euclid(x, x);
end
% Remaining initialisation
N = size(x, 1);
scale = 0.5 / sum(D(:));
D = D + eye(N);
Dinv = 1 ./ D;
if strcmp(opts.Initialisation, 'pca')
[UU,DD] = svd(x);
y = UU(:,1:n)*DD(1:n,1:n);
else
y = randn(N, n);
end
one = ones(N,n);
d = euclid(y,y) + eye(N);
dinv = 1./d;
delta = D - d;
E = sum(sum((delta.^2).*Dinv));
% Get on with it
for i=1:opts.MaxIter
% Compute gradient, Hessian and search direction (note it is actually
% 1/4 of the gradient and Hessian, but the step size is just the ratio
% of the gradient and the diagonal of the Hessian so it doesn't
% matter).
delta = dinv - Dinv;
deltaone = delta * one;
g = delta * y - y .* deltaone;
dinv3 = dinv .^ 3;
y2 = y .^ 2;
H = dinv3 * y2 - deltaone - 2 * y .* (dinv3 * y) + y2 .* (dinv3 * one);
s = -g(:) ./ abs(H(:));
y_old = y;
% Use step-halving procedure to ensure progress is made
for j=1:opts.MaxHalves
y(:) = y_old(:) + s;
d = euclid(y, y) + eye(N);
dinv = 1 ./ d;
delta = D - d;
E_new = sum(sum((delta .^ 2) .* Dinv));
if E_new < E
break;
else
s = 0.5*s;
end
end
% Bomb out if too many halving steps are required
if j == opts.MaxHalves
warning('MaxHalves exceeded. Sammon mapping may not converge...');
end
% Evaluate termination criterion
if abs((E - E_new) / E) < opts.TolFun
if display
fprintf(1, 'Optimisation terminated - TolFun exceeded.\n');
end
break;
end
% Report progress
E = E_new;
if display > 1
fprintf(1, 'epoch = %d : E = %12.10f\n', i, E * scale);
end
end
% Fiddle stress to match the original Sammon paper
E = E * scale;
end
function d = euclid(x, y)
d = sqrt(sum(x.^2,2)*ones(1,size(y,1))+ones(size(x,1),1)*sum(y.^2,2)'-2*(x*y'));
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
sdecca2.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/sdecca2.m
| 7,185 |
utf_8
|
e53979561adda6a23883da0e72af5bf6
|
function [P, newY, L, newV, idx]= sdecca2(Y, snn, regularizer, relative)
% doing semidefinitve embedding/MVU with output being parameterized by graph
% laplacian's eigenfunctions..
%
% the algorithm is same as conformal component analysis except that the scaling
% factor there is set as 1
%
%
% function [P, newY, Y] = CDR2(X, Y, NEIGHBORS) implements the
% CONFORMAL DIMENSIONALITY REDUCTION of data X. It finds a linear map
% of Y -> L*Y such that X and L*Y is related by a conformal mapping.
%
% No tehtat The algorithm use the formulation of only distances.
%
% Input:
% Y: matrix of d'xN, with each column is a point in R^d'
% NEIGHBORS: matrix of KxN, each column is a list of indices (between 1
% and N) to the nearest-neighbor of the corresponding column in X
% Output:
% P: square of the linear map L, i.e., P = L'*L
% newY: transformed data points, i.e., newY = L*Y;
% Y: the linear map L itself, i.e., L = L
%
% The algorithm finds L by solving a semidefinite programming problem. It
% calls csdp() SDP solver by default and assumes that it is on the path.
%
% written by [email protected]
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
% Collect the data
[erow, ecol, edist] = sparse_nn(snn);
irow = int32(erow);
icol = int32(ecol);
[A, B, g] = mexCCACollectData2(Y, irow, icol, edist, int32(relative));
BG = 2 * sum(B, 2);
Q = A ;
[V, E] = eig(Q + eye(size(Q)));
E = E - eye(size(Q));
E(E < 0) = 0;
if ~isreal(diag(E))
E = real(E);
V = real(V);
S = sqrt(E) * V';
else
S = sqrt(E) * V';
end
% Put the regularizer in there
BG = BG + regularizer * reshape(eye(size(Y, 1)), size(Y, 1) ^ 2, 1);
% Formulate the SDP problem
[AA, bb, cc] = formulateSDP(S, size(Y, 1), BG);
sizeSDP = size(Y, 1) ^ 2 + 1 + size(Y, 1);
pars.s = sizeSDP;
opts.printlevel = 1;
% Solve it using CSDP
[xx, yy] = csdp(AA, bb, cc, pars, opts);
% The negate of yy is our solution
yy = -yy;
idx = 0;
P = zeros(size(Y, 1));
for col=1:size(Y, 1)
for row = col:size(Y, 1)
idx = idx + 1;
P(row, col) = yy(idx);
end
end
% Convert P to a positive definite matrix
P = P + P' - diag(diag(P));
% Transform the original projection to the new projection
[V, E] = eig(P);
E(E < 0) = 0;
L = diag(sqrt(diag(E))) * V';
newY = L * Y; % multiply with Laplacian
% Eigendecomposition of the new projection: doing PCA because the
% dimensionality of newY or Y is definitely less than the number of
% points
[newV, newE] = eig(newY * newY');
newE = diag(newE);
[dummy, idx] = sort(newE);
newY = newV' * newY;
newY = newY(idx(end:-1:1),:);
return
% Function that formulates the SDP problem
function [A, b, c]=formulateSDP(S, D, bb)
[F0, FI, c] = localformulateSDP(S, D, bb);
[A, b, c] = sdpToSeDuMi(F0, FI, c);
return
% Function that formulates the SDP problem
function [F0, FI, c] = localformulateSDP(S, D, b)
% Each FI that corresponds to the LMI for the quadratic cost function has
% precisely 2 * D^2 nonzero elements. But we need only D^2 storage for
tempFidx = zeros(D ^ 2, 3);
dimF = (D ^ 2 + 1) + D;
idx = 0;
for col=1:D
for row=col:D
idx = idx + 1;
lindx1 = sub2ind([D D], row, col);
lindx2 = sub2ind([D D], col, row);
tempFidx(:,1) = [1:D ^ 2]';
tempFidx(:,2) = D ^ 2 + 1;
if col == row
tempFidx(:,3) = S(:,lindx1) ;
FI{idx} = sparse([tempFidx(:,1); ... % for cost function
tempFidx(:,2); ... % symmetric
row + D^2 + 1 ... % for P being p.s.d
], ...
[tempFidx(:,2); ... % for cost function
tempFidx(:,1); ... % symmetric
row + D^2 + 1; ... % for P being p.s.d
],...
[tempFidx(:,3); ... % for cost function
tempFidx(:,3); ... % symmetric
1; % for P being p.s.d
], dimF, dimF);
else
tempFidx(:,3) = S(:, lindx1) + S(:,lindx2);
FI{idx} = sparse([tempFidx(:,1); ... % for cost function
tempFidx(:,2); ... % symmetric
row + D^2 + 1; ... % for P being p.s.d
col + D^2 + 1; ... % symmetric
], ...
[tempFidx(:,2); ... % for cost function
tempFidx(:,1); ... % symmetric
col + D^2 + 1; ... % for P being p.s.d
row + D^2 + 1; ... % being symmetric
], ...
[tempFidx(:,3); ... % for cost function
tempFidx(:,3); ... % symmetric
1; % for P being p.s.d
1; % symmetric
], dimF, dimF);
end
end
end
idx = idx + 1;
% For the F matrix corresponding to t
FI{idx} = sparse(D^2 + 1, D^2 + 1, 1, dimF, dimF);
% Now for F0
F0 = sparse(1:D^2, 1:D^2, ones(1, D^2), dimF, dimF);
% Now for c
b = reshape(-b, D, D);
b = b * 2 - diag(diag(b));
c = zeros(idx - 1,1);
kdx = 0;
for col=1:D
for row=col:D
kdx = kdx + 1;
c(kdx) = b(row, col);
end
end
c = [c; 1];
return
% Function that convertsthe canonical SDP dual formulation to SeDuMi format
function [A, b, c] = sdpToSeDuMi(F0, FI, cc)
% Check inputs
if nargin < 3
error('Cannot convert SDP formulation to SeDuMi formulation.');
end
[m, n] = size(F0);
if m ~= n
error('F0 matrix must be squared matrix.');
end
p = length(cc);
if p ~= length(FI)
error('FI matrix cellarray must have the same length as b.');
end
% Converting objective function of the canonical SDP
c = reshape(F0', n * n, 1);
% Converting equality constraints of the canonical SDP
zz = 0;
for idx=1:length(FI)
zz= zz + nnz(FI{idx});
end
A = spalloc(n * n, p, zz);
for idx=1:p
temp = reshape(FI{idx}, n * n, 1);
lst = find(temp ~= 0);
A(lst, idx) = temp(lst);
end
% We do not need to convert b
b = cc;
return
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
sparse_nn.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/sparse_nn.m
| 972 |
utf_8
|
df5da172f954ec2f53125a04787cf2d3
|
%SPARSE_NN
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
function [edgesrow, edgescol,edgesdist] = sparse_nn(snn)
% turn into sparse nearest neighbor graph snn into edgesrow and edgescol index
N = size(snn,1);
edgescol = zeros(N+1,1);
nnzer = nnz(snn);
edgesrow = zeros(nnzer,1);
edgesdist = zeros(nnzer,1);
edgescol(1) = 0;
for jdx=1:N
lst = find(snn(:, jdx)>0);
%lst = lst(find(lst>jdx));
edgescol(jdx+1) = edgescol(jdx)+length(lst);
edgesrow(edgescol(jdx)+1:edgescol(jdx+1)) = lst-1;
edgesdist(edgescol(jdx)+1:edgescol(jdx+1))=snn(lst,jdx);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
jdqz.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/techniques/jdqz.m
| 78,986 |
utf_8
|
be67a038982588a6ac9cbc2d36f009e8
|
function varargout=jdqz(varargin)
%JDQZ computes a partial generalized Schur decomposition (or QZ
% decomposition) of a pair of square matrices or operators.
%
% LAMBDA=JDQZ(A,B) and JDQZ(A,B) return K eigenvalues of the matrix pair
% (A,B), where K=min(5,N) and N=size(A,1) if K has not been specified.
%
% [X,JORDAN]=JDQZ(A,B) returns the eigenvectors X and the Jordan
% structure JORDAN: A*X=B*X*JORDAN. The diagonal of JORDAN contains the
% eigenvalues: LAMBDA=DIAG(JORDAN). JORDAN is an K by K matrix with the
% eigenvalues on the diagonal and zero or one on the first upper diagonal
% elements. The other entries are zero.
%
% [X,JORDAN,HISTORY]=JDQZ(A,B) returns also the convergence history.
%
% [X,JORDAN,Q,Z,S,T,HISTORY]=JDQZ(A,B)
% If between four and seven output arguments are required, then Q and Z
% are N by K orthonormal, S and T are K by K upper triangular such that
% they form a partial generalized Schur decomposition: A*Q=Z*S and
% B*Q=Z*T. Then LAMBDA=DIAG(S)./DIAG(T) and X=Q*Y with Y the eigenvectors
% of the pair (S,T): S*Y=T*Y*JORDAN (see also OPTIONS.Schur).
%
% JDQZ(A,B)
% JDQZ('Afun','Bfun')
% The first input argument is either a square matrix (which can be full
% or sparse, symmetric or nonsymmetric, real or complex), or a string
% containing the name of an M-file which applies a linear operator to the
% columns of a given matrix. In the latter case, the M-file, say Afun.m,
% must return the dimension N of the problem with N = Afun([],'dimension').
% For example, JDQZ('fft',...) is much faster than JDQZ(F,...), where F is
% the explicit FFT matrix.
% If another input argument is a square N by N matrix or the name of an
% M-file, then B is this argument (regardless whether A is an M-file or a
% matrix). If B has not been specified, then B is assumed to be the
% identity unless A is an M-file with two output vectors of dimension N
% with [AV,BV]=Afun(V), or with AV=Afun(V,'A') and BV=Afun(V,'B').
%
% The remaining input arguments are optional and can be given in
% practically any order:
%
% [X,JORDAN,Q,Z,S,T,HISTORY] = JDQZ(A,B,K,SIGMA,OPTIONS)
% [X,JORDAN,Q,Z,S,T,HISTORY] = JDQZ('Afun','Bfun',K,SIGMA,OPTIONS)
%
% where
%
% K an integer, the number of desired eigenvalues.
% SIGMA a scalar shift or a two letter string.
% OPTIONS a structure containing additional parameters.
%
% If K is not specified, then K = MIN(N,5) eigenvalues are computed.
%
% If SIGMA is not specified, then the Kth eigenvalues largest in
% magnitude are computed. If SIGMA is a real or complex scalar, then the
% Kth eigenvalues nearest SIGMA are computed. If SIGMA is column vector
% of size (L,1), then the Jth eigenvalue nearest to SIGMA(MIN(J,L))
% is computed for J=1:K. SIGMA is the "target" for the desired eigenvalues.
% If SIGMA is one of the following strings, then it specifies the desired
% eigenvalues.
%
% SIGMA Specified eigenvalues
%
% 'LM' Largest Magnitude
% 'SM' Smallest Magnitude (same as SIGMA = 0)
% 'LR' Largest Real part
% 'SR' Smallest Real part
% 'BE' Both Ends. Computes K/2 eigenvalues
% from each end of the spectrum (one more
% from the high end if K is odd.)
%
% If 'TestSpace' is 'Harmonic' (see OPTIONS), then SIGMA = 0 is the
% default, otherwise SIGMA = 'LM' is the default.
%
%
% The OPTIONS structure specifies certain parameters in the algorithm.
%
% Field name Parameter Default
%
% OPTIONS.Tol Convergence tolerance: 1e-8
% norm(r) <= Tol/SQRT(K)
% OPTIONS.jmin Minimum dimension search subspace V K+5
% OPTIONS.jmax Maximum dimension search subspace V jmin+5
% OPTIONS.MaxIt Maximum number of iterations. 100
% OPTIONS.v0 Starting space ones+0.1*rand
% OPTIONS.Schur Gives schur decomposition 'no'
% If 'yes', then X and JORDAN are
% not computed and [Q,Z,S,T,HISTORY]
% is the list of output arguments.
% OPTIONS.TestSpace Defines the test subspace W 'Harmonic'
% 'Standard': W=sigma*A*V+B*V
% 'Harmonic': W=A*V-sigma*B*V
% 'SearchSpace': W=V
% W=V is justified if B is positive
% definite.
% OPTIONS.Disp Shows size of intermediate residuals 'no'
% and the convergence history
% OPTIONS.NSigma Take as target for the second and 'no'
% following eigenvalues, the best
% approximate eigenvalues from the
% test subspace.
% OPTIONS.Pairs Search for conjugated eigenpairs 'no'
% OPTIONS.LSolver Linear solver 'GMRES'
% OPTIONS.LS_Tol Residual reduction linear solver 1,0.7,0.7^2,..
% OPTIONS.LS_MaxIt Maximum number it. linear solver 5
% OPTIONS.LS_ell ell for BiCGstab(ell) 4
% OPTIONS.Precond Preconditioner (see below) identity.
% OPTIONS.Type_Precond Way of using preconditioner 'left'
%
% For instance
%
% options=struct('Tol',1.0e-8,'LSolver','BiCGstab','LS_ell',4,'Precond',M);
%
% changes the convergence tolerance to 1.0e-8, takes BiCGstab as linear
% solver, and takes M as preconditioner (for ways of defining M, see below).
%
%
% PRECONDITIONING. The action M-inverse of the preconditioner M (an
% approximation of A-lamda*B) on an N-vector V can be defined in the
% OPTIONS
%
% OPTIONS.Precond
% OPTIONS.L_Precond same as OPTIONS.Precond
% OPTIONS.U_Precond
% OPTIONS.P_Precond
%
% If no preconditioner has been specified (or is []), then M\V=V (M is
% the identity).
% If Precond is an N by N matrix, say, K, then
% M\V = K\V.
% If Precond is an N by 2*N matrix, say, K, then
% M\V = U\L\V, where K=[L,U], and L and U are N by N matrices.
% If Precond is a string, say, 'Mi', then
% if Mi(V,'L') and Mi(V,'U') return N-vectors
% M\V = Mi(Mi(V,'L'),'U')
% otherwise
% M\V = Mi(V) or M\V=Mi(V,'preconditioner').
% Note that Precond and A can be the same string.
% If L_Precond and U_Precond are strings, say, 'Li' and 'Ui',
% respectively, then
% M\V=Ui(Li(V)).
% If (P_precond,) L_Precond, and U_precond are N by N matrices, say,
% (P,) L, and U, respectively, then
% M\V=U\L\(P*V) (P*M=L*U)
%
% OPTIONS.Type_Precond
% The preconditioner can be used as explicit left preconditioner
% ('left', default), as explicit right preconditioner ('right') or
% implicitly ('impl').
%
%
% JDQZ without input arguments returns the options and its defaults.
%
% Gerard Sleijpen.
% Copyright (c) 2002
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
global Qschur Zschur Sschur Tschur ...
Operator_MVs Precond_Solves ...
MinvZ QastMinvZ
if nargin==0
possibilities, return,
end
%%% Read/set parameters
[n,nselect,Sigma,kappa,SCHUR,...
jmin,jmax,tol0,maxit,V,AV,BV,TS,DISP,PAIRS,JDV0,FIX_tol,track,NSIGMA,...
lsolver,LSpar] = ReadOptions(varargin{1:nargin});
Qschur = zeros(n,0); Zschur=zeros(n,0);;
MinvZ = zeros(n,0); QastMinvZ=zeros(0,0);
Sschur = []; Tschur=[]; history = [];
%%% Return if eigenvalueproblem is trivial
if n<2
if n==1, Qschur=1; Zschur=1; [Sschur,Tschur]=MV(1); end
if nargout == 0, Lambda=Sschur/Tschur, else
[varargout{1:nargout}]=output(history,SCHUR,1,Sschur/Tschur); end,
return, end
%---------- SET PARAMETERS & STRINGS FOR OUTPUT -------------------------
if TS==0, testspace='sigma(1)''*Av+sigma(2)''*Bv';
elseif TS==1, testspace='sigma(2)*Av-sigma(1)*Bv';
elseif TS==2, testspace='v';
elseif TS==3, testspace='Bv';
elseif TS==4, testspace='Av';
end
String=['\r#it=%i #MV=%3i, dim(V)=%2i, |r_%2i|=%6.1e '];
%------------------- JDQZ -----------------------------------------------
% fprintf('Scaling with kappa=%6.4g.',kappa)
k=0; nt=0; j=size(V,2); nSigma=size(Sigma,1);
it=0; extra=0; Zero=[]; target=[]; tol=tol0/sqrt(nselect);
INITIATE=1; JDV=0;
rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0;
time=clock;
if TS ~=2
while (k<nselect & it<maxit)
%%% Initialize target, test space and interaction matrices
if INITIATE, % set new target
nt=min(nt+1,nSigma); sigma = Sigma(nt,:); nlit=0; lit=0;
if j<2
[V,AV,BV]=Arnoldi(V,AV,BV,sigma,jmin,nselect,tol);
rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0; target=[];
j=min(jmin,n-k);
end
if DETECTED & NSIGMA
[Ur,Ul,St,Tt] = SortQZ(WAV,WBV,sigma,kappa);
y=Ur(:,1); q=V*y; Av=AV*y; Bv=BV*y;
[r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);
sigma=ScaleEig(theta);
USE_OLD=NSIGMA; rKNOWN=1; lit=10;
end
NEWSHIFT= 1;
if DETECTED & TS<2, NEWSHIFT= ~min(target==sigma); end
target=sigma; ttarget=sigma;
if ischar(ttarget), ttrack=0; else, ttrack=track; end
if NEWSHIFT
v=V; Av=AV; Bv=BV; W=eval(testspace);
%%% V=RepGS(Qschur,V); [AV,BV]=MV(V); %%% more stability??
%%% W=RepGS(Zschur,eval(testspace)); %%% dangerous if sigma~lambda
if USE_OLD, W(:,1)=V(:,1); end,
W=RepGS(Zschur,W); WAV=W'*AV; WBV=W'*BV;
end
INITIATE=0; DETECTED=0; JDV=0;
end % if INITIATE
%%% Solve the preconditioned correction equation
if rKNOWN,
if JDV, z=W; q=V; extra=extra+1;
if DISP, fprintf(' %2i-d proj.\n',k+j-1), end
end
if FIX_tol*nr>1 & ~ischar(target), theta=target; else, FIX_tol=0; end
t=SolvePCE(theta,q,z,r,lsolver,LSpar,lit);
nlit=nlit+1; lit=lit+1; it=it+1;
EXPAND=1; rKNOWN=0; JDV=0;
end % if rKNOWN
%%% Expand the subspaces and the interaction matrices
if EXPAND
[v,zeta]=RepGS([Qschur,V],t);
V=[V,v];
[Av,Bv]=MV(v); AV=[AV,Av]; BV=[BV,Bv];
w=eval(testspace); w=RepGS([Zschur,W],w);
WAV=[WAV,W'*Av;w'*AV]; WBV=[WBV,W'*Bv;w'*BV]; W=[W,w];
j=j+1; EXPAND=0;
%%% Check for stagnation
if abs(zeta(size(zeta,1),1))/norm(zeta)<0.06, JDV=JDV0; end
end % if EXPAND
%%% Solve projected eigenproblem
if USE_OLD
[Ur,Ul,St,Tt]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin,y);
else
[Ur,Ul,St,Tt]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin);
end
%%% Compute approximate eigenpair and residual
y=Ur(:,1); q=V*y; Av=AV*y; Bv=BV*y;
[r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);
%%%=== an alternative, but less stable way of computing z =====
% beta=Tt(1,1); alpha=St(1,1); theta=[alpha,beta];
% r=RepGS(Zschur,beta*Av-alpha*Bv,0); nr=norm(r); z=W*Ul(:,1);
rKNOWN=1; if nr<ttrack, ttarget=ScaleEig(theta); end
if DISP, %%% display history
fprintf(String,it,Operator_MVs,j,nlit,nr),
end
history=[history;nr,it,Operator_MVs]; %%% save history
%%% check convergence
if (nr<tol)
%%% EXPAND Schur form
Qschur=[Qschur,q]; Zschur=[Zschur,z];
Sschur=[[Sschur;zeros(1,k)],Zschur'*Av];
Tschur=[[Tschur;zeros(1,k)],Zschur'*Bv]; Zero=[Zero,0];
k=k+1;
if ischar(target), Target(k,:)=[nt,0,0];
else, Target(k,:)=[0,target]; end
if DISP, ShowEig(theta,target,k); end
if (k>=nselect), break; end;
%%% Expand preconditioned Schur matrix MinvZ=M\Zschur
UpdateMinvZ;
J=[2:j]; j=j-1; Ur=Ur(:,J); Ul=Ul(:,J);
V=V*Ur; AV=AV*Ur; BV=BV*Ur; W=W*Ul;
WAV=St(J,J); WBV=Tt(J,J);
rKNOWN=0; DETECTED=1; USE_OLD=0;
%%% check for conjugate pair
if PAIRS & (abs(imag(theta(1)/theta(2)))>tol)
t=ImagVector(q); % t=conj(q); t=t-q*(q'*t);
if norm(t)>tol, t=RepGS([Qschur,V],t,0);
if norm(t)>200*tol
target=ScaleEig(conj(theta));
EXPAND=1; DETECTED=0;
if DISP, fprintf('--- Checking for conjugate pair ---\n'), end
end
end
end
INITIATE = ( j==0 & DETECTED);
elseif DETECTED %%% To detect whether another eigenpair is accurate enough
INITIATE=1;
end % if (nr<tol)
%%% restart if dim(V)> jmax
if j==jmax
j=jmin; J=[1:j];
Ur=Ur(:,J); Ul=Ul(:,J);
V=V*Ur; AV=AV*Ur; BV=BV*Ur; W=W*Ul;
WAV=St(J,J); WBV=Tt(J,J);
end % if j==jmax
end % while k
end % if TS~=2
if TS==2
Q0=Qschur; ZastQ=[];
% WAV=V'*AV; WBV=V'*BV;
while (k<nselect & it<maxit)
%%% Initialize target, test space and interaction matrices
if INITIATE & ( nSigma>k | NSIGMA), % set new target
nt=min(nt+1,nSigma); sigma = Sigma(nt,:); nlit=0; lit=0;
if j<2
[V,AV,BV]=Arnoldi(V,AV,BV,sigma,jmin,nselect,tol);
rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0; target=[];
j=min(jmin,n-k);;
end
if DETECTED & NSIGMA
[Ur,Ul,St,Tt]=SortQZ(WAV,WBV,sigma,kappa,1);
q=RepGS(Zschur,V*Ur(:,1)); [Av,Bv]=MV(q);
[r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);
sigma=ScaleEig(theta);
USE_OLD=NSIGMA; rKNOWN=1; lit=10;
end
target=sigma; ttarget=sigma;
if ischar(ttarget), ttrack=0; else, ttrack=track; end
if ~DETECTED
%%% additional stabilisation. May not be needed
%%% V=RepGS(Zschur,V); [AV,BV]=MV(V);
%%% end add. stab.
WAV=V'*AV; WBV=V'*BV;
end
DETECTED=0; INITIATE=0; JDV=0;
end % if INITIATE
%%% Solve the preconditioned correction equation
if rKNOWN,
if JDV, z=V; q=V; extra=extra+1;
if DISP, fprintf(' %2i-d proj.\n',k+j-1), end
end
if FIX_tol*nr>1 & ~ischar(target), theta=target; else, FIX_tol=0; end
t=SolvePCE(theta,q,z,r,lsolver,LSpar,lit);
nlit=nlit+1; lit=lit+1; it=it+1;
EXPAND=1; rKNOWN=0; JDV=0;
end % if rKNOWN
%%% expand the subspaces and the interaction matrices
if EXPAND
[v,zeta]=RepGS([Zschur,V],t); [Av,Bv]=MV(v);
WAV=[WAV,V'*Av;v'*AV,v'*Av]; WBV=[WBV,V'*Bv;v'*BV,v'*Bv];
V=[V,v]; AV=[AV,Av]; BV=[BV,Bv];
j=j+1; EXPAND=0;
%%% Check for stagnation
if abs(zeta(size(zeta,1),1))/norm(zeta)<0.06, JDV=JDV0; end
end % if EXPAND
%%% compute approximate eigenpair
if USE_OLD
[Ur,Ul]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin,Ur(:,1));
else
[Ur,Ul]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin);
end
%%% Compute approximate eigenpair and residual
q=V*Ur(:,1); Av=AV*Ur(:,1); Bv=BV*Ur(:,1);
[r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);
rKNOWN=1; if nr<ttrack, ttarget=ScaleEig(theta); end
if DISP, %%% display history
fprintf(String,it,Operator_MVs, j,nlit,nr),
end
history=[history;nr,it,Operator_MVs]; %%% save history
%%% check convergence
if (nr<tol)
%%% expand Schur form
[q,a]=RepGS(Q0,q); a1=a(k+1,1); a=a(1:k,1);
%%% ZastQ=Z'*Q0
Q0=[Q0,q]; %%% the final Qschur
ZastQ=[ZastQ,Zschur'*q;z'*Q0]; Zschur=[Zschur,z]; Qschur=[Qschur,z];
Sschur=[[Sschur;Zero],a1\(Zschur'*Av-[Sschur*a;0])];
Tschur=[[Tschur;Zero],a1\(Zschur'*Bv-[Tschur*a;0])]; Zero=[Zero,0];
k=k+1;
if ischar(target), Target(k,:)=[nt,0,0];
else, Target(k,:)=[0,target]; end
if DISP, ShowEig(theta,target,k); end
if (k>=nselect), break; end;
UpdateMinvZ;
J=[2:j]; j=j-1; rKNOWN=0; DETECTED=1;
Ul=Ul(:,J);
V=V*Ul; AV=AV*Ul; BV=BV*Ul;
WAV=Ul'*WAV*Ul; WBV=Ul'*WBV*Ul;
Ul=eye(j); Ur=Ul;
%%% check for conjugate pair
if PAIRS & (abs(imag(theta(2)/theta(1)))>tol)
t=ImagVector(q);
if norm(t)>tol,
%%% t perp Zschur, t in span(Q0,imag(q))
t=t-Q0*(ZastQ\(Zschur'*t));
if norm(t)>100*tol
target=ScaleEig(conj(theta));
EXPAND=1; DETECTED=0; USE_OLD=0;
if DISP, fprintf('--- Checking for conjugate pair ---\n'), end
end
end
end
INITIATE = ( j==0 & DETECTED);
elseif DETECTED %%% To detect whether another eigenpair is accurate enough
INITIATE=1;
end % if (nr<tol)
%%% restart if dim(V)> jmax
if j==jmax
j=jmin; J=[1:j];
Ur=Ur(:,J);
V=V*Ur; AV=AV*Ur; BV=BV*Ur;
WAV=Ur'*WAV*Ur; WBV=Ur'*WBV*Ur;
Ur=eye(j);
end % if jmax
end % while k
Qschur=Q0;
end
time_needed=etime(clock,time);
if JDV0 & extra>0 & DISP
fprintf('\n\n# j-dim. proj.: %2i\n\n',extra)
end
I=CheckSortSchur(Sigma,kappa); Target(1:length(I),:)=Target(I,:);
XKNOWN=0;
if nargout == 0
if ~DISP
eigenvalues=diag(Sschur)./diag(Tschur)
% Result(eigenvalues)
return, end
else
Jordan=[]; X=zeros(n,0);
if SCHUR ~= 1
if k>0
[Z,D,Jor]=FindJordan(Sschur,Tschur,SCHUR);
DT=abs(diag(D)); DS=abs(diag(Jor));
JT=find(DT<=tol & DS>tol); JS=find(DS<=tol & DT<=tol);
msg=''; DT=~isempty(JT); DS=~isempty(JS);
if DT
msg1='The eigenvalues'; msg2=sprintf(', %i',JT);
msg=[msg1,msg2,' are numerically ''Inf'''];
end,
if DS
msg1='The pencil is numerically degenerated in the directions';
msg2=sprintf(', %i',JS);
if DT, msg=[msg,sprintf('\n\n')]; end, msg=[msg,msg1,msg2,'.'];
end,
if (DT | DS), warndlg(msg,'Unreliable directions'), end
Jordan=Jor/D; X=Qschur*Z; XKNOWN=1;
end
end
[varargout{1:nargout}]=output(history,SCHUR,X,Jordan);
end
%-------------- display results -----------------------------------------
if DISP & size(history,1)>0
rs=history(:,1); mrs=max(rs);
if mrs>0, rs=rs+0.1*eps*mrs;
subplot(2,1,1); t=history(:,2);
plot(t,log10(rs),'*-',t,log10(tol)+0*t,':')
legend('log_{10} || r_{#it} ||_2')
String=sprintf('The test subspace is computed as %s.',testspace);
title(String)
subplot(2,1,2); t=history(:,3);
plot(t,log10(rs),'-*',t,log10(tol)+0*t,':')
legend('log_{10} || r_{#MV} ||_2')
String=sprintf('JDQZ with jmin=%g, jmax=%g, residual tolerance %g.',...
jmin,jmax,tol);
title(String)
String=sprintf('Correction equation solved with %s.',lsolver);
xlabel(String),
date=fix(clock);
String=sprintf('%2i-%2i-%2i, %2i:%2i:%2i',date(3:-1:1),date(4:6));
ax=axis; text(0.2*ax(1)+0.8*ax(2),1.2*ax(3)-0.2*ax(4),String)
drawnow
end
Result(Sigma,Target,diag(Sschur),diag(Tschur),tol)
end
%------------------------ TEST ACCURACY ---------------------------------
if k>nselect & DISP
fprintf('\n%i additional eigenpairs have been detected.\n',k-nselect)
end
if k<nselect & DISP
fprintf('\nFailed to detect %i eigenpairs.\n',nselect-k)
end
if (k>0) & DISP
Str='time_needed'; texttest(Str,eval(Str))
fprintf('\n%39s: %9i','Number of Operator actions',Operator_MVs)
if Precond_Solves
fprintf('\n%39s: %9i','Number of preconditioner solves',Precond_Solves)
end
if 1
if SCHUR ~= 1 & XKNOWN
% Str='norm(Sschur*Z-Tschur*Z*Jordan)'; texttest(Str,eval(Str),tol0)
ok=1; eval('[AX,BX]=MV(X);','ok=0;')
if ~ok, for j=1:size(X,2), [AX(:,j),BX(:,j)]=MV(X(:,j)); end, end
Str='norm(AX*D-BX*Jor)'; texttest(Str,eval(Str),tol0)
end
ok=1; eval('[AQ,BQ]=MV(Qschur);','ok=0;')
if ~ok, for j=1:size(Qschur,2), [AQ(:,j),BQ(:,j)]=MV(Qschur(:,j)); end, end
if kappa == 1
Str='norm(AQ-Zschur*Sschur)'; texttest(Str,eval(Str),tol0)
else
Str='norm(AQ-Zschur*Sschur)/kappa'; texttest(Str,eval(Str),tol0)
end
Str='norm(BQ-Zschur*Tschur)'; texttest(Str,eval(Str),tol0)
I=eye(k);
Str='norm(Qschur''*Qschur-I)'; texttest(Str,eval(Str))
Str='norm(Zschur''*Zschur-I)'; texttest(Str,eval(Str))
nrmSschur=max(norm(Sschur),1.e-8);
nrmTschur=max(norm(Tschur),1.e-8);
Str='norm(tril(Sschur,-1))/nrmSschur'; texttest(Str,eval(Str))
Str='norm(tril(Tschur,-1))/nrmTschur'; texttest(Str,eval(Str))
end
fprintf('\n==================================================\n')
end
if k==0
disp('no eigenvalue could be detected with the required precision')
end
return
%%%======== END JDQZ ====================================================
%%%======================================================================
%%%======== PREPROCESSING ===============================================
%%%======================================================================
%%%======== ARNOLDI (for initial spaces) ================================
function [V,AV,BV]=Arnoldi(v,Av,Bv,sigma,jmin,nselect,tol)
% Apply Arnoldi with M\(A*sigma(1)'+B*sigma(2)'), to construct an
% initial search subspace
%
global Qschur
if ischar(sigma), sigma=[0,1]; end
[n,j]=size(v); k=size(Qschur,2); jmin=min(jmin,n-k);
if j==0 & k>0
v=RepGS(Qschur,rand(n,1)); [Av,Bv]=MV(v); j=1;
end
V=v; AV=Av; BV=Bv;
while j<jmin;
v=[Av,Bv]*sigma';
v0=SolvePrecond(v);
if sigma(1)==0 & norm(v0-v)<tol,
%%%% then precond=I and target = 0: apply Arnoldi with A
sigma=[1,0]; v0=Av;
end
v=RepGS([Qschur,V],v0); V=[V,v];
[Av,Bv]=MV(v); AV=[AV,Av]; BV=[BV,Bv]; j=j+1;
end % while
return
%%%======== END ARNOLDI =================================================
%%%======================================================================
%%%======== POSTPROCESSING ==============================================
%%%======================================================================
%%%======== SORT QZ DECOMPOSITION INTERACTION MATRICES ==================
function I=CheckSortSchur(Sigma,kappa)
% I=CheckSortSchur(Sigma)
% Scales Qschur, Sschur, and Tschur such that diag(Tschur) in [0,1]
% Reorders the Partial Schur decomposition such that the `eigenvalues'
% (diag(S),diag(T)) appear in increasing chordal distance w.r.t. to
% Sigma.
% If diag(T) is non-singular then Lambda=diag(S)./diag(T) are the
% eigenvalues.
global Qschur Zschur Sschur Tschur
k=size(Sschur,1); if k==0, I=[]; return, end
% [AQ,BQ]=MV(Qschur);
% Str='norm(AQ-Zschur*Sschur)'; texttest(Str,eval(Str))
% Str='norm(BQ-Zschur*Tschur)'; texttest(Str,eval(Str))
%--- scale such that diag(Tschur) in [0,1] ----
[Tschur,D]=ScaleT(Tschur); Sschur=D\Sschur;
% kappa=max(norm(Sschur,inf)/norm(Tschur,inf),1);
s=diag(Sschur); t=diag(Tschur);
I=(1:k)'; l=size(Sigma,1);
for j=1:k
J0=(j:k)';
J=SortEig(s(I(J0)),t(I(J0)),Sigma(min(j,l),:),kappa);
I(J0)=I(J0(J));
end
if ~min((1:k)'==I)
[Q,Z,Sschur,Tschur]=SwapQZ(eye(k),eye(k),Sschur,Tschur,I);
[Tschur,D2]=ScaleT(Tschur); Sschur=D2\Sschur;
Qschur=Qschur*Q; Zschur=Zschur*(D*Z*D2);
else
Zschur=Zschur*D;
end
return
%========================================================================
function [T,D]=ScaleT(T)
% scale such that diag(T) in [0,1] ----
n=sign(diag(T)); n=n+(n==0); D=diag(n);
T=D\T; IT=imag(T); RT=real(T);
T=RT+IT.*(abs(IT)>eps*abs(RT))*sqrt(-1);
return
%%%======== COMPUTE SORTED JORDAN FORM ==================================
function [X,D,Jor]=FindJordan(S,T,SCHUR)
% [X,D,J]=FINDJORDAN(S,T)
% For S and T k by k upper triangular matrices
% FINDJORDAN computes the Jordan decomposition.
% X is a k by k matrix of eigenvectors and principal vectors
% D and J are k by matrices, D is diagonal, J is Jordan
% such that S*X*D=T*X*J. (diag(D),diag(J)) are the eigenvalues.
% If D is non-singular then Lambda=diag(J)./diag(D)
% are the eigenvalues.
% coded by Gerard Sleijpen, May, 2002
k=size(S,1);
s=diag(S); t=diag(T); n=sign(t); n=n+(n==0);
D=sqrt(conj(s).*s+conj(t).*t).*n;
S=diag(D)\S; T=diag(D)\T; D=diag(diag(T));
if k<1,
if k==0, X=[]; D=[]; Jor=[]; end
if k==1, X=1; Jor=s; end
return
end
tol=k*(norm(S,1)+norm(T,1))*eps;
[X,Jor,I]=PseudoJordan(S,T,tol);
if SCHUR == 0
for l=1:length(I)-1
if I(l)<I(l+1)-1,
J=[I(l):I(l+1)-1];
[U,JJor]=JordanBlock(Jor(J,J),tol);
X(:,J)=X(:,J)*U; Jor(J,J)=JJor;
end
end
end
Jor=Jor+diag(diag(S)); Jor=Jor.*(abs(Jor)>tol);
return
%==================================================
function [X,Jor,J]=PseudoJordan(S,T,delta)
% Computes a pseudo-Jordan decomposition for the upper triangular
% matrices S and T with ordered diagonal elements.
% S*X*(diag(diag(T)))=T*X*(diag(diag(S))+Jor)
% with X(:,i:j) orthonormal if its
% columns span an invariant subspace of (S,T).
k=size(S,1); s=diag(S); t=diag(T);
Jor=zeros(k); X=eye(k); J=1;
for i=2:k
I=[1:i];
C=t(i,1)*S(I,I)-s(i,1)*T(I,I); C(i,i)=norm(C,inf);
if C(i,i)>0
tol=delta*C(i,i);
for j=i:-1:1
if j==1 | abs(C(j-1,j-1))>tol, break; end
end
e=zeros(i,1); e(i,1)=1;
if j==i
J=[J,i]; q=C\e; X(I,i)=q/norm(q);
else
q=X(I,j:i-1);
q=[C,T(I,I)*q;q',zeros(i-j)]\[e;zeros(i-j,1)];
q=q/norm(q(I,1)); X(I,i)=q(I,1);
Jor(j:i-1,i)=-q(i+1:2*i-j,1);
end
end
end
J=[J,k+1];
return
%==================================================
function [X,Jor,U]=JordanBlock(A,tol)
% If A is nilpotent, then A*X=X*Jor with
% Jor a Jordan block
%
k=size(A,1); Id=eye(k);
U=Id; aa=A; j=k; jj=[]; J=1:k;
while j>0
[u,s,v]=svd(aa); U(:,J)=U(:,J)*v;
sigma=diag(s); delta=tol;
J=find(sigma<delta);
if isempty(J),j=0; else, j=min(J)-1; end
jj=[jj,j]; if j==0, break, end
aa=v'*u*s; J=1:j; aa=aa(J,J);
end
Jor=U'*A*U; Jor=Jor.*(abs(Jor)>tol);
l=length(jj); jj=[jj(l:-1:1),k];
l2=jj(2)-jj(1); J=jj(1)+(1:l2);
JX=Id(:,J); X=Id;
for j=2:l
l1=l2+1; l2=jj(j+1)-jj(j);
J2=l1:l2; J=jj(j)+(1:l2);
JX=Jor*JX; D=diag(sqrt(diag(JX'*JX))); JX=JX/D;
[Q,S,V]=svd(JX(J,:));
JX=[JX,Id(:,J)*Q(:,J2)]; X(:,J)=JX;
end
J=[];
for i=1:l2
for k=l:-1:1
j=jj(k)+i; if j<=jj(k+1), J=[J,j]; end
end
end
X=X(:,J); Jor=X\(Jor*X); X=U*X;
Jor=Jor.*(abs(Jor)>100*tol);
return
%%%======== END JORDAN FORM =============================================
%%%======== OUTPUT ======================================================
function varargout=output(history,SCHUR,X,Lambda)
global Qschur Zschur Sschur Tschur
if nargout == 1, varargout{1}=diag(Sschur)./diag(Tschur); return, end
if nargout > 2, varargout{nargout}=history; end
if nargout < 6 & SCHUR == 1
if nargout >1, varargout{1}=Qschur; varargout{2}=Zschur; end
if nargout >2, varargout{3}=Sschur; end
if nargout >3, varargout{4}=Tschur; end
end
%-------------- compute eigenpairs --------------------------------------
if SCHUR ~= 1
varargout{1}=X; varargout{2}=Lambda;
if nargout >3, varargout{3}=Qschur; varargout{4}=Zschur; end
if nargout >4, varargout{5}=Sschur; end
if nargout >5, varargout{6}=Tschur; end
end
return
%%%======================================================================
%%%======== UPDATE PRECONDITIONED SCHUR VECTORS =========================
%%%======================================================================
function UpdateMinvZ
global Qschur Zschur MinvZ QastMinvZ
[n,k]=size(Qschur);
if k==1, MinvZ=zeros(n,0); QastMinvZ = []; end
Minv_z=SolvePrecond(Zschur(:,k));
QastMinvZ=[[QastMinvZ;Qschur(:,k)'*MinvZ],Qschur'*Minv_z];
MinvZ=[MinvZ,Minv_z];
return
%%%======================================================================
%%%======== SOLVE CORRECTION EQUATION ===================================
%%%======================================================================
function [t,xtol]=SolvePCE(theta,q,z,r,lsolver,par,nit)
global Qschur Zschur
Q=[Qschur,q]; Z=[Zschur,z];
switch lsolver
case 'exact'
[t,xtol] = exact(theta,Q,Z,r);
case {'gmres','cgstab','olsen'}
[MZ,QMZ]=FormPM(q,z);
%%% solve preconditioned system
[t,xtol] = feval(lsolver,theta,Q,Z,MZ,QMZ,r,spar(par,nit));
end
return
%------------------------------------------------------------------------
function [MZ,QMZ]=FormPM(q,z)
% compute vectors and matrices for skew projection
global Qschur MinvZ QastMinvZ
Minv_z=SolvePrecond(z);
QMZ=[QastMinvZ,Qschur'*Minv_z;q'*MinvZ,q'*Minv_z];
MZ=[MinvZ,Minv_z];
return
%%%======================================================================
%%%======== LINEAR SOLVERS ==============================================
%%%======================================================================
function [x,xtol] = exact(theta,Q,Z,r)
% produces the exact solution if matrices are given
% Is only feasible for low dimensional matrices
% Only of interest for experimental purposes
%
global Operator_A Operator_B
n=size(r,1);
if ischar(Operator_A)
[MZ,QMZ]=FormPM(Q(:,end),Z(:,end));
if n>200
[x,xtol]=SolvePCE(theta,Q,Z,MZ,QMZ,r,'cgstab',[1.0e-10,500,4]);
else
[x,xtol]=SolvePCE(theta,Q,Z,MZ,QMZ,r,'gmres',[1.0e-10,100]);
end
return
end
k=size(Q,2);
Aug=[theta(2)*Operator_A-theta(1)*Operator_B,Z;Q',zeros(k,k)];
x=Aug\[r;zeros(k,1)]; x([n+1:n+k],:)=[]; xtol=1;
% L=eig(full(Aug)); plot(real(L),imag(L),'*'), pause
%%% [At,Bt]=MV(x); At=theta(2)*At-theta(1)*Bt;
%%% xtol=norm(r-At+Z*(Z'*At))/norm(r);
return
%%%===== Iterative methods ==============================================
function [r,xtol] = olsen(theta,Q,Z,MZ,M,r,par)
% returns the preconditioned residual as approximate solution
% May be sufficient in case of an excellent preconditioner
r=SkewProj(Q,MZ,M,SolvePrecond(r)); xtol=0;
return
%------------------------------------------------------------------------
function [x,rnrm] = cgstab(theta,Q,Z,MZ,M,r,par)
% BiCGstab(ell) with preconditioning
% [x,rnrm] = cgstab(theta,Q,Z,MZ,M,r,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=r
% where Atilde=(I-Z*Z)*(A-theta*B)*(I-Q*Q').
% using (I-MZ*(M\Q'))*inv(K) as preconditioner
%
% This function is specialized for use in JDQZ.
% integer nmv: number of matrix multiplications
% rnrm: relative residual norm
%
% par=[tol,mxmv,ell] where
% integer m: max number of iteration steps
% real tol: residual reduction
%
% rnrm: obtained residual reduction
%
% -- References: ETNA
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization --
%
global Precond_Type
tol=par(1); max_it=par(2); l=par(3); n=size(r,1);
rnrm=1; nmv=0;
if max_it < 2 | tol>=1, x=r; return, end
%%% 0 step of bicgstab eq. 1 step of bicgstab
%%% Then x is a multiple of b
TP=Precond_Type;
if TP==0, r=SkewProj(Q,MZ,M,SolvePrecond(r)); tr=r;
else, tr=RepGS(Z,r); end
rnrm=norm(r); snrm=rnrm; tol=tol*snrm;
sigma=1; omega=1;
x=zeros(n,1); u=zeros(n,1);
J1=2:l+1;
%%% HIST=[0,1];
if TP <2 %% explicit preconditioning
% -- Iteration loop
while (nmv < max_it)
sigma=-omega*sigma;
for j = 1:l,
rho=tr'*r(:,j); bet=rho/sigma;
u=r-bet*u;
u(:,j+1)=PreMV(theta,Q,MZ,M,u(:,j));
sigma=tr'*u(:,j+1); alp=rho/sigma;
r=r-alp*u(:,2:j+1);
r(:,j+1)=PreMV(theta,Q,MZ,M,r(:,j));
x=x+alp*u(:,1);
G(1,1)=r(:,1)'*r(:,1); rnrm=sqrt(G(1,1));
if rnrm<tol, l=j; J1=2:l+1; r=r(:,1:l+1); break, end
end
nmv = nmv+2*l;
for i=2:l+1
G(i,1:i)=r(:,i)'*r(:,1:i); G(1:i,i)=G(i,1:i)';
end
if TP, g=Z'*r; G=G-g'*g; end
d=G(J1,1); gamma=G(J1,J1)\d;
rnrm=sqrt(real(G(1,1)-d'*gamma)); %%% compute norm in l-space
%%% HIST=[HIST;[nmv,rnrm/snrm]];
x=x+r(:,1:l)*gamma;
if rnrm < tol, break, end %%% sufficient accuracy. No need to update r,u
omega=gamma(l,1); gamma=[1;-gamma];
u=u*gamma; r=r*gamma;
if TP, g=g*gamma; r=r-Z*g; end
% rnrm = norm(r);
end
else %% implicit preconditioning
I=eye(2*l); v0=I(:,1:l); s0=I(:,l+1:2*l);
y0=zeros(2*l,1); V=zeros(n,2*l);
while (nmv < max_it)
sigma=-omega*sigma;
y=y0; v=v0; s=s0;
for j = 1:l,
rho=tr'*r(:,j); bet=rho/sigma;
u=r-bet*u;
if j>1, %%% collect the updates for x in l-space
v(:,1:j-1)=s(:,1:j-1)-bet*v(:,1:j-1);
end
[u(:,j+1),V(:,j)]=PreMV(theta,Q,MZ,M,u(:,j));
sigma=tr'*u(:,j+1); alp=rho/sigma;
r=r-alp*u(:,2:j+1);
if j>1,
s(:,1:j-1)=s(:,1:j-1)-alp*v(:,2:j);
end
[r(:,j+1),V(:,l+j)]=PreMV(theta,Q,MZ,M,r(:,j));
y=y+alp*v(:,1);
G(1,1)=r(:,1)'*r(:,1); rnrm=sqrt(G(1,1));
if rnrm<tol, l=j; J1=2:l+1; s=s(:,1:l); break, end
end
nmv = nmv+2*l;
for i=2:l+1
G(i,1:i)=r(:,i)'*r(:,1:i); G(1:i,i)=G(i,1:i)';
end
g=Z'*r; G=G-g'*g; %%% but, do the orth to Z implicitly
d=G(J1,1); gamma=G(J1,J1)\d;
rnrm=sqrt(real(G(1,1)-d'*gamma)); %%% compute norm in l-space
x=x+V*(y+s*gamma);
%%% HIST=[HIST;[nmv,rnrm/snrm]];
if rnrm < tol, break, end %%% sufficient accuracy. No need to update r,u
omega=gamma(l,1); gamma=[1;-gamma];
u=u*gamma; r=r*gamma;
g=g*gamma; r=r-Z*g; %%% Do the orth to Z explicitly
%%% In exact arithmetic not needed, but
%%% appears to be more stable.
end
end
if TP==1, x=SkewProj(Q,MZ,M,SolvePrecond(x)); end
rnrm = rnrm/snrm;
%%% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow
return
%----------------------------------------------------------------------
function [v,rnrm] = gmres0(theta,Q,Z,MZ,M,v,par)
% GMRES
% [x,rnrm] = gmres(theta,Q,Z,MZ,M,v,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*Z)*(A-theta*B)*(I-Q*Q').
% using (I-MZ*(M\Q'))*inv(K) as preconditioner
%
% If used as implicit preconditioner then FGMRES.
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% rnrm: obtained residual reduction
%
% -- References: Saad & Schultz SISC 1986
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
global Precond_Type
tol=par(1); max_it=par(2); n = size(v,1);
rnrm = 1; j=0;
if max_it < 2 | tol>=1, return, end
%%% 0 step of gmres eq. 1 step of gmres
%%% Then x is a multiple of b
H = zeros(max_it +1,max_it); Rot=[ones(1,max_it);zeros(1,max_it)];
TP=Precond_Type;
TP=Precond_Type;
if TP==0
v=SkewProj(Q,MZ,M,SolvePrecond(v)); rho0 = norm(v); v = v/rho0;
else
v=RepGS(Z,v);
end
V = [v];
tol = tol * rnrm;
y = [ rnrm ; zeros(max_it,1) ];
while (j < max_it) & (rnrm > tol),
j=j+1;
[v,w]=PreMV(theta,Q,MZ,M,v);
if TP
if TP == 2, W=[W,w]; end
v=RepGS(Z,v,0);
end
[v,h] = RepGS(V,v); H(1:size(h,1),j) = h;
V = [V, v];
for i = 1:j-1,
a = Rot(:,i);
H(i:i+1,j) = [a'; -a(2) a(1)]*H(i:i+1,j);
end
J=[j, j+1];
a=H(J,j);
if a(2) ~= 0
cs = norm(a);
a = a/cs; Rot(:,j) = a;
H(J,j) = [cs; 0];
y(J) = [a'; -a(2) a(1)]*y(J);
end
rnrm = abs(y(j+1));
end
J=[1:j];
if TP == 2
v = W(:,J)*(H(J,J)\y(J));
else
v = V(:,J)*(H(J,J)\y(J));
end
if TP==1, v=SkewProj(Q,MZ,M,SolvePrecond(v)); end
return
%%%======================================================================
function [v,rnrm] = gmres(theta,Q,Z,MZ,M,v,par)
% GMRES
% [x,nmv,rnrm] = gmres(theta,Q,Z,MZ,M,v,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=r
% where Atilde=(I-Z*Z)*(A-theta*B)*(I-Q*Q').
% using (I-MZ*(M\Q'))*inv(K) as preconditioner.
%
% If used as implicit preconditioner, then FGMRES.
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Saad
% Same as gmres0. However this variant uses MATLAB built-in functions
% slightly more efficient (see Sleijpen and van den Eshof).
%
%
% Gerard Sleijpen ([email protected])
% Copyright (c) 2002, Gerard Sleijpen
global Precond_Type
% -- Initialization
tol=par(1); max_it=par(2); n = size(v,1);
j=0;
if max_it < 2 | tol>=1, rnrm=1; return, end
%%% 0 step of gmres eq. 1 step of gmres
%%% Then x is a multiple of b
H = zeros(max_it +1,max_it); Gamma=1; rho=1;
TP=Precond_Type;
if TP==0
v=SkewProj(Q,MZ,M,SolvePrecond(v)); rho0 = norm(v); v = v/rho0;
else
v=RepGS(Z,v); rho0=1;
end
V = zeros(n,0); W=zeros(n,0);
tol0 = 1/(tol*tol);
%% HIST=1;
while (j < max_it) & (rho < tol0)
V=[V,v]; j=j+1;
[v,w]=PreMV(theta,Q,MZ,M,v);
if TP
if TP == 2, W=[W,w]; end
v=RepGS(Z,v,0);
end
[v,h] = RepGS(V,v);
H(1:size(h,1),j)=h; gamma=H(j+1,j);
if gamma==0, break %%% Lucky break-down
else
gamma= -Gamma*h(1:j)/gamma;
Gamma=[Gamma,gamma];
rho=rho+gamma'*gamma;
end
%% HIST=[HIST;(gamma~=0)/sqrt(rho)];
end
if gamma==0; %%% Lucky break-down
e1=zeros(j,1); e1(1)=rho0; rnrm=0;
if TP == 2
v=W*(H(1:j,1:j)\e1);
else
v=V*(H(1:j,1:j)\e1);
end
else %%% solve in least square sense
e1=zeros(j+1,1); e1(1)=rho0; rnrm=1/sqrt(rho);
if TP == 2
v=W*(H(1:j+1,1:j)\e1);
else
v=V*(H(1:j+1,1:j)\e1);
end
end
if TP==1, v=SkewProj(Q,MZ,M,SolvePrecond(v)); end
%% HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
%% plot(J,HIST(:,1),'*'); drawnow
return
%%%======== END SOLVE CORRECTION EQUATION ===============================
%%%======================================================================
%%%======== BASIC OPERATIONS ============================================
%%%======================================================================
function [Av,Bv]=MV(v)
% [y,z]=MV(x)
% y=A*x, z=B*x
% y=MV(x,theta)
% y=(A-theta*B)*x
%
global Operator_Form Operator_MVs Operator_A Operator_B Operator_Params
Bv=v;
switch Operator_Form
case 1 % both Operator_A and B are strings
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
Bv=feval(Operator_B,Operator_Params{:});
case 2
Operator_Params{1}=v;
[Av,Bv]=feval(Operator_A,Operator_Params{:});
case 3
Operator_Params{1}=v;
Operator_Params{2}='A';
Av=feval(Operator_A,Operator_Params{:});
Operator_Params{2}='B';
Bv=feval(Operator_A,Operator_Params{:});
case 4
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
Bv=Operator_B*v;
case 5
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
case 6
Av=Operator_A*v;
Operator_Params{1}=v;
Bv=feval(Operator_B,Operator_Params{:});
case 7
Av=Operator_A*v;
Bv=Operator_B*v;
case 8
Av=Operator_A*v;
end
Operator_MVs = Operator_MVs +size(v,2);
% [Av(1:5,1),Bv(1:5,1)], pause
return
%------------------------------------------------------------------------
function y=SolvePrecond(y);
global Precond_Form Precond_L Precond_U Precond_P Precond_Params Precond_Solves
switch Precond_Form
case 0,
case 1, Precond_Params{1}=y;
y=feval(Precond_L,Precond_Params{:});
case 2, Precond_Params{1}=y; Precond_Params{2}='preconditioner';
y=feval(Precond_L,Precond_Params{:});
case 3, Precond_Params{1}=y;
Precond_Params{1}=feval(Precond_L,Precond_Params{:});
y=feval(Precond_U,Precond_Params{:});
case 4, Precond_Params{1}=y; Precond_Params{2}='L';
Precond_Params{1}=feval(Precond_L,Precond_Params{:});
Precond_Params{2}='U';
y=feval(Precond_L,Precond_Params{:});
case 5, y=Precond_L\y;
case 6, y=Precond_U\(Precond_L\y);
case 7, y=Precond_U\(Precond_L\(Precond_P*y));
end
if Precond_Form
Precond_Solves = Precond_Solves +size(y,2);
end
%% y(1:5,1), pause
return
%------------------------------------------------------------------------
function [v,u]=PreMV(theta,Q,Z,M,v)
% v=Atilde*v
global Precond_Type
if Precond_Type
u=SkewProj(Q,Z,M,SolvePrecond(v));
[v,w]=MV(u); v=theta(2)*v-theta(1)*w;
else
[v,u]=MV(v); u=theta(2)*v-theta(1)*u;
v=SkewProj(Q,Z,M,SolvePrecond(u));
end
return
%------------------------------------------------------------------------
function r=SkewProj(Q,Z,M,r);
if ~isempty(Q),
r=r-Z*(M\(Q'*r));
end
return
%------------------------------------------------------------------------
function ppar=spar(par,nit)
k=size(par,2)-2;
ppar=par(1,k:k+2);
if k>1
if nit>k
ppar(1,1)=par(1,k)*((par(1,k)/par(1,k-1))^(nit-k));
else
ppar(1,1)=par(1,max(nit,1));
end
end
ppar(1,1)=max(ppar(1,1),1.0e-8);
return
%------------------------------------------------------------------------
function u=ImagVector(u)
% computes "essential" imaginary part of a vector
maxu=max(u); maxu=maxu/abs(maxu); u=imag(u/maxu);
return
%------------------------------------------------------------------------
function Sigma=ScaleEig(Sigma)
%
%
n=sign(Sigma(:,2)); n=n+(n==0);
d=sqrt((Sigma.*conj(Sigma))*[1;1]).*n;
Sigma=diag(d)\Sigma;
return
%%%======== COMPUTE r AND z =============================================
function [r,z,nrm,theta]=Comp_rz(E,kappa)
%
% [r,z,nrm,theta]=Comp_rz(E)
% computes the direction r of the minimal residual,
% the left projection vector z,
% the approximate eigenvalue theta
%
% [r,z,nrm,theta]=Comp_rz(E,kappa)
% kappa is a scaling factor.
%
% coded by Gerard Sleijpen, version Januari 7, 1998
if nargin == 1
kappa=norm(E(:,1))/norm(E(:,2)); kappa=2^(round(log2(kappa)));
end
if kappa ~=1, E(:,1)=E(:,1)/kappa; end
[Q,sigma,u]=svd(E,0); %%% E*u=Q*sigma, sigma(1,1)>sigma(2,2)
r=Q(:,2); z=Q(:,1); nrm=sigma(2,2);
% nrm=nrm/sigma(1,1); nrmz=sigma(1,1)
u(1,:)=u(1,:)/kappa; theta=[-u(2,2),u(1,2)];
return
%%%======== END computation r and z =====================================
%%%======================================================================
%%%======== Orthogonalisation ===========================================
%%%======================================================================
function [V,R]=RepGS(Z,V,gamma)
%
% Orthonormalisation using repeated Gram-Schmidt
% with the Daniel-Gragg-Kaufman-Stewart (DGKS) criterion
%
% Q=RepGS(V)
% The n by k matrix V is orthonormalized, that is,
% Q is an n by k orthonormal matrix and
% the columns of Q span the same space as the columns of V
% (in fact the first j columns of Q span the same space
% as the first j columns of V for all j <= k).
%
% Q=RepGS(Z,V)
% Assuming Z is n by l orthonormal, V is orthonormalized against Z:
% [Z,Q]=RepGS([Z,V])
%
% Q=RepGS(Z,V,gamma)
% With gamma=0, V is only orthogonalized against Z
% Default gamma=1 (the same as Q=RepGS(Z,V))
%
% [Q,R]=RepGS(Z,V,gamma)
% if gamma == 1, V=[Z,Q]*R; else, V=Z*R+Q; end
% coded by Gerard Sleijpen, March, 2002
% if nargin == 1, V=Z; Z=zeros(size(V,1),0); end
if nargin <3, gamma=1; end
[n,dv]=size(V); [m,dz]=size(Z);
if gamma, l0=min(dv+dz,n); else, l0=dz; end
R=zeros(l0,dv);
if dv==0, return, end
if dz==0 & gamma==0, return, end
% if m~=n
% if m<n, Z=[Z;zeros(n-m,dz)]; end
% if m>n, V=[V;zeros(m-n,dv)]; n=m; end
% end
if (dz==0 & gamma)
j=1; l=1; J=1;
q=V(:,1); nr=norm(q); R(1,1)=nr;
while nr==0, q=rand(n,1); nr=norm(q); end, V(:,1)=q/nr;
if dv==1, return, end
else
j=0; l=0; J=[];
end
while j<dv,
j=j+1; q=V(:,j); nr_o=norm(q); nr=eps*nr_o;
if dz>0, yz=Z'*q; q=q-Z*yz; end
if l>0, y=V(:,J)'*q; q=q-V(:,J)*y; end
nr_n=norm(q);
while (nr_n<0.5*nr_o & nr_n > nr)
if dz>0, sz=Z'*q; q=q-Z*sz; yz=yz+sz; end
if l>0, s=V(:,J)'*q; q=q-V(:,J)*s; y=y+s; end
nr_o=nr_n; nr_n=norm(q);
end
if dz>0, R(1:dz,j)=yz; end
if l>0, R(dz+J,j)=y; end
if ~gamma
V(:,j)=q;
elseif l+dz<n, l=l+1;
if nr_n <= nr % expand with a random vector
% if nr_n==0
V(:,l)=RepGS([Z,V(:,J)],rand(n,1));
% else % which can be numerical noice
% V(:,l)=q/nr_n;
% end
else
V(:,l)=q/nr_n; R(dz+l,j)=nr_n;
end
J=[1:l];
end
end % while j
if gamma & l<dv, V=V(:,J); end
return
%%%======== END Orthogonalisation ======================================
%%%======================================================================
%%%======== Sorts Schur form ============================================
%%%======================================================================
function [Q,Z,S,T]=SortQZ(A,B,tau,kappa,gamma,u)
%
% [Q,Z,S,T]=SortQZ(A,B,tau)
% A and B are k by k matrices, tau is a complex pair [alpha,beta].
% SortQZ computes the qz-decomposition of (A,B) with prescribed
% ordering: A*Q=Z*S, B*Q=Z*T;
% Q and Z are unitary k by k matrices,
% S and T are upper triangular k by k matrices.
% The ordering is as follows:
% (diag(S),diag(T)) are the eigenpairs of (A,B) ordered
% with increasing "chordal distance" w.r.t. tau.
%
% If tau is a scalar then [tau,1] is used.
% Default value for tau is tau=0, i.e., tau=[0,1].
%
% [Q,Z,S,T]=SortQZ(A,B,tau,kappa)
% kappa scales A first: A/kappa. Default kappa=1.
%
% [Q,Z,S,T]=SortQZ(A,B,tau,kappa,gamma)
% Sorts the first MAX(gamma,1) elements. Default: gamma=k
%
% [Q,Z,S,T]=SortQZ(A,B,tau,kappa,gamma,u)
% Now, with ordering such that angle u and Q(:,1) is less than 45o,
% and, except for the first pair, (diag(S),diag(T)) are
% with increasing "chordal distance" w.r.t. tau.
% If such an ordering does not exist, ordering is as without u.
%
% coded by Gerard Sleijpen, version April, 2002
k=size(A,1);
if k==1, Q=1; Z=1; S=A;T=B; return, end
kk=k-1;
if nargin < 3, tau=[0,1]; end
if nargin < 4, kappa=1; end
if nargin > 4, kk=max(1,min(gamma,k-1)); end
%% kappa=max(norm(A,inf)/max(norm(B,inf),1.e-12),1);
%% kappa=2^(round(log2(kappa)));
%%%------ compute the qz factorization -------
[S,T,Z,Q]=qz(A,B); Z=Z';
% kkappa=max(norm(A,inf),norm(B,inf));
% Str='norm(A*Q-Z*S)';texttest(Str,eval(Str))
% Str='norm(B*Q-Z*T)';texttest(Str,eval(Str))
%%%------ scale the eigenvalues --------------
t=diag(T); n=sign(t); n=n+(n==0); D=diag(n);
Q=Q/D; S=S/D; T=T/D;
%%%------ sort the eigenvalues ---------------
I=SortEig(diag(S),real(diag(T)),tau,kappa);
%%%------ swap the qz form -------------------
[Q,Z,S,T]=SwapQZ(Q,Z,S,T,I(1:kk));
% Str='norm(A*Q-Z*S)';texttest(Str,eval(Str))
% Str='norm(B*Q-Z*T)';texttest(Str,eval(Str))
if nargin < 6 | size(u,2) ~= 1
return
else
%%% repeat SwapQZ if angle is too small
kk=min(size(u,1),k); J=1:kk; u=u(J,1)'*Q(J,:);
if abs(u(1,1))>0.7, return, end
for j=2:kk
J=1:j;
if norm(u(1,J))>0.7
J0=[j,1:j-1];
[Qq,Zz,Ss,Tt]=SwapQZ(eye(j),eye(j),S(J,J),T(J,J),J0);
if abs(u(1,J)*Qq(:,1))>0.71
Q(:,J)=Q(:,J)*Qq; Z(:,J)=Z(:,J)*Zz;
S(J,J)=Ss; S(J,j+1:k)=Zz'*S(J,j+1:k);
T(J,J)=Tt; T(J,j+1:k)=Zz'*T(J,j+1:k);
% Str='norm(A*Q-Z*S)';texttest(Str,eval(Str))
% Str='norm(B*Q-Z*T)';texttest(Str,eval(Str))
fprintf(' Took %2i:%6.4g\n',j,S(1,1)./T(1,1))
return
end
end
end
disp([' Selection problem: took ',num2str(1)])
return
end
%%%======================================================================
function I=SortEig(s,t,sigma,kappa);
%
% I=SortEig(S,T,SIGMA) sorts the indices of [S,T] as prescribed by SIGMA
% S and T are K-vectors.
