plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
EnricoGiordano1992/LMI-Matlab-master
mtimes.m
.m
LMI-Matlab-master/yalmip/@sdpvar/mtimes.m
30,871
utf_8
a02bcbc2cab008ade86fac60c7baef00
function Z = mtimes(X,Y) %MTIMES (overloaded) % Cannot use isa here since blkvar is marked as sdpvar X_class = class(X); Y_class = class(Y); X_is_spdvar = strcmp(X_class,'sdpvar'); Y_is_spdvar = strcmp(Y_class,'sdpvar'); % Convert block objects if ~X_is_spdvar if isa(X,'blkvar') X = sdpvar(X); X_is_spdvar = isa(X,'sdpvar'); end end if ~Y_is_spdvar if isa(Y,'blkvar') Y = sdpvar(Y); Y_is_spdvar = isa(Y,'sdpvar'); end end % Lame special cases, make sure to reurn % empty matrices in the sense that the % used MATLAB version if isempty(X) YY = full(reshape(Y.basis(:,1),Y.dim(1),Y.dim(2))); Z = X*YY; return elseif isempty(Y) XX = full(reshape(X.basis(:,1),X.dim(1),X.dim(2))); Z = XX*Y; return end % Optimized calls in different order? if X_is_spdvar && Y_is_spdvar manytimesfew = length(X.lmi_variables) > 5*length(Y.lmi_variables); if manytimesfew Z = (Y'*X')'; % Optimized for this order (few variables * many variables) return end end if ~X_is_spdvar if any(isnan(X)) error('Multiplying NaN with an SDPVAR makes no sense.'); end end if ~Y_is_spdvar if any(isnan(Y)) error('Multiplying NaN with an SDPVAR makes no sense.'); end end % Different code for % 1 : SDPVAR * DOUBLE % 2 : DOUBLE * SDPVAR % 3 : SDPVAR * SDPVAR switch 2*X_is_spdvar+Y_is_spdvar case 3 if ~isempty(X.midfactors) X = flush(X); end if ~isempty(Y.midfactors) Y = flush(Y); end try % HACK: Return entropy when user types x*log(x) if isequal(Y.extra.opname,'log') Z = check_for_special_case(Y,X); if ~isempty(Z) return end elseif isequal(X.extra.opname,'log') Z = check_for_special_case(X,Y); if ~isempty(Z) return end end ny = Y.dim(1); my = Y.dim(2); nx = X.dim(1); mx = X.dim(2); x_isscalar = nx*mx==1; y_isscalar = ny*my==1; [mt,oldvariabletype,mt_hash,hash] = yalmip('monomtable'); % Super-special hack to speed up QP formulations % Requires that the involved variables never have been used % before in a nonlinear expression. By exploiting this fact, we % can avoid using findhash, which typically is the bottle-neck. if (nx == 1) && (my == 1) && isequal(X.lmi_variables,Y.lmi_variables) % Looks like w'Qw or similiar % Check that no nonlinear have been defined before, and that % the arguments are linear. if all(oldvariabletype(X.lmi_variables)==0) && nnz(mt(find(oldvariabletype),X.lmi_variables)) == 0 Z = super_fast_quadratic_multiplication(X,Y,mt,oldvariabletype,mt_hash,hash); return end end % Are the involved variables disjoint if X.lmi_variables(end) < Y.lmi_variables(1) disconnected = 1; elseif Y.lmi_variables(end) < X.lmi_variables(1) disconnected = 2; elseif isequal(Y.lmi_variables,X.lmi_variables) disconnected = -1; % Same else disconnected = 0; % Tangled up end % Optimized unique switch disconnected case -1 all_lmi_variables = [X.lmi_variables]; case 1 all_lmi_variables = [X.lmi_variables Y.lmi_variables]; case 2 all_lmi_variables = [Y.lmi_variables X.lmi_variables]; otherwise all_lmi_variables = uniquestripped([X.lmi_variables Y.lmi_variables]); end % Create clean SDPVAR object Z = X;Z.dim(1) = 1;Z.dim(2) = 1;Z.lmi_variables = all_lmi_variables;Z.basis = []; % Awkward code due to bug in ML6.5 Xbase = reshape(X.basis(:,1),X.dim(1),X.dim(2)); Ybase = reshape(Y.basis(:,1),Y.dim(1),Y.dim(2)); if x_isscalar Xbase = sparse(full(Xbase)); end if y_isscalar Ybase = sparse(full(Ybase)); end switch disconnected case -1 index_X = [ones(1,length(X.lmi_variables))]; index_Y = index_X; case 1 oX = ones(1,length(X.lmi_variables)); oY = ones(1,length(Y.lmi_variables)); index_X = [oX 0*oY]; index_Y = [oX*0 oY]; case 2 index_X = [zeros(1,length(Y.lmi_variables)) ones(1,length(X.lmi_variables))]; index_Y = [ones(1,length(Y.lmi_variables)) zeros(1,length(X.lmi_variables))]; otherwise index_X = double(ismembcYALMIP(all_lmi_variables,X.lmi_variables)); index_Y = double(ismembcYALMIP(all_lmi_variables,Y.lmi_variables)); end iX=find(index_X); iY=find(index_Y); index_X(iX)=1:length(iX);index_X=index_X(:); index_Y(iY)=1:length(iY);index_Y=index_Y(:); % Pre-allocate under assumption that product is fairly sparse % If more is required later, it will be expanded Z.lmi_variables = [Z.lmi_variables zeros(1,length(X.lmi_variables)+length(Y.lmi_variables))]; %Z.lmi_variables = [Z.lmi_variables zeros(1,length(X.lmi_variables)*length(Y.lmi_variables))]; % Pre-calc identity (used a lot speyemy = sparse(1:my,1:my,1,my,my); % Linear terms inner_vector_product = (nx==1 && my==1 && (mx == ny)); if inner_vector_product base1=Xbase*Y.basis;base1=base1(2:end); base2=Ybase.'*X.basis;base2=base2(2:end); [i1,j1,k1]=find(base1); [i2,j2,k2]=find(base2); base1 = sparse(i1,iY(j1),k1,1,length(all_lmi_variables)); base2 = sparse(i2,iX(j2),k2,1,length(all_lmi_variables)); Z.basis = [Xbase*Ybase base1+base2]; else base0 = Xbase*Ybase; if x_isscalar base1 = Xbase*Y.basis(:,2:end); base2 = Ybase(:)*X.basis(:,2:end); elseif y_isscalar base1 = Xbase(:)*Y.basis;base1=base1(:,2:end); base2 = X.basis*Ybase;base2=base2(:,2:end); else base1 = kron(speyemy,Xbase)*Y.basis(:,2:end); base2 = kron(Ybase.',speye(nx))*X.basis(:,2:end); end [i1,j1,k1]=find(base1); [i2,j2,k2]=find(base2); base1 = sparse(i1,iY(j1),k1,size(base0(:),1),length(all_lmi_variables)); base2 = sparse(i2,iX(j2),k2,size(base0(:),1),length(all_lmi_variables)); Z.basis = [base0(:) base1+base2]; end % Loop start for nonlinear terms i = length(all_lmi_variables)+1; % [mt,oldvariabletype,mt_hash,hash] = yalmip('monomtable'); % Check if problem is bilinear. We can exploit this later % to improve performance significantly... bilinearproduct = 0; candofastlocation = 0; if all(oldvariabletype(X.lmi_variables)==0) && all(oldvariabletype(Y.lmi_variables)==0) % if isempty(intersect(X.lmi_variables,Y.lmi_variables)) % members = ismembcYALMIP(X.lmi_variables,Y.lmi_variables); if disconnected == 1 || disconnected == 2%~any(members) bilinearproduct = 1; try dummy = ismembc2(1,1); % Not available in all versions (needed in ismember) candofastlocation = 1; catch end end end oldmt = mt; local_mt = mt(all_lmi_variables,:); used_variables = any(local_mt,1); local_mt = local_mt(:,used_variables); possibleOld = find(any(mt(:,used_variables),2)); if all(oldvariabletype <=3) % All monomials have non-negative integer powers % no chance of x^2*x^-1, hence all products % are nonlinear possibleOld = possibleOld(find(oldvariabletype(possibleOld))); if size(possibleOld,1)==0 possibleOld = []; end end if bilinearproduct && ~isempty(possibleOld) if length(X.lmi_variables)<=length(Y.lmi_variables) temp = mt(:,X.lmi_variables); temp = temp(possibleOld,:); possibleOld=possibleOld(find(any(temp,2))); else temp = mt(:,Y.lmi_variables); temp = temp(possibleOld,:); possibleOld=possibleOld(find(any(temp,2))); end end theyvars = find(index_Y); thexvars = find(index_X); % We work with three sets of hashed data. % 1. The hashes that were available from the start. These are % sorted possibleOldHash = mt_hash(possibleOld); [possibleOldHashSorted, sortedHashLocs] = sort(possibleOldHash); oldhash = hash; hash = hash(used_variables); % 2. The hashes that were introduced in the previous outer % iteration, i.e. those generated when multiplying x(ix) with % all y. These are sorted every iteration new_mt_hash = []; %new_mt_hash_aux = spalloc(length(X.lmi_variables)*length(Y.lmi_variables),1,0); new_mt_hash_aux = zeros(min(1e3,length(X.lmi_variables)*length(Y.lmi_variables)),1); new_mt_hash_counter = 0; % % 3. Those that are generated at the current iteration. These % % are not sorted % currwent_new_mt_hash_aux = zeros(length(X.lmi_variables)*length(Y.lmi_variables),1); % current_new_mt_hash_counter = 0; new_mt = []; changed_mt = 0; local_mt = local_mt'; nvar = size(mt,1); old_new_mt_hash_counter = new_mt_hash_counter; possibleNewHashSorted = {}; sortedNewHashLocs = {}; possibleOldBlocked{1} = possibleOld; sortedHashLocsBlocked{1} = sortedHashLocs; possibleOldHashSortedBlocked{1} = possibleOldHashSorted; possibleOldHashSortedBlockedFull{1} = full(possibleOldHashSorted); current_offset = size(mt_hash,1); YB = Y.basis(:,1+index_Y(theyvars(:)')); if isequal(YB,speye(size(YB,1))) simpleMultiplicationwithI = 1; else simpleMultiplicationwithI = 0; end for ix = thexvars(:)' mt_x = local_mt(:,ix); testthese = theyvars(:)'; % Compute [vec(Xbasis*Ybasis1) vec(Xbasis*Ybasis2) ...] % in one shot using vectorization and Kronecker tricks % Optimized and treat special case scalar*matrix etc if x_isscalar allprodbase = X.basis(:,1+index_X(ix)); %allprodbase = Xibase * Y.basis(:,1+index_Y(testthese)); allprodbase = allprodbase * YB; elseif y_isscalar allprodbase = X.basis(:,1+index_X(ix)); %allprodbase = Xibase * Y.basis(:,1+index_Y(testthese)); allprodbase = allprodbase * YB; elseif inner_vector_product allprodbase = X.basis(:,1+index_X(ix)).'; %allprodbase = Xibase*Y.basis(:,1+index_Y(testthese)); if ~simpleMultiplicationwithI allprodbase = allprodbase*YB; end else allprodbase = reshape(X.basis(:,1+index_X(ix)),nx,mx); allprodbase = kron(speyemy,allprodbase); %allprodbase = temp * Y.basis(:,1+index_Y(testthese)); allprodbase = allprodbase * YB; end % Keep non-zero matrices if size(allprodbase,1)==1 nonzeromatrices = find(allprodbase); nonzeromatrices = nonzeromatrices(find(abs(allprodbase(nonzeromatrices))>1e-12)); else nonzeromatrices = find(sum(abs(allprodbase),1)>1e-12); end testthese = testthese(nonzeromatrices); allprodbase = allprodbase(:,nonzeromatrices); % Some data for vectorization nyvars = length(testthese); if prod(size(mt_x))==1 % Bug in Solaris and Linux, ML 6.X allmt_xplusy = local_mt(:,testthese) + sparse(repmat(full(mt_x),1,nyvars)); else allmt_xplusy = bsxfun(@plus,local_mt(:,testthese),mt_x); % allmt_xplusy = local_mt(:,testthese) + repmat(mt_x,1,nyvars); end allhash = allmt_xplusy'*hash; thesewhereactuallyused = zeros(1,nyvars); copytofrom = ones(1,nyvars); acounter = 0; % Special case : x*inv(x) and similiar... sum_to_constant = abs(allhash)<eps; add_these = find(sum_to_constant); if ~isempty(add_these) prodbase = allprodbase(:,add_these); Z.basis(:,1) = Z.basis(:,1) + sum(prodbase,2); copytofrom(add_these) = 0; end indicies = find(~sum_to_constant); indicies = indicies(:)'; allbefore_in_old = 1; if bilinearproduct && candofastlocation [dummy,allbefore_in_old] = ismember(allhash,possibleOldHash); end if bilinearproduct && candofastlocation && (nnz(allbefore_in_old)==0) % All nonlinear variables are new, so we can create them at once changed_mt=1; thesewhereactuallyused = thesewhereactuallyused+1; Z.lmi_variables = expandAllocation(Z.lmi_variables,(i+length(indicies)-1)); Z.lmi_variables(i:(i+length(indicies)-1)) = (nvar+1):(nvar+length(indicies)); nvar = nvar + length(indicies); i = i + length(indicies); else for acounter = indicies current_hash = allhash(acounter); % Ok, braze your self for some horrible special case % treatment etc... if (new_mt_hash_counter == 0) || bilinearproduct % only search among old monomials if bilinearproduct && candofastlocation before = allbefore_in_old(acounter); if before==0 before = []; else before = possibleOld(before); end else before = possibleOld(sortedHashLocs(findhashsorted(possibleOldHashSorted,current_hash))); end else % length(new_mt_hash_aux) before = findhash(new_mt_hash_aux,current_hash,new_mt_hash_counter); % first among new monomials if before before=before+current_offset; else sb = 1; cth = full(current_hash); while isempty(before) && sb <= length(possibleOldBlocked) testitfull = possibleOldHashSortedBlockedFull{sb}; mmm=findhashsorted(testitfull,cth); if mmm mmm=sortedHashLocsBlocked{sb}(mmm); before = possibleOldBlocked{sb}(mmm); end sb = sb+1; end end end if before Z.lmi_variables = expandAllocation(Z.lmi_variables,i); Z.lmi_variables(i) = before; else changed_mt=1; thesewhereactuallyused(acounter) = 1; new_mt_hash_counter = new_mt_hash_counter + 1; if new_mt_hash_counter>length(new_mt_hash_aux) new_mt_hash_aux = [new_mt_hash_aux;zeros(length(new_mt_hash_aux),1)]; end new_mt_hash_aux(new_mt_hash_counter) = current_hash; nvar = nvar + 1; Z.lmi_variables = expandAllocation(Z.lmi_variables,i); Z.lmi_variables(i) = nvar; end i = i+1; end end % End y-variables if all(copytofrom) Z.basis = [Z.basis allprodbase]; else Z.basis = [Z.basis allprodbase(:,find(copytofrom))]; end if all(thesewhereactuallyused) new_mt = [new_mt allmt_xplusy]; else new_mt = [new_mt allmt_xplusy(:,find(thesewhereactuallyused))]; end bsize = 100; if new_mt_hash_counter>5 bsize = new_mt_hash_counter-1; end if new_mt_hash_counter > bsize ship = new_mt_hash_aux(1:bsize); mt_hash = [mt_hash;ship]; new_mt_hash_aux = new_mt_hash_aux(bsize+1:new_mt_hash_counter); new_mt_hash_counter = nnz(new_mt_hash_aux); [newHashSorted, sortednewHashLocs] = sort(ship); possibleOldBlocked{end+1} = (1:bsize)+current_offset; sortedHashLocsBlocked{end+1} = sortednewHashLocs; possibleOldHashSortedBlocked{end+1} = (newHashSorted); possibleOldHashSortedBlockedFull{end+1} = full(newHashSorted); current_offset = current_offset + bsize; end end % End x-variables if ~isempty(new_mt) [i1,j1,k1] = find(mt); [ii1,jj1,kk1] = find(new_mt'); uv = find(used_variables);uv=uv(:); mt = sparse([i1(:);ii1(:)+size(mt,1)],[j1(:);uv(jj1(:))],[k1(:);kk1(:)],size(mt,1)+size(new_mt,2),size(mt,2)); end % We pre-allocated a sufficiently long, now pick the ones we % actually filled with values Z.lmi_variables = Z.lmi_variables(1:i-1); % Fucked up order (lmi_variables should be sorted) Z = fix_variable_order(Z); if changed_mt%~isequal(mt,oldmt) newmt = mt(size(oldmt,1)+1:end,:); nonlinear = ~(sum(newmt,2)==1 & sum(newmt~=0,2)==1); newvariabletype = spalloc(size(newmt,1),1,nnz(nonlinear))'; nonlinearvariables = find(nonlinear); newvariabletype = sparse(nonlinearvariables,ones(length(nonlinearvariables),1),3,size(newmt,1),1)'; if ~isempty(nonlinear) %mt = internal_sdpvarstate.monomtable; %newvariabletype(nonlinear) = 3; quadratic = sum(newmt,2)==2; newvariabletype(quadratic) = 2; bilinear = max(newmt,[],2)<=1; newvariabletype(bilinear & quadratic) = 1; sigmonial = any(0>newmt,2) | any(newmt-fix(newmt),2); newvariabletype(sigmonial) = 4; end % yalmip('setmonomtable',mt,[oldvariabletype newvariabletype],[mt_hash;new_mt_hash],oldhash); yalmip('setmonomtable',mt,[oldvariabletype newvariabletype],[mt_hash;new_mt_hash_aux(1:new_mt_hash_counter)],oldhash); end if ~(x_isscalar || y_isscalar) Z.dim(1) = X.dim(1); Z.dim(2) = Y.dim(2); else Z.dim(1) = max(X.dim(1),Y.dim(1)); Z.dim(2) = max(X.dim(2),Y.dim(2)); end catch error(lasterr) end % Reset info about conic terms Z.conicinfo = [0 0]; Z.extra.opname=''; Z = clean(Z); case 2 n_X = X.dim(1); m_X = X.dim(2); [n_Y,m_Y] = size(Y); x_isscalar = (n_X*m_X==1); y_isscalar = (n_Y*m_Y==1); if ~x_isscalar if ((m_X~= n_Y && ~y_isscalar)) error('Inner matrix dimensions must agree.') end end n = n_X; m = m_Y; Z = X; if x_isscalar if y_isscalar if Y==0 Z = 0; return else Z.basis = Z.basis*Y; % Reset info about conic terms Z.conicinfo = [0 0]; Z.extra.opname=''; Z = addrightfactor(Z,Y); return end else if ~isa(Y,'double') Y = double(Y); end Z.dim(1) = n_Y; Z.dim(2) = m_Y; Z.basis = kron(Z.basis,Y(:)); Z.conicinfo = [0 0]; Z.extra.opname=''; Z = addrightfactor(Z,Y); Z = addleftfactor(Z,speye(size(Y,1))); Z = clean(Z); return end elseif y_isscalar if ~isa(Y,'double') Y = double(Y); end Z.dim(1) = n_X; Z.dim(2) = m_X; Z.basis = Z.basis*Y; Z.conicinfo = [0 0]; Z.extra.opname=''; Z = addrightfactor(Z,Y); Z = addleftfactor(Z,speye(size(Y,1))); Z = clean(Z); return end Z.dim(1) = n; Z.dim(2) = m; if (n_X==1) && is(X,'lpcone') && (n_Y == m_Y) && (size(X.basis,1)==size(X.basis,2-1)) && isequal(X.basis*[0 1:size(X.basis,2)-1]',(1:size(X.basis,2)-1)') % special case to speed up x'*Q, Q square. typically % encountered in large-scale QPs Z.basis = [X.basis(:,1) Y.']; else if ~isa(Y,'double') Y = double(Y); end Z.basis = kron(Y.',speye(n_X))*X.basis; end Z.conicinfo = [0 0]; Z.extra.opname=''; Z = addrightfactor(Z,Y); Z = clean(Z); case 1 n_Y = Y.dim(1); m_Y = Y.dim(2); [n_X,m_X] = size(X); x_isscalar = (n_X*m_X==1); y_isscalar = (n_Y*m_Y==1); if ~x_isscalar if ((m_X~= n_Y && ~y_isscalar)) error('Inner matrix dimensions must agree.') end end n = n_X; m = m_Y; Z = Y; % Special cases if x_isscalar if y_isscalar if X==0 Z = 0; return else Z.basis = Z.basis*X; Z.conicinfo = [0 0]; Z.extra.opname=''; Z = addleftfactor(Z,X); return end else try Z.basis = X*Z.basis; catch % This works better when low on memory in some cases [i,j,k] = find(Y.basis); Z.basis = sparse(i,j,X*k,size(Y.basis,1),size(Y.basis,2)); end Z.conicinfo = [0 0]; Z.extra.opname=''; Z = addleftfactor(Z,X); if X==0 Z = clean(Z); end return end elseif y_isscalar Z.dim(1) = n_X; Z.dim(2) = m_X; Z.basis = X(:)*Y.basis; Z = addleftfactor(Z,X); Z = addrightfactor(Z,speye(size(X,2))); Z = clean(Z); return end if m_Y==1 if issparse(X) Z.basis = X*Y.basis; else if (size(X,1) > 100000) && isdiagonal(X) try Z.basis = bsxfun(@times,Y.basis,sparse(diag(X))); catch Z.basis = sparse(X)*Y.basis; end else Z.basis = sparse(X)*Y.basis; end end else try if ~isa(X,'double') X = double(X); end speyemy = speye(m_Y); kronX = kron(speyemy,X); Z.basis = kronX*Y.basis; catch disp('Multiplication of SDPVAR object caused memory error'); disp('Continuing using unvectorized version which is extremely slow'); Z.basis = []; if ~isa(X,'double') X = double(X); end for i = 1:size(Y.basis,2); dummy = X*reshape(Y.basis(:,i),Y.dim(1),Y.dim(2)); Z.basis = [Z.basis dummy(:)]; end end end Z.dim(1) = n; Z.dim(2) = m; Z.conicinfo = [0 0]; Z.extra.opname=''; Z = addleftfactor(Z,X); Z = clean(Z); otherwise error('Logical error in mtimes. Report bug') end function Z=clean(X) temp = any(X.basis,1); temp = temp(2:end); index = find(temp); if ~isempty(index) Z = X; if length(index)~=length(Z.lmi_variables) Z.basis = Z.basis(:,[1 1+index]); Z.lmi_variables = Z.lmi_variables(index); end else Z = full(reshape(X.basis(:,1),X.dim(1),X.dim(2))); end function Z = fix_variable_order(Z) % Fucked up order (lmi_variables should be sorted) if any(diff(Z.lmi_variables)<0) [i,j]=sort(Z.lmi_variables); Z.basis = [Z.basis(1:end,1) Z.basis(:,j+1)]; Z.lmi_variables = Z.lmi_variables(j); end [un_Z_vars2] = uniquestripped(Z.lmi_variables); if length(un_Z_vars2) < length(Z.lmi_variables) [un_Z_vars,hh,jj] = unique(Z.lmi_variables); if length(Z.lmi_variables) ~=length(un_Z_vars) Z.basis = Z.basis*sparse([1 1+jj(:)'],[1 1+(1:length(jj))],ones(1,1+length(jj)))'; Z.lmi_variables = un_Z_vars; end end function Z = super_fast_quadratic_multiplication(X,Y,mt,oldvariabletype,mt_hash,hash); Q = X.basis(:,2:end); R = Y.basis(:,2:end); Q = (Q.')*R; Q = Q + Q.' - diag(diag(Q)); if nnz(Q-diag(diag(Q)))==0 % Special case, only quadratic terms % Exploit this! n = length(X.lmi_variables); new_mt = sparse(1:n,X.lmi_variables,2*ones(n,1),n,size(mt,2)); newvariabletype = ones(n,1)*2; Q = diag(Q);Q = Q(:)'; else indicies = find(tril(ones(length(Q)))); Q = Q(indicies); Q = Q(:).'; n = length(X.lmi_variables); V = mt(X.lmi_variables,:); if 1 m1 = kron((1:n)',ones(n,1)); m2 = kron(ones(n,1),(1:n)'); r = reshape(1:n^2,n,n); r = r(find(tril(r))); m1 = m1(r); m2 = m2(r); VV = V'; VV = VV(:,m1) + VV(:,m2); new_mt = VV'; else new_mt = kron(V,ones(n,1)) + kron(ones(n,1),V); r = reshape(1:n^2,n,n); new_mt = new_mt(r(find(tril(r))),:); end newvariabletype = max((new_mt),[],2); end yalmip('setmonomtable',[mt;new_mt],[oldvariabletype newvariabletype'],[mt_hash;new_mt*hash],hash); Z = X; varbase = [(X.basis(:,1).')*Y.basis(:,2:end)+(Y.basis(:,1).')*X.basis(:,2:end) Q]; Z.basis = [(X.basis(:,1).')*Y.basis(:,1) varbase(find(varbase))]; Z.lmi_variables = [X.lmi_variables size(mt,1) + (1:length(Q))]; Z.lmi_variables = Z.lmi_variables(find(varbase)); Z.dim(1) = 1; Z.dim(2) = 1; Z.conicinfo = [0 0]; Z.extra.opname=''; function Z = check_for_special_case(Y,X) % X*Y = X*log(?) args = yalmip('getarguments',Y); args = args.arg{1}; if isequal(X,args) Z = -entropy(X); return end if 0%isequal(getvariables(args),getvariables(X)) % Possible f(x)*log(f(x)) [i,j,k] = find(getbase(args)); [ii,jj,kk] = find(getbase(X)); if isequal(i,ii) && isequal(j,jj) scale = kk(1)./k(1) if all(abs(kk./k - kk(1)./k(1)) <= 1e-12) Z = -scale*entropy(args); return end end end if isequal(getbase(args),[0 1]) && isequal(getbase(X),[0 1]) mt = yalmip('monomtable'); v = mt(getvariables(args),:); vb = v(find(v)); if v(getvariables(X))==1 && min(vb)==-1 && max(vb)==1 Z = plog([X;recover(find(v==-1))]); else Z = []; end else Z = []; end function yes = isdiagonal(X) yes = 0; if size(X,1) == size(X,2) [i,j] = find(X); if all(i==j) yes = 1; end end function x = expandAllocation(x,n) if length(x) < n x = [x zeros(1,2*n-length(x))]; end
github
EnricoGiordano1992/LMI-Matlab-master
cosh.m
.m
LMI-Matlab-master/yalmip/@sdpvar/cosh.m
867
utf_8
c13a2d8c9f1f455224d9d5fc5a232af4
function varargout = cosh(varargin) %COSH (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/COSH CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','none','definiteness','positive','model','callback'); operator.convexhull = []; operator.bounds = @bounds; operator.derivative = @(x)(sinh(x)); varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/COSH called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xL<0 & xU>0 L = 0; U = max([cosh(xL) cosh(xU)]); elseif xL<0 L = cosh(xU); U = cosh(xL); else L = cosh(xL); U = cosh(xU); end
github
EnricoGiordano1992/LMI-Matlab-master
det.m
.m
LMI-Matlab-master/yalmip/@sdpvar/det.m
2,020
utf_8
c62ed564f88ca694ab3f483f7c7664ef
function varargout = det(varargin) %DET (overloaded) % % t = DET(X) switch class(varargin{1}) case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them. X = varargin{1}; [n,m] = size(X); if n~=m error('Matrix must be square.') end if nargin == 2 if strcmp(varargin{2},'polynomial') varargout{1} = polynomialform(X); return else error('If you use two arguments in @sdpvar/det, the second should be ''polynomial'''); end end if n==1 varargout{1} = X; return else y = yalmip('define','det_internal',reshape(X,[],1)); end varargout{1} = y; otherwise end function d = polynomialform(X) n = X.dim(1); m = X.dim(2); if n~=m error('Matrix must be square.'); else switch n case 1 d = X; case 2 % Freakin overloading on multiplication doesn't work. Probalby % stupid code... Y1.type = '()'; Y2.type = '()'; Y3.type = '()'; Y4.type = '()'; Y1.subs = {1,1}; Y2.subs = {2,2}; Y3.subs = {1,2}; Y4.subs = {2,1}; d = subsref(X,Y1)*subsref(X,Y2)-subsref(X,Y3)*subsref(X,Y4); otherwise d = 0; Y.type = '()'; for i = 1:n Y.subs = {i,1}; xi = subsref(X,Y); if ~isequal(xi,0) Y.subs = {[1:1:i-1 i+1:1:n],2:n}; subX = subsref(X,Y); if isa(subX,'sdpvar') d = d + (-1)^(i+1)*xi*polynomialform(subX); else d = d + (-1)^(i+1)*xi*det(subX); end end end end end % Reset info about conic terms if isa(d,'sdpvar') d.conicinfo = [0 0]; end
github
EnricoGiordano1992/LMI-Matlab-master
value.m
.m
LMI-Matlab-master/yalmip/@sdpvar/value.m
11,462
utf_8
ec8d9598bf4fccc447aff873eb963275
function [sys,values] = value(X,allextended,allevaluators,allStruct,mt,variabletype,solution,values) %VALUE Returns current numerical value of an SDPVAR object % % After solving an optimization problem, we can extract the current % solution by applying VALUE on a variable of interest % % xvalue = value(x) % % If you have solved a multiple problems simultaneously by using a % non-scalar objective function, you can select the solution by using a % second argument % % xvalue = value(x,i) % Normal users might use the second arguement in order to select solution if nargin == 2 if prod(size(allextended))==1 try selectsolution(allextended); sys = value(X); selectsolution(1); return catch error(['Solution ' num2str(allextended) ' not available']); end else error(['Solution number should be a positive scalar']); end end % Definition of nonlinear variables if nargin == 1 [mt,variabletype] = yalmip('monomtable'); solution = yalmip('getsolution'); end lmi_variables = X.lmi_variables; opt_variables = solution.variables; nonlinears = lmi_variables(find(variabletype(X.lmi_variables))); % FIXME: This code does not work % if ~isempty(solution.values) % if max(lmi_variables) <= length(solution.values) && isempty(nonlinears) % if ~any(isnan(solution.values(lmi_variables(:)))) % % Yihoo, we can do this really fast by % % re-using the old values % sys = X.basis*[1;solution.values(lmi_variables(:))]; % if X.typeflag==10 % sys = eig(full(reshape(sys,X.dim(1),X.dim(2)))); % else % sys = full(reshape(sys,X.dim(1),X.dim(2))); % end % return % end % end % end % Okey, we could not do it really fast... if nargin == 1 % Definition of nonlinear variables allextended = yalmip('extvariables'); allevaluators = []; allStruct = yalmip('extstruct'); end if isempty(nonlinears) && isempty(allextended) members = ismembcYALMIP(lmi_variables,solution.variables); if all(members) % speed up code for simple linear case values = solution.values; if isempty(solution.values) values = sparse(solution.variables,ones(length(solution.variables),1),solution.optvar,size(mt,1),1); yalmip('setvalues',values); else if any(isnan(solution.values(lmi_variables(:)))) values = sparse(solution.variables,ones(length(solution.variables),1),solution.optvar,size(mt,1),1); yalmip('setvalues',values); end end sys = X.basis*[1;values(lmi_variables(:))]; if X.typeflag==10 sys = eig(full(reshape(sys,X.dim(1),X.dim(2)))); else sys = full(reshape(sys,X.dim(1),X.dim(2))); end return end end if nargin == 1 % All double values values(size(mt,1),1)=nan;values(:)=nan; values(solution.variables) = solution.optvar; clear_these = allextended; if ~isempty(allStruct) if ~isempty(strfind([allStruct.fcn],'semivar')) for i = 1:length(allStruct) if strcmp(allStruct(i).fcn,'semivar')%isequal(allStruct(i).fcn,'semivar') clear_these = setdiff(clear_these,allextended(i)); end end end end values(clear_these) = nan; end % Evaluate the extended operators if ~isempty(allextended) extended_variables = find(ismembcYALMIP(X.lmi_variables,allextended)); if ~isempty(extended_variables) for i = 1:length(extended_variables) extvar = lmi_variables(extended_variables(i)); if isnan(values(extvar)) extstruct = allStruct(find(X.lmi_variables(extended_variables(i)) == allextended)); for k = 1:length(extstruct.arg) if isa(extstruct.arg{k},'sdpvar') [extstruct.arg{k},values] = value(extstruct.arg{k},allextended,allevaluators,allStruct,mt,variabletype,solution,values); elseif isa(extstruct.arg{k},'constraint') extstruct.arg{k} = value(extstruct.arg{k}); end end switch extstruct.fcn case 'sort' [w,loc] = sort(extstruct.arg{1}); if extstruct.arg{2}.isthisloc val = loc(extstruct.arg{2}.i); else val = w(extstruct.arg{2}.i); end case 'semivar' % A bit messy, since it not really is a nonlinear % operator. semivar(1) does not return 1, but a new % semivar variable... val = values(getvariables(extstruct.var)); case 'geomean' % Not 100% MATLAB consistent (Hermitian case differ) val = extstruct.arg{1}; if ~any(any(isnan(val))) [n,m] = size(val); if n == m if isessentiallyhermitian(val) val = max(0,real(det(val)))^(1/n); else val = prod(val).^(1./(size(val,1))); end elseif min(n,m)>1 val = prod(val).^(1./(size(val,1))); else val = prod(val).^(1./(length(val))); end else val = nan; end case 'pwf' % Has to be placed here due to the case when % all functions are double, since in this case, % we cannot determine in pwf if we want the double or % create a pw constant function... n = length(extstruct.arg-1)/2; i = 1; val = nan; while i<=n if min(checkset(extstruct.arg{2*i}))>=0 val = extstruct.arg{2*i-1}; break end i = i + 1; end case 'or' temp = [extstruct.arg{1:end-1}]; if any(isnan(temp)) val = NaN; else val = any(temp); end case 'and' temp = [extstruct.arg{1:end-1}]; if any(isnan(temp)) val = NaN; else val = all(temp); end case 'xor' temp = [extstruct.arg{1:end-1}]; if any(isnan(temp)) val = NaN; else val = nnz([extstruct.arg{1:end-1}]) == 1; end case 'abs' try % ABS has predefined binary appended to % argument list val = feval(extstruct.fcn,extstruct.arg{1:end-2}); catch val = nan; end otherwise try val = feval(extstruct.fcn,extstruct.arg{1:end-1}); catch val = nan; end end values(extstruct.computes) = full(val); end end end end if ~isempty(nonlinears) mt_t = mt'; %Working columnwise is faster use_these = find(ismember(lmi_variables,nonlinears)); all_extended_variables = yalmip('extvariables'); for i = use_these monom_i = mt_t(:,lmi_variables(i)); used_in_monom = find(monom_i); if ~isempty(all_extended_variables) extended_variables = find(ismembcYALMIP(used_in_monom,all_extended_variables)); if ~isempty(extended_variables) for ii = 1:length(extended_variables) extvar = used_in_monom(extended_variables(ii)); %extstruct = yalmip('extstruct',extvar); %extstruct = getExtStruct(allStruct,extvar); extstruct = allStruct(find([allStruct.computes] == extvar)); for k = 1:length(extstruct.arg) if isa(extstruct.arg{k},'sdpvar') extstruct.arg{k} = value(extstruct.arg{k}); end end switch extstruct.fcn case 'abs' val = feval(extstruct.fcn,extstruct.arg{1:end-2}); case 'sort' w = sort(extstruct.arg{1}); val = w(extstruct.arg{2}); case 'semivar' val = values(getvariables(extstruct.var)); case 'geomean' % Not 100% MATLAB consistent (Hermitian case differ) val = extstruct.arg{1}; if ~any(any(isnan(val))) [n,m] = size(val); if n == m if issymmetric(val) val = max(0,real(det(val)))^(1/n); else val = geomean(val); end else val = geomean(val); end else val = nan; end otherwise val = feval(extstruct.fcn,extstruct.arg{1:end-1}); end values(extstruct.computes) = full(val); end end end % This code is a bit shaky due to the 0^0 bug in linux 6.5 %the_product = prod(values(used_in_monom).^monom_i(used_in_monom)); the_product = 1; for j = 1:length(used_in_monom) the_product = the_product*values(used_in_monom(j))^monom_i(used_in_monom(j)); end values(lmi_variables(i)) = the_product; end end sys = X.basis*[1;values(lmi_variables(:))]; if X.typeflag==10 sys = eig(full(reshape(sys,X.dim(1),X.dim(2)))); else sys = full(reshape(sys,X.dim(1),X.dim(2))); end function extstruct = getExtStruct(allStruct,extvar) found = 0; extstruct = []; i = 1; while ~found && i <=length(allStruct) if extvar == getvariables(allStruct(i).var) found = 1; extstruct = allStruct(i); end i = i + 1; end
github
EnricoGiordano1992/LMI-Matlab-master
cos.m
.m
LMI-Matlab-master/yalmip/@sdpvar/cos.m
1,708
utf_8
8f6b7d263e781c2959afd94381b1a131
function varargout = cos(varargin) %COS (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/COS CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWiseUnitary(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','none','definiteness','none','model','callback'); operator.bounds = @bounds; operator.derivative = @(x)(-sin(x)); operator.range = [-1 1]; operator.convexhull = @convexhull; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/COS called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xU-xL >= 2*pi L = -1; U = 1; else xL = xL + pi/2; xU = xU + pi/2; n = floor(( (xL + xU)/2/(2*pi))); xL = xL - n*2*pi; xU = xU - n*2*pi; yL = sin(xL); yU = sin(xU); L = min([yL yU]); U = max([yL yU]); if (xL<pi/2 & xU>pi/2) | (xL<-3*pi/2 & xU>-3*pi/2) U = 1; end if (xL < 3*pi/2 & xU > 3*pi/2) | (xL < -pi/2 & xU > -pi/2) L = -1; end end function [Ax, Ay, b] = convexhull(xL,xU) % Convert to sin xL = xL + pi/2; xU = xU + pi/2; if sin(xL)>=0 & sin(xU)>=0 & xU-xL<pi fL = sin(xL); fU = sin(xU); dfL = cos(xL); dfU = cos(xU); [Ax,Ay,b] = convexhullConcave(xL,xU,fL,fU,dfL,dfU); elseif sin(xL)<=0 & sin(xU)<=0 & xU-xL<pi fL = sin(xL); fU = sin(xU); dfL = cos(xL); dfU = cos(xU); [Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU); else [Ax,Ay,b] = convexhullGeneral(xL,xU,@sin); end % Back to cos b=b-Ax*pi/2;
github
EnricoGiordano1992/LMI-Matlab-master
erfcx.m
.m
LMI-Matlab-master/yalmip/@sdpvar/erfcx.m
674
utf_8
1f0ede69a805c09aa20815d4ee2aa46b
function varargout = erfcx(varargin) %ERFCX (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/ERFCX CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','decreasing','definiteness','positive','model','callback'); operator.bounds = @bounds; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ERFCX called with CHAR argument?'); end function [L,U] = bounds(xL,xU) L = erfcx(xU); U = erfcx(xL);
github
EnricoGiordano1992/LMI-Matlab-master
sin.m
.m
LMI-Matlab-master/yalmip/@sdpvar/sin.m
1,835
utf_8
70d381366a829f9cd6b32d6075ea3ce2
function varargout = sin(varargin) %SIN (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/SIN CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWiseUnitary(mfilename,varargin{:}); %varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' % General operator operator = struct('convexity','none',... 'monotonicity','none',... 'definiteness','none',... 'model','callback'); operator.bounds = @bounds; operator.convexhull = @convexhull; operator.derivative = @(x)(cos(x)); operator.range = [-1 1]; operator.domain = [-inf inf]; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/SIN called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xU-xL >= 2*pi L = -1; U = 1; else n = floor(( (xL + xU)/2/(2*pi))); xL = xL - n*2*pi; xU = xU - n*2*pi; yL = sin(xL); yU = sin(xU); L = min([yL yU]); U = max([yL yU]); if (xL<pi/2 & xU>pi/2) | (xL<-3*pi/2 & xU>-3*pi/2) U = 1; end if (xL < 3*pi/2 & xU > 3*pi/2) | (xL < -pi/2 & xU > -pi/2) L = -1; end end function [Ax, Ay, b] = convexhull(xL,xU) if sin(xL)>=0 & sin(xU)>=0 & xU-xL<pi xM = (xL+xU)/2; fL = sin(xL); fM = sin(xM); fU = sin(xU); dfL = cos(xL); dfM = cos(xM); dfU = cos(xU); [Ax,Ay,b] = convexhullConcave(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); elseif sin(xL)<=0 & sin(xU)<=0 & xU-xL<pi fL = sin(xL); fU = sin(xU); dfL = cos(xL); dfU = cos(xU); [Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU); else [Ax,Ay,b] = convexhullGeneral(xL,xU,@sin); end
github
EnricoGiordano1992/LMI-Matlab-master
min.m
.m
LMI-Matlab-master/yalmip/@sdpvar/min.m
4,676
utf_8
3e49b9ee5fa32b5c1891a289f51da69d
function y=min(varargin) %MIN (overloaded) % % t = MIN(X) % t = MIN(X,Y) % t = MIN(X,[],DIM) % % Creates an internal structure relating the variable t with concave % operator MIN(X). % % The variable t is primarily meant to be used in convexity preserving % operations such as t>=0, maximize t etc. % % If the variable is used in a non-convexity preserving operation, such as % t<=0, a mixed integer model will be derived. % % See built-in MIN for syntax. % MIN is implemented as a nonlinear operator. % However, for performance issues, it is not % implemented in the default high-level way. % % The return of the double value and the % construction of the epigraph/milp is done % in the file model.m % % To study a better example of how to create % your own nonlinear operator, check the % function sdpvar/norm instead % To simplify code flow, code for different #inputs switch nargin case 1 % Three cases: % 1. One scalar input, return same as output % 2. A vector input should give scalar output % 3. Matrix input returns vector output X = varargin{1}; if max(size(X))==1 y = X; return elseif min(size(X))==1 X = removeInf(X); if isa(X,'double') y = min(X); elseif length(X) == 1 y = X; else y = yalmip('define','min_internal',X); reDeclareForBinaryMax(y,X); end return else % This is just short hand for general command y = min(X,[],1); end case 2 X = varargin{1}; Y = varargin{2}; [nx,mx] = size(X); [ny,my] = size(Y); if ~((nx*mx==1) | (ny*my==1)) % No scalar, so they have to match if ~((nx==ny) & (mx==my)) error('Array dimensions must match.'); end end % Convert to compatible matrices if nx*mx==1 X = X*ones(ny,my); nx = ny; mx = my; elseif ny*my==1 Y = Y*ones(nx,mx); ny = nx; my = mx; end % Ok, done with error checks etc. % Introduce one extended variable/element % Lame code since we cannot call overloaded % subsref from inside of SDPVAR object... % This is most likely not a often used syntax, % so performance is neglected here... y = []; for i = 1:nx temp = []; for j = 1:mx Xij = extsubsref(X,i,j); Yij = extsubsref(Y,i,j); yij = min([Xij Yij]); temp = [temp yij]; end y = [y;temp]; end case 3 X = varargin{1}; Y = varargin{2}; DIM = varargin{3}; if ~(isa(X,'sdpvar') & isempty(Y)) error('MIN with two matrices to compare and a working dimension is not supported.'); end if ~isa(DIM,'double') error('Dimension argument must be 1 or 2.'); end if ~(length(DIM)==1) error('Dimension argument must be 1 or 2.'); end if ~(DIM==1 | DIM==2) error('Dimension argument must be 1 or 2.'); end if DIM==1 % Create one extended variable per column y = []; for i = 1:size(X,2) inparg = extsubsref(X,1:size(X,1),i); if isa(inparg,'double') y = [y min(inparg)]; return end inparg = removeInf(inparg); if isa(inparg,'double') y = [y min(inparg)]; elseif isa(inparg,'sdpvar') z = yalmip('define','min_internal',inparg); y = [y z]; reDeclareForBinaryMax(z,inparg); else y = [y min(inparg)]; end end else % Re-use code recursively y = min(X',[],1)'; end otherwise error('Too many input arguments.') end function X = removeInf(X) Xbase = getbase(X); infs = find( isinf(Xbase(:,1)) & (Xbase(:,1)>0)); if ~isempty(infs) X.basis(infs,:) = []; if X.dim(1)>X.dim(2) X.dim(1) = X.dim(1) - length(infs); else X.dim(2) = X.dim(2) - length(infs); end end infs = find(isinf(Xbase(:,1)) & (Xbase(:,1)<0)); if ~isempty(infs) X = -inf; end
github
EnricoGiordano1992/LMI-Matlab-master
pow2.m
.m
LMI-Matlab-master/yalmip/@sdpvar/pow2.m
975
utf_8
39f0baec231cb6e3e01ff432c5ec3237
function varargout = pow2(varargin) %POW2 (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/POW2 CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','convex','monotonicity','increasing','definiteness','positive','model','callback'); operator.convexhull = @convexhull; operator.bounds = @bounds; operator.derivative = @derivative; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/POW2 called with CHAR argument?'); end function df = derivative(x) df = log(2)*pow2(x); function [L,U] = bounds(xL,xU) L = pow2(xL); U = pow2(xU); function [Ax, Ay, b] = convexhull(xL,xU) fL = pow2(xL); fU = pow2(xU); dfL = log(2)*fL; dfU = log(2)*fU; [Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU);
github
EnricoGiordano1992/LMI-Matlab-master
acosh.m
.m
LMI-Matlab-master/yalmip/@sdpvar/acosh.m
716
utf_8
b0d93d0f408c0c67ffbc9791f4e52e1b
function varargout = acosh(varargin) %ACOSH (overloaded) switch class(varargin{1}) case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','none','definiteness','positive','model','callback'); operator.convexhull = []; operator.bounds = @bounds; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ACOSH called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xU<=-1 L = acosh(xU); U = acosh(xL); elseif xL>=1 L = acosh(xL); U = acosh(xU); else L = -inf; U = inf; end
github
EnricoGiordano1992/LMI-Matlab-master
diff.m
.m
LMI-Matlab-master/yalmip/@sdpvar/diff.m
2,025
utf_8
2a39574fd1ff1b4b733230eeead686ba
function Y=diff(varargin) %DIFF (overloaded) X = varargin{1}; n = X.dim(1); m = X.dim(2); switch nargin case 1 if n == 1 % Default is diff along first dimension, unless we only have % one row. This happens to be the case in which the core function operates Y = differ(X); else % MATLAB stadnard, just diff along first dimension. Reuse core % code by transposing matrix Y = differ(X')'; end return case 2 % Note that MATLAB diff(randn(2,4),2) will cause a diff in two % different directions. if n == 1 if varargin{2}==1 || isempty(varargin{2}) Y = differ(X); else % Recursive use Y = diff(differ(X),varargin{2}-1); end else if varargin{2}==1 || isempty(varargin{2}) Y = differ(X')'; else % Recursive use Y = diff(differ(X')',varargin{2}-1); end end case 3 if X.dim(varargin{3})-varargin{2} <=0 dim = X.dim; dim(varargin{3}) = 0; Y = zeros(dim); elseif varargin{2}==1 if varargin{3} == 2 Y = differ(X); elseif varargin{3} == 1 || isempty(varargin{3}) Y = differ(X')'; end elseif varargin{2} > 1 % Recursive call for higher-order diff Y = diff(diff(X,varargin{2}-1,varargin{3}),1,varargin{3}); return end otherwise error('To many input arguments.') end function Y = differ(X) n = X.dim(1); m = X.dim(2); Y = X; shift = [-speye(m-1) spalloc(m-1,1,0)] + [spalloc(m-1,1,0) speye(m-1)]; shift = kron(shift,speye(n)); Y.basis = shift*X.basis; Y.dim(1) = n; Y.dim(2) = m - 1; % Reset info about conic terms Y.conicinfo = [0 0]; Y = flush(Y); Y = clean(Y);
github
EnricoGiordano1992/LMI-Matlab-master
erfinv.m
.m
LMI-Matlab-master/yalmip/@sdpvar/erfinv.m
803
utf_8
810f64595d183f3910c960d722dcc702
function varargout = erfinv(varargin) %ERFINV (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/ERFINV CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' X = varargin{3}; F = (-1+1e-9 <= X <= 1-1e-9); operator = struct('convexity','none','monotonicity','increasing','definiteness','none','model','callback'); operator.bounds = @bounds; varargout{1} = F; varargout{2} = operator varargout{3} = X; otherwise error('SDPVAR/ERF called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xL<=-1 L = -inf else L = erfinv(xL); end if xU>=1 U = inf; else U = erfinv(xU); end
github
EnricoGiordano1992/LMI-Matlab-master
callkypd.m
.m
LMI-Matlab-master/yalmip/solvers/callkypd.m
4,451
utf_8
62267054f26da5f4af3119e87fecc8f8
function diagnostic = callkypd(F,h,options) %F = constraint2kyp(F); kyps = is(F,'kyp'); if all(kyps) kypConstraints = F; otherConstraints = lmi; else kypConstraints = F(find(kyps)); otherConstraints = F(find(~kyps)); end % Trivial case if length(kypConstraints) == 0 if ~isempty(options) options.solver = ''; else options = sdpsettings; end diagnostic = solvesdp(F,h,options) return; end p_variables = []; x_variables = []; for i = 1:length(kypConstraints) [A{i},B{i},P{i},M{i},negated{i}] = extractkyp(sdpvar(kypConstraints(i))); if ~isa(P{i},'sdpvar') | ~isempty(intersect(p_variables,getvariables(P{i}))) diagnostic.solvertime = 0; diagnostic.problem = -4; diagnostic.info = yalmiperror(-4); return; end P_base = getbase(P{i}); [n,m] = size(P{i}); if (n~=m) | (nnz(P_base)~=n*n) | (sum(sum(P_base))~=n*n) diagnostic.solvertime = 0; diagnostic.problem = -4; diagnostic.info = yalmiperror(-4); return; end p_variables = [p_variables getvariables(P{i})]; x_variables = [x_variables getvariables(M{i})]; end if intersect(p_variables,getvariables(h)) diagnostic.solvertime = 0; diagnostic.problem = -4; diagnostic.info = yalmiperror(-4); return; end start = length(A);k = 1; for i = 1:length(otherConstraints) if is(otherConstraints(i),'lmi') A{k+start}=[]; B{k+start}=[]; P{k+start}=[]; M{k+start} = sdpvar(otherConstraints(i)); x_variables = [x_variables getvariables(M{k+start})]; k = k + 1; elseif is(otherConstraints(i),'elementwise') X = sdpvar(otherConstraints(i)); for ii = 1:size(X,1) for jj = 1:size(X,2) A{k+start}=[]; B{k+start}=[]; P{k+start}=[]; M{k+start} = X(ii,jj); x_variables = [x_variables getvariables(X(ii,jj))]; k = k + 1; end end end end % Objective function variables x_variables = unique([x_variables getvariables(h)]); % Are P and x independent if ~isempty(intersect(p_variables,x_variables)) error end % Generate the M-matrices for i = 1:length(M) m_variables = getvariables(M{i}); n = length(M{i}); M0{i} = getbasematrix(M{i},0); for j = 1:length(x_variables) Mi{i,j} = getbasematrix(M{i},x_variables(j)); end end c = zeros(length(x_variables),1); if ~isempty(h) for i = 1:length(x_variables) c(i) = getbasematrix(h,x_variables(i)); end end for i = 1:length(M) matrixinfo.n(i) = length(A{i}); matrixinfo.nm(i) = length(M{i}); end matrixinfo.K = length(x_variables); matrixinfo.c = c; matrixinfo.N = length(A); matrixinfo.A = A; matrixinfo.B = B; matrixinfo.M0 = M0; matrixinfo.M = Mi; matrixinfo.A = A; try solvertime = tic; [u,Popt,xopt,Zopt] = kypd_solver(matrixinfo,options); solvertime = toc(solvertime); % SAVE PRIMALS setsdpvar(recover(x_variables),xopt); for i = 1:length(kypConstraints) if negated{i} setsdpvar(P{i},-Popt{i}); else setsdpvar(P{i},Popt{i}); end end % SAVE DUALS lmi_index = []; j = 1; for i = 1:length(kypConstraints) %W = struct(kypConstraints(i));lmiid = W.LMIid; lmiid = getlmiid(kypConstraints(i)); lmi_index = [lmi_index;lmiid]; duals{j}=Zopt{j};j = j+1; end for i = 1:length(otherConstraints) %W = struct(otherConstraints(i));lmiid = W.LMIid; lmiid = getlmiid(otherConstraints(i)); lmi_index = [lmi_index;lmiid]; duals{j}=Zopt{j};j = j+1; end yalmip('setdual',lmi_index,duals); diagnostic.solvertime = solvertime; diagnostic.info = yalmiperror(0,'KYPD'); diagnostic.problem = 0; catch solvertime = etime(clock,solvertime); diagnostic.solvertime = solvertime; diagnostic.info = yalmiperror(9,'KYPD'); diagnostic.problem = 9; end function Fout = constraint2kyp(F) Fout = []; for i = 1:length(F) if is(F(i),'lmi') [l,m,r] = factors(sdpvar(F(i))); [constants,general,singles,pairs] = classifyfactors(l,m,r); [constants,general,singles,pairs] = compressfactors2(constants,general,singles,pairs); else Fout = Foput + F(i); end end
github
EnricoGiordano1992/LMI-Matlab-master
callscs.m
.m
LMI-Matlab-master/yalmip/solvers/callscs.m
5,222
utf_8
f7780f5b754144a484627c8bbc36f191
function output = callscs(model) % Retrieve needed data options = model.options; F_struc = model.F_struc; c = model.c; K = model.K; ub = model.ub; lb = model.lb; % ********************************************* % Bounded variables converted to constraints % N.B. Only happens when caller is BNB % ********************************************* if ~isempty(ub) [F_struc,K] = addbounds(F_struc,K,ub,lb); end data.A = -F_struc(:,2:end); data.b = full(F_struc(:,1)); data.c = full(c); cones = []; cones.f = K.f; cones.l = K.l; cones.q = K.q; cones.s = K.s; % Now add exponential cone information [data,cones,output] = addExponentialCone(data,cones,model); if output.problem return end if options.showprogress;showprogress(['Calling ' model.solver.tag],options.showprogress);end params = options.scs; params.verbose = options.verbose; if params.eliminateequalities tempmodel.F_struc = [data.b -data.A]; tempmodel.c = data.c; tempmodel.K = cones; [tempmodel,xsol,H] = removeequalitiesinmodel(tempmodel); data.b = full(tempmodel.F_struc(:,1)); data.A = -tempmodel.F_struc(:,2:end); data.c = full(tempmodel.c); cones = tempmodel.K; else H = 1; xsol = 0; end if options.savedebug save scsdebug data cones params end % Extract lower diagonal form for new SCS format if ~isempty(cones.s) && any(cones.s) sdpA = data.A(1+cones.l + cones.f+sum(cones.q):end,:); sdpb = data.b(1+cones.l + cones.f+sum(cones.q):end,:); expA = data.A(end-3*cones.ep+1:end,:); expb = data.b(end-3*cones.ep+1:end,:); data.A = data.A(1:cones.l + cones.f+sum(cones.q),:); data.b = data.b(1:cones.l + cones.f+sum(cones.q),:); top = 1; for i = 1:length(cones.s) A = sdpA(top:top + cones.s(i)^2-1,:); b = sdpb(top:top + cones.s(i)^2-1,:); n = cones.s(i); ind = find(speye(n)); b(ind) = b(ind)/sqrt(2); A(ind,:) = A(ind,:)/sqrt(2); ind = find(tril(ones(n))); A = A(ind,:); b = b(ind); data.A = [data.A;A]; data.b = [data.b;b]; top = top + cones.s(i)^2; end data.A = [data.A;expA]; data.b = [data.b;expb]; end t = tic; problem = 0; switch model.solver.tag case 'scs-direct' [x_s,y_s,s,info] = scs_direct(data,cones,params); otherwise [x_s,y_s,s,info] = scs_indirect(data,cones,params); end solvertime = toc(t); % Internal format. Only recover the original variables Primal = H*x_s+xsol; Primal = Primal(1:length(model.c)); if ~isempty(model.evalMap) % No support for duals when exponential cones yet Dual = []; else % Map to full format from tril Dual = y_s(1:cones.f+cones.l+sum(cones.q)); if ~isempty(cones.s) && any(cones.s) top = 1 + cones.f + cones.l + sum(cones.q); for i = 1:length(cones.s) n = cones.s(i); sdpdual = y_s(top:top + n*(n+1)/2-1,:); Z = zeros(n); Z(find(tril(ones(n)))) = sdpdual; Z = (Z + Z')/2; ind = find(speye(n)); Z(ind) = Z(ind)/sqrt(2); Dual = [Dual;Z(:)]; top = top + n*(n+1)/2; end end end if nnz(data.c)==0 && isequal(info.status,'Unbounded/Inaccurate') info.status = 'Infeasible'; end switch info.status case 'Solved' problem = 0; case 'Infeasible' problem = 1; case 'Unbounded' problem = 2; otherwise status = 9; end infostr = yalmiperror(problem,model.solver.tag); % Save ALL data sent to solver if options.savesolverinput solverinput.data = data; solverinput.cones = cones; solverinput.params = params; else solverinput = []; end % Save ALL data from the solution? if options.savesolveroutput solveroutput.x = x_s; solveroutput.y = y_s; solveroutput.s = s; solveroutput.info = info; else solveroutput = []; end % Standard interface output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function [model,x0,H] = removeequalitiesinmodel(model) if model.K.f > 0 % Extract the inequalities A_equ = model.F_struc(1:model.K.f,2:end); b_equ = -model.F_struc(1:model.K.f,1); if 1 % Find a basis for the column space of A_equ [L,U,P] = lu(A_equ'); r = colspaces(L'); AA = L'; H1 = AA(:,r); H2 = AA(:,setdiff(1:size(AA,2),r)); try x0 = P'*linsolve(full(L'),linsolve(full(U'),full(b_equ),struct('LT',1==1)),struct('UT',1==1)); catch x0 = A_equ\b_equ; end % FIX : use L and U stupid! H = P'*[-H1\H2;eye(size(H2,2))]; else H = null(full(A_equ)); x0 = A_equ\b_equ; end model.c = H'*model.c; model.F_struc(:,1) = model.F_struc(:,1) + model.F_struc(:,2:end)*x0; model.F_struc = [model.F_struc(:,1) model.F_struc(:,2:end)*H]; model.F_struc(1:model.K.f,:)=[]; model.K.f = 0; else H = speye(length(model.c)); x0 = zeros(length(model.c),1); end function [indx]=colspaces(A) indx = []; for i = 1:size(A,2) s = max(find(A(:,i))); indx = [indx s]; end indx = unique(indx);
github
EnricoGiordano1992/LMI-Matlab-master
callsdpnal.m
.m
LMI-Matlab-master/yalmip/solvers/callsdpnal.m
3,766
utf_8
301376600dc2200cedc573f6f81ce14e
function output = callsdpnal(interfacedata) % Retrieve needed data options = interfacedata.options; F_struc = interfacedata.F_struc; c = interfacedata.c; K = interfacedata.K; x0 = interfacedata.x0; ub = interfacedata.ub; lb = interfacedata.lb; % Bounded variables converted to constraints if ~isempty(ub) [F_struc,K] = addbounds(F_struc,K,ub,lb); end [blk,A,C,b,oldKs]=sedumi2sdpt3(F_struc(:,1),F_struc(:,2:end),c,K,1); if options.savedebug ops = options.sdpnal; save sdpnaldebug blk A C b ops -v6 end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; if options.verbose==0 evalc('[obj,X,y,Z,info,runhist] = sdpnal(blk,A,C,b,options.sdpnal);'); else switch interfacedata.solver.tag case 'SDPNAL-0.3' %[obj,X,y,Z,info,runhist] = sdpnalplus(blk,A,C,b,[],[],[],[],[],options.sdpnal); [obj,X,s,y,Z,Z2,y2,v,info,runhist] = sdpnalplus(blk,A,C,b,[],[],[],[],[],options.sdpnal); otherwise [obj,X,y,Z,info,runhist] = sdpNAL(blk,A,C,b,options.sdpnal); end end solvertime = toc(solvertime); % Create YALMIP dual variable and slack Dual = []; Slack = []; top = 1; if K.f>0 Dual = [Dual;X{top}(:)]; Slack = [Slack;Z{top}(:)]; top = top+1; end if K.l>0 Dual = [Dual;X{top}(:)]; Slack = [Slack;Z{top}(:)]; top = top + 1; end if K.q(1)>0 Dual = [Dual;X{top}(:)]; Slack = [Slack;Z{top}(:)]; top = top + 1; end if K.s(1)>0 % Messy format in SDPT3 to block and sort small SDPs u = blk(:,1); u = find([u{:}]=='s'); s = 1; for top = u ns = blk(top,2);ns = ns{1}; k = 1; for i = 1:length(ns) Xi{oldKs(s)} = X{top}(k:k+ns(i)-1,k:k+ns(i)-1); Zi{oldKs(s)} = Z{top}(k:k+ns(i)-1,k:k+ns(i)-1); s = s + 1; k = k+ns(i); end end for i = 1:length(Xi) Dual = [Dual;Xi{i}(:)]; Slack = [Slack;Zi{i}(:)]; end end Primal = -y; % Primal variable in YALMIP % No error code available if isfield(info,'termcode') switch info.termcode case -1 problem = 4; case 0 problem = 0; case 1 problem = 5; case 2 problem = 3; otherwise problem = 11; end else if isfield(info,'msg') if isequal(info.msg,'maximum iteration reached') problem = 3; else problem = 9; end end end infostr = yalmiperror(problem,interfacedata.solver.tag); if options.savesolveroutput solveroutput.obj = obj; solveroutput.X = X; solveroutput.y = y; solveroutput.Z = Z; solveroutput.info = info; solveroutput.runhist = runhist; else solveroutput = []; end if options.savesolverinput solverinput.blk = blk; solverinput.A = A; solverinput.C = C; solverinput.b = b; solverinput.options = options.sdpnal; else solverinput = []; end % Standard interface output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function [F_struc,K] = deblock(F_struc,K); X = any(F_struc(end-K.s(end)^2+1:end,:),2); X = reshape(X,K.s(end),K.s(end)); [v,dummy,r,dummy2]=dmperm(X); blks = diff(r); lint = F_struc(1:end-K.s(end)^2,:); logt = F_struc(end-K.s(end)^2+1:end,:); newlogt = []; for i = 1:size(logt,2) temp = reshape(logt(:,i),K.s(end),K.s(end)); temp = temp(v,v); newlogt = [newlogt temp(:)]; end logt = newlogt; pattern = []; for i = 1:length(blks) pattern = blkdiag(pattern,ones(blks(i))); end F_struc = [lint;logt(find(pattern),:)]; K.s(end) = []; K.s = [K.s blks]; K.m = blks;
github
EnricoGiordano1992/LMI-Matlab-master
callquadprogbb.m
.m
LMI-Matlab-master/yalmip/solvers/callquadprogbb.m
2,112
utf_8
9c075a2736463b4b85a7c58e6fa44997
function output = callquadprogbb(interfacedata) options = interfacedata.options; model = yalmip2quadprog(interfacedata); if options.savedebug save debugfile model end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; solveroutput = callsolver(model,options); solvertime = toc(solvertime); solution = quadprogsol2yalmipsol(solveroutput,model); % Save all data sent to solver? if ~options.savesolverinput model = []; end % Save all data from the solver? if ~options.savesolveroutput solveroutput = []; end % Standard interface Primal = solution.x(:); Dual = solution.D_struc; problem = solution.problem; infostr = yalmiperror(solution.problem,interfacedata.solver.tag); if ~options.savesolverinput solverinput = []; else solverinput = model; end if ~options.savesolveroutput solveroutput = []; else solveroutput = solveroutput; end % Standard interface output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function solveroutput = callsolver(model,options) x = []; fmin = []; flag = []; output = []; lambda = []; options.quadprogbb.constant = model.f; if options.verbose options.quadprogbb.verbosity = options.verbose - 1; [x,fval,time,stat] = quadprogbb(model.Q,model.c,model.A,model.b,model.Aeq,model.beq,model.lb,model.ub,options.quadprogbb); else options.quadprogbb.verbosity = 0; evalc('[x,fval,time,stat] = quadprogbb(model.Q,model.c,model.A,model.b,model.Aeq,model.beq,model.lb,model.ub,options.quadprogbb);'); end solveroutput.x = x; solveroutput.fval = fval; solveroutput.time = time; solveroutput.stat = stat; function solution = quadprogsol2yalmipsol(solveroutput,model) solution.x = solveroutput.x(:); solution.D_struc = []; switch solveroutput.stat.status case 'opt_soln' solution.problem = 0; case 'inf_or_unb' solution.problem = 12; case 'num_issues' solution.problem = 4; case 'time_limit' solution.problem = 3; otherwise solution.problem = -1; end
github
EnricoGiordano1992/LMI-Matlab-master
callmpt3.m
.m
LMI-Matlab-master/yalmip/solvers/callmpt3.m
3,688
utf_8
ad7eb3b682d81797392f46cd553fad13
function output = callmpt3(interfacedata) % Speeds up solving LPs in mpmilp global MPTOPTIONS if ~isstruct(MPTOPTIONS) mpt_error end % Convert Matrices = yalmip2mpt(interfacedata); % Get some MPT options options = interfacedata.options; options.mpt.lpsolver = MPTOPTIONS.lpsolver; options.mpt.milpsolver = MPTOPTIONS.milpsolver; options.mpt.verbose = options.verbose; if options.savedebug save mptdebug Matrices end if options.mp.unbounded Matrices = removeExplorationConstraints(Matrices); end [dummy,un] = unique([Matrices.G Matrices.E Matrices.W],'rows'); Matrices.G = Matrices.G(un,:); Matrices.E = Matrices.E(un,:); Matrices.W = Matrices.W(un,:); if isempty(Matrices.binary_var_index) showprogress('Calling MPT',options.showprogress); solvertime = tic; if options.mp.presolve [Matrices.lb,Matrices.ub] = mpt_detect_and_improve_bounds(Matrices,Matrices.lb,Matrices.ub,Matrices.binary_var_index,options); end if any(Matrices.lb(end-Matrices.nx+1:end) == Matrices.ub(end-Matrices.nx+1:end)) model = []; else model = mpt_solvenode(Matrices,Matrices.lb,Matrices.ub,Matrices,[],options); end solvertime = toc(solvertime); else % Pre-solve required on binary problems options.mp.presolve = 1; solvertime = tic; switch options.mp.algorithm case 1 showprogress('Calling MPT via enumeration',options.showprogress); model = mpt_enumeration_mpmilp(Matrices,options); case 2 % Still experimental and just for fun. Not working! showprogress('Calling MPT via parametric B&B',options.showprogress); model = mpt_parbb(Matrices,options); case 3 showprogress('Calling MPT via delayed enumeration',options.showprogress); [Matrices.SOS,Matrices.SOSVariables] = mpt_detect_sos(Matrices); [Matrices.lb,Matrices.ub] = mpt_detect_and_improve_bounds(Matrices,Matrices.lb,Matrices.ub,Matrices.binary_var_index,options); model = mpt_de_mpmilp(Matrices,options,[]); otherwise end solvertime = toc(solvertime); end if isempty(model) model = {model}; end if options.verbose if ~isempty(model{1}) if length(model) == 1 disp(['-> Generated 1 partition.']) else disp(['-> Generated ' num2str(length(model)) ' partitions.']) end end end problem = 0; infostr = yalmiperror(problem,'MPT'); % Save all data sent to solver? if options.savesolverinput solverinput.Matrices = Matrices; solverinput.options = []; else solverinput = []; end % Save all data from the solver? % This always done if options.savesolveroutput solveroutput.model = model; solveroutput.U = interfacedata.used_variables(Matrices.free_var);%(Matrices.free_var <= length( interfacedata.used_variables))); solveroutput.x = interfacedata.used_variables(Matrices.param_var); else solveroutput = []; end % Standard interface Primal = nan*ones(length(interfacedata.c),1); Dual = []; output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function Matrices = removeExplorationConstraints(Matrices); candidates = find((~any(Matrices.G,2)) & (sum(Matrices.E | Matrices.E,2) == 1)); if ~isempty(candidates) Matrices.bndA = -Matrices.E(candidates,:); Matrices.bndb = Matrices.W(candidates,:); Matrices.G(candidates,:) = []; Matrices.E(candidates,:) = []; Matrices.W(candidates,:) = []; end
github
EnricoGiordano1992/LMI-Matlab-master
callsedumi.m
.m
LMI-Matlab-master/yalmip/solvers/callsedumi.m
4,208
utf_8
06ea0482ba007c5e4e0f579308a9def3
function output = callsedumi(model) % Retrieve needed data options = model.options; F_struc = model.F_struc; c = model.c; K = model.K; ub = model.ub; lb = model.lb; % Create the parameter structure pars = options.sedumi; pars.fid = double(options.verbose); % ********************************************* % Bounded variables converted to constraints % N.B. Only happens when caller is BNB % ********************************************* if ~isempty(ub) [F_struc,K] = addbounds(F_struc,K,ub,lb); end % Avoid bug (by design?) in SeDuMi on 1D second order cones if any(K.q == 2) [F_struc,K] = fix1Dqcone(F_struc,K); end if options.savedebug save sedumidebug F_struc c K pars end % ********************************************* % Call SeDuMi % ********************************************* if options.showprogress;showprogress(['Calling ' model.solver.tag],options.showprogress);end problem = 0; warnState = warning; solvertime = tic; try [x_s,y_s,info] = sedumi(-F_struc(:,2:end),-c,F_struc(:,1),K,pars); catch if findstr(lasterr,'Out of memory') error(lasterr) end try if options.verbose > 0 disp(' '); disp('SeDuMi had unexplained problems, maybe due to linear dependence?') disp('YALMIP tweaks the problem (adds 1e6 magnitude bounds on all variables) and restarts...') disp(' '); end % Boring issue in sedumi for trivial problem min x+y, s.t x+y>0 n = length(c); [F_struc,K] = addbounds(F_struc,K,ones(n,1)*1e6,-ones(n,1)*1e6); [x_s,y_s,info] = sedumi(-F_struc(:,2:end),-c,F_struc(:,1),K,pars); x_s((1:2*n)+K.f)=[]; K.l=K.l-2*n; catch disp('Nope, unexplained crash in SeDuMi! (could be memory issues or wrong binary)') disp('Make sure you have a recent and compiled version') disp(' ') disp(' ') disp('For better diagnostics, use sdpsettings(''debug'',1)') disp(' ') disp(' ') end end warning(warnState); solvertime = toc(solvertime); % Internal format Primal = y_s; Dual = x_s; temp = info.pinf; pinf = info.dinf; dinf = temp; % Check for reported errors if (pinf==0) & (dinf==0) problem = 0; % No problems end % We can only report one error, use priorities if (problem==0) & (pinf==1) problem = 1; % Primal infeasability end if (problem==0) & (dinf==1) problem = 2; % Dual infeasability end if (problem==0) & (info.numerr==1) | (info.numerr==2) problem = 4; %Numerical problems end if (problem==0) & (info.iter >= options.sedumi.maxiter) % Did we need exactly maxiter iterations to find optimum if (pinf==0) & (dinf==0) & (info.numerr==0) problem = 0; % Yes else problem = 3; % No, we are not optimal yet end end if (problem==0) & (info.feasratio<0.98) problem = 4; end % Fix for cases not really explained in documentation of sedumi? if (abs(info.feasratio+1)<0.1) & (pinf==0) & (dinf==0) problem = 1; end if (abs(info.feasratio+1)<0.1) & (pinf==0) & (dinf==0) & (c'*y_s<-1e10) problem = 2; end infostr = yalmiperror(problem,model.solver.tag); % Save ALL data sent to solver if options.savesolverinput solverinput.A = -F_struc(:,2:end); solverinput.c = F_struc(:,1); solverinput.b = -c; solverinput.K = K; solverinput.pars = pars; else solverinput = []; end % Save ALL data from the solution? if options.savesolveroutput solveroutput.x = x_s; solveroutput.y = y_s; solveroutput.info = info; else solveroutput = []; end % Standard interface output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function [new_F_struc,K] = fix1Dqcone(F_struc,K); new_F_struc = F_struc(1:(K.l+K.f),:); top = K.f + K.l + 1; for i = 1:length(K.q) if K.q(i) == 2 new_F_struc = [new_F_struc;F_struc(top,:);F_struc(top+1,:);F_struc(top,:)*0]; K.q(i) = 3; top = top + 2; else new_F_struc = [new_F_struc;F_struc(top:top+K.q(i)-1,:)]; top = top + K.q(i); end end new_F_struc = [new_F_struc;F_struc(top:end,:)];
github
EnricoGiordano1992/LMI-Matlab-master
callscipnl.m
.m
LMI-Matlab-master/yalmip/solvers/callscipnl.m
6,643
utf_8
eb1a63a10553a041f4b536ce146a8c68
function output = callscipnl(model) % This sets up everything and more. Can be simplified significantly since % baron handles its own computational tree etc model = yalmip2nonlinearsolver(model); % [Anonlinear*f(x) <= b;Anonlinear*f(x) == b] cu = full([model.bnonlinineq;model.bnonlineq]); cl = full([repmat(-inf,length(model.bnonlinineq),1);model.bnonlineq]); Anonlinear = [ model.Anonlinineq; model.Anonlineq]; % Create string representing objective obj = createmodelstring(model.c,model); obj = strrep(obj,'sqrtm_internal','sqrt'); if nnz(model.Q)>0 obj = [obj '+' createQstring(model.Q,model)]; end if model.f > 0 obj = [obj '+' num2str(model.f)]; end if isempty(obj) obj = []; else if obj(1)=='+' obj = obj(2:end); end % Append quadratic term obj = ['@(x) ' obj]; obj = eval(obj); end % Create string representing nonlinear constraints if length(cu)>0 con = '['; remove = []; for i = 1:length(cu) if isinf(cl(i)) & isinf(cu(i)) remove = [remove;i]; else con = [con createmodelstring(Anonlinear(i,:),model) ';']; end end cl(remove) = []; cu(remove) = []; con = [con ']']; con = strrep(con,'sqrtm_internal','sqrt'); con = strrep(con,'slog(x','log(1+x'); con = ['@(x) ' con]; con = eval(con); else cu = []; cl = []; con = []; end % Linear constraints ru = full([model.b;model.beq]); rl = full([repmat(-inf,length(model.b),1);model.beq]); A = [model.A; model.Aeq]; if length(ru)>0 remove = find(isinf(rl) & isinf(ru)); A(remove,:)=[]; rl(remove) = []; ru(remove) = []; end lb = model.lb; ub = model.ub; xtype = []; xtype = repmat('C',length(lb),1); xtype(model.binary_variables) = 'B'; xtype(model.integer_variables) = 'I'; x0 = model.x0; opts = model.options.scip; switch model.options.verbose case 0 opts.display = 'off'; otherwise opts.display = 'iter'; end if model.options.savedebug save scipnldebug obj con A ru rl cl cu xtype lb ub x0 opts end solvertime = tic; [x,fval,exitflag,info] = opti_scipnl(obj,A,rl,ru,lb,ub,con,cl,cu,xtype,[],opts);%,x0,opts); solvertime = toc(solvertime); % Check, currently not exhaustive... switch exitflag case 0 if ~isempty(strfind(info.Status,'Exceed')) problem = 3; else problem = 9; end case 1 problem = 0; case {2,-1} problem = 1; case 3 problem = 2; case {4,5} problem = 11; otherwise problem = 9; end % Save all data sent to solver? if model.options.savesolverinput solverinput.obj = obj; solverinput.A = A; solverinput.rl = rl; solverinput.ru = ru; solverinput.lb = lb; solverinput.ub = ub; solverinput.con = con; solverinput.cl = cl; solverinput.cu = cu; solverinput.xtype = xtype; solverinput.opts = opts; else solverinput = []; end % Save all data from the solver? if model.options.savesolveroutput solveroutput.x = x; solveroutput.fval = fval; solveroutput.exitflag = exitflag; solveroutput.info=info; solveroutput.allsol=allsol; else solveroutput = []; end if ~isempty(x) x = RecoverNonlinearSolverSolution(model,x); end % Standard interface output = createoutput(x,[],[],problem,'SCIP-NL',solverinput,solveroutput,solvertime); function z = createOneterm(i,model) [evalPos,pos] = ismember(i,model.evalVariables); if pos % This is a nonlinear operator map = model.evalMap{pos}; % We might hqave vectorized things to compute several expressions at the same time if length(map.computes) == 1 && length(map.variableIndex) > 1 if isequal(map.fcn,'plog') j1 = find(model.linearindicies == map.variableIndex(1)); j2 = find(model.linearindicies == map.variableIndex(2)); if isempty(j1) z1 = createmonomstring(model.monomtable(map.variableIndex(1),:),model); else z1 = ['x(' num2str(j1) ')']; end if isempty(j2) z1 = createmonomstring(model.monomtable(map.variableIndex(2),:),model); else z2 = ['x(' num2str(j2) ')']; end z = [z1 '*log(' z2 '/' z1 ')']; else z = [map.fcn '(']; for j = map.variableIndex jl = find(model.linearindicies == j); if isempty(jl) z = [z createmonomstring(model.monomtable(j,:),model)]; else z = [z 'x(' num2str(jl) ')']; end if j == length(map.variableIndex) z = [z ')']; else z = [z ',']; end end end else j = find(map.computes == i); j = map.variableIndex(j); % we have f(x(j)), but have to map back to linear indicies jl = find(model.linearindicies == j); if isempty(jl) z = [map.fcn '(' createmonomstring(model.monomtable(j,:),model) ')']; else z = [map.fcn '(x(' num2str(jl) '))']; end end else i = find(model.linearindicies == i); z = ['x(' num2str(i) ')']; end function monomstring = createmonomstring(v,model) monomstring = ''; for i = find(v) z = createOneterm(i,model); if v(i)==1 monomstring = [monomstring z '*']; else monomstring = [monomstring z '^' num2str(v(i),12) '*']; end end monomstring = monomstring(1:end-1); function string = createmodelstring(row,model) string = ''; index = find(row); for i = index(:)' monomstring = createmonomstring(model.monomtable(i,:),model); string = [string num2str(row(i),12) '*' monomstring '+']; end string = string(1:end-1); string = strrep(string,'+-','-'); string = strrep(string,')-1*',')-'); string = strrep(string,')+1*',')+'); function string = createQstring(Q,model) % Special code for the quadratic term string = ''; [ii,jj,c]= find(triu(Q)); for i = 1:length(ii) if ii(i)==jj(i) % Quadratic term monomstring = createmonomstring(sparse(1,ii(i),1,1,size(Q,1)),model); string = [string num2str(c(i),12) '*' monomstring '^2' '+']; else % Bilinear term monomstring1 = createmonomstring(sparse(1,ii(i),1,1,size(Q,1)),model); monomstring2 = createmonomstring(sparse(1,jj(i),1,1,size(Q,1)),model); string = [string num2str(c(i),12) '*2*' monomstring1 '*' monomstring2 '+']; end end string = string(1:end-1); string = strrep(string,'+-','-'); string = strrep(string,'-1*','-'); string = strrep(string,'+1*','+');
github
EnricoGiordano1992/LMI-Matlab-master
callsdplr.m
.m
LMI-Matlab-master/yalmip/solvers/callsdplr.m
5,257
utf_8
e6972916ac1a58d754eb41383f04cc74
function output = callsdplr(interfacedata) % Retrieve needed data options = interfacedata.options; F_struc = interfacedata.F_struc; c = interfacedata.c; K = interfacedata.K; ub = interfacedata.ub; lb = interfacedata.lb; lowrankdetails = interfacedata.lowrankdetails; % Create the parameter structure pars = options.sdplr; pars.printlevel = options.verbose; % ********************************************* % Bounded variables converted to constraints % N.B. Only happens when caller is BNB % ********************************************* if ~isempty(ub) [F_struc,K] = addbounds(F_struc,K,ub,lb); end % rmfield is slow... Knew.l = K.l; Knew.s = K.s; K = Knew; if options.savedebug save sdplrdebug F_struc c K pars -V6 end % ********************************************* %FIND LOW RANK STRUCTURES % ********************************************* problem = 0; lrA = []; if ~isempty(lowrankdetails) | (options.sdplr.maxrank>0 & (K.s(1)>0)) showprogress('Detecting low rank data',options.showprogress); sdploc = K.l+cumsum([1 K.s.^2]); k = 1; % FIX : Lazy code copy... [ix,jx,sx] = find(F_struc); if isempty(lowrankdetails) % Okay, this means we have to go through everything... % Get all data in F_struc for later for lmiid = 1:length(K.s) removethese = zeros(1,size(F_struc,2)-1); for i = 1:size(F_struc,2)-1 Fi = reshape(F_struc(sdploc(lmiid):sdploc(lmiid+1)-1,i+1),K.s(lmiid),K.s(lmiid)); if nnz(Fi)>0 [D,V] = getfactors(Fi); if length(D) <= options.sdplr.maxrank lrA(k).cons = i; lrA(k).start = sdploc(lmiid); lrA(k).D = D; lrA(k).V = V; k = k+1; removethese(i) = 1; end end end removethese = find(removethese); if ~isempty(removethese) these = find((sdploc(lmiid+1)-1>= ix) & (ix>=sdploc(lmiid)) & ismember(jx,1+removethese)); sx(these) = 0; end end else % Just check those constraints declared low-rank by user for lrdef = 1:length(lowrankdetails) for lrconstraint = 1:length(lowrankdetails{lrdef}.id) lmiid = lowrankdetails{lrdef}.id(lrconstraint); removethese = zeros(1,size(F_struc,2)-1); checkthese = lowrankdetails{lrdef}.variables; if isempty(checkthese) checkthese = 1:size(F_struc,2)-1; end for i = checkthese Fi = reshape(F_struc(sdploc(lmiid):sdploc(lmiid+1)-1,i+1),K.s(lmiid),K.s(lmiid)); if nnz(Fi)>0 [D,V] = getfactors(Fi); if (options.sdplr.maxrank == 0) | (options.sdplr.maxrank ~= 0 & (length(D) <= options.sdplr.maxrank)) lrA(k).cons = i; lrA(k).start = sdploc(lmiid); lrA(k).D = D; lrA(k).V = V; k = k+1; removethese(i) = 1; end end end removethese = find(removethese); if ~isempty(removethese) these = find((sdploc(lmiid+1)-1>= ix) & (ix>=sdploc(lmiid)) & ismember(jx,1+removethese)); sx(these) = 0; %F_struc(sdploc(lmiid):sdploc(lmiid+1)-1,1+removethese) = 0; end end end F_struc = sparse(ix,jx,sx,size(F_struc,1),size(F_struc,2)); end end % ********************************************* % CALL SDPLR % ********************************************* if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; if isempty(lrA) [x_s,y_s,info] = sdplr(F_struc(:,2:end),c,F_struc(:,1),K); else % pars.reduce = 0; [x_s,y_s,info] = sdplr(F_struc(:,2:end),full(c),full(F_struc(:,1)),K,pars,lrA); end solvertime = toc(solvertime); % YALMIP format D_struc = x_s; x = -y_s; % No error codes currently... problem = 0; infostr = yalmiperror(problem,interfacedata.solver.tag); % Save ALL data sent to solver if options.savesolverinput solverinput.A = F_struc(:,2:end); solverinput.c = F_struc(:,1); solverinput.b = c; solverinput.K = K; solverinput.pars = pars; else solverinput = []; end % Save ALL data from the solution? if options.savesolveroutput solveroutput.x = x_s; solveroutput.y = y_s; solveroutput.info = info; else solveroutput = []; end % Standard interface output = createOutputStructure(x(:),D_struc,[],problem,infostr,solverinput,solveroutput,solvertime); function [D,V] = getfactors(Fi) if nnz(Fi)>0 [v,d] = eig(full(Fi)); d = diag(d); keep = find(abs(d)>1e-6); V = v(:,keep); D = d(keep); % lrA(k).cons = i; % lrA(k).start = sdploc(j); % lrA(k).D = D; % lrA(k).V = V; % k = k+1; else D = []; V = []; end