%
% If SIGMA=[ALPHA,BETA] is a complex pair then
% if CHORDALDISTANCE
% sort [S,T] with increasing chordal distance w.r.t. SIGMA.
% else
% sort S./T with increasing distance w.r.t. SIGMA(1)/SIGMA(2)
%
% The chordal distance D between a pair A and a pair B is
% defined as follows.
% Scale A by a scalar F such that NORM(F*A)=1.
% Scale B by a scalar G such that NORM(G*B)=1.
% Then D(A,B)=SQRT(1-ABS((F*A)*(G*B)')).
%
% I=SortEig(S,T,SIGMA,KAPPA). Kappa is a caling that effects the
% chordal distance: [S,KAPPA*T] w.r.t. [SIGMA(1),KAPPA*SIGMA(2)].
% coded by Gerard Sleijpen, version April 2002
global CHORDALDISTANCE
if ischar(sigma)
warning off, s=s./t; warning on
switch sigma
case 'LM'
[s,I]=sort(-abs(s));
case 'SM'
[s,I]=sort(abs(s));
case 'LR';
[s,I]=sort(-real(s));
case 'SR';
[s,I]=sort(real(s));
case 'BE';
[s,I]=sort(real(s)); I=twistdim(I,1);
end
elseif CHORDALDISTANCE
if kappa~=1, t=kappa*t; sigma(2)=kappa*sigma(2); end
n=sqrt(s.*conj(s)+t.*t);
[s,I]=sort(-abs([s,t]*sigma')./n);
else
warning off, s=s./t; warning on
if sigma(2)==0; [s,I]=sort(-abs(s));
else, [s,I]=sort(abs(s-sigma(1)/sigma(2)));
end
end
return
%------------------------------------------------------------------------
function t=twistdim(t,k)
d=size(t,k); J=1:d; J0=zeros(1,2*d);
J0(1,2*J)=J; J0(1,2*J-1)=flipdim(J,2); I=J0(1,J);
if k==1, t=t(I,:); else, t=t(:,I); end
return
%%%======================================================================
function [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I)
% [Q,Z,S,T]=SwapQZ(QQ,ZZ,SS,TT,P)
% QQ and ZZ are K by K unitary, SS and TT are K by K uper triangular.
% P is the first part of a permutation of (1:K)'.
%
% Then Q and Z are K by K unitary, S and T are K by K upper triangular,
% such that, for A = ZZ*SS*QQ' and B = ZZ*T*QQ', we have
% A*Q = Z*S, B*Q = Z*T and LAMBDA(1:LENGTH(P))=LLAMBDA(P) where
% LAMBDA=DIAG(S)./DIAGg(T) and LLAMBDA=DIAG(SS)./DIAG(TT).
%
% Computation uses Givens rotations.
%
% coded by Gerard Sleijpen, version October 12, 1998
kk=min(length(I),size(S,1)-1);
j=1; while (j<=kk & j==I(j)), j=j+1; end
while j<=kk
i=I(j);
for k = i-1:-1:j,
%%% i>j, move ith eigenvalue to position j
J = [k,k+1];
q = T(k+1,k+1)*S(k,J) - S(k+1,k+1)*T(k,J);
if q(1) ~= 0
q = q/norm(q);
G = [[q(2);-q(1)],q'];
Q(:,J) = Q(:,J)*G;
S(:,J) = S(:,J)*G; T(:,J) = T(:,J)*G;
end
if abs(S(k+1,k))<abs(T(k+1,k)), q=T(J,k); else q=S(J,k); end
if q(2) ~= 0
q=q/norm(q);
G = [q';q(2),-q(1)];
Z(:,J) = Z(:,J)*G';
S(J,:) = G*S(J,:); T(J,:) = G*T(J,:);
end
T(k+1,k) = 0;
S(k+1,k) = 0;
end
I=I+(I<i);
j=j+1; while (j<=kk & j==I(j)), j=j+1; end
end
return
%------------------------------------------------------------------------
function [Q,Z,S,T]=SwapQZ0(Q,Z,S,T,I)
%
% [Q,Z,S,T]=sortqz0(A,B,s,t,k)
% A and B are k by k matrices, t and s are k vectors such that
% (t(i),s(i)) eigenpair (A,B), i.e. t(i)*A-s(i)*B singular.
% Computes the Schur form with a ordering prescribed by (t,s):
% A*Q=Z*S, B*Q=Z*T such that diag(S)./diag(T)=s./t.
% Computation uses Householder reflections.
%
% coded by Gerard Sleijpen, version October 12, 1997
k=size(S,1); s=diag(S); t=diag(T); s=s(I,1); t=t(I,1);
for i=1:k-1
%%% compute q s.t. C*q=(t(i,1)*S-s(i,1)*T)*q=0
C=t(i,1)*S(i:k,i:k)-s(i,1)*T(i:k,i:k);
[q,r,p]=qr(C); %% C*P=Q*R
%% check whether last but one diag. elt r nonzero
j=k-i; while abs(r(j,j))<eps*norm(r); j=j-1; end; j=j+1;
r(j,j)=1; e=zeros(j,1); e(j,1)=1;
q=p*([r(1:j,1:j)\e;zeros(k-i+1-j,1)]); q=q/norm(q);%% C*q
%%% end computation q
z=conj(s(i,1))*S(i:k,i:k)*q+conj(t(i,1))*T(i:k,i:k)*q; z=z/norm(z);
a=q(1,1); if a ~=0, a=abs(a)/a; q=a*q; end
a=z(1,1); if a ~=0, a=abs(a)/a; z=a*z; end
q(1,1)=q(1,1)+1; q=q/norm(q); q=[zeros(i-1,1);q];
z(1,1)=z(1,1)+1; z=z/norm(z); z=[zeros(i-1,1);z];
S=S-(S*q)*(2*q)'; S=S-(2*z)*(z'*S);
T=T-(T*q)*(2*q)'; T=T-(2*z)*(z'*T);
Q=Q-(Q*q)*(2*q)'; Z=Z-(Z*z)*(2*z)';
end
return
%%%======== END sort QZ decomposition interaction matrices ==============
%%%======================================================================
%%%======== INITIALIZATION ==============================================
%%%======================================================================
function MyClear
global Operator_Form Operator_A Operator_B Operator_Params ...
Precond_L Precond_U Precond_P Precond_Params ...
Precond_Form Precond_Type ...
Operator_MVs Precond_Solves ...
CHORDALDISTANCE ...
Qschur Zschur Sschur Tschur ...
MinvZ QastMinvZ
return
%%%======================================================================
function [n,nselect,Sigma,kappa,SCHUR,...
jmin,jmax,tol,maxit,V,AV,BV,TS,DISP,PAIRS,JDV,FIX,track,NSIGMA,...
lsolver,par] = ReadOptions(varargin)
% Read options and set defaults
global Operator_Form Operator_A Operator_B Operator_Params ...
Precond_Form Precond_L Precond_U Precond_P Precond_Params ...
CHORDALDISTANCE
Operator_A = varargin{1};
n=CheckMatrix(Operator_A,1);
% defaults %%%% search for 'xx' in fieldnames
nselect0= 5;
maxit = 200; %%%% 'ma'
SCHUR = 0; %%%% 'sch'
tol = 1e-8; %%%% 'to'
DISP = 0; %%%% 'di'
p0 = 5; %%% jmin=nselect+p0 %%%% 'jmi'
p1 = 5; %%% jmax=jmin+p1 %%%% 'jma'
TS = 1; %%%% 'te'
PAIRS = 0; %%%% 'pai'
JDV = 0; %%%% 'av'
track = 1e-4; %%%% 'tr'
FIX = 1000; %%%% 'fix'
NSIGMA = 0; %%%% 'ns'
CHORD = 1; %%%% 'ch'
lsolver = 'gmres'; %%%% 'lso'
ls_maxit= 200; %%%% 'ls_m'
ls_tol = [0.7,0.49]; %%%% 'ls_t'
ell = 4; %%%% 'ls_e'
TP = 0; %%%% 'ty'
L = []; %%%% 'l_'
U = []; %%%% 'u_'
P = []; %%%% 'p_'
kappa = 1; %%%% 'sca'
V0 = 'ones(n,1)+rand(n,1)'; %%%% 'v0'
%% initiation
nselect=[]; Sigma=[]; options=[]; Operator_B=[];
jmin=-1; jmax=-1; V=[]; AV=[]; BV=[]; par=[];
%------------------------------------------------
%------- Find quantities ------------------------
%------------------------------------------------
jj=[];
for j = 2:nargin
if isstruct(varargin{j})
options = varargin{j};
elseif ischar(varargin{j})
s=varargin{j};
if exist(s)==2 & isempty(Operator_B)
Operator_B=s;
elseif length(s) == 2 & isempty(Sigma)
s=upper(s);
switch s
case {'LM','SM','LR','SR','BE'}, Sigma=s;
otherwise
jj=[jj,j];
end
else
jj=[jj,j];
end
elseif min([n,n]==size(varargin{j})) & isempty(Operator_B)
Operator_B=varargin{j};
elseif length(varargin{j}) == 1
s = varargin{j};
if isempty(nselect) & isreal(s) & (s == fix(s)) & (s > 0)
nselect = min(n,s);
elseif isempty(Sigma)
Sigma = s;
else
jj=[jj,j];
end
elseif min(size(varargin{j}))==1 & isempty(Sigma)
Sigma = varargin{j}; if size(Sigma,1)==1, Sigma=Sigma'; end
elseif min(size(varargin{j}))==2 & isempty(Sigma)
Sigma = varargin{j}; if size(Sigma,2)>2 , Sigma=Sigma'; end
else
jj=[jj,j];
end
end
%------- find parameters for operators -----------
Operator_Params=[]; Operator_Params{2}='';
k=length(jj);
if k>0
Operator_Params(3:k+2)=varargin(jj);
if ~ischar(Operator_A)
msg=sprintf(', %i',jj);
msg=sprintf('Input argument, number%s, not recognized.',msg);
button=questdlg(msg,'Input arguments','Ignore','Stop','Ignore');
if strcmp(button,'Stop'), n=-1; return, end
end
end
%------- operator B -----------------------------
if isempty(Operator_B)
if ischar(Operator_A)
Operator_Form=2; % or Operator_Form=3, or Operator_Form=5;
else
Operator_Form=8;
end
else
if ischar(Operator_B)
if ischar(Operator_A), Operator_Form=1; else, Operator_Form=6; end
elseif ischar(Operator_A)
Operator_Form=4;
else
Operator_Form=7;
end
end
if n<2, return, end
%------- number of eigs to be computed ----------
if isempty(nselect), nselect=min(n,nselect0); end
%------------------------------------------------
%------- Analyse Options ------------------------
%------------------------------------------------
fopts = [];
if ~isempty(options), fopts = fieldnames(options); end
%------- preconditioner -------------------------
Precond_L=findfield(options,fopts,'pr',[]);
[L,ok]=findfield(options,fopts,'l_',Precond_L);
if ok & ~isempty(Precond_L),
msg =sprintf('A preconditioner is defined in');
msg =[msg,sprintf('\n''Precond'', but also in ''L_precond''.')];
msg=[msg,sprintf('\nWhat is the correct one?')];
button=questdlg(msg,'Preconditioner','L_Precond','Precond','L_Precond');
if strcmp(button,'L_Precond'),
Precond_L = L;
end
else
Precond_L = L;
end
if ~isempty(Precond_L)
Precond_U=findfield(options,fopts,'u_',[]);
Precond_P=findfield(options,fopts,'p_',[]);
end
Precond_Params=[]; Precond_Params{2}='';
Params=findfield(options,fopts,'par',[]);
[l,k]=size(Params);
if k>0,
if iscell(Params), Precond_Params(3:k+2)=Params;
else, Precond_Params{3}=Params; end
end
TP=findfield(options,fopts,'ty',TP);
n=SetPrecond(n,TP); if n<2, return, end
%------- max, min dimension search subspace ------
jmin=min(n,findfield(options,fopts,'jmi',jmin));
jmax=min(n,findfield(options,fopts,'jma',jmax));
if jmax < 0
if jmin<0, jmin=min(n,nselect+p0); end
jmax=min(n,jmin+p1);
else
if jmin<0, jmin=max(1,jmax-p1); end
end
maxit=findfield(options,fopts,'ma',maxit);
%------- initial search subspace ----------------
V=findfield(options,fopts,'v',[]);
[m,d]=size(V);
if m~=n
if m>n, V = V(1:n,:); end
if m<n, V = [V;0.001*rand(n-m-1,d)]; end
end
V=orth(V); [m,d]=size(V);
if d==0, nr=0; while nr==0, V=eval(V0); nr=norm(V); V=V/nr; end, end
%------- Check definition B, Compute AV, BV -----
[AV,BV,n]=CheckDimMV(V); if n<2, return, end
%------- Other options --------------------------
tol=findfield(options,fopts,'to',tol);
kappa = findfield(options,fopts,'sca',kappa);
kappa = abs(kappa(1,1)); if kappa==0, kappa=1; end
PAIRS = findfield(options,fopts,'pai',PAIRS,[0,1]);
SCHUR = findfield(options,fopts,'sch',SCHUR,[0,1,0.5]);
DISP = findfield(options,fopts,'di',DISP,[0,1]);
JDV = findfield(options,fopts,'av',JDV,[0,1]);
track = max(abs(findfield(options,fopts,'tr',track,[0,track,inf])),0);
NSIGMA = findfield(options,fopts,'ns',NSIGMA,[0,1]);
FIX = max(abs(findfield(options,fopts,'fix',0,[0,FIX,inf])),0);
CHORDALDISTANCE = findfield(options,fopts,'ch',CHORD,[0,1]);
[TS0,ok] = findfield(options,fopts,'te',TS);
if ok & ischar(TS0)
if strncmpi(TS0,'st',2), TS=0; %% 'standard'
elseif strncmpi(TS0,'ha',2), TS=1; %% 'harmonic'
elseif strncmpi(TS0,'se',2), TS=2; %% 'searchspace'
elseif strncmpi(TS0,'bv',2), TS=3;
elseif strncmpi(TS0,'av',2), TS=4;
end
else
TS=max(0,min(4,round(TS0(1,1))));
end
%------- set targets ----------------
if isempty(Sigma)
if TS==1, Sigma=[0,1]; else, Sigma = 'LM'; end
elseif ischar(Sigma)
switch Sigma
case {'LM','LR','SR','BE','SM'}
if ~ok, TS=3; end
end
else
[k,l]=size(Sigma);
if l==1, Sigma=[Sigma,ones(k,1)]; l=2; end
Sigma=ScaleEig(Sigma);
end
if ischar(Sigma) & TS<2
msg1=sprintf(' The choice sigma = ''%s'' does not match the\n',Sigma);
msg2=sprintf(' selected test subspace. Specify a numerical\n');
msg3=sprintf(' value for sigma (e.g. sigma = '); msg4='';
switch Sigma
case {'LM','LR'}
msg4=sprintf('[1,0]');
case {'SM','SR','BE'}
msg4=sprintf(' [0,1]');
end
msg5=sprintf('),\n or continue with ''TestSpace''=''B*V''.');
msg=[msg1,msg2,msg3,msg4,msg5];
button=questdlg(msg,'Targets and test subspaces','Continue','Stop','Continue');
if strcmp(button,'Continue'), TS=3; else, n=-1; return, end
end
%------- linear solver --------------------------
lsolver = findfield(options,fopts,'lso',lsolver);
method=strvcat('exact','olsen','iluexact','gmres','cgstab','bicgstab');
j=strmatch(lower(lsolver),method);
if isempty(j),
msg=['The linear solver ''',lsolver,''' is not included.'];
msg=[msg,sprintf('\nIs GMRES ok?')];
button=questdlg(msg,'Linear solver','Yes','No','Yes');
if strcmp(button,'Yes'), j=4; ls_maxit=5; else, n=-1; return, end
end
if j==1, lsolver='exact'; Precond_Form = 0;
elseif j==2 | j==3, lsolver='olsen';
elseif j==4, lsolver='gmres'; ls_maxit=5;
else, lsolver='cgstab'; ls_tol=1.0e-10;
end
ls_maxit= findfield(options,fopts,'ls_m',ls_maxit);
ls_tol = findfield(options,fopts,'ls_t',ls_tol);
ell = findfield(options,fopts,'ls_e',ell);
par=[ls_tol,ls_maxit,ell];
%----- Display the parameters that are used ----------------
if DISP
fprintf('\n'),fprintf('PROBLEM\n')
switch Operator_Form
case {1,4,6,7}
fprintf('%13s: %s\n','A',StrOp(Operator_A));
fprintf('%13s: %s\n','B',StrOp(Operator_B));
case 2
fprintf('%13s: ''%s'' ([Av,Bv] = %s(v))\n','A,B',Operator_A,Operator_A);
case 3
fprintf('%13s: ''%s''\n','A,B',Operator_A);
fprintf('%15s(Av = %s(v,''A''), Bv = %s(v,''B''))\n',...
'',Operator_A,Operator_A);
case {5,8}
fprintf('%13s: %s\n','A',StrOp(Operator_A));
fprintf('%13s: %s\n','B','Identity (B*v = v)');
end
fprintf('%13s: %i\n','dimension',n);
fprintf('%13s: %i\n\n','nselect',nselect);
if length(jj)>0 & (ischar(Operator_A) | ischar(Operator_B))
msgj=sprintf(', %i',jj); msgo='';
if ischar(Operator_A), msgo=sprintf(' ''%s''',Operator_A); end
if ischar(Operator_B), msgo=sprintf('%s ''%s''.',msgo,Operator_B); end
fprintf(' The JDQZ input arguments, number%s, are\n',msgj)
fprintf(' taken as input parameters 3:%i for%s.\n\n',length(jj)+2,msgo);
end
fprintf('TARGET\n')
if ischar(Sigma)
fprintf('%13s: ''%s''\n','sigma',Sigma)
else
fprintf('%13s: %s\n','sigma',mydisp(Sigma(1,:)))
for j=2:size(Sigma,1),
fprintf('%13s: %s\n','',mydisp(Sigma(j,:)))
end
end
fprintf('\nOPTIONS\n')
fprintf('%13s: %g\n','Schur',SCHUR)
fprintf('%13s: %g\n','Tol',tol)
fprintf('%13s: %i\n','Disp',DISP)
fprintf('%13s: %i\n','jmin',jmin)
fprintf('%13s: %i\n','jmax',jmax)
fprintf('%13s: %i\n','MaxIt',maxit)
fprintf('%13s: %s\n','v0',StrOp(V))
fprintf('%13s: %i\n','Pairs',PAIRS)
fprintf('%13s: %i\n','AvoidStag',JDV)
fprintf('%13s: %i\n','NSigma',NSIGMA)
fprintf('%13s: %g\n','Track',track)
fprintf('%13s: %g\n','FixShift',FIX)
fprintf('%13s: %i\n','Chord',CHORDALDISTANCE)
fprintf('%13s: ''%s''\n','LSolver',lsolver)
str=sprintf('%g ',ls_tol);
fprintf('%13s: [ %s]\n','LS_Tol',str)
fprintf('%13s: %i\n','LS_MaxIt',ls_maxit)
if strcmp(lsolver,'cgstab')
fprintf('%13s: %i\n','LS_ell',ell)
end
DisplayPreconditioner(n); fprintf('\n')
switch TS
case 0, str='Standard, W = alpha''*A*V + beta''*B*V';
case 1, str='Harmonic, W = beta*A*V - alpha*B*V';
case 2, str='SearchSpace, W = V';
case 3, str='Petrov, W = B*V';
case 4, str='Petrov, W = A*V';
end
fprintf('%13s: %s\n','TestSpace',str); fprintf('\n\n');
end
return
%------------------------------------------------------------------------
function msg=StrOp(Op)
if ischar(Op)
msg=sprintf('''%s''',Op);
elseif issparse(Op), [n,k]=size(Op);
msg=sprintf('[%ix%i sparse]',n,k);
else, [n,k]=size(Op);
msg=sprintf('[%ix%i double]',n,k);
end
return
%------------------------------------------------------------------------
function DisplayPreconditioner(n)
global Precond_Form Precond_Type ...
Precond_L Precond_U Precond_P
FP=Precond_Form;
switch Precond_Form
case 0,
fprintf('%13s: %s\n','Precond','No preconditioner');
case {1,2,5}
fprintf('%13s: %s','Precond',StrOp(Precond_L));
if FP==2, fprintf(' (M\\v = %s(v,''preconditioner''))',Precond_L); end
fprintf('\n')
case {3,4,6,7}
fprintf('%13s: %s\n','L precond',StrOp(Precond_L));
fprintf('%13s: %s\n','U precond',StrOp(Precond_U));
if FP==7, fprintf('%13s: %s\n','P precond',StrOp(Precond_P)); end
if FP==4,fprintf('%15s(M\\v = %s(%s(v,''L''),''U''))\n',...
'',Precond_L,Precond_L); end
end
if FP
switch Precond_Type
case 0, str='explicit left';
case 1, str='explicit right';
case 2, str='implicit';
end
fprintf('%15sTo be used as %s preconditioner.\n','',str)
end
return
%------------------------------------------------------------------------
function possibilities
fprintf('\n')
fprintf('PROBLEM\n')
fprintf(' A: [ square matrix | string ]\n');
fprintf(' B: [ square matrix {identity} | string ]\n');
fprintf(' nselect: [ positive integer {5} ]\n\n');
fprintf('TARGET\n')
fprintf(' sigma: [ vector of scalars | \n');
fprintf(' pair of vectors of scalars |\n');
fprintf(' {''LM''} | {''SM''} | ''LR'' | ''SR'' | ''BE'' ]\n\n');
fprintf('OPTIONS\n');
fprintf(' Schur: [ yes | {no} ]\n');
fprintf(' Tol: [ positive scalar {1e-8} ]\n');
fprintf(' Disp: [ yes | {no} ]\n');
fprintf(' jmin: [ positive integer {nselect+5} ]\n');
fprintf(' jmax: [ positive integer {jmin+5} ]\n');
fprintf(' MaxIt: [ positive integer {200} ]\n');
fprintf(' v0: ');
fprintf('[ size(A,1) by p vector of scalars {rand(size(A,1),1)} ]\n');
fprintf(' TestSpace: ');
fprintf('[ Standard | {Harmonic} | SearchSpace | BV | AV ]\n');
fprintf(' Pairs: [ yes | {no} ] \n');
fprintf(' AvoidStag: [ yes | {no} ]\n');
fprintf(' Track: [ {yes} | no non-negative scalar {1e-4} ]\n');
fprintf(' NSigma: [ yes | {no} ]\n');
fprintf(' FixShift: [ yes | {no} | non-negative scalar {1e+3} ]\n');
fprintf(' Chord: [ {yes} | no ]\n');
fprintf(' Scale: [ positive scalar {1} ]\n');
fprintf(' LSolver: [ {gmres} | bicgstab ]\n');
fprintf(' LS_Tol: [ row of positive scalar {[0.7,0.49]} ]\n');
fprintf(' LS_MaxIt: [ positive integer {5} ]\n');
fprintf(' LS_ell: [ positive integer {4} ]\n');
fprintf(' Precond: ');
fprintf('[ n by n matrix {identity} | n by 2n matrix | string ]\n');
fprintf(' L_Precond: same as ''Precond''\n');
fprintf(' U_Precond: [ n by n matrix {identity} | string ]\n');
fprintf(' P_Precond: [ n by n matrix {identity} ]\n');
fprintf(' Type_Precond: [ {left} | right | implicit ]\n');
fprintf('\n')
return
%------------------------------------------------------------------------
function x = boolean(x,gamma,string)
%Y = BOOLEAN(X,GAMMA,STRING)
% GAMMA(1) is the default.
% If GAMMA is not specified, GAMMA = 0.
% STRING is a cell of accepted strings.
% If STRING is not specified STRING = {'n' 'y'}
% STRING{I} and GAMMA(I) are accepted expressions for X
% If X=GAMMA(I) then Y=X. If the first L characters
% of X matches those of STRING{I}, then Y=GAMMA(I+1).
% Here L=SIZE({STRING{1},2).
% For other values of X, Y=GAMMA(1);
if nargin < 2, gamma=[0,0,1]; end
if nargin < 3, string={'n' 'y'}; end
if ischar(x)
l=size(string{1},2);
i=min(find(strncmpi(x,string,l)));
if isempty(i), i=0; end, x=gamma(i+1);
elseif max((gamma-x)==0)
elseif gamma(end) == inf
else, x=gamma(1);
end
return
%------------------------------------------------------------------------
function [a,ok]=findfield(options,fopts,str,default,gamma,stri)
% Searches the fieldnames in FOPTS for the string STR.
% The field is detected if only the first part of the fieldname
% matches the string STR. The search is case insensitive.
% If the field is detected, then OK=1 and A is the fieldvalue.
% Otherwise OK=0 and A=DEFAULT
l=size(str,2); j=min(find(strncmpi(str,fopts,l)));
if ~isempty(j)
a=getfield(options,char(fopts(j,:))); ok=1;
if nargin == 5, a = boolean(a,[default,gamma]);
elseif nargin == 6, a = boolean(a,[default,gamma],stri); end
elseif nargin>3
a=default; ok=0;
else
a=[]; ok=0;
end
return
%%%======================================================================
function n=CheckMatrix(A,gamma)
if ischar(A), n=-1;
if exist(A) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',A);
errordlg(msg,'MATRIX'),n=-2;
end
if n==-1 & gamma, eval('n=feval(A,[],''dimension'');','n=-1;'), end
else, [n,n] = size(A);
if any(size(A) ~= n)
msg=sprintf(' The operator must be a square matrix or a string. ');
errordlg(msg,'MATRIX'),n=-3;
end
end
return
%------------------------------------------------------------------------
function [Av,Bv,n]=CheckDimMV(v)
% [Av,Bv]=CheckDimMV(v)
% Av=A*v, Bv=B*v Checks correctness operator definitions
global Operator_Form Operator_MVs Operator_A Operator_B Operator_Params
[n,k]=size(v);
if k>1, V=v(:,2:k); v=v(:,1); end
Bv=v;
switch Operator_Form
case 1 % both Operator_A and B are strings
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
Bv=feval(Operator_B,Operator_Params{:});
case 2 %%% or Operator_Form=3 or Operator_Form=5???
Operator_Params{1}=v;
eval('[Av,Bv]=feval(Operator_A,Operator_Params{:});','Operator_Form=3;')
if Operator_Form==3,
ok=1; Operator_Params{2}='A';
eval('Av=feval(Operator_A,Operator_Params{:});','ok=0;')
if ok,
Operator_Params{2}='B';
eval('Bv=feval(Operator_A,Operator_Params{:});','ok=0;'),
end
if ~ok,
Operator_Form=5; Operator_Params{2}='';
Av=feval(Operator_A,Operator_Params{:});
end
end
case 3
Operator_Params{1}=v;
Operator_Params{2}='A';
Av=feval(Operator_A,Operator_Params{:});
Operator_Params{2}='B';
Bv=feval(Operator_A,Operator_Params{:});
case 4
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
Bv=Operator_B*v;
case 5
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
case 6
Av=Operator_A*v;
Operator_Params{1}=v;
Bv=feval(Operator_B,Operator_Params{:});
case 7
Av=Operator_A*v;
Bv=Operator_B*v;
case 8
Av=Operator_A*v;
end
Operator_MVs = 1;
ok_A=min(size(Av)==size(v));
ok_B=min(size(Bv)==size(v));
if ok_A & ok_B
if k>1,
ok=1; eval('[AV,BV]=MV(V);','ok=0;')
if ok
Av=[Av,AV]; Bv=[Bv,BV];
else
for j=2:k, [Av(:,j),Bv(:,j)]=MV(V(:,j-1)); end
end
end
return
end
if ~ok_A
Operator=Operator_A;
elseif ~ok_B
Operator=Operator_B;
end
msg=sprintf(' %s does not produce a vector of size %d',Operator,n)
errordlg(msg,'MATRIX'), n=-1;
return
%------------------------------------------------------------------------
function n=SetPrecond(n,TP)
% finds out how the preconditioners are defined (Precond_Form)
% and checks consistency of the definitions.
%
% If M is the preconditioner then P*M=L*U. Defaults: L=U=P=I.
%
% Precond_Form
% 0: no L
% 1: L M-file, no U, L ~= A
% 2: L M-file, no U, L == A
% 3: L M-file, U M-file, L ~= A, U ~= A, L ~=U
% 4: L M-file, U M-file, L == U
% 5: L matrix, no U
% 6: L matrix, U matrix no P
% 7: L matrix, U matrix, P matrix
%
% Precond_Type
% 0: Explicit left
% 1: Explicit right
% 2: Implicit
%
global Operator_A ...
Precond_Form Precond_Solves ...
Precond_Type ...
Precond_L Precond_U Precond_P Precond_Params
Precond_Type = 0;
if ischar(TP)
TP=lower(TP(1,1));
switch TP
case 'l'
Precond_Type = 0;
case 'r'
Precond_Type = 1;
case 'i'
Precond_Type = 2;
end
else
Precond_Type=max(0,min(fix(TP),2));
end
Precond_Solves = 0;
% Set type preconditioner
Precond_Form=0;
if isempty(Precond_L), return, end
if ~isempty(Precond_U) & ischar(Precond_L)~=ischar(Precond_U)
msg=sprintf(' L and U should both be strings or matrices');
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
if ~isempty(Precond_P) & (ischar(Precond_P) | ischar(Precond_L))
msg=sprintf(' P can be specified only if P, L and U are matrices');
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
tp=1+4*~ischar(Precond_L)+2*~isempty(Precond_U)+~isempty(Precond_P);
if tp==1, tp = tp + strcmp(Precond_L,Operator_A); end
if tp==3, tp = tp + strcmp(Precond_L,Precond_U); end
if tp==3 & strcmp(Precond_U,Operator_A)
msg=sprintf(' If L and A use the same M-file,')
msg=[msg,sprintf('\n then so should U.')];
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
if tp>5, tp=tp-1; end, Precond_Form=tp;
% Check consistency definitions
if tp<5 & exist(Precond_L) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',Precond_L);
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
ok=1;
if tp == 2
Precond_Params{1}=zeros(n,1);
Precond_Params{2}='preconditioner';
eval('v=feval(Operator_A,Precond_Params{:});','ok=0;')
if ~ok
msg='Preconditioner and matrix use the same M-file';
msg=[msg,sprintf(' ''%s.m'' \n',Precond_L)];
msg=[msg,'Therefore the preconditioner is called as'];
msg=[msg,sprintf('\n\n\tw=%s(v,''preconditioner'')\n\n',Precond_L)];
msg=[msg,sprintf('Put this "switch" in ''%s.m''.',Precond_L)];
end
end
if tp == 4 | ~ok
ok1=1;
Precond_Params{1}=zeros(n,1);
Precond_Params{2}='L';
eval('v=feval(Precond_L,Precond_Params{:});','ok1=0;')
Precond_Params{2}='U';
eval('v=feval(Precond_L,Precond_Params{:});','ok1=0;')
if ok1
Precond_Form = 4; Precond_U = Precond_L; ok=1;
else
if tp == 4
msg='L and U use the same M-file';
msg=[msg,sprintf(' ''%s.m'' \n',Precond_L)];
msg=[msg,'Therefore L and U are called'];
msg=[msg,sprintf(' as\n\n\tw=%s(v,''L'')',Precond_L)];
msg=[msg,sprintf(' \n\tw=%s(v,''U'')\n\n',Precond_L)];
msg=[msg,sprintf('Check the dimensions and/or\n')];
msg=[msg,sprintf('put this "switch" in ''%s.m''.',Precond_L)];
end
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
end
if tp==1 | tp==3
Precond_Params{1}=zeros(n,1); Precond_Params{2}='';
eval('v=feval(Precond_L,Precond_Params{:});','ok=0')
if ~ok
msg=sprintf('''%s'' should produce %i-vectors',Precond_L,n);
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
end
if tp==3
if exist(Precond_U) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',Precond_U);
errordlg(msg,'PRECONDITIONER'), n=-1; return
else
Precond_Params{1}=zeros(n,1); Precond_Params{2}='';
eval('v=feval(Precond_U,Precond_Params{:});','ok=0')
if ~ok
msg=sprintf('''%s'' should produce %i-vectors',Precond_U,n);
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
end
end
if tp==5
if min([n,2*n]==size(Precond_L))
Precond_U=Precond_L(:,n+1:2*n); Precond_L=Precond_L(:,1:n);
Precond_Form=6;
elseif min([n,3*n]==size(Precond_L))
Precond_U=Precond_L(:,n+1:2*n); Precond_P=Precond_L(:,2*n+1:3*n);
Precond_L=Precond_L(:,1:n); Precond_Form=7;
elseif ~min([n,n]==size(Precond_L))
msg=sprintf('The preconditioning matrix\n');
msg2=sprintf('should be %iX%i or %ix%i ([L,U])\n',n,n,n,2*n);
msg3=sprintf('or %ix%i ([L,U,P])\n',n,3*n);
errordlg([msg,msg2,msg3],'PRECONDITIONER'), n=-1; return
end
end
if tp==6 & ~min([n,n]==size(Precond_L) & [n,n]==size(Precond_U))
msg=sprintf('Both L and U should be %iX%i.',n,n); n=-1;
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
if tp==7 & ~min([n,n]==size(Precond_L) & ...
[n,n]==size(Precond_U) & [n,n]==size(Precond_P))
msg=sprintf('L, U, and P should all be %iX%i.',n,n); n=-1;
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
return
%%%======================================================================
%%%========= DISPLAY FUNCTIONS ===========================================
%%%======================================================================
function Result(Sigm,Target,S,T,tol)
if nargin == 1
fprintf('\n\n %20s\n','Eigenvalues')
for j=1:size(Sigm,1),
fprintf('%2i %s\n',j,mydisp(Sigm(j,:),5))
end
return
end
fprintf('\n\n%17s %25s%18s\n','Targets','Eigenvalues','RelErr/Cond')
for j=1:size(S,1),
l=Target(j,1); s=S(j,:); t=T(j,:); lm=mydisp(s/t,5);
if l>0
fprintf('%2i %8s ''%s'' %9s %23s',j,'',Sigm(l,:),'',lm)
else
fprintf('%2i %23s %23s',j,mydisp(Target(j,2:3),5),lm)
end
re=1-tol/abs(t);
if re>0, re=(1+tol/abs(s))/re; re=min(re-1,1); else, re=1; end
if re>0.999, fprintf(' 1\n'), else, fprintf(' %5.0e\n',re), end
end
return
%------------------------------------------------------------------------
function s=mydisp(lambda,d)
if nargin <2, d=4; end
if size(lambda,2)==2,
if lambda(:,2)==0, s='Inf'; return, end
lambda=lambda(:,1)/lambda(:,2);
end
a=real(lambda); b=imag(lambda);
if max(a,b)==inf, s='Inf'; return, end
e=0;
if abs(a)>0; e= floor(log10(abs(a))); end
if abs(b)>0; e= max(e,floor(log10(abs(b)))); end
p=10^d; q=p/(10^e); a=round(a*q)/p; b=round(b*q)/p;
st=['%',num2str(d+2),'.',num2str(d),'f'];
ab=abs(b)==0;
if ab, str=[''' ']; else, str=['''(']; end
if a>=0, str=[str,'+']; a=abs(a); end, str=[str,st];
if ab, str=[str,'e']; else
if b>=0, str=[str,'+']; b=abs(b); end,
str=[str,st,'i)e']; end
if e>=0, str=[str,'+']; else, str=[str,'-']; e=-e; end
if e<10, str=[str,'0%i''']; else, str=[str,'%i''']; end
if ab, s=eval(sprintf(str,a,e));
else, s=eval(sprintf(str,a,b,e)); end
return
%%%======================================================================
function ShowEig(theta,target,k)
if ischar(target)
fprintf('\n target=''%s'', ',target)
else
fprintf('\n target=%s, ',mydisp(target,5))
end
fprintf('lambda_%i=%s\n',k,mydisp(theta,5));
return
%%%======================================================================
function texttest(s,nr,gamma)
if nargin<3, gamma=100*eps; end
if nr > gamma
% if nr>100*eps
fprintf('\n %35s is: %9.3g\t',s,nr)
end
return
%%%======================================================================
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
lnst.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/lnst.m
| 891 |
utf_8
|
93ca6136f90181897631256d58517558
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function lnst(hs,he)
ls=get(he,'value');
switch ls
case 1
set(hs,'LineStyle','-','marker','x','color','b');
case 2
set(hs,'LineStyle','-','marker','o','color','r');
case 3
set(hs,'LineStyle','none','marker','o','color','b');
case 4
set(hs,'LineStyle','-','marker','none','color','g');
case 5
set(hs,'LineStyle','--','marker','d','color','b');
end
drawnow;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
scatter12n.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/scatter12n.m
| 1,348 |
utf_8
|
65c091a54cbbe59f0a7ddef27fcc2c3f
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function scatter12n(name,data,labels)
ld=length(data(1,:));
if ld==2
hf=figure;
set(hf,'name',name,'NumberTitle','off');
%if handles.islb
scatter(data(:,1),data(:,2),5,labels);
% else
% scatter(data(:,1),data(:,2),5);
% end
title(name);
else
if ld==1
hf=figure;
set(hf,'name',name,'NumberTitle','off');
%if handles.islb
scatter(data(:,1),zeros(length(data(:,1)),1),5,labels);
% else
% scatter(data(:,1),zeros(length(data(:,1)),1),5);
% end
title(name);
else
%if handles.islb
scattern(name,data,labels);
% else
% scattern('Result of dimensionality reduction',data);
% end
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
not_calculated.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/not_calculated.m
| 7,818 |
utf_8
|
07c7ebdd2ecb821df6d1b4ccd5f47662
|
function varargout = not_calculated(varargin)
% NOT_CALCULATED M-file for not_calculated.fig
% NOT_CALCULATED by itself, creates a new NOT_CALCULATED or raises the
% existing singleton*.
%
% H = NOT_CALCULATED returns the handle to a new NOT_CALCULATED or the handle to
% the existing singleton*.
%
% NOT_CALCULATED('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in NOT_CALCULATED.M with the given input arguments.
%
% NOT_CALCULATED('Property','Value',...) creates a new NOT_CALCULATED or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before not_calculated_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to not_calculated_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help not_calculated
% Last Modified by GUIDE v2.5 30-Jul-2008 11:02:27
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @not_calculated_OpeningFcn, ...
'gui_OutputFcn', @not_calculated_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before not_calculated is made visible.
function not_calculated_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to not_calculated (see VARARGIN)
% Choose default command line output for not_calculated
handles.output = 'Yes';
% Update handles structure
guidata(hObject, handles);
% Insert custom Title and Text if specified by the user
% Hint: when choosing keywords, be sure they are not easily confused
% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
for index = 1:2:(nargin-3),
if nargin-3==index, break, end
switch lower(varargin{index})
case 'title'
set(hObject, 'Name', varargin{index+1});
case 'string'
set(handles.text1, 'String', varargin{index+1});
end
end
end
% Determine the position of the dialog - centered on the callback figure
% if available, else, centered on the screen
FigPos=get(0,'DefaultFigurePosition');
OldUnits = get(hObject, 'Units');
set(hObject, 'Units', 'pixels');
OldPos = get(hObject,'Position');
FigWidth = OldPos(3);
FigHeight = OldPos(4);
if isempty(gcbf)
ScreenUnits=get(0,'Units');
set(0,'Units','pixels');
ScreenSize=get(0,'ScreenSize');
set(0,'Units',ScreenUnits);
FigPos(1)=1/2*(ScreenSize(3)-FigWidth);
FigPos(2)=2/3*(ScreenSize(4)-FigHeight);
else
GCBFOldUnits = get(gcbf,'Units');
set(gcbf,'Units','pixels');
GCBFPos = get(gcbf,'Position');
set(gcbf,'Units',GCBFOldUnits);
FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...
(GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];
end
FigPos(3:4)=[FigWidth FigHeight];
set(hObject, 'Position', FigPos);
set(hObject, 'Units', OldUnits);
% Show a question icon from dialogicons.mat - variables questIconData
% and questIconMap
load dialogicons.mat
IconData=questIconData;
questIconMap(256,:) = get(handles.figure1, 'Color');
IconCMap=questIconMap;
Img=image(IconData, 'Parent', handles.axes1);
set(handles.figure1, 'Colormap', IconCMap);
set(handles.axes1, ...
'Visible', 'off', ...
'YDir' , 'reverse' , ...
'XLim' , get(Img,'XData'), ...
'YLim' , get(Img,'YData') ...
);
% Make the GUI modal
set(handles.figure1,'WindowStyle','modal')
% UIWAIT makes not_calculated wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = not_calculated_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% The figure can be deleted now
delete(handles.figure1);
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if isequal(get(handles.figure1, 'waitstatus'), 'waiting')
% The GUI is still in UIWAIT, us UIRESUME
uiresume(handles.figure1);
else
% The GUI is no longer waiting, just close it
delete(handles.figure1);
end
% --- Executes on key press over figure1 with no controls selected.
function figure1_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Check for "enter" or "escape"
if isequal(get(hObject,'CurrentKey'),'escape')
% User said no by hitting escape
handles.output = 'No';
% Update handles structure
guidata(hObject, handles);
uiresume(handles.figure1);
end
if isequal(get(hObject,'CurrentKey'),'return')
uiresume(handles.figure1);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
choose_method.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/choose_method.m
| 5,483 |
utf_8
|
7fcb2ff0eb7f662fc75d652d9c440d65
|
function varargout = choose_method(varargin)
% CHOOSE_METHOD M-file for choose_method.fig
% CHOOSE_METHOD, by itself, creates a new CHOOSE_METHOD or raises the existing
% singleton*.
%
% H = CHOOSE_METHOD returns the handle to a new CHOOSE_METHOD or the handle to
% the existing singleton*.
%
% CHOOSE_METHOD('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in CHOOSE_METHOD.M with the given input arguments.
%
% CHOOSE_METHOD('Property','Value',...) creates a new CHOOSE_METHOD or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before choose_method_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to choose_method_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help choose_method
% Last Modified by GUIDE v2.5 25-Jul-2008 10:40:42
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @choose_method_OpeningFcn, ...
'gui_OutputFcn', @choose_method_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before choose_method is made visible.
function choose_method_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to choose_method (see VARARGIN)
% Choose default command line output for choose_method
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes choose_method wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = choose_method_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
vl=get(hObject,'Value');
switch vl
case 1
str='CorrDim';
case 2
str='NearNbDim';
case 3
str='GMST';
case 4
str='PackingNumbers';
case 5
str='EigValue';
case 6
str='MLE';
end
set(handles.str,'string',str);
drawnow;
% --- Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_Callback(hObject, eventdata, handles)
% hObject handle to str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str as text
% str2double(get(hObject,'String')) returns contents of str as a double
% --- Executes during object creation, after setting all properties.
function str_CreateFcn(hObject, eventdata, handles)
% hObject handle to str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
load_data_1_var.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/load_data_1_var.m
| 4,902 |
utf_8
|
5b70e8dd70f9e4386ea769372ed55ffe
|
function varargout = load_data_1_var(varargin)
% LOAD_DATA_1_VAR M-file for load_data_1_var.fig
% LOAD_DATA_1_VAR, by itself, creates a new LOAD_DATA_1_VAR or raises the existing
% singleton*.
%
% H = LOAD_DATA_1_VAR returns the handle to a new LOAD_DATA_1_VAR or the handle to
% the existing singleton*.
%
% LOAD_DATA_1_VAR('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LOAD_DATA_1_VAR.M with the given input arguments.
%
% LOAD_DATA_1_VAR('Property','Value',...) creates a new LOAD_DATA_1_VAR or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before load_data_1_var_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to load_data_1_var_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help load_data_1_var
% Last Modified by GUIDE v2.5 23-Jul-2008 17:31:19
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @load_data_1_var_OpeningFcn, ...
'gui_OutputFcn', @load_data_1_var_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before load_data_1_var is made visible.
function load_data_1_var_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to load_data_1_var (see VARARGIN)
% Choose default command line output for load_data_1_var
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes load_data_1_var wait for user response (see UIRESUME)
uiwait(handles.figure1);
% uiwait;
% --- Outputs from this function are returned to the command line.
function varargout = load_data_1_var_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function cn_Callback(hObject, eventdata, handles)
% hObject handle to cn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of cn as text
% str2double(get(hObject,'String')) returns contents of cn as a double
% --- Executes during object creation, after setting all properties.
function cn_CreateFcn(hObject, eventdata, handles)
% hObject handle to cn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
% --------------------------------------------------------------------
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
if get(handles.i,'value')
set(handles.cn,'Enable','on');
set(handles.cnt,'ForegroundColor',[0 0 0]);
else
set(handles.cn,'Enable','off');
set(handles.cnt,'ForegroundColor',[0.4 0.4 0.4]);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
plotn.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/plotn.m
| 4,103 |
utf_8
|
e9c0840dca614923d10952e9b37f06c5
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function plotn(name,data)
% plot if dimensionality>=3
% format: plotn(name,data)
% name - text that will be dispayed as name of figure
% data - multidimentional data, row - is one datapoint
bgc=[0.8313725490196079 0.8156862745098039 0.7843137254901961];
bgc1=[1 1 1];
bgc1=bgc;
% if length(varargin)==1
% labels=varargin{1};
% islb=true;
% else
islb=false;
% end
hf=figure;
set(hf,'name',name,'NumberTitle','off');
set(hf,'units','normalized');
set(hf,'position',[0.1 0.1 0.7 0.75]);
set(hf,'color',bgc);
ha=axes;
set(ha,'units','normalized');
set(ha,'position',[0.1 0.1 0.8 0.7]);
% if islb
% hs=scatter3(data(:,1),data(:,2),data(:,3),5,labels,'parent',ha);
% else
hs=plot3(data(:,1),data(:,2),data(:,3),'x-','parent',ha);
% end
set(hs,'UserData',data); % memorize data in userdata of plot
% title as text contol:
xc=0.5;
yc=0.94;
dx=0.8;
dy=0.04;
uicontrol('Style', 'text',...
'parent',hf,...
'String', name,...
'units','normalized',...
'fontunits','normalized',...
'HorizontalAlignment','center',...
'Position', [xc-dx/2 yc dx dy],...
'backgroundcolor',bgc1);
% dimensionality text
xc=0.5;
yc=0.9;
dx=0.2;
dy=0.04;
uicontrol('Style', 'text',...
'parent',hf,...
'String', ['dimensionality=' num2str(length(data(1,:)))],...
'units','normalized',...
'fontunits','normalized',...
'Position', [xc-dx/2 yc dx dy],...
'backgroundcolor',bgc1);
% edits:
xc=0.5;
yc=0.86;
dy=0.04;
dytx=0.03;
x0=0.03;
dxg=0.03;
xt=x0;
for cc=1:3
switch cc
case 1
ls='X';
case 2
ls='Y';
case 3
ls='Z';
end
dx1=0.07;
uicontrol('Style', 'text',...
'parent',hf,...
'String', [ls ' ' 'data:'],...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
dx1=0.07;
he=uicontrol('Style', 'edit',...
'parent',hf,...
'String', num2str(cc),...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dy/2 dx1 dy],...
'backgroundcolor',[1 1 1]);
set(he,'callback',['ded(' num2str(cc) ',' num2str(hs,'%20.20f') ',' num2str(he,'%20.20f') ')']);
xt=xt+dx1+0.005;
dx1=0.065;
uicontrol('Style', 'text',...
'parent',hf,...
'String', 'column',...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
xt=xt+dxg;
end
dx1=0.1;
uicontrol('Style', 'text',...
'parent',hf,...
'String', 'line style:',...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
dx1=0.07;
he=uicontrol('Style', 'popupmenu',...
'parent',hf,...
'String', '1|2|3|4|5',...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dy/2 dx1 dy],...
'backgroundcolor',[1 1 1]);
set(he,'callback',['lnst(' num2str(hs,'%20.20f') ',' num2str(he,'%20.20f') ')']);
xlabel(ha,'X');
ylabel(ha,'Y');
zlabel(ha,'Z');
set(hf,'Toolbar','figure');
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
scattern.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/scattern.m
| 3,651 |
utf_8
|
bf506a19215a7e0b4cb62da12fa09d16
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function scattern(name,data,varargin)
% scatter plot if dimensionality>=3
% format: scattern(name,data)
% name - text that will be dispayed as name of figure
% data - multidimentional data, row - is one datapoint
% scattern(name,data,labels) - if labels spacified, used for color of points
bgc=[0.8313725490196079 0.8156862745098039 0.7843137254901961];
bgc1=[1 1 1];
bgc1=bgc;
if length(varargin)==1
labels=varargin{1};
islb=true;
else
islb=false;
end
hf=figure;
set(hf,'name',name,'NumberTitle','off');
set(hf,'units','normalized');
set(hf,'position',[0.1 0.1 0.7 0.75]);
set(hf,'color',bgc);
ha=axes;
set(ha,'units','normalized');
set(ha,'position',[0.1 0.1 0.8 0.7]);
if islb && size(data, 1) == numel(labels)
hs=scatter3(data(:,1),data(:,2),data(:,3),5,labels,'parent',ha);
else
hs=scatter3(data(:,1),data(:,2),data(:,3),5,'parent',ha);
end
if size(data, 1) ~= numel(labels)
warning('The GUI cannot yet deal properly with disconnected parts in the neighborhood graph.');
end
set(hs,'UserData',data); % memorize data in userdata of plot
% title as text contol:
xc=0.5;
yc=0.94;
dx=0.8;
dy=0.04;
uicontrol('Style', 'text',...
'parent',hf,...
'String', name,...
'units','normalized',...
'fontunits','normalized',...
'HorizontalAlignment','center',...
'Position', [xc-dx/2 yc dx dy],...
'backgroundcolor',bgc1);
% dimensionality text
xc=0.5;
yc=0.9;
dx=0.2;
dy=0.04;
uicontrol('Style', 'text',...
'parent',hf,...
'String', ['dimensionality=' num2str(length(data(1,:)))],...
'units','normalized',...
'fontunits','normalized',...
'Position', [xc-dx/2 yc dx dy],...
'backgroundcolor',bgc1);
% edits:
xc=0.5;
yc=0.86;
dy=0.04;
dytx=0.03;
x0=0.12;
dxg=0.05;
xt=x0;
for cc=1:3
switch cc
case 1
ls='X';
case 2
ls='Y';
case 3
ls='Z';
end
dx1=0.07;
uicontrol('Style', 'text',...
'parent',hf,...
'String', [ls ' ' 'data:'],...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
dx1=0.07;
he=uicontrol('Style', 'edit',...
'parent',hf,...
'String', num2str(cc),...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dy/2 dx1 dy],...
'backgroundcolor',[1 1 1]);
set(he,'callback',['ded(' num2str(cc) ',' num2str(hs,'%20.20f') ',' num2str(he,'%20.20f') ')']);
xt=xt+dx1+0.005;
dx1=0.065;
uicontrol('Style', 'text',...
'parent',hf,...
'String', 'column',...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
xt=xt+dxg;
end
xlabel(ha,'X');
ylabel(ha,'Y');
zlabel(ha,'Z');
set(hf,'Toolbar','figure');
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
no_history.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/no_history.m
| 7,508 |
utf_8
|
d5c85b897eeca97b3e37ea41551de2b1
|
function varargout = no_history(varargin)
% NO_HISTORY M-file for no_history.fig
% NO_HISTORY by itself, creates a new NO_HISTORY or raises the
% existing singleton*.
%
% H = NO_HISTORY returns the handle to a new NO_HISTORY or the handle to
% the existing singleton*.
%
% NO_HISTORY('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in NO_HISTORY.M with the given input arguments.
%
% NO_HISTORY('Property','Value',...) creates a new NO_HISTORY or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before no_history_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to no_history_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help no_history
% Last Modified by GUIDE v2.5 16-Sep-2008 15:57:20
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @no_history_OpeningFcn, ...
'gui_OutputFcn', @no_history_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before no_history is made visible.
function no_history_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to no_history (see VARARGIN)
% Choose default command line output for no_history
handles.output = 'Yes';
% Update handles structure
guidata(hObject, handles);
% Insert custom Title and Text if specified by the user
% Hint: when choosing keywords, be sure they are not easily confused
% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
for index = 1:2:(nargin-3),
if nargin-3==index, break, end
switch lower(varargin{index})
case 'title'
set(hObject, 'Name', varargin{index+1});
case 'string'
set(handles.text1, 'String', varargin{index+1});
end
end
end
% Determine the position of the dialog - centered on the callback figure
% if available, else, centered on the screen
FigPos=get(0,'DefaultFigurePosition');
OldUnits = get(hObject, 'Units');
set(hObject, 'Units', 'pixels');
OldPos = get(hObject,'Position');
FigWidth = OldPos(3);
FigHeight = OldPos(4);
if isempty(gcbf)
ScreenUnits=get(0,'Units');
set(0,'Units','pixels');
ScreenSize=get(0,'ScreenSize');
set(0,'Units',ScreenUnits);
FigPos(1)=1/2*(ScreenSize(3)-FigWidth);
FigPos(2)=2/3*(ScreenSize(4)-FigHeight);
else
GCBFOldUnits = get(gcbf,'Units');
set(gcbf,'Units','pixels');
GCBFPos = get(gcbf,'Position');
set(gcbf,'Units',GCBFOldUnits);
FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...
(GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];
end
FigPos(3:4)=[FigWidth FigHeight];
set(hObject, 'Position', FigPos);
set(hObject, 'Units', OldUnits);
% Show a question icon from dialogicons.mat - variables questIconData
% and questIconMap
load dialogicons.mat
IconData=questIconData;
questIconMap(256,:) = get(handles.figure1, 'Color');
IconCMap=questIconMap;
Img=image(IconData, 'Parent', handles.axes1);
set(handles.figure1, 'Colormap', IconCMap);
set(handles.axes1, ...
'Visible', 'off', ...
'YDir' , 'reverse' , ...
'XLim' , get(Img,'XData'), ...
'YLim' , get(Img,'YData') ...
);
% Make the GUI modal
set(handles.figure1,'WindowStyle','modal')
% UIWAIT makes no_history wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = no_history_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% The figure can be deleted now
delete(handles.figure1);
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if isequal(get(handles.figure1, 'waitstatus'), 'waiting')
% The GUI is still in UIWAIT, us UIRESUME
uiresume(handles.figure1);
else
% The GUI is no longer waiting, just close it
delete(handles.figure1);
end
% --- Executes on key press over figure1 with no controls selected.
function figure1_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Check for "enter" or "escape"
if isequal(get(hObject,'CurrentKey'),'escape')
% User said no by hitting escape
handles.output = 'No';
% Update handles structure
guidata(hObject, handles);
uiresume(handles.figure1);
end
if isequal(get(hObject,'CurrentKey'),'return')
uiresume(handles.figure1);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
load_data_vars.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/load_data_vars.m
| 7,943 |
utf_8
|
3e892de48b2b883da0e7121eb6b7cfbc
|
function varargout = load_data_vars(varargin)
% LOAD_DATA_VARS M-file for load_data_vars.fig
% LOAD_DATA_VARS, by itself, creates a new LOAD_DATA_VARS or raises the existing
% singleton*.
%
% H = LOAD_DATA_VARS returns the handle to a new LOAD_DATA_VARS or the handle to
% the existing singleton*.
%
% LOAD_DATA_VARS('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LOAD_DATA_VARS.M with the given input arguments.
%
% LOAD_DATA_VARS('Property','Value',...) creates a new LOAD_DATA_VARS or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before load_data_vars_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to load_data_vars_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help load_data_vars
% Last Modified by GUIDE v2.5 23-Jul-2008 18:19:22
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @load_data_vars_OpeningFcn, ...
'gui_OutputFcn', @load_data_vars_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before load_data_vars is made visible.
function load_data_vars_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to load_data_vars (see VARARGIN)
% Choose default command line output for load_data_vars
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
vn=varargin{1}; % variable names
str='';
for vnc=1:length(vn)
str=[str vn{vnc}];
if vnc~=length(vn)
str=[str ' '];
end
end
set(handles.lv,'string',str);
set(handles.d,'string',vn{1});
set(handles.ivn,'string',vn{2});
% UIWAIT makes load_data_vars wait for user response (see UIRESUME)
uiwait(handles.figure1);
%uiwait;
% --- Outputs from this function are returned to the command line.
function varargout = load_data_vars_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function lv_Callback(hObject, eventdata, handles)
% hObject handle to lv (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of lv as text
% str2double(get(hObject,'String')) returns contents of lv as a double
% --- Executes during object creation, after setting all properties.
function lv_CreateFcn(hObject, eventdata, handles)
% hObject handle to lv (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function d_Callback(hObject, eventdata, handles)
% hObject handle to d (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of d as text
% str2double(get(hObject,'String')) returns contents of d as a double
% --- Executes during object creation, after setting all properties.
function d_CreateFcn(hObject, eventdata, handles)
% hObject handle to d (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function ivn_Callback(hObject, eventdata, handles)
% hObject handle to ivn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ivn as text
% str2double(get(hObject,'String')) returns contents of ivn as a double
% --- Executes during object creation, after setting all properties.
function ivn_CreateFcn(hObject, eventdata, handles)
% hObject handle to ivn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function icn_Callback(hObject, eventdata, handles)
% hObject handle to icn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of icn as text
% str2double(get(hObject,'String')) returns contents of icn as a double
% --- Executes during object creation, after setting all properties.
function icn_CreateFcn(hObject, eventdata, handles)
% hObject handle to icn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
% --------------------------------------------------------------------
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
if get(handles.iv,'value')
set(handles.ivn,'Enable','on');
else
set(handles.ivn,'Enable','off');
end
if get(handles.ic,'value')
set(handles.icn,'Enable','on');
else
set(handles.icn,'Enable','off');
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
mapping_parameters.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/mapping_parameters.m
| 24,066 |
utf_8
|
ddb259e8821b5440a07fc05910595864
|
function varargout = mapping_parameters(varargin)
% MAPPING_PARAMETERS M-file for mapping_parameters.fig
% MAPPING_PARAMETERS, by itself, creates a new MAPPING_PARAMETERS or raises the existing
% singleton*.
%
% H = MAPPING_PARAMETERS returns the handle to a new MAPPING_PARAMETERS or the handle to
% the existing singleton*.
%
% MAPPING_PARAMETERS('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MAPPING_PARAMETERS.M with the given input arguments.
%
% MAPPING_PARAMETERS('Property','Value',...) creates a new MAPPING_PARAMETERS or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before mapping_parameters_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to mapping_parameters_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Last Modified by GUIDE v2.5 28-Jul-2008 16:23:20
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @mapping_parameters_OpeningFcn, ...
'gui_OutputFcn', @mapping_parameters_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before mapping_parameters is made visible.
function mapping_parameters_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to mapping_parameters (see VARARGIN)
% Choose default command line output for mapping_parameters
handles.output = hObject;
no_dims=varargin{1};
handles.islb=varargin{2};
if length(no_dims)~=0
set(handles.nd,'string',num2str(round(no_dims)));
else
set(handles.nd,'string','2');
end
case1; % case one is default for start
% Update handles structure
guidata(hObject, handles);
% handles
% UIWAIT makes mapping_parameters wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = mapping_parameters_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
% figure1: 218.0023
% sm: 240.0021
% na: 239.0021
% nat: 238.0021
% uipanel_tp: 235.0021
% prp: 234.0021
% prpt: 233.0021
% kpd: 232.0021
% kpdt: 231.0021
% kpR: 230.0021
% kpRt: 229.0021
% kgs: 228.0021
% kgst: 227.0021
% uipanel_k: 223.0022
% uipanel_ft: 220.0022
% sig: 53.0027
% sigt: 52.0027
% uipanel_ei: 49.0027
% prc: 48.0027
% prct: 47.0027
% k: 46.0028
% kt: 45.0028
% mi: 44.0028
% mit: 43.0029
% nd: 42.0029
% text3: 41.0034
% wl: 40.0029
% text1: 39.0033
% listbox1: 219.0023
% tl: 237.0021
% tg: 236.0021
% kp: 226.0022
% kg: 225.0022
% kl: 224.0022
% ftn: 222.0022
% fty: 221.0022
% eij: 51.0027
% eim: 50.0027
% output: 218.0023
% islb:
% PCA
% LDA
% MDS
% SimplePCA
% ProbPCA
% FactorAnalysis
% Isomap
% LandmarkIsomap
% LLE
% Laplacian
% HessianLLE
% LTSA
% MVU
% CCA
% LandmarkMVU
% FastMVU
% DiffusionMaps
% KernelPCA
% GDA
% SNE
% SymSNE
% t-SNE
% LPP
% NPE
% LLTSA
% SPE
% Autoencoder
% LLC
% ManifoldChart
% CFA
% GPLVM
switch get(hObject,'Value')
case 1 % PCA
% no parameters;
case1;
case 2 % LDA
% no parameters;
case1;
if handles.islb
set(handles.wl,'visible','off');
set(handles.sm,'Enable','on');
else
set(handles.wl,'visible','on');
set(handles.sm,'Enable','off');
end
case 3 % MDS
% no parameters;
case1;
case 4 % SimplePCA
% no parameters;
case1;
case 5 % ProbPCA
case1; % hide all contols first
set(handles.mi,'Visible','on');
set(handles.mit,'Visible','on');
case 6 % FactorAnalysis
% no parameters;
case1;
case 7 % Isomap
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
case 8 % LandmarkIsomap
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.prc,'Visible','on');
set(handles.prct,'Visible','on');
case 9 % LLE
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 10 % Laplacian
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.sig,'Visible','on');
set(handles.sigt,'Visible','on');
set(handles.uipanel_ei,'Visible','on');
case 11 % HessianLLE
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 12 % LTSA
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 13 % MVU
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 14 % CCA
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 15 % LandmarkMVU
case1; % hide all contols first
set(handles.k,'Visible','on','string',5);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
case 16 % FastMVU
case1; % hide all contols first
set(handles.k,'Visible','on','string',5);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
set(handles.uipanel_ft,'Visible','on');
case 17 % DiffusionMaps
case1; % hide all contols first
set(handles.t,'Visible','on');
set(handles.tt,'Visible','on');
set(handles.sig,'Visible','on');
set(handles.sigt,'Visible','on');
case 18 % KernelPCA
case1; % hide all contols first
set(handles.uipanel_k,'Visible','on');
update_kernel_uipanel;
case 19 % GDA
case1; % hide all contols first
if handles.islb
set(handles.wl,'visible','off');
set(handles.sm,'Enable','on');
set(handles.uipanel_k,'Visible','on');
update_kernel_uipanel;
else
set(handles.wl,'visible','on');
set(handles.sm,'Enable','off');
end
case 20 % SNE
case1; % hide all contols first
set(handles.prp,'Visible','on');
set(handles.prpt,'Visible','on');
case 21 % SymSNE
case1; % hide all contols first
set(handles.prp,'Visible','on');
set(handles.prpt,'Visible','on');
case 22 % t-SNE
case1; % hide all contols first
set(handles.prp,'Visible','on');
set(handles.prpt,'Visible','on');
case 23 % LPP
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.sig,'Visible','on');
set(handles.sigt,'Visible','on');
set(handles.uipanel_ei,'Visible','on');
case 24 % NPE
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 25 % LLTSA
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 26 % SPE
case1; % hide all contols first
set(handles.uipanel_tp,'Visible','on');
update_type_uipanel;
set(handles.k,'Enable','on');
adaptive_callback;
case 27 % Autoencoder
% no parameters;
case1;
case 28 % LLC
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.na,'Visible','on');
set(handles.nat,'Visible','on');
set(handles.mi,'Visible','on');
set(handles.mit,'Visible','on');
set(handles.uipanel_ei,'Visible','on');
case 29 % ManifoldChart
case1; % hide all contols first
set(handles.na,'Visible','on');
set(handles.nat,'Visible','on');
set(handles.mi,'Visible','on');
set(handles.mit,'Visible','on');
set(handles.uipanel_ei,'Visible','on');
case 30 % CFA
case1; % hide all contols first
set(handles.na,'Visible','on');
set(handles.nat,'Visible','on');
set(handles.mi,'Visible','on');
set(handles.mit,'Visible','on');
case 31 % GPLVM
case1; % hide all contols first
set(handles.sig,'Visible','on');
set(handles.sigt,'Visible','on');
case 32 % NCA
case1;
case 33 % MCML
case1;
end
% --- Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function nd_Callback(hObject, eventdata, handles)
% hObject handle to nd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of nd as text
% str2double(get(hObject,'String')) returns contents of nd as a double
% --- Executes during object creation, after setting all properties.
function nd_CreateFcn(hObject, eventdata, handles)
% hObject handle to nd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function mi_Callback(hObject, eventdata, handles)
% hObject handle to mi (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of mi as text
% str2double(get(hObject,'String')) returns contents of mi as a double
% --- Executes during object creation, after setting all properties.
function mi_CreateFcn(hObject, eventdata, handles)
% hObject handle to mi (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function k_Callback(hObject, eventdata, handles)
% hObject handle to k (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of k as text
% str2double(get(hObject,'String')) returns contents of k as a double
% --- Executes during object creation, after setting all properties.
function k_CreateFcn(hObject, eventdata, handles)
% hObject handle to k (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function prc_Callback(hObject, eventdata, handles)
% hObject handle to prc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of prc as text
% str2double(get(hObject,'String')) returns contents of prc as a double
% --- Executes during object creation, after setting all properties.
function prc_CreateFcn(hObject, eventdata, handles)
% hObject handle to prc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function sig_Callback(hObject, eventdata, handles)
% hObject handle to sig (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of sig as text
% str2double(get(hObject,'String')) returns contents of sig as a double
% --- Executes during object creation, after setting all properties.
function sig_CreateFcn(hObject, eventdata, handles)
% hObject handle to sig (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function kgs_Callback(hObject, eventdata, handles)
% hObject handle to kgs (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of kgs as text
% str2double(get(hObject,'String')) returns contents of kgs as a double
% --- Executes during object creation, after setting all properties.
function kgs_CreateFcn(hObject, eventdata, handles)
% hObject handle to kgs (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function kpR_Callback(hObject, eventdata, handles)
% hObject handle to kpR (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of kpR as text
% str2double(get(hObject,'String')) returns contents of kpR as a double
% --- Executes during object creation, after setting all properties.
function kpR_CreateFcn(hObject, eventdata, handles)
% hObject handle to kpR (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function kpd_Callback(hObject, eventdata, handles)
% hObject handle to kpd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of kpd as text
% str2double(get(hObject,'String')) returns contents of kpd as a double
% --- Executes during object creation, after setting all properties.
function kpd_CreateFcn(hObject, eventdata, handles)
% hObject handle to kpd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function prp_Callback(hObject, eventdata, handles)
% hObject handle to prp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of prp as text
% str2double(get(hObject,'String')) returns contents of prp as a double
% --- Executes during object creation, after setting all properties.
function prp_CreateFcn(hObject, eventdata, handles)
% hObject handle to prp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function na_Callback(hObject, eventdata, handles)
% hObject handle to na (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of na as text
% str2double(get(hObject,'String')) returns contents of na as a double
% --- Executes during object creation, after setting all properties.
function na_CreateFcn(hObject, eventdata, handles)
% hObject handle to na (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in sm.
function sm_Callback(hObject, eventdata, handles)
set(handles.sm,'Enable','off');
drawnow;
uiresume(handles.figure1);
function t_Callback(hObject, eventdata, handles)
% hObject handle to t (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of t as text
% str2double(get(hObject,'String')) returns contents of t as a double
% --- Executes during object creation, after setting all properties.
function t_CreateFcn(hObject, eventdata, handles)
% hObject handle to t (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --------------------------------------------------------------------
function uipanel_k_SelectionChangeFcn(hObject, eventdata, handles)
update_kernel_uipanel;
% --------------------------------------------------------------------
function uipanel_tp_SelectionChangeFcn(hObject, eventdata, handles)
update_type_uipanel;
% --- Executes on button press in ka.
function ka_Callback(hObject, eventdata, handles)
adaptive_callback;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
load_xls.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/load_xls.m
| 4,845 |
utf_8
|
98f040ec0685b024ddf99d454fea770d
|
function varargout = load_xls(varargin)
% LOAD_XLS M-file for load_xls.fig
% LOAD_XLS, by itself, creates a new LOAD_XLS or raises the existing
% singleton*.