github
EnricoGiordano1992/LMI-Matlab-master
callmpt.m
.m
LMI-Matlab-master/yalmip/solvers/callmpt.m
4,404
utf_8
d55f6f404d70471bb0592d9456465ffd
function output = callmpt(interfacedata) % This file is kept for MPT2 compatability % Speeds up solving LPs in mpmilp global mptOptions if ~isstruct(mptOptions) mpt_error end % Convert % interfacedata = pwa_linearize(interfacedata); Matrices = yalmip2mpt(interfacedata); % Get some MPT options options = interfacedata.options; options.mpt.lpsolver = mptOptions.lpsolver; options.mpt.milpsolver = mptOptions.milpsolver; options.mpt.verbose = options.verbose; if options.savedebug save mptdebug Matrices end if options.mp.unbounded Matrices = removeExplorationConstraints(Matrices); end [dummy,un] = unique([Matrices.G Matrices.E Matrices.W],'rows'); Matrices.G = Matrices.G(un,:); Matrices.E = Matrices.E(un,:); Matrices.W = Matrices.W(un,:); if isempty(Matrices.binary_var_index) showprogress('Calling MPT',options.showprogress); solvertime = clock; if options.mp.presolve [Matrices.lb,Matrices.ub] = mpt_detect_and_improve_bounds(Matrices,Matrices.lb,Matrices.ub,Matrices.binary_var_index,options); end if any(Matrices.lb(end-Matrices.nx+1:end) == Matrices.ub(end-Matrices.nx+1:end)) model = []; else model = mpt_solvenode(Matrices,Matrices.lb,Matrices.ub,Matrices,[],options); end solvertime = etime(clock,solvertime); else % Pre-solve required on binary problems options.mp.presolve = 1; solvertime = tic; % if Matrices.qp & options.mp.algorithm == 3 % options.mp.algorithm = 1; % end switch options.mp.algorithm case 1 showprogress('Calling MPT via enumeration',options.showprogress); model = mpt_enumeration_mpmilp(Matrices,options); case 2 % Still experimental and just for fun. Not working! showprogress('Calling MPT via parametric B&B',options.showprogress); model = mpt_parbb(Matrices,options); case 3 showprogress('Calling MPT via delayed enumeration',options.showprogress); %Matrices = initialize_binary_equalities(Matrices) [Matrices.SOS,Matrices.SOSVariables] = mpt_detect_sos(Matrices); [Matrices.lb,Matrices.ub] = mpt_detect_and_improve_bounds(Matrices,Matrices.lb,Matrices.ub,Matrices.binary_var_index,options); model = mpt_de_mpmilp(Matrices,options,[]); otherwise end solvertime = toc(solvertime); end if isempty(model) model = {model}; end if options.verbose if ~isempty(model{1}) if length(model) == 1 disp(['-> Generated 1 partition.']) else disp(['-> Generated ' num2str(length(model)) ' partitions.']) end end end problem = 0; infostr = yalmiperror(problem,'MPT'); % Save all data sent to solver? if options.savesolverinput solverinput.Matrices = Matrices; solverinput.options = []; else solverinput = []; end % Save all data from the solver? % This always done if options.savesolveroutput solveroutput.model = model; solveroutput.U = interfacedata.used_variables(Matrices.free_var);%(Matrices.free_var <= length( interfacedata.used_variables))); solveroutput.x = interfacedata.used_variables(Matrices.param_var); else solveroutput = []; end % Standard interface Primal = nan*ones(length(interfacedata.c),1); Dual = []; output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function Matrices = initialize_binary_equalities(Matrices) binary_var_index = Matrices.binary_var_index; notbinary_var_index = setdiff(1:Matrices.nu,binary_var_index); % Detect and extract pure binary equalities. Used for simple pruning nbin = length(binary_var_index); only_binary = ~any(Matrices.Aeq(:,notbinary_var_index),2); Matrices.Aeq_bin = Matrices.Aeq(find(only_binary),binary_var_index); Matrices.beq_bin = Matrices.beq(find(only_binary),:); function Matrices = removeExplorationConstraints(Matrices); candidates = find((~any(Matrices.G,2)) & (sum(Matrices.E | Matrices.E,2) == 1)); if ~isempty(candidates) Matrices.bndA = -Matrices.E(candidates,:); Matrices.bndb = Matrices.W(candidates,:); Matrices.G(candidates,:) = []; Matrices.E(candidates,:) = []; Matrices.W(candidates,:) = []; end
github
EnricoGiordano1992/LMI-Matlab-master
callpenbmim.m
.m
LMI-Matlab-master/yalmip/solvers/callpenbmim.m
8,291
utf_8
55f1ccca944ad4f85054c6f277ec359f
function output = callpenbmi(interfacedata); if any(interfacedata.variabletype > 2) % Polynomial problem, YALMIP has to bilienarize interfacedata.high_monom_model=[]; output = callpenbmi_with_bilinearization(interfacedata); else % Old standard code output = callpenbmi_without_bilinearization(interfacedata); end function output = callpenbmi_without_bilinearization(interfacedata); % Retrieve needed data clear penbmim options = interfacedata.options; F_struc = interfacedata.F_struc; c = interfacedata.c; Q = interfacedata.Q; K = interfacedata.K; x0 = interfacedata.x0; monomtable = interfacedata.monomtable; ub = interfacedata.ub; lb = interfacedata.lb; % Linear before bilinearize temp = sum(monomtable,2)>1; tempnonlinearindicies = find(temp); templinearindicies = find(~temp); % Any stupid constant>0 constraints % FIX : Recover duals afterwards % Better fix : Do this outside zrow = []; if K.l >0 zrow = find(any(F_struc(1:K.l+K.f,:),2)==0); if ~isempty(zrow) K.l = K.l - nnz(zrow>K.f); K.f = K.f - nnz(zrow<=K.f); F_struc(zrow,:) = []; end end % Bounded variables converted to constraints if ~isempty(ub) [F_struc,K] = addbounds(F_struc,K,ub,lb); end % This one only occurs if called from bmibnb if K.f>0 F_struc = [-F_struc(1:K.f,:);F_struc]; F_struc(1:K.f,1) = F_struc(1:K.f,1)+sqrt(eps); K.l = K.l + 2*K.f; K.f = 0; end if isempty(monomtable) monomtable = eye(length(c)); end temp = sum(monomtable,2)>1; nonlinearindicies = find(temp); linearindicies = find(~temp); c0 = c; c = c(linearindicies); Q = Q(linearindicies,linearindicies); nonlinear_scalars = []; % Any non-linear scalar inequalities? % Move these to the BMI part if K.l>0 nonlinear_scalars = find(any(full(F_struc(1:K.l,[nonlinearindicies(:)'+1])),2)); if ~isempty(nonlinear_scalars) Kold = K; % SETDIFF DONE FASTER aa = 1:K.l; bb = nonlinear_scalars; tf = ~(ismembc(aa,bb)); cc = aa(tf); cc = unique(cc); linear_scalars = cc; % linear_scalars = setdiff1(1:K.l,nonlinear_scalars); F_struc = [F_struc(linear_scalars,:);F_struc(nonlinear_scalars,:);F_struc(K.l+1:end,:)]; K.l = K.l-length(nonlinear_scalars); if (length(K.s)==1) & (K.s==0) K.s = [repmat(1,1,length(nonlinear_scalars))]; K.rank = repmat(1,1,length(nonlinear_scalars)); else K.s = [repmat(1,1,length(nonlinear_scalars)) K.s]; K.rank = [repmat(1,1,length(nonlinear_scalars)) K.rank]; end end end if ~isempty(F_struc) pen = sedumi2pen(F_struc(:,[1 linearindicies(:)'+1]),K,c,x0); else pen = sedumi2pen([],K,c,x0); end if ~isempty(nonlinearindicies) bmi = sedumi2pen(F_struc(:,[nonlinearindicies(:)'+1]),K,[],[]); pen.ki_dim = bmi.ai_dim; % Nonlinear index pen.ki_dim = bmi.ai_dim; pen.ki_row = bmi.ai_row; pen.ki_col = bmi.ai_col; pen.ki_nzs = bmi.ai_nzs; pen.ki_val = bmi.ai_val; if 0 for i = 1:length(bmi.ai_idx) nl = nonlinearindicies(1+bmi.ai_idx(i)); v = find(monomtable(nl,:)); if length(v)==1 v(2)=v(1); end pen.ki_idx(i)=find(linearindicies == v(1)); pen.kj_idx(i)=find(linearindicies == v(2)); end else top = 1; [ii,jj,kk] = find(monomtable(nonlinearindicies(1+bmi.ai_idx),:)'); pen.ki_idx = zeros(1,length(bmi.ai_idx)); pen.kj_idx = zeros(1,length(bmi.ai_idx)); for i = 1:length(bmi.ai_idx) if kk(top)==2 v(1) = ii(top); v(2) = ii(top); top = top + 1; else v(1) = ii(top); v(2) = ii(top+1); top = top + 2; end % FIX : precompute this map pen.ki_idx(i)=find(linearindicies == v(1)); pen.kj_idx(i)=find(linearindicies == v(2)); end end else pen.ki_dim = 0*pen.ai_dim; pen.ki_row = 0; pen.ki_col = 0; pen.ki_nzs = 0; pen.ki_idx = 0; pen.kj_idx = 0; pen.kj_val = 0; end if nnz(Q)>0 [row,col,vals] = find(triu(Q)); pen.q_nzs = length(row); pen.q_val = vals'; pen.q_col = col'-1; pen.q_row = row'-1; else pen.q_nzs = 0; pen.q_val = 0; pen.q_col = 0; pen.q_row = 0; end ops = struct2cell(options.penbmi);ops = [ops{1:end}]; pen.ioptions = ops(1:12); pen.foptions = ops(13:end); pen.ioptions(4) = max(0,min(3,options.verbose+1)); if pen.ioptions(4)==1 pen.ioptions(4)=0; end % **************************************** % UNCOMMENT THIS FOR PENBMI version 1 % **************************************** %pen.ioptions = pen.ioptions(1:8); %pen.foptions = pen.foptions(1:8); if ~isempty(x0) pen.x0(isnan(pen.x0)) = 0; pen.x0 = x0(linearindicies); pen.x0 = pen.x0(:)'; end if options.savedebug save penbmimdebug pen end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; [f,xout,u,iflag,niter,feas] = penbmim(pen); solvertime = toc(solvertime); if options.saveduals & isempty(zrow) % Get dual variable % First, get the nonlinear scalars treated as BMIs if ~isempty(nonlinear_scalars) n_orig_scalars = length(nonlinear_scalars)+K.l; linear_scalars = setdiff(1:n_orig_scalars,nonlinear_scalars); u_nonlinear=u(K.l+1:K.l+length(nonlinear_scalars)); u(K.l+1:K.l+length(nonlinear_scalars))=[]; u_linear = u(1:K.l); u_scalar = zeros(1,n_orig_scalars); u_scalar(linear_scalars)=u_linear; u_scalar(nonlinear_scalars)=u_nonlinear; u = [u_scalar u(1+K.l:end)]; K = Kold; end u = u(:); D_struc = u(1:1:K.l); if length(K.s)>0 if K.s(1)>0 pos = K.l+1; for i = 1:length(K.s) temp = zeros(K.s(i),K.s(i)); vecZ = u(pos:pos+0.5*K.s(i)*(K.s(i)+1)-1); top = 1; for j = 1:K.s(i) len = K.s(i)-j+1; temp(j:end,j)=vecZ(top:top+len-1);top=top+len; end temp = (temp+temp');j = find(speye(K.s(i)));temp(j)=temp(j)/2; D_struc = [D_struc;temp(:)]; pos = pos + (K.s(i)+1)*K.s(i)/2; end end end else D_struc = []; end %Recover solution if isempty(nonlinearindicies) x = xout(:); else x = zeros(length(interfacedata.c),1); for i = 1:length(templinearindicies) x(templinearindicies(i)) = xout(i); end end problem = 0; switch iflag case 0 problem = 0; % OK case {1,3} problem = 4; case 2 problem = 1; % INFEASIBLE case 4 problem = 3; % Numerics case 5 problem = 7; case {6,7} problem = 11; otherwise problem = -1; end infostr = yalmiperror(problem,interfacedata.solver.tag); if options.savesolveroutput solveroutput.f = f; solveroutput.xout = xout; solveroutput.u = u; solveroutput.iflag = iflag; solveroutput.niter = niter; solveroutput.feas = feas; else solveroutput = []; end if options.savesolverinput solverinput.pen = pen; else solverinput = []; end % Standard interface output = createOutputStructure(x(:),D_struc,[],problem,infostr,solverinput,solveroutput,solvertime); function output = callpenbmi_with_bilinearization(interfacedata); % Bilinearize [p,changed] = convert_polynomial_to_quadratic(interfacedata); % Convert bilinearizing equalities to inequalities if p.K.f>0 p.F_struc = [-p.F_struc(1:p.K.f,:);p.F_struc]; p.F_struc(1:p.K.f,1) = p.F_struc(1:p.K.f,1)+sqrt(eps); p.K.l = p.K.l + 2*p.K.f; p.K.f = 0; end % Solve bilinearized problem output = callpenbmi_without_bilinearization(p); % Get our original variables & duals output.Primal = output.Primal(1:length(interfacedata.c)); if ~isempty(output.Dual) n_equ = p.K.f - interfacedata.K.f; % First 2*n_eq are the duals for the new inequalities output.Dual = output.Dual(1+2*n_equ:end); end
github
EnricoGiordano1992/LMI-Matlab-master
yalmip2xpress.m
.m
LMI-Matlab-master/yalmip/solvers/yalmip2xpress.m
3,380
utf_8
939c179fa34ef53a916b36c325cff8ab
function model = yalmip2xpress(interfacedata) options = interfacedata.options; F_struc = interfacedata.F_struc; H = interfacedata.Q; c = interfacedata.c; K = interfacedata.K; x0 = interfacedata.x0; integer_variables = interfacedata.integer_variables; binary_variables = interfacedata.binary_variables; semicont_variables = interfacedata.semicont_variables; ub = interfacedata.ub; lb = interfacedata.lb; showprogress('Calling Xpress',options.showprogress); if ~isempty(semicont_variables) % Bounds must be placed in LB/UB [lb,ub,cand_rows_eq,cand_rows_lp] = findulb(F_struc,K,lb,ub); F_struc(K.f+cand_rows_lp,:)=[]; F_struc(cand_rows_eq,:)=[]; K.l = K.l-length(cand_rows_lp); K.f = K.f-length(cand_rows_eq); redundant = find(lb<=0 & ub>=0); semicont_variables = setdiff(semicont_variables,redundant); end % Notation used f = c; A = -F_struc(:,2:end); b = F_struc(:,1); rtype = repmat('L',size(F_struc,1),1); rtype(1:K.f) = 'E'; % XPRESS assumes semi-continuous variables only can take positive values so % we negate semi-continuous violating this NegativeSemiVar = []; if ~isempty(semicont_variables) NegativeSemiVar = find(lb(semicont_variables) < 0); if ~isempty(NegativeSemiVar) temp = ub(semicont_variables(NegativeSemiVar)); ub(semicont_variables(NegativeSemiVar)) = -lb(semicont_variables(NegativeSemiVar)); lb(semicont_variables(NegativeSemiVar)) = -temp; if ~isempty(A) A(:,semicont_variables(NegativeSemiVar)) = -A(:,semicont_variables(NegativeSemiVar)); end f(semicont_variables(NegativeSemiVar)) = -f(semicont_variables(NegativeSemiVar)); H(:,semicont_variables(NegativeSemiVar)) = -H(:,semicont_variables(NegativeSemiVar)); H(semicont_variables(NegativeSemiVar),:) = -H(semicont_variables(NegativeSemiVar),:); end end clim = zeros(length(f),1); clim(semicont_variables) = lb(semicont_variables); ctype = char(ones(length(f),1)*67); ctype(setdiff(integer_variables,semicont_variables)) = 'I'; ctype(binary_variables) = 'B'; ctype(setdiff(semicont_variables,integer_variables)) = 'S'; ctype(intersect(semicont_variables,integer_variables)) = 'R'; options.xpress = setupOptions(options); if options.verbose == 0 options.xpress.OUTPUTLOG = 0; options.xpress.MIPLOG = 0; options.xpress.LPLOG = 0; end sos = []; if ~isempty(K.sos.type) for i = 1:length(K.sos.weight) sos(i).type = K.sos.type(i); sos(i).ind = K.sos.variables{i}-1; sos(i).wt = (1:length(K.sos.weight{i}))'; end end if size(A,1)==0 A = zeros(1,length(f)); b = 1; end model.H = 2*H; model.f = f; model.A = A; model.b = b; model.lb = lb; model.ub = ub; model.ctype = ctype; model.rtype = rtype; model.clim = clim; model.sos = sos; model.ops = options.xpress; model.extra.semicont_variables = semicont_variables; model.extra.integer_variables = integer_variables; model.extra.binary_variables = binary_variables; model.extra.NegatedSemiVar = NegativeSemiVar; function ops = setupOptions(options); ops = options; if options.verbose == 0 ops.OUTPUTLOG = 0; ops.MIPLOG = 0; ops.LPLOG = 0; end % cNames = fieldnames(options.xpress); % for i = 1:length(cNames) % s = getfield(options.xpress,cNames{i}); % if ~isempty(s) % ops = setfield(ops,cNames{i},s); % end % end
github
EnricoGiordano1992/LMI-Matlab-master
calllogdetppa.m
.m
LMI-Matlab-master/yalmip/solvers/calllogdetppa.m
4,738
utf_8
5e811439e286c2bc2cfa708872c26cb3
function output = calllogdetppa(interfacedata) % Retrieve needed data options = interfacedata.options; F_struc = interfacedata.F_struc; c = interfacedata.c; K = interfacedata.K; x0 = interfacedata.x0; ub = interfacedata.ub; lb = interfacedata.lb; % Bounded variables converted to constraints if ~isempty(ub) [F_struc,K] = addbounds(F_struc,K,ub,lb); end % SDPNAL does not support multiple blocks options.sdpt3.smallblkdim = 0; % Convert from internal (sedumi-like) format [blk,A,C,b,oldKs]=sedumi2sdpt3(F_struc(:,1),F_struc(:,2:end),c,K,options.sdpt3.smallblkdim); % Setup the logarithmic barrier cost. We exploit the fact that we know that % the only logaritmic cost is in the last SDP constraint if abs(K.m) > 0 for i = 1:size(blk,1) if isequal(blk{i,1},'l') options.sdpt3.parbarrier{i,1} = zeros(1,blk{i,2}); else options.sdpt3.parbarrier{i,1} = 0*blk{i,2}; end end n_sdp_logs = nnz(K.m > 1); n_lp_logs = nnz(K.m == 1); if n_lp_logs>0 lp_count = n_lp_logs; end if n_sdp_logs>0 sdp_count = n_sdp_logs; end for i = 1:length(K.m) if K.m(i) == 1 % We placed it in the linear cone options.sdpt3.parbarrier{1,1}(end-lp_count+1) = -K.maxdetgain(i); lp_count = lp_count-1; elseif K.m(i) > 1 % We placed it in the SDP cone options.sdpt3.parbarrier{end-sdp_count+1,1} = -K.maxdetgain(i); sdp_count = sdp_count-1; end end %options.saveduals = 0; mu0 = [options.sdpt3.parbarrier{:}]; else mu0 = zeros(K.l+length(find(K.s)),1); end %options.logdetppa.mu0 = [options.sdpt3.parbarrier{:}]; if options.savedebug ops = options.logdetppa; save logdetppadebug blk A C b ops x0 -v6 end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; if options.verbose==0 % SDPT3 does not run silent despite printyes=0! evalc('[obj,X,y,Z,info,runhist] = logdetPPA(blk,A,C,b,mu0,options.logdetppa);'); else [obj,X,y,Z,info,runhist] = logdetPPA(blk,A,C,b,mu0,options.logdetppa); end solvertime = toc(solvertime); % Create YALMIP dual variable and slack Dual = []; Slack = []; top = 1; if K.f>0 Dual = [Dual;X{top}(:)]; Slack = [Slack;Z{top}(:)]; top = top+1; end if K.l>0 Dual = [Dual;X{top}(:)]; Slack = [Slack;Z{top}(:)]; top = top + 1; end if K.q(1)>0 Dual = [Dual;X{top}(:)]; Slack = [Slack;Z{top}(:)]; top = top + 1; end if K.s(1)>0 % Messy format in SDPT3 to block and sort small SDPs u = blk(:,1); u = find([u{:}]=='s'); s = 1; for top = u ns = blk(top,2);ns = ns{1}; k = 1; for i = 1:length(ns) Xi{oldKs(s)} = X{top}(k:k+ns(i)-1,k:k+ns(i)-1); Zi{oldKs(s)} = Z{top}(k:k+ns(i)-1,k:k+ns(i)-1); s = s + 1; k = k+ns(i); end end for i = 1:length(Xi) Dual = [Dual;Xi{i}(:)]; Slack = [Slack;Zi{i}(:)]; end end if any(K.m > 0) % Dual = []; end Primal = -y; % Primal variable in YALMIP problem = -7; % % % Convert error code % switch info.termcode % case -1 % problem = 4; % case 0 % problem = 0; % case 1 % problem = 5; % case 2 % problem = 3; % otherwise % problem = 11; % end infostr = yalmiperror(problem,interfacedata.solver.tag); if options.savesolveroutput solveroutput.obj = obj; solveroutput.X = X; solveroutput.y = y; solveroutput.Z = Z; solveroutput.info = info; solveroutput.runhist = runhist; else solveroutput = []; end if options.savesolverinput solverinput.blk = blk; solverinput.A = A; solverinput.C = C; solverinput.b = b; solverinput.X0 = []; solverinput.y0 = x0; solverinput.Z0 = []; solverinput.options = options.sdpt3; else solverinput = []; end % Standard interface output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function [F_struc,K] = deblock(F_struc,K); X = any(F_struc(end-K.s(end)^2+1:end,:),2); X = reshape(X,K.s(end),K.s(end)); [v,dummy,r,dummy2]=dmperm(X); blks = diff(r); lint = F_struc(1:end-K.s(end)^2,:); logt = F_struc(end-K.s(end)^2+1:end,:); newlogt = []; for i = 1:size(logt,2) temp = reshape(logt(:,i),K.s(end),K.s(end)); temp = temp(v,v); newlogt = [newlogt temp(:)]; end logt = newlogt; pattern = []; for i = 1:length(blks) pattern = blkdiag(pattern,ones(blks(i))); end F_struc = [lint;logt(find(pattern),:)]; K.s(end) = []; K.s = [K.s blks]; K.m = blks;
github
EnricoGiordano1992/LMI-Matlab-master
callbaron.m
.m
LMI-Matlab-master/yalmip/solvers/callbaron.m
5,132
utf_8
f37bb6f75fdde9f4e8b566d0e92d6c76
function output = callbaron(model) % This sets up everything and more. Can be simplified significantly since % baron handles its own computational tree etc model = yalmip2nonlinearsolver(model); % [Anonlinear*f(x) <= b;Anonlinear*f(x) == b] cu = full([model.bnonlinineq;model.bnonlineq]); cl = full([repmat(-inf,length(model.bnonlinineq),1);model.bnonlineq]); Anonlinear = [ model.Anonlinineq; model.Anonlineq]; % Create string representing objective obj = createmodelstring(model.c,model); obj = strrep(obj,'sqrtm_internal','sqrt'); if nnz(model.Q)>0 obj = [obj '+' createQstring(model.Q,model)]; end if model.f > 0 obj = [obj '+' num2str(model.f)]; end if length(obj)>0 obj = strrep(obj,'+-','-'); obj = ['@(x) ' obj]; obj = eval(obj); else obj = @(x)0; end % Create string representing nonlinear consdbqtraints if length(cu)>0 con = '['; remove = []; for i = 1:length(cu) if isinf(cl(i)) & isinf(cu(i)) remove = [remove;i]; else con = [con createmodelstring(Anonlinear(i,:),model) ';']; end end cl(remove) = []; cu(remove) = []; con = [con ']']; con = strrep(con,'sqrtm_internal','sqrt'); con = ['@(x) ' con]; con = eval(con); else cu = []; cl = []; con = []; end % Linear constraints ru = full([model.b;model.beq]); rl = full([repmat(-inf,length(model.b),1);model.beq]); A = [model.A; model.Aeq]; if length(ru)>0 remove = find(isinf(rl) & isinf(ru)); A(remove,:)=[]; rl(remove) = []; ru(remove) = []; end lb = model.lb; ub = model.ub; xtype = []; xtype = repmat('C',length(lb),1); xtype(model.binary_variables) = 'B'; xtype(model.integer_variables) = 'I'; x0 = model.x0; opts = model.options.baron; opts.prlevel = model.options.verbose; if model.options.savedebug save barondebug obj con A ru rl cl cu lb ub x0 opts end solvertime = tic; [x,fval,exitflag,info,allsol] = baron(obj,A,rl,ru,lb,ub,con,cl,cu,xtype,x0,opts); solvertime = toc(solvertime); % Check, currently not exhaustive... switch exitflag case 1 problem = 0; case 2 problem = 1; case 3 problem = 2; case {4,5} problem = 11; otherwise problem = 9; end % Save all data sent to solver? if model.options.savesolverinput solverinput.obj = obj; solverinput.A = A; solverinput.rl = rl; solverinput.ru = ru; solverinput.lb = lb; solverinput.ub = ub; solverinput.con = con; solverinput.cl = cl; solverinput.cu = cu; solverinput.xtype = xtype; solverinput.opts = opts; else solverinput = []; end % Save all data from the solver? if model.options.savesolveroutput solveroutput.x = x; solveroutput.fval = fval; solveroutput.exitflag = exitflag; solveroutput.info=info; solveroutput.allsol=allsol; else solveroutput = []; end if ~isempty(x) x = RecoverNonlinearSolverSolution(model,x); end % Standard interface output = createoutput(x,[],[],problem,'BARON',solverinput,solveroutput,solvertime); function z = createOneterm(i,model) [evalPos,pos] = ismember(i,model.evalVariables); if pos % This is a nonlinear operator map = model.evalMap{pos}; % We might hqave vectorized things to compute several expressions at the same time j = find(map.computes == i); j = map.variableIndex(j); % we have f(x(j)), but have to map back to linear indicies jl = find(model.linearindicies == j); if isempty(jl) z = [map.fcn '(' createmonomstring(model.monomtable(j,:),model) ')']; else z = [map.fcn '(x(' num2str(jl) '))']; end else i = find(model.linearindicies == i); z = ['x(' num2str(i) ')']; end function monomstring = createmonomstring(v,model) monomstring = ''; for i = find(v) z = createOneterm(i,model); if v(i)==1 monomstring = [monomstring z '*']; else monomstring = [monomstring z '^' num2str(v(i),12) '*']; end end monomstring = monomstring(1:end-1); function string = createmodelstring(row,model) string = ''; index = find(row); for i = index(:)' monomstring = createmonomstring(model.monomtable(i,:),model); string = [string num2str(row(i),12) '*' monomstring '+']; end string = string(1:end-1); string = strrep(string,'+-','-'); string = strrep(string,')-1*',')-'); string = strrep(string,')+1*',')+'); function string = createQstring(Q,model) % Special code for the quadratic term string = ''; [ii,jj,c]= find(triu(Q)); for i = 1:length(ii) if ii(i)==jj(i) % Quadratic term monomstring = createmonomstring(sparse(1,ii(i),1,1,size(Q,1)),model); string = [string num2str(c(i),12) '*' monomstring '^2' '+']; else % Bilinear term monomstring1 = createmonomstring(sparse(1,ii(i),1,1,size(Q,1)),model); monomstring2 = createmonomstring(sparse(1,jj(i),1,1,size(Q,1)),model); string = [string num2str(c(i),12) '*2*' monomstring1 '*' monomstring2 '+']; end end string = string(1:end-1); string = strrep(string,'+-','-'); string = strrep(string,'-1*','-'); string = strrep(string,'+1*','+');
github
EnricoGiordano1992/LMI-Matlab-master
mpcvx.m
.m
LMI-Matlab-master/yalmip/solvers/mpcvx.m
11,816
utf_8
9c49d6f2332bc7a0b4d072b435a732a1
function output = mpcvx(p) %MPCVX Approximate multi-parametric programming % % MPCVX is never called by the user directly, but is called by % YALMIP from SOLVESDP, by choosing the solver tag 'mpcvx' in sdpsettings % % The behaviour of MPCVX can be altered using the fields % in the field 'mpcvx' in SDPSETTINGS % % Implementation of % A. Bemporad and C. Filippi, % An Algorithm for Approximate Multiparametric Convex Programming % Computational Optimization and Applications Volume 35, Number 1 / % September, 2006 % ************************************************************************* % INITIALIZE DIAGNOSTICS IN YALMIP % ************************************************************************* mpsolvertime = clock; showprogress('mpcvx started',p.options.showprogress); % ************************************************************************* % Display-logics % ************************************************************************* switch max(min(p.options.verbose,3),0) case 0 p.options.bmibnb.verbose = 0; case 1 p.options.bmibnb.verbose = 1; p.options.verbose = 0; case 2 p.options.bmibnb.verbose = 2; p.options.verbose = 0; case 3 p.options.bmibnb.verbose = 2; p.options.verbose = 1; otherwise p.options.bmibnb.verbose = 0; p.options.verbose = 0; end % ************************************************************************* % No reason to save % ************************************************************************* p.options.saveduals = 0; % ************************************************************************* % The solver for approximation bounds % ************************************************************************* solver = eval(['@' p.solver.lower.call]); % ************************************************************************* % Generate an exploration set by finding an inner approximation of feasible % parametric space % ************************************************************************* [THETA,problem] = ray_shoot(p,solver); % ************************************************************************* % Calculate optimal solution (x) in each initial vertex of exploration set % ************************************************************************* X = []; OBJ = []; for i = 1:size(THETA,2) [x_i,obj_i] = solve_node(p,solver,THETA(:,i)); X = [X x_i]; OBJ = [OBJ obj_i]; end % ************************************************************************* % Partition initial set to simplicies % ************************************************************************* node_keeper; node_keeper(THETA,X,OBJ); T = delaunayn(THETA',{'Qz','Qt'}); if p.options.mpcvx.plot figure hold on plot(polytope(THETA')); end % ************************************************************************* % Run approximate algorithm recursively on all simplcies % ************************************************************************* optimal_simplicies = []; for i = 1:size(T,1) optimal_simplicies = [optimal_simplicies mp_simplex(p,solver,T(i,:)')]; end mpsolvertime = etime(clock,mpsolvertime); % ************************************************************************* % Create output compatible with MPT % ************************************************************************* Pn = polytope; j = 1; for i = 1:size(optimal_simplicies,2) [theta,x,obj] = node_keeper(optimal_simplicies(:,i)); m = size(theta,1); Minv = inv([ones(1,m+1);theta]); Vbar = obj'*Minv; Pn = [Pn polytope(theta')]; Gi{j} = x(find(~ismember(1:length(p.c),p.parametric_variables)),:)*Minv(:,1); Fi{j} = x(find(~ismember(1:length(p.c),p.parametric_variables)),:)*Minv(:,2:end); Bi{i} = Vbar(2:end); Ci{i} = Vbar(1); j = j + 1; end % Prepare for generating costs n = length(p.c) - length(p.parametric_variables); m = length(p.parametric_variables); Matrices = yalmip2mpt(p); Matrices.getback.S1 = eye(n); Matrices.getback.S2 = zeros(n,m); Matrices.getback.S3 = zeros(n,1); [Fi,Gi,details] = mpt_project_back_equality(Matrices,Fi,Gi,[],Matrices); [Fi,Gi] = mpt_select_rows(Fi,Gi,Matrices.requested_variables); [Fi,Gi] = mpt_clean_optmizer(Fi,Gi); details.Ai = []; details.Bi = Bi; details.Ci = Ci; output.problem = problem; output.Primal = nan*ones(length(p.c),1); output.Dual = []; output.Slack = []; output.infostr = yalmiperror(output.problem,'MPCVX'); output.solverinput = 0; output.solveroutput.model = mpt_appendmodel([],polytope(THETA'),Pn,Fi,Gi,details); output.solveroutput.U = p.used_variables(Matrices.free_var); output.solveroutput.x = p.used_variables(Matrices.param_var); output.solvertime = mpsolvertime; function simplex_solution = mp_simplex(p,solver,theta_indicies) % Get the vertices, the optimal solution in the vertices and the optimal % cost in the vertices [theta,x,obj] = node_keeper(theta_indicies); % Parametric dimension m = size(theta,1); % Define the polytope defined by the vertices, and add this polytope as a % constraint to the YALMIP numerical model Minv = inv([ones(1,m+1);theta]); M1 = Minv(:,1); M2 = zeros(size(M1,1),length(p.c)); M2(:,p.parametric_variables) = Minv(:,2:end); pbound = p; pbound.F_struc = [p.F_struc(1:p.K.f,:);M1 M2;p.F_struc(p.K.f + 1:end,:)]; pbound.K.l = pbound.K.l + size(M1,1); % Save original linear cost c = pbound.c; % Linear approximation of optimal cost (which is an upper bound) Vbar = obj'*Minv; c2 = zeros(length(pbound.c),1); c2(pbound.parametric_variables) = -Vbar(2:end); % This should be the difference between bound and true optima pbound.c = pbound.c + c2; pbound.f = pbound.f - Vbar(1); % Find minimum (we have negated error so this is the maximum, i.e. the % point where the linear approximation of the optimal cost is worst) output = feval(solver,pbound); if p.options.mpcvx.plot plot(polytope(theta'),struct('color',rand(3,1))) end % Dig deeper? upper = Vbar*[1;output.Primal(pbound.parametric_variables)]; lower = p.c'*output.Primal+output.Primal'*p.Q*output.Primal + p.f; %eps_CP_S = -(pbound.c'*output.Primal+output.Primal'*pbound.Q*output.Primal + pbound.f); eps_CP_S_abs = upper - lower; eps_CP_S_rel = (upper - lower)/(1 + abs(upper) + abs(lower)); if eps_CP_S_abs > p.options.mpcvx.absgaptol & eps_CP_S_rel > p.options.mpcvx.relgaptol % Put back original cost to the model pbound.c = p.c; pbound.f = p.f; % Worst-case approximation point thetac = output.Primal(pbound.parametric_variables); % Optimizer in this point [x_i,obj_i] = solve_node(pbound,solver,thetac); % Add to list of vertices new_index = node_keeper(thetac(:),x_i(:),obj_i); % Partition current simplex and solve recursively in each new simplex % THe simplex is split such that the worst/case point is a vertex in % every new simplex simplex_solution = []; test = []; % [xc,R] = facetcircle(polytope(theta'),1:3); if 0%min(svd([ones(1,size(theta,2));theta])) < 0.2 % Simplicies are getting too elongated. Add a random cut P1 = polytope(theta'); % xc = get(P1,'xCheb'); % xc = (0*xc + (1/3)*sum(theta,2))/1; [xd,R] = facetcircle(polytope(theta'),1:3); [i,j] = max(R); [H,K] = double(P1); x = sdpvar(2,1); Pnew1 = polytope((H*x <= K) + (null(H(j,:))'*(x-xd(:,j)) >= 0)); Pnew2 = polytope((H*x <= K) + (null(H(j,:))'*(x-xd(:,j)) <= 0)); plot(Pnew1); plot(Pnew2); theta1 = extreme(Pnew1)'; theta2 = extreme(Pnew2)'; X1 = [];X2 = []; OBJ1 = [];OBJ2 = []; indicies1 = [] indicies2 = [] for i = 1:size(theta1,2) [x_i,obj_i] = solve_node(p,solver,theta1(:,i)); indicies1 = [indicies1 node_keeper(theta1(:,i),x_i(:),obj_i)]; X1 = [X1 x_i]; OBJ1 = [OBJ1 obj_i]; end for i = 1:size(theta2,2) [x_i,obj_i] = solve_node(p,solver,theta2(:,i)); indicies2 = [indicies2 node_keeper(theta2(:,i),x_i(:),obj_i)]; X2 = [X2 x_i]; OBJ2 = [OBJ2 obj_i]; end T1 = (delaunayn(theta1',{'Qz','Qt'})); T2 = (delaunayn(theta2',{'Qz','Qt'})); for i = 1:size(T1,1) index = indicies1(T1); simplex_solution = [simplex_solution mp_simplex(p,solver,index(i,:))]; end for i = 1:size(T2,1) index = indicies2(T2); simplex_solution = [simplex_solution mp_simplex(p,solver,index(i,:))]; end else for i = 1:(size(theta,1)+1) j = 1:(size(theta,1)+1); j(i)=[]; theta_test = [theta(:,j) thetac]; if min(svd([ones(1,size(theta_test,2));theta_test]))>1e-4 simplex_solution = [simplex_solution mp_simplex(p,solver,[theta_indicies(j);new_index])]; end end end % if length(simplex_solution) > 0 % [theta,x,obj] = node_keeper(simplex_solution); % if max(abs(x(p.requested_variables,:)-mean(x(p.requested_variables,:))) < 1e-5) % simplex_solution = theta_indicies(:); % end % else % simplex_solution = theta_indicies(:); % end else % This simplex constitutes a node, report back simplex_solution = theta_indicies(:); end function varargout = node_keeper(varargin) persistent savedTHETA persistent savedX persistent savedOBJ switch nargin case 0 % CLEAR savedTHETA = []; savedX = []; savedOBJ = []; case 3 % Append savedTHETA = [savedTHETA varargin{1}]; savedX = [savedX varargin{2}]; savedOBJ = [savedOBJ varargin{3}]; varargout{1} = size(savedTHETA,2); case 1 % Get data varargout{1} = savedTHETA(:,varargin{1}); varargout{2} = savedX(:,varargin{1}); varargout{3} = savedOBJ(:,varargin{1});varargout{3} = varargout{3}(:); otherwise error('!') end function [THETA,problem] = ray_shoot(p,solver) THETA = []; p_temp = p; p_temp.c = p_temp.c*0; p_temp.Q = 0*p_temp.Q; n = length(p.parametric_variables); for i = 1:eval(p.options.mpcvx.rays) p_temp.c(p.parametric_variables) = randn(length(p.parametric_variables),1); output = feval(solver,p_temp); THETA = [THETA output.Primal(p.parametric_variables)]; end % Select unique and generate center THETA = unique(fix(THETA'*1e4)/1e4,'rows')'; center = sum(THETA,2)/size(THETA,2); THETA = [THETA*0.999+repmat(0.001*center,1,size(THETA,2))]; problem = 0; function [x_i,obj_i] = solve_node(p,solver,theta); p_temp = p; p_temp.F_struc(:,1) = p_temp.F_struc(:,1) + p_temp.F_struc(:,1+p.parametric_variables)*theta; p_temp.F_struc(:,1+p.parametric_variables) = []; empty_rows = find(~any(p_temp.F_struc(p.K.f+1:p.K.f+p.K.l,2:end),2)); if ~isempty(empty_rows) if all(p_temp.F_struc(p.K.f+empty_rows,1)>=-1e-7) p_temp.F_struc(p.K.f+empty_rows,:)=[]; p_temp.K.l = p_temp.K.l - length(empty_rows); else feasible = 0; end end x_var = find(~ismember(1:length(p.c),p.parametric_variables)); theta_var = p.parametric_variables; Q11 = p.Q(x_var,x_var); Q12 = p.Q(x_var,theta_var); Q22 = p.Q(theta_var,theta_var); c1 = p.c(x_var); c2 = p.c(theta_var); p_temp.Q = Q11; p_temp.c = c1+2*Q12*theta; p_temp.lb(theta_var) = []; p_temp.ub(theta_var) = []; %p_temp.c(p.parametric_variables) = []; %p_temp.Q(:,p.parametric_variables) = []; %p_temp.Q(p.parametric_variables,:) = []; output = feval(solver,p_temp); % Recover complete [x theta] x_i = zeros(length(p.c),1); x_i(find(~ismember(1:length(p.c),p.parametric_variables))) = output.Primal; x_i(p.parametric_variables) = theta; obj_i = x_i'*p.Q*x_i+p.c'*x_i;
github
EnricoGiordano1992/LMI-Matlab-master
callvsdp.m
.m
LMI-Matlab-master/yalmip/solvers/callvsdp.m
4,295
utf_8
3db429710eaea8f4494a100384c6f9e9
function output = callvsdp(interfacedata) % Retrieve needed data options = interfacedata.options; F_struc = interfacedata.F_struc; c = interfacedata.c; K = interfacedata.K; x0 = interfacedata.x0; ub = interfacedata.ub; lb = interfacedata.lb; % Bounded variables converted to constraints if ~isempty(ub) [F_struc,K] = addbounds(F_struc,K,ub,lb); end % Convert from internal (sedumi-like) format to VSDPs sdpt3-like format [blk,A,C,b]=sedumi2vsdp(F_struc(:,1),F_struc(:,2:end),c,K); if options.savedebug ops = options.sdpt3; save sdpt3debug blk A C b ops -v6 end % Solver to be used in VSDP options.vsdp.model = interfacedata; solvertime = tic; [objt,Xt,yt,Zt,info] = mysdps_yalmip(blk,A',C,b,options); % Compute rigorous lower bound (default behaviour) if options.vsdp.verifiedlower [fL, Y, dL] = vsdplow_yalmip(blk,A',C,b,Xt,yt,Zt,[],options); if isnan(Y) info(1) = 11; end %[fL, Y, dL] = vsdplow(blk,A,C,b,Xt,yt,Zt) else Y = []; fL = []; dL = []; end % Compute rigorous lower bound if options.vsdp.verifiedupper %[fL, Y, dL] = vsdplow_yalmip(blk,A,C,b,[],[],[],[],options) % Now compute rigorous lower bound [fU, X, lb] = vsdpup_yalmip(blk,A',C,b,Xt,yt,Zt,[],options); %[fU, X, lb] = vsdpup(blk,A,C,b,Xt,yt,Zt); else fU = []; X = []; lb = []; end solvertime = toc(solvertime); Dual = []; Slack = []; top = 1; if K.f>0 Dual = [Dual;Xt{top}(:)]; Slack = [Slack;Zt{top}(:)]; top = top+1; end if K.l>0 Dual = [Dual;[Xt{1:K.l}]']; Slack = [Slack;[Zt{1:K.l}]']; top = top + K.l; end if K.q(1)>0 Dual = [Dual;Xt{top}(:)]; Slack = [Slack;Zt{top}(:)]; top = top + 1; end if K.s(1)>0 for i = 1:length(K.s) Dual = [Dual;Xt{top+i-1}(:)]; Slack = [Slack;Zt{top+i-1}(:)]; end end if ~isempty(Y) & ~isnan(Y) Primal = Y; % Primal variable in YALMIP else Primal = yt; % Primal variable in YALMIP end % Convert error code switch info(1) case 0 problem = 0; % No problems detected case {-1,-5} problem = 5; % Lack of progress case {-2,-3,-4,-7} problem = 4; % Numerical problems case -6 problem = 3; % Maximum iterations exceeded case -10 problem = 7; % YALMIP sent incorrect input to solver case 1 problem = 2; % Dual feasibility case 2 problem = 1; % Primal infeasibility case 11 problem = 11; otherwise problem = -1; % Unknown error end infostr = yalmiperror(problem,interfacedata.solver.tag); % always save output if options.savesolveroutput solveroutput.objt = objt; solveroutput.Xt = Xt; solveroutput.yt = yt; solveroutput.Zt = Zt; solveroutput.fL = fL; solveroutput.Y = Y; solveroutput.dL = dL; solveroutput.fU = fU; solveroutput.X = X; solveroutput.lb = lb; solveroutput.info = info; else solveroutput = []; end if options.savesolverinput solverinput.blk = blk; solverinput.A = A; solverinput.C = C; solverinput.b = b; solverinput.options = options.sdpt3; else solverinput = []; end % Standard interface output = createOutputStructure(Primal,Dual,Slack,problem,infostr,solverinput,solveroutput,solvertime); function [blk,A,C,b]=sedumi2vsdp(Cin,Ain,c,K); C = {}; A = {}; b = -c; blk = {}; top = 1; k = 1; if K.f > 0 C{k,1} = Cin(top:top+K.f-1); % A{k} = -Ain(top:top+K.f-1,:); for j = 1:length(c) A{j,k} = -Ain(top:top+K.f-1,j); end blk{k,1} = 'u'; blk{k,2} = K.f; top = top + K.f; k = k + 1; end if K.l > 0 K.s = [repmat(1,1,K.l) K.s]; K.s(K.s == 0) = []; % C{k,1} = Cin(top:top+K.l-1); % % A{k} = -Ain(top:top+K.l-1,:); % for j = 1:length(c) % A{j,k} = -Ain(top:top+K.l-1,j); % end % blk{k,1} = 'l'; % blk{k,2} = K.l; % top = top + K.l; % k = k + 1; end if K.s(1)>0 for i = 1:length(K.s) C{k,1} = reshape(Cin(top:top+K.s(i)^2-1),K.s(i),K.s(i)); for j = 1:length(c) A{j,k} = reshape(-Ain(top:top+K.s(i)^2-1,j),K.s(i),K.s(i)); end blk{k,1} = 's'; blk{k,2} = K.s(i); k = k + 1; top = top + K.s(i)^2; end end A = A';
github
EnricoGiordano1992/LMI-Matlab-master
callsparsecolo.m
.m
LMI-Matlab-master/yalmip/solvers/callsparsecolo.m
4,501
utf_8
376b38f73357ddec826c7ac3db7e6704
function output = callsparsecolo(interfacedata) % Retrieve needed data options = interfacedata.options; F_struc = interfacedata.F_struc; c = interfacedata.c; K = interfacedata.K; x0 = interfacedata.x0; ub = interfacedata.ub; lb = interfacedata.lb; % Bounded variables converted to constraints if ~isempty(ub) [F_struc,K] = addbounds(F_struc,K,ub,lb); end A = -F_struc(:,2:end)'; C = F_struc(:,1); b = -c; if options.savedebug ops = options.sparsecolo; save sparsecolodebug K A C b end ops = options.sparsecolo; ops.SDPsolver = lower(interfacedata.solver.sdpsolver.tag); ops.SDPAoptions = options.sdpa; ops.sedumipar = options.sedumi; ops.sdpt3OPTIONS = options.sdpt3; ops.sdpt3OPTIONS.printlevel = options.verbose; ops.printlevel = options.verbose; if options.verbose==0 ops.SDPAoptions.print = 'no'; else ops.SDPAoptions.print = 'display'; end if options.savedebug save sparsecolodebug K A C b ops end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; if options.verbose==0 % Sparsecolo does not run silent evalc('[x,y,infoCoLO,cliqueDomain,cliqueRange,LOP] = sparseCoLO(A,b,C,K,[],ops);'); else [x,y,infoCoLO,cliqueDomain,cliqueRange,LOP] = sparseCoLO(A,b,C,K,[],ops); end solvertime = toc(solvertime); % Create YALMIP dual variable and slack Dual = x; Primal = y; switch lower(interfacedata.solver.sdpsolver.tag) case 'sdpt3' switch infoCoLO.SDPsolver.termcode case 0 problem = 0; % No problems detected case {-1,-5} problem = 5; % Lack of progress case {-2,-3,-4,-7} problem = 4; % Numerical problems case -6 problem = 3; % Maximum iterations exceeded case -10 problem = 7; % YALMIP sent incorrect input to solver case 1 problem = 2; % Dual feasibility case 2 problem = 1; % Primal infeasibility otherwise problem = -1; % Unknown error end case 'sedumi' problem = sedumicode(infoCoLO.SDPsolver,options); case 'sdpa' switch (infoCoLO.SDPsolver.phasevalue) case 'pdOPT' problem = 0; case {'noINFO','pFEAS','dFEAS','pdFEAS'} problem = 3; case 'pFEAS_dINF' problem = 2; case 'pINF_dFEAS' problem = 1; case 'pUNBD' problem = 2; case 'dUNBD' problem = 1; case 'pdINF' problem = 12; otherwise problem = -1; end end infostr = yalmiperror(problem,interfacedata.solver.tag); if options.savesolveroutput solveroutput.obj = obj; solveroutput.X = X; solveroutput.y = y; solveroutput.Z = Z; solveroutput.info = info; solveroutput.runhist = runhist; else solveroutput = []; end if options.savesolverinput solverinput.blk = blk; solverinput.A = A; solverinput.C = C; solverinput.b = b; solverinput.X0 = []; solverinput.y0 = x0; solverinput.Z0 = []; solverinput.options = options.sdpt3; else solverinput = []; end % Standard interface output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function problem = sedumicode(info,options) temp = info.pinf; pinf = info.dinf; dinf = temp; % Check for reported errors if (pinf==0) & (dinf==0) problem = 0; % No problems end % We can only report one error, use priorities if (problem==0) & (pinf==1) problem = 1; % Primal infeasability end if (problem==0) & (dinf==1) problem = 2; % Dual infeasability end if (problem==0) & (info.numerr==1) | (info.numerr==2) problem = 4; %Numerical problems end if (problem==0) & (info.iter >= options.sedumi.maxiter) % Did we need exactly maxiter iterations to find optimum if (pinf==0) & (dinf==0) & (info.numerr==0) problem = 0; % Yes else problem = 3; % No, we are not optimal yet end end if (problem==0) & (info.feasratio<0.98) problem = 4; end % Fix for cases not really explained in documentation of sedumi? if (abs(info.feasratio+1)<0.1) & (pinf==0) & (dinf==0) problem = 1; end if (abs(info.feasratio+1)<0.1) & (pinf==0) & (dinf==0) & (c'*y_s<-1e10) problem = 2; end
github
EnricoGiordano1992/LMI-Matlab-master
yalmip2mosek.m
.m
LMI-Matlab-master/yalmip/solvers/yalmip2mosek.m
2,991
utf_8
b793cd2a38c2e96dcf47933b6a79a456
function prob = yalmip2mosek(interfacedata); % Retrieve needed data options = interfacedata.options; F_struc = interfacedata.F_struc; c = interfacedata.c; Q = interfacedata.Q; K = interfacedata.K; x0 = interfacedata.x0; integer_variables = interfacedata.integer_variables; binary_variables = interfacedata.binary_variables; extended_variables = interfacedata.extended_variables; ub = interfacedata.ub; lb = interfacedata.lb; mt = interfacedata.monomtable; % ********************************* % What type of variables do we have % ********************************* linear_variables = find((sum(abs(mt),2)==1) & (any(mt==1,2))); nonlinear_variables = setdiff((1:size(mt,1))',linear_variables); sigmonial_variables = find(any(0>mt,2) | any(mt-fix(mt),2)); if ~isempty(sigmonial_variables) | isequal(interfacedata.solver.version,'GEOMETRIC') prob = create_mosek_geometric(options,F_struc,c,Q,K,ub,lb,mt,linear_variables,extended_variables); else prob = create_mosek_lpqp(options,F_struc,c,Q,K,ub,lb,mt,linear_variables,integer_variables); end function prob = create_mosek_lpqp(options,F_struc,c,Q,K,ub,lb,mt,linear_variables,integer_variables); prob.c = c; if ~isempty(F_struc) prob.a = -F_struc(:,2:end); prob.buc = full(F_struc(:,1)); prob.blc = repmat(-inf,length(prob.buc),1); else prob.a = sparse(ones(1,length(c))); % Dummy constraint prob.buc = inf; prob.blc = -inf; end if isempty(lb) prob.blx = repmat(-inf,1,length(c)); else prob.blx = lb; end if isempty(ub) prob.bux = repmat(inf,1,length(c)); else prob.bux = ub; end if K.f>0 prob.blc(1:K.f) = prob.buc(1:K.f); end [prob.qosubi,prob.qosubj,prob.qoval] = find(tril(sparse(2*Q))); if K.q(1)>0 nof_new = sum(K.q); prob.a = [prob.a [spalloc(K.f,nof_new,0);spalloc(K.l,nof_new,0);speye(nof_new)]]; %prob.a(1+K.f+K.l:end,1:length(c)) = prob.a(1+K.f+K.l:end,1:length(c)); prob.blc(1+K.f+K.l:end) = prob.buc(1+K.f+K.l:end); prob.buc(1+K.f+K.l:end) = prob.buc(1+K.f+K.l:end); prob.c = [prob.c;zeros(nof_new,1)]; top = size(F_struc,2)-1; for i = 1:length(K.q) prob.cones{i}.type = 'MSK_CT_QUAD'; prob.cones{i}.sub = top+1:top+K.q(i); prob.blx(top+1:top+K.q(i)) = -inf; prob.bux(top+1:top+K.q(i)) = inf; top = top + K.q(i); end end if ~isempty(integer_variables) prob.ints.sub = integer_variables; end prob.param = options.mosek; function prob = create_mosek_geometric(options,F_struc,c,Q,K,ub,lb,mt,linear_variables,extended_variables); x = []; D_struc = []; res = []; solvertime = 0; [prob,problem] = yalmip2geometric(options,F_struc,c,Q,K,ub,lb,mt,linear_variables,extended_variables); if problem == 0 % Mosek does not support equalities if ~isempty(prob.G) prob.A = [prob.A;prob.G;-prob.G]; prob.b = [prob.b;prob.h;1./prob.h]; prob.map = [prob.map;max(prob.map) + (1:2*length(prob.h))']; end else prob = []; end
github
EnricoGiordano1992/LMI-Matlab-master
callsdpt34.m
.m
LMI-Matlab-master/yalmip/solvers/callsdpt34.m
8,427
utf_8
b646fbbeaba6c0cdbbbbf847b0314fdd
function output = callsdpt34(interfacedata) % Retrieve needed data options = interfacedata.options; F_struc = interfacedata.F_struc; c = interfacedata.c; K = interfacedata.K; x0 = interfacedata.x0; ub = interfacedata.ub; lb = interfacedata.lb; % Bounded variables converted to constraints if ~isempty(ub) [F_struc,K] = addbounds(F_struc,K,ub,lb); end if any(K.m > 0) % Messy to keep track of options.sdpt3.smallblkdim = 0; end if ~isempty(interfacedata.lowrankdetails) options.sdpt3.smallblkdim = 1; end if isempty(K.schur_funs) % Simple... [blk,A,C,b,oldKs]=sedumi2sdpt3(F_struc(:,1),F_struc(:,2:end),c,K,options.sdpt3.smallblkdim); else % A bit messy if we have a Schur compiler (i.e. STRUL) % SDPT3 reorders SDP constraints in order to put many small ones in a % common block. Hence, it might happen that it mixes up SDP constraints % with Schur compilers and those without. At the moment, we take a % conservative approach. If all SDP constraints have a Schur compiler, % we allow blocking. If not, we don't. This way our code will work if ~any(cellfun(@isempty,K.schur_funs)) % All have Schur functions [blk,A,C,b,oldKs]=sedumi2sdpt3(F_struc(:,1),F_struc(:,2:end),c,K,options.sdpt3.smallblkdim); else % Messy case, don't allow blocking for now options.sdpt3.smallblkdim = 1; [blk,A,C,b,oldKs]=sedumi2sdpt3(F_struc(:,1),F_struc(:,2:end),c,K,options.sdpt3.smallblkdim); end end options.sdpt3.printyes=double(options.verbose); options.sdpt3.printlevel=double(options.verbose)*3; options.sdpt3.expon=options.sdpt3.expon(1); % Setup the logarithmic barrier cost. We exploit the fact that we know that % the only logaritmic cost is in the last SDP constraint if abs(K.m) > 0 lpLogsStart = 1; for i = 1:size(blk,1) if isequal(blk{i,1},'l') options.sdpt3.parbarrier{i,1} = zeros(1,blk{i,2}); elseif isequal(blk{i,1},'u') lpLogsStart = 2; options.sdpt3.parbarrier{i,1} = zeros(1,blk{i,2}); else options.sdpt3.parbarrier{i,1} = 0*blk{i,2}; end end n_sdp_logs = nnz(K.m > 1); n_lp_logs = nnz(K.m == 1); if n_lp_logs>0 lp_count = n_lp_logs; end if n_sdp_logs>0 sdp_count = n_sdp_logs; end for i = 1:length(K.m) if K.m(i) == 1 % We placed it in the linear cone options.sdpt3.parbarrier{lpLogsStart,1}(end-lp_count+1) = -K.maxdetgain(i); lp_count = lp_count-1; elseif K.m(i) > 1 % We placed it in the SDP cone options.sdpt3.parbarrier{end-sdp_count+1,1} = -K.maxdetgain(i); sdp_count = sdp_count-1; end end %options.saveduals = 0; end % Setup structures for user-defined Schur compilers if isfield(K,'schur_funs') top = 1; if ~isempty(K.schur_funs) if K.f>0 options.sdpt3.schurfun{top} = ''; options.sdpt3.schurfun_par{top,1} = []; top = top+1; end if K.l > 0 options.sdpt3.schurfun{top} = ''; options.sdpt3.schurfun_par{top,1} = []; top = top+1; end if K.q > 0 options.sdpt3.schurfun{top} = ''; options.sdpt3.schurfun_par{top,1} = []; top = top+1; end if 0 for i = 1:length(K.s) if ~isempty(K.schur_funs{i}) options.sdpt3.schurfun{top} = 'schurgateway'; S = createSchurFun(options,K,interfacedata,i); options.sdpt3.schurfun_par{top,1} = S; V = {S.extra,S.data{:}}; feval(S.fun,[],[],V{:}); else options.sdpt3.schurfun{top} = ''; options.sdpt3.schurfun_par{top,1} = []; end top = top+1; end else iSDP = 1; while top <= size(blk,1) for j = 1:length(blk{top,2}) i = oldKs(iSDP);iSDP = iSDP + 1; if ~isempty(K.schur_funs{i}) Sname = 'schurgateway'; % options.sdpt3.schurfun{top} = 'schurgateway'; S = createSchurFun(options,K,interfacedata,i); S.j = j; S.blk = blk(top,2); options.sdpt3.schurfun_par{top,j} = S; else Sname = ''; % options.sdpt3.schurfun{top} = ''; options.sdpt3.schurfun_par{top,1} = []; end end options.sdpt3.schurfun{top} = Sname; top = top+1; end end end end if options.savedebug ops = options.sdpt3; save sdpt3debug blk A C b ops x0 -v6 end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; [obj,X,y,Z,info,runhist] = sdpt3(blk,A,C,b,options.sdpt3,[],x0,[]); solvertime = toc(solvertime); % Create YALMIP dual variable and slack Dual = []; Slack = []; top = 1; if K.f>0 Dual = [Dual;X{top}(:)]; Slack = [Slack;Z{top}(:)]; top = top+1; end if K.l>0 Dual = [Dual;X{top}(:)]; Slack = [Slack;Z{top}(:)]; top = top + 1; end if K.q(1)>0 Dual = [Dual;X{top}(:)]; Slack = [Slack;Z{top}(:)]; top = top + 1; end if K.s(1)>0 % Messy format in SDPT3 to block and sort small SDPs u = blk(:,1); u = find([u{:}]=='s'); s = 1; for top = u ns = blk(top,2);ns = ns{1}; k = 1; for i = 1:length(ns) Xi{oldKs(s)} = X{top}(k:k+ns(i)-1,k:k+ns(i)-1); Zi{oldKs(s)} = Z{top}(k:k+ns(i)-1,k:k+ns(i)-1); s = s + 1; k = k+ns(i); end end for i = 1:length(Xi) Dual = [Dual;Xi{i}(:)]; Slack = [Slack;Zi{i}(:)]; end end if any(K.m > 0) % Dual = []; end Primal = -y; % Primal variable in YALMIP % Convert error code switch info.termcode case 0 problem = 0; % No problems detected case {-1,-5,-9} problem = 5; % Lack of progress case {-2,-3,-4,-7} problem = 4; % Numerical problems case -6 problem = 3; % Maximum iterations exceeded case -10 problem = 7; % YALMIP sent incorrect input to solver case 1 problem = 2; % Dual feasibility case 2 problem = 1; % Primal infeasibility otherwise problem = -1; % Unknown error end infostr = yalmiperror(problem,interfacedata.solver.tag); if options.savesolveroutput solveroutput.obj = obj; solveroutput.X = X; solveroutput.y = y; solveroutput.Z = Z; solveroutput.info = info; solveroutput.runhist = runhist; else solveroutput = []; end if options.savesolverinput solverinput.blk = blk; solverinput.A = A; solverinput.C = C; solverinput.b = b; solverinput.X0 = []; solverinput.y0 = x0; solverinput.Z0 = []; solverinput.options = options.sdpt3; else solverinput = []; end % Standard interface output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function [F_struc,K] = deblock(F_struc,K); X = any(F_struc(end-K.s(end)^2+1:end,:),2); X = reshape(X,K.s(end),K.s(end)); [v,dummy,r,dummy2]=dmperm(X); blks = diff(r); lint = F_struc(1:end-K.s(end)^2,:); logt = F_struc(end-K.s(end)^2+1:end,:); newlogt = []; for i = 1:size(logt,2) temp = reshape(logt(:,i),K.s(end),K.s(end)); temp = temp(v,v); newlogt = [newlogt temp(:)]; end logt = newlogt; pattern = []; for i = 1:length(blks) pattern = blkdiag(pattern,ones(blks(i))); end F_struc = [lint;logt(find(pattern),:)]; K.s(end) = []; K.s = [K.s blks]; K.m = blks; function S = createSchurFun(options,K,interfacedata,i); S.extra.par = options.sdpt3; S.data = K.schur_data{i}; [init,loc] = ismember(K.schur_variables{i},interfacedata.used_variables); S.index = loc; S.fun = K.schur_funs{i}; S.nvars = length(interfacedata.used_variables); %options.sdpt3.schurfun_par{top,1} = S; % V = {S.extra,S.data{:}}; % feval(S.fun,[],[],V{:});
github
EnricoGiordano1992/LMI-Matlab-master
callquadprog.m
.m
LMI-Matlab-master/yalmip/solvers/callquadprog.m
3,531
utf_8
0dfff0ae70dc7afa1992f59380fc39c4
function output = callquadprog(interfacedata) options = interfacedata.options; model = yalmip2quadprog(interfacedata); if options.savedebug save debugfile model end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; solveroutput = callsolver(model,options); solvertime = toc(solvertime); solution = quadprogsol2yalmipsol(solveroutput,model); % Save all data sent to solver? if ~options.savesolverinput model = []; end % Save all data from the solver? if ~options.savesolveroutput solveroutput = []; end % Standard interface Primal = solution.x(:); Dual = solution.D_struc; problem = solution.problem; infostr = yalmiperror(solution.problem,interfacedata.solver.tag); if ~options.savesolverinput solverinput = []; else solverinput = model; end if ~options.savesolveroutput solveroutput = []; else solveroutput = solveroutput; end % Standard interface output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function solveroutput = callsolver(model,options) x = []; fmin = []; flag = []; output = []; lambda = []; if nnz(model.Q) == 0 % BUG in LIN/QUADPROG, computation of lambda crashes in some rare % cases. To avoid seeing this when we don't want the lambdas anyway, we % don't ask for it if options.saveduals [x,fmin,flag,output,lambda] = linprog(model.c, model.A, model.b, model.Aeq, model.beq, model.lb, model.ub, model.x0,model.ops); else lambda = []; [x,fmin,flag,output] = linprog(model.c, model.A, model.b, model.Aeq, model.beq, model.lb, model.ub, model.x0,model.ops); end else if options.saveduals [x,fmin,flag,output,lambda] = quadprog(model.Q, model.c, model.A, model.b, model.Aeq, model.beq, model.lb, model.ub, model.x0,model.ops); else lambda = []; [x,fmin,flag,output] = quadprog(model.Q, model.c, model.A, model.b, model.Aeq, model.beq, model.lb, model.ub, model.x0,model.ops); end if flag==5 [x,fmin,flag,output,lambda] = quadprog(model.Q, model.c, model.A, model.b, model.Aeq, model.beq, model.lb, model.ub, [],model.ops); end end solveroutput.x = x; solveroutput.fmin = fmin; solveroutput.flag = flag; solveroutput.output = output; solveroutput.lambda = lambda; function solution = quadprogsol2yalmipsol(solveroutput,model) solution.x = solveroutput.x(:); % Internal format for duals if ~isempty(solveroutput.lambda) solution.D_struc = [solveroutput.lambda.eqlin;solveroutput.lambda.ineqlin]; else solution.D_struc = []; end % Check, currently not exhaustive... problem = 0; if solveroutput.flag==0 solution.problem = 3; else if solveroutput.flag==-3 solution.problem = 2; elseif solveroutput.flag==-2 solution.problem = 1; else if solveroutput.flag>0 solution.problem = 0; else if isempty(solveroutput.x) solution.x = repmat(nan,length(model.f),1); end if any((model.A*solveroutput.x-model.b)>sqrt(eps)) | any( abs(model.Aeq*solveroutput.x-model.beq)>sqrt(eps)) solution.problem = 1; % Likely to be infeasible else if model.f'*solveroutput.x<-1e10 % Likely unbounded solution.problem = 2; else % Probably convergence issues solution.problem = 5; end end end end end
github
EnricoGiordano1992/LMI-Matlab-master
callmosek.m
.m
LMI-Matlab-master/yalmip/solvers/callmosek.m
14,228
utf_8
9584d63092bb2893e014683ac5a5eddb
function output = callmosek(model) % Retrieve needed data options = model.options; F_struc = model.F_struc; c = model.c; Q = model.Q; K = model.K; x0 = model.x0; integer_variables = model.integer_variables; binary_variables = model.binary_variables; extended_variables = model.extended_variables; ub = model.ub; lb = model.lb; mt = model.monomtable; % ********************************* % What type of variables do we have % ********************************* model.linear_variables = find((sum(abs(mt),2)==1) & (any(mt==1,2))); model.nonlinear_variables = setdiff((1:size(mt,1))',model.linear_variables); model.sigmonial_variables = find(any(0>mt,2) | any(mt-fix(mt),2)); % Some meta-solver thinks we handle binaries if ~isempty(model.binary_variables) integer_variables = union(model.integer_variables, model.binary_variables); if isempty(lb) lb = repmat(-inf,1,length(model.c)); end lb(model.binary_variables) = max(lb(model.binary_variables),0); if isempty(ub) ub = repmat(inf,1,length(model.c)); end ub(model.binary_variables) = min(ub(model.binary_variables),1); model.lb = lb; model.ub = ub; end % Some meta solvers might construct model with empty cones if any(model.K.s) && any(model.K.s == 0) model.K.s(model.K.s==0)=[]; end if any(model.K.q) && any(model.K.q == 0) model.K.q(model.K.q==0)=[]; end if ~isempty(model.sigmonial_variables) | isequal(model.solver.version,'GEOMETRIC') [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_geometric(model); else [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_lpqpsocpsdp(model); end infostr = yalmiperror(problem,'MOSEK'); % Save all data sent to solver? if options.savesolverinput solverinput.prob = prob; solverinput.param = options.mosek; else solverinput = []; end % Save all data from the solver? if options.savesolveroutput solveroutput.r = r; solveroutput.res = res; else solveroutput = []; end % Standard interface output = createOutputStructure(x,D_struc,[],problem,infostr,solverinput,solveroutput,solvertime); function [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_lpqpsocpsdp(model); if nnz(model.Q)==0 & isempty(model.integer_variables) && isempty(model.x0) % Standard cone problem [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_lpqpsocpsdpdual(model); return elseif model.K.s(1)>0 % Semidefinite program with integer variables or quadratic objective % or specified initial point [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_sdp(model); else % Integer conic program + possibly quadratic objective [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_lpqp(model); end function [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_geometric(model); x = []; D_struc = []; r = []; res = []; solvertime = 0; [prob,problem] = yalmip2geometric(model.options,model.F_struc,model.c,model.Q,model.K,model.ub,model.lb,model.monomtable,model.linear_variables,model.extended_variables); if problem == 0 % Mosek does not support equalities if ~isempty(prob.G) prob.A = [prob.A;prob.G;-prob.G]; prob.b = [prob.b;prob.h;1./prob.h]; prob.map = [prob.map;max(prob.map) + (1:2*length(prob.h))']; end if model.options.savedebug save mosekdebug prob end param = model.options.mosek; % Call MOSEK showprogress('Calling MOSEK',model.options.showprogress); if model.options.verbose == 0 solvertime = tic; res = mskgpopt(prob.b,prob.A,prob.map,param,'minimize echo(0)'); solvertime = toc(solvertime); else solvertime = tic; res = mskgpopt(prob.b,prob.A,prob.map,param,'minimize'); solvertime = toc(solvertime); end sol = res.sol; x = zeros(length(model.c),1); x(model.linear_variables)=exp(res.sol.itr.xx); D_struc = []; % Check, currently not exhaustive... switch res.sol.itr.prosta case 'PRIMAL_AND_DUAL_FEASIBLE' problem = 0; case 'PRIMAL_INFEASIBLE' problem = 1; case 'DUAL_INFEASIBLE' problem = 2; case 'UNKNOWN' problem = 9; otherwise problem = -1; end end function [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_lpqpsocpsdpdual(model) % Convert if the caller is bnb or bmibnb which might have appended bounds % Sure, we could setup model with bounds, but... [model.F_struc,model.K] = addbounds(model.F_struc,model.K,model.ub,model.lb); param = model.options.mosek; prob.c = model.F_struc(1:model.K.f+model.K.l+sum(model.K.q),1); prob.a = -model.F_struc(1:model.K.f+model.K.l+sum(model.K.q),2:end)'; prob.blc = -model.c; prob.buc = -model.c; prob.blx = -inf(size(prob.a,2),1); prob.bux = inf(size(prob.a,2),1); top = model.K.f+model.K.l; prob.blx(1+model.K.f:model.K.f+model.K.l) = 0; if model.K.q(1)>0 for i = 1:length(model.K.q) prob.cones{i}.type = 'MSK_CT_QUAD'; prob.cones{i}.sub = top+1:top+model.K.q(i); top = top + model.K.q(i); end end if model.K.s(1)>0 prob = appendSDPdata(model.F_struc,model.K,prob); end if model.options.savedebug ops = model.options; save mosekdebug prob param ops end [r,res,solvertime] = doCall(prob,param,model.options); try x = res.sol.itr.y; catch x = nan(length(model.c),1); end if model.options.saveduals & ~isempty(x) try D_struc_SDP = zeros(sum(model.K.s.^2),1); top = 1; dtop = 1; for i = 1:length(model.K.s) n = model.K.s(i); I = find(tril(ones(n))); v = res.sol.itr.barx(top:((top+n*(n+1)/2)-1)); D_struc_SDP(dtop + I - 1) = v; in = ceil(I/n); jn = mod(I-1,n)+1; D_struc_SDP(dtop + (jn-1)*n+in - 1) = v; top = top + n*(n+1)/2; dtop = dtop + n^2; end D_struc = [res.sol.itr.xx;D_struc_SDP]; catch D_struc = []; end else D_struc = []; end problem = MosekYALMIPError(res); function [res,sol,solvertime] = doCall(prob,param,options) showprogress('Calling Mosek',options.showprogress); if options.verbose == 0 solvertime = tic; [res,sol] = mosekopt('minimize echo(0)',prob,param); solvertime = toc(solvertime); else solvertime = tic; [res,sol] = mosekopt('minimize info',prob,param); solvertime = toc(solvertime); end function problem = MosekYALMIPError(res) if res.rcode == 2001 problem = 1; return elseif res.rcode == 10007 problem = 16; return end switch res.sol.itr.prosta case 'PRIMAL_AND_DUAL_FEASIBLE' problem = 0; case 'DUAL_INFEASIBLE' problem = 1; case 'PRIMAL_INFEASIBLE' problem = 2; case 'MSK_RES_TRM_USER_CALLBACK' problem = 16; case 'MSK_RES_TRM_STALL' problem = 4; case 'UNKNOWN' try if isequal(res.rcodestr,'MSK_RES_TRM_STALL') problem = 4; else problem = 9; end catch problem = 9; end otherwise problem = -1; end function model = appendBounds(model); FstrucNew = []; if ~isempty(model.lb) ii = find(~isinf(model.lb)); FstrucNew = [-model.lb(ii) sparse(1:length(ii),ii,size(model.F_struc,2)-1,length(ii))]; end if ~isempty(model.ub) ii = find(~isinf(model.ub)); FstrucNew = [model.lb(ii) -sparse(1:length(ii),ii,size(model.F_struc,2)-1,length(ii))]; end function prob = appendSDPdata(F_struc,K,prob) prob.bardim = K.s; prob.barc.subj = []; prob.barc.subk = []; prob.barc.subl = []; prob.barc.val = []; prob.bara.subi = []; prob.bara.subj = []; prob.bara.subk = []; prob.bara.subl = []; prob.bara.val = []; C = F_struc(:,1); A = -F_struc(:,2:end); % -- Faster fix by Shahar tops = [1 cumsum(K.s.^2)+1]; top = 1+K.f+K.l+sum(K.q); [ii,jj,kk] = find(A(top:top + sum(K.s.^2)-1,:)); allcon = floor(interp1(tops,1:length(tops),ii,'linear')); all_iilocal = ii-tops(allcon)'+1; a = all_iilocal; b = K.s(allcon); allcol = ceil(a(:)./b(:))'; allrow = a(:)' - (allcol-1).*b(:)'; allvar = jj; allval = kk; % sort (for backward compatibility?) [~,ind_sort] = sort(allcon); allcon = allcon(ind_sort)'; allcol = allcol(ind_sort)'; allrow = allrow(ind_sort)'; allvar = allvar(ind_sort)'; allval = allval(ind_sort)'; % -- keep = find(allrow >= allcol); allcol = allcol(keep); allrow = allrow(keep); allcon = allcon(keep); allvar = allvar(keep); allval = allval(keep); prob.bara.subi = [prob.bara.subi allvar]; prob.bara.subj = [prob.bara.subj allcon]; prob.bara.subk = [prob.bara.subk allrow]; prob.bara.subl = [prob.bara.subl allcol]; prob.bara.val = [prob.bara.val allval]; for j = 1:length(K.s) n = K.s(j); Ci = C(top:top+n^2-1); Ci = tril(reshape(Ci,n,n)); [k,l,val] = find(Ci); prob.barc.subj = [prob.barc.subj j*ones(1,length(k))]; prob.barc.subk = [prob.barc.subk k(:)']; prob.barc.subl = [prob.barc.subl l(:)']; prob.barc.val = [prob.barc.val val(:)']; top = top + n^2; end function [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_sdp(model) param = model.options.mosek; % Convert [model.F_struc,model.K] = addbounds(model.F_struc,model.K,model.ub,model.lb); prob = yalmip2SDPmosek(model); % Debug? if model.options.savedebug save mosekdebug prob param end if model.options.verbose == 0 solvertime = tic; [r,res] = mosekopt('minimize echo(0)',prob,param); solvertime = toc(solvertime); else solvertime = tic; [r,res] = mosekopt('minimize info',prob,param); solvertime = toc(solvertime); end if res.rcode == 2001 res.sol.itr.prosta = 'DUAL_INFEASIBLE'; end try x = res.sol.itr.y; catch x = nan(length(model.c),1); end if model.options.saveduals & ~isempty(x) D_struc = [res.sol.itr.xx]; D_struc_SDP = sum(model.K.s.^2); top = 1; dtop = 1; for i = 1:length(model.K.s) X = zeros(model.K.s(i)); n = model.K.s(i); I = find(tril(ones(n))); D_struc_SDP(dtop + I - 1) = res.sol.itr.barx(top:((top+n*(n+1)/2)-1)); X(I) = res.sol.itr.barx(top:((top+n*(n+1)/2)-1)); X = X + tril(X,-1)'; D_struc = [D_struc;X(:)]; top = top + n*(n+1)/2; dtop = dtop + n^2; end else D_struc = []; end switch res.sol.itr.prosta case 'PRIMAL_AND_DUAL_FEASIBLE' problem = 0; case 'DUAL_INFEASIBLE' problem = 1; case 'PRIMAL_INFEASIBLE' problem = 2; case 'UNKNOWN' try if isequal(res.rcodestr,'MSK_RES_TRM_STALL') problem = 4; else problem = 9; end catch problem = 9; end otherwise problem = -1; end function [x,D_struc,problem,r,res,solvertime,prob] = call_mosek_lpqp(model); prob.c = model.c; if ~isempty(model.F_struc) prob.a = -model.F_struc(:,2:end); prob.buc = full(model.F_struc(:,1)); prob.blc = repmat(-inf,length(prob.buc),1); else prob.a = sparse(ones(1,length(model.c))); % Dummy constraint prob.buc = inf; prob.blc = -inf; end if isempty(model.lb) prob.blx = repmat(-inf,1,length(model.c)); else prob.blx = model.lb; end if isempty(model.ub) prob.bux = repmat(inf,1,length(model.c)); else prob.bux = model.ub; end if model.K.f>0 prob.blc(1:model.K.f) = prob.buc(1:model.K.f); end [prob.qosubi,prob.qosubj,prob.qoval] = find(tril(sparse(2*model.Q))); if model.K.q(1)>0 nof_new = sum(model.K.q); prob.a = [prob.a [spalloc(model.K.f,nof_new,0);spalloc(model.K.l,nof_new,0);speye(nof_new);spalloc(sum(model.K.s.^2),nof_new,0)]]; prob.blc(1+model.K.f+model.K.l:model.K.f+model.K.l+sum(model.K.q)) = prob.buc(1+model.K.f+model.K.l:model.K.f+model.K.l+sum(model.K.q)); % Note, fixed the SDP cones too prob.c = [prob.c;zeros(nof_new,1)]; top = size(model.F_struc,2)-1; for i = 1:length(model.K.q) prob.cones{i}.type = 'MSK_CT_QUAD'; prob.cones{i}.sub = top+1:top+model.K.q(i); prob.blx(top+1:top+model.K.q(i)) = -inf; prob.bux(top+1:top+model.K.q(i)) = inf; top = top + model.K.q(i); end end if ~isempty(model.integer_variables) prob.ints.sub = model.integer_variables; end param = model.options.mosek; if ~isempty(model.x0) if model.options.usex0 prob.sol.int.xx = zeros(max([length(model.Q) size(prob.a,2)]),1); prob.sol.int.xx(model.integer_variables) = x0(model.integer_variables); evalc('[r,res] = mosekopt (''symbcon'')'); sc = res.symbcon ; param.MSK_IPAR_MIO_CONSTRUCT_SOL = sc.MSK_ON; end end % Debug? if model.options.savedebug save mosekdebug prob param end % Call MOSEK showprogress('Calling MOSEK',model.options.showprogress); if model.options.verbose == 0 solvertime = tic; [r,res] = mosekopt('minimize echo(0)',prob,param); solvertime = toc(solvertime); else solvertime = tic; [r,res] = mosekopt('minimize',prob,param); solvertime = toc(solvertime); end if (r == 1010) || (r == 1011) | (r==1001) problem = -5; x = []; D_struc = []; elseif r == 1200 problem = 7; x = []; D_struc = []; else % Recover solutions sol = res.sol; if isempty(model.integer_variables) x = sol.itr.xx(1:length(model.c)); % Might have added new ones D_struc = (sol.itr.suc-sol.itr.slc); error_message = sol.itr.prosta; else try x = sol.int.xx(1:length(model.c)); % Might have added new ones D_struc = []; error_message = sol.int.prosta; catch x = []; error_message = 'crash'; D_struc = []; end end switch error_message case {'PRIMAL_AND_DUAL_FEASIBLE','PRIMAL_FEASIBLE'} problem = 0; case 'PRIMAL_INFEASIBLE' problem = 1; case 'DUAL_INFEASIBLE' problem = 2; case 'PRIMAL_INFEASIBLE_OR_UNBOUNDED' problem = 12; otherwise problem = -1; end end
github
EnricoGiordano1992/LMI-Matlab-master
calllsqlin.m
.m
LMI-Matlab-master/yalmip/solvers/calllsqlin.m
2,847
utf_8
170763f45e1ac6f29996fc8e82535665
function output = calllsqlin(interfacedata) K = interfacedata.K; c = interfacedata.c; CA = interfacedata.F_struc; options = interfacedata.options; % To begin with, with try to figure out if this is a simple non-negative % least squares in disguise if length(K.q)~=1 output = error_output; return end % total number of variables, #x+1 since YALMIP has introduced an epi-graph % variable to model norm(Cx-d) n = size(CA,2)-1; if nnz(c)~=1 output = error_output; return end if c(end)~=1 output = error_output; return end if c(end)~=1 output = error_output; return end Cones = CA(K.f+K.l+1:end,:); LPs = CA(1:K.l+K.f,:); if any(LPs(:,end)) % Epigraph involved in LPs output = error_output; return end if isempty(LPs) Aeq = []; beq = []; A = []; b = []; else Aeq = -LPs(1:1:K.f,2:end-1); beq = LPs(1:1:K.f,1); A =-LPs(K.f+1:end,2:end-1); b = LPs(K.f+1:end,1); end % Is it really cone(C*x-d,t) if ~all(Cones(1,:) == [zeros(1,n) 1]) output = error_output; return end if ~all(Cones(:,end) == [1;zeros(K.q-1,1)]) output = error_output; return end model.d = -Cones(2:end,1); model.C = Cones(2:end,2:end-1); model.Aineq = A; model.Aeq = Aeq; model.bineq = b; model.beq = beq; model.x0 = []; model.options = interfacedata.options.lsqlin; model.solver = 'lsqlin'; if options.savedebug save debugfile model end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA] = lsqlin(model); solvertime = toc(solvertime); solveroutput.X = X; solveroutput.RESNORM = RESNORM; solveroutput.RESIDUAL = RESIDUAL; solveroutput.EXITFLAG = EXITFLAG; solveroutput.OUTPUT = OUTPUT; solveroutput.LAMBDA = LAMBDA; solution.x = [X;RESNORM]; solution.D_struc = []; switch EXITFLAG case 1 solution.problem = 0; case 2 solution.problem = 1; case 0 solution.problem = 3; case {3,-4,-7} solution.problem = 4; otherwise solution.problem = 9; end % Save all data sent to solver? if ~options.savesolverinput model = []; end % Save all data from the solver? if ~options.savesolveroutput solveroutput = []; end if ~options.savesolverinput solverinput = []; else solverinput = model; end if ~options.savesolveroutput solveroutput = []; else solveroutput = solveroutput; end % Standard interface output = createOutputStructure(solution.x(:),solution.D_struc,[],solution.problem,yalmiperror(solution.problem,interfacedata.solver.tag),solverinput,solveroutput,solvertime); function output = error_output output.Primal = []; output.Dual = []; output.Slack = []; output.problem = 9; output.infostr = yalmiperror(-4,'LSQLIN'); output.solvertime = 0;
github
EnricoGiordano1992/LMI-Matlab-master
callbonmin.m
.m
LMI-Matlab-master/yalmip/solvers/callbonmin.m
4,532
utf_8
3e4061b2327fce758da882c69816d9fe