%
% H = LOAD_XLS returns the handle to a new LOAD_XLS or the handle to
% the existing singleton*.
%
% LOAD_XLS('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LOAD_XLS.M with the given input arguments.
%
% LOAD_XLS('Property','Value',...) creates a new LOAD_XLS or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before load_xls_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to load_xls_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help load_xls
% Last Modified by GUIDE v2.5 11-Sep-2008 10:53:04
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @load_xls_OpeningFcn, ...
'gui_OutputFcn', @load_xls_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before load_xls is made visible.
function load_xls_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to load_xls (see VARARGIN)
% Choose default command line output for load_xls
handles.output = hObject;
nmc=varargin{1}; % number of columns
% Update handles structure
guidata(hObject, handles);
set(handles.noc,'string',num2str(nmc));
set(handles.col,'string',num2str(nmc));
cl=[0.4 0.4 0.4];
set(handles.coltxt,'ForegroundColor',cl);
set(handles.col,'Enable','off');
% UIWAIT makes load_xls wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = load_xls_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function col_Callback(hObject, eventdata, handles)
% hObject handle to col (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of col as text
% str2double(get(hObject,'String')) returns contents of col as a double
% --- Executes during object creation, after setting all properties.
function col_CreateFcn(hObject, eventdata, handles)
% hObject handle to col (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
% --- Executes when selected object is changed in uipanel1.
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
if get(handles.uc,'value')
cl=[0 0 0];
set(handles.coltxt,'ForegroundColor',cl);
set(handles.col,'Enable','on');
else
cl=[0.4 0.4 0.4];
set(handles.coltxt,'ForegroundColor',cl);
set(handles.col,'Enable','off');
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
drtool.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/drtool.m
| 53,877 |
utf_8
|
25abf1c6522b90b00b1c29d7d4f4c091
|
function varargout = drtool(varargin)
% DRTOOL M-file for drtool.fig
% DRTOOL, by itself, creates a new DRTOOL or raises the existing
% singleton*.
%
% H = DRTOOL returns the handle to a new DRTOOL or the handle to
% the existing singleton*.
%
% DRTOOL('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in DRTOOL.M with the given input arguments.
%
% DRTOOL('Property','Value',...) creates a new DRTOOL or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before drtool_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to drtool_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help drtool
% Last Modified by GUIDE v2.5 16-Sep-2008 12:18:29
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @drtool_OpeningFcn, ...
'gui_OutputFcn', @drtool_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before drtool is made visible.
function drtool_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to drtool (see VARARGIN)
% Choose default command line output for drtool
handles.output = hObject;
set(handles.edr,'UserData',[]); % demention not estimated at begining
% here data will be stored:
handles.X=[];
handles.labels=[];
handles.islb=false; % if labels provided
handles.isl=false; % if data loaded
handles.mcd=false; % if mapping was calculated
handles.mX=[]; % mapped X
handles.m1={}; % m-code from part1
handles.m2={}; % m-code from part2
handles.m21={}; % addition with no_dims
handles.m3={}; % m-code from part3
handles.a2=false; % if code part with no_dims was writed
handles.mstf={}; % save to file part
handles.isxls=[]; % if data loaded as xls-file (will be used before save history)
%handles.ndr=[]; % rounded number of dimention from intrinsic_dim, need for m-file
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes drtool wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = drtool_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in ld.
function ld_Callback(hObject, eventdata, handles)
handles.a2=false;
set(handles.ld,'Enable','off');
drawnow;
% load data lead to clear mapped data
handles.mcd=false; % if mapping was calculated
handles.mX=[]; % mapped X
set(handles.cd,'Visible','off');
try
hs=load_data;
catch
set(handles.ld,'Enable','on');
return
end
hands_l_d=guidata(hs);
if (~get(hands_l_d.file,'value'))&&(~get(hands_l_d.xls,'value'))
%if not from file and not from xls-file
handles.isxls=[];
set(hands_l_d.ok,'Enable','off');
drawnow;
if get(hands_l_d.sw,'value')
dataname='swiss';
end
if get(hands_l_d.hl,'value')
dataname='helix';
end
if get(hands_l_d.tp,'value')
dataname='twinpeaks';
end
if get(hands_l_d.cl,'value')
dataname='3d_clusters';
end
if get(hands_l_d.is,'value')
dataname='intersect';
end
n=str2num(get(hands_l_d.ndp,'string'));
noise=str2num(get(hands_l_d.nl,'string'));
[X, labels] = generate_data(dataname, n,noise);
handles.X=X;
handles.labels=labels;
handles.islb=true;
handles.isl=true;
set(handles.dld,'visible','on');
% m-file memorizing:
% clear all previose history because new original dataset generated:
handles.m1={};
handles.m2={};
handles.m3={};
handles.mstf={};
handles.m1={ '% generate data';
['n = ' num2str(n) '; % number of datapoints' ];
['noise = ' num2str(noise) '; % noise level' ];
['[X, labels] = generate_data(''' dataname ''', n,noise); % generate ' dataname ' data']};
delete(hands_l_d.figure1);
drawnow;
else
if get(hands_l_d.file,'value')
% here if need to load data from file
handles.isxls=false;
delete(hands_l_d.figure1);
drawnow;
S = uiimport;
if length(S)==0
handles.X=[];
handles.labels=[];
handles.islb=false;
handles.isl=false;
set(handles.dld,'visible','off');
handles.m1={};
handles.m2={};
handles.m3={};
handles.mstf={};
else
vn=fieldnames(S);
if length(vn)==1
X = getfield(S, vn{1});
hs1=load_data_1_var;
hld1=guidata(hs1);
if get(hld1.i,'value')
cn=str2num(get(hld1.cn,'string'));
lX=length(X(1,:));
ncn1=1:lX;
ncni=find(ncn1~=cn);
ncn=ncn1(ncni);
handles.X=X(:,ncn);
handles.isl=true;
set(handles.dld,'visible','on');
labels=X(:,cn);
handles.labels=labels;
handles.islb=true;
else
% one variable without labels
handles.X=X;
handles.isl=true;
set(handles.dld,'visible','on');
handles.labels=[];
handles.islb=false;
end
delete(hld1.figure1);
else
hss=load_data_vars(vn);
hlds=guidata(hss);
Xn=get(hlds.d,'string');
X = getfield(S, Xn);
if get(hlds.ni,'value') % not include
handles.labels=[];
handles.islb=false;
handles.X=X;
handles.isl=true;
set(handles.dld,'visible','on');
end
if get(hlds.iv,'value') % include from variable
ivn=get(hlds.ivn,'String');
labels = getfield(S, ivn);
handles.labels=labels;
handles.islb=true;
handles.X=X;
handles.isl=true;
set(handles.dld,'visible','on');
end
if get(hlds.ic,'value') % include from column
cn=str2num(get(hlds.icn,'String'));
lX=length(X(1,:));
ncn1=1:lX;
ncni=find(ncn1~=cn);
ncn=ncn1(ncni);
handles.X=X(:,ncn);
handles.isl=true;
set(handles.dld,'visible','on');
labels=X(:,cn);
handles.labels=labels;
handles.islb=true;
end
delete(hlds.figure1);
end
% history:
% clear:
handles.m1={};
handles.m2={};
handles.m3={};
handles.mstf={};
if handles.islb
handles.m1={'load(''X.mat''); % load data';
'load(''labels.mat''); % load labels';};
else
handles.m1={'load(''X.mat''); % load data'};
end
end
else
% here if load from xls file
handles.isxls=true;
delete(hands_l_d.figure1);
drawnow;
[FileName,PathName] = uigetfile({'*.xls';'*.xlsx'},'Select the xls-file');
if (FileName==0)
% do nothing if click cancel
else
X = xlsread([PathName FileName]); % load fom xls numbers only
handles.m1={};
handles.m2={};
handles.m3={};
handles.mstf={};
hstmp=load_xls(length(X(1,:)));
drawnow;
hands_l_x=guidata(hstmp);
if get(hands_l_x.wl,'value')
% if not use labels
handles.labels=[];
handles.islb=false;
handles.X=X;
handles.isl=true;
% history:
handles.m1={['PathName = ''' PathName '''; % path to xls-file'];
['FileName = ''' FileName '''; % file name of xls-file'];
'X = xlsread([PathName FileName]); % load xls file'};
set(handles.dld,'visible','on');
else
% if use labels
cn=str2num(get(hands_l_x.col,'String'));
lX=length(X(1,:));
ncn1=1:lX;
ncni=find(ncn1~=cn);
ncn=ncn1(ncni);
handles.X=X(:,ncn);
handles.isl=true;
set(handles.dld,'visible','on');
labels=X(:,cn);
handles.labels=labels;
handles.islb=true;
% history:
handles.m1={['PathName = ''' PathName '''; % path to xls-file'];
['FileName = ''' FileName '''; % file name of xls-file'];
'X = xlsread([PathName FileName]); % load xls file';
['cn = ' num2str(cn) '; % column number where labels are placed'];
'lX=length(X(1,:)); % total number of column';
'ncn1=1:lX;';
'ncni=find(ncn1~=cn); % indexes of data columns';
'ncn=ncn1(ncni); % data columns';
'labels=X(:,cn); % get labels';
'X=X(:,ncn); % get data'};
end
delete(hands_l_x.figure1);
drawnow;
end
end
end
set(handles.edr,'String','');
set(handles.cd,'visible','off');
handles.mcd=false;
guidata(handles.figure1, handles);
set(handles.ld,'Enable','on');
drawnow;
% --- Executes on button press in sp.
function sp_Callback(hObject, eventdata, handles)
if handles.isl
ld=length(handles.X(1,:));
if ld==2
hf=figure;
set(hf,'name','Original dataset','NumberTitle','off');
if handles.islb
scatter(handles.X(:,1),handles.X(:,2),5,handles.labels);
else
scatter(handles.X(:,1),handles.X(:,2),5);
end
title('Original dataset');
else
if handles.islb
scattern('Original dataset',handles.X,handles.labels);
else
scattern('Original dataset',handles.X);
end
end
else
% 'not loaded'
not_loaded;
end
% --- Executes on button press in p.
function p_Callback(hObject, eventdata, handles)
if handles.isl
ld=length(handles.X(1,:));
if ld==2
hf=figure;
set(hf,'name','Original dataset','NumberTitle','off');
% if handles.islb
% plot(handles.X(:,1),handles.X(:,2),5,handles.labels);
% else
plot(handles.X(:,1),handles.X(:,2),'.r');
% end
title('Original dataset');
else
% if handles.islb
% scattern('Original dataset',handles.X,handles.labels);
% else
plotn('Original dataset',handles.X);
% end
end
else
% 'not loaded'
not_loaded;
end
% --- Executes on button press in ed.
function ed_Callback(hObject, eventdata, handles)
handles.a2=false;
if handles.isl
try
s=choose_method;
catch
return
end
hs1=guidata(s);
set(hs1.ok,'Enable','off');
drawnow;
method=get(hs1.str,'string');
no_dims = intrinsic_dim(handles.X, method);
% estimate dimention lead to clear calculated data:
handles.mcd=false; % if mapping was calculated
handles.mX=[]; % mapped X
set(handles.cd,'Visible','off');
% history:
handles.m2={};
handles.m3={};
handles.mstf={};
% get detailed method name from listbox:
lstbs=get(hs1.listbox1,'string');
lstv=get(hs1.listbox1,'value');
mthds=lstbs{lstv};
handles.m2={['method_ed = ''' method '''; % (' mthds ') method of estimation of dimensionality'];
['no_dims = intrinsic_dim(X, method_ed); % estimate intrinsic dimensionality']};
delete(hs1.figure1);
drawnow;
set(handles.edr,'string',num2str(no_dims));
set(handles.edr,'UserData',no_dims); % memorize pricise value in userdata
guidata(handles.figure1, handles);
else
% 'not loaded'
not_loaded;
end
function edr_Callback(hObject, eventdata, handles)
% hObject handle to edr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edr as text
% str2double(get(hObject,'String')) returns contents of edr as a double
% --- Executes during object creation, after setting all properties.
function edr_CreateFcn(hObject, eventdata, handles)
% hObject handle to edr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in cm.
function cm_Callback(hObject, eventdata, handles)
if handles.isl
handles.m3={}; % eraise priviose history
handles.mstf={};
no_dims=get(handles.edr,'UserData');
no_dims_old=no_dims;
try
s=mapping_parameters(no_dims,handles.islb);
catch
return
end
hs1=guidata(s);
%mappedA = compute_mapping(A, type, no_dims, parameters, eig_impl)
no_dims=str2num(get(hs1.nd,'string'));
%if (~handles.a2)||(round(no_dims_old)~=no_dims) % if was not added or if changed
handles.a2=true;
if ~isempty(no_dims_old)
if round(no_dims_old)~=no_dims
% if demetion was changed
handles.m21={' ';
['no_dims = ' num2str(no_dims) '; % supposed number of dimensions'];
' '};
else
handles.m21={' ';
['no_dims = round(no_dims); % round number of dimensions to have integer number'];
' '};
end
else
handles.m21={' ';
['no_dims = ' num2str(no_dims) '; % supposed number of dimensions'];
' '};
end
if isempty(handles.m2)
handles.m21={' ';
['no_dims = ' num2str(no_dims) '; % supposed number of dimensions'];
' '};
end
%handles.m2=vertcat(handles.m2,m2t);
%end
mappedA=[];
try
noparam=false; % if no parameters
mthd=''; % method when no parameters
switch get(hs1.listbox1,'Value')
case 1 % PCA
% no parameters;
mappedA = compute_mapping(handles.X, 'PCA', no_dims);
noparam=true;
mthd='PCA';
case 2 % LDA
% no parameters;
% correct lables only to column-vector:
lb=handles.labels;
slb=size(lb);
if min(slb)>1
warning('slb must be vector');
end
if slb(1)<slb(2)
lb=lb';
end
if handles.islb
mappedA = compute_mapping([lb handles.X], 'LDA', no_dims); % set labels through first column
if slb(1)<slb(2)
handles.m3={['labels=labels''; % labels must be a vector-column '];
['mappedX = compute_mapping([labels X], ''LDA'', no_dims); % set labels through first column']};
else
handles.m3={['mappedX = compute_mapping([labels X], ''LDA'', no_dims); % set labels through first column']};
end
else
% imposible because data without labels
warning('it is imposible to be here');
end
case 3 % MDS
% no parameters;
mappedA = compute_mapping(handles.X, 'MDS', no_dims);
noparam=true;
mthd='MDS';
case 4 % SimplePCA
% no parameters;
mappedA = compute_mapping(handles.X, 'SimplePCA', no_dims);
noparam=true;
mthd='SimplePCA';
case 5 % ProbPCA
mi=str2num(get(hs1.mi,'string'));
mappedA = compute_mapping(handles.X, 'ProbPCA', no_dims, mi);
handles.m3={['mi = ' num2str(mi) '; % max iterations'];
['mappedX = compute_mapping(X, ''ProbPCA'', no_dims, mi);']};
case 6 % FactorAnalysis
% no parameters;
mappedA = compute_mapping(handles.X, 'FactorAnalysis', no_dims);
noparam=true;
mthd='FactorAnalysis';
case 7 % Isomap
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
mappedA = compute_mapping(handles.X, 'Isomap', no_dims, k);
m3t={['mappedX = compute_mapping(X, ''Isomap'', no_dims, k);']};
handles.m3=vertcat(handles.m3,m3t);
case 8 % LandmarkIsomap
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
prc=str2num(get(hs1.prc,'string'));
m3t={['prc = ' num2str(prc) '; % percentage']};
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'LandmarkIsomap', no_dims, k, prc);
m3t={['mappedX = compute_mapping(X, ''LandmarkIsomap'', no_dims, k, prc);']};
handles.m3=vertcat(handles.m3,m3t);
case 9 % LLE
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
[mappedA, mapping] = compute_mapping(handles.X, 'LLE', no_dims, k, eim);
m3t={['[mappedX, mapping] = compute_mapping(X, ''LLE'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 10 % Laplacian
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
sig=str2num(get(hs1.sig,'string'));
m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']};
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'Laplacian', no_dims, k, sig, eim);
m3t={['mappedX = compute_mapping(X, ''Laplacian'', no_dims, k, sig, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 11 % HessianLLE
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'HessianLLE', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''HessianLLE'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 12 % LTSA
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'LTSA', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''LTSA'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 13 % MVU
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'MVU', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''MVU'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 14 % CCA
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'CCA', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''CCA'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 15 % LandmarkMVU
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
mappedA = compute_mapping(handles.X, 'LandmarkMVU', no_dims, k);
m3t={['mappedX = compute_mapping(X, ''LandmarkMVU'', no_dims, k);']};
handles.m3=vertcat(handles.m3,m3t);
case 16 % FastMVU
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
ft=get(hs1.fty,'value');
if ft
m3t={['ft = true; % finetune']};
else
m3t={['ft = false; % finetune']};
end
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'FastMVU', no_dims, k, ft, eim);
m3t={['mappedX = compute_mapping(X, ''FastMVU'', no_dims, k, ft, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 17 % DiffusionMaps
t=str2num(get(hs1.t,'string'));
handles.m3={['t = ' num2str(t) ';']};
sig=str2num(get(hs1.sig,'string'));
m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']};
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'DiffusionMaps', no_dims, t, sig);
m3t={['mappedX = compute_mapping(X, ''DiffusionMaps'', no_dims, t, sig);']};
handles.m3=vertcat(handles.m3,m3t);
case 18 % KernelPCA
kernel='gauss';
if get(hs1.kl,'value')
kernel='linear';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel);
handles.m3={['kernel = ''linear'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel);']};
end
if get(hs1.kg,'value')
s=str2num(get(hs1.kgs,'string'));
handles.m3={['s = ' num2str(s) '; % variance']};
kernel='gauss';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,s);
m3t={['kernel = ''gauss'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, s);']};
handles.m3=vertcat(handles.m3,m3t);
end
if get(hs1.kp,'value')
R=str2num(get(hs1.kpR,'string'));
handles.m3={['R = ' num2str(R) '; % additional value']};
d=str2num(get(hs1.kpd,'string'));
m3t={['d = ' num2str(d) '; % power number']};
handles.m3=vertcat(handles.m3,m3t);
kernel='poly';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,R,d);
m3t={['kernel = ''poly'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, R, d);']};
handles.m3=vertcat(handles.m3,m3t);
end
case 19 % GDA
% correct lables only to column-vector:
lb=handles.labels;
slb=size(lb);
if min(slb)>1
warning('slb must be vector');
end
if slb(1)<slb(2)
lb=lb';
end
if slb(1)<slb(2)
m3t={['labels=labels''; % labels must be a vector-column ']};
else
m3t={};
end
if handles.islb
kernel='gauss';
if get(hs1.kl,'value')
kernel='linear';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel);
handles.m3={['kernel = ''linear'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel);']};
handles.m3=vertcat(m3t,handles.m3);
end
if get(hs1.kg,'value')
s=str2num(get(hs1.kgs,'string'));
handles.m3={['s = ' num2str(s) '; % variance']};
handles.m3=vertcat(m3t,handles.m3);
kernel='gauss';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,s);
m3t={['kernel = ''gauss'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, s);']};
handles.m3=vertcat(handles.m3,m3t);
end
if get(hs1.kp,'value')
R=str2num(get(hs1.kpR,'string'));
handles.m3={['R = ' num2str(R) '; % additional value']};
handles.m3=vertcat(m3t,handles.m3);
d=str2num(get(hs1.kpd,'string'));
m3t={['d = ' num2str(d) '; % power number']};
handles.m3=vertcat(handles.m3,m3t);
kernel='poly';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,R,d);
m3t={['kernel = ''poly'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, R, d);']};
handles.m3=vertcat(handles.m3,m3t);
end
else
% imposible because data without labels
warning('it is imposible to be here');
end
case 20 % SNE
prp=str2num(get(hs1.prp,'string'));
handles.m3={['prp = ' num2str(prp) '; % perplexity']};
mappedA = compute_mapping(handles.X, 'SNE', no_dims, prp);
m3t={['mappedX = compute_mapping(X, ''SNE'', no_dims, prp);']};
handles.m3=vertcat(handles.m3,m3t);
case 21 % SymSNE
prp=str2num(get(hs1.prp,'string'));
handles.m3={['prp = ' num2str(prp) '; % perplexity']};
mappedA = compute_mapping(handles.X, 'SymSNE', no_dims, prp);
m3t={['mappedX = compute_mapping(X, ''SymSNE'', no_dims, prp);']};
handles.m3=vertcat(handles.m3,m3t);
case 22 % t-SNE
prp=str2num(get(hs1.prp,'string'));
handles.m3={['prp = ' num2str(prp) '; % perplexity']};
mappedA = compute_mapping(handles.X, 't-SNE', no_dims, prp);
m3t={['mappedX = compute_mapping(X, ''t-SNE'', no_dims, prp);']};
handles.m3=vertcat(handles.m3,m3t);
case 23 % LPP
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
sig=str2num(get(hs1.sig,'string'));
m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']};
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'LPP', no_dims, k, sig, eim);
m3t={['mappedX = compute_mapping(X, ''LPP'', no_dims, k, sig, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 24 % NPE
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'NPE', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''NPE'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 25 % LLTSA
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'LLTSA', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''LLTSA'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 26 % SPE
tp='Global';
if get(hs1.tg,'value')
tp='Global';
mappedA = compute_mapping(handles.X, 'SPE', no_dims, tp);
handles.m3={'tp = ''Global''; % type of stress function that minimized';
['mappedX = compute_mapping(X, ''SPE'', no_dims, tp);']};
end
if get(hs1.tl,'value')
tp='Local';
k=str2num(get(hs1.k,'string'));
mappedA = compute_mapping(handles.X, 'SPE', no_dims, tp, k);
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph'];
'tp = ''Local''; % type of stress function that minimized';
['mappedX = compute_mapping(X, ''SPE'', no_dims, tp, k);']};
end
case 27 % AutoEncoder
% no parameters;
mappedA = compute_mapping(handles.X, 'Autoencoder', no_dims);
noparam=true;
mthd='Autoencoder';
case 28 % LLC
% no parameters;
mappedA = compute_mapping(handles.X, 'LLC', no_dims);
noparam=true;
mthd='LLC';
case 29 % LLC
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
na=str2num(get(hs1.na,'string'));
m3t={['na = ' num2str(na) '; % number of factor analyzers']};
handles.m3=vertcat(handles.m3,m3t);
mi=str2num(get(hs1.mi,'string'));
m3t={['mi = ' num2str(mi) '; % max iterations']};
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
mappedA = compute_mapping(handles.X, 'LLC', no_dims, k, na, mi, eim);
m3t={['mappedX = compute_mapping(X, ''LLC'', no_dims, k, na, mi, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 30 % ManifoldChart
na=str2num(get(hs1.na,'string'));
handles.m3={['na = ' num2str(na) '; % number of factor analyzers']};
mi=str2num(get(hs1.mi,'string'));
m3t={['mi = ' num2str(mi) '; % max iterations']};
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
mappedA = compute_mapping(handles.X, 'ManifoldChart', no_dims, na, mi, eim);
m3t={['mappedX = compute_mapping(X, ''ManifoldChart'', no_dims, na, mi, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 31 % CFA
na=str2num(get(hs1.na,'string'));
handles.m3={['na = ' num2str(na) '; % number of factor analyzers']};
mi=str2num(get(hs1.mi,'string'));
m3t={['mi = ' num2str(mi) '; % max iterations']};
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'CFA', no_dims, na, mi);
m3t={['mappedX = compute_mapping(X, ''CFA'', no_dims, na, mi);']};
handles.m3=vertcat(handles.m3,m3t);
case 32 % GPLVM
sig=str2num(get(hs1.sig,'string'));
m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']};
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'GPLVM', no_dims, sig);
m3t={['mappedX = compute_mapping(X, ''GPLVM'', no_dims, sig);']};
handles.m3=vertcat(handles.m3,m3t);
case 33 % NCA
mappedA = compute_mapping(handles.X, 'NCA', no_dims);
m3t={'mappedX = compute_mapping(X, ''NCA'', no_dims);'};
handles.m3=vertcat(handles.m3,m3t);
case 34 % MCML
mappedA = compute_mapping(handles.X, 'MCML', no_dims);
m3t={'mappedX = compute_mapping(X, ''MCML'', no_dims);'};
handles.m3=vertcat(handles.m3,m3t);
end
if noparam
handles.m3={['mappedX = compute_mapping(X, ''' mthd ''', no_dims); % compute mapping using ' mthd ' method']};
end
catch
set(handles.cd,'visible','off');
handles.mcd=false;
warning('mapping was not calculated');
handles.m3={};
handles.mstf={};
guidata(handles.figure1, handles);
delete(hs1.figure1);
drawnow;
rethrow(lasterror);
return
end
if length(mappedA)~=0
set(handles.cd,'visible','on');
handles.mX=mappedA;
handles.mcd=true;
else
set(handles.cd,'visible','off');
handles.mcd=false;
warning('mapping was not calculated');
handles.m3={};
handles.mstf={};
end
guidata(handles.figure1, handles);
delete(hs1.figure1);
drawnow;
else
% 'not loaded'
not_loaded;
end
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
if handles.mcd
ld=length(handles.mX(1,:));
if ld==2
hf=figure;
set(hf,'name','Result of dimensionality reduction','NumberTitle','off');
if handles.islb && size(handles.mX, 1) == numel(handles.labels)
scatter(handles.mX(:,1),handles.mX(:,2),5,handles.labels);
else
scatter(handles.mX(:,1),handles.mX(:,2),5);
end
title('Result of dimensionality reduction');
if size(handles.mX, 1) ~= numel(handles.labels)
warning('The GUI cannot yet deal properly with disconnected parts in the neighborhood graph.');
end
else
if ld==1
hf=figure;
set(hf,'name','Result of dimensionality reduction','NumberTitle','off');
if handles.islb && size(handles.mX, 1) == numel(handles.labels)
scatter(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),5,handles.labels);
else
scatter(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),5);
end
title('Result of dimensionality reduction');
if size(handles.mX, 1) ~= numel(handles.labels)
warning('The GUI cannot yet deal properly with disconnected parts in the neighborhood graph.');
end
else
if handles.islb
scattern('Result of dimensionality reduction',handles.mX,handles.labels);
else
scattern('Result of dimensionality reduction',handles.mX);
end
end
end
else
% 'not calulated'
not_calculated;
end
% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
if handles.mcd
ld=length(handles.mX(1,:));
if ld==2
hf=figure;
set(hf,'name','Result of dimensionality reduction','NumberTitle','off');
% if handles.islb
% scatter(handles.mX(:,1),handles.mX(:,2),5,handles.labels);
% else
plot(handles.mX(:,1),handles.mX(:,2),'.r');
% end
title('Result of dimensionality reduction');
else
if ld==1
hf=figure;
set(hf,'name','Result of dimensionality reduction','NumberTitle','off');
%if handles.islb
%scatter(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),5,handles.labels);
%else
plot(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),'.k');
%end
title('Result of dimensionality reduction');
else
%if handles.islb
% scattern('Result of dimensionality reduction',handles.mX,handles.labels);
%else
plotn('Result of dimensionality reduction',handles.mX);
%end
end
end
else
% 'not calulated'
not_calculated;
end
% --- Executes on button press in stmf.
function stmf_Callback(hObject, eventdata, handles)
[file,path] = uiputfile('*.mat','Save Mapped Data As');
if length(file)==1
if file==0
return
end
end
mX=handles.mX;
save([path file], 'mX');
% --- Executes on button press in sttf.
function sttf_Callback(hObject, eventdata, handles)
[file,path] = uiputfile('*.txt','Save Mapped Data As');
if length(file)==1
if file==0
return
end
end
mX=handles.mX;
save([path file], 'mX','-ascii', '-tabs');
% --- Executes on button press in stf.
function stf_Callback(hObject, eventdata, handles)
set(handles.stf,'Enable','off');
drawnow;
if handles.mcd
if get(handles.stmfr,'value')
[file,path] = uiputfile('*.mat','Save Mapped Data As');
if length(file)==1
if file==0
set(handles.stf,'Enable','on');
drawnow;
return
end
end
mX=handles.mX;
save([path file], 'mX');
handles.mstf={['save(''' path file ''', ''mappedX''); % save result to mat-file']};
end
if get(handles.sttfr,'value')
[file,path] = uiputfile('*.txt','Save Mapped Data As');
if length(file)==1
if file==0
set(handles.stf,'Enable','on');
drawnow;
return
end
end
mX=handles.mX;
save([path file], 'mX','-ascii', '-tabs');
handles.mstf={['save(''' path file ''', ''mappedX'',''-ascii'', ''-tabs''); % save result to txt-file']};
end
if get(handles.stxfr,'value')
[file,path] = uiputfile('*.xls','Save Mapped Data As');
if length(file)==1
if file==0
set(handles.stf,'Enable','on');
drawnow;
return
end
end
mX=handles.mX;
xlswrite([path file], mX);
handles.mstf={['xlswrite(''' path file ''', mappedX); % save result to xls-file']};
end
guidata(handles.figure1, handles);
else
% 'not calulated'
not_calculated;
end
set(handles.stf,'Enable','on');
drawnow;
% --- Executes when selected object is changed in uipanel1.
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
% hObject handle to the selected object in uipanel1
% eventdata structure with the following fields (see UIBUTTONGROUP)
% EventName: string 'SelectionChanged' (read only)
% OldValue: handle of the previously selected object or empty if none was selected
% NewValue: handle of the currently selected object
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in sh.
function sh_Callback(hObject, eventdata, handles)
set(handles.sh,'enable','off');
drawnow;
if (isempty(handles.m1))&&(isempty(handles.m2))&&(isempty(handles.m3))
no_history;
else
[file,path] = uiputfile('*.m','Save History As');
if length(file)==1
if file==0
set(handles.sh,'enable','on');
drawnow;
return
end
end
fid = fopen([path file],'w');
fprintf(fid,'%s\r\n',['% this file was generated by drtool at ' datestr(now)]);
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
if ~isempty(handles.isxls)
if ~handles.isxls
% here if txt/mat file was loaded so it is need save data and labels
X=handles.X;
save([path 'X.mat'],'X');
if handles.islb
% save labells if any
labels=handles.labels;
save([path 'labels.mat'],'labels');
fprintf(fid,'%s\r\n','% Note: data and labels were saved in X.mat and labels.mat together with this m-file in the same folder');
else
fprintf(fid,'%s\r\n','% Note: data was saved in X.mat together with this m-file in the same folder');
end
end
end
fprintf(fid,'%s\r\n',' ');
fprintf(fid,'%s\r\n','% 1.');
fprintf(fid,'%s\r\n','% get data');
for mc=1:length(handles.m1)
fprintf(fid,'%s\r\n',handles.m1{mc});
end
% plot original data:
mpod={'% plot original data:'};
ld=length(handles.X(1,:));
if ld==2
mpodt={'hf=figure;';
'set(hf,''name'',''Original dataset'',''NumberTitle'',''off'');'};
mpod=vertcat(mpod,mpodt);
if handles.islb
mpodt={'scatter(X(:,1),X(:,2),5,labels);'};
else
mpodt={'plot(X(:,1),X(:,2),''x-'');'};
end
mpod=vertcat(mpod,mpodt);
mpodt={'title(''Original dataset'');'};
mpod=vertcat(mpod,mpodt);
else
if handles.islb
mpodt={'scattern(''Original dataset'',X,labels);'};
else
mpodt={'plotn(''Original dataset'',X);'};
end
mpod=vertcat(mpod,mpodt);
end
fprintf(fid,'%s\r\n',' ');
for mc=1:length(mpod)
fprintf(fid,'%s\r\n',mpod{mc});
end
fprintf(fid,'%s\r\n',' ');
if length(handles.m2)~=0
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
handles.m2=vertcat(handles.m2,handles.m21);
fprintf(fid,'%s\r\n','% 2.');
fprintf(fid,'%s\r\n','% estimate intrinsic dimensionality');
for mc=1:length(handles.m2)
fprintf(fid,'%s\r\n',handles.m2{mc});
end
else
if length(handles.m3)~=0
% if was not dimetion estimation thet it is need to set it for
% part 3
for mc=1:length(handles.m21)
fprintf(fid,'%s\r\n',handles.m21{mc});
end
end
end
if length(handles.m3)~=0
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
fprintf(fid,'%s\r\n','% 3.');
fprintf(fid,'%s\r\n','% compute mapping');
for mc=1:length(handles.m3)
fprintf(fid,'%s\r\n',handles.m3{mc});
end
% plot result
mpod={'% plot result of dimensionality reduction:'};
if handles.islb
mpodt={'scatter12n(''Result of dimensionality reduction'',mappedX,labels);'};
else
mpodt={'plot12n(''Result of dimensionality reduction'',mappedX);'};
end
mpod=vertcat(mpod,mpodt);
fprintf(fid,'%s\r\n',' ');
for mc=1:length(mpod)
fprintf(fid,'%s\r\n',mpod{mc});
end
fprintf(fid,'%s\r\n',' ');
end
if length(handles.mstf)~=0
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
for mc=1:length(handles.mstf)
fprintf(fid,'%s\r\n',handles.mstf{mc});
end
end
fclose(fid);
end
set(handles.sh,'enable','on');
drawnow;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
plot12n.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/plot12n.m
| 1,356 |
utf_8
|
8a16c46e9b838f4602a5af8fc8a857a8
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function plot12n(name,data)
ld=length(data(1,:));
if ld==2
hf=figure;
set(hf,'name',name,'NumberTitle','off');
% if handles.islb
% scatter(data(:,1),data(:,2),5,handles.labels);
% else
plot(data(:,1),data(:,2),'.r');
% end
title(name);
else
if ld==1
hf=figure;
set(hf,'name',name,'NumberTitle','off');
%if handles.islb
%scatter(data(:,1),zeros(length(data(:,1)),1),5,handles.labels);
%else
plot(data(:,1),zeros(length(data(:,1)),1),'.k');
%end
title(name);
else
%if handles.islb
% scattern('Result of dimensionality reduction',data,handles.labels);
%else
plotn(name,data);
%end
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
not_loaded.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/not_loaded.m
| 7,728 |
utf_8
|
a754380baacab27eac13658ea4cc21a3
|
function varargout = not_loaded(varargin)
% NOT_LOADED M-file for not_loaded.fig
% NOT_LOADED by itself, creates a new NOT_LOADED or raises the
% existing singleton*.
%
% H = NOT_LOADED returns the handle to a new NOT_LOADED or the handle to
% the existing singleton*.
%
% NOT_LOADED('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in NOT_LOADED.M with the given input arguments.
%
% NOT_LOADED('Property','Value',...) creates a new NOT_LOADED or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before not_loaded_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to not_loaded_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help not_loaded
% Last Modified by GUIDE v2.5 24-Jul-2008 18:38:56
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @not_loaded_OpeningFcn, ...
'gui_OutputFcn', @not_loaded_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before not_loaded is made visible.
function not_loaded_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to not_loaded (see VARARGIN)
% Choose default command line output for not_loaded
handles.output = 'Yes';
% Update handles structure
guidata(hObject, handles);
% Insert custom Title and Text if specified by the user
% Hint: when choosing keywords, be sure they are not easily confused
% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
for index = 1:2:(nargin-3),
if nargin-3==index, break, end
switch lower(varargin{index})
case 'title'
set(hObject, 'Name', varargin{index+1});
case 'string'
set(handles.text1, 'String', varargin{index+1});
end
end
end
% Determine the position of the dialog - centered on the callback figure
% if available, else, centered on the screen
FigPos=get(0,'DefaultFigurePosition');
OldUnits = get(hObject, 'Units');
set(hObject, 'Units', 'pixels');
OldPos = get(hObject,'Position');
FigWidth = OldPos(3);
FigHeight = OldPos(4);
if isempty(gcbf)
ScreenUnits=get(0,'Units');
set(0,'Units','pixels');
ScreenSize=get(0,'ScreenSize');
set(0,'Units',ScreenUnits);
FigPos(1)=1/2*(ScreenSize(3)-FigWidth);
FigPos(2)=2/3*(ScreenSize(4)-FigHeight);
else
GCBFOldUnits = get(gcbf,'Units');
set(gcbf,'Units','pixels');
GCBFPos = get(gcbf,'Position');
set(gcbf,'Units',GCBFOldUnits);
FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...
(GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];
end
FigPos(3:4)=[FigWidth FigHeight];
set(hObject, 'Position', FigPos);
set(hObject, 'Units', OldUnits);
% Show a question icon from dialogicons.mat - variables questIconData
% and questIconMap
load dialogicons.mat
IconData=questIconData;
questIconMap(256,:) = get(handles.figure1, 'Color');
IconCMap=questIconMap;
Img=image(IconData, 'Parent', handles.axes1);
set(handles.figure1, 'Colormap', IconCMap);
set(handles.axes1, ...
'Visible', 'off', ...
'YDir' , 'reverse' , ...
'XLim' , get(Img,'XData'), ...
'YLim' , get(Img,'YData') ...
);
% Make the GUI modal
set(handles.figure1,'WindowStyle','modal')
% UIWAIT makes not_loaded wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = not_loaded_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% The figure can be deleted now
delete(handles.figure1);
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if isequal(get(handles.figure1, 'waitstatus'), 'waiting')
% The GUI is still in UIWAIT, us UIRESUME
uiresume(handles.figure1);
else
% The GUI is no longer waiting, just close it
delete(handles.figure1);
end
% --- Executes on key press over figure1 with no controls selected.
function figure1_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Check for "enter" or "escape"
if isequal(get(hObject,'CurrentKey'),'escape')
% User said no by hitting escape
handles.output = 'No';
% Update handles structure
guidata(hObject, handles);
uiresume(handles.figure1);
end
if isequal(get(hObject,'CurrentKey'),'return')
uiresume(handles.figure1);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
load_data.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/drtoolbox/gui/load_data.m
| 6,534 |
utf_8
|
ade0538cbeeb79ed3c72aea5743a2424
|
function varargout = load_data(varargin)
% LOAD_DATA M-file for load_data.fig
% LOAD_DATA, by itself, creates a new LOAD_DATA or raises the existing
% singleton*.
%
% H = LOAD_DATA returns the handle to a new LOAD_DATA or the handle to
% the existing singleton*.
%
% LOAD_DATA('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LOAD_DATA.M with the given input arguments.
%
% LOAD_DATA('Property','Value',...) creates a new LOAD_DATA or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before load_data_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to load_data_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help load_data
% Last Modified by GUIDE v2.5 23-Jul-2008 16:01:33
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @load_data_OpeningFcn, ...
'gui_OutputFcn', @load_data_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before load_data is made visible.
function load_data_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to load_data (see VARARGIN)
% Choose default command line output for load_data
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes load_data wait for user response (see UIRESUME)
uiwait(handles.figure1);
% uiwait;
% --- Outputs from this function are returned to the command line.
function varargout = load_data_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function ndp_Callback(hObject, eventdata, handles)
% hObject handle to ndp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ndp as text
% str2double(get(hObject,'String')) returns contents of ndp as a double
% --- Executes during object creation, after setting all properties.
function ndp_CreateFcn(hObject, eventdata, handles)
% hObject handle to ndp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function nl_Callback(hObject, eventdata, handles)
% hObject handle to nl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of nl as text
% str2double(get(hObject,'String')) returns contents of nl as a double
% --- Executes during object creation, after setting all properties.
function nl_CreateFcn(hObject, eventdata, handles)
% hObject handle to nl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
% --------------------------------------------------------------------
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
if get(handles.file,'value')
cl=[0.4 0.4 0.4];
set(handles.ndpt,'ForegroundColor',cl);
set(handles.nlt,'ForegroundColor',cl);
set(handles.ndp,'Enable','off');
set(handles.nl,'Enable','off');
set(handles.ok,'String','Start wizard');
else
cl=[0 0 0];
set(handles.ndpt,'ForegroundColor',cl);
set(handles.nlt,'ForegroundColor',cl);
set(handles.ndp,'Enable','on');
set(handles.nl,'Enable','on');
set(handles.ok,'String','OK');
end
if get(handles.xls,'value')
cl=[0.4 0.4 0.4];
set(handles.ndpt,'ForegroundColor',cl);
set(handles.nlt,'ForegroundColor',cl);
set(handles.ndp,'Enable','off');
set(handles.nl,'Enable','off');
set(handles.ok,'String','Open XLS-file');
else
if ~get(handles.file,'value')
cl=[0 0 0];
set(handles.ndpt,'ForegroundColor',cl);
set(handles.nlt,'ForegroundColor',cl);
set(handles.ndp,'Enable','on');
set(handles.nl,'Enable','on');
set(handles.ok,'String','OK');
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
ann_compile_mex.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/ANN/ann_mwrapper/ann_compile_mex.m
| 1,880 |
utf_8
|
014163ea1a72871ab04e2f661fc26a66
|
function ann_compile_mex()
%ANN_COMPILE_MEX Compiles the core-mex files of the ANN Lib
%
% [ Syntax ]
% - ann_compile_mex
%
% [ Description ]
% - ann_compile_mex re-compiles the mex files.
%
% [ History ]
% - Created by Dahua Lin, on Jul 06, 2007
%
%% configurations
% When you intend to change the configuration, please modify the following
% lines
ann_lib_root = 'ann_1.1.1';
ann_src_dir = [ann_lib_root, '/src'];
ann_inc_dir = [ann_lib_root, '/include'];
options = {'-O', '-v'};
%% main
main_file = 'private/ann_mex_bk.cpp';
output_dir = 'private';
src_files = { ...
'ANN.cpp', ...
'bd_fix_rad_search.cpp', ...
'bd_pr_search.cpp', ...
'bd_search.cpp', ...
'bd_tree.cpp', ...
'brute.cpp', ...
'kd_dump.cpp', ...
'kd_fix_rad_search.cpp', ...
'kd_pr_search.cpp', ...
'kd_search.cpp', ...
'kd_split.cpp', ...
'kd_tree.cpp', ...
'kd_util.cpp', ...
'perf.cpp' };
check_exist(main_file);
src_paths = cell(size(src_files));
for i = 1 : length(src_files)
src_paths{i} = [ann_src_dir '/' src_files{i}];
check_exist(src_paths{i});
end
switch filesep
case '\'
% mex(options{:},'-f','C:\Documents and Settings\Administrator\Application Data\MathWorks\MATLAB\R2007a\mexopts.bat', ['-I', ann_inc_dir], '-outdir', output_dir, main_file, src_paths{:});
mex(options{:}, ['-I', ann_inc_dir], '-outdir', output_dir, main_file, src_paths{:});
case '/'
mex(options{:},'-f','/home/kruegerb/checkout/tools_intern/efficiency/efficiency_linux64/mexopts.sh', ['-I', ann_inc_dir], '-outdir', output_dir, main_file, src_paths{:});
end
function check_exist(path)
if ~exist(path, 'file')
error('ann_mwrapper:ann_compile_mex:filenotfound', ...
'The file %s is not found', path);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
require_opt.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/ANN/ann_mwrapper/require_opt.m
| 99 |
utf_8
|
e7185a8f660741c408ea165caafcd4e3
|
function require_opt(cond, msg)
if ~cond
error('ann_mwrapper:annquery:invalidopt', msg);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
annquery_bk.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/ANN/ann_mwrapper/annquery_bk.m
| 14,109 |
utf_8
|
ecc177956de83f5571791d1a5c7e3255
|
function [nnidx, dists] = annquery_bk(call, Points, varargin)
switch call
case 1
% Build tree
case 2
% Query tree
case 3
% Delete tree
otherwise
error('Unknown call for annquery_bk!\n');
end
%ANNQUERY Performs Approximate K-Nearest-Neighbor query for a set of points
%
% [ Syntax ]
% - nnidx = annquery(Xr, Xq, k)
% - nnidx = annquery(Xr, Xq, k, ...)
% - [nnidx, dists] = annquery(...)
% - annquery -doc
%
% [ Arguments ]
% - Xr: the reference points to construct the kd-tree (d x n matrix)
% - Xq: the query points (d x nq matrix)
% - k: the number of neighbors for each query point
%
% - nnidx: the array of indices of nearest neighbors (k x n matrix)
% - dists: the array of distances between the neighbors and the query
% points (k x n matrix)
%
% [ Description ]
% - nnidx = annquery(Xr, Xq, k) finds the nearest neighbors of the query
% points with default options.
%
% Suppose we are dealing with d-dimensional points, and there are n
% reference points, and nq query points. Then Xr and Xq should be
% d x n and d x nq matrix respectively, with each column representing
% a point.
%
% For each point in Xq (say the i-th point, that is Xq(:,i)), the
% function finds k nearest points to it in Xr. The indices of these
% k points in Xr are stored in the i-th column of nnidx.
%
% - nnidx = annquery(Xr, Xq, k, ...) performs the k-NN search with
% user-specified options. The options can be specified by name-value
% list.
%
% Here are the options that can be set
% \{:
% - use_bdtree: whether to use box-decomposition tree
% (default = false).
%
% bd-tree is a variant kd-tree structure, which
% is more effectively in dealing with the highly
% clustered points by incorporating shrinking
% operations. However, it is not necessary for
% typical datasets.
%
% - bucket_size: the size of each bucket in the tree.
% (default = 1).
%
% - split: the name of the splitting rule in kd-tree
% construction. (default = 'suggest')
%
% Here is a list of available split rules:
% \{:
% - std: the standard kd-tree splitting
% rule
% - midpt: the mid-point splitting rule
% - sl_midpt: the sliding mid-point splitting
% rule
% - fair: the fair splitting rule
% - sl_fair: the sliding fair splitting rule
% - suggest: the suggested rule, which
% performs best for typical cases.
% \:}
%
% - shrink: the name of the shrinking rule in bd-tree
% construction. (default = 'suggest')
%
% Here is a list of available shrinking rules:
% \{:
% - none: no shrinking is performed.
% Without shrinking, bd-tree is
% equivalent to normal kd-tree.
% - simple: simple shrinking.
% - centroid: centroid shrinking.
% - suggest: the suggested rule, which
% performs best for typical
% cases.
% \:}
% The shrink option only takes effect when
% use_bdtree is set to true.
%
% - search_sch: the search scheme to use. (default = 'std')
%
% Here is a list of available search schemes:
% \{:
% - std: the standard k-NN search
% - pri: the priority search
%
% By this scheme, the cell that
% contains the query point is
% located, and cells are visited
% in increasing order of distance
% from the query point.
%
% - fr: the fixed-radius search
%
% By this scheme, only the
% reference points whose
% distances to the query point
% is less than a radius is found.
% \:}
%
% - eps: the upper bound on the search error.
%
% For 1 <= i <= k, the ratio between the distance
% to the i-th reported point and that to the true
% i-th nearest neighbor is at most 1 + eps.
%
% Typically, eps controls the trade-off between
% efficiency and accuracy. When eps is set
% larger, the approximation is less accurate, and
% the search completes faster.
%
% - radius: the maximum distance between the neighbors and
% the query point. This option only takes effects
% when search_sch is set to 'fr'. In other words,
% it only applies to fixed-radius search.
% \:}
%
% Generally, the default options can work well for typical cases. In
% special cases, you can change some options with others left in default
% value by only specifying the options you would like to change.
%
% - [nnidx, dists] = annquery(...) also returns the corresponding distance values.
%
% In the output, dists is a k x nq double matrix. dists(i, j) is the distance of
% the j's query point's distance to its i-th neighbor.
%
% Since that nnidx(i, j) is the index of j's query point's i-th neighbor,
% nnidx and dists are corresponding.
%
% - annquery -doc or annquery('-doc') shows the HTML help in the MATLAB
% embeded browser.
%
% [ Remarks ]
% - The function is based on a mex-wrapper (ann_mex.m in private folder)
% of the Approximate Nearest Neighbors Library version 1.1.1.
%
% - It is strongly recommended to gather all queries together and conduct
% the queries in batch. Since for each time this function is invoked,
% it constructs the kd-tree from the reference points. Hence, it may
% lead to considerable overhead if the queries are done one by one.
%
% - The found nearest points for each query point are sorted in ascending
% order of distance. It means that the first result refers to the point
% nearest to the query, while the second one refers to the second
% nearest, and so on.
%
% - If fixed-radius scheme is used (set search_sch option to 'fr'), it
% is probable that for some query points, there are less than k
% neighbors within the specified range.
%
% For example, if k = 5, and there are only 2 neighbors in the
% specified range for the i-th query, then nnidx(:, i) would be a
% column, in which the first 2 entries are the indices of the two
% nearest neighbors, while the last 3 entries are all zeros.
% Correspondingly, the last 3 entries in dists(:, i) are all inf.
%
% To summarize, the function uses 0 to indicate that a neighbor is not
% found, and uses inf to give the corresponding distance. This only
% applies to fixed-radius scheme. (For other schemes, it is impossible
% that the neighbors are not sufficient).
%
% - If fixed-radius search is used, it is required that a positive radius
% be explicitly set.
%
% [ Examples ]
% - For each of 100 points of 5 dimensions, find its 3 nearesr neighbors in
% a reference set of 200 points, using default options.
% \{
% Xq = rand(5, 100);
% Xr = rand(5, 200);
%
% inds = annquery(Xr, Xq, 3);
% \}
% If you would like to get the corresponding Euclidean distances as
% well, you can use the following command
% \{
% [inds, dists] = annquery(Xr, Xq, 3);
% \}
%
% - Use user-specified options.
% \{
% % use priority search scheme with a sliding fair rule
% inds = annquery(Xr, Xq, k, 'search_sch', 'pri', 'split', 'sl_fair');
%
% % set positive error bound to allow some errors
% % in order to increase efficiency
% inds = annquery(Xr, Xq, k, 'eps', 0.1);
%
% % use fixed-radius search with all neighbors confined within
% % a range of radius 0.08
% inds = annquery(Xr, Xq, k, 'search_sch', 'fr', 'radius', 0.08);
%
% % use bd-tree construction
% inds = annquery(Xr, Xq, k, 'use_bdtree', true);
%
% % use bd-tree construction with centroid shrinking rule
% inds = annquery(Xr, Xq, k, 'use_bdtree', true, 'shrink', 'centroid');
% \}
%
% - If you want to find neighbors for each point within the same point
% set with the query point itself excluded from neighbor set.
% \{
% [inds, dists] = annquery(X, X, k+1, ...);
%
% inds = inds(2:end, :);
% dists = dists(2:end, :);
% \}
%
% This simple way is based on the rationale that the query point itself
% is the most nearest point to the query when searching in the same
% set. It works in most cases.
%
% However, if there are two points reside in EXACTLY the same position,
% then it is probable that another point in the same position is
% removed while the query point remains. However, such circumstances
% rarely happen in real data.
%
% [ History ]
% - Created by Dahua Lin, on Jul 06, 2007
%
%% For help
% if nargin == 1 && ischar(Xr) && strcmpi(Xr, '-doc')
% showdoc(mfilename('fullpath'));
% return;
% end
%% parse and verify input arguments
error(nargchk(3, inf, nargin));
% some predicates
is_normal_matrix = @(x) isnumeric(x) && ndims(x) == 2 && isreal(x) && ~issparse(x);
is_posint_scalar = @(x) isnumeric(x) && isscalar(x) && x == fix(x) && x > 0;
is_switch = @(x) islogical(x) && isscalar(x);
is_float_scalar = @(x) isfloat(x) && isscalar(x);
% Xr and Xq
require_arg(is_normal_matrix(Xr), 'Xr should be a full numeric real matrix');
require_arg(is_normal_matrix(Xq), 'Xq should be a full numeric real matrix');
[d, n] = size(Xr);
% require_arg(size(Xq, 1) == d, 'The point dimensions in Xr and Xq are inconsistent.')
% k
% require_arg(is_posint_scalar(k), 'k should be a positive integer scalar');
% require_arg(k <= n, 'The value k exceeds the number of reference points');
% options
opts = struct( ...
'use_bdtree', false, ...
'bucket_size', 1, ...
'split', 'suggest', ...
'shrink', 'suggest', ...
'search_sch', 'std', ...
'eps', 0, ...
'radius', 0);
if ~isempty(varargin)
opts = setopts(opts, varargin{:});
end
require_opt(is_switch(opts.use_bdtree), 'The option use_bdtree should be a logical scalar.');
require_opt(is_posint_scalar(opts.bucket_size), 'The option bucket_size should be a positive integer.');
split_c = get_name_code('splitting rule', opts.split, ...
{'std', 'midpt', 'sl_midpt', 'fair', 'sl_fair', 'suggest'});
if opts.use_bdtree
shrink_c = get_name_code('shrinking rule', opts.shrink, ...
{'none', 'simple', 'centroid', 'suggest'});
else
shrink_c = int32(0);
end
ssch_c = get_name_code('search scheme', opts.search_sch, ...
{'std', 'pri', 'fr'});
require_opt(is_float_scalar(opts.eps) && opts.eps >= 0, ...
'The option eps should be a non-negative float scalar.');
use_fix_rad = strcmp(opts.search_sch, 'fr');
if use_fix_rad
require_opt(is_float_scalar(opts.radius) && opts.radius > 0, ...
'The option radius should be a positive float scalar in fixed-radius search');
rad2 = opts.radius * opts.radius;
else
rad2 = 0;
end
%% main (invoking ann_mex)
internal_opts = struct( ...
'use_bdtree', opts.use_bdtree, ...
'bucket_size', int32(opts.bucket_size), ...
'split', split_c, ...
'shrink', shrink_c, ...
'search_sch', ssch_c, ...
'knn', int32(k), ...
'err_bound', opts.eps, ...
'search_radius', rad2);
[nnidx, dists] = ann_mex_bk(Xr, Xq, internal_opts);
nnidx = nnidx + 1; % from zero-based to one-based
if nargout >= 2
dists = sqrt(dists); % from squared distance to euclidean
if use_fix_rad
dists(nnidx == 0) = inf;
end
end
%% Auxiliary function
function c = get_name_code(optname, name, names)
require_opt(ischar(name), ['The option ' optname ' should be a string indicating a name.']);
cidx = find(strcmp(name, names));
require_opt(~isempty(cidx), ['The option ' optname ' cannot be assigned to be ' name]);
c = int32(cidx - 1);
function require_arg(cond, msg)
if ~cond
error('ann_mwrapper:annquery:invalidarg', msg);
end
function require_opt(cond, msg)
if ~cond
error('ann_mwrapper:annquery:invalidopt', msg);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
annquery.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/ANN/ann_mwrapper/annquery.m
| 13,857 |
utf_8
|
8cd85e7edbcfa78dccb8ddec6dbf4c39
|
function [nnidx, dists] = annquery(Xr, Xq, k, varargin)
%ANNQUERY Performs Approximate K-Nearest-Neighbor query for a set of points
%
% [ Syntax ]
% - nnidx = annquery(Xr, Xq, k)
% - nnidx = annquery(Xr, Xq, k, ...)
% - [nnidx, dists] = annquery(...)
% - annquery -doc
%
% [ Arguments ]
% - Xr: the reference points to construct the kd-tree (d x n matrix)
% - Xq: the query points (d x nq matrix)
% - k: the number of neighbors for each query point
%
% - nnidx: the array of indices of nearest neighbors (k x n matrix)
% - dists: the array of distances between the neighbors and the query
% points (k x n matrix)
%
% [ Description ]
% - nnidx = annquery(Xr, Xq, k) finds the nearest neighbors of the query
% points with default options.
%
% Suppose we are dealing with d-dimensional points, and there are n
% reference points, and nq query points. Then Xr and Xq should be
% d x n and d x nq matrix respectively, with each column representing
% a point.
%
% For each point in Xq (say the i-th point, that is Xq(:,i)), the
% function finds k nearest points to it in Xr. The indices of these
% k points in Xr are stored in the i-th column of nnidx.
%
% - nnidx = annquery(Xr, Xq, k, ...) performs the k-NN search with
% user-specified options. The options can be specified by name-value
% list.
%
% Here are the options that can be set
% \{:
% - use_bdtree: whether to use box-decomposition tree
% (default = false).
%
% bd-tree is a variant kd-tree structure, which
% is more effectively in dealing with the highly
% clustered points by incorporating shrinking
% operations. However, it is not necessary for
% typical datasets.
%
% - bucket_size: the size of each bucket in the tree.
% (default = 1).
%
% - split: the name of the splitting rule in kd-tree
% construction. (default = 'suggest')
%
% Here is a list of available split rules:
% \{:
% - std: the standard kd-tree splitting
% rule
% - midpt: the mid-point splitting rule
% - sl_midpt: the sliding mid-point splitting
% rule
% - fair: the fair splitting rule
% - sl_fair: the sliding fair splitting rule
% - suggest: the suggested rule, which
% performs best for typical cases.
% \:}
%
% - shrink: the name of the shrinking rule in bd-tree
% construction. (default = 'suggest')
%
% Here is a list of available shrinking rules:
% \{:
% - none: no shrinking is performed.
% Without shrinking, bd-tree is
% equivalent to normal kd-tree.
% - simple: simple shrinking.
% - centroid: centroid shrinking.
% - suggest: the suggested rule, which
% performs best for typical
% cases.
% \:}
% The shrink option only takes effect when
% use_bdtree is set to true.
%
% - search_sch: the search scheme to use. (default = 'std')
%
% Here is a list of available search schemes:
% \{:
% - std: the standard k-NN search
% - pri: the priority search
%
% By this scheme, the cell that
% contains the query point is
% located, and cells are visited
% in increasing order of distance
% from the query point.
%
% - fr: the fixed-radius search
%
% By this scheme, only the
% reference points whose
% distances to the query point
% is less than a radius is found.
% \:}
%
% - eps: the upper bound on the search error.
%
% For 1 <= i <= k, the ratio between the distance
% to the i-th reported point and that to the true
% i-th nearest neighbor is at most 1 + eps.
%
% Typically, eps controls the trade-off between
% efficiency and accuracy. When eps is set
% larger, the approximation is less accurate, and
% the search completes faster.
%
% - radius: the maximum distance between the neighbors and
% the query point. This option only takes effects
% when search_sch is set to 'fr'. In other words,
% it only applies to fixed-radius search.
% \:}
%
% Generally, the default options can work well for typical cases. In
% special cases, you can change some options with others left in default
% value by only specifying the options you would like to change.
%
% - [nnidx, dists] = annquery(...) also returns the corresponding distance values.
%
% In the output, dists is a k x nq double matrix. dists(i, j) is the distance of
% the j's query point's distance to its i-th neighbor.
%
% Since that nnidx(i, j) is the index of j's query point's i-th neighbor,
% nnidx and dists are corresponding.
%
% - annquery -doc or annquery('-doc') shows the HTML help in the MATLAB
% embeded browser.
%
% [ Remarks ]
% - The function is based on a mex-wrapper (ann_mex.m in private folder)
% of the Approximate Nearest Neighbors Library version 1.1.1.
%
% - It is strongly recommended to gather all queries together and conduct
% the queries in batch. Since for each time this function is invoked,
% it constructs the kd-tree from the reference points. Hence, it may
% lead to considerable overhead if the queries are done one by one.
%
% - The found nearest points for each query point are sorted in ascending
% order of distance. It means that the first result refers to the point
% nearest to the query, while the second one refers to the second
% nearest, and so on.
%
% - If fixed-radius scheme is used (set search_sch option to 'fr'), it
% is probable that for some query points, there are less than k
% neighbors within the specified range.
%
% For example, if k = 5, and there are only 2 neighbors in the
% specified range for the i-th query, then nnidx(:, i) would be a
% column, in which the first 2 entries are the indices of the two
% nearest neighbors, while the last 3 entries are all zeros.
% Correspondingly, the last 3 entries in dists(:, i) are all inf.
%
% To summarize, the function uses 0 to indicate that a neighbor is not
% found, and uses inf to give the corresponding distance. This only
% applies to fixed-radius scheme. (For other schemes, it is impossible
% that the neighbors are not sufficient).
%
% - If fixed-radius search is used, it is required that a positive radius
% be explicitly set.
%
% [ Examples ]
% - For each of 100 points of 5 dimensions, find its 3 nearesr neighbors in
% a reference set of 200 points, using default options.
% \{
% Xq = rand(5, 100);
% Xr = rand(5, 200);
%
% inds = annquery(Xr, Xq, 3);
% \}
% If you would like to get the corresponding Euclidean distances as
% well, you can use the following command
% \{
% [inds, dists] = annquery(Xr, Xq, 3);
% \}
%
% - Use user-specified options.
% \{
% % use priority search scheme with a sliding fair rule
% inds = annquery(Xr, Xq, k, 'search_sch', 'pri', 'split', 'sl_fair');
%
% % set positive error bound to allow some errors
% % in order to increase efficiency
% inds = annquery(Xr, Xq, k, 'eps', 0.1);
%
% % use fixed-radius search with all neighbors confined within
% % a range of radius 0.08
% inds = annquery(Xr, Xq, k, 'search_sch', 'fr', 'radius', 0.08);
%
% % use bd-tree construction
% inds = annquery(Xr, Xq, k, 'use_bdtree', true);
%
% % use bd-tree construction with centroid shrinking rule
% inds = annquery(Xr, Xq, k, 'use_bdtree', true, 'shrink', 'centroid');
% \}
%
% - If you want to find neighbors for each point within the same point
% set with the query point itself excluded from neighbor set.
% \{
% [inds, dists] = annquery(X, X, k+1, ...);
%
% inds = inds(2:end, :);
% dists = dists(2:end, :);
% \}
%
% This simple way is based on the rationale that the query point itself
% is the most nearest point to the query when searching in the same
% set. It works in most cases.
%
% However, if there are two points reside in EXACTLY the same position,
% then it is probable that another point in the same position is
% removed while the query point remains. However, such circumstances
% rarely happen in real data.
%
% [ History ]
% - Created by Dahua Lin, on Jul 06, 2007
%
%% For help
if nargin == 1 && ischar(Xr) && strcmpi(Xr, '-doc')
showdoc(mfilename('fullpath'));
return;
end
%% parse and verify input arguments
error(nargchk(3, inf, nargin));
% some predicates
is_normal_matrix = @(x) isnumeric(x) && ndims(x) == 2 && isreal(x) && ~issparse(x);
is_posint_scalar = @(x) isnumeric(x) && isscalar(x) && x == fix(x) && x > 0;
is_switch = @(x) islogical(x) && isscalar(x);
is_float_scalar = @(x) isfloat(x) && isscalar(x);
% Xr and Xq
require_arg(is_normal_matrix(Xr), 'Xr should be a full numeric real matrix');
require_arg(is_normal_matrix(Xq), 'Xq should be a full numeric real matrix');
[d, n] = size(Xr);
% require_arg(size(Xq, 1) == d, 'The point dimensions in Xr and Xq are inconsistent.')
% k
require_arg(is_posint_scalar(k), 'k should be a positive integer scalar');
% require_arg(k <= n, 'The value k exceeds the number of reference points');
% options
opts = struct( ...
'use_bdtree', false, ...
'bucket_size', 1, ...
'split', 'suggest', ...
'shrink', 'suggest', ...
'search_sch', 'std', ...
'eps', 0, ...
'radius', 0);
if ~isempty(varargin)
opts = setopts(opts, varargin{:});
end
require_opt(is_switch(opts.use_bdtree), 'The option use_bdtree should be a logical scalar.');
require_opt(is_posint_scalar(opts.bucket_size), 'The option bucket_size should be a positive integer.');
split_c = get_name_code('splitting rule', opts.split, ...
{'std', 'midpt', 'sl_midpt', 'fair', 'sl_fair', 'suggest'});
if opts.use_bdtree
shrink_c = get_name_code('shrinking rule', opts.shrink, ...
{'none', 'simple', 'centroid', 'suggest'});
else
shrink_c = int32(0);
end
ssch_c = get_name_code('search scheme', opts.search_sch, ...
{'std', 'pri', 'fr'});
require_opt(is_float_scalar(opts.eps) && opts.eps >= 0, ...
'The option eps should be a non-negative float scalar.');
use_fix_rad = strcmp(opts.search_sch, 'fr');
if use_fix_rad
require_opt(is_float_scalar(opts.radius) && opts.radius > 0, ...
'The option radius should be a positive float scalar in fixed-radius search');
rad2 = opts.radius * opts.radius;
else
rad2 = 0;
end
%% main (invoking ann_mex)
internal_opts = struct( ...
'use_bdtree', opts.use_bdtree, ...
'bucket_size', int32(opts.bucket_size), ...
'split', split_c, ...
'shrink', shrink_c, ...
'search_sch', ssch_c, ...
'knn', int32(k), ...
'err_bound', opts.eps, ...