function output = callbonmin(model) model = yalmip2nonlinearsolver(model); options = []; try options.bonmin = optiRemoveDefaults(model.options.bonmin,bonminset()); catch options.bonmin = model.options.bonmin; end options.ipopt = model.options.ipopt; options.display = model.options.verbose; if ~model.derivative_available disp('Derivate-free call to bonmin/ipopt not yet implemented') error('Derivate-free call to bonmin/ipopt not yet implemented') end if model.options.savedebug save bonmindebug model end Fupp = [ repmat(0,length(model.bnonlinineq),1); repmat(0,length(model.bnonlineq),1); repmat(0,length(model.b),1); repmat(0,length(model.beq),1)]; Flow = [ repmat(-inf,length(model.bnonlinineq),1); repmat(0,length(model.bnonlineq),1); repmat(-inf,length(model.b),1); repmat(0,length(model.beq),1)]; if isempty(Flow) Flow = []; Fupp = []; end % Since ipopt react strangely on lb>ub, we should bail if that is detected % (ipopt creates an exception) if ~isempty(model.lb) if any(model.lb>model.ub) problem = 1; solverinput = []; solveroutput = []; output = createoutput(model.lb*0,[],[],problem,'BONMIN',solverinput,solveroutput,0); return end end % These are needed to avoid recomputation due to ipopts double call to get % f and df, and g and dg global latest_x_f global latest_x_g global latest_df global latest_f global latest_G global latest_g global latest_xevaled global latest_x_xevaled latest_G= []; latest_g = []; latest_x_f = []; latest_x_g = []; latest_xevaled = []; latest_x_xevaled = []; funcs.objective = @(x)ipopt_callback_f(x,model); funcs.gradient = @(x)ipopt_callback_df(x,model); if ~isempty(Fupp) funcs.constraints = @(x)ipopt_callback_g(x,model); funcs.jacobian = @(x)ipopt_callback_dg(x,model); end options.lb = model.lb(:)'; options.ub = model.ub(:)'; if ~isempty(Fupp) options.cl = Flow; options.cu = Fupp; end if ~isempty(Fupp) m = length(model.lb); allA=[model.Anonlinineq; model.Anonlineq]; jacobianstructure = spalloc(size(allA,1),m,0); depends = allA | allA; for i = 1:size(depends,1) vars = find(depends(i,:)); [ii,vars] = find(model.deppattern(vars,:)); vars = unique(vars); s = size(jacobianstructure,1); for j = 1:length(vars) jacobianstructure(i,find(vars(j) == model.linearindicies)) = 1; end end allA=[model.A; model.Aeq]; depends = allA | allA; jacobianstructure = [jacobianstructure;depends]; Z = sparse(jacobianstructure); funcs.jacobianstructure = @() Z; end if ~model.options.usex0 model.x0 = (options.lb+options.ub)/2; model.x0(isinf(options.ub)) = options.lb(isinf(options.ub))+1; model.x0(isinf(options.lb)) = options.ub(isinf(options.lb))-1; model.x0(isinf(model.x0)) = 0; end if ~isempty(model.binary_variables) | ~isempty(model.integer_variables) options.var_type = zeros(length(model.linearindicies),1); options.var_type(model.binary_variables) = -1; options.var_type(model.integer_variables) = 1; end showprogress('Calling BONMIN',model.options.showprogress); solvertime = tic; [xout,info] = bonmin(model.x0,funcs,options); solvertime = toc(solvertime); x = RecoverNonlinearSolverSolution(model,xout); switch info.status case {0,2} problem = 0; case 1 problem = 1; case {-1} problem = 3; case {3} problem = 15; otherwise problem = -1; end % Duals currently not supported D_struc = []; % Save all data sent to solver? if model.options.savesolverinput solverinput.x0 = model.x0; solverinput.model = model; solverinput.options = options; else solverinput = []; end % Save all data from the solver? if model.options.savesolveroutput solveroutput.x = xout; solveroutput.info = info; else solveroutput = []; end % Standard interface output = createoutput(x,D_struc,[],problem,'BONMIN',solverinput,solveroutput,solvertime); % Code supplied by Jonatan Currie function opts = removeDefaults(opts,defs) oFn = fieldnames(opts); for i = 1:length(oFn) label = oFn{i}; if(isfield(defs,label)) if(ischar(opts.(label))) if(strcmpi(defs.(label),opts.(label))) opts = rmfield(opts,label); end else if(defs.(label) == opts.(label)) opts = rmfield(opts,label); end end end end
github
EnricoGiordano1992/LMI-Matlab-master
calllsqnonneg.m
.m
LMI-Matlab-master/yalmip/solvers/calllsqnonneg.m
2,939
utf_8
f42645b72b16302e04543c90729d2f65
function output = calllsqnonneg(interfacedata) K = interfacedata.K; c = interfacedata.c; CA = interfacedata.F_struc; options = interfacedata.options; % To begin with, with try to figure out if this is a simple non-negative % least squares in disguise if length(K.q)~=1 output = error_output; return end % total number of variables, #x+1 since YALMIP has introduced an epi-graph % variable to model norm(Cx-d) n = size(CA,2)-1; if nnz(c)~=1 output = error_output; return end if c(end)~=1 output = error_output; return end if c(end)~=1 output = error_output; return end if K.l~=n-1 output = error_output; return end Cones = CA(K.l+1:end,:); LPs = CA(1:K.l,:); if any(LPs(:,end)) % Epigraph involved in LPs output = error_output; return end % Are we constraining all x>0 if any(LPs(:,1)) output = error_output; return end [i,j,k] = find(LPs(:,2:end)); if ~all(k==1) output = error_output; return end if ~all(LPs*ones(n+1,1)==1) output = error_output; return end % Is it really cone(C*x-d,t) if ~all(Cones(1,:) == [zeros(1,n) 1]) output = error_output; return end if ~all(Cones(:,end) == [1;zeros(K.q-1,1)]) output = error_output; return end model.d = -Cones(2:end,1); model.C = Cones(2:end,2:end-1); model.options = interfacedata.options.lsqnonneg; if isempty(interfacedata.x0) model.x0 = []; else model.x0 = interfacedata.x0(1:end-1); end if options.savedebug save debugfile model end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; try [X,RESNORM,RESIDUAL,EXITFLAG] = lsqnonneg(model.C,model.d,model.options); catch [X,RESNORM,RESIDUAL,EXITFLAG] = lsqnonneg(model.C,model.d,model.x0,model.options); end solvertime = toc(solvertime); solveroutput.X = X; solveroutput.RESNORM = RESNORM; solveroutput.RESIDUAL = RESIDUAL; solveroutput.EXITFLAG = EXITFLAG; solution.x = [X;RESNORM]; solution.D_struc = []; switch EXITFLAG case 1 solution.problem = 0; case 0 solution.problem = 3; otherwise solution.problem = 9; end % Save all data sent to solver? if ~options.savesolverinput model = []; end % Save all data from the solver? if ~options.savesolveroutput solveroutput = []; end if ~options.savesolverinput solverinput = []; else solverinput = model; end if ~options.savesolveroutput solveroutput = []; else solveroutput = solveroutput; end % Standard interface output = createOutputStructure(solution.x(:),solution.D_struc,[],solution.problem,yalmiperror(solution.problem,interfacedata.solver.tag),solverinput,solveroutput,solvertime); function output = error_output(e) if nargin == 0 e = -4; end output.Primal = []; output.Dual = []; output.Slack = []; output.problem = e; output.infostr = yalmiperror(e,'LSQNONNEG'); output.solvertime = 0;
github
EnricoGiordano1992/LMI-Matlab-master
callqpoases.m
.m
LMI-Matlab-master/yalmip/solvers/callqpoases.m
1,710
utf_8
42faef3cd8048ea6e498b94d4de8bb35
function output = callqpoases(interfacedata) options = interfacedata.options; model = yalmip2quadprog(interfacedata); if options.savedebug save debugfile model end if options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end solvertime = tic; solution = callsolver(model,options); solvertime = toc(solvertime); switch solution.exitflag case 0 problem = 0; case 1 problem = 3; case -2 problem = 1; case -3 problem = 2; case -1 problem = 11; otherwise problem = -1; end % Standard interface Primal = solution.x(:); Dual = solution.lambda(:); infostr = yalmiperror(problem,interfacedata.solver.tag); if ~options.savesolverinput solverinput = []; else solverinput = model; end if ~options.savesolveroutput solveroutput = []; else solveroutput = solution; end % Standard interface output = createOutputStructure(Primal,Dual,[],problem,infostr,solverinput,solveroutput,solvertime); function solveroutput = callsolver(model,options) x = []; fval = []; exitflag = []; iter = []; lambda = []; lbA = full([model.beq;-inf(length(model.b),1)]); ubA = full([model.beq;model.b]); A = [model.Aeq;model.A]; if nnz(model.Q) == 0 options.qpoases.enableRegularisation=1; end options.qpoases.printLevel = options.verbose+1; [x,fval,exitflag,iter,lambda] = qpOASES(model.Q, model.c, A, model.lb,model.ub,lbA,ubA,options.qpoases,qpOASES_auxInput()); solveroutput.x = x; solveroutput.fval = fval; solveroutput.exitflag = exitflag; solveroutput.iter = iter; if ~isempty(lambda) solveroutput.lambda = -lambda(1+length(model.lb):end); else solveroutput.lambda=[]; end
github
EnricoGiordano1992/LMI-Matlab-master
sdpfun.m
.m
LMI-Matlab-master/yalmip/operators/sdpfun.m
5,014
utf_8
0c13f9a11b9b9d4d5504b55e0d04cc52
function varargout = sdpfun(varargin) %SDPFUN Gateway to general (elementwise) functions on SDPVAR variables (overloaded) if ~isa(varargin{1},'char') && any(strcmp(cellfun(@class,varargin,'UniformOutput',0),'sdpvar')) fun_handles = zeros(nargin,1); for i = 1:nargin if isstr(varargin{end}) && isequal(varargin{i}(1),'@') fun = eval(varargin{i}); varargin{i} = fun; fun_handles(i) = 1; elseif isa(varargin{i},'function_handle') fun_handles(i) = 1; end end % Temporarily remove derivative info (to avoid change of legacy % code below) if nnz(fun_handles) == 2 derivative = varargin{end}; varargin = {varargin{1:end-1}} else derivative = []; end for i = 1:length(varargin) % we don't know in which order arguments are applied. If some argument % is an sdpvar, it means the user is defining the operator if isa(varargin{i},'sdpvar') % Overloaded operator for SDPVAR objects. Pass on args and save them. % try to figure out size of expected output (many->1 or many->many varargin_copy = varargin; for j = 1:length(varargin)-1 % Create zero arguments if isa(varargin_copy{j},'sdpvar') varargin_copy{j} = zeros(size(varargin_copy{j},1),size(varargin_copy{j},2)); end end output = feval(varargin_copy{end},varargin_copy{1:end-1}); if prod(size(output)) == 1 % MANY -> 1 % Append derivative (might be empty) varargin{end+1} = derivative; varargout{1} = yalmip('define',mfilename,varargin{:}); else % MANY -> MANY y = []; [n,m] = size(varargin{1}); varargin{1} = varargin{1}(:); for i = 1:length(varargin{1}) varargin_copy = varargin; varargin_copy{1} = varargin_copy{1}(i); varargin_copy{end+1} = derivative; y = [y;yalmip('define',mfilename,varargin_copy{:})]; end varargout{1} = reshape(y,n,m); end return end end end switch class(varargin{1}) case {'struct','double'} % What is the numerical value of this argument (needed for displays etc) varargout{1} = feval(varargin{end-1},varargin{1:end-2}); case 'sdpvar' % Should not happen error('Report bug. Call to SDPFUN with SDPVAR object'); case 'char' % YALMIP sends 'model' when it wants the epigraph or hypograph operator = struct('convexity','none','monotonicity','none','definiteness','none','model','callback'); operator.bounds = @bounds; operator.convexhull = @convexhull; if ~isempty(varargin{end}) operator.derivative = varargin{end}; end varargout{1} = []; varargout{2} = operator; % Figure out which argument actually is the SDPVAR object (not % necessarily the first argument for i = 3:length(varargin) if isa(varargin{i},'sdpvar') varargout{3} = varargin{i}; return end end error('SDPFUN arguments seem weird. Could not find any SDPVAR object'); otherwise error('SDPVAR/SDPFUN called with CHAR argument?'); end function [Ax,Ay,b] = convexhull(xL,xU,varargin) if ~(isinf(xL) | isinf(xU)) z = linspace(xL,xU,100); fz = feval(varargin{end-1},z,varargin{1:end-2}); % create 4 bounding planes % f(z) < k1*(x-XL) + f(xL) % f(z) > k2*(x-XL) + f(xL) % f(z) < k3*(x-XU) + f(xU) % f(z) > k4*(x-XU) + f(xU) % f(z) < k5*(x-XM) + f(xM) % f(z) > k6*(x-XM) + f(xM) k1 = max((fz(2:end)-fz(1))./(z(2:end)-xL))+1e-12; k2 = min((fz(2:end)-fz(1))./(z(2:end)-xL))-1e-12; k3 = min((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))+1e-12; k4 = max((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))-1e-12; Ax = [-k1;k2;-k3;k4]; Ay = [1;-1;1;-1]; b = [k1*(-z(1)) + fz(1);-(k2*(-z(1)) + fz(1));k3*(-z(end)) + fz(end);-(k4*(-z(end)) + fz(end))]; else Ax = []; Ay = []; b = []; end function [L,U] = bounds(xL,xU,varargin) if ~isinf(xL) & ~isinf(xU) xtest = linspace(xL,xU,100); values = feval(varargin{end-1},xtest,varargin{1:end-2}); [minval,minpos] = min(values); [maxval,maxpos] = max(values); % Concetrate search around the extreme regions xtestmin = linspace(xtest(max([1 minpos-5])),xtest(min([100 minpos+5])),100); xtestmax = linspace(xtest(max([1 maxpos-5])),xtest(min([100 maxpos+5])),100); values1 = feval(varargin{end-1},xtestmin,varargin{1:end-2}); values2 = feval(varargin{end-1},xtestmax,varargin{1:end-2}); L = min([values1 values2]); U = max([values1 values2]); else L = -inf; U = inf; end
github
EnricoGiordano1992/LMI-Matlab-master
absexp.m
.m
LMI-Matlab-master/yalmip/operators/absexp.m
972
utf_8
1c9eb8d6258431984094357b18a76a4a
function varargout = absexp(varargin) switch class(varargin{1}) case 'double' varargout{1} = abs(exp(varargin{1}) - 1); case 'sdpvar' varargout{1} = InstantiateBuiltInScalar(mfilename,varargin{:}); case 'char' t = varargin{2}; X = varargin{3}; F = SetupEvaluationVariable(varargin{:}); operator = struct('convexity','none','monotonicity','none','definiteness','none','model','callback'); operator.bounds = @bounds; varargout{1} = F; varargout{2} = operator; varargout{3} = X; otherwise error('SDPVAR/LOG called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xL <= 0 & xU>=0 % The variable is not bounded enough yet L = 0; U = max([abs(exp(xL)-1) abs(exp(xU)-1)]); else U = max([abs(exp(xL)-1) abs(exp(xU)-1)]); L = min([abs(exp(xL)-1) abs(exp(xU)-1)]); end function [Ax, Ay, b] = convexhull(xL,xU) Ax = []; Ay = []; b = [];
github
EnricoGiordano1992/LMI-Matlab-master
entropy.m
.m
LMI-Matlab-master/yalmip/operators/entropy.m
2,257
utf_8
311340b986854921e33a7272e402651d
function varargout = entropy(varargin) %ENTROPY % % y = ENTROPY(x) % % Computes/declares concave entropy -sum(x.*log(x)) % % Implemented as evalutation based nonlinear operator. Hence, the concavity % of this function is exploited to perform convexity analysis and rigorous % modelling. % % See also CROSSENTROPY, KULLBACKLEIBLER. switch class(varargin{1}) case 'double' x = varargin{1}; % Safe version with defined negative values (helps fmincon when % outside feasible region) if any(x<=0) z = abs(x);z(z==0)=1; y = z.*log(z); y(x==0) = 0; y(x<0) = 3*(x(x<0)-1).^2-3; varargout{1} = -sum(y); else varargout{1} = -sum(x.*log(x)); end case {'sdpvar','ndsdpvar'} varargin{1} = reshape(varargin{1},[],1); varargout{1} = yalmip('define',mfilename,varargin{1}); case 'char' X = varargin{3}; F = (X >= 0); operator = struct('convexity','concave','monotonicity','none','definiteness','none','model','callback'); operator.range = [-inf exp(-1)*length(X)]; operator.domain = [0 inf]; operator.bounds = @bounds; operator.convexhull = @convexhull; operator.derivative = @derivative; varargout{1} = F; varargout{2} = operator; varargout{3} = X; otherwise error('SDPVAR/LOG called with CHAR argument?'); end function df = derivative(x) x(x<=0)=eps; df = (-1-log(x)); function [L, U] = bounds(xL,xU) t = find(xL==0); u = find(xL<0); xL(t)=1; LU = [-xL.*log(xL) -xU.*log(xU)]; LU(t,1)=0; xL(t) = 0; L = min(LU,[],2); U = max(LU,[],2); U((xL < exp(-1)) & (xU > exp(-1))) = exp(-1); L = sum(L); U = sum(U); function [Ax, Ay, b] = convexhull(xL,xU) Ax = []; Ay = []; b = []; % % Loop thorough all variables, and compute a convex hull each term xlogx % Hmm, how do I merge without expensive projection % for i = 1:length(xL) % if xL(i) <= 0 % fL = inf; % dfL = -inf; % else % fL = -xL(i).*log(xL(i)); % dfL = -log(xL(i)) - 1; % end % fU = -xU(i).*log(xU(i)); % dfU = -log(xU(i)) - 1; % [Ax,Ay,b] = convexhullConcave(xL(i),xU(i),fL,fU,dfL,dfU); % end
github
EnricoGiordano1992/LMI-Matlab-master
xexpintinv.m
.m
LMI-Matlab-master/yalmip/operators/xexpintinv.m
816
utf_8
bd8857363df0521d4ca537237872b1f5
function varargout = xexpintinv(varargin) %XEXPINTINV EXPINT(1/Z)/Z switch class(varargin{1}) case 'double' z = varargin{1}; varargout{1} = (1./z).*expint(1./z); case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' varargout{1} = []; varargout{2} = createOperator; varargout{3} = varargin{3}; otherwise error('SDPVAR/EXPINT called with CHAR argument?'); end function operator = createOperator operator = struct('convexity','none','monotonicity','none','definiteness','positive','model','callback'); operator.derivative = @derivative; operator.range = [0 1]; operator.domain = [1e-8 inf]; function d = derivative(z); d = (-1./z.^2).*expint(1./z)+(1./z).*(-z.*exp(-1./z)).*(-1./z.^2);
github
EnricoGiordano1992/LMI-Matlab-master
kullbackleibler.m
.m
LMI-Matlab-master/yalmip/operators/kullbackleibler.m
1,913
utf_8
b60195db713567cbb6515e32703c04e8
function varargout = kullbackleibler(varargin) % KULLBACKLEIBLER % % y = KULLBACKLEIBLER(x,y) % % Computes/declares the convex Kullback-Leibler divergence sum(x.*log(x./y)) % Alternatively -sum(x.*log(y/x)), i.e., negated perspectives of log(y) % % See also ENTROPY, CROSSENTROPY switch class(varargin{1}) case 'double' if nargin == 1 z = varargin{1}; z = reshape(z,[],2); x = z(:,1); y = z(:,2); else x = varargin{1}(:); y = varargin{2}(:); end l = log(x./y); l(x<=0) = 0; l = real(l); varargout{1} = sum(x.*l); case {'sdpvar','ndsdpvar'} varargin{1} = reshape(varargin{1},[],1); varargin{2} = reshape(varargin{2},[],1); if length(varargin{1})~=length(varargin{2}) if length(varargin{1})==1 varargin{1} = repmat(varargin{1},length(varargin{2}),1); elseif length(varargin{2})==1 varargin{2} = repmat(varargin{2},length(varargin{1}),1); else error('Dimension mismatch in kullbackleibler') end end varargout{1} = yalmip('define',mfilename,[varargin{1};varargin{2}]); case 'char' X = varargin{3}; F = [X >= 0]; operator = struct('convexity','convex','monotonicity','none','definiteness','none','model','callback'); operator.range = [-inf inf]; operator.domain = [0 inf]; operator.derivative = @derivative; varargout{1} = F; varargout{2} = operator; varargout{3} = X; otherwise error('SDPVAR/KULLBACKLEIBLER called with CHAR argument?'); end function df = derivative(x) z = abs(reshape(x,[],2)); x = z(:,1); y = z(:,2); % Use KL = -Entropy + Cross Entropy df = [1+log(x);0*y] + [-log(y);-x./y];
github
EnricoGiordano1992/LMI-Matlab-master
plog.m
.m
LMI-Matlab-master/yalmip/operators/plog.m
3,011
utf_8
c2d6cca279a1861bf8dfe62cf593dc28
function varargout = plog(varargin) %PLOG % % y = PLOG(x) % % Computes concave perspective log, x(1)*log(x(2)/x(1)) on x>0 % % Implemented as evalutation based nonlinear operator. Hence, the concavity % of this function is exploited to perform convexity analysis and rigorous % modelling. switch class(varargin{1}) case 'double' if ~isequal(prod(size(varargin{1})),2) error('PLOG only defined for 2x1 arguments'); end x = varargin{1}; % Safe version with defined negative values (helps fmincon when % outside feasible region) if isequal(x(1),[0]) varargout{1} = 0; else varargout{1} = x(1)*log(x(2)/x(1)); end case 'sdpvar' if ~isequal(prod(size(varargin{1})),2) error('PLOG only defined for 2x1 arguments'); else varargout{1} = yalmip('define',mfilename,varargin{1}); end case 'char' X = varargin{3}; operator = struct('convexity','concave','monotonicity','none','definiteness','none','model','callback'); operator.range = [-inf inf]; operator.domain = [0 inf]; % operator.bounds = @bounds; % operator.convexhull = @convexhull; operator.derivative = @derivative; varargout{1} = []; varargout{2} = operator; varargout{3} = X; otherwise error('SDPVAR/PLOG called with CHAR argument?'); end function dp = derivative(x) z = x(2)/x(1); dp = [log(z)-1;1./z]; function [L,U] = bounds(xL,xU) xU(isinf(xU)) = 1e12; x1 = xL(1)*log(xL(1)/xL(2)); x2 = xU(1)*log(xU(1)/xL(2)); x3 = xL(1)*log(xL(1)/xU(2)); x4 = xU(1)*log(xU(1)/xU(2)); U = max([x1 x2 x3 x4]); if (exp(-1)*xU(2) > xL(1)) & (exp(-1)*xU(2) < xU(1)) L = -exp(-1)*xU(2); else L = min([x1 x2 x3 x4]); end function [Ax,Ay,b] = convexhull(L,U);%xL,xU) % % Ax = []; % Ay = []; % b = []; % return % L = [1 2]; % U = [3 6]; p1 = [L(1);L(2)]; p2 = [U(1);L(2)]; p3 = [L(1);U(2)]; p4 = [U(1);U(2)]; pm = [(L(1) + U(1))/2;(L(2) + U(2))/2]; z1 = L(1)*log(L(1)/L(2)); z2 = U(1)*log(U(1)/L(2)); z3 = L(1)*log(L(1)/U(2)); z4 = U(1)*log(U(1)/U(2)); zm = pm(1)*log(pm(1)/pm(2)); g1 = [log(L(1)/L(2)) + 1;-L(1)/L(2)]; g2 = [log(U(1)/L(2)) + 1;-U(1)/L(2)]; g3 = [log(L(1)/U(2)) + 1;-L(1)/U(2)]; g4 = [log(U(1)/U(2)) + 1;-U(1)/U(2)]; gm = [log(pm(1)/pm(2)) + 1;-pm(1)/pm(2)]; %sdpvar x y z %C = [max([z1 z2 z3 z4]) > z > z1 + g1'*([x;y] - p1),z > z2 + g2'*([x;y] - p2), z > z3 + g3'*([x;y] - p3),z > z4 + g4'*([x;y] - p4),[x y]>U, L < [x y]] Ax = [0 0;g1';g2';g3';g4';gm'];%;eye(2);-eye(2)]; Ay = [1;-1;-1;-1;-1;-1];%;0;0;0;0]; b = [max([z1 z2 z3 z4]);g1'*p1-z1;g2'*p2-z2;g3'*p3-z3;g4'*p4-z4;gm'*pm-zm];%;U(:);-L(:)]; xL = L(1); yL = L(2); xU = U(1); yU = U(2); p1 = [xL;yL;z1]; p2 = [xU;yL;z2]; p3 = [xL;yU;z3]; p4 = [xU;yU;z4]; U = max([z1 z2 z3 z4]); H1 = null([p2-p1 p3-p1]')'; H2 = null([p3-p2 p4-p2]')'; A = [H1;H2]; b = [b;H1*p1;H2*p2]; Ax = [Ax;A(:,1:2)]; Ay = [Ay;A(:,3)];
github
EnricoGiordano1992/LMI-Matlab-master
crossentropy.m
.m
LMI-Matlab-master/yalmip/operators/crossentropy.m
1,815
utf_8
dd20a786dd2a42dbd13576cf33b307b0
function varargout = crossentropy(varargin) % CROSSENTROPY % % y = CROSSENTROPY(x,y) % % Computes/declares cross entropy -sum(x.*log(y)) % % See also ENTROPY, KULLBACKLEIBLER switch class(varargin{1}) case 'double' if nargin == 1 % YALMIP flattens internally to [x(:);y(:)] z = varargin{1}; z = reshape(z,[],2); x = z(:,1); y = z(:,2); else x = varargin{1}(:); y = varargin{2}(:); end ce = x(:).*log(y(:)); ce(x==0) = 0; ce = real(ce); varargout{1} = -sum(ce); case {'sdpvar','ndsdpvar'} varargin{1} = reshape(varargin{1},[],1); varargin{2} = reshape(varargin{2},[],1); if length(varargin{1})~=length(varargin{2}) if length(varargin{1})==1 varargin{1} = repmat(varargin{1},length(varargin{2}),1); elseif length(varargin{2})==1 varargin{2} = repmat(varargin{2},length(varargin{1}),1); else error('Dimension mismatch in crossentropy') end end varargout{1} = yalmip('define',mfilename,[varargin{1};varargin{2}]); case 'char' X = varargin{3}; F = [X >= 0]; operator = struct('convexity','none','monotonicity','none','definiteness','none','model','callback'); operator.range = [-inf inf]; operator.domain = [0 inf]; operator.derivative = @derivative; varargout{1} = F; varargout{2} = operator; varargout{3} = X; otherwise error('SDPVAR/CROSSENTROPY called with CHAR argument?'); end function df = derivative(x) z = reshape(x,[],2); x = z(:,1); y = z(:,2); df = [-log(y);-x./y];
github
EnricoGiordano1992/LMI-Matlab-master
max_internal.m
.m
LMI-Matlab-master/yalmip/operators/max_internal.m
2,193
utf_8
1e843d6b9fb476c9c4d77aa38e2f6171
function varargout = max_internal(varargin) switch class(varargin{1}) case 'double' varargout{1} = max(varargin{:}); case 'char' extstruct.var = varargin{2}; extstruct.arg = {varargin{3:end}}; [F,properties,arguments]=max_model([],varargin{1},[],extstruct); varargout{1} = F; varargout{2} = properties; varargout{3} = arguments; otherwise end function [F,properties,arguments]=max_model(X,method,options,extstruct) switch method case 'graph' t = extstruct.var; X = extstruct.arg{1}; basis = getbase(X); inf_row = find(basis(:,1) == -inf); if length(inf_row)>0 X(inf_row) = []; end F = t-X>= 0; arguments = X(:); properties = struct('convexity','convex','monotonicity','increasing','definiteness','none'); case 'exact' arguments = []; F = ([]); t = extstruct.var; X = extstruct.arg{1}; basis = getbase(X); inf_row = find(basis(:,1) == -inf); if length(inf_row)>0 X(inf_row) = []; end X = reshape(X,length(X),1); if prod(size(X)) == 1 F = F + (X == t); elseif (prod(size(X)) == 2) & ((nnz(basis(1,:))==0) | (nnz(basis(2,:))==0)) % Special case to test a particular problem max(0,y), so we % keep it since it is optimized if (nnz(basis(2,:))==0) X = [0 1;1 0]*X; end [M,m] = derivebounds(X); d = binvar(1,1); F = F + (m(1) <= t <= m(1) + (M(2)-m(1))*d); F = F + (0 <= t-X(2) <= (m(1)-m(2))*(1-d)); elseif all(ismember(getvariables(X),yalmip('binvariables'))) & (is(X,'lpcone') | is(X,'sdpcone')) % Special case max(x) where x is simple binary F = [F, X <= t, sum(X) >= t]; else F = max_integer_model(X,t); end arguments = [arguments;X(:)]; properties = struct('convexity','convex','monotonicity','increasing','definiteness','none','model','integer'); otherwise F = []; return end
github
EnricoGiordano1992/LMI-Matlab-master
expexpintinv.m
.m
LMI-Matlab-master/yalmip/operators/expexpintinv.m
842
utf_8
2befcb9c4f10aff4f339806f9a4828a5
function varargout = expexpintinv(varargin) %EXPINT (overloaded) switch class(varargin{1}) case 'double' z = varargin{1}; varargout{1} = exp(1./z).*expint(1./z); case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' varargout{1} = []; varargout{2} = createOperator; varargout{3} = varargin{3}; otherwise error('SDPVAR/EXPINTINV called with CHAR argument?'); end function operator = createOperator operator = struct('convexity','concave','monotonicity','increasing','definiteness','positive','model','callback'); operator.derivative = @derivative; operator.range = [0 inf]; operator.domain = [1e-8 inf]; function d = derivative(z); d = (-1./z.^2).*exp(1./z).*expint(1./z)+exp(1./z).*(-z.*exp(-1./z)).*(-1./z.^2);
github
EnricoGiordano1992/LMI-Matlab-master
logistic.m
.m
LMI-Matlab-master/yalmip/operators/logistic.m
1,787
utf_8
7db6dafadc94775db52ca52054d9f148
function varargout = logistic(varargin) % LOGISTIC Returns logistic function 1./(1+exp(-x)) % % y = LOGISTIC(x) % % For a real vector x, LOGISTIC returns (1+exp(-x)).^-1 switch class(varargin{1}) case 'double' x = varargin{1}; varargout{1} = 1./(1+exp(-x)); case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' [M,m] = derivebounds(varargin{3}); if m >= 0 operator = struct('convexity','concave','monotonicity','increasing','definiteness','positive','model','callback'); elseif M <= 0 operator = struct('convexity','convex','monotonicity','increasing','definiteness','positive','model','callback'); else operator = struct('convexity','none','monotonicity','increasing','definiteness','positive','model','callback'); end operator.convexhull = @convexhull; operator.bounds = @bounds; operator.derivative = @(x)logistic(x).*(1-logistic(x)); operator.range = [0 1]; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/EXP called with CHAR argument?'); end % Bounding functions for the branch&bound solver function [L,U] = bounds(xL,xU) L = 1./(1+exp(-xL)); U = 1./(1+exp(-xU)); function [Ax, Ay, b, K] = convexhull(xL,xU) if xU <=0 fL = logistic(xL); fU = logistic(xU); dfL = fL*(1-fL); dfU = fU*(1-fU); [Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU); plot(polytope([Ax Ay],b)); elseif xL>=0 fL = logistic(xL); fU = logistic(xU); dfL = fL*(1-fL); dfU = fU*(1-fU); [Ax,Ay,b] = convexhullConcave(xL,xU,fL,fU,dfL,dfU); else Ax = []; Ay = []; b = []; end K = [];
github
EnricoGiordano1992/LMI-Matlab-master
slog.m
.m
LMI-Matlab-master/yalmip/operators/slog.m
2,540
utf_8
337f77232e578d581ec03cc60aaec8a1
function varargout = slog(varargin) %ENTROPY % % y = SLOG(x) % % Computes/declares concave shifted logarithm log(1+x) % % Implemented as evalutation based nonlinear operator. Hence, the concavity % of this function is exploited to perform convexity analysis and rigorous % modelling. Implemented in order to avoid singularities in logarithm % evaluation. switch class(varargin{1}) case 'double' x = varargin{1}; varargout{1} = log(abs(1+x)+sqrt(eps)); case 'sdpvar' varargout{1} = check_for_special_cases(varargin{:}); if isempty(varargout{1}) varargout{1} = InstantiateElementWise(mfilename,varargin{:}); end case 'char' X = varargin{3}; F = (X >= -1+eps); operator = struct('convexity','concave','monotonicity','increasing','definiteness','none','model','callback'); operator.convexhull = @convexhull; operator.range = [-inf inf]; operator.domain = [-1 inf]; operator.derivative = @(x) (1./(abs(1+x)+sqrt(eps))); varargout{1} = F; varargout{2} = operator; varargout{3} = X; otherwise error('SDPVAR/SLOG called with CHAR argument?'); end function f = check_for_special_cases(g); f = []; % Check for slog(1+a(x)/y) vars = getvariables(g); [mt,variabletype] = yalmip('monomtable'); % All signomials if all(variabletype(vars)==4) % All xi/yi local_mt = mt(vars,:); for i = 1:size(local_mt,1) if nnz(local_mt(i,:) < 0) ~= 1 return end if nnz(local_mt(i,:)) >2 return end if ~all(ismember(local_mt(i,:),[-1 0 1])) return end end % OK, everything is xi/yi for i = 1:length(g) gi = extsubsref(g,i); [~,common] = find(mt(getvariables(gi),:) < 0); y = recover(common(1)); x = gi*y; if length(g)==1 % Testing some display issues f =slogfrac([x;y]); else f = [f;slogfrac([x;y])]; end end else return end function [Ax, Ay, b, K] = convexhull(xL,xU) K = []; if 1+xL <= 0 fL = inf; else fL = log(1+xL); end fU = log(1+xU); dfL = 1/(1+xL); dfU = 1/(1+xU); xM = (xU + xL)/2; fM = log(1+xM); dfM = 1/(1+xM); [Ax,Ay,b] = convexhullConcave(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); remove = isinf(b) | isinf(Ax) | isnan(b); if any(remove) remove = find(remove); Ax(remove)=[]; b(remove)=[]; Ay(remove)=[]; end
github
EnricoGiordano1992/LMI-Matlab-master
pexp.m
.m
LMI-Matlab-master/yalmip/operators/pexp.m
1,269
utf_8
f334c5023924d04359e729add5b1df1d
function varargout = pexp(varargin) %PEXP % % y = PEXP(x) % % Computes perspective exp, x(1)*exp(x(2)/x(1)) on x>0 % % Implemented as evalutation based nonlinear operator. Hence, the convexity % of this function is exploited to perform convexity analysis and rigorous % modelling. switch class(varargin{1}) case 'double' if ~isequal(prod(size(varargin{1})),2) error('PEXP only defined for 2x1 arguments'); end x = varargin{1}; varargout{1} = x(1)*exp(x(2)/x(1)); case 'sdpvar' if ~isequal(prod(size(varargin{1})),2) error('PLOG only defined for 2x1 arguments'); else varargout{1} = yalmip('define',mfilename,varargin{1}); end case 'char' X = varargin{3}; operator = struct('convexity','convex','monotonicity','none','definiteness','positive','model','callback'); operator.range = [0 inf]; operator.domain = [0 inf]; operator.derivative = @derivative; varargout{1} = []; varargout{2} = operator; varargout{3} = X; otherwise error('SDPVAR/PEXP called with CHAR argument?'); end function dp = derivative(x) z = x(2)/x(1); dp = [exp(z)-z*exp(z);exp(z)];
github
EnricoGiordano1992/LMI-Matlab-master
acos_internal.m
.m
LMI-Matlab-master/yalmip/operators/acos_internal.m
879
utf_8
1e3261fde0507f4701cb739fbb4be919
function varargout = acos_internal(varargin) %ACOS (overloaded) switch class(varargin{1}) case 'double' x = varargin{1}; y = acos(x); y(x<-1) = pi; y(x>1) = 0; varargout{1} = y; case 'char' operator = struct('convexity','none','monotonicity','decreasing','definiteness','none','model','callback'); operator.convexhull = []; operator.bounds = @bounds; operator.derivative = @derivative; operator.range = [-pi/2 pi/2]; operator.domain = [-1 1]; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ACOS called with CHAR argument?'); end function [L,U] = bounds(xL,xU) L = real(acos(xU)); U = real(acos(xL)); function df = derivative(x) df = (-(1 - x.^2).^-0.5); df(x>1) = 0; df(x<1) = 0;
github
EnricoGiordano1992/LMI-Matlab-master
implies_internal.m
.m
LMI-Matlab-master/yalmip/operators/implies_internal.m
5,075
utf_8
e53fb93c351693a8fa46d1e56ec7162a
function varargout = implies_internal(varargin) X = varargin{1}; Y = varargin{2}; if nargin == 2 zero_tolerance = 1e-5; else zero_tolerance = varargin{3}; end % Normalize if isa(X,'constraint') X = lmi(X,[],[],1); end if isa(Y,'constraint') Y = lmi(Y,[],[],1); end % % Special case something implies binary == 1 % if isa(Y,'lmi') && length(Y)==1 & isa(Y,'equality') % y = sdpvar(Y); % if isa(y,'binary') && getbase(y)==[1 -1] | getbase(y)==[-1 1] % % end % end if isa(X,'sdpvar') & isa(Y,'sdpvar') varargout{1} = (Y >= X); elseif isa(X,'sdpvar') & isa(Y,'lmi') varargout{1} = binary_implies_constraint(X,Y); elseif isa(X,'lmi') & isa(Y,'sdpvar') varargout{1} = constraint_implies_binary(X,Y,zero_tolerance); elseif isa(X,'lmi') & isa(Y,'lmi') % Glue them using a binary binvar d varargout{1} = [constraint_implies_binary(X,d,zero_tolerance), binary_implies_constraint(d,Y)]; end function F = binary_implies_constraint(X,Y) if isempty(Y) | length(Y)==0 F = []; return end switch settype(Y) case 'multiple' % recursive call if we have a mixture Y1 = Y(find(is(Y,'equality'))); Y2 = Y(find(is(Y,'elementwise'))); Y3 = Y(find(is(Y,'socp'))); Y4 = Y(find(is(Y,'sdp'))); F = [binary_implies_constraint(X,Y1), binary_implies_constraint(X,Y2), binary_implies_constraint(X,Y3), binary_implies_constraint(X,Y4)]; case 'elementwise' % X --> (Y(:)>=0) Y = sdpvar(Y); Y = Y(:); F = binary_implies_linearnegativeconstraint(-Y,X); case 'equality' % X --> (Y(:)==0) Y = sdpvar(Y); Y = Y(:); [M,m,infbound]=derivebounds(Y); if infbound warning('You have unbounded variables in IMPLIES leading to a lousy big-M relaxation.'); end F = binary_implies_linearnegativeconstraint(Y,X(:),M,m); F = [F, binary_implies_linearnegativeconstraint(-Y,X(:),-m,-M)]; case 'sdp' % X --> (Y>=0) if length(X)>1 error('IMPLIES not implemented for vector x implies lmi.'); end Y = sdpvar(Y); % Elements in matrix y = Y(find(triu(ones(length(Y))))); % Derive bounds on all elements [M,m,infbound]=derivebounds(y); if infbound warning('You have unbounded variables in IMPLIES leading to a lousy big-M relaxation.'); end % Crude lower bound eig(Y) > -max(abs(Y(:))*n*I m=-max(abs([M;m]))*length(Y); % Big-M relaxation... F = [Y >= (1-X)*m*eye(length(Y))]; otherwise error('IMPLIES only implemented for linear (in)equalities and semidefinite constraints'); end function F = constraint_implies_binary(X,Y,zero_tolerance) switch settype(X) case 'multiple' X1 = X(find(is(X,'equality'))); X2 = X(find(is(X,'elementwise'))); if length(X1)+length(X2) < length(X) disp('Binary variables can only be activated by linear (in)equalities in IMPLIES'); end d1 = binvar(length(Y),1); d2 = binvar(length(Y),1); F1 = constraint_implies_binary(X1,d1,zero_tolerance); F2 = constraint_implies_binary(X2,d2,zero_tolerance); F = [F1, F2, Y >= d1+d2-1]; case 'elementwise' X = -sdpvar(X); if length(Y)==length(X) % Elementwise implies, either by user or internally F = linearnegativeconstraint_implies_binary(X,Y,[],[],zero_tolerance); elseif length(Y)== 1 % Many rows should imply one. Create intermediate and use AND d = binvar(length(X),1); F = [linearnegativeconstraint_implies_binary(X,d,[],[],zero_tolerance), Y >= sum(d)+1-length(X)]; else error('Inconsistent sizes in implies_internal') end case 'equality' X = sdpvar(X); n = length(X); if isequal(getbase(X),[-ones(n,1) eye(n)]) | isequal(getbase(X),[ones(n,1) -eye(n)]) & all(ismember(depends(X),yalmip('binvariables'))); % Smart code for X == 1 implies Y F = [Y(:) >= recover(getvariables(X))]; else d = binvar(length(X),2,'full'); %F = linearnegativeconstraint_implies_binary([-zero_tolerance-X;X-zero_tolerance],[d(:,1);d(:,2)],[],[],zero_tolerance); F = linearnegativeconstraint_implies_binary([-zero_tolerance-X;X-zero_tolerance],[d(:,1);d(:,2)],[],[],zero_tolerance/100); if length(X)==length(Y) % elementwise version F = [F, Y >= d(:,1)+d(:,2)-1]; elseif length(Y)==1 % All elements must be zero F = [F, Y >= sum(sum(d))-2*length(X)+1]; else error('Inconsistent sizes in implies_internal') end end otherwise disp('IMPLIES not implemented for this case'); error('IMPLIES not implemented for this case'); end
github
EnricoGiordano1992/LMI-Matlab-master
cpower.m
.m
LMI-Matlab-master/yalmip/operators/cpower.m
2,821
utf_8
7da9a3176a88314e9825801fed666649
function varargout = cpower(varargin) %CPOWER Power of SDPVAR variable with convexity knowledge % % CPOWER is recommended if your goal is to obtain % a convex model, since the function CPOWER is implemented % as a so called nonlinear operator. (For p/q ==2 you can % however just as well use the overloaded power) % % t = cpower(x,p/q) % % For negative p/q, the operator is convex. % For positive p/q with p>q, the operator is convex. % For positive p/q with p<q, the operator is concave. % % A domain constraint x>0 is automatically added if % p/q not is an even integer. % % Note, the complexity of generating the conic representation % of these variables are O(2^L) where L typically is the % smallest integer such that 2^L >= min(p,q) switch class(varargin{1}) case 'double' varargout{1} = power(varargin{1},varargin{2}); case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them. X = varargin{1}; if isreal(X) dim = size(X); X = reshape(X,prod(dim),1); y = []; for i = 1:prod(dim) y = [y;yalmip('define',mfilename,extsubsref(X,i),varargin{2})]; end y = reshape(y,dim); varargout{1} = y; else error('CPOWER can only be applied to real vectors.'); end case 'char' % YALMIP send 'model' when it wants the epigraph or hypograph if isequal(varargin{1},'graph') t = varargin{2}; % Second arg is the extended operator variable X = varargin{3}; % Third arg and above are the args user used when defining t. p = varargin{4}; if p>0 [p,q] = rat(abs(p)); F = pospower(X,t,p,q); if p>q convexity = 'convex'; monotonicity = 'increasing'; else convexity = 'concave'; monotonicity = 'decreasing'; end else [p,q] = rat(abs(p)); F = negpower(X,t,p,q); convexity = 'convex'; monotonicity = 'decreasing'; end varargout{1} = F; varargout{2} = struct('convexity',convexity,'monotonicity',monotonicity,'definiteness','positive','model','graph'); varargout{3} = X; end otherwise end function F = pospower(x,t,p,q) if p>q l = ceil(log2(abs(p))); r = 2^l-p; y = [ones(r,1)*x;ones(q,1)*t;ones(2^l-r-q,1)]; F = detset(x,y); else l = ceil(log2(abs(q))); y = [ones(p,1)*x;ones(2^l-q,1)*t;ones(q-p,1)]; F = detset(t,y); end function F = negpower(x,t,p,q) l = ceil(log2(abs(p+q))); p = abs(p); q = abs(q); y = [ones(2^l-p-q,1);ones(p,1)*x;ones(q,1)*t]; F = detset(1,y);
github
EnricoGiordano1992/LMI-Matlab-master
min_internal.m
.m
LMI-Matlab-master/yalmip/operators/min_internal.m
1,846
utf_8
000eee732402247d0ba89563345fdef3
function varargout = min_internal(varargin) switch class(varargin{1}) case 'double' varargout{1} = min(varargin{:}); case 'char' extstruct.var = varargin{2}; extstruct.arg = {varargin{3:end}}; [F,properties,arguments]=min_model([],varargin{1},[],extstruct); varargout{1} = F; varargout{2} = properties; varargout{3} = arguments; otherwise end function [F,properties,arguments] = min_model(X,method,options,extstruct) switch method case 'graph' arguments=[]; F = ([]); basis = getbase(extstruct.arg{1}); inf_row = find(basis(:,1) == inf); if length(inf_row)>0 extstruct.arg{1}(inf_row) = []; end F = F + (extstruct.arg{1} - extstruct.var >= 0); arguments= [arguments;extstruct.arg{1}(:)]; properties = struct('convexity','concave','monotonicity','increasing','definiteness','none'); case 'exact' arguments = []; t = extstruct.var; X = extstruct.arg{1}; basis = getbase(X); inf_row = find(basis(:,1) == inf); if length(inf_row)>0 X(inf_row) = []; end X = reshape(X,length(X),1); if prod(size(X)) == 1 F = [X == t]; elseif all(ismember(getvariables(X),yalmip('binvariables'))) & (is(X,'lpcone') | is(X,'sdpcone')) % Special case min(x) where x is simple binary F = [X >= t, sum(X) <= t+length(X)-1]; else F = max_integer_model(-X,-t); end arguments = [arguments;X(:)]; properties = struct('convexity','concave','monotonicity','increasing','definiteness','none','model','integer'); otherwise F = []; return end
github
EnricoGiordano1992/LMI-Matlab-master
power_internal1.m
.m
LMI-Matlab-master/yalmip/operators/power_internal1.m
2,439
utf_8
8fdb9032081e36221ef83491e13f0ea4
function varargout = power_internal1(varargin) %power_internal1 % Used for cases such as 2^x, and is treated as evaluation-based operators switch class(varargin{1}) case 'double' varargout{1} = varargin{2}.^varargin{1}; case 'sdpvar' if isa(varargin{2},'sdpvar') x = varargin{2}; y = varargin{1}; varargout{1} = exp(y*log(x)); %x^y = exp(log(x^y)) else if length(varargin{1}) > 1 || size(varargin{2},1) ~= size(varargin{2},2) error('Inputs must be a scalar and a square matrix. To compute elementwise POWER, use POWER (.^) instead.'); end x = varargin{2}; y = varargin{1}; if isa(x,'double') && x==1 && length(y)==1 varargout{1} = 1; else varargout{1} = InstantiateElementWise(mfilename,varargin{:}); end end case 'char' X = varargin{3}; Y = varargin{4}; F=[]; if Y>=1 operator = struct('convexity','none','monotonicity','increasing','definiteness','positve','model','callback'); elseif Y>=0 operator = struct('convexity','none','monotonicity','decreasing','definiteness','positive','model','callback'); else % Base is negative, so the power has to be an integer F = (integer(X)); operator = struct('convexity','none','monotonicity','decreasing','definiteness','none','model','callback'); end operator.bounds = @bounds_power; operator.convexhull = @convexhull_power; operator.derivative = @(x)derivative(x,Y); varargout{1} = F; varargout{2} = operator; varargout{3} = [X(:);Y(:)]; otherwise error('SDPVAR/power_internal1 called with CHAR argument?'); end % This should not be hidden here.... function [L,U] = bounds_power(xL,xU,base) if base >= 1 L = base^xL; U = base^xU; elseif base>= 0 L = base^xU; U = base^xL; else disp('Not implemented yet. Report bug if you need this') error end function df = derivative(x,base) if length(base)~=length(x) base = base*ones(size(x)); end f = base.^x; df = log(base)*f; function [Ax, Ay, b] = convexhull_power(xL,xU,base) fL = base^xL; fU = base^xU; dfL = log(base)*fL; dfU = log(base)*fU; [Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU);
github
EnricoGiordano1992/LMI-Matlab-master
pnorm.m
.m
LMI-Matlab-master/yalmip/operators/pnorm.m
3,905
utf_8
6ea7721daa042f84ee690bffafed5bdf
function varargout = pnorm(varargin) %PNORM P-Norm of SDPVAR variable with convexity knowledge % % PNORM is recommended if your goal is to obtain % a convex model, since the function PNORM is implemented % as a so called nonlinear operator. (For p/q ==1,2,inf you should use the % overloaded norm) % % t = pnorm(x,p/q), p/q >= 1 % % Note, the pnorm is implemented using cpower, which adds % a large number of variables and constraints switch class(varargin{1}) case 'double' varargout{1} = sum(varargin{1}.^varargin{2}).^(1/varargin{2}); case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them. X = varargin{1}; [n,m] = size(X); if isreal(X) & min(n,m)==1 if varargin{2}>=1 varargout{1} = yalmip('define',mfilename,varargin{:}); else error('PNORM only applicable for p>=1'); end else error('PNORM can only be applied to real vectors.'); end case 'char' % YALMIP send 'model' when it wants the epigraph or hypograph if isequal(varargin{1},'graph') t = varargin{2}; % Second arg is the extended operator variable X = varargin{3}; % Third arg and above are the args user used when defining t. p = varargin{4}; % sum(|xi|^(l/m))^(l/m) < t % si>0 % -t^({l-m}/m)si^(m/l) < -xi % -t^({l-m}/m)si^(m/l) < xi %sum(si) < t % t>0 if 0 [p,q] = rat(p); absX = sdpvar(length(X),1); y = sdpvar(length(X),1); F = [-absX < X < absX]; for i = 1:length(y) F = [F,pospower(absX(i),y(i),p,q)]; end F = [F,pospower(t,sum(y),q,p)]; else [l,m] = rat(p); % l=4 % m = 1 % x<(t^(l-m)*s^m)^1/l % -x<(t^(l-m)*s^m)^1/l % x < t t t s if 2^fix(log2(l))==l & m == 1 s=sdpvar(length(X),1); absX = sdpvar(length(X),1); F = [-absX <= X <= absX]; F = [F,sum(s)<= t,s>=0]; for i = 1:length(X) F = [F,detset(absX(i),[repmat(t,1,l-m) s(i)])]; F = [F,detset(-absX(i),[repmat(t,1,l-m) s(i)])]; end else % l = 7 % m = 2 % x < (t t t t t s s)^(1/7) % x^7 < (t t t t t s s) % x^8 < (t t t t t s s x) % x < (t t t t t s s x)^(1/8 s=sdpvar(length(X),1); w = 2^(ceil(log2(l))); absX = sdpvar(length(X),1); F = [-absX <= X <= absX]; F = [F,sum(s)<= t,s>=0]; for i = 1:length(X) F = [F,detset(absX(i),[repmat(t,1,l-m) repmat(s(i),1,m) repmat(absX(i),1,w-l)])]; F = [F,detset(-absX(i),[repmat(t,1,l-m) repmat(s(i),1,m) repmat(absX(i),1,w-l)])]; end end end varargout{1} = F; varargout{2} = struct('convexity','convex','monotonicity','none','definiteness','positive','model','graph'); varargout{3} = X; end otherwise end function F = pospower(x,t,p,q) if p>q l = ceil(log2(abs(p))); r = 2^l-p; y = [ones(r,1)*x;ones(q,1)*t;ones(2^l-r-q,1)]; F = detset(x,y); else l = ceil(log2(abs(q))); y = [ones(p,1)*x;ones(2^l-q,1)*t;ones(q-p,1)]; F = detset(t,y); end
github
EnricoGiordano1992/LMI-Matlab-master
logsumexp.m
.m
LMI-Matlab-master/yalmip/operators/logsumexp.m
1,345
utf_8
6b83cc0ac3e1ba57ad80dba22db81d41
function varargout = logsumexp(varargin) %LOGSUMEXP % % y = LOGSUMEXP(x) % % Computes/declares log of sum of exponentials log(sum(exp(x))) % % Implemented as evalutation based nonlinear operator. Hence, the convexity % of this function is exploited to perform convexity analysis and rigorous % modelling. switch class(varargin{1}) case 'double' x = varargin{1}; varargout{1} = log(sum(exp(x))); case 'sdpvar' if min(size(varargin{1}))>1 error('LOGSUMEXP only defined for vector arguments'); elseif max(size(varargin{1}))==1 varargout{1} = varargin{1}; else varargout{1} = yalmip('define',mfilename,varargin{1}); end case 'char' X = varargin{3}; operator = struct('convexity','convex','monotonicity','none','definiteness','none','model','callback'); operator.bounds = @bounds; operator.derivative = @(x) exp(x)./(sum(exp(x))); operator.convexhull = @convexhull; varargout{1} = []; varargout{2} = operator; varargout{3} = X; otherwise error('SDPVAR/LOG called with CHAR argument?'); end function [L, U] = bounds(xL,xU) L = log(sum(exp(xL))); U = log(sum(exp(xU))); function [Ax, Ay, b] = convexhull(xL,xU) Ax = []; Ay = []; b = [];
github
EnricoGiordano1992/LMI-Matlab-master
iff_internal.m
.m
LMI-Matlab-master/yalmip/operators/iff_internal.m
3,921
utf_8
ae2278fd236008b34aa5db44cc6c4c72
function varargout = iff_internal(varargin) X = varargin{1}; Y = varargin{2}; if nargin == 2 zero_tolerance = 1e-5; else zero_tolerance = abs(varargin{3}); end % Normalize data if isa(Y,'constraint') Y=lmi(Y,[],[],1); end if isa(X,'constraint') X=lmi(X,[],[],1); end if isa(X,'lmi') & isa(Y,'sdpvar') temp = X; X = Y; Y = temp; end if isa(X,'sdpvar') & isa(Y,'sdpvar') % user presumably works with binary variables varargout{1} = [Y == X]; elseif (isa(X,'sdpvar') & isa(Y,'lmi')) % Binary variable iff a constraint holds switch settype(Y) case 'elementwise' % binary X <--> Y(:)>=0 varargout{1} = binary_iff_lp(X,-sdpvar(Y),zero_tolerance); case 'equality' varargout{1} = binary_iff_equality(X,sdpvar(Y),zero_tolerance); case 'multiple' Y1 = Y(find(is(Y,'equality'))); Y2 = Y(find(is(Y,'elementwise'))); % Glue using intermediate variables holding truth of each set % of constraints. X is true iff both di are true and v.v. % Hence, we make a recursive call with two new models binvar d1 d2 C1 = iff_internal(d1,Y1,zero_tolerance); C2 = iff_internal(d2,Y2,zero_tolerance); C3 = [X <= d1,X <= d2,X >= d1+d2-1]; varargout{1} = [C1, C2, C3]; % varargout{1} = [iff_internal(X,Y1),iff_internal(X,Y2)]; otherwise error('IFF not implemented for this case'); end elseif isa(X,'lmi') & isa(Y,'lmi') % Constraint holds iff constraint holds. % Glue using an intermediate variable binvar d C1 = iff_internal(d,X,zero_tolerance); C2 = iff_internal(d,Y,zero_tolerance); varargout{1} = [C1,C2]; end function F = binary_iff_lp(X,f,zero_tolerance) % X == 1 <=> f<=0 [M,m,infbound] = derivebounds(f); if infbound warning('You have unbounded variables in IFF leading to a lousy big-M relaxation.'); end [nf,mf]=size(f); if nf*mf==1 F = linearnegativeconstraint_iff_binary(f,X,M,m,zero_tolerance); else f = reshape(f,nf*mf,1); di = binvar(nf*mf,1); F = linearnegativeconstraint_iff_binary(f,di,M,m,zero_tolerance); if length(X)==1 % X is true if any di F = [F, X>=sum(di)-length(di)+1, X <= di]; else % This must be a vectorized X(i) iff f(i) F = [F, di == X]; end % di=0 means the ith hypeplane is violated % X=1 means we are in the polytope % F = [f <= M*(1-X), f>=eps+(m-eps).*di, X>=sum(di)-length(di)+1, X <= di]; % Add some cuts for c < a'x+b < d [bA] = getbase(f); b = bA(:,1); A = bA(:,2:end); S = zeros(0,length(di)); for i = 1:length(b) j = findrows(abs(A),abs(A(i,:))); j = j(j > i); if length(j)==1 S(end+1,[i j]) = 1; end end if size(S,1) > 0 % Add cut cannot be outside both constraints F = F + (S*di >= 1); end end function F = binary_iff_equality(X,Y,zero_tolerance) Y = Y(:); d = binvar(length(Y),3); % We have to model every single line of equality. % di1 : Yi < -eps % di2 : -eps < Yi < eps % di3 : eps < Yi C = sum(d,2)==1; [M,m,infbounds] = derivebounds(Y); for i = 1:length(Y) if all(ismember(depends(Y(i)),yalmip('binvariables'))) & all(getbase(Y(i))==fix(getbase(Y(i)))) eps = 0.5; else eps = 0; end C1 = binary_iff_lp(d(i,1),Y(i)+eps,abs(zero_tolerance)); % Y <-eps C2 = binary_iff_lp(d(i,2),[Y(i)-eps;-eps-Y(i)],abs(zero_tolerance)); % -eps < Y < eps C3 = binary_iff_lp(d(i,3),eps-Y(i),abs(zero_tolerance)); % eps < Y C = [C, C1,C2,C3]; % Cut off some trivial cases if m(i)>=0 C = [C,d(i,1)==0]; elseif M(i)<=0 C = [C,d(i,3)==0]; end end % X is true if all di2 are true and v.v F = [C,X <= d(:,2), X >= sum(d(:,2))-length(Y)+1];
github
EnricoGiordano1992/LMI-Matlab-master
veccomplex.m
.m
LMI-Matlab-master/sedumi/veccomplex.m
2,989
utf_8
591fbdddd59de32e4e5fd57b33ebc1d7
function z = veccomplex(x,cpx,K) % z = veccomplex(x,cpx,K) % % ********** INTERNAL FUNCTION OF SEDUMI ********** % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA z = zeros(length(x) - cpx.dim,1); dimflqr = K.f+K.l+sum(K.q)+sum(K.r); rsel = 1:dimflqr; nfx = length(cpx.f)+length(cpx.x); imsel = 1:nfx; imsel = imsel' + [zeros(length(cpx.f),1); vec(cpx.x)]; rsel(imsel) = 0; z(1:dimflqr-nfx) = x(rsel~=0); z(cpx.f) = z(cpx.f) + sqrt(-1) * x(imsel(1:length(cpx.f))); z(cpx.x) = z(cpx.x) + sqrt(-1) * x(imsel(length(cpx.f)+1:end)); % ---------------------------------------- % PSD: % ---------------------------------------- hfirstk = 1+dimflqr + sum(K.s(1:K.rsdpN).^2); % start of Hermitian blocks zfirstk = 1+dimflqr - nfx; % start of psd blocks in z firstk = 1+dimflqr; % start if psd blocks in x k = 1; sk = 1; for knz = 1:length(cpx.s) newk = cpx.s(knz); if newk > k len = sum(K.s(sk:sk+newk-k-1).^2); z(zfirstk:zfirstk+len-1) = x(firstk:firstk+len-1); % copy real PSD blocks zfirstk = zfirstk + len; firstk = firstk + len; sk = sk + newk - k; % handled newk-k real blocks end nksqr = K.s(K.rsdpN + knz)^2; % insert a Hermitian block z(zfirstk:zfirstk+nksqr-1) = x(hfirstk:hfirstk+nksqr-1) ... + 1i * x(hfirstk+nksqr: hfirstk+2*nksqr-1); zfirstk = zfirstk + nksqr; hfirstk = hfirstk + 2*nksqr; k = newk + 1; % handled up to block newk. end if sk <= K.rsdpN % copy remaining real blocks len = sum(K.s(sk:K.rsdpN).^2); z(zfirstk:zfirstk+len-1) = x(firstk:firstk+len-1); end
github
EnricoGiordano1992/LMI-Matlab-master
prelp.m
.m
LMI-Matlab-master/sedumi/conversion/prelp.m
3,887
utf_8
4d1e23d094e3f1b35ec666df11a34003
% PRELP Loads and preprocesses LP from an MPS file. % % > [A,b,c,lenx,lbounds] = PRELP('problemname') % The above command results in an LP in standard form, % - Instead of specifying the problemname, you can also use PRELP([]), to % get the problem from the file /tmp/default.mat. % - Also, you may type PRELP without any input arguments, and get prompted % for a name. % % MINIMIZE c'*x SUCH THAT A*x = b AND x>= 0. % % So, you can solve it with SeDuMi: % > [x,y,info] = SEDUMI(A,b,c); % % After solving, post-process it with % > [x,objp] = POSTPROCESS(x(1:lenx),lbounds). % % REMARK x(lenx+1:length(x)) will contain upper-bound slacks. % % IMPORTANT works only if LIPSOL is installed on your system. % % See also sedumi, getproblem, postprocess (LIPSOL), frompack, lipsol. function [A,b,c,lenx,lbounds,times] = prelp(pname) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA% global OUTFID global Ubounds_exist if ~exist('loadata','file') || ~exist('preprocess','file') if ~exist('loadata','file') | ~exist('preprocess','file') error('To use PRELP, you need to have LIPSOL installed.') end %-------------------------------------------------- % LOAD LP PROBLEM INTO MEMORY %-------------------------------------------------- if (nargin == 0) pname = input('Enter problem name: ','s'); end [A,b,c,lbounds,ubounds,BIG] = loadata(pname); t0 = cputime; [A,b,c,lbounds,ubounds,BIG,NAME] = loadata(pname); times(1) = cputime - t0; %-------------------------------------------------- % PREPROCESS LP PROBLEM % NB: Y.Zhang's preprocess returns lbounds for post- % processing; the pre-processed problem has x>=0. %-------------------------------------------------- t0 = cputime; [A,b,c,lbounds,ubounds,FEASIBLE] = ... preprocess(A,b,c,lbounds,ubounds,BIG); if ~FEASIBLE fprintf('\n'); if isempty(OUTFID) return; end; msginf = 'Infeasibility detected in preprocessing'; fprintf(OUTFID, [pname ' 0 ' msginf '\n']); return; end; %[A,b,c,ubounds] = scaling(A,b,c,ubounds); %-------------------------------------------------- % INSERT UBOUND- CONSTRAINTS IN THE A-MATRIX %-------------------------------------------------- b = full(b); c = full(c); [m,lenx] = size(A); if Ubounds_exist nub = nnz(ubounds); A= [ A sparse(m,nub); sparse(1:nub,find(ubounds),1,nub,lenx) speye(nub) ]; b = [b; nonzeros(ubounds)]; c = [c; zeros(nub,1)]; else ubounds = []; end %-------------------------------------------------- % LOCATE DENSE COLUMNS %-------------------------------------------------- %checkdense(A); times(2) = cputime - t0;
github
EnricoGiordano1992/LMI-Matlab-master
feasreal.m
.m
LMI-Matlab-master/sedumi/conversion/feasreal.m
4,144
utf_8
454dcb6c42c0642ed5c5a524e84bec58
% FEASREAL Generates a random sparse optimization problem with % linear, quadratic and semi-definite constraints. Output % can be used by SEDUMI. All data will be real-valued. % % The following two lines are typical: % > [AT,B,C,K] = FEASREAL; % > [X,Y,INFO] = SEDUMI(AT,B,C,K); % % An extended version is: % > [AT,B,C,K] = FEASREAL(m,lpN,lorL,rconeL,sdpL,denfac) % % SEE ALSO sedumi AND feascpx. function [At,b,c,K] = feasreal(m,nLP,qL,rL,nL,denfac) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA% if nargin < 6 denfac = 0.1; if nargin < 5 nL = 1+ round(7*rand(1,5)); fprintf('Choosing random SDP-product cone K.s.\n') if nargin < 4 rL = 3 + round(4*rand(1,5)); fprintf('Choosing random LORENTZ R-product cone K.r.\n') if nargin < 3 qL = 3 + round(4*rand(1,5)); fprintf('Choosing random LORENTZ-product cone K.q.\n') if(nargin < 2) nLP = 10; fprintf('Choosing default K.l=%3.0f.\n',nLP) if nargin < 1 m=10; fprintf('Choosing default m=%3.0f.\n',m) end end end end end end if isempty(nLP) nLP = 0; end nblk = length(nL) + length(rL) + length(qL) + nLP; denfac = min(1, max(denfac,2/nblk)); fprintf('Choosing block density denfac=%6.4f per row\n',denfac) Apattern=sparse(m,nblk); for j=1:m pati = sprandn(1,nblk,denfac); Apattern(j,:) = (pati~= 0); end sumnLsqr = sum(nL.^2); x = zeros(nLP+sum(qL)+sum(rL)+sumnLsqr,1); x(1:nLP) = rand(nLP,1); At = sparse(length(x),m); At(1:nLP,:) = sprandn(Apattern(:,1:nLP)'); firstk = nLP+1; %[nA, mA] = size(At); % LORENTZ: for k=1:length(qL) nk = qL(k); lastk = firstk + nk - 1; x(firstk) = rand; for j=1:m if Apattern(j,nLP+k)==1 At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)); end end firstk = lastk + 1; end % RCONE (Rotated Lorentz): for k=1:length(rL) nk = rL(k); lastk = firstk + nk - 1; x(firstk) = rand; x(firstk+1) = rand; for j=1:m if Apattern(j,nLP+length(qL)+k)==1 At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)); end end firstk = lastk + 1; end % SDP: for k=1:length(nL) nk = nL(k); lastk = firstk + nk*nk - 1; Xk = diag(rand(nk,1)); % diagonal, to keep sparsity structure x(firstk:lastk) = Xk; %although symmetric, store nk^2 elts. for j=1:m if Apattern(j,nLP+length(qL)+length(rL)+k)==1 Aik = sprandsym(nk,1/nk); %on average 1 nonzero per row At(firstk:lastk,j) = vec( (Aik+Aik') ); end end firstk = lastk + 1; end b = full(At'*x); y = rand(m,1)-0.5; c = sparse(At*y)+x; K.l = nLP; K.q = qL; K.r = rL; K.s = nL;
github
EnricoGiordano1992/LMI-Matlab-master
sdpa2vec.m
.m
LMI-Matlab-master/sedumi/conversion/sdpa2vec.m
2,352
utf_8
f055b4df357f6cf3b426ce27869bc738
% x = sdpavec(E,K) % Takes an SDPA type sparse data description E, i.e. % E(1,:) = block, E(2,:) = row, E(3,:) = column, E(4,:) = entry, % and transforms it into a "long" vector, with vectorized matrices for % each block stacked under each other. The size of each matrix block % is given in the field K.s. % ********** INTERNAL FUNCTION OF SEDUMI ********** function x = sdpa2vec(E,K,invperm) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % ------------------------------------------------------------ % Split E into blocks E[1], E[2], ..., E[length(K.s)] % ------------------------------------------------------------ [xir,xjc] = sdpasplit(E(1,:),length(K.s)); x = sparse([],[],[],0,0,2*size(E,2)); for knz = 1:length(xir) permk = xir(knz); k = invperm(permk); if k > K.l k = k - K.l; % matrix nk = K.s(k); Ek = E(2:4,xjc(knz):xjc(knz+1)-1); Xk = sparse(Ek(1,:),Ek(2,:),Ek(3,:),nk,nk); Xk = Xk + triu(Xk,1)'; x=[x;Xk(:)]; else x=[x;E(4,xjc(knz))]; end end
github
EnricoGiordano1992/LMI-Matlab-master
blk2vec.m
.m
LMI-Matlab-master/sedumi/conversion/blk2vec.m
1,653
utf_8
0d48b96f66e746fce480e7a3e9c271a5
% x = blk2vec(X,nL) % % Converts a block diagonal matrix into a vector. % % ********** INTERNAL FUNCTION OF FROMPACK ********** function x = blk2vec(X,nL) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % nblk = length(nL); sumnk = 0; x = []; for k = 1:nblk nk = nL(k); x = [x; vec(X(sumnk+1:sumnk + nk,sumnk+1:sumnk + nk))] ; sumnk = sumnk + nk; end
github
EnricoGiordano1992/LMI-Matlab-master
writesdp.m
.m
LMI-Matlab-master/sedumi/conversion/writesdp.m
4,708
utf_8
31f196bca4c11b9610c98de8e4d7b107
% This function takes a problem in SeDuMi MATLAB format and writes it out % in SDPpack format. % % Usage: % % writesdp(fname,A,b,c,K) % % fname Name of SDPpack file, in quotes % A,b,c,K Problem in SeDuMi form % % Notes: % % Problems with complex data are not allowed. % % Rotated cone constraints are not supported. % % Nonsymmetric A.s and C.s matrices are symmetrized with A=(A+A')/2 % a warning is given when this happens. % % Floating point numbers are written out with 18 decimal digits for % accuracy. % % Please contact the author (Brian Borchers, [email protected]) with any % questions or bug reports. % function writesdp(fname,A,b,c,K) %From: Brian Borchers[SMTP:[email protected]] %Sent: Wednesday, December 08, 1999 12:33 PM %To: [email protected] % %Here's a MATLAB routine that will take a problem in SeDuMi's MATLAB format %and write it out in SDPpack format. % % First, check for complex numbers in A, b, or c. % if (isreal(A) ~= 1), disp('A is not real!'); return; end; if (isreal(b) ~= 1), disp('b is not real!'); return; end; if (isreal(c) ~= 1), disp('c is not real!'); return; end; % % Check for any rotated cone constraints. % if (isfield(K,'r') && (~isempty(K.r)) && (K.r ~= 0)), disp('rotated cone constraints are not yet supported.'); return; end; % % Get the size data. % if (isfield(K,'l')), nlin=K.l; sizelin=nlin; if (isempty(sizelin)), sizelin=0; nlin=0; end; else nlin=0; sizelin=0; end; if (isfield(K,'s')), nsdpblocks=length(K.s); %sizesdp=sum((K.s).^2); %if (isempty(sizesdp)), %sizesdp=0; %nsdpblocks=0; %end; else %sizesdp=0; nsdpblocks=0; end; if (isfield(K,'q')), nqblocks=length(K.q); sizeq=sum(K.q); if (isempty(sizeq)), sizeq=0; nqblocks=0; end; else nqblocks=0; sizeq=0; end; m=length(b); % % Open up the file for writing. % fid=fopen(fname,'w'); % % Print out m, the number of constraints. % fprintf(fid,'%d \n',m); % % Next, b, with one entry per line. % fprintf(fid,'%.18e\n',full(b)); % % Next, the semidefinite part. % if (nsdpblocks == 0), fprintf(fid,'0\n'); else % % Print out the number of semidefinite blocks. % fprintf(fid,'%d\n',nsdpblocks); % % For each block, print out its size. % fprintf(fid,'%d\n',full(K.s)); % % Next, the cost matrix C.s. % % % First, calculate where in c things start. % base=sizelin+sizeq+1; % % Next, work through the blocks. % for i=1:nsdpblocks, fprintf(fid,'1\n'); work=c(base:base+K.s(i)^2-1); if nnz(work ~= work'), if (work ~= work'), disp('Non symmetric C.s matrix!'); work=(work+work')/2; end; work=triu(work); [II,JJ,V]=find(work); cnt=length(II); fprintf(fid,'%d\n',cnt); if (cnt ~= 0), fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]'); end; % % Next, update to the next base. % base=base+K.s(i)^2; end; % % Now, loop through the constraints, one at a time. % for cn=1:m, % % Print out the SDP part of constraint cn. % base=sizelin+sizeq+1; for i=1:nsdpblocks, fprintf(fid,'1\n'); if nnz(work ~= work'), work=reshape(work,K.s(i),K.s(i)); if (work ~= work'), disp('Non symmetric A.s matrix!'); work=(work+work')/2; end; work=triu(work); [II,JJ,V]=find(work); cnt=length(II); fprintf(fid,'%d\n',cnt); if (cnt ~= 0), fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]'); end; % % Next, update to the next base. % base=base+K.s(i)^2; end; % % Done with constraint cn % end; % % Done with SDP part. % end; % % Next, handle the Quadratic part. % % % Describe the Q blocks. % if (nqblocks == 0), fprintf(fid,'0\n'); else fprintf(fid,'%d\n',nqblocks); fprintf(fid,'%d\n',full(K.q)); % % Find C.q. % base=sizelin+1; cq=c(base:base+sizeq-1); % % Print out the C.q coefficients. % fprintf(fid,'%.18e\n',full(cq)); % % Next, the constraint matrix A.q. % Aq=A(:,base:base+sizeq-1); % % Print out the count of nonzeros. % [II,JJ,V]=find(Aq); cnt=length(II); fprintf(fid,'1\n'); fprintf(fid,'%d\n',cnt); if (cnt ~= 0), fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]'); end; % % End of handling quadratic part. % end; % % % Finally, handle the linear part. % if (nlin == 0), fprintf(fid,'0\n'); else % % Print out the number of linear variables. % fprintf(fid,'%d\n',nlin); % % Print out C.l % fprintf(fid,'%.18e\n',full(c(1:nlin))); % % Print out the A matrix. % Al=A(:,1:nlin); [II,JJ,V]=find(Al); cnt=length(II); fprintf(fid,'1\n'); fprintf(fid,'%d\n',cnt); if (cnt ~= 0), fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]'); end; end;
github
EnricoGiordano1992/LMI-Matlab-master
frompack.m
.m
LMI-Matlab-master/sedumi/conversion/frompack.m
2,509
utf_8
a4730dcb4ec069944953dce753da973d
% FROMPACK Converts a cone problem in SDPPACK format to SEDUMI format. % % [At,c] = frompack(A,b,C,blk) Given a problem (A,b,C,blk) in the % SDPPACK-0.9-beta format, this produces At and c for use with % SeDuMi. This lets you execute % % [x,y,info] = SEDUMI(At,b,c,blk); % % IMPORTANT: this function assumes that the SDPPACK function `smat' % exists in your search path. % % SEE ALSO sedumi. function [At,c] = frompack(A,b,C,blk) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA% m = length(b); % ---------------------------------------- % In SDPPACK, 0s are sometimes used as emptyset and vice versa. % ---------------------------------------- if blk.l == 0 A.l = []; C.l = []; end if isempty(blk.q) A.q = []; C.q = []; end if isempty(blk.s) A.s = []; C.s = []; end % ---------------------------------------- % SDP: % ---------------------------------------- Asdp = []; if sum(blk.s) == 0 csdp = []; else for i=1:m Asdp = [Asdp blk2vec( smat(sparse(A.s(i,:)),blk.s), blk.s ) ]; end csdp = blk2vec(C.s,blk.s); end % ---------------------------------------- % Assemble LP, LORENTZ and SDP. %---------------------------------------- At = [A.l'; A.q'; Asdp]; c = [C.l; C.q; csdp];
github
EnricoGiordano1992/LMI-Matlab-master
feascpx.m
.m
LMI-Matlab-master/sedumi/conversion/feascpx.m
4,385
utf_8
c48c6cf336cdb94ad12b04e1efd2417b
% FEASCPX Generates a random sparse optimization problem with % linear, quadratic and semi-definite constraints. Output % can be used by SEDUMI. Includes complex-valued data. % % The following two lines are typical: % > [AT,B,C,K] = FEASCPX; % > [X,Y,INFO] = SEDUMI(AT,B,C,K); % % An extended version is: % > [AT,B,C,K] = FEASCPX(m,lpN,lorL,rconeL,sdpL,denfac) % % SEE ALSO sedumi AND feasreal. function [At,b,c,K] = feascpx(m,nLP,qL,rL,nL,denfac) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA% if nargin < 6 denfac = 0.1; if nargin < 5 nL = 1+ round(7*rand(1,5)); fprintf('Choosing random SDP-product cone K.s.\n') if nargin < 4 rL = 3 + round(4*rand(1,5)); fprintf('Choosing random LORENTZ R-product cone K.r.\n') if nargin < 3 qL = 3 + round(4*rand(1,5)); fprintf('Choosing random LORENTZ-product cone K.q.\n') if(nargin < 2) nLP = 10; fprintf('Choosing default K.l=%3.0f.\n',nLP) if nargin < 1 m=10; fprintf('Choosing default m=%3.0f.\n',m) end end end end end end if isempty(nLP) nLP = 0; end nblk = length(nL) + length(rL) + length(qL) + nLP; denfac = min(1, max(denfac,2/nblk)); fprintf('Choosing block density denfac=%6.4f per row\n',denfac) Apattern=sparse(m,nblk); for j=1:m pati = sprandn(1,nblk,denfac); Apattern(j,:) = (pati~= 0); end sumnLsqr = sum(nL.^2); x = zeros(nLP+sum(qL)+sum(rL)+sumnLsqr,1); x(1:nLP) = rand(nLP,1); At = sparse(length(x),m); At(1:nLP,:) = sprandn(Apattern(:,1:nLP)'); firstk = nLP+1; %[nA, mA] = size(At); % LORENTZ: for k=1:length(qL) nk = qL(k); lastk = firstk + nk - 1; x(firstk) = rand; for j=1:m if Apattern(j,nLP+k)==1 At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)) + sqrt(-1) * ... sparse([0;sprand(nk-1,1,1/sqrt(nk))]); end end firstk = lastk + 1; end % RCONE (Rotated Lorentz): for k=1:length(rL) nk = rL(k); lastk = firstk + nk - 1; x(firstk) = rand; x(firstk+1) = rand; for j=1:m if Apattern(j,nLP+length(qL)+k)==1 At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)) + sqrt(-1) * ... sparse([0;0;sprand(nk-2,1,1/sqrt(nk-1))]); end end firstk = lastk + 1; end % SDP: for k=1:length(nL) nk = nL(k); lastk = firstk + nk*nk - 1; Xk = diag(rand(nk,1)); % diagonal, to keep sparsity structure x(firstk:lastk) = Xk; %although symmetric, store nk^2 elts. for j=1:m if Apattern(j,nLP+length(qL)+length(rL)+k)==1 rAik = sprandsym(nk,1/nk); %on average 1 nonzero per row iAik = sprand(nk,nk,1/nk); %on average 1 nonzero per row At(firstk:lastk,j) = vec(rAik + sqrt(-1)*(iAik-iAik')); end end firstk = lastk + 1; end b = real(full(At'*x)); y = rand(m,1)-0.5; c = sparse(At*y)+x; K.l = nLP; K.q = qL; K.r = rL; K.s = nL;
github
EnricoGiordano1992/LMI-Matlab-master
check_A.m
.m
LMI-Matlab-master/old/kypd/check_A.m
2,103
utf_8
5cc8ebd00480a27a665e76443dc0b1eb
function [check,matrix_info,T,c]=check_A(matrix_info,i) % [check,matrix_info,T,c]=check_A(matrix_info,i) % % Checks if the system is controllable or stabilizable. If check=0 % the system is not stabilizable, if check=1 the system is stabilizable % and if check=2 the system is controllable. If the system is only % stabilizable the system is transformed. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K=matrix_info.K; n=matrix_info.n(i); nm=matrix_info.nm(i); m=nm-n; A=matrix_info.A{i}; B=matrix_info.B{i}; [A,B,T,c] = vandooren1(A,B,10); A=fliplr(flipud(A)); B=flipud(B); T=fliplr(T); if c<n&min(real(eig(A(c+1:n,c+1:n))))>0 check=0; elseif c<n check=1; matrix_info.A{i}=A; matrix_info.B{i}=B; Tbar=blkdiag(T,eye(m)); matrix_info.M0{i}=Tbar'*matrix_info.M0{i}*Tbar; for j=1:K matrix_info.M{i,j}=Tbar'*matrix_info.M{i,j}*Tbar; end; matrix_info.C{i} = T*matrix_info.C{i}*T'; else check=2; T=eye(n); end; function [Ac,Bc,T,c] = vandooren1(A,B,tol) % % [Ac,Bc,T,c] = vandooren1(A,B,tol) % % Computes a state transformation T such that % % A*T = T*Ac; B = T*Bc, where % % Ac = [Ac1 0 ]; Bc = [0 ] % [Ac21 Ac2] [Bc2] % % with (Ac2,Bc2) controllable and where the dimension of Ac2 is c % % The routine implemented is described in van Dooren, Paul M.: The Generalized % Eigenstructure Problem in Linear System Theory, IEEE Transaction on Automatic % Control, Vol. AC-26, No. 1, February 1981 % % Copyright (c) by Anders Hansson 1996 [n,m] = size(B); [n,dummy] = size(A); c = 0; tau = n; rho = m; T = eye(n); P = [A B]; ready = 0; while ~ready, [barB,U,newrho] = rowcompressr(P(:,tau+1:tau+rho),tol); newtau = tau-newrho; if newrho == 0, c = n-tau; ready = 1; elseif newtau == 0, c = n; ready =1; else P = U'*P(:,1:tau)*U; P = P(1:newtau,:); T = T*[U zeros(tau,c); zeros(c,tau) eye(c)]; tau = newtau; rho = newrho; c = c+rho; end end Ac = T'*A*T; Bc = T'*B;
github
EnricoGiordano1992/LMI-Matlab-master
derankcross_sort.m
.m
LMI-Matlab-master/old/kypd/derankcross_sort.m
2,700
utf_8
01855791da5b13f65d47985a4168c416
function schurpar = derankcross_sort(Basis_matrices,len,block_end,n,nm) rcum = ones(len+1,1); alphas = []; V = []; %Make 'derankcross' for double-crosses for i = 1:(nm-n)*block_end %number of dubble-crosses Fi = Basis_matrices{i}; block_number = ceil(i/(2*(nm-n))); non_zero = [2*block_number-1 2*block_number]; Cross1 = zeros(size(Fi)); Cross2 = Cross1; Cross1(non_zero(1),:) = Fi(non_zero(1),:); Cross1(:,non_zero(1)) = Fi(:,non_zero(1)); Cross2(non_zero(2),:) = Fi(non_zero(2),:); Cross2(:,non_zero(2)) = Fi(:,non_zero(2)); Cross1(non_zero(1),non_zero(2)) = Cross1(non_zero(1),non_zero(2))*.5; Cross1(non_zero(2),non_zero(1)) = Cross1(non_zero(2),non_zero(1))*.5; Cross2(non_zero(1),non_zero(2)) = Cross2(non_zero(1),non_zero(2))*.5; Cross2(non_zero(2),non_zero(1)) = Cross2(non_zero(2),non_zero(1))*.5; [alpha_temp V_temp] = derankcross_single(sparse(Cross1),non_zero(1)); alphas = [alphas, alpha_temp]; V = [V, V_temp]; [alpha_temp V_temp] = derankcross_single(sparse(Cross2),non_zero(2)); alphas = [alphas, alpha_temp]; V = [V, V_temp]; rcum(i+1) = rcum(i)+4; end %Single-crosses for i = 1:(nm-n)*(n-block_end)%number of single-crosses position = (nm-n)*block_end+i; Fi = Basis_matrices{position}; Cross = zeros(size(Fi)); non_zero = block_end+ceil(i/(nm-n)); Cross(:,non_zero) = Fi(:,non_zero); Cross(non_zero,:) = Fi(non_zero,:); [alpha_temp V_temp] = derankcross_single(sparse(Cross),non_zero); rcum(position+1) = rcum(position) + 2; alphas = [alphas, alpha_temp]; V = [V, V_temp]; end %The 'extra block' i = (nm-n)*n+1; for l=1:nm-n for k=l:nm-n if k==l rcum(i+1) = rcum(i) + 1; alphas = [alphas, 1]; v = zeros(nm,1); v(n+k) = 1; V = [V,v]; i=i+1; else Fi = Basis_matrices{i}; [alpha_temp V_temp] = derankcross_single(sparse(Fi),n+k); rcum(i+1) = rcum(i) + 2; alphas = [alphas, alpha_temp]; V = [V, V_temp]; i=i+1; end; end; end; schurpar = {{rcum alphas V}}; function [alpha V] = derankcross_single(Cross, diag) %function [alpha V] = derankcross_single(Cross, diag) % % Rewrite a cross-matrix with rank 1 as alpha*V*V.' % % Cross is a matrix with non-zero element in position located on row/column % 'diag'. % v = zeros(size(Cross,1),1); v(:,1) = Cross(:,diag); v(diag) = .5*v(diag); normv = norm(v); v1 = 1/normv*v; v2 = v1; v1(diag) = v1(diag)+1; v2(diag) = v2(diag)-1; alpha = [.5*normv -.5*normv]; V = [v1,v2];
github
EnricoGiordano1992/LMI-Matlab-master
check_M.m
.m
LMI-Matlab-master/old/kypd/check_M.m
5,029
utf_8
ec13945d05cc7097b4b9d8847b95e3d8