'search_radius', rad2);
[nnidx, dists] = ann_mex(Xr, Xq, internal_opts);
nnidx = nnidx + 1; % from zero-based to one-based
if nargout >= 2
dists = sqrt(dists); % from squared distance to euclidean
if use_fix_rad
dists(nnidx == 0) = inf;
end
end
%% Auxiliary function
function c = get_name_code(optname, name, names)
require_opt(ischar(name), ['The option ' optname ' should be a string indicating a name.']);
cidx = find(strcmp(name, names));
require_opt(~isempty(cidx), ['The option ' optname ' cannot be assigned to be ' name]);
c = int32(cidx - 1);
function require_arg(cond, msg)
if ~cond
error('ann_mwrapper:annquery:invalidarg', msg);
end
function require_opt(cond, msg)
if ~cond
error('ann_mwrapper:annquery:invalidopt', msg);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
setopts.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/ANN/ann_mwrapper/private/setopts.m
| 6,161 |
utf_8
|
e1da88dc99b232199d5082bf6df84068
|
function opts = setopts(opts0, varargin)
%SETOPTS Sets the options and makes the option-struct
%
% [ Syntax ]
% - opts = setopts([], name1, value1, name2, value2, ...)
% - opts = setopts([], {name1, value1, name2, value2, ...})
% - opts = setopts([], newopts)
% - opts = setopts(opts0, ...)
%
% [ Arguments ]
% - opts0: the original options
% - namei: the i-th option name
% - valuei: the value of the i-th option
% - opts: the updated options
%
% [ Description ]
% - opts = setopts([], name1, value1, name2, value2, ...) makes an
% option structure using the name-value pairs. The names should be
% all strings.
%
% The constructed structure will be like the following:
% \{
% opts.name1 = value1
% opts.name2 = value2
% ...
% \}
%
% - opts = setopts([], {name1, value1, name2, value2, ...}) makes an
% option structure using the name-value pairs encapsulated in
% a cell array. It is equivalent to the un-encapsulated form.
%
% - opts = setopts([], newopts) makes an option structure by copying
% the fields in newopts.
%
% - opts = setopts(opts0, ...) updates the original structure opts0.
% Suppose there is a name-value pair with name abc, then
% - if opts0 has a field named abc, then opts.abc will be set to
% the supplied value;
% - if opts0 does not has a field named abc, then a new field will
% be added to opts
% - The remaining fields of opts0 that are not in the name-value
% pairs will be copied to the opts using original values.
%
% [ Remarks ]
% - The MATLAB builtin function struct can also make struct with name
% value pairs. However, there are two significant differences:
% # when the values are cell arrays, the function struct will build
% a struct array and deal the values in the cell arrays to
% multiple structs. While the function setopts will always make
% a scalar struct, the value in cell form will be directly set
% as the value of the corresponding field as a whole.
% # The function setopts can make a new option structure by updating
% an existing one. It is suitable to the cases that there is a set
% of default options, and the user only wants to change some of
% them without changing the other. The setopts function offers a
% convenient way to tune a subset of options in the multi-option
% applications.
%
% - In the name-value list, multiple items with the same name is allowed.
% Under the circumstances, only the rightmost value takes effect. This
% design facilitates the use of a chain of option-setters. Each setter
% can simply make its changes by appending some name-value pairs,
% thereby the last changes will finally take effect.
%
% [ Examples ]
% - Construct default options and then update it
% \{
% default_opts = setopts([], ...
% 'timeout', 30, ...
% 'method', 'auto', ...
% 'acts', {'open', 'edit', 'close'} );
%
% >> default_opts.timeout = 30
% default_opts.method = 'auto'
% default_opts.acts = {'open', 'edit', 'close'}
%
% user_opts = setopts(default_opts, ...
% 'timeout', 50, ...
% 'acts', {'open', 'edit', 'submit', 'close'}, ...
% 'info', 'something');
%
% >> user_opts.timeout = 50
% user_opts.method = 'auto'
% user_opts.acts = {'open', 'edit', 'submit', 'close'}
% user_opts.info = 'something'
% \}
%
% - Set options with a chain of name-value pairs
% \{
% p1 = {'timeout', 30, 'method', 'auto'}
% p2 = {'info', [1 2], 'timeout', 50}
% p3 = {'keys', {'a', 'b'}, 'info', [10 20]}
%
% opts = setopts([], [p1, p2, p3])
%
% >> opts.timeout = 50
% opts.method = 'auto'
% opts.info = [10 20]
% opts.keys = {'a', 'b'}
% \}
%
% - Update a struct with another one
% \{
% s0 = struct('handle', 1, 'width', 10, 'height', 20)
% su = struct('width', 15, 'height', 25)
%
% s1 = setopts(s0, su)
%
% >> s1.handle = 1
% s1.width = 15
% s2.height = 25
% \}
%
% [ History ]
% - Created by Dahua Lin, on Jun 28, 2007
%
%% parse and verify input arguments
if isempty(opts0)
opts = [];
elseif isstruct(opts0) && isscalar(opts0)
opts = opts0;
else
error('dmtoolbox:setopts:invalidarg', ...
'opts0 should be either a struct scalar or empty.');
end
if nargin > 1
fparam = varargin{1};
if isstruct(fparam)
if nargin > 2
error('dmtoolbox:setopts:invalidarg', ...
'No input arguments are allowed to follow the struct parameter');
end
params = fparam;
elseif iscell(fparam)
if nargin > 2
error('dmtoolbox:setopts:invalidarg', ...
'No input arguments are allowed to follow the cell parameter');
end
params = fparam;
elseif ischar(fparam)
params = varargin;
else
error('dmtoolbox:setopts:invalidarg', 'The input argument list is illegal.');
end
else
return;
end
%% main delegate
if iscell(params)
opts = setopts_with_cell(opts, params);
else
opts = setopts_with_struct(opts, params);
end
%% core functions
function opts = setopts_with_cell(opts, params)
names = params(1:2:end);
values = params(2:2:end);
n = length(names);
if length(values) ~= n
error('dmtoolbox:setopts:invalidarg', 'The names and values should form pairs');
end
for i = 1 : n
opts.(names{i}) = values{i};
end
function opts = setopts_with_struct(opts, params)
fns = fieldnames(params);
n = length(fns);
for i = 1 : n
fn = fns{i};
opts.(fn) = params.(fn);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
graphViz4MatlabNode.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/graphViz4Matlab/util/graphViz4MatlabNode.m
| 11,839 |
utf_8
|
4a774ab6d3af22480ff6713e3c681d91
|
classdef graphViz4MatlabNode < dynamicprops & hgsetget
% This class represents a drawable node in an arbitrary graph.
%
% Public properties can be set using the standard Matlab set method as in
% set(node,'curvature',[0,0],'linesytle','--','linecolor','g'). Call
% node.redraw to redraw it after changing properties.
%
% Nodes are not really designed to live on their own, they should be
% aggregated into a graph object responsible for layout.
%
% Matthew Dunham
% University of British Columbia
% http://www.cs.ubc.ca/~mdunham/
properties
label; % displayed name for the node
splitLabel; % label split in the middle
useFullLabel = false; % if true, the full non-split label is used regardles of how long it is.
description = ''; % text displayed when you click on the node
curvature = [1 1]; % curvature of the node, [1,1] = circle
lineStyle = '-'; % line style for the node
lineWidth = 2; % line wdth for the node
inedges = []; % indices of edges in
outedges = []; % indices of edges out
fontSize = 12; % The font size for the node
showFullLabel = false; % If true, node labels are not split onto multiple lines regardelss of how long
end
properties
% Color properties
lineColor = 'k'; % line color for the node
selectedColor = [1 1 0.7]; % face color when selected with mouse
faceColor = [1 1 0.8]; % face color when not shaded
shadedColor = 'r'; % color when shaded, call shade() to shade
textColor = 'k'; % label's text color
containingGraph = []; % containing graph object
end
properties(GetAccess = 'public', SetAccess = 'protected')
% Read only properties
xpos = 0; % x-coordinate of node center relative to parent axes
ypos = 0; % y-coordinate of node center relative to parent axes
isvisible = false; % true iff the node is being displayed
isshaded = false; % is the node shaded or not?
width = 1; % width in data units
height = 1; % height in data units
end
properties(GetAccess = 'public', SetAccess = 'protected')
% Handles to underlying Matlab graphics objects
rechandle = []; % handle to the underlying rectangle object
labelhandle = []; % handle to the underlying text object
parent = []; % handle to the parent axes object
isselected = false; % true iff, the node has been selected
end
methods
function obj = graphViz4MatlabNode(label)
% Node Constructor
obj.label = label;
obj.setSplitLabel(label);
end
function draw(obj,parent)
% Draw the node on the specified parent axes. If no parent is
% specified, the current axis is used.
if(obj.isvisible)
warning('GRAPHNODE:draw',['Node ',obj.label,' is already drawn, call redraw().']);
return;
end
if(nargin < 2)
if(isempty(obj.parent) || ~ishandle(obj.parent))
obj.parent = gca;
end
else
obj.parent = parent;
end
obj.drawNode();
obj.setText();
obj.isvisible = true;
end
function redraw(obj)
% Redraw the node, (must be called after node properties are
% changed).
if(obj.isvisible), obj.erase;end
obj.draw();
end
function erase(obj)
% Erase the node but do not delete it
if(~obj.isvisible)
warning('GRAPHNODE:erase',['Node ',obj.label,' is already erased']);
return;
end
delete(obj.rechandle);
delete(obj.labelhandle);
obj.rechandle = [];
end
function shade(obj,color)
% Shade the node the specified color. The default color is used if
% none given.
obj.isshaded = true;
if(nargin == 2)
obj.shadedColor = color;
end
if(obj.isvisible)
set(obj.rechandle,'FaceColor',obj.shadedColor);
end
end
function unshade(obj)
% Unshade the node
obj.isshaded = false;
if(obj.isvisible)
set(obj.rechandle,'FaceColor',obj.faceColor);
end
end
function resize(obj,width,height)
% Resize the node by the specified proportion
if(nargin < 3)
if(~isempty(obj.containingGraph))
height = width;
end
end
obj.width = width;
obj.height = height;
if(obj.isvisible), obj.redraw; end
end
function move(obj,x,y)
% Move the node's center to the new x,y coordinates, (relative to
% the parent axes.)
obj.xpos = x; obj.ypos = y;
if(obj.isvisible),obj.redraw;end
end
function select(obj)
% Call this function to set the node in a selected state.
obj.isselected = true;
if(obj.isvisible)
set(obj.rechandle,'faceColor',obj.selectedColor);
end
end
function deselect(obj)
% Call this function to deselect the node.
obj.isselected = false;
if(obj.isvisible)
obj.redraw;
end
end
end % end of public methods
methods(Access = 'protected')
function nodePressed(obj,varargin)
% This function is called whenever the node is pressed.
if(~isempty(obj.containingGraph))
obj.containingGraph.nodeSelected(obj);
end
end
function nodeDeleted(obj)
% This function is called whenver the node is deleted, (perhaps
% because the figure window was closed for instance).
obj.isvisible = false;
obj.parent = [];
end
function drawNode(obj)
% Draw the actual node
recxpos = obj.xpos - obj.width/2;
recypos = obj.ypos - obj.height/2;
lineColor = obj.lineColor;
lineWidth = obj.lineWidth;
if(obj.isselected)
color = obj.selectedColor;
lineColor = 'r';
lineWidth = 1.5*lineWidth;
elseif(obj.isshaded)
color = obj.shadedColor;
else
color = obj.faceColor;
end
obj.rechandle = rectangle(...
'Parent' ,obj.parent ,...
'Position' ,[recxpos,recypos,obj.width,obj.height] ,...
'Curvature' ,obj.curvature ,...
'LineWidth' , lineWidth ,...
'LineStyle' ,obj.lineStyle ,...
'EdgeColor' ,lineColor ,...
'faceColor' ,color ,...
'DisplayName' ,obj.label ,...
'Tag' ,obj.label ,...
'ButtonDownFcn',@obj.nodePressed ,...
'UserData' ,obj ,...
'DeleteFcn' ,@(varargin)obj.nodeDeleted() );
end
function setText(obj)
% Draw the node's label
if((length(obj.label) < 10) || obj.useFullLabel || obj.showFullLabel)
label = obj.label;
else
label = obj.splitLabel;
end
obj.labelhandle = text(obj.xpos,obj.ypos,label ,...
'FontUnits' , 'points' ,...
'HitTest' , 'off' ,...
'FontWeight' , 'demi' ,...
'Margin' , 0.01 ,...
'HorizontalAlignment' , 'center' ,...
'BackGroundColor' , 'none' ,...
'Selected' , 'off' ,...
'VerticalAlignment' , 'middle' ,...
'LineStyle' , 'none' ,...
'FontSize' , obj.fontSize ,...
'Color' , obj.textColor );
if(obj.useFullLabel)
set(obj.labelhandle,'BackgroundColor',obj.selectedColor,'Margin',6,'EdgeColor','k','LineStyle','-');
end
end
function resizeText(obj)
% Resize the text to fill the node (too slow for large graphs)
fontsize = obj.maxFontSize;
set(obj.labelhandle,'FontSize',fontsize);
extent = get(obj.labelhandle,'Extent');
while((extent(1) < (obj.xpos - obj.width/2)) || (extent(2)+(extent(4)) > (obj.ypos + obj.height/2)))
fontsize = 0.95*fontsize;
set(obj.labelhandle,'FontSize',fontsize);
extent = get(obj.labelhandle,'Extent');
end
end
function setSplitLabel(obj,label)
obj.splitLabel = splitString(label,8,10);
end
end % end of protected methods
end % end of graphnode class
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function S = splitString(varargin)
% Split a string into multiple lines based on camel case.
%
% Inputs
%
% '-S' the string to split
% '-minSize' does not split at all if length(S) < minSize
% '-maxSize' splits no matter what, (even if no camel case change) if length(S) > maxSize
% '-center' if true, [default], the string is center justified
% '-cellMode' if true, a cell array of strings is returned, instead of a char array.
[S,minSize,maxSize,cellMode,center] = processArgs(varargin,'*+-S','','-minSize',8,'-maxSize',10,'-cellMode',false,'-center',true);
S = splitInTwo(S);
if center
S = strjust(S,'center');
end
if cellMode
S = cellstr(S);
end
function str = splitInTwo(str)
% recursively split a string into two based on camel case
isupper = isstrprop(str(2:end),'upper');
if(size(str,2) >= minSize && any(isupper))
first = find(isupper); first = first(1);
top = str(1:first);
bottom = str(first+1:end);
str = strvcat(splitInTwo(top),splitInTwo(bottom)); %#ok
elseif(size(str,2) > maxSize)
top = [str(1:floor(length(str)/2)),'-'];
bottom = str(floor(length(str)/2)+1:end);
str = strvcat(splitInTwo(top),splitInTwo(bottom)); %#ok
end
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
processArgs.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/graphViz4Matlab/util/processArgs.m
| 15,869 |
utf_8
|
0a862d38f194e4158c4b65d3f6642328
|
function varargout = processArgs(userArgs, varargin)
% Process function arguments, allowing args to be passed by
% the user either as name/value pairs, or positionally, or both.
%
% This function also provides optional enforcement of required inputs, and
% optional type checking. Argument names must start with the '-'
% character and not precede any positional arguments.
%
% Matthew Dunham
% University of British Columbia
% Last updated January 14th, 2010
%
%% USAGE:
%
% [out1,out2,...,outN] = processArgs(userArgs ,...
% '-name1' , default1 ,...
% '-name2' , default2 ,...
% '-nameN' , defaultN );
%
% The 'userArgs' input is a cell array and in normal usage is simply the
% varargin cell array from the calling function. It contains 0 to N values
% or 0 to N name/value pairs. It may also contain a combination of
% positional and named arguments as long as no named argument precedes a
% positional one.
%
% Note, this function is CASE INSENSITIVE.
%
%% ENFORCING REQUIRED ARGUMENTS
%
% To ensure that certain arguments are passed in, (and error if not), add a
% '*' character to the corresponding name as in
%
% [out1,...] = processArgs(userArgs,'*-name1',default1,...
%
%
% Providing empty values, (e.g. {},[],'') for required arguments also
% errors unless these were explicitly passed as named arguments.
%% TYPE CHECKING
%
% To enforce that the input type, (class) is the same type as the default
% value, add a '+' character to the corresponding name as in
%
% [out1,...] = processArgs(userArgs,'+-name1',default1,...
%
% '+' and '*' can be combined as in
%
% [out1,...] = processArgs(userArgs,'*+-name1',default1,...
%
% or equivalently
%
% [out1,...] = processArgs(userArgs,'+*-name1',default1,...
%% OTHER CONSIDERATIONS
%
% If the user passes in arguments in positional mode, and uses [], {}, or
% '' as place holders, the default values are used in their place. When the
% user passes in values via name/value pairs, this behavior does not
% occur; the explicit value the user specified, (even if [], {}, '') is
% always used.
%
%% ADVANCED
% The programmer must specify the same number of output arguments as
% possible input arguments, OR exactly one output. If exactly one output
% is used, the outputs are all bundled into a single cell array and
% returned with each arg value preceded by its name. This can be useful for
% relaying some or all of the arguments to subsequent functions as is done
% with the extractArgs function.
%
%% DEPENDENCIES
%
% None
%
%% EXAMPLES
% These are all valid usages. Note that here the first and second arguments
% are required and the types of the second and fourth arguments are
% checked.
%
% outerFunction(obj,...
% '-first' , 1 ,...
% '-second' , MvnDist() ,...
% '-third' , 22 ,...
% '-fourth' , 10 );
%
% outerFunction(obj,'-fourth',3,'-second',MvnDist(),'-first',12);
% outerFunction(obj,1,MvnDist(),3);
% outerFunction(obj,1,MvnDist(),3,[]);
% outerFunction(obj,'-first',1,'-second',DiscreteDist(),'-third',[]);
% outerFunction(obj,1,MvnDist(),'-fourth',10);
%
%
% function [a,b,c,d] = outerFunction(obj,varargin)
% [a,b,c,d] = processArgs(varargin ,...
% '*-first' , [] ,...
% '*+-second' , MvnDist() ,...
% '-third' , 18 ,...
% '+-fourth' , 23 );
% end
%% CONSTANTS
PREFIX = '-'; % prefix that must precede the names of arguments.
REQ = '*'; % require the argument
TYPE = '+'; % check the type of the arg against the default type
% set to true for more exhaustive error checking or false for faster
% execution.
FULL_ERROR_CHECK = true;
%% PROCESS VARARGIN - PASSED BY PROGRAMMER
%% Check Initial Inputs
if ~iscell(userArgs) ,throwAsCaller(MException('PROCESSARGS:noUserArgs','PROGRAMMER ERROR - you must pass in the user''s arguments in a cell array as in processArgs(varargin,''-name'',val,...)'));end
if isempty(varargin) ,throwAsCaller(MException('PROCESSARGS:emptyVarargin','PROGRAMMER ERROR - you have not passed in any name/default pairs to processArgs')); end
%% Extract Programmer Argument Names and Markers
progArgNames = varargin(1:2:end);
maxNargs = numel(progArgNames);
required = cellfun(@(c)any(REQ==c(1:min(3,end))),progArgNames);
typecheck = cellfun(@(c)any(TYPE==c(1:min(3,end))),progArgNames);
if ~iscellstr(progArgNames) ,throwAsCaller(MException('PROCESSARGS:notCellStr ',sprintf('PROGRAMMER ERROR - you must pass to processArgs name/default pairs'))); end
%% Remove * and + Markers
try
progArgNames(required | typecheck) = ...
cellfuncell(@(c)c(c~=REQ & c~=TYPE) ,...
progArgNames(required | typecheck));
catch ME
if strcmp(ME.identifier,'MATLAB:UndefinedFunction')
err = MException('PROCESSARGS:missingExternalFunctions','ProcessArgs requires the following external functions available in PMTK2: catString, cellfuncell, interweave, isprefix. Please add these to your MATLAB path.');
throw(addCause(err,ME));
else
rethrow(ME);
end
end
%% Set Default Values
defaults = varargin(2:2:end);
varargout = defaults;
%% Check Programmer Supplied Arguments
if mod(numel(varargin),2) ,throwAsCaller(MException('PROCESSARGS:oddNumArgs',sprintf('PROGRAMMER ERROR - you have passed in an odd number of arguments to processArgs, which requires name/default pairs'))); end
if any(cellfun(@isempty,progArgNames)) ,throwAsCaller(MException('PROCESSARGS:emptyStrName ',sprintf('PROGRAMMER ERROR - empty-string names are not allowed')));end
if nargout ~= 1 && nargout ~= maxNargs ,throwAsCaller(MException('PROCESSARGS:wrongNumOutputs',sprintf('PROGRAMMER ERROR - processArgs requires the same number of output arguments as named/default input pairs'))); end
if ~isempty(PREFIX) && ...
~all(cellfun(@(c)~isempty(c) &&...
c(1)==PREFIX,progArgNames))
throwAsCaller(MException('PROCESSARGS:missingPrefix',sprintf('PROGRAMMER ERROR - processArgs requires that each argument name begin with the prefix %s',PREFIX)));
end
if FULL_ERROR_CHECK && ...
numel(unique(progArgNames)) ~= numel(progArgNames) ,throwAsCaller(MException('PROCESSARGS:duplicateName',sprintf('PROGRAMMER ERROR - you can not use the same argument name twice')));end
%% PROCESS USERARGS
%% Error Check User Args
if numel(userArgs) == 0 && nargout > 1
if any(required) ,throwAsCaller(MException('PROCESSARGS:missingReqArgs',sprintf('The following required arguments were not specified:\n%s',catString(progArgNames(required)))));
else return;
end
end
if FULL_ERROR_CHECK
% slow, but helpful in transition from process_options to processArgs
% checks for missing '-'
if ~isempty(PREFIX)
userstrings = lower(...
userArgs(cellfun(@(c)ischar(c) && size(c,1)==1,userArgs)));
problem = ismember(...
userstrings,cellfuncell(@(c)c(2:end),progArgNames));
if any(problem)
if sum(problem) == 1, warning('processArgs:missingPrefix','The specified value ''%s'', matches an argument name, except for a missing prefix %s. It will be interpreted as a value, not a name.',userstrings{problem},PREFIX)
else warning('processArgs:missingPrefix','The following values match an argument name, except for missing prefixes %s:\n\n%s\n\nThey will be interpreted as values, not names.',PREFIX,catString(userstrings(problem)));
end
end
end
end
%% Find User Arg Names
userArgNamesNDX = find(cellfun(@(c)ischar(c) &&...
~isempty(c) &&...
c(1)==PREFIX,userArgs));
%% Check User Arg Names
if ~isempty(userArgNamesNDX) && ...
~isequal(userArgNamesNDX,userArgNamesNDX(1):2:numel(userArgs)-1)
if isempty(PREFIX), throwAsCaller(MException('PROCESSARGS:missingVal',sprintf('\n(1) every named argument must be followed by its value\n(2) no positional argument may be used after the first named argument\n')));
else throwAsCaller(MException('PROCESSARGS:posArgAfterNamedArg',sprintf('\n(1) every named argument must be followed by its value\n(2) no positional argument may be used after the first named argument\n(3) every argument name must begin with the ''%s'' character\n(4) values cannot be strings beginning with the %s character\n',PREFIX,PREFIX)));
end
end
if FULL_ERROR_CHECK && ...
~isempty(userArgNamesNDX) && ...
numel(unique(userArgs(userArgNamesNDX))) ~= numel(userArgNamesNDX)
throwAsCaller(MException('PROCESSARGS:duplicateUserArg',sprintf('You have specified the same argument name twice')));
end
%% Extract Positional Args
argsProvided = false(1,maxNargs);
if isempty(userArgNamesNDX)
positionalArgs = userArgs;
elseif userArgNamesNDX(1) == 1
positionalArgs = {};
else
positionalArgs = userArgs(1:userArgNamesNDX(1)-1);
end
%% Check For Too Many Inputs
if numel(positionalArgs) + numel(userArgNamesNDX) > maxNargs ,throwAsCaller(MException('PROCESSARGS:tooManyInputs',sprintf('You have specified %d too many arguments to the function',numel(positionalArgs)+numel(userArgNamesNDX)- maxNargs)));end
%% Process Positional Args
for i=1:numel(positionalArgs)
% don't overwrite default value if positional arg is
% empty, i.e. '',{},[]
if ~isempty(userArgs{i})
argsProvided(i) = true;
if typecheck(i) && ~isa(userArgs{i},class(defaults{i})) ,throwAsCaller(MException('PROCESSARGS:argWrongType',sprintf('Argument %d must be of type %s',i,class(defaults{i})))); end
varargout{i} = userArgs{i};
end
end
%% Process Named Args
userArgNames = userArgs(userArgNamesNDX);
userProgMap = zeros(1,numel(userArgNames));
usedProgArgNames = false(1,numel(progArgNames));
for i=1:numel(userArgNames)
for j=1:numel(progArgNames)
if ~usedProgArgNames(j) && strcmpi(userArgNames{i},progArgNames{j})
userProgMap(i) = j;
usedProgArgNames(j) = true;
break;
end
end
end
%% Error Check User Args
if any(~userProgMap) ,throwAsCaller(MException('PROCESSARGS:invalidArgNames',sprintf('The following argument names are invalid: %s',catString(userArgNames(userProgMap == 0),' , ')))); end
if any(userProgMap <= numel(positionalArgs)) ,throwAsCaller(MException('PROCESSARGS:bothPosAndName' ,sprintf('You cannot specify an argument positionally, and by name in the same function call.')));end
%% Extract User Values
userValues = userArgs(userArgNamesNDX + 1);
%% Type Check User Args
if any(typecheck)
for i=1:numel(userArgNamesNDX)
if typecheck(userProgMap(i)) && ...
~isa(userArgs{userArgNamesNDX(i)+1},...
class(defaults{userProgMap(i)}))
throwAsCaller(MException('PROCESSARGS:wrongType',sprintf('Argument %s must be of type %s',userArgs{userArgNamesNDX(i)},class(defaults{userProgMap(i)}))));
end
end
end
varargout(userProgMap) = userValues;
%% Check Required Args
argsProvided(userProgMap) = true;
if any(~argsProvided & required) ,throwAsCaller(MException('PROCESSARGS:emptyVals',sprintf('The following required arguments were either not specified, or were given empty values:\n%s',catString(progArgNames(~argsProvided & required))))); end
%% Relay Mode
if nargout == 1 && (numel(varargin) > 2 || (numel(varargin) == 1 && isprefix('-',varargin{1})))
varargout = {interweave(progArgNames,varargout)};
end
end
function s = catString(c,delim)
% Converts a cell array of strings to a single string, (i.e. single-row
% character array). The specified delimiter, delim, is added between each
% entry. Include any spaces you want in delim. If delim is not specified,
% ', ' is used instead. If c is already a string, it is just returned. If c
% is empty, s = ''.
%
% EXAMPLE:
%
% s = catString({'touch /tmp/foo';'touch /tmp foo2';'mkdir /tmp/test'},' && ')
% s =
% touch /tmp/foo && touch /tmp foo2 && mkdir /tmp/test
if nargin == 0; s = ''; return; end
if ischar(c), s=c;
if strcmp(s,','),s = '';end
return;
end
if isempty(c),s=''; return;end
if nargin < 2, delim = ', '; end
s = '';
for i=1:numel(c)
s = [s, rowvec(c{i}),rowvec(delim)]; %#ok
end
s(end-numel(delim)+1:end) = [];
if strcmp(s,','),s = '';end
end
function out = cellfuncell(fun, C, varargin)
out = cellfun(fun, C, varargin{:},'UniformOutput',false);
end
function C = interweave(A,B)
% If A, B are two cell arrays of length N1, N2, C is a cell array of length
% N1 + N2 where where C(1) = A(1), C(2) = B(1), C(3) = A(2), C(4) = B(2), ... etc
% Note, C is always a row vector. If one cell array is longer than the
% other the remaining elements of the longer cell array are added to the
% end of C. A and B are first converted to column vectors.
A = A(:); B = B(:);
C = cell(length(A)+length(B),1);
counter = 1;
while true
if ~isempty(A)
C(counter) = A(1); A(1) = [];
counter = counter + 1;
end
if ~isempty(B)
C(counter) = B(1); B(1) = [];
counter = counter + 1;
end
if isempty(A) && isempty(B)
break;
end
end
C = C';
end
function p = isprefix(short,long)
% ISPREFIX Tests if the first arg is a prefix of the second.
% The second arg may also be a cell array of strings, in which case, each
% is tested. CASE SENSITIVE!
%
% If the second argument is not a string, p = false, it does not error.
%
% EXAMPLES:
%
% isprefix('foo','foobar')
% ans =
% 1
%
%isprefix('test_',{'test_MvnDist','test_DiscreteDist','UnitTest'})
%ans =
% 1 1 0
error(nargchk(2,2,nargin));
if ischar(long)
p = strncmp(long,short,length(short));
elseif iscell(long)
p = cellfun(@(c)isprefix(short,c),long);
else
p = false;
end
end
function x = rowvec(x)
x = x(:)';
end
function x = colvec(x)
x = x(:);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
glob.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/lightspeed/glob.m
| 3,690 |
utf_8
|
67bb3d6d7fb4a23bc9281238514c1562
|
function [names,isdirs] = glob(pattern,prefix)
%GLOB Filename expansion via wildcards.
% GLOB(PATTERN) returns a cell array of file/directory names which match the
% PATTERN.
% [NAMES,ISDIRS] = GLOB(PATTERN) also returns a logical vector indicating
% which are directories.
%
% Two types of wildcards are supported:
% * matches zero or more characters, besides /
% ** matches zero or more characters, including /, ending with a /
% *** is interpreted as ** followed by *, which means it matches zero or
% more characters, including /
%
% For example, 'a*b' matches 'ab','acb','acdb', but not 'a/b'.
% 'a**b' matches 'ab','a/b','ac/b','ac/d/b', but not 'acb' or 'a/cb'.
% 'a***b' matches all of the above plus 'a/cb','ac/d/cb',etc.
%
% 'a//b' is not considered a valid filename, so 'a/*/b' will not return
% 'a//b' or 'a/b'.
%
% Examples:
% % if 'work' is a subdirectory, this returns only 'work', not its contents:
% glob('work')
% % returns 'work/fun.m' (not 'fun.m'):
% glob('work/fun.m')
% % all m-files in 'work', prefixed with 'work/':
% glob('work/*.m')
% % all files named 'fun.m' in 'work' or any subdirectory of 'work':
% glob('work/**fun.m')
% % all m-files in 'work' or any subdirectory of 'work':
% glob('work/***.m')
% % all files named 'fun.m' any subdirectory of 'work' (but not 'work'):
% glob('work/**/fun.m')
% % all files named 'fun.m' in any subdirectory of '.':
% glob('**fun.m')
% % all files in all subdirectories:
% glob('***')
%
% See also globstrings.
% Written by Tom Minka, 28-Apr-2004 (revised 2007)
% (c) Microsoft Corporation. All rights reserved.
if nargin < 2
prefix = '';
end
names = {};
isdirs = [];
if isempty(pattern)
return
end
% break the pattern into path components
[first,rest] = strtok(pattern,'/');
% when recursing, remove the leading / from rest
if ~isempty(rest)
rest = rest(2:end);
end
% special case for absolute paths
if pattern(1) == '/'
prefix = '/';
end
% absolute path tests:
% glob('/*.sys')
% glob('/sho/**/*.sln')
% glob('/sho***.sln')
i = strfind(first,'**');
if ~isempty(i)
% double-star pattern
i = i(1); % process first occurrence
rest = fullfile(first((i+2):end),rest);
first = first(1:(i-1));
new_pattern = [first rest];
% if the pattern was 'a**b/c', new_pattern is 'ab/c'
[names,isdirs] = glob(new_pattern,prefix);
first = [first '*'];
rest = ['**' rest];
% if the pattern was 'a**b/c', it is now 'a*/**b/c'
end
% expand the first component
fullfirst = fullfile(prefix,first);
if ~iswild(fullfirst) & isdir(fullfirst)
first_files = struct('name',first,'isdir',1);
else
first_files = stripdots(dir(fullfirst));
end
% for each match, add it to the results or recurse on the rest of the pattern
for i = 1:length(first_files)
new_prefix = fullfile(prefix,first_files(i).name);
if isempty(rest)
names{end+1} = new_prefix;
isdirs(end+1) = first_files(i).isdir;
elseif first_files(i).isdir
[new_names, new_isdirs] = glob(rest,new_prefix);
names = cellcat(names, new_names);
isdirs = [isdirs; new_isdirs];
end
end
names = names(:);
isdirs = isdirs(:);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function files = stripdots(files)
% omit . and .. from the results of DIR
names = {files.name};
ok = (~strcmp(names,'.') & ~strcmp(names,'..'));
files = files(ok);
function c = cellcat(c,c2)
c = {c{:} c2{:}};
function tf = iswild(pattern)
tf = ~isempty(strfind(pattern,'*'));
function s = regexp_quote(s)
regexprep(s,'[!#]^','#^');
regexprep(s,'[!#]$','#$');
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
flops_pow.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/lightspeed/flops_pow.m
| 1,432 |
utf_8
|
5843823015471636d6d1b205800ac1fb
|
function f = flops_pow(a)
% FLOPS_POW Flops for raising to real power.
% FLOPS_POW(A) returns the number of flops for (X .^ A) where X is scalar.
% Powers like 0, 1, 2, and 1/2 are handled specially.
flops_div = 8;
flops_sqrt = 8;
if nargin < 1
a = 0.1;
end
f = 0;
if a < 0
f = f + flops_div;
a = -a;
end
if a == 0 || a == 1
return;
end
if fix(a) == a
% number of multiplications to raise to integer power
f = f + floor(log2(a)) + num_bits(a)-1;
elseif a == 1/2
% sqrt is built-in function
f = f + flops_sqrt;
elseif fix(2*a) == 2*a
% this handles flops_pow(1/2+1)
f = f + flops_pow(2*a) - 1 + flops_sqrt;
elseif a == 1/4
f = f + 2*flops_sqrt;
elseif a == 3/4
f = f + 2*flops_sqrt+1;
elseif fix(4*a) == 4*a
% this handles flops_pow(1/4+1)
f = f + flops_pow(2*a) - 1 + flops_sqrt;
else
f = Inf;
end
% The identities
% exp(a) = e^a
% a^b = exp(b*log(a))
% require that
% flops_exp < flops_pow < flops_exp+flops_log+1.
% But in practice, I find that the runtime exceeds this upper bound.
f_upper = 61; % flops_exp+flops_log+1
if f > f_upper
f = f_upper;
end
function b = num_bits(x)
% Returns the number of 1 bits in the binary representation of x.
% x must be a non-negative integer.
% lookup table for 0-15
bits = [0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4];
b = 0;
while(x > 0)
b = b + bits(mod(x,16)+1);
x = floor(x/16);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
duplicated.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/lightspeed/duplicated.m
| 1,440 |
utf_8
|
af1b5fe0787eb874aa6ca5df411128be
|
function d = duplicated(x)
%DUPLICATED Find duplicated rows.
% DUPLICATED(x) returns a vector d such that d(i) = 1 if x(i,:) is a
% duplicate of an earlier row.
%
% Examples:
% duplicated([2 7 8 7 1 2 8]') = [0 0 0 1 0 1 1]'
% duplicated([0 0 1 1 0; 0 1 0 1 1]') = [0 0 0 0 1]'
% duplicated(eye(100))
% duplicated(kron((1:3)',ones(3)))
%
% You can simulate unique(x) or unique(x,'rows') by x(~duplicated(x)).
% The difference is that the latter form will not sort the contents of x,
% as unique will.
%
% See also UNIQUE.
% (c) Microsoft Corporation. All rights reserved.
% This function is not well optimized.
% In particular, it is slower than unique.
[nr,nc] = size(x);
if nc == 1
d = duplicated1(x);
return;
end
if nr == 1
d = 0;
return;
end
hash = x*rand(nc,1);
[dummy,ord] = sort(hash);
xo = x(ord,:);
%d = [0 all(diff(xo)==0,2)'];
d = [0 all(xo(1:end-1,:)==xo(2:end,:),2)'];
dd = diff([d 0]);
dstart = find(dd > 0);
dend = find(dd < 0);
% loop each run of duplicated columns
for i = 1:length(dstart)
% place the zero at the first element in the original order
d(dstart(i)) = 1;
d(dstart(i)-1 + argmin(ord(dstart(i):dend(i)))) = 0;
end
d(ord) = d;
d = d';
%d = duplicated1(hash);
function d = duplicated1(x)
% special case where x is a column vector.
[s,ord] = sort(x);
d = zeros(size(x));
d(ord) = [0; s(1:end-1)==s(2:end)];
%d(ord) = [0; diff(s)==0];
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
subsasgn.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/lightspeed/@mutable/subsasgn.m
| 1,488 |
utf_8
|
44c7dae848f5b621b638053c1b231e87
|
function mut = subsasgn(mut,index,v)
% Written by Tom Minka
% (c) Microsoft Corporation. All rights reserved.
subsasgnJava(mut.obj,index,v,mut.cl);
function subsasgnJava(jv,index,v,cl)
if nargin < 4
% class(jv) is expensive, so we do it only once
cl = class(jv);
end
if strcmp(cl,'java.util.Hashtable')
% don't bother checking the type
%if strcmp(index(1).type,'.')
f = index(1).subs;
if length(index) > 1
jv = jv.get(f);
if isempty(jv)
error(sprintf('Reference to non-existent field ''%s''.',f));
end
% recurse on remaining subscripts
subsasgnJava(jv,index(2:end),v);
else
if ~jv.containsKey(f)
% add a new field
jv.get('_fields').addElement(f);
end
jv.put(f,toJava(v));
end
return
elseif strcmp(cl,'java.lang.Double[][]') | strcmp(cl,'java.lang.Object[][]')
if length(index(1).subs) == 1
% convert single index to a full index
i = index(1).subs{1};
if length(i) > 1
error('a single array of indices is not supported');
end
s = sizeJava(jv);
index(1).subs = num2cell(ind2subv(s,i),1);
end
if strcmp(cl,'java.lang.Object[][]')
% cell array
if strcmp(index(1).type,'{}')
index(1).type = '()';
end
end
% fall through
elseif strcmp(cl,'java.util.Vector') | strcmp(cl,'java.util.BitSet')
% empty array
error('Index exceeds matrix dimensions.');
end
% use built-in subsasgn
subsasgn(jv,index,toJava(v));
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
subsref.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/lightspeed/@mutable/subsref.m
| 1,686 |
utf_8
|
9b67e3386d0641a031d3e3d3761a81dc
|
function v = subsref(mut,index)
% Written by Tom Minka
% (c) Microsoft Corporation. All rights reserved.
v = subsrefJava(mut.obj,index,mut.cl);
function v = subsrefJava(jv,index,cl)
if nargin < 3
% class(jv) is expensive, so we do it only once
cl = class(jv);
end
wantcell = 0;
if strcmp(cl,'java.util.Hashtable')
% don't bother checking the type
%if strcmp(index(1).type,'.')
f = index(1).subs;
v = jv.get(f);
if isempty(v)
error(sprintf('Reference to non-existent field ''%s''.',f));
end
elseif strcmp(cl,'java.lang.Double[][]') | strcmp(cl,'java.lang.Object[][]')
if length(index(1).subs) == 1
% convert single index to a full index
i = index(1).subs{1};
if length(i) > 1
error('a single array of indices is not supported');
end
s = sizeJava(jv);
index(1).subs = num2cell(ind2subv(s,i),1);
end
if strcmp(cl,'java.lang.Object[][]')
% cell array
if strcmp(index(1).type,'{}')
index(1).type = '()';
else
% type is '()' for a cell array
wantcell = 1;
% if the subscript has more than one element, the result will already
% be a cell array
for i = index(1).subs
if length(i{1}) > 1
wantcell = 0;
break
end
end
end
end
v = subsref(jv,index(1));
elseif strcmp(cl,'java.util.Vector') | strcmp(cl,'java.util.BitSet')
% empty array
error('Index exceeds matrix dimensions.');
else
% use built-in subsref
v = subsref(jv,index(1));
end
if length(index) > 1
% recurse on remaining subscripts
v = subsrefJava(v,index(2:end));
else
v = fromJava(v);
if wantcell
v = {v};
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
test_sameobject.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/lightspeed/tests/test_sameobject.m
| 263 |
utf_8
|
8705f5d46d51edcdc06e7272b4504f75
|
function test_sameobject
% Result should be 1 in both cases below.
a = rand(4);
b = a;
if sameobject(a,b) ~= 1
error('failed');
end
if helper(a,a) ~= 1
error('failed');
end
disp('Test passed.')
function x = helper(a,b)
x = sameobject(a,b);
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
gauher.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/gpml-matlab/gpml/gauher.m
| 2,235 |
utf_8
|
470f2e21a6e4f909868c550b5fe4637f
|
% compute abscissas and weight factors for Gaussian-Hermite quadrature
%
% CALL: [x,w]=gauher(N)
%
% x = base points (abscissas)
% w = weight factors
% N = number of base points (abscissas) (integrates a (2N-1)th order
% polynomial exactly)
%
% p(x)=exp(-x^2/2)/sqrt(2*pi), a =-Inf, b = Inf
%
% The Gaussian Quadrature integrates a (2n-1)th order
% polynomial exactly and the integral is of the form
% b N
% Int ( p(x)* F(x) ) dx = Sum ( w_j* F( x_j ) )
% a j=1
%
% this procedure uses the coefficients a(j), b(j) of the
% recurrence relation
%
% b p (x) = (x - a ) p (x) - b p (x)
% j j j j-1 j-1 j-2
%
% for the various classical (normalized) orthogonal polynomials,
% and the zero-th moment
%
% 1 = integral w(x) dx
%
% of the given polynomial's weight function w(x). Since the
% polynomials are orthonormalized, the tridiagonal matrix is
% guaranteed to be symmetric.
function [x,w]=gauher(N)
if N==20 % return precalculated values
x=[ -7.619048541679757;-6.510590157013656;-5.578738805893203;
-4.734581334046057;-3.943967350657318;-3.18901481655339 ;
-2.458663611172367;-1.745247320814127;-1.042945348802751;
-0.346964157081356; 0.346964157081356; 1.042945348802751;
1.745247320814127; 2.458663611172367; 3.18901481655339 ;
3.943967350657316; 4.734581334046057; 5.578738805893202;
6.510590157013653; 7.619048541679757];
w=[ 0.000000000000126; 0.000000000248206; 0.000000061274903;
0.00000440212109 ; 0.000128826279962; 0.00183010313108 ;
0.013997837447101; 0.061506372063977; 0.161739333984 ;
0.260793063449555; 0.260793063449555; 0.161739333984 ;
0.061506372063977; 0.013997837447101; 0.00183010313108 ;
0.000128826279962; 0.00000440212109 ; 0.000000061274903;
0.000000000248206; 0.000000000000126 ];
else
b = sqrt( (1:N-1)/2 )';
[V,D] = eig( diag(b,1) + diag(b,-1) );
w = V(1,:)'.^2;
x = sqrt(2)*diag(D);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
approxEP.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/gpml-matlab/gpml/approxEP.m
| 5,097 |
utf_8
|
b787297e5f04f6d89e6fc5e602ee76a1
|
function [alpha, sW, L, nlZ, dnlZ] = approxEP(hyper, covfunc, lik, x, y)
% Expectation Propagation approximation to the posterior Gaussian Process.
% The function takes a specified covariance function (see covFunction.m) and
% likelihood function (see likelihoods.m), and is designed to be used with
% binaryGP.m. See also approximations.m. In the EP algorithm, the sites are
% updated in random order, for better performance when cases are ordered
% according to the targets.
%
% Copyright (c) 2006, 2007 Carl Edward Rasmussen and Hannes Nickisch 2007-07-24
persistent best_ttau best_tnu best_nlZ % keep tilde parameters between calls
tol = 1e-3; max_sweep = 10; % tolerance for when to stop EP iterations
n = size(x,1);
K = feval(covfunc{:}, hyper, x); % evaluate the covariance matrix
% A note on naming: variables are given short but descriptive names in
% accordance with Rasmussen & Williams "GPs for Machine Learning" (2006): mu
% and s2 are mean and variance, nu and tau are natural parameters. A leading t
% means tilde, a subscript _ni means "not i" (for cavity parameters), or _n
% for a vector of cavity parameters.
if any(size(best_ttau) ~= [n 1]) % find starting point for tilde parameters
ttau = zeros(n,1); % initialize to zero if we have no better guess
tnu = zeros(n,1);
Sigma = K; % initialize Sigma and mu, the parameters of ..
mu = zeros(n, 1); % .. the Gaussian posterior approximation
nlZ = n*log(2);
best_nlZ = Inf;
else
ttau = best_ttau; % try the tilde values from previous call
tnu = best_tnu;
[Sigma, mu, nlZ, L] = epComputeParams(K, y, ttau, tnu, lik);
if nlZ > n*log(2) % if zero is better ..
ttau = zeros(n,1); % .. then initialize with zero instead
tnu = zeros(n,1);
Sigma = K; % initialize Sigma and mu, the parameters of ..
mu = zeros(n, 1); % .. the Gaussian posterior approximation
nlZ = n*log(2);
end
end
nlZ_old = Inf; sweep = 0; % make sure while loop starts
while nlZ < nlZ_old - tol && sweep < max_sweep % converged or max. sweeps?
nlZ_old = nlZ; sweep = sweep+1;
for i = randperm(n) % iterate EP updates (in random order) over examples
tau_ni = 1/Sigma(i,i)-ttau(i); % first find the cavity distribution ..
nu_ni = mu(i)/Sigma(i,i)-tnu(i); % .. parameters tau_ni and nu_ni
% compute the desired raw moments m0, m1=hmu and m2; m0 is not used
[m0, m1, m2] = feval(lik, y(i), nu_ni/tau_ni, 1/tau_ni);
hmu = m1./m0;
hs2 = m2./m0 - hmu^2; % compute second central moment
ttau_old = ttau(i); % then find the new tilde parameters
ttau(i) = 1/hs2 - tau_ni;
tnu(i) = hmu/hs2 - nu_ni;
ds2 = ttau(i) - ttau_old; % finally rank-1 update Sigma ..
si = Sigma(:,i);
Sigma = Sigma - ds2/(1+ds2*si(i))*si*si'; % takes 70% of total time
mu = Sigma*tnu; % .. and recompute mu
end
[Sigma, mu, nlZ, L] = epComputeParams(K, y, ttau, tnu, lik); % recompute
% Sigma & mu since repeated rank-one updates can destroy numerical precision
end
if sweep == max_sweep
disp('Warning: maximum number of sweeps reached in function approxEP')
end
if nlZ < best_nlZ % if best so far ..
best_ttau = ttau; best_tnu = tnu; best_nlZ = nlZ; % .. keep for next call
end
sW = sqrt(ttau); % compute output arguments, L and nlZ are done
alpha = tnu-sW.*solve_chol(L,sW.*(K*tnu));
if nargout > 4 % do we want derivatives?
dnlZ = zeros(size(hyper)); % allocate space for derivatives
F = alpha*alpha'-repmat(sW,1,n).*solve_chol(L,diag(sW));
for j=1:length(hyper)
dK = feval(covfunc{:}, hyper, x, j);
dnlZ(j) = -sum(sum(F.*dK))/2;
end
end
% function to compute the parameters of the Gaussian approximation, Sigma and
% mu, and the negative log marginal likelihood, nlZ, from the current site
% parameters, ttau and tnu. Also returns L (useful for predictions).
function [Sigma, mu, nlZ, L] = epComputeParams(K, y, ttau, tnu, lik)
n = length(y); % number of training cases
ssi = sqrt(ttau); % compute Sigma and mu
L = chol(eye(n)+ssi*ssi'.*K); % L'*L=B=eye(n)+sW*K*sW
V = L'\(repmat(ssi,1,n).*K);
Sigma = K - V'*V;
mu = Sigma*tnu;
tau_n = 1./diag(Sigma)-ttau; % compute the log marginal likelihood
nu_n = mu./diag(Sigma)-tnu; % vectors of cavity parameters
nlZ = sum(log(diag(L))) - sum(log(feval(lik, y, nu_n./tau_n, 1./tau_n))) ...
-tnu'*Sigma*tnu/2 - nu_n'*((ttau./tau_n.*nu_n-2*tnu)./(ttau+tau_n))/2 ...
+sum(tnu.^2./(tau_n+ttau))/2-sum(log(1+ttau./tau_n))/2;
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
sq_dist.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/gpml-matlab/gpml/sq_dist.m
| 2,186 |
utf_8
|
3b01028d6b07c19a397a274229dd24ee
|
% sq_dist - a function to compute a matrix of all pairwise squared distances
% between two sets of vectors, stored in the columns of the two matrices, a
% (of size D by n) and b (of size D by m). If only a single argument is given
% or the second matrix is empty, the missing matrix is taken to be identical
% to the first.
%
% Special functionality: If an optional third matrix argument Q is given, it
% must be of size n by m, and in this case a vector of the traces of the
% product of Q' and the coordinatewise squared distances is returned.
%
% NOTE: The program code is written in the C language for efficiency and is
% contained in the file sq_dist.c, and should be compiled using matlabs mex
% facility. However, this file also contains a (less efficient) matlab
% implementation, supplied only as a help to people unfamiliar with mex. If
% the C code has been properly compiled and is avaiable, it automatically
% takes precendence over the matlab code in this file.
%
% Usage: C = sq_dist(a, b)
% or: C = sq_dist(a) or equiv.: C = sq_dist(a, [])
% or: c = sq_dist(a, b, Q)
% where the b matrix may be empty.
%
% where a is of size D by n, b is of size D by m (or empty), C and Q are of
% size n by m and c is of size D by 1.
%
% Copyright (c) 2003, 2004, 2005 and 2006 Carl Edward Rasmussen. 2006-03-09.
function C = sq_dist(a, b, Q);
if nargin < 1 | nargin > 3 | nargout > 1
error('Wrong number of arguments.');
end
if nargin == 1 | isempty(b) % input arguments are taken to be
b = a; % identical if b is missing or empty
end
[D, n] = size(a);
[d, m] = size(b);
if d ~= D
error('Error: column lengths must agree.');
end
if nargin < 3
C = zeros(n,m);
for d = 1:D
C = C + (repmat(b(d,:), n, 1) - repmat(a(d,:)', 1, m)).^2;
end
% C = repmat(sum(a.*a)',1,m)+repmat(sum(b.*b),n,1)-2*a'*b could be used to
% replace the 3 lines above; it would be faster, but numerically less stable.
else
if [n m] == size(Q)
C = zeros(D,1);
for d = 1:D
C(d) = sum(sum((repmat(b(d,:), n, 1) - repmat(a(d,:)', 1, m)).^2.*Q));
end
else
error('Third argument has wrong size.');
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
logistic.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/gpml-matlab/gpml/logistic.m
| 4,453 |
utf_8
|
727c105366930b647b840ed749d3ae7a
|
function [out1, out2, out3, out4] = logistic(y, f, var)
% logistic - logistic likelihood function. The expression for the likelihood is
% logistic(t) = 1./(1+exp(-t)).
%
% Three modes are provided, for computing likelihoods, derivatives and moments
% respectively, see likelihoods.m for the details. In general, care is taken
% to avoid numerical issues when the arguments are extreme. The moments
% \int f^k cumGauss(y,f) N(f|mu,var) df are calculated using an approximation
% to the cumulative Gaussian based on a mixture of 5 cumulative Gaussian
% functions (or alternatively using Gauss-Hermite quadrature, which may be less
% accurate).
%
% Copyright (c) 2007 Carl Edward Rasmussen and Hannes Nickisch, 2007-07-25.
if nargin>1, y=sign(y); end % allow only +/- 1 as values
if nargin == 2 % (log) likelihood evaluation
if numel(y)>0, yf = y.*f; else yf = f; end % product of latents and labels
out1 = 1./(1+exp(-yf)); % likelihood
if nargout>1
out2 = yf;
ok = -35<yf;
out2(ok) = -log(1+exp(-yf(ok))); % log of likelihood
end
elseif nargin == 3
if strcmp(var,'deriv') % derivatives of log likelihood
if numel(y)==0, y=1; end
yf = y.*f; % product of latents and labels
s = -yf;
ps = max(0,s);
out1 = -sum(ps+log(exp(-ps)+exp(s-ps))); % lp = -sum(log(1+exp(s)))
if nargout>1 % dlp - first derivatives
s = min(0,f);
p = exp(s)./(exp(s)+exp(s-f)); % p = 1./(1+exp(-f))
out2 = (y+1)/2-p; % dlp, derivative of log likelihood
if nargout>2 % d2lp, 2nd derivative of log likelihood
out3 = -exp(2*s-f)./(exp(s)+exp(s-f)).^2;
if nargout>3 % d3lp, 3rd derivative of log likelihood
out4 = 2*out3.*(0.5-p);
end
end
end
else % compute moments
mu = f; % 2nd argument is the mean of a Gaussian
if numel(y)==0, y=ones(size(mu)); end % if empty, assume y=1
% Two methods of integration are possible; the latter is more accurate
% [out1,out2,out3] = gauherint(y, mu, var);
[out1,out2,out3] = erfint(y, mu, var);
end
else
error('No valid input provided.')
end
% The gauherint function approximates "\int t^k logistic(y t) N(t|mu,var)dt" by
% means of Gaussian Hermite Quadrature. A call to gauher.m is made.
function [m0,m1,m2] = gauherint(y, mu, var)
N = 20; [f,w] = gauher(N); % 20 yields precalculated weights
sz = size(mu);
f0 = sqrt(var(:))*f'+repmat(mu(:),[1,N]); % center values of f
sig = logistic( repmat(y(:),[1,N]), f0 ); % calculate the likelihood values
m0 = reshape(sig*w, sz); % zeroth moment
if nargout>1 % first moment
m1 = reshape(f0.*sig*w, sz);
if nargout>2, m2 = reshape(f0.*f0.*sig*w, sz); end % second moment
end
% The erfint function approximates "\int t^k logistic(y t) N(t|mu,s2) dt" by
% setting:
% logistic(t) \approx 1/2 + \sum_{i=1}^5 (c_i/2) erf(lambda_i t)
% The integrals \int t^k erf(t) N(t|mu,s2) dt can be done analytically.
%
% The inputs y, mu and var have to be column vectors of equal lengths.
function [m0,m1,m2] = erfint(y, mu, s2)
l = [0.44 0.41 0.40 0.39 0.36]; % approximation coefficients lambda_i
c = [1.146480988574439e+02; -1.508871030070582e+03; 2.676085036831241e+03;
-1.356294962039222e+03; 7.543285642111850e+01 ];
S2 = 2*s2.*(y.^2)*(l.^2) + 1; % zeroth moment
S = sqrt( S2 );
Z = mu.*y*l./S;
M0 = erf(Z);
m0 = ( 1 + M0*c )/2;
if nargout>1 % first moment
NormZ = exp(-Z.^2)/sqrt(2*pi);
M0mu = M0.*repmat(mu,[1,5]);
M1 = (2*sqrt(2)*y.*s2)*l.*NormZ./S + M0mu;
m1 = ( mu + M1*c )/2;
if nargout>2 % second moment
M2 = repmat(2*mu,[1,5]).*(1+s2.*y.^2*(l.^2)).*(M1-M0mu)./S2 ...
+ repmat(s2+mu.^2,[1,5]).*M0;
m2 = ( mu.^2 + s2 + M2*c )/2;
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
solve_chol.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/gpml-matlab/gpml/solve_chol.m
| 991 |
utf_8
|
906bce3c6bfbaf11908ec2e326cffd7e
|
% solve_chol - solve linear equations from the Cholesky factorization.
% Solve A*X = B for X, where A is square, symmetric, positive definite. The
% input to the function is R the Cholesky decomposition of A and the matrix B.
% Example: X = solve_chol(chol(A),B);
%
% NOTE: The program code is written in the C language for efficiency and is
% contained in the file solve_chol.c, and should be compiled using matlabs mex
% facility. However, this file also contains a (less efficient) matlab
% implementation, supplied only as a help to people unfamiliar with mex. If
% the C code has been properly compiled and is avaiable, it automatically
% takes precendence over the matlab code in this file.
%
% Copyright (c) 2004, 2005, 2006 by Carl Edward Rasmussen. 2006-02-08.
function x = solve_chol(A, B);
if nargin ~= 2 | nargout > 1
error('Wrong number of arguments.');
end
if size(A,1) ~= size(A,2) | size(A,1) ~= size(B,1)
error('Wrong sizes of matrix arguments.');
end
x = A\(A'\B);
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
renumber.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/tensor_toolbox/@sptensor/private/renumber.m
| 1,096 |
utf_8
|
cc4e5b1cdd5104d68906c16fb00223f8
|
function [newsubs, newsz] = renumber(subs, sz, range)
%RENUMBER indices for sptensor subsref
%
% [NEWSUBS,NEWSZ] = RENUMBER(SUBS,SZ,RANGE) takes a set of
% original subscripts SUBS with entries from a tensor of size
% SZ. All the entries in SUBS are assumed to be within the
% specified RANGE. These subscripts are then renumbered so that,
% in dimension i, the numbers range from 1:numel(RANGE(i)).
%
% See also SPTENSOR/SUBSREF
newsz = sz;
newsubs = subs;
for i = 1 : size(sz,2)
if ~(ischar(range{i}) && range{i} == ':')
if (isempty(subs))
newsz(i) = numel(range{i});
else
[newsubs(:,i), newsz(i)] = ...
renumberdim(subs(:,i), sz(i), range{i});
end
end
end
%------------------------------------------------------
function [newidx, newsz] = renumberdim(idx, sz, range)
%RENUMBERDIM helper function for RENUMBER
% See also SPTENSOR/PRIVATE/RENUMBER
% Determine the size of the new range
newsz = numel(range);
% Create a map from the old range to the new range
map = zeros(1, sz);
for i = 1 : newsz
map(range(i)) = i;
end
% Do the mapping
newidx = map(idx);
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
parafac_als.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/tensor_toolbox/algorithms/parafac_als.m
| 4,787 |
utf_8
|
b4f981cdfc968e7cd37f3d4a01938b74
|
function [P,Uinit] = parafac_als(X,R,opts)
%PARAFAC_ALS Compute a PARAFAC decomposition of any type of tensor.
%
% P = PARAFAC_ALS(X,R) computes an estimate of the best rank-R
% PARAFAC model of a tensor X using an alternating least-squares
% algorithm. The input X can be a tensor, sptensor, ktensor, or
% ttensor. The result P is a ktensor.
%
% P = PARAFAC_ALS(X,R,OPTS) specify options:
% OPTS.tol: Tolerance on difference in fit {1.0e-4}
% OPTS.maxiters: Maximum number of iterations {50}
% OPTS.dimorder: Order to loop through dimensions {1:ndims(A)}
% OPTS.init: Initial guess [{'random'}|'nvecs'|cell array]
%
% [P,U0] = PARAFAC_ALS(...) also returns the initial guess.
%
% Examples:
% X = sptenrand([5 4 3], 10);
% P = parafac_als(X,2);
% P = parafac_als(X,2,struct('dimorder',[3 2 1]));
% P = parafac_als(X,2,struct('dimorder',[3 2 1],'init','nvecs'));
% U0 = {rand(5,2),rand(4,2),[]}; %<-- Initial guess for factors of P
% P = parafac_als(X,2,struct('dimorder',[3 2 1],'init',{U0}));
%
% See also KTENSOR, TENSOR, SPTENSOR, TTENSOR.
%
%MATLAB Tensor Toolbox.
%Copyright 2007, Sandia Corporation.
% This is the MATLAB Tensor Toolbox by Brett Bader and Tamara Kolda.
% http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox.
% Copyright (2007) Sandia Corporation. Under the terms of Contract
% DE-AC04-94AL85000, there is a non-exclusive license for use of this
% work by or on behalf of the U.S. Government. Export of this data may
% require a license from the United States Government.
% The full license terms can be found in tensor_toolbox/LICENSE.txt
% $Id: parafac_als.m,v 1.12 2007/01/10 01:27:31 bwbader Exp $
%% Fill in optional variable
if ~exist('opts','var')
opts = struct;
end
%% Extract number of dimensions and norm of X.
N = ndims(X);
normX = norm(X);
%% Set algorithm parameters from input or by using defaults
fitchangetol = setparam(opts,'tol',1e-4);
maxiters = setparam(opts,'maxiters',50);
dimorder = setparam(opts,'dimorder',1:N);
init = setparam(opts,'init','random');
%% Error checking
% Error checking on maxiters
if maxiters < 0
error('OPTS.maxiters must be positive');
end
% Error checking on dimorder
if ~isequal(1:N,sort(dimorder))
error('OPTS.dimorder must include all elements from 1 to ndims(X)');
end
%% Set up and error checking on initial guess for U.
if iscell(init)
Uinit = init;
if numel(Uinit) ~= N
error('OPTS.init does not have %d cells',N);
end
for n = dimorder(2:end);
if ~isequal(size(Uinit{n}),[size(X,n) R])
error('OPTS.init{%d} is the wrong size',n);
end
end
else
% Observe that we don't need to calculate an initial guess for the
% first index in dimorder because that will be solved for in the first
% inner iteration.
if strcmp(init,'random')
Uinit = cell(N,1);
for n = dimorder(2:end)
Uinit{n} = rand(size(X,n),R);
end
elseif strcmp(init,'nvecs') || strcmp(init,'eigs')
Uinit = cell(N,1);
for n = dimorder(2:end)
fprintf(' Computing %d leading e-vectors for factor %d.\n',R,n);
Uinit{n} = nvecs(X,n,R);
end
else
error('The selected initialization method is not supported');
end
end
%% Set up for iterations - initializing U and the fit.
U = Uinit;
fit = 0;
fprintf('\nAlternating Least-Squares:\n');
%% Main Loop: Iterate until convergence
for iter = 1:maxiters
fitold = fit;
% Iterate over all N modes of the tensor
for n = dimorder(1:end)
% Calculate Unew = X_(n) * khatrirao(all U except n, 'r').
Unew = mttkrp(X,U,n);
% Compute the matrix of coefficients for linear system
Y = ones(R,R);
for i = [1:n-1,n+1:N]
Y = Y .* (U{i}'*U{i});
end
Unew = (Y \ Unew')';
% Normalize each vector to prevent singularities in coefmatrix
if iter == 1
lambda = sqrt(sum(Unew.^2,1))'; %2-norm
else
lambda = max( max(Unew,[],1), 1 )'; %max-norm
end
Unew = Unew * spdiags(1./lambda,0,R,R);
U{n} = Unew;
end
P = ktensor(lambda,U);
normresidual = sqrt( normX^2 + norm(P)^2 - 2 * innerprod(X,P) );
fit = 1 - (normresidual / normX); %fraction explained by model
fitchange = abs(fitold - fit);
fprintf(' Iter %2d: fit = %e fitdelta = %7.1e\n', iter, fit, fitchange);
% Check for convergence
if (iter > 1) && (fitchange < fitchangetol)
break;
end
end
%% Clean up final result
% Arrange the final tensor so that the columns are normalized.
P = arrange(P);
% Fix the signs
P = fixsigns(P);
end
%%
function x = setparam(opts,name,default)
if isfield(opts,name);
x = opts.(name);
else
x = default;
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
tucker_als.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/tensor_toolbox/algorithms/tucker_als.m
| 4,753 |
utf_8
|
76e12b4d240918bb85c83cae7e2510c7
|
function [T,Uinit] = tucker_als(X,R,opts)
%TUCKER_ALS Higher-order orthogonal iteration.
%
% T = TUCKER_ALS(X,R) computes the best rank(R1,R2,..,Rn)
% approximation of tensor X, according to the specified dimensions
% in vector R. The input X can be a tensor, sptensor, ktensor, or
% ttensor. The result returned in T is a ttensor.
%
% T = TUCKER_ALS(X,R,OPTS) specify options:
% OPTS.tol: Tolerance on difference in fit {1.0e-4}
% OPTS.maxiters: Maximum number of iterations {50}
% OPTS.dimorder: Order to loop through dimensions {1:ndims(A)}
% OPTS.init: Initial guess [{'random'}|'eigs'|cell array]
%
% [T,U0] = TUCKER_ALS(...) also returns the initial guess.
%
% Examples:
% X = sptenrand([5 4 3], 10);
% T = tucker_als(X,2); %<-- best rank(2,2,2) approximation
% T = tucker_als(X,[2 2 1]); %<-- best rank(2,2,1) approximation
% T = tucker_als(X,2,struct('dimorder',[3 2 1]));
% T = tucker_als(X,2,struct('dimorder',[3 2 1],'init','eigs'));
% U0 = {rand(5,2),rand(4,2),[]}; %<-- Initial guess for factors of T
% T = tucker_als(X,2,struct('dimorder',[3 2 1],'init',{U0}));
%
% See also TTENSOR, TENSOR, SPTENSOR, KTENSOR.
%
%MATLAB Tensor Toolbox.
%Copyright 2007, Sandia Corporation.
% This is the MATLAB Tensor Toolbox by Brett Bader and Tamara Kolda.
% http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox.
% Copyright (2007) Sandia Corporation. Under the terms of Contract
% DE-AC04-94AL85000, there is a non-exclusive license for use of this
% work by or on behalf of the U.S. Government. Export of this data may
% require a license from the United States Government.
% The full license terms can be found in tensor_toolbox/LICENSE.txt
% $Id: tucker_als.m,v 1.4 2007/01/10 01:27:31 bwbader Exp $
% Fill in optional variable
if ~exist('opts','var')
opts = struct;
end
% Extract number of dimensions and norm of X.
N = ndims(X);
normX = norm(X);
% Set algorithm parameters from input or by using defaults
fitchangetol = setparam(opts,'tol',1e-4);
maxiters = setparam(opts,'maxiters',50);
dimorder = setparam(opts,'dimorder',1:N);
init = setparam(opts,'init','random');
if numel(R) == 1
R = R * ones(N,1);
end
U = cell(N,1);
%% Error checking
% Error checking on maxiters
if maxiters < 0
error('OPTS.maxiters must be positive');
end
% Error checking on dimorder
if ~isequal(1:N,sort(dimorder))
error('OPTS.dimorder must include all elements from 1 to ndims(X)');
end
%% Set up and error checking on initial guess for U.
if iscell(init)
Uinit = init;
if numel(Uinit) ~= N
error('OPTS.init does not have %d cells',N);
end
for n = dimorder(2:end);
if ~isequal(size(Uinit{n}),[size(X,n) R(n)])
error('OPTS.init{%d} is the wrong size',n);
end
end
else
% Observe that we don't need to calculate an initial guess for the
% first index in dimorder because that will be solved for in the first
% inner iteration.
if strcmp(init,'random')
Uinit = cell(N,1);
for n = dimorder(2:end)
Uinit{n} = rand(size(X,n),R(n));
end
elseif strcmp(init,'nvecs') || strcmp(init,'eigs')
% Compute an orthonormal basis for the dominant
% Rn-dimensional left singular subspace of
% X_(n) (1 <= n <= N).