function [check,matrix_info,Pbar,V]=check_M(matrix_info,solver,lowrank,tol) % [check,matrix_info,Pbar,V]=check_M(matrix_info,tol) % % Eliminates the (1,1)-block of the M-matrices and checks if they % are linearly independent with tolerance tol. If not the number of % M-matrices are reduced if possible. The values of check can be 0 % which means that the matrices are linearly dependent but the % system can not be reduced, 1 which means that the matrices are % linearly dependent and the system is reduced or 2 which means % that the matrices are linearly independent. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N=matrix_info.N; K=matrix_info.K; nm=matrix_info.nm; n=matrix_info.n; m=nm-n; if solver == 'schur' & ~lowrank matrix_info.schur.ua = cell(N,1); matrix_info.schur.ta = cell(N,1); matrix_info.schur.ub = cell(N,1); matrix_info.schur.tb = cell(N,1); elseif solver == 'diago' & ~lowrank matrix_info.diago.ua = cell(N,1); matrix_info.diago.ta = cell(N,1); matrix_info.diago.uainv = cell(N,1); elseif lowrank matrix_info.block_info = zeros(N,1); matrix_info.diago.ta = cell(N,1); end matrix_info.T_diag = cell(N,1); matrix_info.T_diaginv = cell(N,1); matrix_info.D_diag = cell(N,1); check=2; % Eliminate the (1,1)-block of the M-matrices. Pbar=[]; vec_M=[]; D_diag = cell(N,1); c = matrix_info.c; %JANNE for i=1:N temp=[]; M0=matrix_info.M0{i}; if n(i)~=0 A=matrix_info.A{i}; B=matrix_info.B{i}; [ma,na] = size(A); [mb,nb] = size(A); if solver=='schur' [ua,ta] = schur(A','complex'); j = ma:-1:1; ub = ua(:,j); tb = ta(j,j)'; Pbar{i,1}=lyapunov(ua,ta,ub,tb,-M0(1:n(i),1:n(i))); if lowrank [T,D] = eig(A'); end end; if solver=='diago' [ua,ta] = eig(A'); uainv = inv(ua); Pbar{i,1}=diaglyapunov(ua,uainv,ta,-M0(1:n(i),1:n(i))); if lowrank T = ua; D = ta; end end; if lowrank [matrix_info.T_diag{i},matrix_info.T_diaginv{i}, ... matrix_info.D_diag{i},matrix_info.block_info(i)] = create_blockdiag_sort(T,D); end M0(1:n(i),1:n(i))=zeros(n(i)); M0(1:n(i),n(i)+1:nm(i))=M0(1:n(i),n(i)+1:nm(i))-Pbar{i,1}*B; M0(n(i)+1:nm(i),1:n(i))=M0(1:n(i),n(i)+1:nm(i))'; matrix_info.M0{i}=M0; end; for j=1:K M=matrix_info.M{i,j}; if n(i)~=0 if solver=='schur' Pbar{i,j+1}=lyapunov(ua,ta,ub,tb,-M(1:n(i),1:n(i))); end; if solver=='diago' Pbar{i,j+1}=diaglyapunov(ua,uainv,ta,-M(1:n(i),1:n(i))); end; M(1:n(i),1:n(i))=zeros(n(i)); M(1:n(i),n(i)+1:nm(i))=M(1:n(i),n(i)+1:nm(i))-Pbar{i,j+1}*B; M(n(i)+1:nm(i),1:nm(i))=M(1:nm(i),n(i)+1:nm(i))'; matrix_info.M{i,j}=M; end; temp=[temp [vec(M(n(i)+1:nm(i),1:n(i)));... hvec(M(n(i)+1:nm(i),n(i)+1:nm(i)))]]; try C = matrix_info.C{i}; %JANNE c(j) = c(j) - trace(C*Pbar{i,j+1}); %JANNE catch %No C! c(j) needs not to be changed. end end; vec_M=[vec_M;temp]; end; matrix_info.c = c; [n1,m1]=size(vec_M); % Make a singular value decomposition. [u,s,v]=svd(full(vec_M)); V=v'; if nargin<4 tol = max(size(vec_M)')*max(max(s))*eps; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check if the matrices are linearly independent. r = sum(sum(s)>tol); if r<m1 disp('The M matrices are linearly dependent') % Check if the number of matrices can be reduced. if any(abs(V(r+1:m1,:)*matrix_info.c)>tol) check=0; error('The system cannot be reduced') else % Reduce the number of matrices. check=1; matrix_info.c=V(1:r,:)*matrix_info.c; matrix_info.K=r; E=u*s; E=E(:,1:r); % Create the new M matrices. for i=1:N for j=1:r matrix_info.M{i,j}=zeros(nm(i)); matrix_info.M{i,j}(n(i)+1:nm(i),1:n(i))=reshape(E(1: ... n(i)*m(i),j),m(i),n(i)); matrix_info.M{i,j}=matrix_info.M{i,j}+matrix_info.M{i,j}'; matrix_info.M{i,j}(n(i)+1:nm(i),n(i)+1:nm(i))=... inv_hvec(E(n(i)*m(i)+1:n(i)*m(i)+m(i)*(m(i)+1)/2,j)); end; E=E(n(i)*m(i)+m(i)*(m(i)+1)/2+1:end,:); end; end; end; V=V(1:r,:); function v=hvec(M) [n,m]=size(M); if n~=m error('The matrix is not square') end; if issymmetric(M) x=find(triu(ones(m))); v=M(x); else error('The matrix is not symmetric') end; function M=inv_hvec(v) m=(-1+sqrt(1+8*length(v)))/2; if abs(round(m)-m)>1e-5 error('The size of the vector is not compatible with a symmetric matrix') else x=find(triu(ones(m))); M=zeros(m); M(x)=v; M=M+M'-diag(diag(M)); end;
github
EnricoGiordano1992/LMI-Matlab-master
kypd.m
.m
LMI-Matlab-master/old/kypd/kypd.m
1,440
utf_8
a3f4c76e79be3a54e3ac79de6ebc7e9b
function [u,P,x,Z,soltime,errorflag]=kypd(matrix_info,options) if nargin<2 options = sdpsettings; end for i=1:matrix_info.N matrix_info.M0{i}=matrix_info.M0{i}-options.kypd.tol*... eye(size(matrix_info.M0{i})); end; [F,n_basis,ntot_basis,F0]=basis_matrices(matrix_info,... options.kypd.lyapunovsolver,options.kypd.lowrank); G=computeG(matrix_info,F,n_basis); G0=computeG0(matrix_info,F0,ones(matrix_info.N,1)); t=0; for i=1:matrix_info.N for j=1:n_basis(i) d(t+j,1)=ip(F{t+j},matrix_info.M0{i}); end; t=t+n_basis(i); end; [X,Z,soltime,errorflag]=dual(d,F,G,n_basis,ntot_basis,matrix_info,options,F0,G0); if ~errorflag [u,P,x]=get_Px(X,F,G,matrix_info,n_basis); else u = []; P = []; x = []; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function G=computeG(matrix_info,F,n_basis); N=matrix_info.N; K=matrix_info.K; G=[]; Gtemp=[]; t=0; for i=1:N for k=1:n_basis(i) for l=1:K Gtemp(k,l)=ip(F{t+k},matrix_info.M{i,l}); end; end; t=t+k; G=[G;Gtemp]; Gtemp=[]; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function G=computeG0(matrix_info,F0,n_basis); N=matrix_info.N; K=matrix_info.K; G=zeros(1,K); Gtemp=[]; for i=1:N for l=1:K Gtemp(1,l)=ip(F0{i,1},matrix_info.M{i,l}); end; G= G + Gtemp; Gtemp=[]; end;
github
M-MohammadPour/EEGClassification-master
gradient_boosting_predict.m
.m
EEGClassification-master/Ensemble Learning/Boosting/gradient_boosting_predict.m
1,914
utf_8
b9930d13df8f681614d35fdf971acae0
% Practicum, Task #3, 'Compositions of algorithms'. % % FUNCTION: % [prediction, err] = gradient_boosting_predict (model, X, y) % % DESCRIPTION: % This function use the composition of algorithms, trained with gradient % boosting method, for prediction. % % INPUT: % X --- matrix of objects, N x K double matrix, N --- number of objects, % K --- number of features. % y --- vector of answers, N x 1 double vector, N --- number of objects. y % can have only two values --- +1 and -1. % model --- trained composition. % % OUTPUT: % prediction --- vector of predicted answers, N x 1 double vector. % error --- the ratio of number of correct answers to number of objects on % each iteration, num_iterations x 1 vector % % AUTHOR: % Murat Apishev ([email protected]) % function [prediction, err] = gradient_boosting_predict (model, X, y) num_iterations = length(model.weights); no_objects = length(y); pred_prediction = zeros([no_objects num_iterations]); for alg = 1 : num_iterations value = zeros([no_objects 1]) + model.b_0; for i = 1 : alg if strcmp(model.algorithm, 'epsilon_svr') value = value + svmpredict(y, X, model.models{i}) * model.weights(i); elseif strcmp(model.algorithm, 'regression_tree') value = value + predict(model.models{i}, X) * model.weights(i); end end pred_prediction(:,alg) = value; end prediction = pred_prediction(:,end); err = zeros([num_iterations 1]); if strcmp(model.loss, 'absolute') temp = (bsxfun(@minus, pred_prediction, y)); err = abs(sum(temp)) / no_objects; elseif strcmp(model.loss, 'logistic') prediction = sign(prediction); temp = (bsxfun(@eq, sign(pred_prediction), y)); err = sum(temp == 0) / no_objects; end if size(err, 1) == 1 err = err'; end end
github
M-MohammadPour/EEGClassification-master
gradient_boosting_train.m
.m
EEGClassification-master/Ensemble Learning/Boosting/gradient_boosting_train.m
4,308
utf_8
dfa172848dafd66a5e29d53c7f5ee8b2
% Practicum, Task #3, 'Compositions of algorithms'. % % FUNCTION: % [model] = gradient_boosting_train (X, y, num_iterations, base_algorithm, loss, ... % param_name1, param_value1, param_name2, param_value2, ... % param_name3, param_value3, param_name3, param_value3) % % DESCRIPTION: % This function train the composition of algorithms using gradient boosting method. % % INPUT: % X --- matrix of objects, N x K double matrix, N --- number of objects, % K --- number of features. % y --- vector of answers, N x 1 double vector, N --- number of objects. y % can have only two values --- +1 and -1 in case of classification % and all possible double values in case of regression. % num_iterations --- the number ob algorithms in composition, scalar. % base_algorithm --- the base algorithm, string. Can have one of two % values: 'regression_tree' or 'epsilon_svr'. % loss --- the loss function, string. Can have one of two values: % 'logistic' (for classification) or 'absolute' (for regression). % param_name1 --- learning rate, scalar. % param_name2 --- parameter of base_algorithm. For 'regression_tree' it % is a 'min_parent' --- min number of objects in the leaf of % regression tree. For 'epsilon_svr' it is 'epsilon' parameter. % param_name3 --- parameter, that exists only for 'epsilon_svr', it is a % 'gamma' parameter. % param_name4 --- parameter, that exists only for 'epsilon_svr', it is a % 'C' parameter. % param_value1, param_value2, param_value3, param_value4 --- values of % corresponding parametres, scalar. % OUTPUT: % model --- trained composition, structure with three fields % - b_0 --- the base of composition, scalar % - weights --- double array of weights, 1 x num_iterations % - models --- cell array with trained models, 1 x num_iterations % - algorithm --- string, 'epsilon_svr' or 'regression_tree' % - loss --- loss parameter (from INPUT). % % AUTHOR: % Murat Apishev ([email protected]) % function [model] = gradient_boosting_train (X, y, num_iterations, base_algorithm, loss, ... param_name1, param_value1, param_name2, param_value2, ... param_name3, param_value3, param_name4, param_value4) no_objects = size(X, 1); if ~strcmp(base_algorithm, 'epsilon_svr') && ~strcmp(base_algorithm, 'regression_tree') error('Incorrect type of algorithm!') end if strcmp(loss, 'logistic') loss_function = @(a, b) log(1 + exp(-a .* b)); grad_a_loss_function = @(a, b) -b .* exp(-a .* b) ./ ((1 + exp(-a .* b))); elseif strcmp(loss, 'absolute') loss_function = @(a, b) abs(a - b); grad_a_loss_function = @(a, b) -sign(b - a); else error('Incorrect type of loss function!'); end func = @(c) sum(loss_function(y, c)); b_0 = fminsearch(func, 0); model.b_0 = b_0; model.algorithm = base_algorithm; model.models = cell([1 num_iterations]); model.loss = loss; % the length of model is number of finite weights, not number of models! model.weights = repmat(+Inf, 1, num_iterations); z = zeros([no_objects 1]) + b_0; delta = zeros([no_objects 1]); for iter = 1 : num_iterations for obj = 1 : no_objects delta(obj) = -grad_a_loss_function(z(obj), y(obj)); end if strcmp(base_algorithm, 'epsilon_svr') model.models{iter} = svmtrain(delta, X, [' -s 3 -g ', num2str(param_value3), ... ' -c ', num2str(param_value4), ' -e ', num2str(param_value2)]); value = svmpredict(y, X, model.models{iter}); elseif strcmp(base_algorithm, 'regression_tree') model.models{iter} = RegressionTree.fit(X, delta, 'minparent', param_value2); value = predict(model.models{iter}, X); end func = @(g) sum(loss_function(z + g * value, y)); model.weights(iter) = fminsearch(func, 0); z = z + model.weights(iter) * value * param_value1; end end
github
M-MohammadPour/EEGClassification-master
bagging_train.m
.m
EEGClassification-master/Ensemble Learning/Bagging/bagging_train.m
2,754
utf_8
7c6dc91c1019d451c23e46502a63ca75
% Practicum, Task #3, 'Compositions of algorithms'. % % FUNCTION: % [model] = bagging_train (X, y, num_iterations, base_algorithm, ... % param_name1, param_value1, param_name2, param_value2) % % DESCRIPTION: % This function train the composition of algorithms using bagging method. % % INPUT: % X --- matrix of objects, N x K double matrix, N --- number of objects, % K --- number of features. % y --- vector of answers, N x 1 double vector, N --- number of objects. y % can have only two values --- +1 and -1. % num_iterations --- the number ob algorithms in composition, scalar. % base_algorithm --- the base algorithm, string. Can have one of two % values: 'classification_tree' or 'svm'. % param_name1 --- parameter of base_algorithm. For 'classification_tree' it % is a 'min_parent' --- min number of objects in the leaf of % classification tree. For 'svm' it is 'gamma' parameter. % param_name2 --- parameter, that exists only for 'svm', it is a 'C' % parameter. % param_value1, param_value2 --- values of corresponding parametres, % scalar. % OUTPUT: % model --- trained composition, structure with two fields % - models --- cell array with trained models % - algorithm --- string, 'svm' or 'classification_tree' % % AUTHOR: % Murat Apishev ([email protected]) % function [model] = bagging_train (X, y, num_iterations, base_algorithm, ... param_name1, param_value1, param_name2, param_value2) no_objects = size(X, 1); models = cell([1 num_iterations]); if strcmp(base_algorithm, 'svm') if ~strcmp(param_name1, 'gamma') temp = param_value1; param_value1 = param_value2; param_value2 = temp; end for iter = 1 : num_iterations indices = randi(no_objects, 1, no_objects); indices = unique(indices); models{iter} = svmtrain(y(indices), X(indices,:), ... [' -g ', num2str(param_value1), ' -c ', num2str(param_value2)]); end elseif strcmp(base_algorithm, 'classification_tree') for iter = 1 : num_iterations indices = randi(no_objects, 1, no_objects); indices = unique(indices); if (param_value1 > length(indices)) value = length(indices); else value = param_value1; end models{iter} = ClassificationTree.fit(X(indices,:), y(indices), 'MinParent', value); end else error('Incorrect type of algorithm!'); end model.models = models; model.algorithm = base_algorithm; end
github
M-MohammadPour/EEGClassification-master
bagging_predict.m
.m
EEGClassification-master/Ensemble Learning/Bagging/bagging_predict.m
1,913
utf_8
3e79de35c9fe4d67be86750ef18c1aeb
% Practicum, Task #3, 'Compositions of algorithms'. % % FUNCTION: % [prediction, err] = bagging_predict (model, X, y) % % DESCRIPTION: % This function use the composition of algorithms, trained with bagging % method, for prediction. % % INPUT: % X --- matrix of objects, N x K double matrix, N --- number of objects, % K --- number of features. % y --- vector of answers, N x 1 double vector, N --- number of objects. y % can have only two values --- +1 and -1. % model --- trained composition. % % OUTPUT: % prediction --- vector of predicted answers, N x 1 double vector. % error --- the ratio of number of correct answers to number of objects on % each iteration, num_iterations x 1 vector % % AUTHOR: % Murat Apishev ([email protected]) % function [prediction, err] = bagging_predict (model, X, y) num_iterations = length(model.models); no_objects = length(y); pred_prediction = zeros([no_objects num_iterations]); err = zeros([num_iterations 1]); if strcmp(model.algorithm, 'svm') for alg = 1 : num_iterations pred_prediction(:,alg) = svmpredict(y, X, model.models{alg}); func = @(i) find_max(pred_prediction(i,:)); prediction = arrayfun(func, 1 : no_objects)'; err(alg) = sum(prediction ~= y) / no_objects; end elseif strcmp(model.algorithm, 'classification_tree') for alg = 1 : num_iterations pred_prediction(:,alg) = predict(model.models{alg}, X); func = @(i) find_max(pred_prediction(i,:)); prediction = arrayfun(func, 1 : no_objects)'; err(alg) = sum(prediction ~= y) / no_objects; end else error('Incorrect type of algorithm!'); end end function [result] = find_max (vector) if sum(vector == -1) > sum(vector == +1) result = -1; else result = +1; end end
github
M-MohammadPour/EEGClassification-master
predStump.m
.m
EEGClassification-master/Ensemble Learning/AdaBoost/predStump.m
240
utf_8
33aef76407d65dfa83f957307334842c
% Make prediction based on a decision stump function label = predStump(X, stump) N = size(X, 1); x = X(:, stump.dim); idx = logical(x >= stump.threshold); % N x 1 label = zeros(N, 1); label(idx) = stump.more; label(~idx) = stump.less; end
github
M-MohammadPour/EEGClassification-master
buildOneDStump.m
.m
EEGClassification-master/Ensemble Learning/AdaBoost/buildOneDStump.m
959
utf_8
1b1d03178b568de1fb78b4f663a935fb
function stump = buildOneDStump(x, y, d, w) [err_1, t_1] = searchThreshold(x, y, w, '>'); % > t_1 -> +1 [err_2, t_2] = searchThreshold(x, y, w, '<'); % < t_2 -> +1 stump = initStump(d); if err_1 <= err_2 stump.threshold = t_1; stump.error = err_1; stump.less = -1; stump.more = 1; else stump.threshold = t_2; stump.error = err_2; stump.less = 1; stump.more = -1; end end function [error, thresh] = searchThreshold(x, y, w, sign) N = length(x); err_n = zeros(N, 1); y_predict = zeros(N, 1); for n=1:N switch sign case '>' idx = logical(x >= x(n)); y_predict(idx) = 1; y_predict(~idx) = -1; case '<' idx = logical(x < x(n)); y_predict(idx) = 1; y_predict(~idx) = -1; end err_label = logical(y ~= y_predict); %sum(err_label) err_n(n) = sum(err_label.*w)/sum(w); end [v, idx] = min(err_n); error = v; thresh = x(idx); end
github
claudia-lat/MAPest-master
save2pdf.m
.m
MAPest-master/external/save2pdf.m
2,184
utf_8
28056d1c6584d93469211eb0e05bdd6a
%SAVE2PDF Saves a figure as a properly cropped pdf % % save2pdf(pdfFileName,handle,dpi) % % - pdfFileName: Destination to write the pdf to. % - handle: (optional) Handle of the figure to write to a pdf. If % omitted, the current figure is used. Note that handles % are typically the figure number. % - dpi: (optional) Integer value of dots per inch (DPI). Sets % resolution of output pdf. Note that 150 dpi is the Matlab % default and this function's default, but 600 dpi is typical for % production-quality. % % Saves figure as a pdf with margins cropped to match the figure size. % (c) Gabe Hoffmann, [email protected] % Written 8/30/2007 % Revised 9/22/2007 % Revised 1/14/2007 function save2pdf(pdfFileName,handle,dpi) % Verify correct number of arguments narginchk(0,3); % If no handle is provided, use the current figure as default if nargin<1 [fileName,pathName] = uiputfile('*.pdf','Save to PDF file:'); if fileName == 0; return; end pdfFileName = [pathName,fileName]; end if nargin<2 handle = gcf; end if nargin<3 dpi = 150; end % Backup previous settings prePaperType = get(handle,'PaperType'); prePaperUnits = get(handle,'PaperUnits'); preUnits = get(handle,'Units'); prePaperPosition = get(handle,'PaperPosition'); prePaperSize = get(handle,'PaperSize'); % Make changing paper type possible set(handle,'PaperType','<custom>'); % Set units to all be the same set(handle,'PaperUnits','inches'); set(handle,'Units','inches'); % Set the page size and position to match the figure's dimensions paperPosition = get(handle,'PaperPosition'); position = get(handle,'Position'); set(handle,'PaperPosition',[0,0,position(3:4)]); set(handle,'PaperSize',position(3:4)); % Save the pdf (this is the same method used by "saveas") print(handle,'-dpdf',pdfFileName,sprintf('-r%d',dpi)) % Restore the previous settings set(handle,'PaperType',prePaperType); set(handle,'PaperUnits',prePaperUnits); set(handle,'Units',preUnits); set(handle,'PaperPosition',prePaperPosition); set(handle,'PaperSize',prePaperSize);
github
claudia-lat/MAPest-master
tightfig.m
.m
MAPest-master/external/tightfig.m
5,419
utf_8
1f6f3f5059ca866348b7edf7add7db02
% Copyright (c) 2011, Richard Crozier % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. function hfig = tightfig(hfig) % tightfig: Alters a figure so that it has the minimum size necessary to % enclose all axes in the figure without excess space around them. % % Note that tightfig will expand the figure to completely encompass all % axes if necessary. If any 3D axes are present which have been zoomed, % tightfig will produce an error, as these cannot easily be dealt with. % % hfig - handle to figure, if not supplied, the current figure will be used % instead. if nargin == 0 hfig = gcf; end % There can be an issue with tightfig when the user has been modifying % the contnts manually, the code below is an attempt to resolve this, % but it has not yet been satisfactorily fixed % origwindowstyle = get(hfig, 'WindowStyle'); set(hfig, 'WindowStyle', 'normal'); % 1 point is 0.3528 mm for future use % get all the axes handles note this will also fetch legends and % colorbars as well hax = findall(hfig, 'type', 'axes'); % get the original axes units, so we can change and reset these again % later origaxunits = get(hax, 'Units'); % change the axes units to cm set(hax, 'Units', 'centimeters'); % get various position parameters of the axes if numel(hax) > 1 % fsize = cell2mat(get(hax, 'FontSize')); ti = cell2mat(get(hax,'TightInset')); pos = cell2mat(get(hax, 'Position')); else % fsize = get(hax, 'FontSize'); ti = get(hax,'TightInset'); pos = get(hax, 'Position'); end % ensure very tiny border so outer box always appears ti(ti < 0.1) = 0.15; % we will check if any 3d axes are zoomed, to do this we will check if % they are not being viewed in any of the 2d directions views2d = [0,90; 0,0; 90,0]; for i = 1:numel(hax) set(hax(i), 'LooseInset', ti(i,:)); % set(hax(i), 'LooseInset', [0,0,0,0]); % get the current viewing angle of the axes [az,el] = view(hax(i)); % determine if the axes are zoomed iszoomed = strcmp(get(hax(i), 'CameraViewAngleMode'), 'manual'); % test if we are viewing in 2d mode or a 3d view is2d = all(bsxfun(@eq, [az,el], views2d), 2); if iszoomed && ~any(is2d) error('TIGHTFIG:haszoomed3d', 'Cannot make figures containing zoomed 3D axes tight.') end end % we will move all the axes down and to the left by the amount % necessary to just show the bottom and leftmost axes and labels etc. moveleft = min(pos(:,1) - ti(:,1)); movedown = min(pos(:,2) - ti(:,2)); % we will also alter the height and width of the figure to just % encompass the topmost and rightmost axes and lables figwidth = max(pos(:,1) + pos(:,3) + ti(:,3) - moveleft); figheight = max(pos(:,2) + pos(:,4) + ti(:,4) - movedown); % move all the axes for i = 1:numel(hax) set(hax(i), 'Position', [pos(i,1:2) - [moveleft,movedown], pos(i,3:4)]); end origfigunits = get(hfig, 'Units'); set(hfig, 'Units', 'centimeters'); % change the size of the figure figpos = get(hfig, 'Position'); set(hfig, 'Position', [figpos(1), figpos(2), figwidth, figheight]); % change the size of the paper set(hfig, 'PaperUnits','centimeters'); set(hfig, 'PaperSize', [figwidth, figheight]); set(hfig, 'PaperPositionMode', 'manual'); set(hfig, 'PaperPosition',[0 0 figwidth figheight]); % reset to original units for axes and figure if ~iscell(origaxunits) origaxunits = {origaxunits}; end for i = 1:numel(hax) set(hax(i), 'Units', origaxunits{i}); end set(hfig, 'Units', origfigunits); % set(hfig, 'WindowStyle', origwindowstyle); end
github
claudia-lat/MAPest-master
xml_write.m
.m
MAPest-master/external/xml_io_tools/xml_write.m
18,772
utf_8
4f952d9ca0351040dbffeb946e877bb0
function DOMnode = xml_write(filename, tree, RootName, Pref) %XML_WRITE Writes Matlab data structures to XML file % % DESCRIPTION % xml_write( filename, tree) Converts Matlab data structure 'tree' containing % cells, structs, numbers and strings to Document Object Model (DOM) node % tree, then saves it to XML file 'filename' using Matlab's xmlwrite % function. Optionally one can also use alternative version of xmlwrite % function which directly calls JAVA functions for XML writing without % MATLAB middleware. This function is provided as a patch to existing % bugs in xmlwrite (in R2006b). % % xml_write(filename, tree, RootName, Pref) allows you to specify % additional preferences about file format % % DOMnode = xml_write([], tree) same as above except that DOM node is % not saved to the file but returned. % % INPUT % filename file name % tree Matlab structure tree to store in xml file. % RootName String with XML tag name used for root (top level) node % Optionally it can be a string cell array storing: Name of % root node, document "Processing Instructions" data and % document "comment" string % Pref Other preferences: % Pref.ItemName - default 'item' - name of a special tag used to % itemize cell or struct arrays % Pref.XmlEngine - let you choose the XML engine. Currently default is % 'Xerces', which is using directly the apache xerces java file. % Other option is 'Matlab' which uses MATLAB's xmlwrite and its % XMLUtils java file. Both options create identical results except in % case of CDATA sections where xmlwrite fails. % Pref.CellItem - default 'true' - allow cell arrays to use 'item' % notation. See below. % Pref.RootOnly - default true - output variable 'tree' corresponds to % xml file root element, otherwise it correspond to the whole file. % Pref.StructItem - default 'true' - allow arrays of structs to use % 'item' notation. For example "Pref.StructItem = true" gives: % <a> % <b> % <item> ... <\item> % <item> ... <\item> % <\b> % <\a> % while "Pref.StructItem = false" gives: % <a> % <b> ... <\b> % <b> ... <\b> % <\a> % % % Several special xml node types can be created if special tags are used % for field names of 'tree' nodes: % - node.CONTENT - stores data section of the node if other fields % (usually ATTRIBUTE are present. Usually data section is stored % directly in 'node'. % - node.ATTRIBUTE.name - stores node's attribute called 'name'. % - node.COMMENT - create comment child node from the string. For global % comments see "RootName" input variable. % - node.PROCESSING_INSTRUCTIONS - create "processing instruction" child % node from the string. For global "processing instructions" see % "RootName" input variable. % - node.CDATA_SECTION - stores node's CDATA section (string). Only works % if Pref.XmlEngine='Xerces'. For more info, see comments of F_xmlwrite. % - other special node types like: document fragment nodes, document type % nodes, entity nodes and notation nodes are not being handled by % 'xml_write' at the moment. % % OUTPUT % DOMnode Document Object Model (DOM) node tree in the format % required as input to xmlwrite. (optional) % % EXAMPLES: % MyTree=[]; % MyTree.MyNumber = 13; % MyTree.MyString = 'Hello World'; % xml_write('test.xml', MyTree); % type('test.xml') % %See also xml_tutorial.m % % See also % xml_read, xmlread, xmlwrite % % Written by Jarek Tuszynski, SAIC, jaroslaw.w.tuszynski_at_saic.com %% Check Matlab Version v = ver('MATLAB'); v = str2double(regexp(v.Version, '\d.\d','match','once')); if (v<7) error('Your MATLAB version is too old. You need version 7.0 or newer.'); end %% default preferences DPref.TableName = {'tr','td'}; % name of a special tags used to itemize 2D cell arrays DPref.ItemName = 'item'; % name of a special tag used to itemize 1D cell arrays DPref.StructItem = true; % allow arrays of structs to use 'item' notation DPref.CellItem = true; % allow cell arrays to use 'item' notation DPref.StructTable= 'Html'; DPref.CellTable = 'Html'; DPref.XmlEngine = 'Matlab'; % use matlab provided XMLUtils %DPref.XmlEngine = 'Xerces'; % use Xerces xml generator directly DPref.PreserveSpace = false; % Preserve or delete spaces at the beggining and the end of stings? RootOnly = true; % Input is root node only GlobalProcInst = []; GlobalComment = []; GlobalDocType = []; %% read user preferences if (nargin>3) if (isfield(Pref, 'TableName' )), DPref.TableName = Pref.TableName; end if (isfield(Pref, 'ItemName' )), DPref.ItemName = Pref.ItemName; end if (isfield(Pref, 'StructItem')), DPref.StructItem = Pref.StructItem; end if (isfield(Pref, 'CellItem' )), DPref.CellItem = Pref.CellItem; end if (isfield(Pref, 'CellTable')), DPref.CellTable = Pref.CellTable; end if (isfield(Pref, 'StructTable')), DPref.StructTable= Pref.StructTable; end if (isfield(Pref, 'XmlEngine' )), DPref.XmlEngine = Pref.XmlEngine; end if (isfield(Pref, 'RootOnly' )), RootOnly = Pref.RootOnly; end if (isfield(Pref, 'PreserveSpace')), DPref.PreserveSpace = Pref.PreserveSpace; end end if (nargin<3 || isempty(RootName)), RootName=inputname(2); end if (isempty(RootName)), RootName='ROOT'; end if (iscell(RootName)) % RootName also stores global text node data rName = RootName; RootName = char(rName{1}); if (length(rName)>1), GlobalProcInst = char(rName{2}); end if (length(rName)>2), GlobalComment = char(rName{3}); end if (length(rName)>3), GlobalDocType = char(rName{4}); end end if(~RootOnly && isstruct(tree)) % if struct than deal with each field separatly fields = fieldnames(tree); for i=1:length(fields) field = fields{i}; x = tree(1).(field); if (strcmp(field, 'COMMENT')) GlobalComment = x; elseif (strcmp(field, 'PROCESSING_INSTRUCTION')) GlobalProcInst = x; elseif (strcmp(field, 'DOCUMENT_TYPE')) GlobalDocType = x; else RootName = field; t = x; end end tree = t; end %% Initialize jave object that will store xml data structure RootName = varName2str(RootName); if (~isempty(GlobalDocType)) % n = strfind(GlobalDocType, ' '); % if (~isempty(n)) % dtype = com.mathworks.xml.XMLUtils.createDocumentType(GlobalDocType); % end % DOMnode = com.mathworks.xml.XMLUtils.createDocument(RootName, dtype); warning('xml_io_tools:write:docType', ... 'DOCUMENT_TYPE node was encountered which is not supported yet. Ignoring.'); end DOMnode = com.mathworks.xml.XMLUtils.createDocument(RootName); %% Use recursive function to convert matlab data structure to XML root = DOMnode.getDocumentElement; struct2DOMnode(DOMnode, root, tree, DPref.ItemName, DPref); %% Remove the only child of the root node root = DOMnode.getDocumentElement; Child = root.getChildNodes; % create array of children nodes nChild = Child.getLength; % number of children if (nChild==1) node = root.removeChild(root.getFirstChild); while(node.hasChildNodes) root.appendChild(node.removeChild(node.getFirstChild)); end while(node.hasAttributes) % copy all attributes root.setAttributeNode(node.removeAttributeNode(node.getAttributes.item(0))); end end %% Save exotic Global nodes if (~isempty(GlobalComment)) DOMnode.insertBefore(DOMnode.createComment(GlobalComment), DOMnode.getFirstChild()); end if (~isempty(GlobalProcInst)) n = strfind(GlobalProcInst, ' '); if (~isempty(n)) proc = DOMnode.createProcessingInstruction(GlobalProcInst(1:(n(1)-1)),... GlobalProcInst((n(1)+1):end)); DOMnode.insertBefore(proc, DOMnode.getFirstChild()); end end % Not supported yet as the code below does not work % if (~isempty(GlobalDocType)) % n = strfind(GlobalDocType, ' '); % if (~isempty(n)) % dtype = DOMnode.createDocumentType(GlobalDocType); % DOMnode.insertBefore(dtype, DOMnode.getFirstChild()); % end % end %% save java DOM tree to XML file if (~isempty(filename)) if (strcmpi(DPref.XmlEngine, 'Xerces')) xmlwrite_xerces(filename, DOMnode); else xmlwrite(filename, DOMnode); end end %% ======================================================================= % === struct2DOMnode Function =========================================== % ======================================================================= function [] = struct2DOMnode(xml, parent, s, TagName, Pref) % struct2DOMnode is a recursive function that converts matlab's structs to % DOM nodes. % INPUTS: % xml - jave object that will store xml data structure % parent - parent DOM Element % s - Matlab data structure to save % TagName - name to be used in xml tags describing 's' % Pref - preferenced % OUTPUT: % parent - modified 'parent' % perform some conversions if (ischar(s) && min(size(s))>1) % if 2D array of characters s=cellstr(s); % than convert to cell array end % if (strcmp(TagName, 'CONTENT')) % while (iscell(s) && length(s)==1), s = s{1}; end % unwrap cell arrays of length 1 % end TagName = varName2str(TagName); %% == node is a 2D cell array == % convert to some other format prior to further processing nDim = nnz(size(s)>1); % is it a scalar, vector, 2D array, 3D cube, etc? if (iscell(s) && nDim==2 && strcmpi(Pref.CellTable, 'Matlab')) s = var2str(s, Pref.PreserveSpace); end if (nDim==2 && (iscell (s) && strcmpi(Pref.CellTable, 'Vector')) || ... (isstruct(s) && strcmpi(Pref.StructTable, 'Vector'))) s = s(:); end if (nDim>2), s = s(:); end % can not handle this case well nItem = numel(s); nDim = nnz(size(s)>1); % is it a scalar, vector, 2D array, 3D cube, etc? %% == node is a cell == if (iscell(s)) % if this is a cell or cell array if ((nDim==2 && strcmpi(Pref.CellTable,'Html')) || (nDim< 2 && Pref.CellItem)) % if 2D array of cells than can use HTML-like notation or if 1D array % than can use item notation if (strcmp(TagName, 'CONTENT')) % CONTENT nodes already have <TagName> ... </TagName> array2DOMnode(xml, parent, s, Pref.ItemName, Pref ); % recursive call else node = xml.createElement(TagName); % <TagName> ... </TagName> array2DOMnode(xml, node, s, Pref.ItemName, Pref ); % recursive call parent.appendChild(node); end else % use <TagName>...<\TagName> <TagName>...<\TagName> notation array2DOMnode(xml, parent, s, TagName, Pref ); % recursive call end %% == node is a struct == elseif (isstruct(s)) % if struct than deal with each field separatly if ((nDim==2 && strcmpi(Pref.StructTable,'Html')) || (nItem>1 && Pref.StructItem)) % if 2D array of structs than can use HTML-like notation or % if 1D array of structs than can use 'items' notation node = xml.createElement(TagName); array2DOMnode(xml, node, s, Pref.ItemName, Pref ); % recursive call parent.appendChild(node); elseif (nItem>1) % use <TagName>...<\TagName> <TagName>...<\TagName> notation array2DOMnode(xml, parent, s, TagName, Pref ); % recursive call else % otherwise save each struct separatelly fields = fieldnames(s); node = xml.createElement(TagName); for i=1:length(fields) % add field by field to the node field = fields{i}; x = s.(field); switch field case {'COMMENT', 'CDATA_SECTION', 'PROCESSING_INSTRUCTION'} if iscellstr(x) % cell array of strings -> add them one by one array2DOMnode(xml, node, x(:), field, Pref ); % recursive call will modify 'node' elseif ischar(x) % single string -> add it struct2DOMnode(xml, node, x, field, Pref ); % recursive call will modify 'node' else % not a string - Ignore warning('xml_io_tools:write:badSpecialNode', ... ['Struct field named ',field,' encountered which was not a string. Ignoring.']); end case 'ATTRIBUTE' % set attributes of the node if (isempty(x)), continue; end if (isstruct(x)) attName = fieldnames(x); % get names of all the attributes for k=1:length(attName) % attach them to the node att = xml.createAttribute(varName2str(attName(k))); att.setValue(var2str(x.(attName{k}),Pref.PreserveSpace)); node.setAttributeNode(att); end else warning('xml_io_tools:write:badAttribute', ... 'Struct field named ATTRIBUTE encountered which was not a struct. Ignoring.'); end otherwise % set children of the node struct2DOMnode(xml, node, x, field, Pref ); % recursive call will modify 'node' end end % end for i=1:nFields parent.appendChild(node); end %% == node is a leaf node == else % if not a struct and not a cell than it is a leaf node switch TagName % different processing depending on desired type of the node case 'COMMENT' % create comment node com = xml.createComment(s); parent.appendChild(com); case 'CDATA_SECTION' % create CDATA Section cdt = xml.createCDATASection(s); parent.appendChild(cdt); case 'PROCESSING_INSTRUCTION' % set attributes of the node OK = false; if (ischar(s)) n = strfind(s, ' '); if (~isempty(n)) proc = xml.createProcessingInstruction(s(1:(n(1)-1)),s((n(1)+1):end)); parent.insertBefore(proc, parent.getFirstChild()); OK = true; end end if (~OK) warning('xml_io_tools:write:badProcInst', ... ['Struct field named PROCESSING_INSTRUCTION need to be',... ' a string, for example: xml-stylesheet type="text/css" ', ... 'href="myStyleSheet.css". Ignoring.']); end case 'CONTENT' % this is text part of already existing node txt = xml.createTextNode(var2str(s, Pref.PreserveSpace)); % convert to text parent.appendChild(txt); otherwise % I guess it is a regular text leaf node txt = xml.createTextNode(var2str(s, Pref.PreserveSpace)); node = xml.createElement(TagName); node.appendChild(txt); parent.appendChild(node); end end % of struct2DOMnode function %% ======================================================================= % === array2DOMnode Function ============================================ % ======================================================================= function [] = array2DOMnode(xml, parent, s, TagName, Pref) % Deal with 1D and 2D arrays of cell or struct. Will modify 'parent'. nDim = nnz(size(s)>1); % is it a scalar, vector, 2D array, 3D cube, etc? switch nDim case 2 % 2D array for r=1:size(s,1) subnode = xml.createElement(Pref.TableName{1}); for c=1:size(s,2) v = s(r,c); if iscell(v), v = v{1}; end struct2DOMnode(xml, subnode, v, Pref.TableName{2}, Pref ); % recursive call end parent.appendChild(subnode); end case 1 %1D array for iItem=1:numel(s) v = s(iItem); if iscell(v), v = v{1}; end struct2DOMnode(xml, parent, v, TagName, Pref ); % recursive call end case 0 % scalar -> this case should never be called if ~isempty(s) if iscell(s), s = s{1}; end struct2DOMnode(xml, parent, s, TagName, Pref ); end end %% ======================================================================= % === var2str Function ================================================== % ======================================================================= function str = var2str(object, PreserveSpace) % convert matlab variables to a string switch (1) case isempty(object) str = ''; case (isnumeric(object) || islogical(object)) if ndims(object)>2, object=object(:); end % can't handle arrays with dimention > 2 str=mat2str(object); % convert matrix to a string % mark logical scalars with [] (logical arrays already have them) so the xml_read % recognizes them as MATLAB objects instead of strings. Same with sparse % matrices if ((islogical(object) && isscalar(object)) || issparse(object)), str = ['[' str ']']; end if (isinteger(object)), str = ['[', class(object), '(', str ')]']; end case iscell(object) if ndims(object)>2, object=object(:); end % can't handle cell arrays with dimention > 2 [nr nc] = size(object); obj2 = object; for i=1:length(object(:)) str = var2str(object{i}, PreserveSpace); if (ischar(object{i})), object{i} = ['''' object{i} '''']; else object{i}=str; end obj2{i} = [object{i} ',']; end for r = 1:nr, obj2{r,nc} = [object{r,nc} ';']; end obj2 = obj2.'; str = ['{' obj2{:} '}']; case isstruct(object) str=''; warning('xml_io_tools:write:var2str', ... 'Struct was encountered where string was expected. Ignoring.'); case isa(object, 'function_handle') str = ['[@' char(object) ']']; case ischar(object) str = object; otherwise str = char(object); end %% string clean-up str=str(:); str=str.'; % make sure this is a row vector of char's if (~isempty(str)) str(str<32|str==127)=' '; % convert no-printable characters to spaces if (~PreserveSpace) str = strtrim(str); % remove spaces from begining and the end str = regexprep(str,'\s+',' '); % remove multiple spaces end end %% ======================================================================= % === var2Namestr Function ============================================== % ======================================================================= function str = varName2str(str) % convert matlab variable names to a sting str = char(str); p = strfind(str,'0x'); if (~isempty(p)) for i=1:length(p) before = str( p(i)+(0:3) ); % string to replace after = char(hex2dec(before(3:4))); % string to replace with str = regexprep(str,before,after, 'once', 'ignorecase'); p=p-3; % since 4 characters were replaced with one - compensate end end str = regexprep(str,'_COLON_',':', 'once', 'ignorecase'); str = regexprep(str,'_DASH_' ,'-', 'once', 'ignorecase');