Uinit = cell(N,1);
for n = dimorder(2:end)
fprintf(' Computing %d leading e-vectors for factor %d.\n', ...
R(n),n);
Uinit{n} = nvecs(X,n,R(n));
end
else
error('The selected initialization method is not supported');
end
end
%% Set up for iterations - initializing U and the fit.
U = Uinit;
fit = 0;
fprintf('\nAlternating Least-Squares:\n');
%% Main Loop: Iterate until convergence
for iter = 1:maxiters
fitold = fit;
% Iterate over all N modes of the tensor
for n = dimorder(1:end)
Utilde = ttm(X, U, -n, 't');
% Maximize norm(Utilde x_n W') wrt W and
% keeping orthonormality of W
U{n} = nvecs(Utilde,n,R(n));
end
% Assemble the current approximation
core = ttm(Utilde, U, n, 't');
T = ttensor(core, U);
% Compute fit
normresidual = sqrt( normX^2 + norm(T)^2 - 2 * innerprod(X,T) );
fit = 1 - (normresidual / normX); %fraction explained by model
fitchange = abs(fitold - fit);
fprintf(' Iter %2d: fit = %e fitdelta = %7.1e\n', iter, fit, fitchange);
% Check for convergence
if (iter > 1) && (fitchange < fitchangetol)
break;
end
end
%% Compute the final result
% Create the core array
core = ttm(X, U, 't');
% Assemble the resulting tensor
T = ttensor(core, U);
end
%%
function x = setparam(opts,name,default)
if isfield(opts,name);
x = opts.(name);
else
x = default;
end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
datadisp.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/tensor_toolbox/@ktensor/datadisp.m
| 3,230 |
utf_8
|
617d86e8a39f5745c326f1f3c330a63f
|
function datadisp(T, dimlabels, opts)
%DATADISP Special display of a ktensor.
%
% DATADISP(T,LABELS) displays the largest positive entries of each rank-1
% factor of T using the corresponding labels. LABELS is a cell array of
% size ndims(T) such that LABELS{n} is a string cell array of length
% size(T,n).
%
% DATADISP(T,LABELS,OPTS) specify options:
% OPTS.dimorder: Order to display the dimensions of T {1:ndims(T)}
% OPTS.maxentries: Number of entries to show for each factor {10}
% OPTS.printneg: Boolean to print the most negative entries {false}
% OPTS.threshold: Threshold of smallest magnitude score to show {1e-4}
%
% See also KTENSOR.
%
%MATLAB Tensor Toolbox.
%Copyright 2007, Sandia Corporation.
% This is the MATLAB Tensor Toolbox by Brett Bader and Tamara Kolda.
% http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox.
% Copyright (2007) Sandia Corporation. Under the terms of Contract
% DE-AC04-94AL85000, there is a non-exclusive license for use of this
% work by or on behalf of the U.S. Government. Export of this data may
% require a license from the United States Government.
% The full license terms can be found in tensor_toolbox/LICENSE.txt
% $Id: datadisp.m,v 1.12 2007/01/10 01:27:30 bwbader Exp $
%% Fill in optional variable
if ~exist('opts','var')
opts = struct;
end
%% Set options from input or use defaults
dimorder = setparam(opts,'dimorder',1:ndims(T));
maxentries = setparam(opts,'maxentries',10);
printneg = setparam(opts,'printneg',false);
threshold = setparam(opts,'threshold',1e-6);
%% Main loop
R = size(T.lambda,1); % Rank
r = 1;
while (r <= R)
fprintf(1, '\n======== Group %d ========\n', r);
fprintf('\nWeight = %f\n', T.lambda(r));
for i = dimorder(1:end)
print_sublist(T.u{i}(:,r), dimlabels{i}, 'positive', maxentries, threshold);
if printneg
print_sublist(T.u{i}(:,r), dimlabels{i}, 'negative', maxentries, threshold);
end
end
if r == R,
break,
end;
foo = input('\nReturn to continue, jump to rank, or ''0'' (zero) to quit: ');
if foo == 0
return;
elseif isempty(foo)
r = r+1;
else
r = foo;
end
end
return;
%%
function print_sublist(score, labels, type, maxentries, threshold)
if isequal(type,'positive')
[sortedScore, sortedIdx] = sort(score, 'descend');
elseif isequal(type, 'negative')
[sortedScore, sortedIdx] = sort(score, 'ascend');
else
error('Invalid type');
end
sortedRefs = labels(sortedIdx);
entries = min([maxentries, length(score)]);
if isequal(type,'positive')
range = 1:entries;
else
range = entries:-1:1;
end
fprintf('%-10s %-4s %s\n','Score','Id','Name');
for k = range
if abs(sortedScore(k)) < threshold
continue;
end
if isequal(type,'negative') && sortedScore(k) >= 0
continue;
end
if (abs(sortedScore(k)) < 1e-4)
fprintf(1, '%10.3e %4d %s\n', sortedScore(k), sortedIdx(k), ...
sortedRefs{k});
else
fprintf(1, '%10.7f %4d %s\n', sortedScore(k), sortedIdx(k), ...
sortedRefs{k});
end
end
%%
function x = setparam(opts,name,default)
if isfield(opts,name);
x = opts.(name);
else
x = default;
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
PCAWX.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/PCAW/PCAWX.m
| 8,913 |
utf_8
|
38089d70cf1668856332925d2c9d3ce3
|
function [T,P,xmean,expl,SS] = pcawx(Xmn,W,r,xmean,convg,maxniter,plotopt,saveopt)
% [T,P,xmean,expl,SS] = pcawx(Xmn,W,r,xmean,convg,maxniter,plotopt,saveopt);
%
% Purpose:
% The next quantity is minimized:
% min|| W * ( X - 1.xmean' - T.P')||
% over m (mean center)
% over T (scores)
% over P (loadings)
%
% Input:
% Xmn - (n x m) matrix
% Mean Centered Input data.
%
% W - (n x m) matrix
% Contains 1/STD for each entry in X
%
% r - scalar
% Number of principal components.
%
% xmean - Optional (1 x m) vector.
% Mean center of data.
% Default: zeros(1,m)
%
% convg - (optional) scalar
% Convergence criterium.
% Default: 1e-5
%
% maxniter- (optional) scalar
% Maximum number of iterations.
% Default: 2000
%
% plotopt - (optional) scalar
% Plot intermediate results.
% Default: 0
%
% saveopt - (optional) scalar
% Save intermediate results.
% Default: 0
%
% Output:
% T - (n x r) matrix
% Orthogonal scores on columns
%
% P - (m x r) matrix
% Orthonormal loadings on columns
%
% xmean - (1 x m) vector
% Updated mean center of data (Estimated Offset)
%
% expl - Explained variation of Xmn [percent].
%
% SS - (nniter x 1) vector
% Weighted sum of squares: ||(Xmn-TP')*W||
% for each niteration.
%
% Based on an algorithm and computer program developed by Henk Kiers
% Psychometrika 62(2) 251-266
%
% ==========================================================================
% Copyright 2005 Biosystems Data Analysis Group ; Universiteit van Amsterdam
% ==========================================================================
global StopPCAW;
persistent Isave figNr1 figNr2
% Check arguments
[n,m] = size(Xmn);
if ( nargin < 4 )
xmean = zeros(1,m);
end
if ( isempty(xmean) )
xmean = zeros(1,m);
end
if ( nargin < 5 )
convg = 1e-5;
end
if ( isempty(convg) )
convg = 1e-5;
end
if ( nargin < 6 )
maxniter = 2000;
end
if ( isempty(maxniter) )
maxniter = 2000;
end
if ( nargin < 7 )
plotopt = 0;
end
if ( isempty(plotopt) )
plotopt = 0;
end
if ( nargin < 8 )
saveopt = 0;
end
% Start Code
StopPCAW = 0;
% Start with PCA and keep r eigenvectors.
if ( any(isnan( Xmn(:) ) ) )
% Replace missing values in X with zeros
% in order to get a initial estimate of
% loadings and scores matrix.
ind = find(isnan(Xmn) );
Xmn(ind) = zeros(size(ind));
W(ind) = zeros(size(ind));
end
% initial estimate of scores and loadings.
% A unweighted PCA is done on mean centered data.
% % % [T,P] = pca(Xmn,0,[],r);
[P,T] = princomp2(Xmn);
T = T(:,1:r);
P = P(:,1:r);
Tpca = T;
% wmax = MAXIMUM weight and thus MINIMUM error variance.
wmax = max(W(:).^2);
% Open temporary file used to stored intermediate results.
if ( saveopt )
if ( isempty(Isave) )
Isave = 1;
else
Isave = Isave + 1;
end
fid = fopen(['PCAWXtemp',sprintf('%07d',Isave),'.dat'],'w');
fwrite(fid,n,'uint32');
fwrite(fid,m,'uint32');
fwrite(fid,r,'uint32');
end
% ========= Initialize the majorization loop ============
niter = 1;
% SS is current weighted sum of squares.
SS(niter) = ssq( (Xmn-T*P') .* W );
% SSold is previous weighted sum of squares, make it always
% larger than SS to start with.
SSold = SS(niter) + 2;
normMAT = norm(T * P');
if ( saveopt )
fwrite(fid,niter,'uint32');
fwrite(fid,SS(niter),'double');
fwrite(fid,T(:),'double');
fwrite(fid,P(:),'double');
fwrite(fid,xmean(:),'double');
end
if ( plotopt & isempty(figNr1) )
figNr1 = figure('name' ,'Convergence',...
'units' ,'normalized',...
'position',[0.005,0.2,0.49,0.6]);
figNr2 = figure('name' ,'Scores',...
'units' ,'normalized',...
'position',[0.5,0.2,0.49,0.6]);
set(figNr1,'keypressfcn','global StopPCAW;StopPCAW=1;');
set(figNr2,'keypressfcn','global StopPCAW;StopPCAW=1;');
Tprev = Tpca;
end
% =================================================================
% Loop while next condition are all satisfied:
% 1. relative change in SS is larger than convergence crniterium.
% 2 SS is larger convg * norm of reconstructed X matrix.
% 3. number of niterations does not exceed maxniter
% 4. User did not signal to stop niterations.
% ================================================================
VecOfOnes = ones(n,1);
Xor = Xmn + VecOfOnes * xmean;
while ( abs(SSold - SS(niter))/SSold > convg && ...
SS(niter) > convg * normMAT && ...
niter <=maxniter && ...
~StopPCAW );
RelErr = abs(SSold - SS(niter))/SSold;
SSold = SS(niter);
% Majorization step
F = (W.^2) .* (Xmn - T * P' ) /wmax + T * P';
% % % [T,P] = pca(F,0,[],r);
[P,T] = princomp2(F);
T = T(:,1:r);
P = P(:,1:r);
Xup = Xor - T * P';
% Find better estimate of mean.
if ( rem(niter,2) == 0 )
F = (W.^2) .* (Xup - VecOfOnes * xmean ) /wmax + VecOfOnes * xmean;
xmean = 1/length(VecOfOnes)* VecOfOnes' * F;
Xmn = Xor - VecOfOnes * xmean;
end
% Now new T,P and m are found, update crniterion
niter = niter + 1;
SS(niter) = ssq( (Xmn - T * P') .* W );
normMAT = norm(T * P');
% Save results in a temporary file every 5 niterations.
if ( saveopt )
fwrite(fid,niter,'uint32');
fwrite(fid,SS(niter),'double');
fwrite(fid,T(:),'double');
fwrite(fid,P(:),'double');
fwrite(fid,xmean(:),'double');
end
if ( plotopt)
figure(figNr1)
if ( niter > 30 )
range = niter-29:niter;
semilogy(range(1:end-1),abs(diff(SS(range)))./SS(niter-29:niter-1),'r.-')
axis([niter-29,niter,1e-6,1])
else
semilogy(abs(diff(SS))./SS(1:niter-1),'r.-')
axis([1,niter,convg/10,1])
end
hold on
hline(convg,'b-');
title('Convergence crniterion')
figure(figNr2)
Tcur = T;
if ( mod(niter,30) )
hold off
end
% PCAW-scores are made similer to original PCA-scores
% by means of Procrustes Rotation.
Tcurr = compscores(Tcur,Tpca);
plot(Tcurr(:,1),Tcurr(:,2),'bo')
text(Tcurr(:,1),Tcurr(:,2),num2str([1:size(Tcurr,1)]'));
hold on
plot(Tpca(:,1),Tpca(:,2),'r.')
scln_1 = [Tcurr(:,1),Tpca(:,1),NaN*ones(size(Tcurr,1),1)]';
scln_2 = [Tcurr(:,2),Tpca(:,2),NaN*ones(size(Tcurr,1),1)]';
plot(scln_1(:),scln_2(:),'g-')
Tprev = Tcur;
drawnow
end
end
if ( saveopt )
fclose(fid);
end
TELLER = (norm(((Xmn-T*P').*W),'fro')).^2;
NOEMER = (norm((Xmn .* W),'fro')).^2;
expl = (1-(TELLER/NOEMER))*100;
return
%----------------------------------------------------------------------
% Additional Functions
function t = ssq(a)
%SSQ SSQ(A) is the sum of squares of the elements of matrix A.
t = sum(sum(a.^2));
return
function [sc1,sc2,Rot] = compscores(scores1,scores2)
% [sc1,sc2,Rot] = compscores(scores1,scores2);
%
% Purpose:
% Compares scores of two (PCA) models.
%
% Input
% scores1 - (Nobject * Nload1) matrix
% Scores on first model.
% Nobject = number of objects.
% Nload1 = number of loading vectors
% in the model
% These scores are rotated.
%
% scores2 - (Nobject * Nload2) matrix
% Nobject = number of objects.
% Nload2 = number of loading vectors
% in the model.
% Description:
% Massart part B, page 313
if ( size(scores1,1) ~= size(scores2,1) )
error('Number of objects should be the same');
end
[u,s,v] = svd(scores2'*scores1);
Rot = v * u';
sc1 = scores1 * Rot;
sc2 = scores2;
return
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
PCAWXC.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/PCAW/PCAWXC.m
| 8,982 |
utf_8
|
421d20f1186cd48cf0cb14f8b8707fd9
|
function [T,P,xmean,expl,SS] = pcawxc(Xmn,W,r,xmean,convg,maxniter,plotopt,saveopt)
% [T,P,xmean,expl,SS] = pcawxc(Xmn,W,r,xmean,convg,maxniter,plotopt,saveopt)
%
% Purpose:
% The next quantity is minimized:
% min|| W * ( X - D.xmean' - T.P')||
% over m (mean center)
% over T (scores)
% over P (loadings)
%
% Input:
% Xmn - (n x m) matrix
% Mean Centered Input data.
%
% W - (n x m) matrix
% Contains 1/STD for each entry in X
%
% r - scalar
% Number of principal components.
%
% xmean - Optional (i x m) matrix.
% Mean center of data.
% Default: zeros(1,m) (where i is the number of individuals
% in the data)
%
% convg - (optional) scalar
% Convergence criterium.
% Default: 1e-5
%
% maxniter- (optional) scalar
% Maximum number of iterations.
% Default: 2000
%
% plotopt - (optional) scalar
% Plot intermediate results.
% Default: 0
%
% saveopt - (optional) scalar
% Save intermediate results.
% Default: 0
%
% Output:
% T - (n x r) matrix
% Orthogonal scores on columns
%
% P - (m x r) matrix
% Orthogonal loadings on columns
%
% xmean - (1 x m) vector
% Updated mean center of data
%
% expl - Explained variance of Xmn [percent].
%
% SS - (nniter x 1) vector
% Weighted sum of squares: ||(Xmn-TP')*W||
% for each niteration.
%
% Based on an algorithm and computer program developed by Henk Kiers
% Psychometrika 62(2) 251-266
%
% ==========================================================================
% Copyright 2005 Biosystems Data Analysis Group ; Universiteit van Amsterdam
% ==========================================================================
global StopPCAW
persistent Isave figNr1 figNr2
% Check arguments
[n,m] = size(Xmn);
if ( nargin < 4 )
xmean = zeros(10,m);
end
if ( isempty(xmean) )
xmean = zeros(10,m);
end
if ( nargin < 5 )
convg = 1e-5;
end
if ( isempty(convg) )
convg = 1e-5;
end
if ( nargin < 6 )
maxniter = 2000;
end
if ( isempty(maxniter) )
maxniter = 2000;
end
if ( nargin < 7 )
plotopt = 0;
end
if ( isempty(plotopt) )
plotopt = 0;
end
if ( nargin < 8 )
saveopt = 0;
end
% Start Code
StopPCAW = 0;
% Start with PCA and keep r eigenvectors.
if ( any(isnan( Xmn(:) ) ) )
% Replace missing values in X with zeros
% in order to get a initial estimate of
% loadings and scores matrix.
ind = find(isnan(Xmn) );
Xmn(ind) = zeros(size(ind));
W(ind) = zeros(size(ind));
end
% initial estimate of scores and loadings.
% A unweighted PCA is done on mean centered data.
[T,P] = pca(Xmn,0,[],r);
Tpca = T;
% wmax = MAXIMUM weight and thus MINIMUM error variance.
wmax = max(W(:).^2);
% Open temporary file used to stored intermediate results.
if ( saveopt )
if ( isempty(Isave) )
Isave = 1;
else
Isave = Isave + 1;
end
fid = fopen(['PCAWXtemp',sprintf('%07d',Isave),'.dat'],'w');
fwrite(fid,n,'uint32');
fwrite(fid,m,'uint32');
fwrite(fid,r,'uint32');
end
% ========= Initialize the majorization loop ============
niter = 1;
% SS is current weighted sum of squares.
SS(niter) = ssq( (Xmn-T*P') .* W );
% SSold is previous weighted sum of squares, make it always
% larger than SS to start with.
SSold = SS(niter) + 2;
normMAT = norm(T * P');
if ( saveopt )
fwrite(fid,niter,'uint32');
fwrite(fid,SS(niter),'double');
fwrite(fid,T(:),'double');
fwrite(fid,P(:),'double');
fwrite(fid,xmean(:),'double');
end
if ( plotopt & isempty(figNr1) )
figNr1 = figure('name' ,'Convergence',...
'units' ,'normalized',...
'position',[0.005,0.2,0.49,0.6]);
figNr2 = figure('name' ,'Scores',...
'units' ,'normalized',...
'position',[0.5,0.2,0.49,0.6]);
set(figNr1,'keypressfcn','global StopPCAW;StopPCAW=1');
set(figNr2,'keypressfcn','global StopPCAW;StopPCAW=1');
Tprev = Tpca;
end
% =================================================================
% Loop while next condition are all satisfied:
% 1. relative change in SS is larger than convergence crniterium.
% 2 SS is larger convg * norm of reconstructed X matrix.
% 3. number of niterations does not exceed maxniter
% 4. User did not signal to stop niterations.
% ================================================================
Temp = zeros(29,10);
TempOne = ones(29,1);
DesignMat = [];
for ( i = 1:10 )
Temp1 = Temp;
Temp1(:,i) = TempOne;
DesignMat = [DesignMat;Temp1];
end
Xor = Xmn + DesignMat * xmean;
while ( abs(SSold - SS(niter))/SSold > convg & ...
SS(niter) > convg * normMAT & ...
niter <=maxniter & ...
~StopPCAW )
RelErr = abs(SSold - SS(niter))/SSold;
SSold = SS(niter);
% Majorization step
F = (W.^2) .* (Xmn - T * P' ) /wmax + T * P';
[T,P] = pca(F,0,[],r);
Xup = Xor - T * P';
% Find better estimate of mean.
if ( rem(niter,2) == 0 )
F = (W.^2) .* (Xup - DesignMat * xmean ) /wmax + DesignMat * xmean;
xmean = inv(DesignMat' * DesignMat) * DesignMat' * F;
Xmn = Xor - DesignMat * xmean;
end
% Now new T,P and m are found, update crniterion
niter = niter + 1;
SS(niter) = ssq( (Xmn - T * P') .* W );
normMAT = norm(T * P');
% Save results in a temporary file every 5 niterations.
if ( saveopt )
fwrite(fid,niter,'uint32');
fwrite(fid,SS(niter),'double');
fwrite(fid,T(:),'double');
fwrite(fid,P(:),'double');
fwrite(fid,xmean(:),'double');
end
if ( plotopt)
figure(figNr1)
if ( niter > 30 )
range = niter-29:niter;
semilogy(range(1:end-1),abs(diff(SS(range)))./SS(niter-29:niter-1),'r.-')
axis([niter-29,niter,1e-6,1])
else
semilogy(abs(diff(SS))./SS(1:niter-1),'r.-')
axis([1,niter,convg/10,1])
end
hold on
hline(convg,'b-');
title('Convergence crniterion')
figure(figNr2)
Tcur = T;
if ( mod(niter,30) )
hold off
end
% PCAW-scores are made similer to original PCA-scores
% by means of Procrustes Rotation.
Tcurr = compscores(Tcur,Tpca);
plot(Tcurr(:,1),Tcurr(:,2),'bo')
text(Tcurr(:,1),Tcurr(:,2),num2str([1:size(Tcurr,1)]'));
hold on
plot(Tpca(:,1),Tpca(:,2),'r.')
scln_1 = [Tcurr(:,1),Tpca(:,1),NaN*ones(size(Tcurr,1),1)]';
scln_2 = [Tcurr(:,2),Tpca(:,2),NaN*ones(size(Tcurr,1),1)]';
plot(scln_1(:),scln_2(:),'g-')
Tprev = Tcur;
drawnow
end
end
if ( saveopt )
fclose(fid);
end
TELLER = (norm(((Xmn-T*P').*W),'fro')).^2;
NOEMER = (norm((Xmn .* W),'fro')).^2;
expl = (1-(TELLER/NOEMER))*100;
return
%----------------------------------------------------------------------
% Additional Functions
function t = ssq(a)
%SSQ SSQ(A) is the sum of squares of the elements of matrix A.
t = sum(sum(a.^2));
return
function [sc1,sc2,Rot] = compscores(scores1,scores2)
% [sc1,sc2,Rot] = compscores(scores1,scores2);
%
% Purpose:
% Compares scores of two (PCA) models.
%
% Input
% scores1 - (Nobject * Nload1) matrix
% Scores on first model.
% Nobject = number of objects.
% Nload1 = number of loading vectors
% in the model
% These scores are rotated.
%
% scores2 - (Nobject * Nload2) matrix
% Nobject = number of objects.
% Nload2 = number of loading vectors
% in the model.
% Description:
% Massart part B, page 313
if ( size(scores1,1) ~= size(scores2,1) )
error('Number of objects should be the same');
end
[u,s,v] = svd(scores2'*scores1);
Rot = v * u';
sc1 = scores1 * Rot;
sc2 = scores2;
return
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
nfrpca.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/nfrpca/nfrpca.m
| 3,146 |
utf_8
|
0985da68fadb9f9c67839a1a80d01dc4
|
function [scores,loads]=nfrpca(x,LV,method)
% Nonlinear fuzzy robust PCA algorithm from article:
%P. Luukka, 'A New Nonlinear Fuzzy Robust PCA Algorithm and Similarity
%classifier in classification of medical data sets',
%International Journal of Fuzzy Systems, Vol. 13, No. 3, September 2011
%pp. 153-162.
%
%Function call: [scores,loads]=nfrpca(x,LV,method)
%
%
%INPUTS:
%1)x: your data matrix samples in rows and variables in columns
%2)LV: How many variables to use from data, if not specified all variables are used.
%3)method: which method to use
% 'nfrpca1' means Nonlinear fuzzy robust PCA algorithm from article above.
%In current version only this one is implemented and will be selected
%automatically.
%
%
%OUTPUTS:
%
%scores: The principal component scores; that is, the representation of X in the principal component space.
% Rows of score correspond to observations, columns to components.
%loads: principal component coefficients also known as loadings.
x=x';
[m,n]=size(x);
if nargin<3
method='nfrpca1'
elseif nargin<2
LV=min(m,n);
end
scores=[]; loads=[];
a=10; % parameter value in function y=tanh(a*x)
ALFA0=1; % learning coefficient (0,1]
ETA=.1; % soft threshold, a small positive number
EXPO=1.5; % fuzziness variable
if strcmpi(method,'nfrpca1')==1
for lv=1:LV
alfa0=ALFA0; % learning coefficient (0,1]
eta=ETA; % soft threshold, a small positive number
expo=EXPO; % fuzziness variable
t=1; % iteration count
T=100; % iteration bound
[tt,s,pp] = svds(x',1); w=pp; % initialize loadings
%w=rand(m,1); % initialize loadings
wold=5*ones(size(w));
crit=sum((w-wold).^2);
while t<T % do not add '=' sign
alfat=alfa0*(1-t/T);
sigma=0; i=1;
wold=w;
while i<=n
y=w'*x(:,i);
g=tanh(a*y); %Now implemented for function tanh(ax)
gder=a/cosh(a*y)^2; %Derivative of the function
e3x=(x(:,i)-g*w)'*(x(:,i)-g*w);
beta=(1/(1+(e3x)/eta)^(1/(expo-1)))^expo;
apu1=x(:,i)-w*g;
F=gder;
w=w+alfat*beta*(x(:,i)*apu1'*w*F+apu1*g);
w=w/norm(w);
sigma=sigma+e3x;
i=i+1;
end
eta=sigma/n;
t=t+1;
crit=[crit,sum((w-wold).^2)/m];
if sum((w-wold).^2)/m<1e-8
break
end
end
scores=[scores x'*w];
loads=[loads w];
x=x';
x=x-x*w*w';
x=x';
end
end
function Y=meanw(X,W)
% MEANW : Weighted Mean
%
% Y=meanw(X,W)
%
% Y is the mean of X weighted by W.
%
if(size(X)~=size(W)), error('Must be 1:1 corrospondence between weights and samples'); end;
Y = sum(W.*X)./sum(W);
function Y=stdw(X,W)
% STDW : Weighted Standard Deviation
%
% Y=stdw(X,W)
%
% Y is the standard deviation of X weighted by W.
%
if(size(X)~=size(W)), error('Must be 1:1 corrospondence between weights and samples'); end;
Y = sqrt( (sum(W.*X.*X)./sum(W)) - (sum(W.*X)./sum(W)).^2);
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
maxminLandmarks.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/JPlex/maxminLandmarks.m
| 8,218 |
utf_8
|
77c012bdc970c93c6407fef22f0b6f88
|
function L = maxminLandmarks(matrix, numLands, EorD)
% INPUT:
% matrix - see description for input EorD.
% numLands - the number of landmark points to be chosen.
% EorD - character EorD determines how input matrix is interpreted. If
% EorD is 'e', then the N x n input matrix is interpreted as N points
% in R^n, as in JPlex subclass EuclideanArrayData. If EorD is 'd',
% then the N x N input matrix is interpreted as the distance matrix
% for N points in an arbitrary metric space, as in JPlex subclass
% DistanceData.
%
% OUTPUT:
% L - a vertical vector of length numLands+1. Entry 1 is zero. Entries 2
% through numLands+1 are the indices of numLands landmark points,
% chosen via sequential maxmin. L is ready to be used as input into
% subclass WitnessStream or LazyWitnessStream of JPlex.
%
% NOTES:
% The function maxminLandmarks.m uses function px_maxmin.m from the Plex
% Metric Data Toolbox version 2.5, in the C++ version of Plex, by Vin de
% Silva, Patrick Perry and contributors.
if EorD == 'e'
L = [0,px_maxmin(matrix','vector',numLands,'n')]';
elseif EorD == 'd'
L = [0,px_maxmin(matrix','metric',numLands,'n')]';
else
error('input EorD must be either character e or character d')
end
function [L, DL, R] = px_maxmin(varargin)
%PX_MAXMIN -- select landmark points by greedy optimisation
%
% Given a set of N points, PX_MAXMIN selects a subset of n points called
% 'landmark' points by an interative greedy optimisation. Specifically,
% when j landmark points have been chosen, the (j+1)-st landmark point
% maximises the function 'minimum distance to an existing landmark point'.
%
% The initial landmark point is arbitrary, and may be chosen randomly or
% by decree. More generally, the process can be 'seeded' by up to k
% landmark points chosen randomly or by decree.
%
% The input data can belong to one of the following types:
%
% 'vector': set of d-dimensional Euclidean points passed to the
% function as d-by-N matrix
%
% 'metric': N-by-N matrix of distances
%
% 'rows': function handle with one vector argument I=[i1,i2,...,ip]
% which returns a p-by-N matrix of distances between the p
% specified points and the full data set.
%
% The output L is a list of indices for the landmark points, presented in
% the order of discovery. User-specified seeds are listed first, followed
% by randomly chosen seeds.
%
% A second output argument, DL, returns the n-by-N matrix of distances
% between landmark points and all data points.
%
% A third output argument, R, returns the covering number of the landmark
% set. R is the smallest number such that every data point lies within
% distance R of a landmark point.
%
% Syntax:
%
% L = PX_MAXMIN(data1, type1, data2, type2, ...);
% [L, DL] = PX_MAXMIN(data1, type1, data2, type2, ...);
% [L, DL, R] = PX_MAXMIN(data1, type1, data2, type2, ...);
%
% Each pair (data, type) is one of the following:
%
% (X, 'vector'), (D, 'metric'), (fD,'rows')
%
% (n, 'n') -- number of landmarks
%
% (S, 'seeds') -- list of seeds specified by the user; no repeats are
% allowed.
%
% (k, 'rand') -- number of randomly chosen seeds
%
% The pairs may be listed in any order. The type strings are sensitive to
% case. Exactly one of {X, D, fD} must be specified, and n must always be
% specified.
%
% Both of {k, S} are optional arguments. If S is specified, and is not
% the empty list, then k=0 is the default. Otherwise, the defaults are
% k=1, S=[].
%
% The function PX_LANDMARKD is a C++ version of PX_MAXMIN and may be used
% instead. The syntax and functionality are slightly different.
%
%Plex Metric Data Toolbox version 2.5 by Vin de Silva, Patrick Perry and
%contributors. See PX_PLEXINFO for credits and licensing information.
%Released with Plex version 2.5. [2006-Jul-14]
% [2004-May-06] Modifications:
% -replacing @local_euclid with @local_euclid2
% -returning R as an output argument
%
% [2004-May-24] -speed up 'min' step using incremental updates.
% -R now returns the *next* value of MaxMin.
%
% [2004-Apr-28] Vin de Silva, Department of Mathematics, Stanford.
%----------------------------------------------------------------
% collate the input variables
%----------------------------------------------------------------
types = {'vector', 'metric', 'rows', 'n', 'seeds', 'rand'};
if any(~ismember(varargin(2:2:end), types))
error('Invalid data type specified.')
end
if (nargin ~= (2 * length(unique(varargin(2:2:end)))))
error('Repeated or missing data types.')
end
[isused, input_ix] = ismember(types, varargin(2: 2: end));
if (sum(isused(1:3)) ~= 1)
error('Points must be specified in exactly one of the given formats.')
end
if ~isused(4)
error('Number of landmarks must be specifed.')
end
%----------------------------------------------------------------
% standardize the input
%----------------------------------------------------------------
%------------------------------------------------
% By the end of this section, feval(Dfun,list)
% will return D(list,:), whichever the input
% format of the data
%------------------------------------------------
dataformat = find(isused(1:3)); % which format have the data been
% entered in?
switch dataformat
case 1 % 'vector'
X = varargin{2*input_ix(1)-1};
[d,N] = size(X);
%Dfun = @local_euclid;
L2sq = sum(X.^2,1); % these values are repeatedly used:
Dfun = @local_euclid2; % optimised to take advantage of this
case 2 % 'metric'
D = varargin{2*input_ix(2)-1};
N = length(D);
Dfun =@local_submatrix;
case 3 % 'rows'
Dfun = varargin{2*input_ix(3)-1};
N = size(feval(Dfun,1), 2);
end
%------------------------------------------------
% collect n
%------------------------------------------------
n = varargin{2*input_ix(4)-1};
%------------------------------------------------
% determine seeding
%------------------------------------------------
if isused(5)
S = varargin{2*input_ix(5)-1};
if (length(S) ~= length(unique(S)))
error('S must not contain repeated elements.')
end
else
S = [];
end
if isused(6)
k = varargin{2*input_ix(6)-1};
elseif isempty(S)
k = 1;
else
k = 0;
end
%----------------------------------------------------------------
% main loop
%----------------------------------------------------------------
s = length(S);
if (n < s + k)
error('Too many seeds!')
end
% read in seed points from S
L = zeros(1,n);
L(1: s) = S;
unused = setdiff((1:N), S);
if (length(unused) ~= (N-s))
error('Seeds specified incorrectly.')
end
% generate random seed points
foo = randperm(N-s);
randseeds = unused(foo(1:k));
clear foo
L(s+1: s+k) = randseeds;
% generate remaining landmarks by maxmin
DD = zeros(n, N);
DD((1: s+k), :) = feval(Dfun, L(1: s+k));
DDmin = min(DD((1:s+k),:), [], 1);
for a = (s+k+1: n)
[r, newL] = max(DDmin, [], 2);
L(a) = newL;
DD(a,:) = feval(Dfun, newL);
DDmin = min(DDmin, DD(a,:));
end
r = max(DDmin);
%----------------------------------------------------------------
% finish!
%----------------------------------------------------------------
if (nargout >= 2)
DL = DD;
end
if (nargout >= 3)
R = r;
end
return
%----------------------------------------------------------------
% local functions
%----------------------------------------------------------------
function DD = local_euclid(list);
X = evalin('caller', 'X');
[d,N] = size(X);
DD = sqrt(max(0, repmat(sum(X(:,list).^2, 1)', [1 N]) ...
+ repmat(sum(X.^2, 1), [length(list) 1]) ...
- 2 * X(:, list)' * X));
%----------------------------------------------------------------
function DD = local_euclid2(list);
X = evalin('caller', 'X');
[d,N] = size(X);
L2sq = evalin('caller','L2sq');
DD = sqrt(max(0, repmat(L2sq(list)', [1 N]) ...
+ repmat(L2sq, [length(list) 1]) ...
- 2 * X(:, list)' * X));
%----------------------------------------------------------------
function DD = local_submatrix(list);
D = evalin('caller', 'D');
DD = D(list, :);
%----------------------------------------------------------------
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
kDensitySlow.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/JPlex/kDensitySlow.m
| 14,268 |
utf_8
|
05805720e2157587c9ae55434b4fe184
|
function densities = kDensitySlow(points, k)
% INPUT:
% points - N x n matrix of N points in R^n
% k - positive integer less than N. This integer is a parameter for our
% density estimate.
%
% OUTPUT:
% densities - vertical vector of length N whose i-th entry is the
% estimated density of the i-th point. The estimated density at a
% point is the reciprocal of the distance from that point to its
% k-th closest neighbor.
%
% NOTES:
% The function kDensitySlow.m uses the function slmetric_pw.m, written by
% Dahua Lin, to compute distance matrices. Please see
% http://www.mathworks.com/matlabcentral/fileexchange/15935-computing-pairwise-distances-and-metrics
% for more information about the function slmetric_pw.m.
%
% File kdDensitySlow.m is slow for large datasets (thus the name). If you
% are interested in a faster version, please email Henry at
% [email protected]. The faster version relies on a MATLAB kd-tree
% package available here:
% http://www.mathworks.com/matlabcentral/fileexchange/21512-kd-tree-for-matlab
%
% [email protected]
% CONSTANTS:
blockSize = 500; % If blockSize too small, the function will be slower than
% it would be otherwise. If blockSize is too large, there will not be
% enough memory for the computation. My default is blockSize = 500.
maxMatrixSize = 25000000; % This m-file will not create a matrix bigger than
% maxMatrixSize. Constant blocksize will be lowered so that
% N*blockSize<=maxMatrixSize.
N = size(points,1); % N is the number of points
if N*blockSize > maxMatrixSize
blockSize = floor(maxMatrixSize/N);
disp('Constant blockSize has been lowered. Expect a very long computation time. Please open m-file kDensitySlow.m for details.')
end
densities = zeros(N,1);
for i = 1:floor(N/blockSize)
distances = slmetric_pw(points', points(blockSize*(i-1)+1:blockSize*i,:)', 'eucdist');
sortedDistances = sort(distances);
densities(blockSize*(i-1)+1:blockSize*i) = 1./sortedDistances(k+1,:)';
end
%remaining points
nextPoint = floor(N/blockSize)*blockSize+1;
if nextPoint <= N
distances = slmetric_pw(points', points(nextPoint:N,:)', 'eucdist');
sortedDistances = sort(distances);
densities(nextPoint:N) = 1./sortedDistances(k+1,:)';
end
function M = slmetric_pw(X1, X2, mtype, varargin)
%SLMETRIC_PW Compute the metric between column vectors pairwisely
%
% [ Syntax ]
% - M = slmetric_pw(X1, X2, mtype);
% - M = slmetric_pw(X1, X2, mtype, ...);
%
% [ Arguments ]
% - X1, X2: the sample matrices
% - mtype: the string indicating the type of metric
% - M: the resulting metric matrix
%
% [ Description ]
% - M = slmetric_pw(X1, X2, mtype) Computes the metrics between
% column vectors of X1 and X2 pairwisely, using the metric
% specified by mtype.
%
% Both X1 and X2 are matrices with each column representing a
% sample. X1 and X2 should have the same number of rows. Suppose
% the size of X1 is d x n1, and the size of X2 is d x n2. Then
% the output metric matrix M will be of size n1 x n2, in which
% M(i, j) is the metric value between X1(:,i) and X2(:,j).
%
% - M = slmetric_pw(X1, X2, mtype, ...) Some metric types requires
% extra parameters, which should be specified in params.
%
% The supported metrics of this function are listed as follows:
% \{:
% - eucdist: Euclidean distance:
% $ ||x - y|| $
%
% - sqdist: Square of Euclidean distance:
% $ ||x - y||^2 $
%
% - dotprod: Canonical dot product:
% $ <x,y> = x^T * y $
%
% - nrmcorr: Normalized correlation (cosine angle):
% $ (x^T * y ) / (||x|| * ||y||) $
%
% - corrdist: Normalized Correlation distance
% $ 1 - nrmcorr(x, y) $
%
% - angle: Angle between two vectors (in radian)
% $ arccos (nrmcorr(x, y)) $
% - quadfrm: Quadratic form:
% $ x^T * Q * y $
% Q is specified in the 1st extra parameter
%
% - quaddiff: Quadratic form of difference:
% $ (x - y)^T * Q * (x - y) $
% Q is specified in the 1st extra parameter
%
% - cityblk: City block distance (abssum of difference)
% $ sum_i |x_i - y_i| $
%
% - maxdiff: Maximum absolute difference
% $ max_i |x_i - y_i| $
%
% - mindiff: Minimum absolute difference
% $ min_i |x_i - y_i| $
%
% - minkowski: Minkowski distance
% $ (\sum_i |x_i - y_i|^p)^(1/p) $
% The order p is specified in the 1st extra parameter
%
% - wsqdist: Weighted square of Euclidean distance
% $ \sum_i w_i (x_i - y_i)^2 $
% the weights w is specified in 1st extra parameter
% as a d x 1 column vector
%
% - hamming: Hamming distance with threshold t
% \{
% ht1 = x > t
% ht2 = y > t
% d = sum(ht1 ~= ht2)
% \}
% use threshold t as the first extra param.
% (by default, t is set to zero).
%
% - hamming_nrm: Normalized hamming distance, which equals the
% ratio of the elements that differ.
% \{
% ht1 = x > t
% ht2 = y > t
% d = sum(ht1 ~= ht2) / length(ht1)
% \}
% use threshold t as the first extra param.
% (by default, t is set to zero).
%
% - intersect: Histogram Intersection
% $ d = sum min(x, y) / min(sum(x), sum(y))$
%
% - intersectdis: Histogram intersection distance
% $ d = 1 - sum min(x, y) / min(sum(x), sum(y)) $
%
% - chisq: Chi-Square Distance
% $ d = sum (x(i) - y(i))^2/(2 * (x(i)+y(i))) $
%
% - kldiv: Kull-back Leibler divergence
% $ d = sum x(i) log (x(i) / y(i)) $
%
% - jeffrey: Jeffrey divergence
% $ d = KL(h1, (h1+h2)/2) + KL(h2, (h1+h2)/2) $
% \:}
%
% [ Remarks ]
% - Both X1 and X2 should be a matrix of numeric values, except
% for case when metric type is 'hamming' or 'hamming_nrm'.
% For hamming or hamming_nrm metric, the input matrix can be logical.
%
% [ Examples ]
% - Compute different types of metrics in pairwise manner
% \{
% % prepare sample matrix
% X1 = rand(10, 100);
% X2 = rand(10, 150);
%
% % compute the euclidean distances (L2)
% % between the samples in X1 and X2
% M = slmetric_pw(X1, X2, 'eucdist');
%
% % compute the eucidean distances between the samples
% % in X1 in a pairwise manner
% M = slmetric_pw(X1, X1, 'eucdist');
%
% % compute the city block distances (L1)
% M = slmetric_pw(X1, X2, 'cityblk');
%
% % compute the normalize correlations
% M = slmetric_pw(X1, X2, 'nrmcorr');
%
% % compute hamming distances
% M = slmetric_pw(X1, X2, 'hamming', 0.5);
% M2 = slmetric_pw((X1 > 0.5), (X2 > 0.5), 'hamming');
% assert(isequal(M, M2));
% \}
%
% - Compute the parameterized metrics
% \{
% % compute weighted squared distances with user-supplied weights
% weights = rand(10, 1);
% M = slmetric_pw(X1, X2, 'wsqdist', weights);
%
% % compute quadratic distances (x-y)^T * Q (x-y)
% Q = rand(10, 10);
% M = slmetric_pw(X1, X2, 'quaddiff', Q);
%
% % compute Minkowski distance of order 3
% M = slmetric_pw(X1, X2, 'minkowski', 3);
% \}
%
% [ History ]
% - Created by Dahua Lin on Dec 06th, 2005
% - Modified by Dahua Lin on Apr 21st, 2005
% - regularize the error reporting
% - Modified by Dahua Lin on Sep 11st, 2005
% - completely rewrite the core codes based on new mex computation
% cores, and the runtime efficiency in both time and space is
% significantly increased.
% - Modified by Dahua Lin on Jul 02, 2007
% - rewrite the core computation based on the bsxfun introduced in
% MATLAB R2007a
% - rewrite the core-mex for cityblk, maxdiff, mindiff
% - introduce new metrics: corrdist, minkowski
% - Modified by Dahua Lin on Jul 30, 2007
% - Add the metric types for histograms, which are originally
% implemented in slhistmetric_pw in sltoolbox v1.
% - Modified by Dahua Lin on Aug 16, 2007
% - revise some of the help contents
%
%% parse and verify input arguments
error(nargchk(3, inf, nargin));
assert(ischar(mtype), 'sltoolbox:slmetric_pw:invalidarg', ...
'The metric type should be a string.');
if strcmp(mtype, 'hamming') || strcmp(mtype, 'hamming_nrm')
assert((isnumeric(X1) || islogical(X1)) && ndims(X1) == 2 && ...
(isnumeric(X2) || islogical(X2)) && ndims(X2) == 2, ...
'sltoolbox:slmetric_pw:invalidarg', 'X1 and X2 should be numeric or logical matrices.');
else
assert(isnumeric(X1) && ndims(X1) == 2 && isnumeric(X2) && ndims(X2) == 2, ...
'sltoolbox:slmetric_pw:invalidarg', 'X1 and X2 should be numeric matrices.');
end
assert(isa(X2, class(X1)), ...
'sltoolbox:slmetric_pw:invalidarg', 'X1 and X2 should be of the same class.');
if isempty(X1) || isempty(X2)
M = [];
return;
end
%% compute
switch mtype
case {'eucdist', 'sqdist'}
checkdim(X1, X2);
M = bsxfun(@plus, sum(X1 .* X1, 1)', (-2) * X1' * X2);
M = bsxfun(@plus, sum(X2 .* X2, 1), M);
M(M < 0) = 0;
if strcmp(mtype, 'eucdist')
M = sqrt(M);
end
case 'dotprod'
checkdim(X1, X2);
M = X1' * X2;
case {'nrmcorr', 'corrdist', 'angle'}
checkdim(X1, X2);
ns1 = sqrt(sum(X1 .* X1, 1));
ns2 = sqrt(sum(X2 .* X2, 1));
ns1(ns1 == 0) = 1;
ns2(ns2 == 0) = 1;
M = bsxfun(@times, X1' * X2, 1 ./ ns1');
M = bsxfun(@times, M, 1 ./ ns2);
switch mtype
case 'corrdist'
M = 1 - M;
case 'angle'
M = real(acos(M));
end
case 'quadfrm'
Q = varargin{1};
M = X1' * Q * X2;
case 'quaddiff'
checkdim(X1, X2);
Q = varargin{1};
M = X1' * (-(Q + Q')) * X2;
M = bsxfun(@plus, M, sum(X1 .* (Q * X1), 1)');
M = bsxfun(@plus, M, sum(X2 .* (Q * X2), 1));
case 'cityblk'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(1));
case 'maxdiff'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(3));
case 'mindiff'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(2));
case 'minkowski'
checkdim(X1, X2);
pord = varargin{1};
if ~isscalar(pord)
error('sltoolbox:slmetric_pw:invalidparam', ...
'the mikowski order should be a scalar');
end
pord = cast(pord, class(X1));
M = pwmetrics_cimp(X1, X2, int32(4), pord);
case 'wsqdist'
d = checkdim(X1, X2);
w = varargin{1};
if ~isequal(size(w), [d, 1])
error('sltoolbox:slmetric_pw:invalidparam', ...
'the weights should be given as a d x 1 vector.');
end
wX2 = bsxfun(@times, X2, w);
M = bsxfun(@plus, (-2) * X1' * wX2, sum(wX2 .* X2, 1));
clear wX2;
wX1 = bsxfun(@times, X1, w);
M = bsxfun(@plus, M, sum(wX1 .* X1, 1)');
case {'hamming', 'hamming_nrm'}
checkdim(X1, X2);
if islogical(X1) && islogical(X2)
H1 = X1;
H2 = X2;
else
if isempty(varargin)
t = 0;
else
t = varargin{1};
assert(isnumeric(t) && isscalar(t), ...
'sltoolbox:slmetric_pw:invalidparam', 't should be a numeric scalar.');
end
H1 = X1 > t;
H2 = X2 > t;
end
M = pwhamming_cimp(H1, H2);
if strcmp(mtype, 'hamming_nrm')
M = M / size(H1, 1);
end
case 'intersect'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(5));
case 'intersectdis'
checkdim(X1, X2);
M = 1 - pwmetrics_cimp(X1, X2, int32(5));
case 'chisq'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(6));
case 'kldiv'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(7));
case 'jeffrey'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(8));
otherwise
error('sltoolbox:slmetric_pw:unknowntype', 'Unknown metric type %s', mtype);
end
%% Auxiliary function
function d = checkdim(X1, X2)
d = size(X1, 1);
if d ~= size(X2, 1)
error('sltoolbox:slmetric_pw:sizmismatch', ...
'X1 and X2 have different sample dimensions');
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
astar_search.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/matlab_bgl_new/astar_search.m
| 3,582 |
utf_8
|
528ff641877279dc012bed23ea2d9d21
|
function [d pred f]=astar_search(A,s,h,varargin)
% ASTAR_SEARCH Perform a heuristically guided (A*) search on the graph.
%
% [d pred rank]=astar_search(A,s,h,optionsu) returns the distance map,
% search tree and f-value of each node in an astar_search.
% The search begins at vertex s. The heuristic h guides the search,
% h(v) should be small close to a goal and large far from a goal. The
% heuristic h can either be a vector with an entry for each vertex in the
% graph or a function which maps vertices to values.
%
% This method works on non-negatively weighted directed graphs.
% The runtime is O((E+V)log(V)).
%
% ... = astar_search(A,u,...) takes a set of
% key-value pairs or an options structure. See set_matlab_bgl_options
% for the standard options.
% options.visitor: a visitor to use with the A* search (see Note)
% options.inf: the value to use for unreachable vertices
% [double > 0 | {Inf}]
% options.target: a special vertex that will stop the search when hit
% [{'none'} | any vertex number besides the u]; this is ignored if
% a visitor is set.
% options.edge_weight: a double array over the edges with an edge
% weight for each node, see EDGE_INDEX and EXAMPLES/REWEIGHTED_GRAPHS
% for information on how to use this option correctly
% [{'matrix'} | length(nnz(A)) double vector]
%
% Note: You can specify a visitor for this algorithm. The visitor has the
% following optional functions.
% vis.initialize_vertex(u)
% vis.discover_vertex(u)
% vis.examine_vertex(u)
% vis.examine_edge(ei,u,v)
% vis.edge_relaxed(ei,u,v)
% vis.edge_not_relaxed(ei,u,v)
% vis.black_target(ei,u,v)
% vis.finish_vertex(u)
% Each visitor parameter should be a function pointer, which returns 0
% if the search should stop. (If the function does not return anything,
% the algorithm continues.)
%
% Example:
% load graphs/bgl_cities.mat
% goal = 11; % Binghamton
% start = 9; % Buffalo
% % Use the euclidean distance to the goal as the heuristic
% h = @(u) norm(xy(u,:) - xy(goal,:));
% % Setup a routine to stop when we find the goal
% ev = @(u) (u ~= goal);
% [d pred f] = astar_search(A, start, h, ...
% struct('visitor', struct('examine_vertex', ev)));
% David Gleich
% Copyright, Stanford University, 2006-2008
%% History
% 2007-04-20: Added edge weight option
% 2007-07-12: Fixed edge_weight documentation.
% 2008-10-07: Changed options parsing
%%
[trans check full2sparse] = get_matlab_bgl_options(varargin{:});
if full2sparse && ~issparse(A), A = sparse(A); end
options = struct('inf', Inf, 'edge_weight', 'matrix', 'target', 'none');
options = merge_options(options,varargin{:});
edge_weight_opt = 'matrix';
if strcmp(options.edge_weight, 'matrix')
% do nothing if we are using the matrix weights
else
edge_weight_opt = options.edge_weight;
end
if strcmp(options.target,'none')
target = 0; % a flag used to denote "no target" to the mex
elseif isa(options.target, 'double')
target = options.target;
else
error('matlab_bgl:invalidParameter', ...
'options.target is not ''none'' or a vertex number.');
end
if check, check_matlab_bgl(A,struct()); end
if trans, A = A'; end
function hi=vec2func(u)
hi = h(u);
end
if isa(h,'function_handle')
hfunc = h;
else
hfunc = @vec2func;
end
if isfield(options,'visitor')
[d pred f] = astar_search_mex(A,s,target,hfunc,options.inf,edge_weight_opt,options.visitor);
else
[d pred f] = astar_search_mex(A,s,target,h,options.inf,edge_weight_opt);
end
% end the main function
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
grid_graph.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/matlab_bgl_new/grid_graph.m
| 2,553 |
utf_8
|
4c43dba3494901741531114e9307da9f
|
function [A coords] = grid_graph(varargin)
% GRID_GRAPH Generate a grid graph or hypergrid graph
%
% [A xy] = grid_graph(m,n) generates a grid graph with m vertices along the
% x axis and n vertices along the y axis. The xy output gives the 2d
% coordinates of each vertex.
% [A xyz] = grid_graph(m,n,k) generates a grid graph with m vertices along
% the x axis, n vertices along the y axis, and k vertices along the z axis.
% The xyz output gives the 3d coordinates of each vertex.
% [A X] = grid_graph(d1, d2, ..., dk) generates a hypergrid graph in k
% dimensions with d1 vertices along dimension 1, d2 vertices along
% dimension 2, ..., and dk vertices along the final dimension. The X
% output gives the k dimensional coordinates of each vertex.
% [A X] = grid_graph([d1, d2, ..., dk]) is an alternate input scheme.
%
% Example:
% [A xy] = grid_graph(5,10);
% gplot(A,xy);
% A = grid_graph(2*ones(1,10)); % compute 10d hypercube
% David Gleich
% Copyright, Stanford University, 2007-2008
%% History
% 2007-07-13: Initial version
%%
k = length(varargin);
if k==1 && numel(varargin{1}) > 1
varargin = num2cell(varargin{1});
k = length(varargin);
else
if any(cellfun('prodofsize',varargin)~=1)
error('matlab_bgl:invalidArgument',...
'please specific the size of dimension in the arguments');
end
end
dims=cell(k,1);
dim_size = cell2mat(varargin(end:-1:1));
A = sparse(1);
for ii=1:length(dim_size)
n2 = dim_size(ii);
dims{ii} = linspace(0,1,n2);
%A = kron(A,line_graph(n2)) + kron(line_graph(n2),speye(size(A,1)));
A = kron(speye(size(A,1)), line_graph(n2)) + kron(A,speye(n2));
end
% retarded, but it'll have to do...
if (nargout > 1)
if (k == 1)
% this case is easy enough
n = dim_size(1);
coords = (0:n-1)'./(n-1);
else
% Matlab's ndgrid does something different for one dimension
% we also have to reverse the output and get each component of the
% output.
coords_cell = cell(k,1);
cmdstr = '[';
for ii=1:k
cmdstr = [cmdstr sprintf('coords_cell{%i} ',k-ii+1)]; %#ok
end
cmdstr = [cmdstr '] = ndgrid(dims{:});'];
eval(cmdstr);
coords = zeros(size(A,1),k);
for ii=1:k
coords(:,ii) = reshape(permute(coords_cell{ii},k:-1:1),size(A,1),1);
end
end
end
function [Al] = line_graph(n)
e = ones(n,1);
Al = spdiags([e e], [-1 1], n, n);
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
path_histogram.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/matlab_bgl_new/custom/path_histogram.m
| 2,057 |
utf_8
|
8ba677da99d2a4a4e26d41487c0ea5db
|
function [l c] = path_histogram(G,varargin)
% PATH_HISTOGRAM Compute a histogram of all shortest paths in graph G
%
% [l c] = path_histogram(G) computes all shortest paths in A one at a time
% and forms the histogram of the shortest distances between all vertices.
%
% [l c] = path_histogram(G,struct('sample',N)) uses N random samples instead of an
% exact solution. (N=0 uses exact solution)
%
% Options:
% options.weighted: use Dijkstra algorithm for weighted paths [{0} | 1]
% options.intcount: use integer histogram bins [0 | {1}]
% options.nbins: number of bins when intcount=0 [{50} | positive integer]
% options.sample: use N iid samples instead of all sources
% [{0} | positive integer]
% options.verbose: output status for long runs [{0} | 1]
%
% Example:
% load('graphs/cs-stanford.mat');
% [l c] = path_histogram(A);
% bar(l,c,[min(l),max(l)],'hist');
%
% David Gleich
% Copyright, Stanford University, 2008
%
% History
% 2008-03-14: Initial coding by David
options=struct('weighted',0,'intcount',1,'nbins',50','sample',0,'istrans',0,...
'verbose',0);
if ~isempty(varargin), options = merge_structs(varargin{1}, options); end
if ~options.istrans, G = G'; end
bfsoptions=struct('istrans',1);
n=size(G,1); verb=options.verbose;
N = options.sample;
if N==0, vs=1:n; N = n;
else vs=ceil(n*rand(options.sample,1));
end
% sample from all vertices
H=sparse(n,1); t0=clock; p=1; Np=min(N,100);
for vi=1:N
if verb && vi==(p*floor(N/Np) + max(mod(N,Np)-(Np-p),0))
dt=etime(clock,t0); p=p+1;
fprintf(' %5.1f : %9i of %9i; etr=%7f sec\n', ...
100*(p-1)/Np, vi, N, N*dt/vi-dt);
end
di=bfs(G,vi,bfsoptions);
di=di(di>0); % only use reachable points
H=H+accumarray(di,1,[n 1],@sum,0,true);
bfsoptions.nocheck=1; % don't repeat options check
end
l = find(H); c = nonzeros(H);
end
% internal copy of merge_structs
function S=merge_structs(A,B)
S = A; fn = fieldnames(B);
for ii = 1:length(fn), if (~isfield(A, fn{ii})), S.(fn{ii}) = B.(fn{ii}); end, end
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
bacon_numbers.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/matlab_bgl_new/examples/bacon_numbers.m
| 939 |
utf_8
|
6f7f6c07dfde59ec0fd693b43e29e93f
|
function bn = bacon_numbers(A,u)
% BACON_NUMBERS Compute the Bacon numbers for a graph.
%
% bn = bacon_numbers(A,u) computes the Bacon numbers for all nodes in the
% graph assuming that Kevin Bacon is node u.
% allocate storage for the bacon numbers
% the ipdouble call allocates storage that can be modified in place.
bn_inplace = ipdouble(zeros(num_vertices(A),1));
% implement a nested function that can refer to variables we declare. In
% this case, we refer to the bn_inplace variable.
function tree_edge(ei,u,v)
bn_inplace(v) = bn_inplace(u)+1;
end
% setup the bacon_recorder visitor
bacon_recorder = struct();
bacon_recorder.tree_edge = @tree_edge;
% call breadth_first_search
breadth_first_search(A,u,bacon_recorder);
% convert the inplace storage back to standard Matlab storage to return.
bn = double(bn_inplace);
% the end line is required with nested functions to terminate the file
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
rtest_1.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/matlab_bgl_new/test/rtest_1.m
| 1,767 |
utf_8
|
591edf7b20b839883d608054412f6829
|
function rval=rtest_1()
n = 49;
[A,b] = testmat(n,2);
x0 = [1:n]'/(n+1);
y0 = [1:n]'/(n+1);
x = repmat(x0,1,n);
y = repmat(y0',n,1);
xy = [x(:),y(:)];
rval = 0;
try
T = mst(A);
T = T + diag(diag(A));
rval = 1;
catch
lasterr
end;
try
A(1,2)= -1;
A(2,1)= -1;
T = prim_mst(A);
rval = 0;
catch
rval = 1;
end;
function [A,b] = testmat( n,stencil )
h = 1/(n+1);
% initialization
x = [1:n]'/(n+1);
y = [1:n]'/(n+1);
u = zeros(n,n);
% exact solution
u0 = repmat(x.^4,1,n) + repmat(12*y'.^2,n,1);
% matices
T0 = -ones(n);
T0 = sparse( triu(tril(T0,-1),-1) + triu(tril(T0,1),1) );
I = speye(n);
if stencil == 1
T = (-8*I - T0) / 3;
B = (I - T0) / 3;
else
T = (-20*I - 4*T0) / 6;
B = (4*I - T0) / 6;
end
A = kron(I,T) - kron(T0,B);
% boundary
b = zeros(n);
if stencil == 1
b(1,:) = b(1,:) + 12*y'.^2 + 12*(y-h)'.^2 + 12*(y+h)'.^2;
b(n,:) = b(n,:) + 3 + 12*y'.^2 + 12*(y-h)'.^2 + 12*(y+h)'.^2;
b(:,1) = b(:,1) + x.^2 + (x-h).^2 + (x+h).^2;
b(:,n) = b(:,n) + x.^2 + (x-h).^2 + (x+h).^2 + 12*3;
else
b(1,:) = b(1,:) + 4* 12*y'.^2 + 12*(y-h)'.^2 + 12*(y+h)'.^2;
b(n,:) = b(n,:) + 6 + 4* 12*y'.^2 + 12*(y-h)'.^2 + 12*(y+h)'.^2;
b(:,1) = b(:,1) + 4* x.^2 + (x-h).^2 + (x+h).^2;
b(:,n) = b(:,n) + 4* x.^2 + (x-h).^2 + (x+h).^2 + 12*6;
end
% fix corners
b(1,n) = b(1,n) - 12;
b(n,1) = b(n,1) - 1;
b(n,n) = b(n,n) - 13;
% normalize
if stencil == 1
b = - b / 3;
else
b = - b / 6;
end
% add source
f = 12*x.^2 + 24;
f = repmat(f,1,n);
b = b + f * h^2;
b = b(:);
return
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
rtest_6.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/matlab_bgl_new/test/rtest_6.m
| 609 |
utf_8
|
eb8fb5b91bb3daf03c595491cc14de96
|
function rval = rtest_6()
rval = 0;
try
% create a line graph
n = 10;
A = sparse(1:n-1,2:n,1,n,n);
A = A+A';
u = 1;
v = 5;
d = dist_uv(A,u,v);
if any(d(v+1:end) > 0)
error('breadth_first_search did not stop correctly');
end
rval = 1;
catch
lasterr
end
end
function dmap = dist_uv(A,u,v)
vstar = v;
dmap = ipdouble(zeros(size(A,1),1));
function stop=on_tree_edge(ei,u,v)
dmap(v) = dmap(u)+1;
stop = (v ~= vstar);
end
breadth_first_search(A,u,struct('tree_edge',@on_tree_edge));
dmap = double(dmap);
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
stdrinv.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/MultivariateAnalysisToolbox/Statistics/stdrinv.m
| 2,424 |
utf_8
|
edac77861bbaf484b520a61afc312925
|
function x = stdrinv(p, v, r)
%STDRINV Compute inverse c.d.f. for Studentized Range statistic
% STDRINV(P,V,R) is the inverse cumulative distribution function for
% the Studentized range statistic for R samples and V degrees of
% freedom, evaluated at P.
% Copyright 1993-2002 The MathWorks, Inc.
% $Revision: 1.3 $ $Date: 2002/02/04 18:52:50 $
% Based on Fortran program from statlib, http://lib.stat.cmu.edu
% Algorithm AS 190 Appl. Statist. (1983) Vol.32, No. 2
% Incorporates corrections from Appl. Statist. (1985) Vol.34 (1)
if (length(p)>1 | length(v)>1 | length(r)>1),
error('STDRINV requires scalar arguments.'); % for now
end
[err,p,v,r] = distchck(3,p,v,r);
if (err > 0), error('Non-scalar arguments must match in size.'); end
% Handle illegal or trivial values first.
x = zeros(size(p));
if (length(x) == 0), return; end
ok = (v>0) & (v==round(v)) & (r>1) & (r==round(r) & (p<1));
x(~ok) = NaN;
ok = ok & (p>0);
v = v(ok);
p = p(ok);
r = r(ok);
if (length(v) == 0), return; end
xx = zeros(size(v));
% Define constants
jmax = 20;
pcut = 0.00001;
tiny = 0.000001;
upper = (p > .99);
if (upper)
uppertail = 'u';
p0 = 1-p;
else
uppertail = 'l';
p0 = p;
end
% Obtain initial values
q1 = qtrng0(p, v, r);
p1 = stdrcdf(q1, v, r, uppertail);
xx = q1;
if (abs(p1-p0) >= pcut*p0)
if (p1 > p0), p2 = max(.75*p0, p0-.75*(p1-p0)); end
if (p1 < p0), p2 = p0 + (p0 - p1) .* (1 - p0) ./ (1 - p1) * 0.75; end
if (upper)
q2 = qtrng0(1-p2, v, r);
else
q2 = qtrng0(p2, v, r);
end
% Refine approximation
for j=2:jmax
p2 = stdrcdf(q2, v, r, uppertail);
e1 = p1 - p0;
e2 = p2 - p0;
d = e2 - e1;
xx = (q1 + q2) / 2;
if (abs(d) > tiny*p0)
xx = (e2 .* q1 - e1 .* q2) ./ d;
end
if (abs(e1) >= abs(e2))
q1 = q2;
p1 = p2;
end
if (abs(p1 - p0) < pcut*p0), break; end
q2 = xx;
end
end
x(ok) = xx;
% ---------------------------------
function x = qtrng0(p, v, r)
% Algorithm AS 190.2 Appl. Statist. (1983) Vol.32, No.2
% Calculates an initial quantile p for a studentized range
% distribution having v degrees of freedom and r samples
% for probability p, p.gt.0.80 .and. p.lt.0.995.
t=norminv(0.5 + 0.5 .* p);
if (v < 120), t = t + 0.25 * (t.^3 + t) ./ v; end
q = 0.8843 - 0.2368 .* t;
if (v < 120), q = q - (1.214./v) + (1.208.*t./v); end
x = t .* (q .* log(r-1) + 1.4142);
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
allstats.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/MultivariateAnalysisToolbox/Statistics/allstats.m
| 8,932 |
utf_8
|
ad81b07beeb64cd19b77ee49f11e54a6
|
function s = allstats(x,dim,flag,p)
% ALLSTATS computes all common statistics.
% -----------------------------
% s = allstats(x, dim, flag, p)
% -----------------------------
% Description: computes, for a univariate data, a variety of statistical
% properties, including mean, skewness, and kurtosis.
% ALLSTATS All Common Statistics.
% S = ALLSTATS(X,DIM,Flag) returns common statistics of the data in X along
% the dimension DIM, with the variance type specified by Flag.
%
% X must be non-sparse, real, single or double, and 2D. NaNs contained in
% X are consdered missing data and are ignored in computations. Note that
% when X contains NaNs, this function will return different results than
% those returned by the standard MATLAB functions MEAN, MEDIAN, and MODE,
% STD and VAR because these function do not ignore NaNs.
%
% If DIM is [] or not given, DIM is the first non-singleton dimension of X.
%
% If Flag = 0 or [] or is not given, the variance is normalized by N-1.
% If Flag = 1, the variance is normalized by N.
%
% S = ALLSTATS(X,DIM,Flag,P) in addition returns the additional percentiles
% in vector P. P must contain numerical values between 0 and 100 exclusive.
%
% The output S is a structure containing the statistics with field names
% describing the respective statistics:
%
% S.n = number of observations (excluding NaNs)
% S.nan = number of NaNs
% S.min = minimum
% S.q1 = 25th percentile
% S.median = median (50th percentile)
% S.q3 = 75th percentile
% S.max = maximum
% S.mode = mode
% S.mean = mean
% S.std = standard deviation
% S.var = variance
% S.skew = skewness
% S.kurt = kurtosis (= 3 for Gaussian or Normal Data)
% S.p01 = first optional percentile
% S.p02 = second optional percentile, etc.
%
% For vector data, outputs are scalars.
% For matrix data, outputs are row vectors for DIM=1
% and column vectors for DIM=2.
%
% Reference: http://www.itl.nist.gov/div898/handbook/
%
% Examples:
% ALLSTATS(X) for vector X computes statistics along the vector, for matrix
% X computes statistics for each column of X.
% ALLSTATS(X,1) for matrix X computes statistics along the row dimension,
% i.e., for each column of X.
% ALLSTATS(X,2) for matrix X computes statistics along the column
% dimension, i.e., for each row of X.
% ALLSTATS(X,[],1) computes statistics along the first non-singleton
% dimension of X, and normalizes the variance and standard deviation by N.
% ALLSTATE(X,[],0,[2.5 10 90 97.5]) computes statistics along the first
% non-singleton dimension and in addition returns 2.5%, 10%, 90% and 97.5%
% percentiles.
%
% See also MAX, MIN, MEAN, MEDIAN, MODE, STD, VAR
% Classification: Statistics
% D.C. Hanselman, University of Maine, Orono, ME 04469
% [email protected]
% Mastering MATLAB 7
% 2006-03-04, 2006-08-11 optional percentiles added
%
% The gracious assistance of John D'Errico and Urs Schwarz is hereby noted.
if nargin<1
error('allstats:NotEnoughInputArguments',...
'At Least One Input Argument Required.')
elseif ~isfloat(x)
error('allstats:InvalidInput','Input X Must be Single or Double.')
elseif ndims(x)>2
error('allstats:InvalidNumberofDimensions','X Must be 2D.')
elseif issparse(x)
error('allstats:NotFull','X Must Not be Sparse.')
elseif ~isreal(x)
error('allstats:NotReal','X Must be Real Valued.')
end
xsiz=size(x);
if nargin<2 || isempty(dim)
dim=find(xsiz>1,1);
end
if isempty(dim) || numel(dim)~=1 || fix(dim)~=dim || dim<1 || dim>ndims(x)
error('allstats:DimOutofRange','DIM Invalid.')
end
if nargin<3 || (nargin==3 && isempty(flag))
flag=0;
end
if numel(flag)~=1 || (flag~=0 && flag~=1)
error('allstate:InvalidInput','Flag Must be 0 or 1')
end
if nargin<4 % no optional P vector given
p=[];
else % optional P vector exists
if ~isnumeric(p) || any(p<=0) || any(p>=100)
error('allstats:InvalidInput',...
'P must contain values between 0 and 100.')
end
p=p(:)/100; % convert percentiles to raw numbers
pfn=reshape(sprintf('p%02d',1:length(p)),3,[])'; % field name char array
end
N=xsiz(dim);
if N==1 % one observation along chosed DIM, return defaults
sv=zeros(xsiz,class(x));
in=isnan(x);
s=struct('n',double(~in),'nan',double(in),'min',x,'q1',x,'median',x,...
'q3',x,'max',x,'mode',x,'mean',x,'std',sv,'var',sv,...
'skew',sv,'kurt',sv);
return
else % create struct for output
s=struct('n',[],'nan',[],'min',[],'q1',[],'median',[],'q3',[],'max',[],...
'mode',[],'mean',[],'std',[],'var',[],'skew',[],'kurt',[]);
end
tflag=false;
if dim==2 % work along DIM=1, convert back later if needed
x=x.';
tflag=true; % flag to note transpose taken
end
s.max=max(x); % built in max
s.min=min(x); % built in min
% To avoid redundant error checking and therefore maximize speed, implement
% other statistical measures here rather than call their respective M-files.
s.mean=nanmean(x,1); % mean
xs=x-repmat(s.mean,N,1); % subtract mean from each column
xss=xs.*xs;
s.var=nanmean(xss,flag); % var
s.std=sqrt(s.var); % std
s.skew=nanmean(xss.*xs,flag)./s.var.^(1.5); % skew
s.kurt=nanmean(xss.*xss,flag)./s.var.^2; % kurtosis
xs=sort(x); % sort data down columns, this puts NaNs last
inan=isnan(xs); % true for NaNs
s.nan=sum(inan); % number of NaNs per column
s.n=N-s.nan; % number of non-NaN observations per column
ic=s.nan==0; % columns where there are no NaNs
tmp=nan+zeros(size(s.mean),class(x)); % template
s.q1=tmp;
s.median=tmp;
s.q3=tmp;
if ~isempty(p) % place default output into optional percentiles
for k=1:length(p)
s.(pfn(k,:))=tmp;
end
end
% process columns having no NaNs to find percentiles and median
if any(ic)
q=[0, (0.5:N -0.5)/N, 1]';
xx=[s.min(ic); xs(:,ic); s.max(ic)];
xq=interp1q(q,xx,[1;2;3]/4); % fast interp
s.q1(ic)=xq(1,:); % q1
s.median(ic)=xq(2,:); % median
s.q3(ic)=xq(3,:); % q3
if ~isempty(p) % handle optional percentiles
xq=interp1q(q,xx,p);
for k=1:length(p)
s.(pfn(k,:))=xq(k,:);
end
end
end
% now process columns having NaNs
for k=find(s.nan & s.n>3) % columns having fewer than 4 non-NaNs return NaN
N=s.n(k);
q=[0, (0.5:N -0.5)/N, 1]';
xx=[s.min(k); xs(1:N,k); s.max(k)];
xq=interp1q(q,xx,[1;2;3]/4);
s.q1(k)=xq(1); % q1
s.median(k)=xq(2); % median
s.q3(k)=xq(3); % q3
if ~isempty(p) % handle optional percentiles
xq=interp1q(q,xx,p);
for kk=1:length(p)
s.(pfn(kk,:))(k)=xq(kk,:);
end
end
end
s.mode=tmp;% columns having fewer than 4 non-NaNs return NaN
cols=1:size(xs,2);
cols(s.n<4)=[];
for k=cols % get mode column by column
N=s.n(k);
y=[1;diff(xs(1:N,k))]~=0; % where distinct values begin
m=diff([find(y);N+1]); % counts
y=xs(y,k); % the unique values
[idx,idx]=max(m); %#ok
s.mode(k)=y(idx); % mode
end
if tflag && numel(s.min)~=1 % transpose data back for DIM = 2
s.n=s.n.';
s.nan=s.nan.';
s.min=s.min.';
s.q1=s.q1.';
s.median=s.median.';
s.q3=s.q3.';
s.max=s.max.';
s.mode=s.mode.';
s.mean=s.mean.';
s.var=s.var.';
s.std=s.std.';
s.skew=s.skew.';
s.kurt=s.kurt.';
if ~isempty(p) % handle optional percentiles
for k=1:length(p)
s.(pfn(k,:))=s.(pfn(k,:))';
end
end
end
%--------------------------------------------------------------------------
function m=nanmean(x,flag)
% mean along row dimension ignoring NaN elements
% flag is zero to divide by N-1
% flag is one to divide by N
bnan=isnan(x); % find NaNs in each column
N=size(x,1)-sum(bnan); % number of non-NaNs in each column
x(bnan)=0; % set NaN elements to zero
m=nan+zeros(1,size(x,2),class(x)); % default NaN output
idx=N>1; % columns that are not all NaNs
m(idx)=sum(x(:,idx))./(N(idx)-1+flag); % results excluding NaNs
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
kalmanf.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/toolboxes/kalman/kalmanf.m
| 7,331 |
utf_8
|
24eadc4b403a096819f5de7899ee4a61
|
% KALMANF - updates a system state vector estimate based upon an
% observation, using a discrete Kalman filter.
%
% Version 1.0, June 30, 2004
%
% This tutorial function was written by Michael C. Kleder
%
% INTRODUCTION
%
% Many people have heard of Kalman filtering, but regard the topic
% as mysterious. While it's true that deriving the Kalman filter and
% proving mathematically that it is "optimal" under a variety of
% circumstances can be rather intense, applying the filter to
% a basic linear system is actually very easy. This Matlab file is
% intended to demonstrate that.
%
% An excellent paper on Kalman filtering at the introductory level,
% without detailing the mathematical underpinnings, is:
% "An Introduction to the Kalman Filter"
% Greg Welch and Gary Bishop, University of North Carolina
% http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
%
% PURPOSE:
%
% The purpose of each iteration of a Kalman filter is to update
% the estimate of the state vector of a system (and the covariance
% of that vector) based upon the information in a new observation.
% The version of the Kalman filter in this function assumes that
% observations occur at fixed discrete time intervals. Also, this
% function assumes a linear system, meaning that the time evolution
% of the state vector can be calculated by means of a state transition
% matrix.
%
% USAGE:
%
% s = kalmanf(s)
%
% "s" is a "system" struct containing various fields used as input
% and output. The state estimate "x" and its covariance "P" are
% updated by the function. The other fields describe the mechanics
% of the system and are left unchanged. A calling routine may change
% these other fields as needed if state dynamics are time-dependent;
% otherwise, they should be left alone after initial values are set.
% The exceptions are the observation vectro "z" and the input control
% (or forcing function) "u." If there is an input function, then
% "u" should be set to some nonzero value by the calling routine.
%
% SYSTEM DYNAMICS:
%
% The system evolves according to the following difference equations,
% where quantities are further defined below:
%
% x = Ax + Bu + w meaning the state vector x evolves during one time
% step by premultiplying by the "state transition
% matrix" A. There is optionally (if nonzero) an input
% vector u which affects the state linearly, and this
% linear effect on the state is represented by
% premultiplying by the "input matrix" B. There is also
% gaussian process noise w.
% z = Hx + v meaning the observation vector z is a linear function
% of the state vector, and this linear relationship is
% represented by premultiplication by "observation
% matrix" H. There is also gaussian measurement
% noise v.
% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q
% v ~ N(0,R) meaning v is gaussian noise with covariance R
%
% VECTOR VARIABLES:
%
% s.x = state vector estimate. In the input struct, this is the
% "a priori" state estimate (prior to the addition of the
% information from the new observation). In the output struct,
% this is the "a posteriori" state estimate (after the new
% measurement information is included).
% s.z = observation vector
% s.u = input control vector, optional (defaults to zero).
%
% MATRIX VARIABLES:
%
% s.A = state transition matrix (defaults to identity).
% s.P = covariance of the state vector estimate. In the input struct,
% this is "a priori," and in the output it is "a posteriori."
% (required unless autoinitializing as described below).
% s.B = input matrix, optional (defaults to zero).
% s.Q = process noise covariance (defaults to zero).
% s.R = measurement noise covariance (required).
% s.H = observation matrix (defaults to identity).
%
% NORMAL OPERATION:
%
% (1) define all state definition fields: A,B,H,Q,R
% (2) define intial state estimate: x,P
% (3) obtain observation and control vectors: z,u
% (4) call the filter to obtain updated state estimate: x,P
% (5) return to step (3) and repeat
%
% INITIALIZATION:
%
% If an initial state estimate is unavailable, it can be obtained
% from the first observation as follows, provided that there are the
% same number of observable variables as state variables. This "auto-
% intitialization" is done automatically if s.x is absent or NaN.
%
% x = inv(H)*z
% P = inv(H)*R*inv(H')
%
% This is mathematically equivalent to setting the initial state estimate
% covariance to infinity.
%
% SCALAR EXAMPLE (Automobile Voltimeter):
%
% % Define the system as a constant of 12 volts:
% clear s
% s.x = 12;
% s.A = 1;
% % Define a process noise (stdev) of 2 volts as the car operates:
% s.Q = 2^2; % variance, hence stdev^2
% % Define the voltimeter to measure the voltage itself:
% s.H = 1;
% % Define a measurement error (stdev) of 2 volts:
% s.R = 2^2; % variance, hence stdev^2
% % Do not define any system input (control) functions:
% s.B = 0;
% s.u = 0;
% % Do not specify an initial state:
% s.x = nan;
% s.P = nan;
% % Generate random voltages and watch the filter operate.
% tru=[]; % truth voltage
% for t=1:20
% tru(end+1) = randn*2+12;
% s(end).z = tru(end) + randn*2; % create a measurement
% s(end+1)=kalmanf(s(end)); % perform a Kalman filter iteration
% end
% figure
% hold on
% grid on
% % plot measurement data:
% hz=plot([s(1:end-1).z],'r.');
% % plot a-posteriori state estimates:
% hk=plot([s(2:end).x],'b-');
% ht=plot(tru,'g-');
% legend([hz hk ht],'observations','Kalman output','true voltage',0)
% title('Automobile Voltimeter Example')
% hold off
function s = kalmanf(s)
% set defaults for absent fields:
if ~isfield(s,'x'); s.x=nan*z; end
if ~isfield(s,'P'); s.P=nan; end
if ~isfield(s,'z'); error('Observation vector missing'); end
if ~isfield(s,'u'); s.u=0; end
if ~isfield(s,'A'); s.A=eye(length(x)); end
if ~isfield(s,'B'); s.B=0; end
if ~isfield(s,'Q'); s.Q=zeros(length(x)); end
if ~isfield(s,'R'); error('Observation covariance missing'); end
if ~isfield(s,'H'); s.H=eye(length(x)); end
if isnan(s.x)
% initialize state estimate from first observation
if diff(size(s.H))
error('Observation matrix must be square and invertible for state autointialization.');
end
s.x = inv(s.H)*s.z;
s.P = inv(s.H)*s.R*inv(s.H');
else
% This is the code which implements the discrete Kalman filter:
% Prediction for state vector and covariance:
s.x = s.A*s.x + s.B*s.u;
s.P = s.A * s.P * s.A' + s.Q;
% Compute Kalman gain factor:
K = s.P*s.H'*inv(s.H*s.P*s.H'+s.R);
% Correction based on observation:
s.x = s.x + K*(s.z-s.H*s.x);
s.P = s.P - K*s.H*s.P;
% Note that the desired result, which is an improved estimate
% of the sytem state vector x and its covariance P, was obtained
% in only five lines of code, once the system was defined. (That's
% how simple the discrete Kalman filter is to use.) Later,
% we'll discuss how to deal with nonlinear systems.
end
return
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
plotSnippetsAndCoeffs.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/plotTools/plotSnippetsAndCoeffs.m
| 4,412 |
utf_8
|
8c1b2f6c8b785c3298ecad7bd7bd78e4
|
function plotSnippetsAndCoeffs(hit)
% tmp=hit.startFrames;
% tmp(2,:)=hit.endFrames-(tmp(1,:));
% tmp=[tmp [0;hit.orgNumFrames]];
YLabels{1,1}='dummy';
for i=1:hit.numHits
contains=strfind(YLabels,hit.hitProperties{i}.motionClass{1});
gra=0;
for gr=1:size(contains,1)
if ~isempty(contains{gr}) && ...
(length(YLabels{gr})==length(hit.hitProperties{i}.motionClass{1}))
gra=gra + 1;
end
end
if gra==0
YLabels=[YLabels; hit.hitProperties{i}.motionClass{1}];
end
end
YLabels{1}='Complete Motion';
% map=[1 1 1; 0.5 0 0];
% colormap(map);
figure;
gca=subplot(2,1,[1]);
% line([1 hit.orgNumFrames],[1 1],'linewidth',5);
for hitInd=1:hit.numHits
contains=strfind(YLabels,hit.hitProperties{hitInd}.motionClass{1});
pos=1;
while isempty(contains{pos})
pos=pos+1;
end
hand=line([hit.hitProperties{hitInd}.startFrame ...
hit.hitProperties{hitInd}.endFrame], ...
[pos pos], ...
'linewidth',20, ...
'color',[0.2 0.2 1]) ;
set(hand, 'buttondownFcn', {@motionPlayerCallback2, ...
hit.hitProperties{hitInd}.res.skel, ...
hit.hitProperties{hitInd}.res.origMotCut, ...
hit.hitProperties{hitInd}.res.skel, ...
hit.hitProperties{hitInd}.res.recMot});
end
hold on;
% for i=1:size(tmp,2)-1
% colormap(map);
% barh(i,tmp(1,i)+tmp(2,i),'stack','FaceColor','flat', ...
% 'BarWidth',0.7,'EdgeColor','flat', ...
% 'ButtonDownFcn',{@playResultOnClick, ...
% Tensor, ...
% hit.hitProperties{i}} ...
% );
%
% end
% colormap(map);
% barh(tmp','stack','FaceColor','flat', ...
% 'BarWidth',0.7,'EdgeColor','flat');
axis([0 hit.orgNumFrames 1.5 size(YLabels,1)+0.5]);
set(gca,'YTick',2:size(YLabels,1));
set(gca,'YTickLabel',YLabels(2:end,:));
set(gca,'XTick',1:100:hit.orgNumFrames);
set(gca,'XTickLabel',0:100:hit.orgNumFrames);
grid on;
set(gca,'Layer','top')
%
% x2 = axes('Position',get(x1,'Position'),...
% 'XAxisLocation','top',...
% 'YAxisLocation','right',...
% 'Color','none',...
% 'XColor','k','YColor','k');
% set (x2 ,'YTick',1:hit.numHits+1);
% set (x2 ,'YTickLabel',YLabels2);
xlabel('Frames');
handTitle=title(hit.amc,'Interpreter','None');
set(handTitle, 'buttondownFcn', {@motionPlayerCallback3, ...
hit.asf, ...
hit.amc});
hold off;
h2=subplot(2,1,[2]);
set(h2,'NextPlot','replacechildren')
set(h2,'ColorOrder',[1 0 0;0 1 0;0 0 1;0.5 0 0.5;0 0.5 0.5; 0.5 0.5 0]);
[numHits,coeffs,styleList]=countHitsPerFrameAndCoefs(hit);
% testcolors=lines(size(styleList,2));
testcolors=jet(size(styleList,2));
% testcolors=hot(size(styleList,2));
% testcolors=rand(size(styleList,2),3);
hold on;
for styleInd=1:size(styleList,2)
plot(coeffs.(styleList{styleInd})','color',testcolors(styleInd,:),'linewidth',5);
styleY=0.63-mod(styleInd,15)*0.02;
styleX=0.0+floor(styleInd/15)*0.1;
textH=annotation('textbox',[ styleX styleY 0.1 0.025]);
set(textH,'color',testcolors(styleInd,:));
set(textH,'string',styleList(styleInd));
set(textH,'EdgeColor','none');
end
hold off;
% countline=0;
% for l1=1:hit.numHits
% for l2=1:size(hit.hitProperties{l1}.styles,2)
% colind=1;
% while ~strcmp(styleList{colind},hit.hitProperties{l1}.styles{l2})
% colind=colind+1;
% end
%
% countline=countline+1;
%
%
% plot(coeffs(countline,:),'LineWidth',3,'color',testcolors(colind,:));
% end
% end
% legend on;
% legend(styleList);
% figure;surf(coeffs);
axis([0 hit.orgNumFrames -0.2 1.2]);
set(h2,'XTick',1:100:hit.orgNumFrames);
set(h2,'XTickLabel',0:100:hit.orgNumFrames);
grid on;
% % h3=subplot(3,1,[3]);
% % resE=plotRecErrors(hit);
% % axis([0 hit.orgNumFrames 0 50]);
% % set(h3,'XTick',1:100:hit.orgNumFrames);
% % set(h3,'XTickLabel',0:100:hit.orgNumFrames);
% % grid on;
end
function motionPlayerCallback2(src, eventdata, skel1, mot1, skel2, mot2)
motionplayer('skel',{skel1 skel2}, 'mot', {mot1 mot2});
end
function motionPlayerCallback3(src, eventdata, asf,amc)
infos=fileparts(amc);
[skel,mot]=readMocap(fullfile(infos,asf),amc);
motionplayer('skel',{skel}, 'mot', {mot});
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
plotMultiLayerResult.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/plotTools/plotMultiLayerResult.m
| 6,061 |
utf_8
|
487664f58abd695aa4d63822205f034d
|
function plotMultiLayerResult(annotation,hits4File)
global VARS_GLOBAL;
motClasses = fieldnames(annotation);
document=hits4File.amc;
figure;
set(gcf, 'renderer', 'painters') ;
set(gcf, 'name', [document]);
%% Collect Annotations for document.
% hitData = classificationResult.(class)((classificationResult.(class)(:,1) == currentDocument), [2:3, 6]);
h1=subplot(2,1,1);
handle=title(document,'interpreter','none');
set(handle,'ButtonDownFcn',{@motionPlayerCallbackLoad, hits4File.amc,1,hits4File.orgNumFrames*4});
set(h1, 'ytick', [1.5:2:length(motClasses)*2]);
set(h1, 'yticklabel', motClasses);
set(h1, 'XTick',1:100:hits4File.orgNumFrames);
set(h1, 'XTickLabel',0:100:hits4File.orgNumFrames);
axis([0 hits4File.orgNumFrames 0.5 length(motClasses)*2+0.5]);
for mClass=1:size(motClasses,1);
line([1, hits4File.orgNumFrames], [2*mClass+0.5, 2*mClass+0.5]);
hitData=zeros(1,2);
count=1;
if ~isempty(annotation.(motClasses{mClass}))
for i=1:size(annotation.(motClasses{mClass}),1);
if strcmp(strcat(VARS_GLOBAL.dir_root,annotation.(motClasses{mClass})(i,3)),document)
hitData(count,:)=cell2mat(annotation.(motClasses{mClass})(i,1:2));
files{count}=annotation.(motClasses{mClass})(i,3);
count=count+1;
end
end
end
for h=1:size(hitData, 1)
hitStart = hitData(h, 1);
hitEnd = hitData(h, 2);
% remap from 30Hz to 120 Hz
% animationStart = hitStart * 4 - 4 + 1;
% animationEnd = hitEnd * 4 - 4 + 1;
%draw rectangle
color = [1 0 0]; %[0 127 14]/255;
yPosition = mClass*2;
hitWidth = hitStart-hitEnd;
if hitWidth == 0
handle = line([hitStart, hitStart], [yPosition-0.3, yPosition+0.3], 'Color', [0,0,0], 'LineWidth', 1);
else
handle = rectangle('Position', [hitStart, yPosition-0.3,...
hitEnd - hitStart+1, 0.6],...
'EdgeColor', [0 0 0],...
'FaceColor', color,...
'LineWidth', 0.1);
set(handle,'ButtonDownFcn',{@motionPlayerCallbackLoad, fullfile(VARS_GLOBAL.dir_root,cell2mat(files{h})),hitData(h,1)*4,hitData(h,2)*4});
end
% set(handle,'ButtonDownFcn',{@animateRectOnClick,...
% docName,...
% animationStart,...
% animationEnd, ...
% cost,...
% hitStart,...
% hitEnd,...
% });
end
end
for hit=1:hits4File.numHits
mClassStr = hits4File.hitProperties{1,hit}.motionClass;
tmp=strfind(motClasses,cell2mat(mClassStr));
mClass=1;
while isempty(cell2mat(tmp(mClass)))
mClass=mClass+1;
end
hitStart=hits4File.startFrames(hit);
hitEnd =hits4File.endFrames (hit);
color = [0 0.7 0];
yPosition = 2*mClass-1;
hitWidth = hitStart-hitEnd;
if hitWidth == 0
handle = line([hitStart, hitStart], [yPosition-0.3, yPosition+0.3], 'Color', [0,0,0], 'LineWidth', 1);
else
handle = rectangle('Position', [hitStart, yPosition-0.3,...
hitEnd - hitStart+1, 0.6],...
'EdgeColor', [0 0 0],...
'FaceColor', color,...
'LineWidth', 0.1);
set(handle,'ButtonDownFcn',{@motionPlayerCallback1, ...
hits4File.hitProperties{1,hit}.res.skel, ...
hits4File.hitProperties{1,hit}.orgMot});
end
end
%% Collect PartDTW Hits for Document!
h2=subplot(2,1,2);
%create styleList
[numHits,coeffs,styleList]=countHitsPerFrameAndCoefs(hits4File);
set(h2, 'ytick', 1:1:size(styleList,2));
set(h2, 'yticklabel', styleList);
set(h2, 'XTick',1:100:hits4File.orgNumFrames);
set(h2, 'XTickLabel',0:100:hits4File.orgNumFrames);
for styInd=1:size(styleList,2)
line([1, hits4File.orgNumFrames], [styInd+0.5, styInd+0.5]);
end
axis([0 hits4File.orgNumFrames 0.5 size(styleList,2)+0.5]);
for hit=1:hits4File.numHits
[maxval,maxPos]=max(hits4File.hitProperties{1,hit}.res.coeffsX{1});
subClass=hits4File.hitProperties{1,hit}.styles{maxPos};
tmp=strfind(styleList,subClass);
mClass=1;
while isempty(cell2mat(tmp(mClass)))
mClass=mClass+1;
end
hitStart=hits4File.startFrames(hit);
hitEnd =hits4File.endFrames (hit);
if maxval>0.0
color=[0 0.7 0];
else
color=[0 1 0];
end
yPosition = mClass;
hitWidth = hitStart-hitEnd;
if hitWidth == 0
handle = line([hitStart, hitStart], [yPosition-0.3, yPosition+0.3], 'Color', [0,0,0], 'LineWidth', 1);
else
handle = rectangle('Position', [hitStart, yPosition-0.3,...
hitEnd - hitStart+1, 0.6],...
'EdgeColor', [0 0 0],...
'FaceColor', color,...
'LineWidth', 0.1);
set(handle,'ButtonDownFcn',{@motionPlayerCallback2, ...
hits4File.hitProperties{1,hit}.res.skel, ...
hits4File.hitProperties{1,hit}.orgMot, ...
hits4File.hitProperties{1,hit}.res.skel, ...
hits4File.hitProperties{1,hit}.recMotUnWarp});
end
end
end
function motionPlayerCallback1(src, eventdata, skel1, mot1)
motionplayer('skel',{skel1}, 'mot', {mot1});
end
function motionPlayerCallback2(src, eventdata, skel1, mot1, skel2, mot2)
motionplayer('skel',{skel1 skel2}, 'mot', {mot1 mot2});
end
function motionPlayerCallbackLoad(src, eventdata, amc, startF, endF)
infos=filename2info(amc);
[skel,mot] =readMocap(fullfile(infos.amcpath,infos.asfname),amc);
mot=cutMotion(mot,startF,endF);
motionplayer('skel',{skel}, 'mot', {mot});
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
plotMultiLayerResult2Fig.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/plotTools/plotMultiLayerResult2Fig.m
| 7,834 |
utf_8
|
6d24c03809181e6d076bdf9aecbcbed6
|
function plotMultiLayerResult2Fig(annotation,hits4File, parameter)
if nargin < 3
parameter = struct;
end
if isfield(parameter, 'printFigure') == 0
parameter.printFigure = 0;
end
if isfield(parameter, 'filenamePrefix') == 0
parameter.filenamePrefix = 'figures/tensorClassification_';
end
if isfield(parameter, 'paperPositionClassification') == 0
parameter.paperPositionClassification = [1,1,6.3,2.5];
end
if isfield(parameter, 'paperPositionPartDTW') == 0
parameter.paperPositionPartDTW = [1,1,6.3,2.5];
end
if isfield(parameter, 'omitTitle') == 0
parameter.omitTitle = 0;
end
global VARS_GLOBAL;
motClasses = flipud(fieldnames(annotation));
document=hits4File.amc;
docLength = hits4File.orgNumFrames;
figure();
set(gcf, 'renderer', 'painters') ;
set(gcf, 'name', [document]);
[temp, docShortName] = fileparts(document);
set(gcf, 'position',[50 50 1000 440]);
%% Collect Annotations for document.
% hitData = classificationResult.(class)((classificationResult.(class)(:,1) == currentDocument), [2:3, 6]);
% h1=subplot(2,1,1);
if parameter.omitTitle == 0
handle=title(document,'interpreter','none');
set(handle,'ButtonDownFcn',{@motionPlayerCallbackLoad, hits4File.amc,1,hits4File.orgNumFrames*4});
end
set(gca, 'ytick', [1.5:2:length(motClasses)*2]);
set(gca, 'yticklabel', motClasses);
% set(gca, 'XTick',1:100:hits4File.orgNumFrames);
% set(gca, 'XTickLabel',0:100:hits4File.orgNumFrames);
axis([0 hits4File.orgNumFrames 0.5 length(motClasses)*2+0.5]);
for mClass=1:size(motClasses,1);
line([1, hits4File.orgNumFrames], [2*mClass+0.5, 2*mClass+0.5]);
hitData=zeros(1,2);
count=1;
if ~isempty(annotation.(motClasses{mClass}))
for i=1:size(annotation.(motClasses{mClass}),1);
if strcmp(strcat(VARS_GLOBAL.dir_root,annotation.(motClasses{mClass})(i,3)),document)
hitData(count,:)=cell2mat(annotation.(motClasses{mClass})(i,1:2));
files{count}=annotation.(motClasses{mClass})(i,3);
count=count+1;
end
end
end
for h=1:size(hitData, 1)
hitStart = hitData(h, 1);
hitEnd = hitData(h, 2);
% remap from 30Hz to 120 Hz
% animationStart = hitStart * 4 - 4 + 1;
% animationEnd = hitEnd * 4 - 4 + 1;
%draw rectangle
color = [1 0 0]; %[0 127 14]/255;
yPosition = mClass*2;
hitWidth = hitStart-hitEnd;
if hitWidth == 0
handle = line([hitStart, hitStart], [yPosition-0.3, yPosition+0.3], 'Color', [0,0,0], 'LineWidth', 1);
else
handle = rectangle('Position', [hitStart, yPosition-0.3,...
hitEnd - hitStart+1, 0.6],...
'EdgeColor', [0 0 0],...
'FaceColor', color,...
'LineWidth', 0.1);
set(handle,'ButtonDownFcn',{@motionPlayerCallbackLoad, fullfile(VARS_GLOBAL.dir_root,cell2mat(files{h})),hitData(h,1)*4,hitData(h,2)*4});
end
% set(handle,'ButtonDownFcn',{@animateRectOnClick,...
% docName,...
% animationStart,...
% animationEnd, ...
% cost,...
% hitStart,...
% hitEnd,...
% });
end
end
for hit=1:hits4File.numHits
mClassStr = hits4File.hitProperties{1,hit}.motionClass;
tmp=strfind(motClasses,cell2mat(mClassStr));
mClass=1;
while isempty(cell2mat(tmp(mClass)))
mClass=mClass+1;
end
hitStart=hits4File.startFrames(hit);
hitEnd =hits4File.endFrames (hit);
color = [0 0.7 0];
yPosition = 2*mClass-1;
hitWidth = hitStart-hitEnd;
if hitWidth == 0
handle = line([hitStart, hitStart], [yPosition-0.3, yPosition+0.3], 'Color', [0,0,0], 'LineWidth', 1);
else
handle = rectangle('Position', [hitStart, yPosition-0.3,...
hitEnd - hitStart+1, 0.6],...
'EdgeColor', [0 0 0],...
'FaceColor', color,...
'LineWidth', 0.1);
set(handle,'ButtonDownFcn',{@motionPlayerCallback1, ...
hits4File.hitProperties{1,hit}.res.skel, ...
hits4File.hitProperties{1,hit}.orgMot});
end
end
line([docLength, docLength], [0.5, 2*length(motClasses)+0.5], 'Color', [0,0,0]);
line([1, docLength], [2*length(motClasses)+0.5, 2*length(motClasses)+0.5], 'Color', [0,0,0]);
if parameter.printFigure
set(gcf, 'paperPosition', parameter.paperPositionPartDTW);
filename = [parameter.filenamePrefix '_PartDTW_' docShortName '.eps'];
print('-depsc2', filename);
end
%% Collect PartDTW Hits for Document!
figure();
set(gcf, 'renderer', 'painters') ;
set(gcf, 'name', [document]);
set(gcf, 'position',[50 500 1000 440]);
if parameter.omitTitle == 0
handle=title(document,'interpreter','none');
end
%create styleList
[numHits,coeffs,styleList]=countHitsPerFrameAndCoefs(hits4File);
ylabels = renameSubclasses(styleList);
set(gca, 'ytick', 1:1:size(styleList,2));
set(gca, 'yticklabel', ylabels);
% set(gca, 'XTick',1:100:hits4File.orgNumFrames);
% set(gca, 'XTickLabel',0:100:hits4File.orgNumFrames);
for styInd=1:size(styleList,2)
line([1, hits4File.orgNumFrames], [styInd+0.5, styInd+0.5]);
end
axis([0 hits4File.orgNumFrames 0.5 size(styleList,2)+0.5]);
for hit=1:hits4File.numHits
[maxval,maxPos]=max(hits4File.hitProperties{1,hit}.res.coeffsX{1});
subClass=hits4File.hitProperties{1,hit}.styles{maxPos};
tmp=strfind(styleList,subClass);
mClass=1;
while isempty(cell2mat(tmp(mClass)))
mClass=mClass+1;
end
hitStart=hits4File.startFrames(hit);
hitEnd =hits4File.endFrames (hit);
if maxval>0.0
color=[0 0.7 0];
else
color=[0 1 0];
end
yPosition = mClass;
hitWidth = hitStart-hitEnd;
if hitWidth == 0
handle = line([hitStart, hitStart], [yPosition-0.3, yPosition+0.3], 'Color', [0,0,0], 'LineWidth', 1);
else
handle = rectangle('Position', [hitStart, yPosition-0.3,...
hitEnd - hitStart+1, 0.6],...
'EdgeColor', [0 0 0],...
'FaceColor', color,...
'LineWidth', 0.1);
set(handle,'ButtonDownFcn',{@motionPlayerCallback2, ...
hits4File.hitProperties{1,hit}.res.skel, ...
hits4File.hitProperties{1,hit}.orgMot, ...
hits4File.hitProperties{1,hit}.res.skel, ...
hits4File.hitProperties{1,hit}.recMotUnWarp});
end
end
line([docLength, docLength], [0.5, 2*length(motClasses)+0.5], 'Color', [0,0,0]);
line([1, docLength], [length(styleList)+0.5, length(styleList)+0.5], 'Color', [0,0,0]);
if parameter.printFigure
set(gcf, 'paperPosition', parameter.paperPositionClassification);
filename = [parameter.filenamePrefix '_Classification_' docShortName '.eps'];
print('-depsc2', filename);
end
end
function motionPlayerCallback1(src, eventdata, skel1, mot1)
motionplayer('skel',{skel1}, 'mot', {mot1});
end
function motionPlayerCallback2(src, eventdata, skel1, mot1, skel2, mot2)
motionplayer('skel',{skel1 skel2}, 'mot', {mot1 mot2});
end
function motionPlayerCallbackLoad(src, eventdata, amc, startF, endF)
infos=filename2info(amc);
[skel,mot] =readMocap(fullfile(infos.amcpath,infos.asfname),amc);
mot=cutMotion(mot,startF,endF);
motionplayer('skel',{skel}, 'mot', {mot});
end
|
github
|
umariqb/3D_Pose_Estimation_CVPR2016-master
|
C_forwardKinematicsWrapper.m
|
.m
|
3D_Pose_Estimation_CVPR2016-master/tools_intern/efficiency/C_forwardKinematicsWrapper.m
| 1,939 |
utf_8
|
85e2913a5509cecf6714dac9d41ed2fb
|
function [jointTrajectories,skel] = C_forwardKinematicsWrapper(skel,rootTranslation,rotationQuat)
if nargin == 1
if ~isfield(skel,'parents')
skel.parents = computeParentsLocal(skel);
end
if ~isfield(skel,'bones')
skel.bones = computeBonesLocal(skel);
end
jointTrajectories = 0;
else
nframes = size(rootTranslation,2);
if ~isfield(skel,'parents')
skel.parents = computeParentsLocal(skel);
end
if ~isfield(skel,'bones')
skel.bones = computeBonesLocal(skel);
end
if iscell(rotationQuat)
if ~isempty(skel.unanimated)
if isempty(rotationQuat{skel.unanimated(1)})
rotationQuat(skel.unanimated) = {[ ones(1,nframes); ...
zeros(3,nframes)]};
end
end
rotationQuat = cell2mat(rotationQuat);
end
if size(rotationQuat,1)<skel.njoints*4
rotationQuat = [rotationQuat(1:4,:); ...
ones(1,nframes); ...
zeros(3,nframes); ...
rotationQuat(5:20,:);...
ones(1,nframes); ...
zeros(3,nframes); ...
rotationQuat(21:end,:)];
end
jointTrajectories = C_forwardKinematics(skel.parents,skel.bones,rootTranslation,rotationQuat);
end
end
function bones = computeBonesLocal(skel)
bones = zeros(3,skel.njoints);
for i=1:skel.njoints
bones(:,i) = skel.nodes(i,1).offset;
end
end
function parents = computeParentsLocal(skel)
parents = zeros(1,skel.njoints);
for i=1:skel.njoints
parents(:,i) = skel.nodes(i,1).parentID;
end
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
cmaes.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/cmaes.m
| 116,994 |
utf_8
|
966f8e72ff09eb059beb3cf37d4e50a0
|
function [xmin, ... % minimum search point of last iteration
fmin, ... % function value of xmin
counteval, ... % number of function evaluations done
stopflag, ... % stop criterion reached
out, ... % struct with various histories and solutions
bestever ... % struct containing overall best solution (for convenience)
] = cmaes( ...
fitfun, ... % name of objective/fitness function
xstart, ... % objective variables initial point, determines N
insigma, ... % initial coordinate wise standard deviation(s)
inopts, ... % options struct, see defopts below
varargin ) % arguments passed to objective function
% cmaes.m, Version 3.61.beta, last change: April, 2012
% CMAES implements an Evolution Strategy with Covariance Matrix
% Adaptation (CMA-ES) for nonlinear function minimization. For
% introductory comments and copyright (GPL) see end of file (type
% 'type cmaes'). cmaes.m runs with MATLAB (Windows, Linux) and,
% without data logging and plotting, it should run under Octave
% (Linux, package octave-forge is needed).
%
% OPTS = CMAES returns default options.
% OPTS = CMAES('defaults') returns default options quietly.
% OPTS = CMAES('displayoptions') displays options.
% OPTS = CMAES('defaults', OPTS) supplements options OPTS with default
% options.
%
% XMIN = CMAES(FUN, X0, SIGMA[, OPTS]) locates an approximate minimum
% XMIN of function FUN starting from column vector X0 with the initial
% coordinate wise search standard deviation SIGMA.
%
% Input arguments:
%
% FUN is a string function name like 'frosen'. FUN takes as argument
% a column vector of size of X0 and returns a scalar. An easy way to
% implement a hard non-linear constraint is to return NaN. Then,
% this function evaluation is not counted and a newly sampled
% point is tried immediately.
%
% X0 is a column vector, or a matrix, or a string. If X0 is a matrix,
% mean(X0, 2) is taken as initial point. If X0 is a string like
% '2*rand(10,1)-1', the string is evaluated first.
%
% SIGMA is a scalar, or a column vector of size(X0,1), or a string
% that can be evaluated into one of these. SIGMA determines the
% initial coordinate wise standard deviations for the search.
% Setting SIGMA one third of the initial search region is
% appropriate, e.g., the initial point in [0, 6]^10 and SIGMA=2
% means cmaes('myfun', 3*rand(10,1), 2). If SIGMA is missing and
% size(X0,2) > 1, SIGMA is set to sqrt(var(X0')'). That is, X0 is
% used as a sample for estimating initial mean and variance of the
% search distribution.
%
% OPTS (an optional argument) is a struct holding additional input
% options. Valid field names and a short documentation can be
% discovered by looking at the default options (type 'cmaes'
% without arguments, see above). Empty or missing fields in OPTS
% invoke the default value, i.e. OPTS needs not to have all valid
% field names. Capitalization does not matter and unambiguous
% abbreviations can be used for the field names. If a string is
% given where a numerical value is needed, the string is evaluated
% by eval, where 'N' expands to the problem dimension
% (==size(X0,1)) and 'popsize' to the population size.
%
% [XMIN, FMIN, COUNTEVAL, STOPFLAG, OUT, BESTEVER] = ...
% CMAES(FITFUN, X0, SIGMA)
% returns the best (minimal) point XMIN (found in the last
% generation); function value FMIN of XMIN; the number of needed
% function evaluations COUNTEVAL; a STOPFLAG value as cell array,
% where possible entries are 'fitness', 'tolx', 'tolupx', 'tolfun',
% 'maxfunevals', 'maxiter', 'stoptoresume', 'manual',
% 'warnconditioncov', 'warnnoeffectcoord', 'warnnoeffectaxis',
% 'warnequalfunvals', 'warnequalfunvalhist', 'bug' (use
% e.g. any(strcmp(STOPFLAG, 'tolx')) or findstr(strcat(STOPFLAG,
% 'tolx')) for further processing); a record struct OUT with some
% more output, where the struct SOLUTIONS.BESTEVER contains the overall
% best evaluated point X with function value F evaluated at evaluation
% count EVALS. The last output argument BESTEVER equals
% OUT.SOLUTIONS.BESTEVER. Moreover a history of solutions and
% parameters is written to files according to the Log-options.
%
% A regular manual stop can be achieved via the file signals.par. The
% program is terminated if the first two non-white sequences in any
% line of this file are 'stop' and the value of the LogFilenamePrefix
% option (by default 'outcmaes'). Also a run can be skipped.
% Given, for example, 'skip outcmaes run 2', skips the second run
% if option Restarts is at least 2, and another run will be started.
%
% To run the code completely silently set Disp, Save, and Log options
% to 0. With OPTS.LogModulo > 0 (1 by default) the most important
% data are written to ASCII files permitting to investigate the
% results (e.g. plot with function plotcmaesdat) even while CMAES is
% still running (which can be quite useful on expensive objective
% functions). When OPTS.SaveVariables==1 (default) everything is saved
% in file OPTS.SaveFilename (default 'variablescmaes.mat') allowing to
% resume the search afterwards by using the resume option.
%
% To find the best ever evaluated point load the variables typing
% "es=load('variablescmaes')" and investigate the variable
% es.out.solutions.bestever.
%
% In case of a noisy objective function (uncertainties) set
% OPTS.Noise.on = 1. This option interferes presumably with some
% termination criteria, because the step-size sigma will presumably
% not converge to zero anymore. If CMAES was provided with a
% fifth argument (P1 in the below example, which is passed to the
% objective function FUN), this argument is multiplied with the
% factor given in option Noise.alphaevals, each time the detected
% noise exceeds a threshold. This argument can be used within
% FUN, for example, as averaging number to reduce the noise level.
%
% OPTS.DiagonalOnly > 1 defines the number of initial iterations,
% where the covariance matrix remains diagonal and the algorithm has
% internally linear time complexity. OPTS.DiagonalOnly = 1 means
% keeping the covariance matrix always diagonal and this setting
% also exhibits linear space complexity. This can be particularly
% useful for dimension > 100. The default is OPTS.DiagonalOnly = 0.
%
% OPTS.CMA.active = 1 turns on "active CMA" with a negative update
% of the covariance matrix and checks for positive definiteness.
% OPTS.CMA.active = 2 does not check for pos. def. and is numerically
% faster. Active CMA usually speeds up the adaptation and might
% become a default in near future.
%
% The primary strategy parameter to play with is OPTS.PopSize, which
% can be increased from its default value. Increasing the population
% size (by default linked to increasing parent number OPTS.ParentNumber)
% improves global search properties in exchange to speed. Speed
% decreases, as a rule, at most linearely with increasing population
% size. It is advisable to begin with the default small population
% size. The options Restarts and IncPopSize can be used for an
% automated multistart where the population size is increased by the
% factor IncPopSize (two by default) before each restart. X0 (given as
% string) is reevaluated for each restart. Stopping options
% StopFunEvals, StopIter, MaxFunEvals, and Fitness terminate the
% program, all others including MaxIter invoke another restart, where
% the iteration counter is reset to zero.
%
% Examples:
%
% XMIN = cmaes('myfun', 5*ones(10,1), 1.5);
%
% starts the search at 10D-point 5 and initially searches mainly
% between 5-3 and 5+3 (+- two standard deviations), but this is not
% a strict bound. 'myfun' is a name of a function that returns a
% scalar from a 10D column vector.
%
% opts.LBounds = 0; opts.UBounds = 10;
% opts.Restarts = 3; % doubles the popsize for each restart
% X = cmaes('myfun', 10*rand(10,1), 5, opts);
%
% searches within lower bound of 0 and upper bound of 10. Bounds can
% also be given as column vectors. If the optimum is not located
% on the boundary, use rather a penalty approach to handle bounds.
%
% opts=cmaes;
% opts.StopFitness=1e-10;
% X=cmaes('myfun', rand(5,1), 0.5, opts);
%
% stops the search, if the function value is smaller than 1e-10.
%
% [X, F, E, STOP, OUT] = cmaes('myfun2', 'rand(5,1)', 1, [], P1, P2);
%
% passes two additional parameters to the function MYFUN2.
%
% See also FMINSEARCH, FMINUNC, FMINBND.
% TODO:
% write dispcmaesdat for Matlab (and Octave)
% control savemodulo and plotmodulo via signals.par
cmaVersion = '3.62.beta';
% ----------- Set Defaults for Input Parameters and Options -------------
% These defaults may be edited for convenience
% Input Defaults (obsolete, these are obligatory now)
definput.fitfun = 'felli'; % frosen; fcigar; see end of file for more
definput.xstart = rand(10,1); % 0.50*ones(10,1);
definput.sigma = 0.3;
% Options defaults: Stopping criteria % (value of stop flag)
defopts.StopFitness = '-Inf % stop if f(xmin) < stopfitness, minimization';
defopts.MaxFunEvals = 'Inf % maximal number of fevals';
defopts.MaxIter = '1e3*(N+5)^2/sqrt(popsize) % maximal number of iterations';
defopts.StopFunEvals = 'Inf % stop after resp. evaluation, possibly resume later';
defopts.StopIter = 'Inf % stop after resp. iteration, possibly resume later';
defopts.TolX = '1e-11*max(insigma) % stop if x-change smaller TolX';
defopts.TolUpX = '1e3*max(insigma) % stop if x-changes larger TolUpX';
defopts.TolFun = '1e-12 % stop if fun-changes smaller TolFun';
defopts.TolHistFun = '1e-13 % stop if back fun-changes smaller TolHistFun';
defopts.StopOnStagnation = 'on % stop when fitness stagnates for a long time';
% TODO: stagnation has four parameters for the period: min = 120, const = 30N/lam, rel = 0.2, max = 2e5
% defopts.StopOnStagnation = '[120 30*N/popsize 0.2 2e5] % [min const rel_iter max] measuring period';
defopts.StopOnWarnings = 'yes % ''no''==''off''==0, ''on''==''yes''==1 ';
defopts.StopOnEqualFunctionValues = '2 + N/3 % number of iterations';
% Options defaults: Other
defopts.DiffMaxChange = 'Inf % maximal variable change(s), can be Nx1-vector';
defopts.DiffMinChange = '0 % minimal variable change(s), can be Nx1-vector';
defopts.WarnOnEqualFunctionValues = ...
'yes % ''no''==''off''==0, ''on''==''yes''==1 ';
defopts.LBounds = '-Inf % lower bounds, scalar or Nx1-vector';
defopts.UBounds = 'Inf % upper bounds, scalar or Nx1-vector';
defopts.EvalParallel = 'no % objective function FUN accepts NxM matrix, with M>1?';
defopts.EvalInitialX = 'yes % evaluation of initial solution';
defopts.Restarts = '0 % number of restarts ';
defopts.IncPopSize = '2 % multiplier for population size before each restart';
defopts.PopSize = '(4 + floor(3*log(N))) % population size, lambda';
defopts.ParentNumber = 'floor(popsize/2) % AKA mu, popsize equals lambda';
defopts.RecombinationWeights = 'superlinear decrease % or linear, or equal';
defopts.DiagonalOnly = '0*(1+100*N/sqrt(popsize))+(N>=1000) % C is diagonal for given iterations, 1==always';
defopts.Noise.on = '0 % uncertainty handling is off by default';
defopts.Noise.reevals = '1*ceil(0.05*lambda) % nb. of re-evaluated for uncertainty measurement';
defopts.Noise.theta = '0.5 % threshold to invoke uncertainty treatment'; % smaller: more likely to diverge
defopts.Noise.cum = '0.3 % cumulation constant for uncertainty';
defopts.Noise.cutoff = '2*lambda/3 % rank change cutoff for summation';
defopts.Noise.alphasigma = '1+2/(N+10) % factor for increasing sigma'; % smaller: slower adaptation
defopts.Noise.epsilon = '1e-7 % additional relative perturbation before reevaluation';
defopts.Noise.minmaxevals = '[1 inf] % min and max value of 2nd arg to fitfun, start value is 5th arg to cmaes';
defopts.Noise.alphaevals = '1+2/(N+10) % factor for increasing 2nd arg to fitfun';
defopts.Noise.callback = '[] % callback function when uncertainty threshold is exceeded';
% defopts.TPA = 0;
defopts.CMA.cs = '(mueff+2)/(N+mueff+3) % cumulation constant for step-size';
%qqq defopts.CMA.cs = (mueff^0.5)/(N^0.5+mueff^0.5) % the short time horizon version
defopts.CMA.damps = '1 + 2*max(0,sqrt((mueff-1)/(N+1))-1) + cs % damping for step-size';
% defopts.CMA.ccum = '4/(N+4) % cumulation constant for covariance matrix';
defopts.CMA.ccum = '(4 + mueff/N) / (N+4 + 2*mueff/N) % cumulation constant for pc';
defopts.CMA.ccov1 = '2 / ((N+1.3)^2+mueff) % learning rate for rank-one update';
defopts.CMA.ccovmu = '2 * (mueff-2+1/mueff) / ((N+2)^2+mueff) % learning rate for rank-mu update';
defopts.CMA.on = 'yes';
defopts.CMA.active = '0 % active CMA, 1: neg. updates with pos. def. check, 2: neg. updates';
flg_future_setting = 0; % testing for possible future variant(s)
if flg_future_setting
disp('in the future')
% damps setting from Brockhoff et al 2010
% this damps diverges with popsize 400:
% defopts.CMA.damps = '2*mueff/lambda + 0.3 + cs % damping for step-size';
% cmaeshtml('benchmarkszero', ones(20,1)*2, 5, o, 15);
% how about:
% defopts.CMA.damps = '2*mueff/lambda + 0.3 + 2*max(0,sqrt((mueff-1)/(N+1))-1) + cs % damping for step-size';
defopts.CMA.damps = '0.5 + 0.5*min(1, (0.27*lambda/mueff-1)^2) + 2*max(0,sqrt((mueff-1)/(N+1))-1) + cs % damping for step-size';
if 11 < 3
defopts.CMA.damps = '0.5 + 0.5*min(1,(lam_mirr/(0.159*lambda)-1)^2) + 2*max(0,sqrt((mueff-1)/(N+1))-1) + cs % damping for step-size';
defopts.mirrored_offspring = 'floor(0.5 + 0.159 * lambda)';
% TODO: this should also depend on diagonal option!?
defopts.CMA.active = 'floor(int8(lam_mirr>0)) % active CMA 1: neg. updates with pos. def. check, 2: neg. updates';
end
% ccum adjusted for large mueff, better on schefelmult?
% TODO: this should also depend on diagonal option!?
defopts.CMA.ccum = '(4 + mueff/N) / (N+4 + 2*mueff/N) % cumulation constant for pc';
defopts.CMA.active = '1 % active CMA 1: neg. updates with pos. def. check, 2: neg. updates';
end
defopts.Resume = 'no % resume former run from SaveFile';
defopts.Science = 'on % off==do some additional (minor) problem capturing, NOT IN USE';
defopts.ReadSignals = 'on % from file signals.par for termination, yet a stumb';
defopts.Seed = 'sum(100*clock) % evaluated if it is a string';
defopts.DispFinal = 'on % display messages like initial and final message';
defopts.DispModulo = '100 % [0:Inf], disp messages after every i-th iteration';
defopts.SaveVariables = 'on % [on|final|off][-v6] save variables to .mat file';
defopts.SaveFilename = 'variablescmaes.mat % save all variables, see SaveVariables';
defopts.LogModulo = '1 % [0:Inf] if >1 record data less frequently after gen=100';
defopts.LogTime = '25 % [0:100] max. percentage of time for recording data';
defopts.LogFilenamePrefix = 'outcmaes % files for output data';
defopts.LogPlot = 'off % plot while running using output data files';
%qqqkkk
%defopts.varopt1 = ''; % 'for temporary and hacking purposes';
%defopts.varopt2 = ''; % 'for temporary and hacking purposes';
defopts.UserData = 'for saving data/comments associated with the run';
defopts.UserDat2 = ''; 'for saving data/comments associated with the run';
% ---------------------- Handling Input Parameters ----------------------
if nargin < 1 || isequal(fitfun, 'defaults') % pass default options
if nargin < 1
disp('Default options returned (type "help cmaes" for help).');
end
xmin = defopts;
if nargin > 1 % supplement second argument with default options
xmin = getoptions(xstart, defopts);
end
return;
end
if isequal(fitfun, 'displayoptions')
names = fieldnames(defopts);
for name = names'
disp([name{:} repmat(' ', 1, 20-length(name{:})) ': ''' defopts.(name{:}) '''']);
end
return;
end
input.fitfun = fitfun; % record used input
if isempty(fitfun)
% fitfun = definput.fitfun;
% warning(['Objective function not determined, ''' fitfun ''' used']);
error(['Objective function not determined']);
end
if ~ischar(fitfun)
error('first argument FUN must be a string');
end
if nargin < 2
xstart = [];
end
input.xstart = xstart;
if isempty(xstart)
% xstart = definput.xstart; % objective variables initial point
% warning('Initial search point, and problem dimension, not determined');
error('Initial search point, and problem dimension, not determined');
end
if nargin < 3
insigma = [];
end
if isa(insigma, 'struct')
error(['Third argument SIGMA must be (or eval to) a scalar '...
'or a column vector of size(X0,1)']);
end
input.sigma = insigma;
if isempty(insigma)
if all(size(myeval(xstart)) > 1)
insigma = std(xstart, 0, 2);
if any(insigma == 0)
error(['Initial search volume is zero, choose SIGMA or X0 appropriate']);
end
else
% will be captured later
% error(['Initial step sizes (SIGMA) not determined']);
end
end
% Compose options opts
if nargin < 4 || isempty(inopts) % no input options available
inopts = [];
opts = defopts;
else
opts = getoptions(inopts, defopts);
end
i = strfind(opts.SaveFilename, '%'); % remove everything after comment
if ~isempty(i)
opts.SaveFilename = opts.SaveFilename(1:i(1)-1);
end
opts.SaveFilename = deblank(opts.SaveFilename); % remove trailing white spaces
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
counteval = 0; countevalNaN = 0;
irun = 0;
while irun <= myeval(opts.Restarts) % for-loop does not work with resume
irun = irun + 1;
% ------------------------ Initialization -------------------------------
% Handle resuming of old run
flgresume = myevalbool(opts.Resume);
xmean = myeval(xstart);
if all(size(xmean) > 1)
xmean = mean(xmean, 2); % in case if xstart is a population
elseif size(xmean, 2) > 1
xmean = xmean';
end
if ~flgresume % not resuming a former run
% Assign settings from input parameters and options for myeval...
N = size(xmean, 1); numberofvariables = N;
lambda0 = floor(myeval(opts.PopSize) * myeval(opts.IncPopSize)^(irun-1));
% lambda0 = floor(myeval(opts.PopSize) * 3^floor((irun-1)/2));
popsize = lambda0;
lambda = lambda0;
insigma = myeval(insigma);
if all(size(insigma) == [N 2])
insigma = 0.5 * (insigma(:,2) - insigma(:,1));
end
else % flgresume is true, do resume former run
tmp = whos('-file', opts.SaveFilename);
for i = 1:length(tmp)
if strcmp(tmp(i).name, 'localopts');
error('Saved variables include variable "localopts", please remove');
end
end
local.opts = opts; % keep stopping and display options
local.varargin = varargin;
load(opts.SaveFilename);
varargin = local.varargin;
flgresume = 1;
% Overwrite old stopping and display options
opts.StopFitness = local.opts.StopFitness;
%%opts.MaxFunEvals = local.opts.MaxFunEvals;
%%opts.MaxIter = local.opts.MaxIter;
opts.StopFunEvals = local.opts.StopFunEvals;
opts.StopIter = local.opts.StopIter;
opts.TolX = local.opts.TolX;
opts.TolUpX = local.opts.TolUpX;
opts.TolFun = local.opts.TolFun;
opts.TolHistFun = local.opts.TolHistFun;
opts.StopOnStagnation = local.opts.StopOnStagnation;
opts.StopOnWarnings = local.opts.StopOnWarnings;
opts.ReadSignals = local.opts.ReadSignals;
opts.DispFinal = local.opts.DispFinal;
opts.LogPlot = local.opts.LogPlot;
opts.DispModulo = local.opts.DispModulo;
opts.SaveVariables = local.opts.SaveVariables;
opts.LogModulo = local.opts.LogModulo;
opts.LogTime = local.opts.LogTime;
clear local; % otherwise local would be overwritten during load
end
%--------------------------------------------------------------
% Evaluate options
stopFitness = myeval(opts.StopFitness);
stopMaxFunEvals = myeval(opts.MaxFunEvals);
stopMaxIter = myeval(opts.MaxIter);
stopFunEvals = myeval(opts.StopFunEvals);
stopIter = myeval(opts.StopIter);
if flgresume
stopIter = stopIter + countiter
end
stopTolX = myeval(opts.TolX);
stopTolUpX = myeval(opts.TolUpX);
stopTolFun = myeval(opts.TolFun);
stopTolHistFun = myeval(opts.TolHistFun);
stopOnStagnation = myevalbool(opts.StopOnStagnation);
stopOnWarnings = myevalbool(opts.StopOnWarnings);
flgreadsignals = myevalbool(opts.ReadSignals);
flgWarnOnEqualFunctionValues = myevalbool(opts.WarnOnEqualFunctionValues);
flgEvalParallel = myevalbool(opts.EvalParallel);
stopOnEqualFunctionValues = myeval(opts.StopOnEqualFunctionValues);
arrEqualFunvals = zeros(1, 10+N);
flgDiagonalOnly = myeval(opts.DiagonalOnly);
flgActiveCMA = myeval(opts.CMA.active);
noiseHandling = myevalbool(opts.Noise.on);
noiseMinMaxEvals = myeval(opts.Noise.minmaxevals);
noiseAlphaEvals = myeval(opts.Noise.alphaevals);
noiseCallback = myeval(opts.Noise.callback);
flgdisplay = myevalbool(opts.DispFinal);
flgplotting = myevalbool(opts.LogPlot);
verbosemodulo = myeval(opts.DispModulo);
flgscience = myevalbool(opts.Science);
flgsaving = [];
strsaving = [];
if strfind(opts.SaveVariables, '-v6')
i = strfind(opts.SaveVariables, '%');
if isempty(i) || i == 0 || strfind(opts.SaveVariables, '-v6') < i
strsaving = '-v6';
flgsaving = 1;
flgsavingfinal = 1;
end
end
if strncmp('final', opts.SaveVariables, 5)
flgsaving = 0;
flgsavingfinal = 1;
end
if isempty(flgsaving)
flgsaving = myevalbool(opts.SaveVariables);
flgsavingfinal = flgsaving;
end
savemodulo = myeval(opts.LogModulo);
savetime = myeval(opts.LogTime);
i = strfind(opts.LogFilenamePrefix, ' '); % remove everything after white space
if ~isempty(i)
opts.LogFilenamePrefix = opts.LogFilenamePrefix(1:i(1)-1);
end
% TODO here silent option? set disp, save and log options to 0
%--------------------------------------------------------------
if (isfinite(stopFunEvals) || isfinite(stopIter)) && ~flgsaving
warning('To resume later the saving option needs to be set');
end
% Do more checking and initialization
if flgresume % resume is on
time.t0 = clock;
if flgdisplay
disp([' resumed from ' opts.SaveFilename ]);
end
if counteval >= stopMaxFunEvals
error(['MaxFunEvals exceeded, use StopFunEvals as stopping ' ...
'criterion before resume']);
end
if countiter >= stopMaxIter
error(['MaxIter exceeded, use StopIter as stopping criterion ' ...
'before resume']);
end
else % flgresume
% xmean = mean(myeval(xstart), 2); % evaluate xstart again, because of irun
maxdx = myeval(opts.DiffMaxChange); % maximal sensible variable change
mindx = myeval(opts.DiffMinChange); % minimal sensible variable change
% can both also be defined as Nx1 vectors
lbounds = myeval(opts.LBounds);
ubounds = myeval(opts.UBounds);
if length(lbounds) == 1
lbounds = repmat(lbounds, N, 1);
end
if length(ubounds) == 1
ubounds = repmat(ubounds, N, 1);
end
if isempty(insigma) % last chance to set insigma
if all(lbounds > -Inf) && all(ubounds < Inf)
if any(lbounds>=ubounds)
error('upper bound must be greater than lower bound');
end
insigma = 0.3*(ubounds-lbounds);
stopTolX = myeval(opts.TolX); % reevaluate these
stopTolUpX = myeval(opts.TolUpX);
else
error(['Initial step sizes (SIGMA) not determined']);
end
end
% Check all vector sizes
if size(xmean, 2) > 1 || size(xmean,1) ~= N
error(['intial search point should be a column vector of size ' ...
num2str(N)]);
elseif ~(all(size(insigma) == [1 1]) || all(size(insigma) == [N 1]))
error(['input parameter SIGMA should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(stopTolX, 2) > 1 || ~ismember(size(stopTolX, 1), [1 N])
error(['option TolX should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(stopTolUpX, 2) > 1 || ~ismember(size(stopTolUpX, 1), [1 N])
error(['option TolUpX should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(maxdx, 2) > 1 || ~ismember(size(maxdx, 1), [1 N])
error(['option DiffMaxChange should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(mindx, 2) > 1 || ~ismember(size(mindx, 1), [1 N])
error(['option DiffMinChange should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(lbounds, 2) > 1 || ~ismember(size(lbounds, 1), [1 N])
error(['option lbounds should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(ubounds, 2) > 1 || ~ismember(size(ubounds, 1), [1 N])
error(['option ubounds should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
end
% Initialize dynamic internal state parameters
if any(insigma <= 0)
error(['Initial search volume (SIGMA) must be greater than zero']);
end
if max(insigma)/min(insigma) > 1e6
error(['Initial search volume (SIGMA) badly conditioned']);
end
sigma = max(insigma); % overall standard deviation
pc = zeros(N,1); ps = zeros(N,1); % evolution paths for C and sigma
if length(insigma) == 1
insigma = insigma * ones(N,1) ;
end
diagD = insigma/max(insigma); % diagonal matrix D defines the scaling
diagC = diagD.^2;
if flgDiagonalOnly ~= 1 % use at some point full covariance matrix
B = eye(N,N); % B defines the coordinate system
BD = B.*repmat(diagD',N,1); % B*D for speed up only
C = diag(diagC); % covariance matrix == BD*(BD)'
end
if flgDiagonalOnly
B = 1;
end
fitness.hist=NaN*ones(1,10+ceil(3*10*N/lambda)); % history of fitness values
fitness.histsel=NaN*ones(1,10+ceil(3*10*N/lambda)); % history of fitness values
fitness.histbest=[]; % history of fitness values
fitness.histmedian=[]; % history of fitness values
% Initialize boundary handling
bnd.isactive = any(lbounds > -Inf) || any(ubounds < Inf);
if bnd.isactive
if any(lbounds>ubounds)
error('lower bound found to be greater than upper bound');
end
[xmean ti] = xintobounds(xmean, lbounds, ubounds); % just in case
if any(ti)
warning('Initial point was out of bounds, corrected');
end
bnd.weights = zeros(N,1); % weights for bound penalty
% scaling is better in axis-parallel case, worse in rotated
bnd.flgscale = 0; % scaling will be omitted if zero
if bnd.flgscale ~= 0
bnd.scale = diagC/mean(diagC);
else
bnd.scale = ones(N,1);
end
idx = (lbounds > -Inf) | (ubounds < Inf);
if length(idx) == 1
idx = idx * ones(N,1);
end
bnd.isbounded = zeros(N,1);
bnd.isbounded(find(idx)) = 1;
maxdx = min(maxdx, (ubounds - lbounds)/2);
if any(sigma*sqrt(diagC) > maxdx)
fac = min(maxdx ./ sqrt(diagC))/sigma;
sigma = min(maxdx ./ sqrt(diagC));
warning(['Initial SIGMA multiplied by the factor ' num2str(fac) ...
', because it was larger than half' ...
' of one of the boundary intervals']);
end
idx = (lbounds > -Inf) & (ubounds < Inf);
dd = diagC;
if any(5*sigma*sqrt(dd(idx)) < ubounds(idx) - lbounds(idx))
warning(['Initial SIGMA is, in at least one coordinate, ' ...
'much smaller than the '...
'given boundary intervals. For reasonable ' ...
'global search performance SIGMA should be ' ...
'between 0.2 and 0.5 of the bounded interval in ' ...
'each coordinate. If all coordinates have ' ...
'lower and upper bounds SIGMA can be empty']);
end
bnd.dfithist = 1; % delta fit for setting weights
bnd.aridxpoints = []; % remember complete outside points
bnd.arfitness = []; % and their fitness
bnd.validfitval = 0;
bnd.iniphase = 1;
end
% ooo initial feval, for output only
if irun == 1
out.solutions.bestever.x = xmean;
out.solutions.bestever.f = Inf; % for simpler comparison below
out.solutions.bestever.evals = counteval;
bestever = out.solutions.bestever;
end
if myevalbool(opts.EvalInitialX)
fitness.hist(1)=feval(fitfun, xmean, varargin{:});
fitness.histsel(1)=fitness.hist(1);
counteval = counteval + 1;
if fitness.hist(1) < out.solutions.bestever.f
out.solutions.bestever.x = xmean;
out.solutions.bestever.f = fitness.hist(1);
out.solutions.bestever.evals = counteval;
bestever = out.solutions.bestever;
end
else
fitness.hist(1)=NaN;
fitness.histsel(1)=NaN;
end
% initialize random number generator
if ischar(opts.Seed)
randn('state', eval(opts.Seed)); % random number generator state
else
randn('state', opts.Seed);
end
%qqq
% load(opts.SaveFilename, 'startseed');
% randn('state', startseed);
% disp(['SEED RELOADED FROM ' opts.SaveFilename]);
startseed = randn('state'); % for retrieving in saved variables
% Initialize further constants
chiN=N^0.5*(1-1/(4*N)+1/(21*N^2)); % expectation of
% ||N(0,I)|| == norm(randn(N,1))
countiter = 0;
% Initialize records and output
if irun == 1
time.t0 = clock;
% TODO: keep also median solution?
out.evals = counteval; % should be first entry
out.stopflag = {};
outiter = 0;
% Write headers to output data files
filenameprefix = opts.LogFilenamePrefix;
if savemodulo && savetime
filenames = {};
filenames(end+1) = {'axlen'};
filenames(end+1) = {'fit'};
filenames(end+1) = {'stddev'};
filenames(end+1) = {'xmean'};
filenames(end+1) = {'xrecentbest'};
str = [' (startseed=' num2str(startseed(2)) ...
', ' num2str(clock, '%d/%02d/%d %d:%d:%2.2f') ')'];
for namecell = filenames(:)'
name = namecell{:};
[fid, err] = fopen(['./' filenameprefix name '.dat'], 'w');
if fid < 1 % err ~= 0
warning(['could not open ' filenameprefix name '.dat']);
filenames(find(strcmp(filenames,name))) = [];
else
% fprintf(fid, '%s\n', ...
% ['<CMAES-OUTPUT version="' cmaVersion '">']);
% fprintf(fid, [' <NAME>' name '</NAME>\n']);
% fprintf(fid, [' <DATE>' date() '</DATE>\n']);
% fprintf(fid, ' <PARAMETERS>\n');
% fprintf(fid, [' dimension=' num2str(N) '\n']);
% fprintf(fid, ' </PARAMETERS>\n');
% different cases for DATA columns annotations here
% fprintf(fid, ' <DATA');
if strcmp(name, 'axlen')
fprintf(fid, ['%% columns="iteration, evaluation, sigma, ' ...
'max axis length, min axis length, ' ...
'all principal axes lengths (sorted square roots ' ...
'of eigenvalues of C)"' str]);
elseif strcmp(name, 'fit')
fprintf(fid, ['%% columns="iteration, evaluation, sigma, axis ratio, bestever,' ...
' best, median, worst fitness function value,' ...
' further objective values of best"' str]);
elseif strcmp(name, 'stddev')
fprintf(fid, ['%% columns=["iteration, evaluation, sigma, void, void, ' ...
'stds==sigma*sqrt(diag(C))"' str]);
elseif strcmp(name, 'xmean')
fprintf(fid, ['%% columns="iteration, evaluation, void, ' ...
'void, void, xmean"' str]);
elseif strcmp(name, 'xrecentbest')
fprintf(fid, ['%% columns="iteration, evaluation, fitness, ' ...
'void, void, xrecentbest"' str]);
end
fprintf(fid, '\n'); % DATA
if strcmp(name, 'xmean')
fprintf(fid, '%ld %ld 0 0 0 ', 0, counteval);
% fprintf(fid, '%ld %ld 0 0 %e ', countiter, counteval, fmean);
%qqq fprintf(fid, msprintf('%e ', genophenotransform(out.genopheno, xmean)) + '\n');
fprintf(fid, '%e ', xmean);
fprintf(fid, '\n');
end
fclose(fid);
clear fid; % preventing
end
end % for files
end % savemodulo
end % irun == 1
end % else flgresume
% -------------------- Generation Loop --------------------------------
stopflag = {};
while isempty(stopflag)
% set internal parameters
if countiter == 0 || lambda ~= lambda_last
if countiter > 0 && floor(log10(lambda)) ~= floor(log10(lambda_last)) ...
&& flgdisplay
disp([' lambda = ' num2str(lambda)]);
lambda_hist(:,end+1) = [countiter+1; lambda];
else
lambda_hist = [countiter+1; lambda];
end
lambda_last = lambda;
% Strategy internal parameter setting: Selection
mu = myeval(opts.ParentNumber); % number of parents/points for recombination
if strncmp(lower(opts.RecombinationWeights), 'equal', 3)
weights = ones(mu,1); % (mu_I,lambda)-CMA-ES
elseif strncmp(lower(opts.RecombinationWeights), 'linear', 3)
weights = mu+0.5-(1:mu)';
elseif strncmp(lower(opts.RecombinationWeights), 'superlinear', 3)
% use (lambda+1)/2 as reference if mu < lambda/2
weights = log(max(mu, lambda/2) + 1/2)-log(1:mu)'; % muXone array for weighted recombination
else
error(['Recombination weights to be "' opts.RecombinationWeights ...
'" is not implemented']);
end
mueff=sum(weights)^2/sum(weights.^2); % variance-effective size of mu
weights = weights/sum(weights); % normalize recombination weights array
if mueff == lambda
error(['Combination of values for PopSize, ParentNumber and ' ...
' and RecombinationWeights is not reasonable']);
end
% Strategy internal parameter setting: Adaptation
cc = myeval(opts.CMA.ccum); % time constant for cumulation for covariance matrix
cs = myeval(opts.CMA.cs);
% old way TODO: remove this at some point
% mucov = mueff; % size of mu used for calculating learning rate ccov
% ccov = (1/mucov) * 2/(N+1.41)^2 ... % learning rate for covariance matrix
% + (1-1/mucov) * min(1,(2*mucov-1)/((N+2)^2+mucov));
% new way
if myevalbool(opts.CMA.on)
ccov1 = myeval(opts.CMA.ccov1);
ccovmu = min(1-ccov1, myeval(opts.CMA.ccovmu));
else
ccov1 = 0;
ccovmu = 0;
end
% flgDiagonalOnly = -lambda*4*1/ccov; % for ccov==1 it is not needed
% 0 : C will never be diagonal anymore
% 1 : C will always be diagonal
% >1: C is diagonal for first iterations, set to 0 afterwards
if flgDiagonalOnly < 1
flgDiagonalOnly = 0;
end
if flgDiagonalOnly
ccov1_sep = min(1, ccov1 * (N+1.5) / 3);
ccovmu_sep = min(1-ccov1_sep, ccovmu * (N+1.5) / 3);
elseif N > 98 && flgdisplay && countiter == 0
disp('consider option DiagonalOnly for high-dimensional problems');
end
% ||ps|| is close to sqrt(mueff/N) for mueff large on linear fitness
%damps = ... % damping for step size control, usually close to one
% (1 + 2*max(0,sqrt((mueff-1)/(N+1))-1)) ... % limit sigma increase
% * max(0.3, ... % reduce damps, if max. iteration number is small
% 1 - N/min(stopMaxIter,stopMaxFunEvals/lambda)) + cs;
damps = myeval(opts.CMA.damps);
if noiseHandling
noiseReevals = min(myeval(opts.Noise.reevals), lambda);
noiseAlpha = myeval(opts.Noise.alphasigma);
noiseEpsilon = myeval(opts.Noise.epsilon);
noiseTheta = myeval(opts.Noise.theta);
noisecum = myeval(opts.Noise.cum);
noiseCutOff = myeval(opts.Noise.cutoff); % arguably of minor relevance
else
noiseReevals = 0; % more convenient in later coding
end
%qqq hacking of a different parameter setting, e.g. for ccov or damps,
% can be done here, but is not necessary anymore, see opts.CMA.
% ccov1 = 0.0*ccov1; disp(['CAVE: ccov1=' num2str(ccov1)]);
% ccovmu = 0.0*ccovmu; disp(['CAVE: ccovmu=' num2str(ccovmu)]);
% damps = inf*damps; disp(['CAVE: damps=' num2str(damps)]);
% cc = 1; disp(['CAVE: cc=' num2str(cc)]);
end
% Display initial message
if countiter == 0 && flgdisplay
if mu == 1
strw = '100';
elseif mu < 8
strw = [sprintf('%.0f', 100*weights(1)) ...
sprintf(' %.0f', 100*weights(2:end)')];
else
strw = [sprintf('%.2g ', 100*weights(1:2)') ...
sprintf('%.2g', 100*weights(3)') '...' ...
sprintf(' %.2g', 100*weights(end-1:end)') ']%, '];
end
if irun > 1
strrun = [', run ' num2str(irun)];
else
strrun = '';
end
disp([' n=' num2str(N) ': (' num2str(mu) ',' ...
num2str(lambda) ')-CMA-ES(w=[' ...
strw ']%, ' ...
'mu_eff=' num2str(mueff,'%.1f') ...
') on function ' ...
(fitfun) strrun]);
if flgDiagonalOnly == 1
disp(' C is diagonal');
elseif flgDiagonalOnly
disp([' C is diagonal for ' num2str(floor(flgDiagonalOnly)) ' iterations']);
end
end
flush;
countiter = countiter + 1;
% Generate and evaluate lambda offspring
fitness.raw = repmat(NaN, 1, lambda + noiseReevals);
% parallel evaluation
if flgEvalParallel
arz = randn(N,lambda);
if ~flgDiagonalOnly
arx = repmat(xmean, 1, lambda) + sigma * (BD * arz); % Eq. (1)
else
arx = repmat(xmean, 1, lambda) + repmat(sigma * diagD, 1, lambda) .* arz;
end
if noiseHandling
if noiseEpsilon == 0
arx = [arx arx(:,1:noiseReevals)];
elseif flgDiagonalOnly
arx = [arx arx(:,1:noiseReevals) + ...
repmat(noiseEpsilon * sigma * diagD, 1, noiseReevals) ...
.* randn(N,noiseReevals)];
else
arx = [arx arx(:,1:noiseReevals) + ...
noiseEpsilon * sigma * ...
(BD * randn(N,noiseReevals))];
end
end
% You may handle constraints here. You may either resample
% arz(:,k) and/or multiply it with a factor between -1 and 1
% (the latter will decrease the overall step size) and
% recalculate arx accordingly. Do not change arx or arz in any
% other way.
if ~bnd.isactive
arxvalid = arx;
else
arxvalid = xintobounds(arx, lbounds, ubounds);
end
% You may handle constraints here. You may copy and alter
% (columns of) arxvalid(:,k) only for the evaluation of the
% fitness function. arx and arxvalid should not be changed.
fitness.raw = feval(fitfun, arxvalid, varargin{:});
countevalNaN = countevalNaN + sum(isnan(fitness.raw));
counteval = counteval + sum(~isnan(fitness.raw));
end
% non-parallel evaluation and remaining NaN-values
% set also the reevaluated solution to NaN
fitness.raw(lambda + find(isnan(fitness.raw(1:noiseReevals)))) = NaN;
for k=find(isnan(fitness.raw)),
% fitness.raw(k) = NaN;
tries = flgEvalParallel; % in parallel case this is the first re-trial
% Resample, until fitness is not NaN
while isnan(fitness.raw(k))
if k <= lambda % regular samples (not the re-evaluation-samples)
arz(:,k) = randn(N,1); % (re)sample
if flgDiagonalOnly
arx(:,k) = xmean + sigma * diagD .* arz(:,k); % Eq. (1)
else
arx(:,k) = xmean + sigma * (BD * arz(:,k)); % Eq. (1)
end
else % re-evaluation solution with index > lambda
if flgDiagonalOnly
arx(:,k) = arx(:,k-lambda) + (noiseEpsilon * sigma) * diagD .* randn(N,1);
else
arx(:,k) = arx(:,k-lambda) + (noiseEpsilon * sigma) * (BD * randn(N,1));
end
end
% You may handle constraints here. You may either resample
% arz(:,k) and/or multiply it with a factor between -1 and 1
% (the latter will decrease the overall step size) and
% recalculate arx accordingly. Do not change arx or arz in any
% other way.
if ~bnd.isactive
arxvalid(:,k) = arx(:,k);
else
arxvalid(:,k) = xintobounds(arx(:,k), lbounds, ubounds);
end
% You may handle constraints here. You may copy and alter
% (columns of) arxvalid(:,k) only for the evaluation of the
% fitness function. arx should not be changed.
fitness.raw(k) = feval(fitfun, arxvalid(:,k), varargin{:});
tries = tries + 1;
if isnan(fitness.raw(k))
countevalNaN = countevalNaN + 1;
end
if mod(tries, 100) == 0
warning([num2str(tries) ...
' NaN objective function values at evaluation ' ...
num2str(counteval)]);
end
end
counteval = counteval + 1; % retries due to NaN are not counted
end
fitness.sel = fitness.raw;
% ----- handle boundaries -----
if 1 < 3 && bnd.isactive
% Get delta fitness values
val = myprctile(fitness.raw, [25 75]);
% more precise would be exp(mean(log(diagC)))
val = (val(2) - val(1)) / N / mean(diagC) / sigma^2;
%val = (myprctile(fitness.raw, 75) - myprctile(fitness.raw, 25)) ...
% / N / mean(diagC) / sigma^2;
% Catch non-sensible values
if ~isfinite(val)
warning('Non-finite fitness range');
val = max(bnd.dfithist);
elseif val == 0 % happens if all points are out of bounds
val = min(bnd.dfithist(bnd.dfithist>0)); % seems not to make sense, given all solutions are out of bounds
elseif bnd.validfitval == 0 % flag that first sensible val was found
bnd.dfithist = [];
bnd.validfitval = 1;
end
% Store delta fitness values
if length(bnd.dfithist) < 20+(3*N)/lambda
bnd.dfithist = [bnd.dfithist val];
else
bnd.dfithist = [bnd.dfithist(2:end) val];
end
[tx ti] = xintobounds(xmean, lbounds, ubounds);
% Set initial weights
if bnd.iniphase
if any(ti)
bnd.weights(find(bnd.isbounded)) = 2.0002 * median(bnd.dfithist);
if bnd.flgscale == 0 % scale only initial weights then
dd = diagC;
idx = find(bnd.isbounded);
dd = dd(idx) / mean(dd); % remove mean scaling
bnd.weights(idx) = bnd.weights(idx) ./ dd;
end
if bnd.validfitval && countiter > 2
bnd.iniphase = 0;
end
end
end
% Increase weights
if 1 < 3 && any(ti) % any coordinate of xmean out of bounds
% judge distance of xmean to boundary
tx = xmean - tx;
idx = (ti ~= 0 & abs(tx) > 3*max(1,sqrt(N)/mueff) ...
* sigma*sqrt(diagC)) ;
% only increase if xmean is moving away
idx = idx & (sign(tx) == sign(xmean - xold));
if ~isempty(idx) % increase
% the factor became 1.2 instead of 1.1, because
% changed from max to min in version 3.52
bnd.weights(idx) = 1.2^(min(1, mueff/10/N)) * bnd.weights(idx);
end
end
% Calculate scaling biased to unity, product is one
if bnd.flgscale ~= 0
bnd.scale = exp(0.9*(log(diagC)-mean(log(diagC))));
end
% Assigned penalized fitness
bnd.arpenalty = (bnd.weights ./ bnd.scale)' * (arxvalid - arx).^2;
fitness.sel = fitness.raw + bnd.arpenalty;
end % handle boundaries
% ----- end handle boundaries -----
% compute noise measurement and reduce fitness arrays to size lambda
if noiseHandling
[noiseS] = local_noisemeasurement(fitness.sel(1:lambda), ...
fitness.sel(lambda+(1:noiseReevals)), ...
noiseReevals, noiseTheta, noiseCutOff);
if countiter == 1 % TODO: improve this very rude way of initialization
noiseSS = 0;
noiseN = 0; % counter for mean
end
noiseSS = noiseSS + noisecum * (noiseS - noiseSS);
% noise-handling could be done here, but the original sigma is still needed
% disp([noiseS noiseSS noisecum])
fitness.rawar12 = fitness.raw; % just documentary
fitness.selar12 = fitness.sel; % just documentary
% qqq refine fitness based on both values
if 11 < 3 % TODO: in case of outliers this mean is counterproductive
% median out of three would be ok
fitness.raw(1:noiseReevals) = ... % not so raw anymore
(fitness.raw(1:noiseReevals) + fitness.raw(lambda+(1:noiseReevals))) / 2;
fitness.sel(1:noiseReevals) = ...
(fitness.sel(1:noiseReevals) + fitness.sel(lambda+(1:noiseReevals))) / 2;
end
fitness.raw = fitness.raw(1:lambda);
fitness.sel = fitness.sel(1:lambda);
end
% Sort by fitness
[fitness.raw, fitness.idx] = sort(fitness.raw);
[fitness.sel, fitness.idxsel] = sort(fitness.sel); % minimization
fitness.hist(2:end) = fitness.hist(1:end-1); % record short history of
fitness.hist(1) = fitness.raw(1); % best fitness values
if length(fitness.histbest) < 120+ceil(30*N/lambda) || ...
(mod(countiter, 5) == 0 && length(fitness.histbest) < 2e4) % 20 percent of 1e5 gen.
fitness.histbest = [fitness.raw(1) fitness.histbest]; % best fitness values
fitness.histmedian = [median(fitness.raw) fitness.histmedian]; % median fitness values
else
fitness.histbest(2:end) = fitness.histbest(1:end-1);
fitness.histmedian(2:end) = fitness.histmedian(1:end-1);
fitness.histbest(1) = fitness.raw(1); % best fitness values
fitness.histmedian(1) = median(fitness.raw); % median fitness values
end
fitness.histsel(2:end) = fitness.histsel(1:end-1); % record short history of
fitness.histsel(1) = fitness.sel(1); % best sel fitness values
% Calculate new xmean, this is selection and recombination
xold = xmean; % for speed up of Eq. (2) and (3)
cmean = 1; % 1/min(max((lambda-1*N)/2, 1), N); % == 1/kappa
xmean = (1-cmean) * xold + cmean * arx(:,fitness.idxsel(1:mu))*weights;
zmean = arz(:,fitness.idxsel(1:mu))*weights;%==D^-1*B'*(xmean-xold)/sigma
if mu == 1
fmean = fitness.sel(1);
else
fmean = NaN; % [] does not work in the latter assignment
% fmean = feval(fitfun, xintobounds(xmean, lbounds, ubounds), varargin{:});
% counteval = counteval + 1;
end
% Cumulation: update evolution paths
ps = (1-cs)*ps + sqrt(cs*(2-cs)*mueff) * (B*zmean); % Eq. (4)
hsig = norm(ps)/sqrt(1-(1-cs)^(2*countiter))/chiN < 1.4 + 2/(N+1);
if flg_future_setting
hsig = sum(ps.^2) / (1-(1-cs)^(2*countiter)) / N < 2 + 4/(N+1); % just simplified
end
% hsig = norm(ps)/sqrt(1-(1-cs)^(2*countiter))/chiN < 1.4 + 2/(N+1);
% hsig = norm(ps)/sqrt(1-(1-cs)^(2*countiter))/chiN < 1.5 + 1/(N-0.5);
% hsig = norm(ps) < 1.5 * sqrt(N);
% hsig = 1;
pc = (1-cc)*pc ...
+ hsig*(sqrt(cc*(2-cc)*mueff)/sigma/cmean) * (xmean-xold); % Eq. (2)
if hsig == 0
% disp([num2str(countiter) ' ' num2str(counteval) ' pc update stalled']);
end
% Adapt covariance matrix
neg.ccov = 0; % TODO: move parameter setting upwards at some point
if ccov1 + ccovmu > 0 % Eq. (3)
if flgDiagonalOnly % internal linear(?) complexity
diagC = (1-ccov1_sep-ccovmu_sep+(1-hsig)*ccov1_sep*cc*(2-cc)) * diagC ... % regard old matrix
+ ccov1_sep * pc.^2 ... % plus rank one update
+ ccovmu_sep ... % plus rank mu update
* (diagC .* (arz(:,fitness.idxsel(1:mu)).^2 * weights));
% * (repmat(diagC,1,mu) .* arz(:,fitness.idxsel(1:mu)).^2 * weights);
diagD = sqrt(diagC); % replaces eig(C)
else
arpos = (arx(:,fitness.idxsel(1:mu))-repmat(xold,1,mu)) / sigma;
% "active" CMA update: negative update, in case controlling pos. definiteness
if flgActiveCMA > 0
% set parameters
neg.mu = mu;
neg.mueff = mueff;
if flgActiveCMA > 10 % flat weights with mu=lambda/2
neg.mu = floor(lambda/2);
neg.mueff = neg.mu;
end
% neg.mu = ceil(min([N, lambda/4, mueff])); neg.mueff = mu; % i.e. neg.mu <= N
% Parameter study: in 3-D lambda=50,100, 10-D lambda=200,400, 30-D lambda=1000,2000 a
% three times larger neg.ccov does not work.
% increasing all ccov rates three times does work (probably because of the factor (1-ccovmu))
% in 30-D to looks fine
neg.ccov = (1 - ccovmu) * 0.25 * neg.mueff / ((N+2)^1.5 + 2*neg.mueff);
neg.minresidualvariance = 0.66; % keep at least 0.66 in all directions, small popsize are most critical
neg.alphaold = 0.5; % where to make up for the variance loss, 0.5 means no idea what to do
% 1 is slightly more robust and gives a better "guaranty" for pos. def.,
% but does it make sense from the learning perspective for large ccovmu?
neg.ccovfinal = neg.ccov;
% prepare vectors, compute negative updating matrix Cneg and checking matrix Ccheck
arzneg = arz(:,fitness.idxsel(lambda:-1:lambda - neg.mu + 1));
% i-th longest becomes i-th shortest
% TODO: this is not in compliance with the paper Hansen&Ros2010,
% where simply arnorms = arnorms(end:-1:1) ?
[arnorms idxnorms] = sort(sqrt(sum(arzneg.^2, 1)));
[ignore idxnorms] = sort(idxnorms); % inverse index
arnormfacs = arnorms(end:-1:1) ./ arnorms;
% arnormfacs = arnorms(randperm(neg.mu)) ./ arnorms;
arnorms = arnorms(end:-1:1); % for the record
if flgActiveCMA < 20
arzneg = arzneg .* repmat(arnormfacs(idxnorms), N, 1); % E x*x' is N
% arzneg = sqrt(N) * arzneg ./ repmat(sqrt(sum(arzneg.^2, 1)), N, 1); % E x*x' is N
end
if flgActiveCMA < 10 && neg.mu == mu % weighted sum
if mod(flgActiveCMA, 10) == 1 % TODO: prevent this with a less tight but more efficient check (see below)
Ccheck = arzneg * diag(weights) * arzneg'; % in order to check the largest EV
end
artmp = BD * arzneg;
Cneg = artmp * diag(weights) * artmp';
else % simple sum
if mod(flgActiveCMA, 10) == 1
Ccheck = (1/neg.mu) * arzneg*arzneg'; % in order to check largest EV
end
artmp = BD * arzneg;
Cneg = (1/neg.mu) * artmp*artmp';
end
% check pos.def. and set learning rate neg.ccov accordingly,
% this check makes the original choice of neg.ccov extremly failsafe
% still assuming C == BD*BD', which is only approxim. correct
if mod(flgActiveCMA, 10) == 1 && 1 - neg.ccov * arnorms(idxnorms).^2 * weights < neg.minresidualvariance
% TODO: the simple and cheap way would be to set
% fac = 1 - ccovmu - ccov1 OR 1 - mueff/lambda and
% neg.ccov = fac*(1 - neg.minresidualvariance) / (arnorms(idxnorms).^2 * weights)
% this is the more sophisticated way:
% maxeigenval = eigs(arzneg * arzneg', 1, 'lm', eigsopts); % not faster
maxeigenval = max(eig(Ccheck)); % norm is much slower, because (norm()==max(svd())
%disp([countiter log10([neg.ccov, maxeigenval, arnorms(idxnorms).^2 * weights, max(arnorms)^2]), ...
% neg.ccov * arnorms(idxnorms).^2 * weights])
% pause
% remove less than ??34*(1-cmu)%?? of variance in any direction
% 1-ccovmu is the variance left from the old C
neg.ccovfinal = min(neg.ccov, (1-ccovmu)*(1-neg.minresidualvariance)/maxeigenval);
% -ccov1 removed to avoid error message??
if neg.ccovfinal < neg.ccov
disp(['active CMA at iteration ' num2str(countiter) ...
': max EV ==', num2str([maxeigenval, neg.ccov, neg.ccovfinal])]);
end
end
% xmean = xold; % the distribution does not degenerate!?
% update C
C = (1-ccov1-ccovmu+neg.alphaold*neg.ccovfinal+(1-hsig)*ccov1*cc*(2-cc)) * C ... % regard old matrix
+ ccov1 * pc*pc' ... % plus rank one update
+ (ccovmu + (1-neg.alphaold)*neg.ccovfinal) ... % plus rank mu update
* arpos * (repmat(weights,1,N) .* arpos') ...
- neg.ccovfinal * Cneg; % minus rank mu update
else % no active (negative) update
C = (1-ccov1-ccovmu+(1-hsig)*ccov1*cc*(2-cc)) * C ... % regard old matrix
+ ccov1 * pc*pc' ... % plus rank one update
+ ccovmu ... % plus rank mu update
* arpos * (repmat(weights,1,N) .* arpos');
% is now O(mu*N^2 + mu*N), was O(mu*N^2 + mu^2*N) when using diag(weights)
% for mu=30*N it is now 10 times faster, overall 3 times faster
end
diagC = diag(C);
end
end
% the following is de-preciated and will be removed in future
% better setting for cc makes this hack obsolete
if 11 < 2 && ~flgscience
% remove momentum in ps, if ps is large and fitness is getting worse.
% this should rarely happen.
% this might very well be counterproductive in dynamic environments
if sum(ps.^2)/N > 1.5 + 10*(2/N)^.5 && ...
fitness.histsel(1) > max(fitness.histsel(2:3))
ps = ps * sqrt(N*(1+max(0,log(sum(ps.^2)/N))) / sum(ps.^2));
if flgdisplay
disp(['Momentum in ps removed at [niter neval]=' ...
num2str([countiter counteval]) ']']);
end
end
end
% Adapt sigma
if flg_future_setting % according to a suggestion from Dirk Arnold (2000)
% exp(1) is still not reasonably small enough, maybe 2/3?
sigma = sigma * exp(min(1, (sum(ps.^2)/N - 1)/2 * cs/damps)); % Eq. (5)
else
% exp(1) is still not reasonably small enough
sigma = sigma * exp(min(1, (sqrt(sum(ps.^2))/chiN - 1) * cs/damps)); % Eq. (5)
end
% disp([countiter norm(ps)/chiN]);
if 11 < 3 % testing with optimal step-size
if countiter == 1
disp('*********** sigma set to const * ||x|| ******************');
end
sigma = 0.04 * mueff * sqrt(sum(xmean.^2)) / N; % 20D,lam=1000:25e3
sigma = 0.3 * mueff * sqrt(sum(xmean.^2)) / N; % 20D,lam=(40,1000):17e3
% 75e3 with def (1.5)
% 35e3 with damps=0.25
end
if 11 < 3
if countiter == 1
disp('*********** xmean set to const ******************');
end
xmean = ones(N,1);
end
% Update B and D from C
if ~flgDiagonalOnly && (ccov1+ccovmu+neg.ccov) > 0 && mod(countiter, 1/(ccov1+ccovmu+neg.ccov)/N/10) < 1
C=triu(C)+triu(C,1)'; % enforce symmetry to prevent complex numbers
[B,tmp] = eig(C); % eigen decomposition, B==normalized eigenvectors
% effort: approx. 15*N matrix-vector multiplications
diagD = diag(tmp);
if any(~isfinite(diagD))
clear idx; % prevents error under octave
save(['tmp' opts.SaveFilename]);
error(['function eig returned non-finited eigenvalues, cond(C)=' ...
num2str(cond(C)) ]);
end
if any(any(~isfinite(B)))
clear idx; % prevents error under octave
save(['tmp' opts.SaveFilename]);
error(['function eig returned non-finited eigenvectors, cond(C)=' ...
num2str(cond(C)) ]);
end
% limit condition of C to 1e14 + 1
if min(diagD) <= 0
if stopOnWarnings
stopflag(end+1) = {'warnconditioncov'};
else
warning(['Iteration ' num2str(countiter) ...
': Eigenvalue (smaller) zero']);
diagD(diagD<0) = 0;
tmp = max(diagD)/1e14;
C = C + tmp*eye(N,N); diagD = diagD + tmp*ones(N,1);
end
end
if max(diagD) > 1e14*min(diagD)
if stopOnWarnings
stopflag(end+1) = {'warnconditioncov'};
else
warning(['Iteration ' num2str(countiter) ': condition of C ' ...
'at upper limit' ]);
tmp = max(diagD)/1e14 - min(diagD);
C = C + tmp*eye(N,N); diagD = diagD + tmp*ones(N,1);
end
end
diagC = diag(C);
diagD = sqrt(diagD); % D contains standard deviations now
% diagD = diagD / prod(diagD)^(1/N); C = C / prod(diagD)^(2/N);
BD = B.*repmat(diagD',N,1); % O(n^2)
end % if mod
% Align/rescale order of magnitude of scales of sigma and C for nicer output
% TODO: interference with sigmafacup: replace 1e10 with 2*sigmafacup
% not a very usual case
if 1 < 2 && sigma > 1e10*max(diagD) && sigma > 8e14 * max(insigma)
fac = sigma; % / max(diagD);
sigma = sigma/fac;
pc = fac * pc;
diagD = fac * diagD;
if ~flgDiagonalOnly
C = fac^2 * C; % disp(fac);
BD = B .* repmat(diagD',N,1); % O(n^2), but repmat might be inefficient todo?
end
diagC = fac^2 * diagC;
end
if flgDiagonalOnly > 1 && countiter > flgDiagonalOnly
% full covariance matrix from now on
flgDiagonalOnly = 0;
B = eye(N,N);
BD = diag(diagD);
C = diag(diagC); % is better, because correlations are spurious anyway
end
if noiseHandling
if countiter == 1 % assign firstvarargin for noise treatment e.g. as #reevaluations
if ~isempty(varargin) && length(varargin{1}) == 1 && isnumeric(varargin{1})
if irun == 1
firstvarargin = varargin{1};
else
varargin{1} = firstvarargin; % reset varargin{1}
end
else
firstvarargin = 0;
end
end
if noiseSS < 0 && noiseMinMaxEvals(2) > noiseMinMaxEvals(1) && firstvarargin
varargin{1} = max(noiseMinMaxEvals(1), varargin{1} / noiseAlphaEvals^(1/4)); % still experimental
elseif noiseSS > 0
if ~isempty(noiseCallback) % to be removed?
res = feval(noiseCallback); % should also work without output argument!?
if ~isempty(res) && res > 1 % TODO: decide for interface of callback
% also a dynamic popsize could be done here
sigma = sigma * noiseAlpha;
end
else
if noiseMinMaxEvals(2) > noiseMinMaxEvals(1) && firstvarargin
varargin{1} = min(noiseMinMaxEvals(2), varargin{1} * noiseAlphaEvals);
end
sigma = sigma * noiseAlpha;
% lambda = ceil(0.1 * sqrt(lambda) + lambda);
% TODO: find smallest increase of lambda with log-linear
% convergence in iterations
end
% qqq experimental: take a mean to estimate the true optimum
noiseN = noiseN + 1;
if noiseN == 1
noiseX = xmean;
else
noiseX = noiseX + (3/noiseN) * (xmean - noiseX);
end
end
end
% ----- numerical error management -----
% Adjust maximal coordinate axis deviations
if any(sigma*sqrt(diagC) > maxdx)
sigma = min(maxdx ./ sqrt(diagC));
%warning(['Iteration ' num2str(countiter) ': coordinate axis std ' ...
% 'deviation at upper limit of ' num2str(maxdx)]);
% stopflag(end+1) = {'maxcoorddev'};
end
% Adjust minimal coordinate axis deviations
if any(sigma*sqrt(diagC) < mindx)
sigma = max(mindx ./ sqrt(diagC)) * exp(0.05+cs/damps);
%warning(['Iteration ' num2str(countiter) ': coordinate axis std ' ...
% 'deviation at lower limit of ' num2str(mindx)]);
% stopflag(end+1) = {'mincoorddev'};;
end
% Adjust too low coordinate axis deviations
if any(xmean == xmean + 0.2*sigma*sqrt(diagC))
if stopOnWarnings
stopflag(end+1) = {'warnnoeffectcoord'};
else
warning(['Iteration ' num2str(countiter) ': coordinate axis std ' ...
'deviation too low' ]);
if flgDiagonalOnly
diagC = diagC + (ccov1_sep+ccovmu_sep) * (diagC .* ...
(xmean == xmean + 0.2*sigma*sqrt(diagC)));
else
C = C + (ccov1+ccovmu) * diag(diagC .* ...
(xmean == xmean + 0.2*sigma*sqrt(diagC)));
end
sigma = sigma * exp(0.05+cs/damps);
end
end
% Adjust step size in case of (numerical) precision problem
if flgDiagonalOnly
tmp = 0.1*sigma*diagD;
else
tmp = 0.1*sigma*BD(:,1+floor(mod(countiter,N)));
end
if all(xmean == xmean + tmp)
i = 1+floor(mod(countiter,N));
if stopOnWarnings
stopflag(end+1) = {'warnnoeffectaxis'};
else
warning(['Iteration ' num2str(countiter) ...
': main axis standard deviation ' ...
num2str(sigma*diagD(i)) ' has no effect' ]);
sigma = sigma * exp(0.2+cs/damps);
end
end
% Adjust step size in case of equal function values (flat fitness)
% isequalfuncvalues = 0;
if fitness.sel(1) == fitness.sel(1+ceil(0.1+lambda/4))
% isequalfuncvalues = 1;
if stopOnEqualFunctionValues
arrEqualFunvals = [countiter arrEqualFunvals(1:end-1)];
% stop if this happens in more than 33%
if arrEqualFunvals(end) > countiter - 3 * length(arrEqualFunvals)
stopflag(end+1) = {'equalfunvals'};
end
else
if flgWarnOnEqualFunctionValues
warning(['Iteration ' num2str(countiter) ...
': equal function values f=' num2str(fitness.sel(1)) ...
' at maximal main axis sigma ' ...
num2str(sigma*max(diagD))]);
end
sigma = sigma * exp(0.2+cs/damps);
end
end
% Adjust step size in case of equal function values
if countiter > 2 && myrange([fitness.hist fitness.sel(1)]) == 0
if stopOnWarnings
stopflag(end+1) = {'warnequalfunvalhist'};
else
warning(['Iteration ' num2str(countiter) ...
': equal function values in history at maximal main ' ...
'axis sigma ' num2str(sigma*max(diagD))]);
sigma = sigma * exp(0.2+cs/damps);
end
end
% ----- end numerical error management -----
% Keep overall best solution
out.evals = counteval;
out.solutions.evals = counteval;
out.solutions.mean.x = xmean;
out.solutions.mean.f = fmean;
out.solutions.mean.evals = counteval;
out.solutions.recentbest.x = arxvalid(:, fitness.idx(1));
out.solutions.recentbest.f = fitness.raw(1);
out.solutions.recentbest.evals = counteval + fitness.idx(1) - lambda;
out.solutions.recentworst.x = arxvalid(:, fitness.idx(end));
out.solutions.recentworst.f = fitness.raw(end);
out.solutions.recentworst.evals = counteval + fitness.idx(end) - lambda;
if fitness.hist(1) < out.solutions.bestever.f
out.solutions.bestever.x = arxvalid(:, fitness.idx(1));
out.solutions.bestever.f = fitness.hist(1);
out.solutions.bestever.evals = counteval + fitness.idx(1) - lambda;
bestever = out.solutions.bestever;
end
% Set stop flag
if fitness.raw(1) <= stopFitness, stopflag(end+1) = {'fitness'}; end
if counteval >= stopMaxFunEvals, stopflag(end+1) = {'maxfunevals'}; end
if countiter >= stopMaxIter, stopflag(end+1) = {'maxiter'}; end
if all(sigma*(max(abs(pc), sqrt(diagC))) < stopTolX)
stopflag(end+1) = {'tolx'};
end
if any(sigma*sqrt(diagC) > stopTolUpX)
stopflag(end+1) = {'tolupx'};
end
if sigma*max(diagD) == 0 % should never happen
stopflag(end+1) = {'bug'};
end
if countiter > 2 && myrange([fitness.sel fitness.hist]) <= stopTolFun
stopflag(end+1) = {'tolfun'};
end
if countiter >= length(fitness.hist) && myrange(fitness.hist) <= stopTolHistFun
stopflag(end+1) = {'tolhistfun'};
end
l = floor(length(fitness.histbest)/3);
if 1 < 2 && stopOnStagnation && ... % leads sometimes early stop on ftablet, fcigtab
countiter > N * (5+100/lambda) && ...
length(fitness.histbest) > 100 && ...
median(fitness.histmedian(1:l)) >= median(fitness.histmedian(end-l:end)) && ...
median(fitness.histbest(1:l)) >= median(fitness.histbest(end-l:end))
stopflag(end+1) = {'stagnation'};
end
if counteval >= stopFunEvals || countiter >= stopIter
stopflag(end+1) = {'stoptoresume'};
if length(stopflag) == 1 && flgsaving == 0
error('To resume later the saving option needs to be set');
end
end
% read stopping message from file signals.par
if flgreadsignals
fid = fopen('./signals.par', 'rt'); % can be performance critical
while fid > 0
strline = fgetl(fid); %fgets(fid, 300);
if strline < 0 % fgets and fgetl returns -1 at end of file
break;
end
% 'stop filename' sets stopflag to manual
str = sscanf(strline, ' %s %s', 2);
if strcmp(str, ['stop' opts.LogFilenamePrefix])
stopflag(end+1) = {'manual'};
break;
end
% 'skip filename run 3' skips a run, but not the last
str = sscanf(strline, ' %s %s %s', 3);
if strcmp(str, ['skip' opts.LogFilenamePrefix 'run'])
i = strfind(strline, 'run');
if irun == sscanf(strline(i+3:end), ' %d ', 1) && irun <= myeval(opts.Restarts)
stopflag(end+1) = {'skipped'};
end
end
end % while, break
if fid > 0
fclose(fid);
clear fid; % prevents strange error under octave
end
end
out.stopflag = stopflag;
% ----- output generation -----
if verbosemodulo > 0 && isfinite(verbosemodulo)
if countiter == 1 || mod(countiter, 10*verbosemodulo) < 1
disp(['Iterat, #Fevals: Function Value (median,worst) ' ...
'|Axis Ratio|' ...
'idx:Min SD idx:Max SD']);
end
if mod(countiter, verbosemodulo) < 1 ...
|| (verbosemodulo > 0 && isfinite(verbosemodulo) && ...
(countiter < 3 || ~isempty(stopflag)))
[minstd minstdidx] = min(sigma*sqrt(diagC));
[maxstd maxstdidx] = max(sigma*sqrt(diagC));
% format display nicely
disp([repmat(' ',1,4-floor(log10(countiter))) ...
num2str(countiter) ' , ' ...
repmat(' ',1,5-floor(log10(counteval))) ...
num2str(counteval) ' : ' ...
num2str(fitness.hist(1), '%.13e') ...
' +(' num2str(median(fitness.raw)-fitness.hist(1), '%.0e ') ...
',' num2str(max(fitness.raw)-fitness.hist(1), '%.0e ') ...
') | ' ...
num2str(max(diagD)/min(diagD), '%4.2e') ' | ' ...
repmat(' ',1,1-floor(log10(minstdidx))) num2str(minstdidx) ':' ...
num2str(minstd, ' %.1e') ' ' ...
repmat(' ',1,1-floor(log10(maxstdidx))) num2str(maxstdidx) ':' ...
num2str(maxstd, ' %.1e')]);
end
end
% measure time for recording data
if countiter < 3
time.c = 0.05;
time.nonoutput = 0;
time.recording = 0;
time.saving = 0.15; % first saving after 3 seconds of 100 iterations
time.plotting = 0;
elseif countiter > 300
% set backward horizon, must be long enough to cover infrequent plotting etc
% time.c = min(1, time.nonoutput/3 + 1e-9);
time.c = max(1e-5, 0.1/sqrt(countiter)); % mean over all or 1e-5
end
% get average time per iteration
time.t1 = clock;
time.act = max(0,etime(time.t1, time.t0));
time.nonoutput = (1-time.c) * time.nonoutput ...
+ time.c * time.act;
time.recording = (1-time.c) * time.recording; % per iteration
time.saving = (1-time.c) * time.saving;
time.plotting = (1-time.c) * time.plotting;
% record output data, concerning time issues
if savemodulo && savetime && (countiter < 1e2 || ~isempty(stopflag) || ...
countiter >= outiter + savemodulo)
outiter = countiter;
% Save output data to files
for namecell = filenames(:)'
name = namecell{:};
[fid, err] = fopen(['./' filenameprefix name '.dat'], 'a');
if fid < 1 % err ~= 0
warning(['could not open ' filenameprefix name '.dat']);
else
if strcmp(name, 'axlen')
fprintf(fid, '%d %d %e %e %e ', countiter, counteval, sigma, ...
max(diagD), min(diagD));
fprintf(fid, '%e ', sort(diagD));
fprintf(fid, '\n');
elseif strcmp(name, 'disp') % TODO
elseif strcmp(name, 'fit')
fprintf(fid, '%ld %ld %e %e %25.18e %25.18e %25.18e %25.18e', ...
countiter, counteval, sigma, max(diagD)/min(diagD), ...
out.solutions.bestever.f, ...
fitness.raw(1), median(fitness.raw), fitness.raw(end));
if ~isempty(varargin) && length(varargin{1}) == 1 && isnumeric(varargin{1}) && varargin{1} ~= 0
fprintf(fid, ' %f', varargin{1});
end
fprintf(fid, '\n');
elseif strcmp(name, 'stddev')
fprintf(fid, '%ld %ld %e 0 0 ', countiter, counteval, sigma);
fprintf(fid, '%e ', sigma*sqrt(diagC));
fprintf(fid, '\n');
elseif strcmp(name, 'xmean')
if isnan(fmean)
fprintf(fid, '%ld %ld 0 0 0 ', countiter, counteval);
else
fprintf(fid, '%ld %ld 0 0 %e ', countiter, counteval, fmean);
end
fprintf(fid, '%e ', xmean);
fprintf(fid, '\n');
elseif strcmp(name, 'xrecentbest')
% TODO: fitness is inconsistent with x-value
fprintf(fid, '%ld %ld %25.18e 0 0 ', countiter, counteval, fitness.raw(1));
fprintf(fid, '%e ', arx(:,fitness.idx(1)));
fprintf(fid, '\n');
end
fclose(fid);
end
end
% get average time for recording data
time.t2 = clock;
time.recording = time.recording + time.c * max(0,etime(time.t2, time.t1));
% plot
if flgplotting && countiter > 1
if countiter == 2
iterplotted = 0;
end
if ~isempty(stopflag) || ...
((time.nonoutput+time.recording) * (countiter - iterplotted) > 1 && ...
time.plotting < 0.05 * (time.nonoutput+time.recording))
local_plotcmaesdat(324, filenameprefix);
iterplotted = countiter;
% outplot(out); % outplot defined below
if time.plotting == 0 % disregard opening of the window
time.plotting = time.nonoutput+time.recording;
else
time.plotting = time.plotting + time.c * max(0,etime(clock, time.t2));
end
end
end
if countiter > 100 + 20 && savemodulo && ...
time.recording * countiter > 0.1 && ... % absolute time larger 0.1 second
time.recording > savetime * (time.nonoutput+time.recording) / 100
savemodulo = floor(1.02 * savemodulo) + 1;
% disp(['++savemodulo == ' num2str(savemodulo) ' at ' num2str(countiter)]); %qqq
end
end % if output
% save everything
time.t3 = clock;
if ~isempty(stopflag) || time.saving < 0.05 * time.nonoutput || countiter == 100
xmin = arxvalid(:, fitness.idx(1));
fmin = fitness.raw(1);
if flgsaving && countiter > 2
clear idx; % prevents error under octave
% -v6 : non-compressed non-unicode for version 6 and earlier
if ~isempty(strsaving) && ~isoctave
if exist(opts.SaveFilename,'file')
copyfile(opts.SaveFilename,[opts.SaveFilename, '.bak']);
end
save('-mat', strsaving, opts.SaveFilename); % for inspection and possible restart
else
if exist(opts.SaveFilename,'file')
copyfile(opts.SaveFilename,[opts.SaveFilename, '.bak']);
end
save('-mat', opts.SaveFilename); % for inspection and possible restart
end
time.saving = time.saving + time.c * max(0,etime(clock, time.t3));
end
end
time.t0 = clock;
% ----- end output generation -----
end % while, end generation loop
% -------------------- Final Procedures -------------------------------
% Evaluate xmean and return best recent point in xmin
fmin = fitness.raw(1);
xmin = arxvalid(:, fitness.idx(1)); % Return best point of last generation.
if length(stopflag) > sum(strcmp(stopflag, 'stoptoresume')) % final stopping
out.solutions.mean.f = ...
feval(fitfun, xintobounds(xmean, lbounds, ubounds), varargin{:});
counteval = counteval + 1;
out.solutions.mean.evals = counteval;
if out.solutions.mean.f < fitness.raw(1)
fmin = out.solutions.mean.f;
xmin = xintobounds(xmean, lbounds, ubounds); % Return xmean as best point
end
if out.solutions.mean.f < out.solutions.bestever.f
out.solutions.bestever = out.solutions.mean; % Return xmean as bestever point
out.solutions.bestever.x = xintobounds(xmean, lbounds, ubounds);
bestever = out.solutions.bestever;
end
end
% Save everything and display final message
if flgsavingfinal
clear idx; % prevents error under octave
if ~isempty(strsaving) && ~isoctave
save('-mat', strsaving, opts.SaveFilename); % for inspection and possible restart
else
save('-mat', opts.SaveFilename); % for inspection and possible restart
end
message = [' (saved to ' opts.SaveFilename ')'];
else
message = [];
end
if flgdisplay
disp(['#Fevals: f(returned x) | bestever.f | stopflag' ...
message]);
if isoctave
strstop = stopflag(:);
else
strcat(stopflag(:), '.');
end
strstop = stopflag(:); %strcat(stopflag(:), '.');
disp([repmat(' ',1,6-floor(log10(counteval))) ...
num2str(counteval, '%6.0f') ': ' num2str(fmin, '%.11e') ' | ' ...
num2str(out.solutions.bestever.f, '%.11e') ' | ' ...
strstop{1:end}]);
if N < 102
disp(['mean solution:' sprintf(' %+.1e', xmean)]);
disp(['std deviation:' sprintf(' %.1e', sigma*sqrt(diagC))]);
disp(sprintf('use plotcmaesdat.m for plotting the output at any time (option LogModulo must not be zero)'));
end
if exist('sfile', 'var')
disp(['Results saved in ' sfile]);
end
end
out.arstopflags{irun} = stopflag;
if any(strcmp(stopflag, 'fitness')) ...
|| any(strcmp(stopflag, 'maxfunevals')) ...
|| any(strcmp(stopflag, 'stoptoresume')) ...
|| any(strcmp(stopflag, 'manual'))
break;
end
end % while irun <= Restarts
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function [x, idx] = xintobounds(x, lbounds, ubounds)
%
% x can be a column vector or a matrix consisting of column vectors
%
if ~isempty(lbounds)
if length(lbounds) == 1
idx = x < lbounds;
x(idx) = lbounds;
else
arbounds = repmat(lbounds, 1, size(x,2));
idx = x < arbounds;
x(idx) = arbounds(idx);
end
else
idx = 0;
end
if ~isempty(ubounds)
if length(ubounds) == 1
idx2 = x > ubounds;
x(idx2) = ubounds;
else
arbounds = repmat(ubounds, 1, size(x,2));
idx2 = x > arbounds;
x(idx2) = arbounds(idx2);
end
else
idx2 = 0;
end
idx = idx2-idx;
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function opts=getoptions(inopts, defopts)
% OPTS = GETOPTIONS(INOPTS, DEFOPTS) handles an arbitrary number of
% optional arguments to a function. The given arguments are collected
% in the struct INOPTS. GETOPTIONS matches INOPTS with a default
% options struct DEFOPTS and returns the merge OPTS. Empty or missing
% fields in INOPTS invoke the default value. Fieldnames in INOPTS can
% be abbreviated.
%
% The returned struct OPTS is first assigned to DEFOPTS. Then any
% field value in OPTS is replaced by the respective field value of
% INOPTS if (1) the field unambiguously (case-insensitive) matches
% with the fieldname in INOPTS (cut down to the length of the INOPTS
% fieldname) and (2) the field is not empty.
%
% Example:
% In the source-code of the function that needs optional
% arguments, the last argument is the struct of optional
% arguments:
%
% function results = myfunction(mandatory_arg, inopts)
% % Define four default options
% defopts.PopulationSize = 200;
% defopts.ParentNumber = 50;
% defopts.MaxIterations = 1e6;
% defopts.MaxSigma = 1;
%
% % merge default options with input options
% opts = getoptions(inopts, defopts);
%
% % Thats it! From now on the values in opts can be used
% for i = 1:opts.PopulationSize
% % do whatever
% if sigma > opts.MaxSigma
% % do whatever
% end
% end
%
% For calling the function myfunction with default options:
% myfunction(argument1, []);
% For calling the function myfunction with modified options:
% opt.pop = 100; % redefine PopulationSize option
% opt.PAR = 10; % redefine ParentNumber option
% opt.maxiter = 2; % opt.max=2 is ambiguous and would result in an error
% myfunction(argument1, opt);
%
% 04/07/19: Entries can be structs itself leading to a recursive
% call to getoptions.
%
if nargin < 2 || isempty(defopts) % no default options available
opts=inopts;
return;
elseif isempty(inopts) % empty inopts invoke default options
opts = defopts;
return;
elseif ~isstruct(defopts) % handle a single option value
if isempty(inopts)
opts = defopts;
elseif ~isstruct(inopts)
opts = inopts;
else
error('Input options are a struct, while default options are not');
end
return;
elseif ~isstruct(inopts) % no valid input options
error('The options need to be a struct or empty');
end
opts = defopts; % start from defopts
% if necessary overwrite opts fields by inopts values
defnames = fieldnames(defopts);
idxmatched = []; % indices of defopts that already matched
for name = fieldnames(inopts)'
name = name{1}; % name of i-th inopts-field
if isoctave
for i = 1:size(defnames, 1)
idx(i) = strncmpi(defnames(i), name, length(name));
end
else
idx = strncmpi(defnames, name, length(name));
end
if sum(idx) > 1
error(['option "' name '" is not an unambigous abbreviation. ' ...
'Use opts=RMFIELD(opts, ''' name, ...
''') to remove the field from the struct.']);
end
if sum(idx) == 1
defname = defnames{find(idx)};
if ismember(find(idx), idxmatched)
error(['input options match more than ones with "' ...
defname '". ' ...
'Use opts=RMFIELD(opts, ''' name, ...
''') to remove the field from the struct.']);
end
idxmatched = [idxmatched find(idx)];
val = getfield(inopts, name);
% next line can replace previous line from MATLAB version 6.5.0 on and in octave
% val = inopts.(name);
if isstruct(val) % valid syntax only from version 6.5.0
opts = setfield(opts, defname, ...
getoptions(val, getfield(defopts, defname)));
elseif isstruct(getfield(defopts, defname))
% next three lines can replace previous three lines from MATLAB
% version 6.5.0 on
% opts.(defname) = ...
% getoptions(val, defopts.(defname));
% elseif isstruct(defopts.(defname))
warning(['option "' name '" disregarded (must be struct)']);
elseif ~isempty(val) % empty value: do nothing, i.e. stick to default
opts = setfield(opts, defnames{find(idx)}, val);
% next line can replace previous line from MATLAB version 6.5.0 on
% opts.(defname) = inopts.(name);
end
else
warning(['option "' name '" disregarded (unknown field name)']);
end
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res=myeval(s)
if ischar(s)
res = evalin('caller', s);
else
res = s;
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res=myevalbool(s)
if ~ischar(s) % s may not and cannot be empty
res = s;
else % evaluation string s
if strncmpi(s, 'yes', 3) || strncmpi(s, 'on', 2) ...
|| strncmpi(s, 'true', 4) || strncmp(s, '1 ', 2)
res = 1;
elseif strncmpi(s, 'no', 2) || strncmpi(s, 'off', 3) ...
|| strncmpi(s, 'false', 5) || strncmp(s, '0 ', 2)
res = 0;
else
try res = evalin('caller', s); catch
error(['String value "' s '" cannot be evaluated']);
end
try res ~= 0; catch
error(['String value "' s '" cannot be evaluated reasonably']);
end
end
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res = isoctave
% any hack to find out whether we are running octave
s = version;
res = 0;
if exist('fflush', 'builtin') && eval(s(1)) < 7
res = 1;
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function flush
if isoctave
feval('fflush', stdout);
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ----- replacements for statistic toolbox functions ------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res=myrange(x)
res = max(x) - min(x);
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res = myprctile(inar, perc, idx)
%
% Computes the percentiles in vector perc from vector inar
% returns vector with length(res)==length(perc)
% idx: optional index-array indicating sorted order
%
N = length(inar);
flgtranspose = 0;
% sizes
if size(perc,1) > 1
perc = perc';
flgtranspose = 1;
if size(perc,1) > 1
error('perc must not be a matrix');
end
end
if size(inar, 1) > 1 && size(inar,2) > 1
error('data inar must not be a matrix');
end
% sort inar
if nargin < 3 || isempty(idx)
[sar idx] = sort(inar);
else
sar = inar(idx);
end
res = [];
for p = perc
if p <= 100*(0.5/N)
res(end+1) = sar(1);
elseif p >= 100*((N-0.5)/N)
res(end+1) = sar(N);
else
% find largest index smaller than required percentile
availablepercentiles = 100*((1:N)-0.5)/N;
i = max(find(p > availablepercentiles));
% interpolate linearly
res(end+1) = sar(i) ...
+ (sar(i+1)-sar(i))*(p - availablepercentiles(i)) ...
/ (availablepercentiles(i+1) - availablepercentiles(i));
end
end
if flgtranspose
res = res';
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function [s ranks rankDelta] = local_noisemeasurement(arf1, arf2, lamreev, theta, cutlimit)
% function [s ranks rankDelta] = noisemeasurement(arf1, arf2, lamreev, theta)
%
% Input:
% arf1, arf2 : two arrays of function values. arf1 is of size 1xlambda,
% arf2 may be of size 1xlamreev or 1xlambda. The first lamreev values
% in arf2 are (re-)evaluations of the respective solutions, i.e.
% arf1(1) and arf2(1) are two evaluations of "the first" solution.
% lamreev: number of reevaluated individuals in arf2
% theta : parameter theta for the rank change limit, between 0 and 1,
% typically between 0.2 and 0.7.
% cutlimit (optional): output s is computed as a mean of rankchange minus
% threshold, where rankchange is <=2*(lambda-1). cutlimit limits
% abs(rankchange minus threshold) in this calculation to cutlimit.
% cutlimit=1 evaluates basically the sign only. cutlimit=2 could be
% the rank change with one solution (both evaluations of it).
%
% Output:
% s : noise measurement, s>0 means the noise measure is above the
% acceptance threshold
% ranks : 2xlambda array, corresponding to [arf1; arf2], of ranks
% of arf1 and arf2 in the set [arf1 arf2], values are in [1:2*lambda]
% rankDelta: 1xlambda array of rank movements of arf2 compared to
% arf1. rankDelta(i) agrees with the number of values from
% the set [arf1 arf2] that lie between arf1(i) and arf2(i).
%
% Note: equal function values might lead to somewhat spurious results.
% For this case a revision is advisable.
%%% verify input argument sizes
if size(arf1,1) ~= 1
error('arf1 must be an 1xlambda array');
elseif size(arf2,1) ~= 1
error('arf2 must be an 1xsomething array');
elseif size(arf1,2) < size(arf2,2) % not really necessary, but saver
error('arf2 must not be smaller than arf1 in length');
end
lam = size(arf1, 2);
if size(arf1,2) ~= size(arf2,2)
arf2(end+1:lam) = arf1((size(arf2,2)+1):lam);
end
if nargin < 5
cutlimit = inf;
end
%%% capture unusual values
if any(diff(arf1) == 0)
% this will presumably interpreted as rank change, because
% sort(ones(...)) returns 1,2,3,...
warning([num2str(sum(diff(arf1)==0)) ' equal function values']);
end
%%% compute rank changes into rankDelta
% compute ranks
[ignore, idx] = sort([arf1 arf2]);
[ignore, ranks] = sort(idx);
ranks = reshape(ranks, lam, 2)';
rankDelta = ranks(1,:) - ranks(2,:) - sign(ranks(1,:) - ranks(2,:));
%%% compute rank change limits using both ranks(1,...) and ranks(2,...)
for i = 1:lamreev
sumlim(i) = ...
0.5 * (...
myprctile(abs((1:2*lam-1) - (ranks(1,i) - (ranks(1,i)>ranks(2,i)))), ...
theta*50) ...
+ myprctile(abs((1:2*lam-1) - (ranks(2,i) - (ranks(2,i)>ranks(1,i)))), ...
theta*50));
end
%%% compute measurement
%s = abs(rankDelta(1:lamreev)) - sumlim; % lives roughly in 0..2*lambda
% max: 1 rankchange in 2*lambda is always fine
s = abs(rankDelta(1:lamreev)) - max(1, sumlim); % lives roughly in 0..2*lambda
% cut-off limit
idx = abs(s) > cutlimit;
s(idx) = sign(s(idx)) * cutlimit;
s = mean(s);
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% just a "local" copy of plotcmaesdat.m, with manual_mode set to zero
function local_plotcmaesdat(figNb, filenameprefix, filenameextension, objectvarname)
% PLOTCMAESDAT;
% PLOTCMAES(FIGURENUMBER_iBEGIN_iEND, FILENAMEPREFIX, FILENAMEEXTENSION, OBJECTVARNAME);
% plots output from CMA-ES, e.g. cmaes.m, Java class CMAEvolutionStrategy...
% mod(figNb,100)==1 plots versus iterations.
%
% PLOTCMAES([101 300]) plots versus iteration, from iteration 300.
% PLOTCMAES([100 150 800]) plots versus function evaluations, between iteration 150 and 800.
%
% Upper left subplot: blue/red: function value of the best solution in the
% recent population, cyan: same function value minus best
% ever seen function value, green: sigma, red: ratio between
% longest and shortest principal axis length which is equivalent
% to sqrt(cond(C)).
% Upper right plot: time evolution of the distribution mean (default) or
% the recent best solution vector.
% Lower left: principal axes lengths of the distribution ellipsoid,
% equivalent with the sqrt(eig(C)) square root eigenvalues of C.
% Lower right: magenta: minimal and maximal "true" standard deviation
% (with sigma included) in the coordinates, other colors: sqrt(diag(C))
% of all diagonal elements of C, if C is diagonal they equal to the
% lower left.
%
% Files [FILENAMEPREFIX name FILENAMEEXTENSION] are used, where
% name = axlen, OBJECTVARNAME (xmean|xrecentbest), fit, or stddev.
%
manual_mode = 0;
if nargin < 1 || isempty(figNb)
figNb = 325;
end
if nargin < 2 || isempty(filenameprefix)
filenameprefix = 'outcmaes';
end
if nargin < 3 || isempty(filenameextension)
filenameextension = '.dat';
end
if nargin < 4 || isempty(objectvarname)
objectvarname = 'xmean';
objectvarname = 'xrecentbest';
end
% load data
d.x = load([filenameprefix objectvarname filenameextension]);
% d.x = load([filenameprefix 'xmean' filenameextension]);
% d.x = load([filenameprefix 'xrecentbest' filenameextension]);
d.f = load([filenameprefix 'fit' filenameextension]);
d.std = load([filenameprefix 'stddev' filenameextension]);
d.D = load([filenameprefix 'axlen' filenameextension]);
% interpret entries in figNb for cutting out some data
if length(figNb) > 1
iend = inf;
istart = figNb(2);
if length(figNb) > 2
iend = figNb(3);
end
figNb = figNb(1);
d.x = d.x(d.x(:,1) >= istart & d.x(:,1) <= iend, :);
d.f = d.f(d.f(:,1) >= istart & d.f(:,1) <= iend, :);
d.std = d.std(d.std(:,1) >= istart & d.std(:,1) <= iend, :);
d.D = d.D(d.D(:,1) >= istart & d.D(:,1) <= iend, :);
end
% decide for x-axis
iabscissa = 2; % 1== versus iterations, 2==versus fevals
if mod(figNb,100) == 1
iabscissa = 1; % a short hack
end
if iabscissa == 1
xlab ='iterations';
elseif iabscissa == 2
xlab = 'function evaluations';
end
if size(d.x, 2) < 1000
minxend = 1.03*d.x(end, iabscissa);
else
minxend = 0;
end
% set up figure window
if manual_mode
figure(figNb); % just create and raise the figure window
else
if 1 < 3 && evalin('caller', 'iterplotted') == 0 && evalin('caller', 'irun') == 1
figure(figNb); % incomment this, if figure raise in the beginning is not desired
elseif ismember(figNb, findobj('Type', 'figure'))
set(0, 'CurrentFigure', figNb); % prevents raise of existing figure window
else
figure(figNb);
end
end
% plot fitness etc
foffset = 1e-99;
dfit = d.f(:,6)-min(d.f(:,6));
[ignore idxbest] = min(dfit);
dfit(dfit<1e-98) = NaN;
subplot(2,2,1); hold off;
dd = abs(d.f(:,7:8)) + foffset;
dd(d.f(:,7:8)==0) = NaN;
semilogy(d.f(:,iabscissa), dd, '-k'); hold on;
% additional fitness data, for example constraints values
if size(d.f,2) > 8
dd = abs(d.f(:,9:end)) + 10*foffset; % a hack
% dd(d.f(:,9:end)==0) = NaN;
semilogy(d.f(:,iabscissa), dd, '-m'); hold on;
if size(d.f,2) > 12
semilogy(d.f(:,iabscissa),abs(d.f(:,[7 8 11 13]))+foffset,'-k'); hold on;
end
end
idx = find(d.f(:,6)>1e-98); % positive values
if ~isempty(idx) % otherwise non-log plot gets hold
semilogy(d.f(idx,iabscissa), d.f(idx,6)+foffset, '.b'); hold on;
end
idx = find(d.f(:,6) < -1e-98); % negative values
if ~isempty(idx)
semilogy(d.f(idx, iabscissa), abs(d.f(idx,6))+foffset,'.r'); hold on;
end
semilogy(d.f(:,iabscissa),abs(d.f(:,6))+foffset,'-b'); hold on;
semilogy(d.f(:,iabscissa),dfit,'-c'); hold on;
semilogy(d.f(:,iabscissa),(d.f(:,4)),'-r'); hold on; % AR
semilogy(d.std(:,iabscissa), [max(d.std(:,6:end)')' ...
min(d.std(:,6:end)')'], '-m'); % max,min std
maxval = max(d.std(end,6:end));
minval = min(d.std(end,6:end));
text(d.std(end,iabscissa), maxval, sprintf('%.0e', maxval));
text(d.std(end,iabscissa), minval, sprintf('%.0e', minval));
semilogy(d.std(:,iabscissa),(d.std(:,3)),'-g'); % sigma
% plot best f
semilogy(d.f(idxbest,iabscissa),min(dfit),'*c'); hold on;
semilogy(d.f(idxbest,iabscissa),abs(d.f(idxbest,6))+foffset,'*r'); hold on;
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
yannote = 10^(log10(ax(3)) + 0.05*(log10(ax(4))-log10(ax(3))));
text(ax(1), yannote, ...
[ 'f=' num2str(d.f(end,6), '%.15g') ]);
title('blue:abs(f), cyan:f-min(f), green:sigma, red:axis ratio');
grid on;
subplot(2,2,2); hold off;
plot(d.x(:,iabscissa), d.x(:,6:end),'-'); hold on;
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
% add some annotation lines
[ignore idx] = sort(d.x(end,6:end));
% choose no more than 25 indices
idxs = round(linspace(1, size(d.x,2)-5, min(size(d.x,2)-5, 25)));
yy = repmat(NaN, 2, size(d.x,2)-5);
yy(1,:) = d.x(end, 6:end);
yy(2,idx(idxs)) = linspace(ax(3), ax(4), length(idxs));
plot([d.x(end,iabscissa) ax(2)], yy, '-');
plot(repmat(d.x(end,iabscissa),2), [ax(3) ax(4)], 'k-');
for i = idx(idxs)
text(ax(2), yy(2,i), ...
['x(' num2str(i) ')=' num2str(yy(1,i))]);
end
lam = 'NA';
if size(d.x, 1) > 1 && d.x(end, 1) > d.x(end-1, 1)
lam = num2str((d.x(end, 2) - d.x(end-1, 2)) / (d.x(end, 1) - d.x(end-1, 1)));
end
title(['Object Variables (' num2str(size(d.x, 2)-5) ...
'-D, popsize~' lam ')']);grid on;
subplot(2,2,3); hold off; semilogy(d.D(:,iabscissa), d.D(:,6:end), '-');
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
title('Principal Axes Lengths');grid on;
xlabel(xlab);
subplot(2,2,4); hold off;
% semilogy(d.std(:,iabscissa), d.std(:,6:end), 'k-'); hold on;
% remove sigma from stds
d.std(:,6:end) = d.std(:,6:end) ./ (d.std(:,3) * ones(1,size(d.std,2)-5));
semilogy(d.std(:,iabscissa), d.std(:,6:end), '-'); hold on;
if 11 < 3 % max and min std
semilogy(d.std(:,iabscissa), [d.std(:,3).*max(d.std(:,6:end)')' ...
d.std(:,3).*min(d.std(:,6:end)')'], '-m', 'linewidth', 2);
maxval = max(d.std(end,6:end));
minval = min(d.std(end,6:end));
text(d.std(end,iabscissa), d.std(end,3)*maxval, sprintf('max=%.0e', maxval));
text(d.std(end,iabscissa), d.std(end,3)*minval, sprintf('min=%.0e', minval));
end
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
% add some annotation lines
[ignore idx] = sort(d.std(end,6:end));
% choose no more than 25 indices
idxs = round(linspace(1, size(d.x,2)-5, min(size(d.x,2)-5, 25)));
yy = repmat(NaN, 2, size(d.std,2)-5);
yy(1,:) = d.std(end, 6:end);
yy(2,idx(idxs)) = logspace(log10(ax(3)), log10(ax(4)), length(idxs));
semilogy([d.std(end,iabscissa) ax(2)], yy, '-');
semilogy(repmat(d.std(end,iabscissa),2), [ax(3) ax(4)], 'k-');
for i = idx(idxs)
text(ax(2), yy(2,i), [' ' num2str(i)]);
end
title('Standard Deviations in Coordinates divided by sigma');grid on;
xlabel(xlab);
if figNb ~= 324
% zoom on; % does not work in Octave
end
drawnow;
% ---------------------------------------------------------------
% --------------- TEST OBJECTIVE FUNCTIONS ----------------------
% ---------------------------------------------------------------
%%% Unimodal functions
function f=fjens1(x)
%
% use population size about 2*N
%
f = sum((x>0) .* x.^1, 1);
if any(any(x<0))
idx = sum(x < 0, 1) > 0;
f(idx) = 1e3;
% f = f + 1e3 * sum(x<0, 1);
% f = f + 10 * sum((x<0) .* x.^2, 1);
f(idx) = f(idx) + 1e-3*abs(randn(1,sum(idx)));
% f(idx) = NaN;
end
function f=fsphere(x)
f = sum(x.^2,1);
function f=fmax(x)
f = max(abs(x), [], 1);
function f=fssphere(x)
f=sqrt(sum(x.^2, 1));
% lb = -0.512; ub = 512;
% xfeas = x;
% xfeas(x<lb) = lb;
% xfeas(x>ub) = ub;
% f=sum(xfeas.^2, 1);
% f = f + 1e-9 * sum((xfeas-x).^2);
function f=fspherenoise(x, Nevals)
if nargin < 2 || isempty(Nevals)
Nevals = 1;
end
[N,popsi] = size(x);
% x = x .* (1 + 0.3e-0 * randn(N, popsi)/(2*N)); % actuator noise
fsum = 10.^(0*(0:N-1)/(N-1)) * x.^2;
% f = 0*rand(1,1) ...
% + fsum ...
% + fsum .* (2*randn(1,popsi) ./ randn(1,popsi).^0 / (2*N)) ...
% + 1*fsum.^0.9 .* 2*randn(1,popsi) / (2*N); %
% f = fsum .* exp(0.1*randn(1,popsi));
f = fsum .* (1 + (10/(N+10)/sqrt(Nevals))*randn(1,popsi));
% f = fsum .* (1 + (0.1/N)*randn(1,popsi)./randn(1,popsi).^1);
idx = rand(1,popsi) < 0.0;
if sum(idx) > 0
f(idx) = f(idx) + 1e3*exp(randn(1,sum(idx)));
end
function f=fmixranks(x)
N = size(x,1);
f=(10.^(0*(0:(N-1))/(N-1))*x.^2).^0.5;
if size(x, 2) > 1 % compute ranks, if it is a population
[ignore, idx] = sort(f);
[ignore, ranks] = sort(idx);
k = 9; % number of solutions randomly permuted, lambda/2-1
% works still quite well (two time slower)
for i = k+1:k-0:size(x,2)
idx(i-k+(1:k)) = idx(i-k+randperm(k));
end
%disp([ranks' f'])
[ignore, ranks] = sort(idx);
%disp([ranks' f'])
%pause
f = ranks+1e-9*randn(1,1);
end
function f = fsphereoneax(x)
f = x(1)^2;
f = mean(x)^2;
function f=frandsphere(x)
N = size(x,1);
idx = ceil(N*rand(7,1));
f=sum(x(idx).^2);
function f=fspherelb0(x, M) % lbound at zero for 1:M needed
if nargin < 2 M = 0; end
N = size(x,1);
% M active bounds, f_i = 1 for x = 0
f = -M + sum((x(1:M) + 1).^2);
f = f + sum(x(M+1:N).^2);
function f=fspherehull(x)
% Patton, Dexter, Goodman, Punch
% in -500..500
% spherical ridge through zeros(N,1)
% worst case start point seems x = 2*100*sqrt(N)
% and small step size
N = size(x,1);
f = norm(x) + (norm(x-100*sqrt(N)) - 100*N)^2;
function f=fellilb0(x, idxM, scal) % lbound at zero for 1:M needed
N = size(x,1);
if nargin < 3 || isempty(scal)
scal = 100;
end
scale=scal.^((0:N-1)/(N-1));
if nargin < 2 || isempty(idxM)
idxM = 1:N;
end
%scale(N) = 1e0;
% M active bounds
xopt = 0.1;
x(idxM) = x(idxM) + xopt;
f = scale.^2*x.^2;
f = f - sum((xopt*scale(idxM)).^2);
% f = exp(f) - 1;
% f = log10(f+1e-19) + 19;
f = f + 1e-19;
function f=fcornersphere(x)
w = ones(size(x,1));
w(1) = 2.5; w(2)=2.5;
idx = x < 0;
f = sum(x(idx).^2);
idx = x > 0;
f = f + 2^2*sum(w(idx).*x(idx).^2);
function f=fsectorsphere(x, scal)
%
% This is deceptive for cumulative sigma control CSA in large dimension:
% The strategy (initially) diverges for N=50 and popsize = 150. (Even
% for cs==1 this can be observed for larger settings of N and
% popsize.) The reason is obvious from the function topology.
% Divergence can be avoided by setting boundaries or adding a
% penalty for large ||x||. Then, convergence can be observed again.
% Conclusion: for popsize>N cumulative sigma control is not completely
% reasonable, but I do not know better alternatives. In particular:
% TPA takes longer to converge than CSA when the latter still works.
%
if nargin < 2 || isempty (scal)
scal = 1e3;
end
f=sum(x.^2,1);
idx = x<0;
f = f + (scal^2 - 1) * sum((idx.*x).^2,1);
if 11 < 3
idxpen = find(f>1e9);
if ~isempty(idxpen)
f(idxpen) = f(idxpen) + 1e8*sum(x(:,idxpen).^2,1);
end
end
function f=fstepsphere(x, scal)
if nargin < 2 || isempty (scal)
scal = 1e0;
end
N = size(x,1);
f=1e-11+sum(scal.^((0:N-1)/(N-1))*floor(x+0.5).^2);
f=1e-11+sum(floor(scal.^((0:N-1)/(N-1))'.*x+0.5).^2);
% f=1e-11+sum(floor(x+0.5).^2);
function f=fstep(x)
% in -5.12..5.12 (bounded)
N = size(x,1);
f=1e-11+6*N+sum(floor(x));
function f=flnorm(x, scal, e)
if nargin < 2 || isempty(scal)
scal = 1;
end
if nargin < 3 || isempty(e)
e = 1;
end
if e==inf
f = max(abs(x));
else
N = size(x,1);
scale = scal.^((0:N-1)/(N-1))';
f=sum(abs(scale.*x).^e);
end
function f=fneumaier3(x)
% in -n^2..n^2
% x^*-i = i(n+1-i)
N = size(x,1);
% f = N*(N+4)*(N-1)/6 + sum((x-1).^2) - sum(x(1:N-1).*x(2:N));
f = sum((x-1).^2) - sum(x(1:N-1).*x(2:N));
function f = fmaxmindist(y)
% y in [-1,1], y(1:2) is first point on a plane, y(3:4) second etc
% points best
% 5 1.4142
% 8 1.03527618
% 10 0.842535997
% 20 0.5997
pop = size(y,2);
N = size(y,1)/2;
f = [];
for ipop = 1:pop
if any(abs(y(:,ipop)) > 1)
f(ipop) = NaN;
else
x = reshape(y(:,ipop), [2, N]);
f(ipop) = inf;
for i = 1:N
f(ipop) = min(f(ipop), min(sqrt(sum((x(:,[1:i-1 i+1:N]) - repmat(x(:,i), 1, N-1)).^2, 1))));
end
end
end
f = -f;
function f=fchangingsphere(x)
N = size(x,1);
global scale_G; global count_G; if isempty(count_G) count_G=-1; end
count_G = count_G+1;
if mod(count_G,10) == 0
scale_G = 10.^(2*rand(1,N));
end
%disp(scale(1));
f = scale_G*x.^2;
function f= flogsphere(x)
f = 1-exp(-sum(x.^2));
function f= fexpsphere(x)
f = exp(sum(x.^2)) - 1;
function f=fbaluja(x)
% in [-0.16 0.16]
y = x(1);
for i = 2:length(x)
y(i) = x(i) + y(i-1);
end
f = 1e5 - 1/(1e-5 + sum(abs(y)));
function f=fschwefel(x)
f = 0;
for i = 1:size(x,1),
f = f+sum(x(1:i))^2;
end
function f=fcigar(x, ar)
if nargin < 2 || isempty(ar)
ar = 1e3;
end
f = x(1,:).^2 + ar^2*sum(x(2:end,:).^2,1);
function f=fcigtab(x)
f = x(1,:).^2 + 1e8*x(end,:).^2 + 1e4*sum(x(2:(end-1),:).^2, 1);
function f=ftablet(x)
f = 1e6*x(1,:).^2 + sum(x(2:end,:).^2, 1);
function f=felli(x, lgscal, expon, expon2)
% lgscal: log10(axis ratio)
% expon: x_i^expon, sphere==2
N = size(x,1); if N < 2 error('dimension must be greater one'); end
% x = x - repmat(-0.5+(1:N)',1,size(x,2)); % optimum in 1:N
if nargin < 2 || isempty(lgscal), lgscal = 3; end
if nargin < 3 || isempty(expon), expon = 2; end
if nargin < 4 || isempty(expon2), expon2 = 1; end
f=((10^(lgscal*expon)).^((0:N-1)/(N-1)) * abs(x).^expon).^(1/expon2);
% if rand(1,1) > 0.015
% f = NaN;
% end
% f = f + randn(size(f));
function f=fellitest(x)
beta = 0.9;
N = size(x,1);
f = (1e6.^((0:(N-1))/(N-1))).^beta * (x.^2).^beta;
function f=fellii(x, scal)
N = size(x,1); if N < 2 error('dimension must be greater one'); end
if nargin < 2
scal = 1;
end
f= (scal*(1:N)).^2 * (x).^2;
function f=fellirot(x)
N = size(x,1);
global ORTHOGONALCOORSYSTEM_G
if isempty(ORTHOGONALCOORSYSTEM_G) ...
|| length(ORTHOGONALCOORSYSTEM_G) < N ...
|| isempty(ORTHOGONALCOORSYSTEM_G{N})
coordinatesystem(N);
end
f = felli(ORTHOGONALCOORSYSTEM_G{N}*x);
function f=frot(x, fun, varargin)
N = size(x,1);
global ORTHOGONALCOORSYSTEM_G
if isempty(ORTHOGONALCOORSYSTEM_G) ...
|| length(ORTHOGONALCOORSYSTEM_G) < N ...
|| isempty(ORTHOGONALCOORSYSTEM_G{N})
coordinatesystem(N);
end
f = feval(fun, ORTHOGONALCOORSYSTEM_G{N}*x, varargin{:});
function coordinatesystem(N)
if nargin < 1 || isempty(N)
arN = 2:30;
else
arN = N;
end
global ORTHOGONALCOORSYSTEM_G
ORTHOGONALCOORSYSTEM_G{1} = 1;
for N = arN
ar = randn(N,N);
for i = 1:N
for j = 1:i-1
ar(:,i) = ar(:,i) - ar(:,i)'*ar(:,j) * ar(:,j);
end
ar(:,i) = ar(:,i) / norm(ar(:,i));
end
ORTHOGONALCOORSYSTEM_G{N} = ar;
end
function f=fplane(x)
f=x(1);
function f=ftwoaxes(x)
f = sum(x(1:floor(end/2),:).^2, 1) + 1e6*sum(x(floor(1+end/2):end,:).^2, 1);
function f=fparabR(x)
f = -x(1,:) + 100*sum(x(2:end,:).^2,1);
function f=fsharpR(x)
f = abs(-x(1, :)).^2 + 100 * sqrt(sum(x(2:end,:).^2, 1));
function f=frosen(x)
if size(x,1) < 2 error('dimension must be greater one'); end
N = size(x,1);
popsi = size(x,2);
f = 1e2*sum((x(1:end-1,:).^2 - x(2:end,:)).^2,1) + sum((x(1:end-1,:)-1).^2,1);
% f = f + f^0.9 .* (2*randn(1,popsi) ./ randn(1,popsi).^0 / (2*N));
function f=frosenlin(x)
if size(x,1) < 2 error('dimension must be greater one'); end
x_org = x;
x(x>30) = 30;
x(x<-30) = -30;
f = 1e2*sum(-(x(1:end-1,:).^2 - x(2:end,:)),1) + ...
sum((x(1:end-1,:)-1).^2,1);
f = f + sum((x-x_org).^2,1);
% f(any(abs(x)>30,1)) = NaN;
function f=frosenrot(x)
N = size(x,1);
global ORTHOGONALCOORSYSTEM_G
if isempty(ORTHOGONALCOORSYSTEM_G) ...
|| length(ORTHOGONALCOORSYSTEM_G) < N ...
|| isempty(ORTHOGONALCOORSYSTEM_G{N})
coordinatesystem(N);
end
f = frosen(ORTHOGONALCOORSYSTEM_G{N}*x);
function f=frosenmodif(x)
f = 74 + 100*(x(2)-x(1)^2)^2 + (1-x(1))^2 ...
- 400*exp(-sum((x+1).^2)/2/0.05);
function f=fschwefelrosen1(x)
% in [-10 10]
f=sum((x.^2-x(1)).^2 + (x-1).^2);
function f=fschwefelrosen2(x)
% in [-10 10]
f=sum((x(2:end).^2-x(1)).^2 + (x(2:end)-1).^2);
function f=fdiffpow(x)
[N popsi] = size(x); if N < 2 error('dimension must be greater one'); end
f = sum(abs(x).^repmat(2+10*(0:N-1)'/(N-1), 1, popsi), 1);
f = sqrt(f);
function f=fabsprod(x)
f = sum(abs(x),1) + prod(abs(x),1);
function f=ffloor(x)
f = sum(floor(x+0.5).^2,1);
function f=fmaxx(x)
f = max(abs(x), [], 1);
%%% Multimodal functions
function f=fbirastrigin(x)
% todo: the volume needs to be a constant
N = size(x,1);
idx = (sum(x, 1) < 0.5*N); % global optimum
f = zeros(1,size(x,2));
f(idx) = 10*(N-sum(cos(2*pi*x(:,idx)),1)) + sum(x(:,idx).^2,1);
idx = ~idx;
f(idx) = 0.1 + 10*(N-sum(cos(2*pi*(x(:,idx)-2)),1)) + sum((x(:,idx)-2).^2,1);
function f=fackley(x)
% -32.768..32.768
% Adding a penalty outside the interval is recommended,
% because for large step sizes, fackley imposes like frand
%
N = size(x,1);
f = 20-20*exp(-0.2*sqrt(sum(x.^2)/N));
f = f + (exp(1) - exp(sum(cos(2*pi*x))/N));
% add penalty outside the search interval
f = f + sum((x(x>32.768)-32.768).^2) + sum((x(x<-32.768)+32.768).^2);
function f = fbohachevsky(x)
% -15..15
f = sum(x(1:end-1).^2 + 2 * x(2:end).^2 - 0.3 * cos(3*pi*x(1:end-1)) ...
- 0.4 * cos(4*pi*x(2:end)) + 0.7);
function f=fconcentric(x)
% in +-600
s = sum(x.^2);
f = s^0.25 * (sin(50*s^0.1)^2 + 1);
function f=fgriewank(x)
% in [-600 600]
[N, P] = size(x);
f = 1 - prod(cos(x'./sqrt(1:N))) + sum(x.^2)/4e3;
scale = repmat(sqrt(1:N)', 1, P);
f = 1 - prod(cos(x./scale), 1) + sum(x.^2, 1)/4e3;
% f = f + 1e4*sum(x(abs(x)>5).^2);
% if sum(x(abs(x)>5).^2) > 0
% f = 1e4 * sum(x(abs(x)>5).^2) + 1e8 * sum(x(x>5)).^2;
% end
function f=fgriewrosen(x)
% F13 or F8F2
[N, P] = size(x);
scale = repmat(sqrt(1:N)', 1, P);
y = [x(2:end,:); x(1,:)];
x = 100 * (x.^2 - y) + (x - 1).^2; % Rosenbrock part
f = 1 - prod(cos(x./scale), 1) + sum(x.^2, 1)/4e3;
f = sum(1 - cos(x) + x.^2/4e3, 1);
function f=fspallpseudorastrigin(x, scal, skewfac, skewstart, amplitude)
% by default multi-modal about between -30 and 30
if nargin < 5 || isempty(amplitude)
amplitude = 40;
end
if nargin < 4 || isempty(skewstart)
skewstart = 0;
end
if nargin < 3 || isempty(skewfac)
skewfac = 1;
end
if nargin < 2 || isempty(scal)
scal = 1;
end
N = size(x,1);
scale = 1;
if N > 1
scale=scal.^((0:N-1)'/(N-1));
end
% simple version:
% f = amplitude*(N - sum(cos(2*pi*(scale.*x)))) + sum((scale.*x).^2);
% skew version:
y = repmat(scale, 1, size(x,2)) .* x;
idx = find(x > skewstart);
if ~isempty(idx)
y(idx) = skewfac*y(idx);
end
f = amplitude * (0*N-prod(cos((2*pi)^0*y),1)) + 0.05 * sum(y.^2,1) ...
+ randn(1,1);
function f=frastrigin(x, scal, skewfac, skewstart, amplitude)
% by default multi-modal about between -30 and 30
if nargin < 5 || isempty(amplitude)
amplitude = 10;
end
if nargin < 4 || isempty(skewstart)
skewstart = 0;
end
if nargin < 3 || isempty(skewfac)
skewfac = 1;
end
if nargin < 2 || isempty(scal)
scal = 1;
end
N = size(x,1);
scale = 1;
if N > 1
scale=scal.^((0:N-1)'/(N-1));
end
% simple version:
% f = amplitude*(N - sum(cos(2*pi*(scale.*x)))) + sum((scale.*x).^2);
% skew version:
y = repmat(scale, 1, size(x,2)) .* x;
idx = find(x > skewstart);
% idx = intersect(idx, 2:2:10);
if ~isempty(idx)
y(idx) = skewfac*y(idx);
end
f = amplitude * (N-sum(cos(2*pi*y),1)) + sum(y.^2,1);
function f=frastriginmax(x)
N = size(x,1);
f = (N/20)*807.06580387678 - (10 * (N-sum(cos(2*pi*x),1)) + sum(x.^2,1));
f(any(abs(x) > 5.12)) = 1e2*N;
function f = fschaffer(x)
% -100..100
N = size(x,1);
s = x(1:N-1,:).^2 + x(2:N,:).^2;
f = sum(s.^0.25 .* (sin(50*s.^0.1).^2+1), 1);
function f=fschwefelmult(x)
% -500..500
%
N = size(x,1);
f = - sum(x.*sin(sqrt(abs(x))), 1);
f = 418.9829*N - 1.27275661e-5*N - sum(x.*sin(sqrt(abs(x))), 1);
% penalty term
f = f + 1e4*sum((abs(x)>500) .* (abs(x)-500).^2, 1);
function f=ftwomax(x)
% Boundaries at +/-5
N = size(x,1);
f = -abs(sum(x)) + 5*N;
function f=ftwomaxtwo(x)
% Boundaries at +/-10
N = size(x,1);
f = abs(sum(x));
if f > 30
f = f - 30;
end
f = -f;
function f=frand(x)
f=1./(1-rand(1, size(x,2))) - 1;
% CHANGES
% 12/04/28: (3.61) stopIter is relative to countiter after resume (thanks to Tom Holden)
% 12/04/28: (3.61) some syncing from 3.32.integer branch (cmean introduced, ...)
% 12/02/19: "future" setting of ccum, correcting for large mueff, is default now
% 11/11/15: bug-fix: max value for ccovmu_sep setting corrected
% 10/11/11: (3.52.beta) boundary handling: replace max with min in change
% rate formula. Active CMA: check of pos.def. improved.
% Plotting: value of lambda appears in the title.
% 10/04/03: (3.51.beta) active CMA cleaned up. Equal fitness detection
% looks into history now.
% 10/03/08: (3.50.beta) "active CMA" revised and bug-fix of ambiguous
% option Noise.alpha -> Noise.alphasigma.
% 09/10/12: (3.40.beta) a slightly modified version of "active CMA",
% that is a negative covariance matrix update, use option
% CMA.active. In 10;30;90-D the gain on ftablet is a factor
% of 1.6;2.5;4.4 (the scaling improves by sqrt(N)). On
% Rosenbrock the gain is about 25%. On sharp ridge the
% behavior is improved. Cigar is unchanged.
% 09/08/10: local plotcmaesdat remains in backround
% 09/08/10: bug-fix in time management for data writing, logtime was not
% considered properly (usually not at all).
% 09/07/05: V3.24: stagnation termination added
% 08/09/27: V3.23: momentum alignment is out-commented and de-preciated
% 08/09/25: V3.22: re-alignment of sigma and C was buggy
% 08/07/15: V3.20, CMA-parameters are options now. ccov and mucov were replaced
% by ccov1 \approx ccov/mucov and ccovmu \approx (1-1/mucov)*ccov
% 08/06/30: file name xrecent was change to xrecentbest (compatible with other
% versions)
% 08/06/29: time stamp added to output files
% 08/06/28: bug fixed with resume option, commentary did not work
% 08/06/28: V3.10, uncertainty (noise) handling added (re-implemented), according
% to reference "A Method for Handling Uncertainty..." from below.
% 08/06/28: bug fix: file xrecent was empty
% 08/06/01: diagonalonly clean up. >1 means some iterations.
% 08/05/05: output is written to file preventing an increasing data
% array and ease long runs.
% 08/03/27: DiagonalOnly<0 learns for -DiagonalOnly iterations only the
% diagonal with a larger learning rate.
% 08/03 (2.60): option DiagonalOnly>=1 invokes a time- and space-linear
% variant with only diagonal elements of the covariance matrix
% updating. This can be useful for large dimensions, say > 100.
% 08/02: diag(weights) * ... replaced with repmat(weights,1,N) .* ...
% in C update, implies O(mu*N^2) instead of O(mu^2*N + mu*N^2).
% 07/09: tolhistfun as termination criterion added, "<" changed to
% "<=" also for TolFun to allow for stopping on zero difference.
% Name tolfunhist clashes with option tolfun.
% 07/07: hsig threshold made slighly smaller for large dimension,
% useful for lambda < lambda_default.
% 07/06: boundary handling: scaling in the boundary handling
% is omitted now, see bnd.flgscale. This seems not to
% have a big impact. Using the scaling is worse on rotated
% functions, but better on separable ones.
% 07/05: boundary handling: weight i is not incremented anymore
% if xmean(i) moves towards the feasible space. Increment
% factor changed to 1.2 instead of 1.1.
% 07/05: boundary handling code simplified not changing the algorithm
% 07/04: bug removed for saving in octave
% 06/11/10: more testing of outcome of eig, fixed max(D) to max(diag(D))
% 06/10/21: conclusive final bestever assignment in the end
% 06/10/21: restart and incpopsize option implemented for restarts
% with increasing population size, version 2.50.
% 06/09/16: output argument bestever inserted again for convenience and
% backward compatibility
% 06/08: output argument out and struct out reorganized.
% 06/01: Possible parallel evaluation included as option EvalParallel
% 05/11: Compatibility to octave implemented, package octave-forge
% is needed.
% 05/09: Raise of figure and waiting for first plots improved
% 05/01: Function coordinatesystem cleaned up.
% 05/01: Function prctile, which requires the statistics toolbox,
% replaced by myprctile.
% 05/01: Option warnonequalfunctionvalues included.
% 04/12: Decrease of sigma removed. Problems on fsectorsphere can
% be addressed better by adding search space boundaries.
% 04/12: Boundary handling simpyfied.
% 04/12: Bug when stopping criteria tolx or tolupx are vectors.
% 04/11: Three input parameters are obligatory now.
% 04/11: Bug in boundary handling removed: Boundary weights can decrease now.
% 04/11: Normalization for boundary weights scale changed.
% 04/11: VerboseModulo option bug removed. Documentation improved.
% 04/11: Condition for increasing boundary weights changed.
% 04/10: Decrease of sigma when fitness is getting consistenly
% worse. Addresses the problems appearing on fsectorsphere for
% large population size.
% 04/10: VerboseModulo option included.
% 04/10: Bug for condition for increasing boundary weights removed.
% 04/07: tolx depends on initial sigma to achieve scale invariance
% for this stopping criterion.
% 04/06: Objective function value NaN is not counted as function
% evaluation and invokes resampling of the search point.
% 04/06: Error handling for eigenvalue beeing zero (never happens
% with default parameter setting)
% 04/05: damps further tuned for large mueff
% o Details for stall of pc-adaptation added (variable hsig
% introduced).
% 04/05: Bug in boundary handling removed: A large initial SIGMA was
% corrected not until *after* the first iteration, which could
% lead to a complete failure.
% 04/05: Call of function range (works with stats toolbox only)
% changed to myrange.
% 04/04: Parameter cs depends on mueff now and damps \propto sqrt(mueff)
% instead of \propto mueff.
% o Initial stall to adapt C (flginiphase) is removed and
% adaptation of pc is stalled for large norm(ps) instead.
% o Returned default options include documentation.
% o Resume part reorganized.
% 04/03: Stopflag becomes cell-array.
% ---------------------------------------------------------------
% CMA-ES: Evolution Strategy with Covariance Matrix Adaptation for
% nonlinear function minimization. To be used under the terms of the
% GNU General Public License (http://www.gnu.org/copyleft/gpl.html).
% Author (copyright): Nikolaus Hansen, 2001-2008.
% e-mail: nikolaus.hansen AT inria.fr
% URL:http://www.bionik.tu-berlin.de/user/niko
% References: See below.
% ---------------------------------------------------------------
%
% GENERAL PURPOSE: The CMA-ES (Evolution Strategy with Covariance
% Matrix Adaptation) is a robust search method which should be
% applied, if derivative based methods, e.g. quasi-Newton BFGS or
% conjucate gradient, (supposably) fail due to a rugged search
% landscape (e.g. noise, local optima, outlier, etc.). On smooth
% landscapes CMA-ES is roughly ten times slower than BFGS. For up to
% N=10 variables even the simplex direct search method (Nelder & Mead)
% is often faster, but far less robust than CMA-ES. To see the
% advantage of the CMA, it will usually take at least 30*N and up to
% 300*N function evaluations, where N is the search problem dimension.
% On considerably hard problems the complete search (a single run) is
% expected to take at least 30*N^2 and up to 300*N^2 function
% evaluations.
%
% SOME MORE COMMENTS:
% The adaptation of the covariance matrix (e.g. by the CMA) is
% equivalent to a general linear transformation of the problem
% coding. Nevertheless every problem specific knowlegde about the best
% linear transformation should be exploited before starting the
% search. That is, an appropriate a priori transformation should be
% applied to the problem. This also makes the identity matrix as
% initial covariance matrix the best choice.
%
% The strategy parameter lambda (population size, opts.PopSize) is the
% preferred strategy parameter to play with. If results with the
% default strategy are not satisfactory, increase the population
% size. (Remark that the crucial parameter mu (opts.ParentNumber) is
% increased proportionally to lambda). This will improve the
% strategies capability of handling noise and local minima. We
% recomment successively increasing lambda by a factor of about three,
% starting with initial values between 5 and 20. Casually, population
% sizes even beyond 1000+100*N can be sensible.
%
%
% ---------------------------------------------------------------
%%% REFERENCES
%
% The equation numbers refer to
% Hansen, N. and S. Kern (2004). Evaluating the CMA Evolution
% Strategy on Multimodal Test Functions. Eighth International
% Conference on Parallel Problem Solving from Nature PPSN VIII,
% Proceedings, pp. 282-291, Berlin: Springer.
% (http://www.bionik.tu-berlin.de/user/niko/ppsn2004hansenkern.pdf)
%
% Further references:
% Hansen, N. and A. Ostermeier (2001). Completely Derandomized
% Self-Adaptation in Evolution Strategies. Evolutionary Computation,
% 9(2), pp. 159-195.
% (http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf).
%
% Hansen, N., S.D. Mueller and P. Koumoutsakos (2003). Reducing the
% Time Complexity of the Derandomized Evolution Strategy with
% Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation,
% 11(1). (http://mitpress.mit.edu/journals/pdf/evco_11_1_1_0.pdf).
%
% Ros, R. and N. Hansen (2008). A Simple Modification in CMA-ES
% Achieving Linear Time and Space Complexity. To appear in Tenth
% International Conference on Parallel Problem Solving from Nature
% PPSN X, Proceedings, Berlin: Springer.
%
% Hansen, N., A.S.P. Niederberger, L. Guzzella and P. Koumoutsakos
% (2009?). A Method for Handling Uncertainty in Evolutionary
% Optimization with an Application to Feedback Control of
% Combustion. To appear in IEEE Transactions on Evolutionary
% Computation.
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
viewFollowModel.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/viewFollowModel.m
| 353 |
utf_8
|
51b26c7830cbc39343278139ee6c06d3
|
% Function that shifts view window to follow the hip of the model
% ----------------------------------------
function viewFollowModel(u, ViewWin)
% Check if an object is out of bounds
% --------------------------
% get hip x pos
hipX = u(13);
% shift to align with hip
set(gca, 'XLim', [hipX - ViewWin/2, hipX + ViewWin/2]);
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
updateSphereObjects.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/updateSphereObjects.m
| 2,108 |
utf_8
|
b35e83e59c33ce62e45950e85a4be938
|
% ---------------------
% Update Sphere Objects
% ---------------------
function updateSphereObjects( SphereObjects, u, x, intactFlag)
% extract sphere objects
L_HJ_Obj = SphereObjects(1);
L_BallObj = SphereObjects(2);
L_HeelObj = SphereObjects(3);
L_AJ_Obj = SphereObjects(4);
L_KJ_Obj = SphereObjects(5);
R_HJ_Obj = SphereObjects(6);
if(intactFlag)
R_BallObj = SphereObjects( 7);
R_HeelObj = SphereObjects( 8);
R_AJ_Obj = SphereObjects( 9);
R_KJ_Obj = SphereObjects(10);
end
% shift spheres to their new position
set(L_HJ_Obj, 'XData', get(L_HJ_Obj, 'XData') + u( 3) - x( 3), ...
'ZData', get(L_HJ_Obj, 'ZData') + u( 4) - x( 4))
set(L_KJ_Obj, 'XData', get(L_KJ_Obj, 'XData') + u( 5) - x( 5), ...
'ZData', get(L_KJ_Obj, 'ZData') + u( 6) - x( 6))
set(L_AJ_Obj, 'XData', get(L_AJ_Obj, 'XData') + u( 7) - x( 7), ...
'ZData', get(L_AJ_Obj, 'ZData') + u( 8) - x( 8))
set(L_BallObj, 'XData', get(L_BallObj, 'XData') + u( 9) - x( 9), ...
'ZData', get(L_BallObj, 'ZData') + u(10) - x(10))
set(L_HeelObj, 'XData', get(L_HeelObj, 'XData') + u(11) - x(11), ...
'ZData', get(L_HeelObj, 'ZData') + u(12) - x(12))
set(R_HJ_Obj, 'XData', get(R_HJ_Obj, 'XData') + u(13) - x(13), ...
'ZData', get(R_HJ_Obj, 'ZData') + u(14) - x(14))
if(intactFlag)
set(R_KJ_Obj, 'XData', get(R_KJ_Obj, 'XData') + u(15) - x(15), ...
'ZData', get(R_KJ_Obj, 'ZData') + u(16) - x(16))
set(R_AJ_Obj, 'XData', get(R_AJ_Obj, 'XData') + u(17) - x(17), ...
'ZData', get(R_AJ_Obj, 'ZData') + u(18) - x(18))
set(R_BallObj, 'XData', get(R_BallObj, 'XData') + u(19) - x(19), ...
'ZData', get(R_BallObj, 'ZData') + u(20) - x(20))
set(R_HeelObj, 'XData', get(R_HeelObj, 'XData') + u(21) - x(21), ...
'ZData', get(R_HeelObj, 'ZData') + u(22) - x(22))
end
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
moveViewWindow.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/moveViewWindow.m
| 2,334 |
utf_8
|
699168442374fe41171b7192de971a8b
|
% Function that shifts view window and
% and the light sources if model is out
% of view
% ----------------------------------------
function moveViewWindow( uInt, uRef, uImp, ViewWin, TolFrac, curFrame, frameFocus1, frameFocus2)
% Check if an object is out of bounds
% --------------------------
% get axis limits
XLimits = get(gca, 'XLim');
if curFrame < frameFocus1
% get min and max xpos of object
minX = min([uRef(1:2:17), uImp(1:2:17), uInt(1:2:end)]);
maxX = max([uRef(1:2:17), uImp(1:2:17), uInt(1:2:end)]);
% shift if object past right border
if XLimits(2) < ( maxX + ViewWin*TolFrac )
% initiate shift to the right
set(gca, 'XLim', [maxX - ViewWin*TolFrac, maxX + ViewWin*(1-TolFrac)]);
end
% zoom out if object pastleft border
XLimits = get(gca, 'XLim');
if XLimits(1) > ( minX - ViewWin*TolFrac )
% initiate zoom to the left
set(gca, 'XLim', [minX-ViewWin*TolFrac, XLimits(2)]);
end
elseif curFrame > frameFocus2
% get min and max xpos of object
minX = min([uInt(1:2:end)]);
maxX = max([uInt(1:2:end)]);
% shift if object past right border
if XLimits(2) < ( maxX + ViewWin*TolFrac )
% initiate shift to the right
set(gca, 'XLim', [maxX - ViewWin*TolFrac, maxX + ViewWin*(1-TolFrac)]);
end
% zoom out if object pastleft border
XLimits = get(gca, 'XLim');
if XLimits(1) > ( minX - ViewWin*TolFrac )
% initiate zoom to the left
set(gca, 'XLim', [minX-ViewWin*TolFrac, XLimits(2)]);
end
else
% get min and max xpos of object
minX = min([uRef(1:2:17), uInt(1:2:end)]);
maxX = max([uRef(1:2:17), uInt(1:2:end)]);
% shift if object past right border
if XLimits(2) < ( maxX + ViewWin*TolFrac )
% initiate shift to the right
set(gca, 'XLim', [maxX - ViewWin*TolFrac, maxX + ViewWin*(1-TolFrac)]);
end
% zoom out if object pastleft border
XLimits = get(gca, 'XLim');
if XLimits(1) > ( minX - ViewWin*TolFrac )
% initiate zoom to the left
set(gca, 'XLim', [minX-ViewWin*TolFrac, XLimits(2)]);
end
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
updateConeObjects.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/updateConeObjects.m
| 2,396 |
utf_8
|
31d366c061992c364b93420652b82f7a
|
% -------------------
% Update Cone Objects
% -------------------
function updateConeObjects( ConeObjects, u, x, t, intactFlag)
% extract cone objects
HAT_ConeObj = ConeObjects(1);
L_ThighObj = ConeObjects(2);
L_ShankObj = ConeObjects(3);
L_FootObj = ConeObjects(4);
R_ThighObj = ConeObjects(5);
if(intactFlag)
R_ShankObj = ConeObjects(6);
R_FootObj = ConeObjects(7);
end
% at the initial time step t=0, scale cone objects to their actual length
if t==0
% set HAT length
HAT_Length = 2*sqrt( (u(1)-u(3))^2 + (u(2)-u(4))^2 );
set(HAT_ConeObj, 'ZData', get(HAT_ConeObj, 'ZData') * HAT_Length);
% set left thigh length
L_ThighLength = sqrt( (u(3)-u(5))^2 + (u(4)-u(6))^2 );
set(L_ThighObj, 'ZData', get(L_ThighObj, 'ZData') * L_ThighLength);
% set left shank length
L_ShankLength = sqrt( (u(5)-u(7))^2 + (u(6)-u(8))^2 );
set(L_ShankObj, 'ZData', get(L_ShankObj, 'ZData') * L_ShankLength);
% set left foot length
L_FootLength = sqrt( (u(9)-u(11))^2 + (u(10)-u(12))^2 );
set(L_FootObj, 'ZData', get(L_FootObj, 'ZData') * L_FootLength);
% set right thigh length
R_ThighLength = sqrt( (u(13)-u(15))^2 + (u(14)-u(16))^2 );
set(R_ThighObj, 'ZData', get(R_ThighObj, 'ZData') * R_ThighLength);
if(intactFlag)
% set right shank length
R_ShankLength = sqrt( (u(15)-u(17))^2 + (u(16)-u(18))^2 );
set(R_ShankObj, 'ZData', get(R_ShankObj, 'ZData') * R_ShankLength);
% set right foot length
R_FootLength = sqrt( (u(19)-u(21))^2 + (u(20)-u(22))^2 );
set(R_FootObj, 'ZData', get(R_FootObj, 'ZData') * R_FootLength);
end
end
% rotate and shift cones to their new angles and positions
rotTransObj( HAT_ConeObj, u(3:4), u(1:2), x(3:4), x(1:2))
rotTransObj( L_ThighObj, u(5:6), u(3:4), x(5:6), x(3:4))
rotTransObj( L_ShankObj, u(7:8), u(5:6), x(7:8), x(5:6))
rotTransObj( L_FootObj, u(11:12), u(9:10), x(11:12), x(9:10))
rotTransObj( R_ThighObj, u(15:16), u(13:14), x(15:16), x(13:14))
if(intactFlag)
rotTransObj( R_ShankObj, u(17:18), u(15:16), x(17:18), x(15:16))
rotTransObj( R_FootObj, u(21:22), u(19:20), x(21:22), x(19:20))
end
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
checkViewWin.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/checkViewWin.m
| 2,270 |
utf_8
|
831e6ecccb0f9ccae4eb72b673c7731f
|
% Function that shifts view window and
% and the light sources if model is out
% of view
% ----------------------------------------
function ViewShiftParams = checkViewWin( u, t, ViewWin, TolFrac, ViewShiftParams, tShiftTot)
% Check For Shift Initiation
% --------------------------
if ViewShiftParams(1)==0
% get axis limits
XLimits = get(gca, 'XLim');
% get min and max xpos of object
minX = u(1);
maxX = u(1);
% check right border
if XLimits(2) < ( maxX + ViewWin*TolFrac )
% initiate shift to the right
StartPos = XLimits(1);
dShiftTot = (minX - ViewWin*TolFrac) - StartPos;
ViewShiftParams = [1 t StartPos dShiftTot];
set(gca, 'XLim', [minX - ViewWin*TolFrac minX + ViewWin*(1-TolFrac)]);
% check left border
elseif XLimits(1) > ( minX - ViewWin*TolFrac )
% initiate shift to the left
StartPos = XLimits(1);
dShiftTot = StartPos - (minX + ViewWin*TolFrac - ViewWin);
ViewShiftParams = [-1 t StartPos dShiftTot];
set(gca, 'XLim', [maxX - ViewWin*(1-TolFrac) maxX + ViewWin*TolFrac]);
end
end
% Shift View Window
% -----------------
if ViewShiftParams(1)~=0
% get current shift time
tShift = t - ViewShiftParams(2);
% check for end of shift phase
if tShift > tShiftTot
% reset view window shift parameters
ViewShiftParams(1) = 0;
else
ShiftDir = ViewShiftParams(1); % get shift direction
dShiftTot = ViewShiftParams(4); % get shift distance
StartPos = ViewShiftParams(3); % get start position
% get new distance to former axis limit
if tShiftTot == 0
xLimShift = dShiftTot;
else
if tShift <= tShiftTot/2
xLimShift = 2*dShiftTot * (tShift/tShiftTot)^2;
else
xLimShift = dShiftTot-2*dShiftTot*((tShiftTot-tShift)/tShiftTot)^2;
end
end
% shift axis limits
set(gca, 'XLim', StartPos + ShiftDir*xLimShift+[0 ViewWin]);
end
end
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
createProstheticObjects.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/createProstheticObjects.m
| 1,159 |
utf_8
|
e21c0b190710500412169a03987106ae
|
% -----------------
% Create Prosthetic
% -----------------
function prostheticObjects = createProstheticObjects(prosKneeFile, ...
prosShankFile, prosFootFile, yShiftGlobal)
if nargin == 0
yShiftGlobal = 0;
prosKneeFile = '../Prosthesis/kneeStatorForAnim.STL';
prosShankFile = '../Prosthesis/shankForAnim.STL';
prosFootFile = '../Prosthesis/footForAnim.STL';
end
[vProsKnee, fProsKnee] = stlread(prosKneeFile);
vProsKnee(:,2) = vProsKnee(:,2) - 0.1 + yShiftGlobal;
[vProsShank, fProsShank] = stlread(prosShankFile);
vProsShank(:,2) = vProsShank(:,2) - 0.1 + yShiftGlobal;
[vProsFoot, fProsFoot] = stlread(prosFootFile);
vProsFoot(:,2) = vProsFoot(:,2) - 0.1 + yShiftGlobal;
prosColor = [0.5, 0.5, 0.5];
prosKneePatch = patch('Faces',fProsKnee,'Vertices',vProsKnee);
prosShankPatch = patch('Faces',fProsShank,'Vertices',vProsShank);
prosFootPatch = patch('Faces',fProsFoot,'Vertices',vProsFoot);
prostheticObjects = [prosKneePatch, prosShankPatch, prosFootPatch];
set(prostheticObjects,'Visible','off','FaceColor',prosColor,'EdgeColor','none');
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
updateProstheticObjects.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/updateProstheticObjects.m
| 2,186 |
utf_8
|
73a0c737b168a0bdd6f340abdadc5e31
|
% -------------------------
% Update Prosthetic Objects
% -------------------------
function updateProstheticObjects(prostheticObjects, u, x)
%extract objects
prosKneeObj = prostheticObjects(1);
prosShankObj = prostheticObjects(2);
prosFootObj = prostheticObjects(3);
kneeVertices = get(prosKneeObj, 'Vertices');
shankVertices = get(prosShankObj, 'Vertices');
footVertices = get(prosFootObj, 'Vertices');
%move objects back to origin
numKneeVertices = size(kneeVertices,1);
transKneeOld = repmat([x(15), 0, x(16)], numKneeVertices, 1);
kneeVertices = kneeVertices - transKneeOld;
numShankVertices = size(shankVertices,1);
transShankOld = repmat([x(15), 0, x(16)], numShankVertices, 1);
shankVertices = shankVertices - transShankOld;
numFootVertices = size(footVertices,1);
transFootOld = repmat([x(17), 0, x(18)], numFootVertices, 1);
footVertices = footVertices - transFootOld;
%rotate object vertices
RotKnee = [ cos(u(19) - x(19)), 0, sin(u(19) - x(19));
0, 1, 0;
-sin(u(19) - x(19)), 0, cos(u(19) - x(19))];
kneeVertices = (RotKnee*(kneeVertices'))';
RotShank = [ cos(u(20) - x(20)), 0, sin(u(20) - x(20));
0, 1, 0;
-sin(u(20) - x(20)), 0, cos(u(20) - x(20))];
shankVertices = (RotShank*(shankVertices'))';
RotFoot = [ cos(u(21) - x(21)), 0, sin(u(21) - x(21));
0, 1, 0;
-sin(u(21) - x(21)), 0, cos(u(21) - x(21))];
footVertices = (RotFoot*(footVertices'))';
%translate obj vertices
transKneeNew = repmat([u(15), 0, u(16)], numKneeVertices, 1);
kneeVertices = kneeVertices + transKneeNew;
transShankNew = repmat([u(15), 0, u(16)], numShankVertices, 1);
shankVertices = shankVertices + transShankNew;
transFootNew = repmat([u(17), 0, u(18)], numFootVertices, 1);
footVertices = footVertices + transFootNew;
%update object vertices
set(prosKneeObj, 'Vertices', kneeVertices);
set(prosShankObj, 'Vertices', shankVertices);
set(prosFootObj, 'Vertices', footVertices);
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
rotTransObj.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/rotTransObj.m
| 778 |
utf_8
|
f12a437adeb1352a04364476971416dd
|
% ---------------------------
% Rotate and Translate Ojects
% ---------------------------
function rotTransObj( Object, LowXY, TopXY, LowXYold, TopXYold )
% calculate change in rotation angle compared to previous angle
dalpha = atan2( LowXY(1)- TopXY(1), TopXY(2)- LowXY(2)) ...
-atan2(LowXYold(1)-TopXYold(1), TopXYold(2)-LowXYold(2));
% get actual x and z data and shift it back to zero
xAct = get(Object, 'XData')-LowXYold(1);
zAct = get(Object, 'ZData')-LowXYold(2);
% rotate and shift x and z data to new angle and position
xNew = cos(dalpha)*xAct - sin(dalpha)*zAct + LowXY(1);
zNew = sin(dalpha)*xAct + cos(dalpha)*zAct + LowXY(2);
% update cone object
set(Object, 'XData', xNew, 'ZData', zNew);
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
createWalkwayObject.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/createWalkwayObject.m
| 1,640 |
utf_8
|
6840f7f3828b66d080c8e7e3231330c4
|
% --------------
% Create Walkway
% --------------
function createWalkwayObject(WayCol, rCP, width)
%set nPlates <= 0 to load walkway from file. Else, Walkway will be flat and of length specified in meters
if nargin ==2
width = 1;
end
ground = load('groundHeight.mat');
zPts = ground.groundZ; % - rCP/2;
xPts = ground.groundX;
numPts = length(zPts);
% initialize vertex and face matrices
floorVertices = nan(2*numPts,3); %Vertices
floorFaces = nan(numPts-1,4); %Faces
sideVertices = nan(2*numPts,3); %SideVertices
sideFaces = nan(numPts-1,4); %SideFaces
% loop through plates
for pIdx = 1:numPts
% add ground vertices
floorVertices((2*pIdx-1):(2*pIdx),:) = [xPts(pIdx), -width/2, zPts(pIdx); ...
xPts(pIdx), width/2, zPts(pIdx)];
%add side walls
sideVertices((2*pIdx-1):(2*pIdx),:) = [xPts(pIdx), -width/2, zPts(pIdx); ...
xPts(pIdx), -width/2, -20];
% add faces
lastVertex = 2*pIdx;
if pIdx~=1
floorFaces(pIdx-1,:) = [lastVertex-3, lastVertex-2, lastVertex, lastVertex-1];
sideFaces(pIdx-1,:) = [lastVertex-3 lastVertex-2 lastVertex lastVertex-1];
end
end
% create walkway patch
patch('Vertices', floorVertices, 'Faces', floorFaces, 'FaceColor', WayCol, ...
'EdgeColor', [0.5 0.5 0.5], 'LineWidth', 1);
%{
patch('Vertices', sideVertices, 'Faces', sideFaces, 'FaceColor', WayCol, ...
'EdgeColor', [0.5 0.5 0.5], 'LineWidth', 1);
%}
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
animInit.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/animInit.m
| 1,343 |
utf_8
|
85e28e9f2b5f6e7a75be053444a6aecf
|
% ---------------------------
% Initialize Animation Figure
% ---------------------------
function animInit(namestr)
% -----------------
% Initialize Figure
% -----------------
% check whether figure exists already
figExists = size(findobj('Tag',namestr),1) ~= 0;
% if not, initialize figure
if ~figExists
% define figure element
figure( ...
'Tag', namestr, ...
'Name', namestr, ...
'NumberTitle', 'off', ...
'BackingStore', 'off', ...
'MenuBar', 'default', ...
'Color', [1 1 1], ...
'Position', [20 20 1920 1080], ...
'Renderer', 'OpenGL');
% define axes element
axes('Position', [0 0 1 1], 'FontSize', 8);
end
% ----------------------------------
% Reset Figure to Simulation Default
% ----------------------------------
% reset axes to default properties
cla reset;
% change some properties
set(gca, 'SortMethod', 'depth', ...
'Color', [1 1 1], ...
'XColor', [0 0 0], ...
'YColor', [0 0 0]);
axis image;
hold on;
end
|
github
|
nthatte/Neuromuscular-Transfemoral-Prosthesis-Model-master
|
createWalkwayObjectOld.m
|
.m
|
Neuromuscular-Transfemoral-Prosthesis-Model-master/Animation/createWalkwayObjectOld.m
| 2,364 |
utf_8
|
595a830c4e5c8a568ce88665c6d018e6
|
% --------------
% Create Walkway
% --------------
function zPlates = createWalkwayObject(WayCol, rCP, width)
%set nPlates <= 0 to load walkway from file. Else, Walkway will be flat and of length specified in meters
if nargin ==2
width = 1;
end
zPlates = load('groundHeight.mat');
zPlates = zPlates.groundy - rCP/2;
nPlates = length(zPlates);
% initialize vertex and face matrices
VM = []; %Vertices
FM = []; %Faces
sideVertices = []; %SideVertices
sideFaces = []; %SideFaces
PlateLength = 1; %[m]
% loop through plates
for pIdx = 1:nPlates
% add four plate vertices
VM = [ VM; ...
(pIdx-1)*PlateLength -width/2 zPlates(pIdx); ...
(pIdx-1)*PlateLength width/2 zPlates(pIdx); ...
pIdx*PlateLength -width/2 zPlates(pIdx); ...
pIdx*PlateLength width/2 zPlates(pIdx)];
% add two faces (vertical from previous plate to new plate
% and horizontal for the new plate)
LastVertex = 4*pIdx;
if pIdx==1
FM = [LastVertex-3 LastVertex-2 LastVertex LastVertex-1];
else
FM = [ FM; ...
LastVertex-5 LastVertex-4 LastVertex-2 LastVertex-3; ...
LastVertex-3 LastVertex-2 LastVertex LastVertex-1];
end
end
[xd, zd] = stairs(0:(nPlates-1),zPlates);
xd(end+1) = 100;
zd(end+1) = zd(end);
yd = -width/2*ones(size(xd));
for i = 1:nPlates
sideVertices = [ sideVertices; ...
xd(2*i-1), -width/2, zd(2*i-1); ...
xd(2*i), -width/2, zd(2*i); ...
xd(2*i-1), -width/2, -20; ...
xd(2*i), -width/2, -20]; ...
LastVertex = 4*i;
sideFaces = [ sideFaces; ...
LastVertex-3 LastVertex-2 LastVertex LastVertex-1];
end
% create walkway patch
patch('Vertices', VM, 'Faces', FM, 'FaceColor', WayCol, ...
'EdgeColor', [0.5 0.5 0.5], 'LineWidth', 1);
patch('Vertices', sideVertices, 'Faces', sideFaces, 'FaceColor', WayCol, ...
'EdgeColor', [0.5 0.5 0.5], 'LineWidth', 1);
end
|
github
|
albanie/wider2pascal-master
|
wider2pascal.m
|
.m
|
wider2pascal-master/wider2pascal.m
| 4,620 |
utf_8
|
37fd191fc3bc24bc8847b3eebc64bd05
|
function wider2pascal(widerRootDir, widerDevkitDir)
%WIDER2PASCAL converts the WIDER database into Pascal format
% WIDER2PASCAL(widerDir, targetDir) generates a folder
% structure mimicking the Pascal VOC 2007 devkit format
% containing faces from the WIDER database
%
% `widerRootDir` is a path to the WIDER dataset (contains
% subfolders called WIDER_train, WIDER_val, WIDER_test
% and wider_face_split
%
% `widerDevkitDir` is a path to where the new VOCdevkit-style
% folder structure will be generated
%
% The generated folder structure contains only the subset of
% files required for bounding box object detection:
%
% widerDekitDir /
% WIDER /
% Annotations /
% JPEGImages /
% ImageSets /
%
%
% Author: Samuel Albanie
% create the target subdirectories
annotationsDir = fullfile(widerDevkitDir, 'WIDER', 'Annotations');
jpegImagesDir = fullfile(widerDevkitDir, 'WIDER', 'JPEGImages');
imageSetsDir = fullfile(widerDevkitDir, 'WIDER', 'ImageSets');
% the data structures are identical for the training and
% validation sets (the annotations for the test set are
% not publicly available and so are not used here
generateAnnotations(widerRootDir, annotationsDir, 'train');
generateAnnotations(widerRootDir, annotationsDir, 'val');
copyImages(widerRootDir, jpegImagesDir, 'train');
copyImages(widerRootDir, jpegImagesDir, 'val');
generateImageSets(widerRootDir, imageSetsDir, 'train');
generateImageSets(widerRootDir, imageSetsDir, 'val');
%-------------------------------------------------------------------
function generateAnnotations(widerRootDir, annotationsDir, partition)
%------------------------------------------------------------------
% generate the Pascal VOC-style xml annotation files
% for the given partition
% make sure that target directory exists
if ~exist(annotationsDir, 'dir')
mkdir(annotationsDir);
end
% load data for partition
partitionData = load(fullfile(widerRootDir, ...
'wider_face_split', ...
sprintf('wider_face_%s.mat', ...
partition)));
% loop over WIDER events
for i = 1: numel(partitionData.event_list)
% extract images and bounding box per event
files = partitionData.file_list{i};
bboxList = partitionData.face_bbx_list{i};
% loop over the images associated with each event
for j = 1:numel(files)
imgName = strcat(files{j}, '.jpg');
imgDir = fullfile(widerRootDir, sprintf('WIDER_%s', partition), 'images', partitionData.event_list{i}, strcat(files{j}, '.jpg'));
annotationFileName = fullfile(annotationsDir, ...
strcat(files{j}, '.xml'));
generatePascalXML(imgDir, imgName, bboxList{j}, annotationFileName);
end
end
clc
%-------------------------------------------------------------------
function copyImages(widerRootDir, jpegImagesDir, partition)
%------------------------------------------------------------------
% Copy the files from seperate WIDER "events" into a single
% directory, Pascal-style.
% make sure that target directory exists
if ~exist(jpegImagesDir, 'dir')
mkdir(jpegImagesDir);
end
% load data for partition
partitionData = load(fullfile(widerRootDir, ...
'wider_face_split', ...
sprintf('wider_face_%s.mat', ...
partition)));
% loop over WIDER events
for i = 1: numel(partitionData.event_list)
imgPaths = cellfun(@(x) fullfile(widerRootDir, ...
sprintf('WIDER_%s', partition), ...
'images', ...
partitionData.event_list{i}, ...
strcat(x, '.jpg')), ...
partitionData.file_list{i}, ...
'UniformOutput', false);
% copy the images to the target folder
for j = 1:numel(imgPaths)
copyfile(imgPaths{j}, jpegImagesDir);
end
end
clc
%-------------------------------------------------------------------
function generateImageSets(widerRootDir, imageSetsDir, partition)
%------------------------------------------------------------------
% Write the names of the images in the training and validation
% sets to files named 'train.txt' and 'val.txt'
% make sure that target directory exists
if ~exist(imageSetsDir, 'dir')
mkdir(imageSetsDir);
end
% load data for partition
partitionData = load(fullfile(widerRootDir, ...
'wider_face_split', ...
sprintf('wider_face_%s.mat', ...
partition)));
% write to file
targetPath = fullfile(imageSetsDir, sprintf('%s.txt', partition));
files = vertcat(partitionData.file_list{:});
fileID = fopen(targetPath, 'w');
for i = 1:numel(files)
fprintf(fileID, '%s\n', files{i});
end
fclose(fileID);
clc
|
github
|
edeno/Jadhav-2016-Data-Analysis-master
|
get_marks.m
|
.m
|
Jadhav-2016-Data-Analysis-master/Xinyi-ripple-decoding/get_marks.m
| 802 |
utf_8
|
9dd2914c9c1d6ed7afd1243e31d4dc90
|
function [mark_spike_times, marks] = get_marks(animal, day, tetrode_number)
num_tetrodes = length(tetrode_number);
mark_spike_times = cell(num_tetrodes, 1);
marks = cell(num_tetrodes, 1);
for tetrode_ind = 1:num_tetrodes,
[mark_spike_times{tetrode_ind}, marks{tetrode_ind}] = get_mark_data_by_tetrode(animal, day, tetrode_number(tetrode_ind));
end
end
function [mark_spike_times, marks] = get_mark_data_by_tetrode(animal, day, tetrode_number)
mark_data_file = load(get_mark_filename('bond', day, tetrode_number));
params = mark_data_file.filedata.params;
mark_spike_times = params(:, 1);
marks = params(:, 2:5); % tetrode wire maxes
end
function [filename] = get_mark_filename(animal, day, tetrode_number)
filename = sprintf('bond_data/%s%02d-%02d_params.mat', animal, day, tetrode_number);
end
|
github
|
edeno/Jadhav-2016-Data-Analysis-master
|
condition_empirical_movement_transition_matrix_on_state.m
|
.m
|
Jadhav-2016-Data-Analysis-master/Xinyi-ripple-decoding/condition_empirical_movement_transition_matrix_on_state.m
| 1,593 |
utf_8
|
ab2ac69b782c7b3955c01a55c6b4a285
|
function [empirical_movement_transition_matrix] = condition_empirical_movement_transition_matrix_on_state(linear_distance_bins, linear_distance, state_index)
%% calculate emipirical movement transition matrix, then Gaussian smoothed
num_linear_distance_bins = length(linear_distance_bins);
stateM = zeros(num_linear_distance_bins);
[~, state_bin] = histc(linear_distance(state_index), linear_distance_bins);
state_disM = [state_bin(1:end-1) state_bin(2:end)];
for bin_ind = 1:num_linear_distance_bins
sp0 = state_disM(state_disM(:, 1) == bin_ind, 2); %by departure x_k-1 (by column); sp0 is the departuring x_(k-1);
if ~isempty(sp0)
stateM(:, bin_ind) = histc(sp0, linspace(1, num_linear_distance_bins, num_linear_distance_bins)) ./ size(sp0, 1);
else
stateM(:, bin_ind) = zeros(1, num_linear_distance_bins);
end
end
%%%if too many zeros:
for bin_ind = 1:num_linear_distance_bins
if sum(stateM(:, bin_ind)) == 0
stateM(:, bin_ind) = 1 / num_linear_distance_bins;
else
stateM(:, bin_ind) = stateM(:,bin_ind) ./ sum(stateM(:, bin_ind));
end
end
[dx, dy] = meshgrid([-1:1]);
sigma = 0.5;
normalizing_weight = gaussian(sigma, dx, dy) / sum(sum(gaussian(sigma, dx, dy))); %normalizing weights
stateM_gaussian_smoothed = conv2(stateM, normalizing_weight, 'same'); %gaussian smoothed
empirical_movement_transition_matrix = stateM_gaussian_smoothed * diag(1 ./ sum(stateM_gaussian_smoothed, 1)); %normalized to confine probability to 1
end
function [value] = gaussian(sigma, x, y)
value = exp(-(x.^2 + y.^2) / 2 / sigma^2); %gaussian
end
|
github
|
edeno/Jadhav-2016-Data-Analysis-master
|
get_ripple_index.m
|
.m
|
Jadhav-2016-Data-Analysis-master/Xinyi-ripple-decoding/get_ripple_index.m
| 2,826 |
utf_8
|
f0ad2c35dfa49c680a64d260c0d4d9a1
|
function [ripple_time_extent, position_time_milliseconds, dt] = get_ripple_index(pos, ripplescons, spikes, tetrode_index, neuron_index)
%% calculate ripple starting and end times
position_time = pos.data(:, 1); %time stamps for animal's trajectory in seconds
position_time_milliseconds = to_milliseconds(position_time(1)):to_milliseconds(position_time(end)); %position time stamps in milliseconds
[ripple_time_extent] = get_ripple_extent(ripplescons, ...
position_time_milliseconds);
[num_spikes_per_ripple] = get_number_spikes_per_ripple(tetrode_index, ...
neuron_index, spikes, position_time_milliseconds, ripple_time_extent);
[running_speed_at_ripple] = get_running_speed_at_ripple(pos, ripple_time_extent, ...
position_time, position_time_milliseconds);
ripple_time_extent = ripple_time_extent(running_speed_at_ripple < 4 & num_spikes_per_ripple > 0, :);
dt = 1 / (1000 * (position_time(2) - position_time(1)));
end
function [x] = to_milliseconds(x)
x = round(x * 1000);
end
function [ripple_time_extent] = get_ripple_extent(ripplescons, ...
position_time_milliseconds)
ripple_start_time = to_milliseconds(ripplescons{1}.starttime);
ripple_end_time = to_milliseconds(ripplescons{1}.endtime);
traj_Ind = find(ripplescons{1}.maxthresh > 4);
ripple_start_time = ripple_start_time(traj_Ind);
ripple_end_time = ripple_end_time(traj_Ind);
ripple_time_extent = [ripple_start_time - position_time_milliseconds(1) - 1, ...
ripple_end_time - position_time_milliseconds(1) - 1];
end
function [running_speed_at_ripple] = get_running_speed_at_ripple(pos, ...
ripple_time_extent, position_time_stamps, position_time_milliseconds)
running_speed = pos.data(:, 5);
running_speed_at_ripple = nan(size(ripple_time_extent, 1), 1);
for ripple_number = 1:size(ripple_time_extent, 1)
ripple_ind = find(position_time_stamps * 1000 > position_time_milliseconds(ripple_time_extent(ripple_number, 1)) & ...
position_time_stamps * 1000 < position_time_milliseconds(ripple_time_extent(ripple_number, 2)));
running_speed_at_ripple(ripple_number) = running_speed(ripple_ind(1), 1);
end
end
function [num_spikes_per_ripple] = get_number_spikes_per_ripple(tetrode_index, ...
neuron_index, spikes, position_time_milliseconds, ripple_time_extent)
for neuron_ind = 1:size(tetrode_index, 2)
spike_times_milliseconds = to_milliseconds(spikes{tetrode_index(neuron_ind)}{neuron_index(neuron_ind)}.data(:,1));
is_spike(neuron_ind, :) = ismember(position_time_milliseconds, spike_times_milliseconds);
end
num_spikes_per_ripple = nan(size(ripple_time_extent, 1), 1);
for ripple_number = 1:size(ripple_time_extent, 1)
is_ripple_spike = is_spike(:, ripple_time_extent(ripple_number, 1):ripple_time_extent(ripple_number, 2));
num_spikes_per_ripple(ripple_number) = sum(is_ripple_spike(:));
end
end
|
github
|
sanghosuh/lens_nmf-matlab-master
|
pmi.m
|
.m
|
lens_nmf-matlab-master/evaluation/topic_coherence/pmi.m
| 1,396 |
utf_8
|
76f1342186702ed4834e5c2df7d4e322
|
% Point-wise Mutual Information (PMI)
%
% Written by Sangho Suh ([email protected])
% Dept. of Computer Science and Engineering,
% Korea University
%
% Reference:
%
% [1] J. Kim and H. Park. Sparse nonnegative matrix factorization for
% clustering. 2008.
% [2] D. Newman, J. H. Lau, K. Grieser, and T. Baldwin. Automatic evaluation
% of topic coherence. In Proc. the Annual Conference of the North
% American Chapter of the Association for Computational Linguistics
% (NAACL HLT), pages 100?108, 2010.
%
% Please send bug reports, comments, or questions to Sangho Suh.
% This comes with no guarantee or warranty of any kind.
%
% Last modified 10/17/2016
%
% this function returns a single value
% i.e. an average value from a number of pmi values
%
% <Inputs>
%
% A : Input matrix (m x n)
% Wtopk_idx : Cell array containing matrix with indices for top keywords
% mcnt : Number of methods
% epsilon : (Default: 1e-3)
%
% <Output>
%
% pmi_vals : A matrix of PMI values
%
function [pmi_vals] = pmi(A, Wtopk_idx, mcnt, epsilon)
% create a zero matrix to store PMI values
pmi_vals = zeros(size(Wtopk_idx{1},2),mcnt);
for i=1:mcnt
for topic_idx=1:size(Wtopk_idx{i},2)
pmi_vals(topic_idx,i) = compute_pmi_log2(A, Wtopk_idx{i}(:,topic_idx),epsilon);
end
end
end
|
github
|
sanghosuh/lens_nmf-matlab-master
|
compute_pmi_log2.m
|
.m
|
lens_nmf-matlab-master/evaluation/topic_coherence/compute_pmi_log2.m
| 3,977 |
utf_8
|
9731fc95c0d82e7dfeb5a219dc361689
|
% Point-wise Mutual Information (PMI)
%
% Written by Sangho Suh ([email protected])
% Dept. of Computer Science and Engineering,
% Korea University
%
% Reference:
%
% [1] J. Kim and H. Park. Sparse nonnegative matrix factorization for
% clustering. 2008.
% [2] D. Newman, J. H. Lau, K. Grieser, and T. Baldwin. Automatic evaluation
% of topic coherence. In Proc. the Annual Conference of the North
% American Chapter of the Association for Computational Linguistics
% (NAACL HLT), pages 100?108, 2010.
%
% Please send bug reports, comments, or questions to Sangho Suh.
% This comes with no guarantee or warranty of any kind.
%
% Last modified 10/17/2016
%
% this function returns a single value
% i.e. an average value from a number of pmi values
%
% <Inputs>
%
% A : Input matrix (m x n)
% term_idx_mat : Wtopk matrix with corresponding indices
% epsilon : Value to prevent log(0) (Default: 1e-3)
%
% <Output>
%
% pmi_val : PMI value
%
function [pmi_val] = compute_pmi_log2(A, term_idx_mat,epsilon)
% create a term-by-document matrix consisting of only 1 and 0
% where 1 denotes term occurrence in the corresponding column
A(A~=0)=1;
% topic coherence for a topic (Keyword-wise similarity)
if size(term_idx_mat,2)==1 % if a single column, i.e., one topic
term_idx = term_idx_mat(:);
% create an array for storing PMI values between pairs of keywords within a topic
pmi_vals = zeros( length(term_idx)*(length(term_idx)-1)/2, 1);
cnt = 1;
% calculate PMI values on pairs of keywords in a topic
for i=1:(length(term_idx)-1)
for j=(i+1):length(term_idx)
% if keywords do NOT co-occur in document(s)
if( ( mean ( A(term_idx(i),:) & A(term_idx(j),:) ) ) == 0 )
pmi_vals(cnt) = 0;
% if keywords co-occur in document(s), calculate their PMI value
else
pmi_vals(cnt) = log2( (mean(A(term_idx(i),:) & A(term_idx(j),:))+epsilon) / (mean(A(term_idx(i),:))*mean(A(term_idx(j),:))) );
end
cnt = cnt + 1;
end
% get average from array of PMI values
pmi_val = mean(pmi_vals);
end
% topic coherence for topics (Topic-wise similarity)
else % if more than one topic, find the similarity between topics
% create an array for storing PMI values between topics
pmi_val_tlvl = zeros( size(term_idx_mat,2)*(size(term_idx_mat,2)-1)/2, 1 );
cnt_tlvl = 1;
% calculate PMI values between keywords of topics
for k=1:(size(term_idx_mat,2)-1)
for l=(k+1):size(term_idx_mat,2)
term_idx1 = term_idx_mat(:,k);
term_idx2 = term_idx_mat(:,l);
% create an array for storing PMI values between keywords of topics
pmi_vals = zeros( length(term_idx1)*length(term_idx2), 1 );
cnt = 1;
for i=1:length(term_idx1)
for j=1:length(term_idx2)
% if keywords do NOT co-occur in document(s)
if( (mean(A(term_idx1(i),:) & A(term_idx2(j),:))) == 0 )
pmi_vals(cnt) = 0;
% if keywords co-occur in document(s), calculate their PMI value
else
pmi_vals(cnt) = log2((mean(A(term_idx1(i),:) & A(term_idx2(j),:))+epsilon) / (mean(A(term_idx1(i),:))*mean(A(term_idx2(j),:))));
end
cnt = cnt + 1;
end
end
pmi_val_tlvl(cnt_tlvl) = mean(pmi_vals);
cnt_tlvl = cnt_tlvl + 1;
end
end
% get average from array of PMI values
pmi_val = mean(pmi_val_tlvl);
end
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.