github
claudia-lat/MAPest-master
xml_read.m
.m
MAPest-master/external/xml_io_tools/xml_read.m
24,408
utf_8
4931c3d512db336d744ec43f7fa0b368
function [tree, RootName, DOMnode] = xml_read(xmlfile, Pref) %XML_READ reads xml files and converts them into Matlab's struct tree. % % DESCRIPTION % tree = xml_read(xmlfile) reads 'xmlfile' into data structure 'tree' % % tree = xml_read(xmlfile, Pref) reads 'xmlfile' into data structure 'tree' % according to your preferences % % [tree, RootName, DOMnode] = xml_read(xmlfile) get additional information % about XML file % % INPUT: % xmlfile URL or filename of xml file to read % Pref Preferences: % Pref.ItemName - default 'item' - name of a special tag used to itemize % cell arrays % Pref.ReadAttr - default true - allow reading attributes % Pref.ReadSpec - default true - allow reading special nodes % Pref.Str2Num - default 'smart' - convert strings that look like numbers % to numbers. Options: "always", "never", and "smart" % Pref.KeepNS - default true - keep or strip namespace info % Pref.NoCells - default true - force output to have no cell arrays % Pref.Debug - default false - show mode specific error messages % Pref.NumLevels- default infinity - how many recursive levels are % allowed. Can be used to speed up the function by prunning the tree. % Pref.RootOnly - default true - output variable 'tree' corresponds to % xml file root element, otherwise it correspond to the whole file. % Pref.CellItem - default 'true' - leave 'item' nodes in cell notation. % OUTPUT: % tree tree of structs and/or cell arrays corresponding to xml file % RootName XML tag name used for root (top level) node. % Optionally it can be a string cell array storing: Name of % root node, document "Processing Instructions" data and % document "comment" string % DOMnode output of xmlread % % DETAILS: % Function xml_read first calls MATLAB's xmlread function and than % converts its output ('Document Object Model' tree of Java objects) % to tree of MATLAB struct's. The output is in format of nested structs % and cells. In the output data structure field names are based on % XML tags, except in cases when tags produce illegal variable names. % % Several special xml node types result in special tags for fields of % 'tree' nodes: % - node.CONTENT - stores data section of the node if other fields are % present. Usually data section is stored directly in 'node'. % - node.ATTRIBUTE.name - stores node's attribute called 'name'. % - node.COMMENT - stores node's comment section (string). For global % comments see "RootName" output variable. % - node.CDATA_SECTION - stores node's CDATA section (string). % - node.PROCESSING_INSTRUCTIONS - stores "processing instruction" child % node. For global "processing instructions" see "RootName" output variable. % - other special node types like: document fragment nodes, document type % nodes, entity nodes, notation nodes and processing instruction nodes % will be treated like regular nodes % % EXAMPLES: % MyTree=[]; % MyTree.MyNumber = 13; % MyTree.MyString = 'Hello World'; % xml_write('test.xml', MyTree); % [tree treeName] = xml_read ('test.xml'); % disp(treeName) % gen_object_display() % % See also xml_examples.m % % See also: % xml_write, xmlread, xmlwrite % % Written by Jarek Tuszynski, SAIC, jaroslaw.w.tuszynski_at_saic.com % References: % - Function inspired by Example 3 found in xmlread function. % - Output data structures inspired by xml_toolbox structures. %% default preferences DPref.TableName = {'tr','td'}; % name of a special tags used to itemize 2D cell arrays DPref.ItemName = 'item'; % name of a special tag used to itemize 1D cell arrays DPref.CellItem = false; % leave 'item' nodes in cell notation DPref.ReadAttr = true; % allow reading attributes DPref.ReadSpec = true; % allow reading special nodes: comments, CData, etc. DPref.KeepNS = true; % Keep or strip namespace info DPref.Str2Num = 'smart';% convert strings that look like numbers to numbers DPref.NoCells = true; % force output to have no cell arrays DPref.NumLevels = 1e10; % number of recurence levels DPref.PreserveSpace = false; % Preserve or delete spaces at the beggining and the end of stings? RootOnly = true; % return root node with no top level special nodes Debug = false; % show specific errors (true) or general (false)? tree = []; RootName = []; %% Check Matlab Version v = ver('MATLAB'); version = str2double(regexp(v.Version, '\d.\d','match','once')); if (version<7.1) error('Your MATLAB version is too old. You need version 7.1 or newer.'); end %% read user preferences if (nargin>1) if (isfield(Pref, 'TableName')), DPref.TableName = Pref.TableName; end if (isfield(Pref, 'ItemName' )), DPref.ItemName = Pref.ItemName; end if (isfield(Pref, 'CellItem' )), DPref.CellItem = Pref.CellItem; end if (isfield(Pref, 'Str2Num' )), DPref.Str2Num = Pref.Str2Num ; end if (isfield(Pref, 'NoCells' )), DPref.NoCells = Pref.NoCells ; end if (isfield(Pref, 'NumLevels')), DPref.NumLevels = Pref.NumLevels; end if (isfield(Pref, 'ReadAttr' )), DPref.ReadAttr = Pref.ReadAttr; end if (isfield(Pref, 'ReadSpec' )), DPref.ReadSpec = Pref.ReadSpec; end if (isfield(Pref, 'KeepNS' )), DPref.KeepNS = Pref.KeepNS; end if (isfield(Pref, 'RootOnly' )), RootOnly = Pref.RootOnly; end if (isfield(Pref, 'Debug' )), Debug = Pref.Debug ; end if (isfield(Pref, 'PreserveSpace')), DPref.PreserveSpace = Pref.PreserveSpace; end end if ischar(DPref.Str2Num), % convert from character description to numbers DPref.Str2Num = find(strcmpi(DPref.Str2Num, {'never', 'smart', 'always'}))-1; if isempty(DPref.Str2Num), DPref.Str2Num=1; end % 1-smart by default end %% read xml file using Matlab function if isa(xmlfile, 'org.apache.xerces.dom.DeferredDocumentImpl'); % if xmlfile is a DOMnode than skip the call to xmlread try try DOMnode = xmlfile; catch ME error('Invalid DOM node: \n%s.', getReport(ME)); end catch %#ok<CTCH> catch for mablab versions prior to 7.5 error('Invalid DOM node. \n'); end else % we assume xmlfile is a filename if (Debug) % in debuging mode crashes are allowed DOMnode = xmlread(xmlfile); else % in normal mode crashes are not allowed try try DOMnode = xmlread(xmlfile); catch ME error('Failed to read XML file %s: \n%s',xmlfile, getReport(ME)); end catch %#ok<CTCH> catch for mablab versions prior to 7.5 error('Failed to read XML file %s\n',xmlfile); end end end Node = DOMnode.getFirstChild; %% Find the Root node. Also store data from Global Comment and Processing % Instruction nodes, if any. GlobalTextNodes = cell(1,3); GlobalProcInst = []; GlobalComment = []; GlobalDocType = []; while (~isempty(Node)) if (Node.getNodeType==Node.ELEMENT_NODE) RootNode=Node; elseif (Node.getNodeType==Node.PROCESSING_INSTRUCTION_NODE) data = strtrim(char(Node.getData)); target = strtrim(char(Node.getTarget)); GlobalProcInst = [target, ' ', data]; GlobalTextNodes{2} = GlobalProcInst; elseif (Node.getNodeType==Node.COMMENT_NODE) GlobalComment = strtrim(char(Node.getData)); GlobalTextNodes{3} = GlobalComment; % elseif (Node.getNodeType==Node.DOCUMENT_TYPE_NODE) % GlobalTextNodes{4} = GlobalDocType; end Node = Node.getNextSibling; end %% parse xml file through calls to recursive DOMnode2struct function if (Debug) % in debuging mode crashes are allowed [tree RootName] = DOMnode2struct(RootNode, DPref, 1); else % in normal mode crashes are not allowed try try [tree RootName] = DOMnode2struct(RootNode, DPref, 1); catch ME error('Unable to parse XML file %s: \n %s.',xmlfile, getReport(ME)); end catch %#ok<CTCH> catch for mablab versions prior to 7.5 error('Unable to parse XML file %s.',xmlfile); end end %% If there were any Global Text nodes than return them if (~RootOnly) if (~isempty(GlobalProcInst) && DPref.ReadSpec) t.PROCESSING_INSTRUCTION = GlobalProcInst; end if (~isempty(GlobalComment) && DPref.ReadSpec) t.COMMENT = GlobalComment; end if (~isempty(GlobalDocType) && DPref.ReadSpec) t.DOCUMENT_TYPE = GlobalDocType; end t.(RootName) = tree; tree=t; end if (~isempty(GlobalTextNodes)) GlobalTextNodes{1} = RootName; RootName = GlobalTextNodes; end %% ======================================================================= % === DOMnode2struct Function =========================================== % ======================================================================= function [s TagName LeafNode] = DOMnode2struct(node, Pref, level) %% === Step 1: Get node name and check if it is a leaf node ============== [TagName LeafNode] = NodeName(node, Pref.KeepNS); s = []; % initialize output structure %% === Step 2: Process Leaf Nodes (nodes with no children) =============== if (LeafNode) if (LeafNode>1 && ~Pref.ReadSpec), LeafNode=-1; end % tags only so ignore special nodes if (LeafNode>0) % supported leaf node types try try % use try-catch: errors here are often due to VERY large fields (like images) that overflow java memory s = char(node.getData); if (isempty(s)), s = ' '; end % make it a string % for some reason current xmlread 'creates' a lot of empty text % fields with first chatacter=10 - those will be deleted. if (~Pref.PreserveSpace || s(1)==10) if (isspace(s(1)) || isspace(s(end))), s = strtrim(s); end % trim speces is any end if (LeafNode==1), s=str2var(s, Pref.Str2Num, 0); end % convert to number(s) if needed catch ME % catch for mablab versions 7.5 and higher warning('xml_io_tools:read:LeafRead', ... 'This leaf node could not be read and was ignored. '); getReport(ME) end catch %#ok<CTCH> catch for mablab versions prior to 7.5 warning('xml_io_tools:read:LeafRead', ... 'This leaf node could not be read and was ignored. '); end end if (LeafNode==3) % ProcessingInstructions need special treatment target = strtrim(char(node.getTarget)); s = [target, ' ', s]; end return % We are done the rest of the function deals with nodes with children end if (level>Pref.NumLevels+1), return; end % if Pref.NumLevels is reached than we are done %% === Step 3: Process nodes with children =============================== if (node.hasChildNodes) % children present Child = node.getChildNodes; % create array of children nodes nChild = Child.getLength; % number of children % --- pass 1: how many children with each name ----------------------- f = []; for iChild = 1:nChild % read in each child [cname cLeaf] = NodeName(Child.item(iChild-1), Pref.KeepNS); if (cLeaf<0), continue; end % unsupported leaf node types if (~isfield(f,cname)), f.(cname)=0; % initialize first time I see this name end f.(cname) = f.(cname)+1; % add to the counter end % end for iChild % text_nodes become CONTENT & for some reason current xmlread 'creates' a % lot of empty text fields so f.CONTENT value should not be trusted if (isfield(f,'CONTENT') && f.CONTENT>2), f.CONTENT=2; end % --- pass 2: store all the children as struct of cell arrays ---------- for iChild = 1:nChild % read in each child [c cname cLeaf] = DOMnode2struct(Child.item(iChild-1), Pref, level+1); if (cLeaf && isempty(c)) % if empty leaf node than skip continue; % usually empty text node or one of unhandled node types elseif (nChild==1 && cLeaf==1) s=c; % shortcut for a common case else % if normal node if (level>Pref.NumLevels), continue; end n = f.(cname); % how many of them in the array so far? if (~isfield(s,cname)) % encountered this name for the first time if (n==1) % if there will be only one of them ... s.(cname) = c; % than save it in format it came in else % if there will be many of them ... s.(cname) = cell(1,n); s.(cname){1} = c; % than save as cell array end f.(cname) = 1; % initialize the counter else % already have seen this name s.(cname){n+1} = c; % add to the array f.(cname) = n+1; % add to the array counter end end end % for iChild end % end if (node.hasChildNodes) %% === Step 4: Post-process struct's created for nodes with children ===== if (isstruct(s)) fields = fieldnames(s); nField = length(fields); % Detect structure that looks like Html table and store it in cell Matrix if (nField==1 && strcmpi(fields{1},Pref.TableName{1})) tr = s.(Pref.TableName{1}); fields2 = fieldnames(tr{1}); if (length(fields2)==1 && strcmpi(fields2{1},Pref.TableName{2})) % This seems to be a special structure such that for % Pref.TableName = {'tr','td'} 's' corresponds to % <tr> <td>M11</td> <td>M12</td> </tr> % <tr> <td>M12</td> <td>M22</td> </tr> % Recognize it as encoding for 2D struct nr = length(tr); for r = 1:nr row = tr{r}.(Pref.TableName{2}); Table(r,1:length(row)) = row; %#ok<AGROW> end s = Table; end end % --- Post-processing: convert 'struct of cell-arrays' to 'array of structs' % Example: let say s has 3 fields s.a, s.b & s.c and each field is an % cell-array with more than one cell-element and all 3 have the same length. % Then change it to array of structs, each with single cell. % This way element s.a{1} will be now accessed through s(1).a vec = zeros(size(fields)); for i=1:nField, vec(i) = f.(fields{i}); end if (numel(vec)>1 && vec(1)>1 && var(vec)==0) % convert from struct of s = cell2struct(struct2cell(s), fields, 1); % arrays to array of struct end % if anyone knows better way to do above conversion please let me know. end %% === Step 5: Process nodes with attributes ============================= if (node.hasAttributes && Pref.ReadAttr) if (~isstruct(s)), % make into struct if is not already ss.CONTENT=s; s=ss; end Attr = node.getAttributes; % list of all attributes for iAttr = 1:Attr.getLength % for each attribute name = char(Attr.item(iAttr-1).getName); % attribute name name = str2varName(name, Pref.KeepNS); % fix name if needed value = char(Attr.item(iAttr-1).getValue); % attribute value value = str2var(value, Pref.Str2Num, 1); % convert to number if possible s.ATTRIBUTE.(name) = value; % save again end % end iAttr loop end % done with attributes if (~isstruct(s)), return; end %The rest of the code deals with struct's %% === Post-processing: fields of "s" % convert 'cell-array of structs' to 'arrays of structs' fields = fieldnames(s); % get field names nField = length(fields); for iItem=1:length(s) % for each struct in the array - usually one for iField=1:length(fields) field = fields{iField}; % get field name % if this is an 'item' field and user want to leave those as cells % than skip this one if (strcmpi(field, Pref.ItemName) && Pref.CellItem), continue; end x = s(iItem).(field); if (iscell(x) && all(cellfun(@isstruct,x(:))) && numel(x)>1) % it's cell-array of structs % numel(x)>1 check is to keep 1 cell-arrays created when Pref.CellItem=1 try % this operation fails sometimes % example: change s(1).a{1}.b='jack'; s(1).a{2}.b='john'; to % more convinient s(1).a(1).b='jack'; s(1).a(2).b='john'; s(iItem).(field) = [x{:}]'; %#ok<AGROW> % converted to arrays of structs catch %#ok<CTCH> % above operation will fail if s(1).a{1} and s(1).a{2} have % different fields. If desired, function forceCell2Struct can force % them to the same field structure by adding empty fields. if (Pref.NoCells) s(iItem).(field) = forceCell2Struct(x); %#ok<AGROW> end end % end catch end end end %% === Step 4: Post-process struct's created for nodes with children ===== % --- Post-processing: remove special 'item' tags --------------------- % many xml writes (including xml_write) use a special keyword to mark % arrays of nodes (see xml_write for examples). The code below converts % s.item to s.CONTENT ItemContent = false; if (isfield(s,Pref.ItemName)) s.CONTENT = s.(Pref.ItemName); s = rmfield(s,Pref.ItemName); ItemContent = Pref.CellItem; % if CellItem than keep s.CONTENT as cells end % --- Post-processing: clean up CONTENT tags --------------------- % if s.CONTENT is a cell-array with empty elements at the end than trim % the length of this cell-array. Also if s.CONTENT is the only field than % remove .CONTENT part and store it as s. if (isfield(s,'CONTENT')) if (iscell(s.CONTENT) && isvector(s.CONTENT)) x = s.CONTENT; for i=numel(x):-1:1, if ~isempty(x{i}), break; end; end if (i==1 && ~ItemContent) s.CONTENT = x{1}; % delete cell structure else s.CONTENT = x(1:i); % delete empty cells end end if (nField==1) if (ItemContent) ss = s.CONTENT; % only child: remove a level but ensure output is a cell-array s=[]; s{1}=ss; else s = s.CONTENT; % only child: remove a level end end end %% ======================================================================= % === forceCell2Struct Function ========================================= % ======================================================================= function s = forceCell2Struct(x) % Convert cell-array of structs, where not all of structs have the same % fields, to a single array of structs %% Convert 1D cell array of structs to 2D cell array, where each row % represents item in original array and each column corresponds to a unique % field name. Array "AllFields" store fieldnames for each column AllFields = fieldnames(x{1}); % get field names of the first struct CellMat = cell(length(x), length(AllFields)); for iItem=1:length(x) fields = fieldnames(x{iItem}); % get field names of the next struct for iField=1:length(fields) % inspect all fieldnames and find those field = fields{iField}; % get field name col = find(strcmp(field,AllFields),1); if isempty(col) % no column for such fieldname yet AllFields = [AllFields; field]; %#ok<AGROW> col = length(AllFields); % create a new column for it end CellMat{iItem,col} = x{iItem}.(field); % store rearanged data end end %% Convert 2D cell array to array of structs s = cell2struct(CellMat, AllFields, 2); %% ======================================================================= % === str2var Function ================================================== % ======================================================================= function val=str2var(str, option, attribute) % Can this string 'str' be converted to a number? if so than do it. val = str; len = numel(str); if (len==0 || option==0), return; end % Str2Num="never" of empty string -> do not do enything if (len>10000 && option==1), return; end % Str2Num="smart" and string is very long -> probably base64 encoded binary digits = '(Inf)|(NaN)|(pi)|[\t\n\d\+\-\*\.ei EI\[\]\;\,]'; s = regexprep(str, digits, ''); % remove all the digits and other allowed characters if (~all(~isempty(s))) % if nothing left than this is probably a number if (~isempty(strfind(str, ' '))), option=2; end %if str has white-spaces assume by default that it is not a date string if (~isempty(strfind(str, '['))), option=2; end % same with brackets str(strfind(str, '\n')) = ';';% parse data tables into 2D arrays, if any if (option==1) % the 'smart' option try % try to convert to a date, like 2007-12-05 datenum(str); % if successful than leave it as string catch %#ok<CTCH> % if this is not a date than ... option=2; % ... try converting to a number end end if (option==2) if (attribute) num = str2double(str); % try converting to a single number using sscanf function if isnan(num), return; end % So, it wasn't really a number after all else num = str2num(str); %#ok<ST2NM> % try converting to a single number or array using eval function end if(isnumeric(num) && numel(num)>0), val=num; end % if convertion to a single was succesful than save end elseif ((str(1)=='[' && str(end)==']') || (str(1)=='{' && str(end)=='}')) % this looks like a (cell) array encoded as a string try val = eval(str); catch %#ok<CTCH> val = str; end elseif (~attribute) % see if it is a boolean array with no [] brackets str1 = lower(str); str1 = strrep(str1, 'false', '0'); str1 = strrep(str1, 'true' , '1'); s = regexprep(str1, '[01 \;\,]', ''); % remove all 0/1, spaces, commas and semicolons if (~all(~isempty(s))) % if nothing left than this is probably a boolean array num = str2num(str1); %#ok<ST2NM> if(isnumeric(num) && numel(num)>0), val = (num>0); end % if convertion was succesful than save as logical end end %% ======================================================================= % === str2varName Function ============================================== % ======================================================================= function str = str2varName(str, KeepNS) % convert a sting to a valid matlab variable name if(KeepNS) str = regexprep(str,':','_COLON_', 'once', 'ignorecase'); else k = strfind(str,':'); if (~isempty(k)) str = str(k+1:end); end end str = regexprep(str,'-','_DASH_' ,'once', 'ignorecase'); if (~isvarname(str)) && (~iskeyword(str)) str = genvarname(str); end %% ======================================================================= % === NodeName Function ================================================= % ======================================================================= function [Name LeafNode] = NodeName(node, KeepNS) % get node name and make sure it is a valid variable name in Matlab. % also get node type: % LeafNode=0 - normal element node, % LeafNode=1 - text node % LeafNode=2 - supported non-text leaf node, % LeafNode=3 - supported processing instructions leaf node, % LeafNode=-1 - unsupported non-text leaf node switch (node.getNodeType) case node.ELEMENT_NODE Name = char(node.getNodeName);% capture name of the node Name = str2varName(Name, KeepNS); % if Name is not a good variable name - fix it LeafNode = 0; case node.TEXT_NODE Name = 'CONTENT'; LeafNode = 1; case node.COMMENT_NODE Name = 'COMMENT'; LeafNode = 2; case node.CDATA_SECTION_NODE Name = 'CDATA_SECTION'; LeafNode = 2; case node.DOCUMENT_TYPE_NODE Name = 'DOCUMENT_TYPE'; LeafNode = 2; case node.PROCESSING_INSTRUCTION_NODE Name = 'PROCESSING_INSTRUCTION'; LeafNode = 3; otherwise NodeType = {'ELEMENT','ATTRIBUTE','TEXT','CDATA_SECTION', ... 'ENTITY_REFERENCE', 'ENTITY', 'PROCESSING_INSTRUCTION', 'COMMENT',... 'DOCUMENT', 'DOCUMENT_TYPE', 'DOCUMENT_FRAGMENT', 'NOTATION'}; Name = char(node.getNodeName);% capture name of the node warning('xml_io_tools:read:unkNode', ... 'Unknown node type encountered: %s_NODE (%s)', NodeType{node.getNodeType}, Name); LeafNode = -1; end
github
claudia-lat/MAPest-master
valueFromName.m
.m
MAPest-master/src/valueFromName.m
178
utf_8
1a145d50bb61efd5b8dec292d6ed8dbf
function [indx] = valueFromName(VectorOfString, stringName) for i = 1: length(VectorOfString) if strcmp(VectorOfString(i,:), stringName) indx = i; break; end end
github
claudia-lat/MAPest-master
MAPcomputation.m
.m
MAPest-master/src/MAPcomputation.m
7,376
utf_8
6d2ded5dfa4746710cb6be336151d93f
function [mu_dgiveny, Sigma_dgiveny] = MAPcomputation(berdy, state, y, priors, varargin) % MAPCOMPUTATION solves the inverse dynamics problem with a % maximum-a-posteriori estimation by using the Newton-Euler algorithm and % redundant sensor measurements as originally described in the paper % [Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, % Gyros and Force Sensing,Latella, C.; Kuppuswamy, N.; Romano, F.; % Traversaro, S.; Nori, F.,Sensors 2016, 16, 727]. % % Considering a generic multibody model composed by n moving rigid bodies % (i.e. links) connected by joints and being in the Gaussian framework, % the output 'mu_dgiveny' coincides with the vector 'd' structured as % follows: % d = [d_1, d_2, ..., d_n], i = 1,...,n % % where: % d_i = [a_i, fB_i, f_i, tau_i, fx_i, ddq_i] % % and a_i is the link-i spatial acceleration, fB_i is the net spatial % force on the link-i, f_i is spatial wrench transmitted to link-i from % its parent, tau_i is torque on joint-i, fx_i is the external force on % link-i and ddq_i is acceleration of joint-i. % The relationship between d and the sensor measurements y is given by % % Y(q, dq) d + b_Y = y (1) % % where the matrix Y(q, dq), is represented as a sparse matrix. Moreover, % the variables in d should satisfy the Newton-Euler equations % % D(q,dq) d + b_D(q, dq) = 0 (2) % % again represented as a sparse matrix. % By stacking together the MEASUREMENTS EQUATIONS (1) and CONSTRAINTS % EQUATIONS (2)the system that MAP solves is obtained. % ------------------------------------------------------------------------- % NOTE: % The function provides an option to remove a specified sensor from the % analysis. By default, MAP is % computed by using all the sensors (i.e. the full vector of y % measurements). If the sensor to remove is specified in the option , MAP % loads the full y and then remove automatically values related to that % sensor and the related block variance from the Sigmay. % ------------------------------------------------------------------------- options = struct( ... 'SENSORS_TO_REMOVE', []... ); % read the acceptable names optionNames = fieldnames(options); % count arguments nArgs = length(varargin); if round(nArgs/2)~=nArgs/2 error('createXsensLikeURDFmodel needs propertyName/propertyValue pairs') end for pair = reshape(varargin,2,[]) % pair is {propName;propValue} inpName = upper(pair{1}); % make case insensitive if any(strcmp(inpName,optionNames)) % overwrite options. If you want you can test for the right class here % Also, if you find out that there is an option you keep getting wrong, % you can use "if strcmp(inpName,'problemOption'),testMore,end"-statements options.(inpName) = pair{2}; else error('%s is not a recognized parameter name',inpName) end end %% rangeOfRemovedSensors = []; for i = 1 : size(options.SENSORS_TO_REMOVE) ithSensor = options.SENSORS_TO_REMOVE(i); [index, len] = rangeOfSensorMeasurement( berdy, ithSensor.type, ithSensor.id); rangeOfRemovedSensors = [rangeOfRemovedSensors, index : index + len - 1]; end y(rangeOfRemovedSensors,:) = []; priors.Sigmay(rangeOfRemovedSensors, :) = []; % TO BE CHECKED! priors.Sigmay(:, rangeOfRemovedSensors) = []; % TO BE CHECKED! %% % Set gravity gravity = [0 0 -9.81]; grav = iDynTree.Vector3(); grav.fromMatlab(gravity); % Set matrices berdyMatrices = struct; berdyMatrices.D = iDynTree.MatrixDynSize(); berdyMatrices.b_D = iDynTree.VectorDynSize(); berdyMatrices.Y = iDynTree.MatrixDynSize(); berdyMatrices.b_Y = iDynTree.VectorDynSize(); berdy.resizeAndZeroBerdyMatrices(berdyMatrices.D,... berdyMatrices.b_D,... berdyMatrices.Y,... berdyMatrices.b_Y); % Set priors mud = priors.mud; Sigmad_inv = sparse(inv(priors.Sigmad)); SigmaD_inv = sparse(inv(priors.SigmaD)); Sigmay_inv = sparse(inv(priors.Sigmay)); % Allocate outputs samples = size(y, 2); nrOfDynVariables = berdy.getNrOfDynamicVariables(); mu_dgiveny = zeros(nrOfDynVariables, samples); % Sigma_dgiveny = sparse(nrOfDynVariables, nrOfDynVariables, samples); Sigma_dgiveny = cell(samples,1); % MAP Computation q = iDynTree.JointPosDoubleArray(berdy.model()); dq = iDynTree.JointDOFsDoubleArray(berdy.model()); for i = 1 : samples q.fromMatlab(state.q(:,i)); dq.fromMatlab(state.dq(:,i)); berdy.updateKinematicsFromTraversalFixedBase(q,dq,grav); berdy.getBerdyMatrices(berdyMatrices.D,... berdyMatrices.b_D,... berdyMatrices.Y,... berdyMatrices.b_Y); D = sparse(berdyMatrices.D.toMatlab()); b_D = berdyMatrices.b_D.toMatlab(); Y_nonsparse = berdyMatrices.Y.toMatlab(); Y_nonsparse(rangeOfRemovedSensors, :) = []; Y = sparse(Y_nonsparse); b_Y = berdyMatrices.b_Y.toMatlab(); b_Y(rangeOfRemovedSensors) = []; % Check on the [Y; D] matrix rank if (i==1) bigMatrix = full([Y; D]); rowsOfbigMatrix = size(bigMatrix,1); columnsOfbigMatrix = size(bigMatrix,2); % svd % [U_bigMatrix,S_bigMatrix,V_bigMatrix] = svd(bigMatrix); svd_bigMatrix = svd(bigMatrix); rank_bigMatrix = nnz(svd_bigMatrix); if (rowsOfbigMatrix > columnsOfbigMatrix) if rank_bigMatrix == nrOfDynVariables disp('[Info] [Y; D] is a full rank matrix with rows > columns'); else disp('[Info] [Y; D] is a matrix with rows > columns'); end else error('[Info] [Y; D] is a matrix with rows < columns! Check the matrix!!'); end end SigmaBarD_inv = D' * SigmaD_inv * D + Sigmad_inv; % the permutation matrix for SigmaBarD_inv is computed only for the first % sample, beacuse this matrix does not change in the experiment if (i==1) [~,~,PBarD]= chol(SigmaBarD_inv); end rhsBarD = Sigmad_inv * mud - D' * (SigmaD_inv * b_D); muBarD = CholSolve(SigmaBarD_inv , rhsBarD, PBarD); Sigma_dgiveny_inv = SigmaBarD_inv + Y' * Sigmay_inv * Y; % the permutation matrix for Sigma_dgiveny_inv is computed only for the first % sample, beacuse this matrix does not change in the experiment if (i==1) [~,~,P]= chol(Sigma_dgiveny_inv); end rhs = Y' * (Sigmay_inv * (y(:,i) - b_Y)) + SigmaBarD_inv * muBarD; if nargout > 1 % Sigma_dgiveny requested as output Sigma_dgiveny{i} = inv(Sigma_dgiveny_inv); mu_dgiveny(:,i) = Sigma_dgiveny{i} * rhs; else % Sigma_dgiveny does not requested as output mu_dgiveny(:,i) = CholSolve(Sigma_dgiveny_inv, rhs, P); end end end function [x] = CholSolve(A, b, P) if ~issymmetric(A) A = (A+A')/2; end C = P'*A*P; % P is given as input [R] = chol(C); % R is such that R'*R = P'*C*P w_forward = P\b; z_forward = R'\w_forward; y_forward = R\z_forward; x = P'\y_forward; end
github
claudia-lat/MAPest-master
MAPcomputation_floating.m
.m
MAPest-master/src/MAPcomputation_floating.m
7,460
utf_8
f999fc5c938e82433f426e49b548f996
function [mu_dgiveny, Sigma_dgiveny] = MAPcomputation_floating(berdy, traversal, state, y, priors, baseAngVel, varargin) % MAPCOMPUTATION_FLOATING solves the inverse dynamics problem with a % maximum-a-posteriori estimation by using the Newton-Euler algorithm and % redundant sensor measurements as originally described in the paper % [Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, % Gyros and Force Sensing,Latella, C.; Kuppuswamy, N.; Romano, F.; % Traversaro, S.; Nori, F.,Sensors 2016, 16, 727] by considering a % floating-base formalism. % % Considering a generic multibody model composed by n moving rigid bodies % (i.e. links) connected by joints and being in the Gaussian framework, % the output 'mu_dgiveny' coincides with the vector 'd' structured as % follows: % d = [d_1, d_2, ..., d_n], i = 1,...,n % % where: % d_i = [a_i, fB_i, f_i, tau_i, fx_i, ddq_i] % % and a_i is the link-i spatial acceleration, fB_i is the net spatial % force on the link-i, f_i is spatial wrench transmitted to link-i from % its parent, tau_i is torque on joint-i, fx_i is the external force on % link-i and ddq_i is acceleration of joint-i. % The relationship between d and the sensor measurements y is given by % % Y(q, dq) d + b_Y = y (1) % % where the matrix Y(q, dq), is represented as a sparse matrix. Moreover, % the variables in d should satisfy the Newton-Euler equations % % D(q,dq) d + b_D(q, dq) = 0 (2) % % again represented as a sparse matrix. % By stacking together the MEASUREMENTS EQUATIONS (1) and CONSTRAINTS % EQUATIONS (2)the system that MAP solves is obtained. % ------------------------------------------------------------------------- % NOTE: % The function provides an option to remove a specified sensor from the % analysis. By default, MAP is % computed by using all the sensors (i.e. the full vector of y % measurements). If the sensor to remove is specified in the option , MAP % loads the full y and then remove automatically values related to that % sensor and the related block variance from the Sigmay. % ------------------------------------------------------------------------- options = struct( ... 'SENSORS_TO_REMOVE', []... ); % read the acceptable names optionNames = fieldnames(options); % count arguments nArgs = length(varargin); if round(nArgs/2)~=nArgs/2 error('createXsensLikeURDFmodel needs propertyName/propertyValue pairs') end for pair = reshape(varargin,2,[]) % pair is {propName;propValue} inpName = upper(pair{1}); % make case insensitive if any(strcmp(inpName,optionNames)) % overwrite options. If you want you can test for the right class here % Also, if you find out that there is an option you keep getting wrong, % you can use "if strcmp(inpName,'problemOption'),testMore,end"-statements options.(inpName) = pair{2}; else error('%s is not a recognized parameter name',inpName) end end %% rangeOfRemovedSensors = []; for i = 1 : size(options.SENSORS_TO_REMOVE) ithSensor = options.SENSORS_TO_REMOVE(i); [index, len] = rangeOfSensorMeasurement( berdy, ithSensor.type, ithSensor.id); rangeOfRemovedSensors = [rangeOfRemovedSensors, index : index + len - 1]; end y(rangeOfRemovedSensors,:) = []; priors.Sigmay(rangeOfRemovedSensors, :) = []; priors.Sigmay(:, rangeOfRemovedSensors) = []; %% % % Set angularVector % angVect = [0 0 0]; % omega = iDynTree.Vector3(); % omega.fromMatlab(angVect); % Set matrices berdyMatrices = struct; berdyMatrices.D = iDynTree.MatrixDynSize(); berdyMatrices.b_D = iDynTree.VectorDynSize(); berdyMatrices.Y = iDynTree.MatrixDynSize(); berdyMatrices.b_Y = iDynTree.VectorDynSize(); berdy.resizeAndZeroBerdyMatrices(berdyMatrices.D,... berdyMatrices.b_D,... berdyMatrices.Y,... berdyMatrices.b_Y); % Set priors mud = priors.mud; Sigmad_inv = sparse(inv(priors.Sigmad)); SigmaD_inv = sparse(inv(priors.SigmaD)); Sigmay_inv = sparse(inv(priors.Sigmay)); % Allocate outputs samples = size(y, 2); nrOfDynVariables = berdy.getNrOfDynamicVariables(); mu_dgiveny = zeros(nrOfDynVariables, samples); % Sigma_dgiveny = sparse(nrOfDynVariables, nrOfDynVariables, samples); Sigma_dgiveny = cell(samples,1); % MAP Computation q = iDynTree.JointPosDoubleArray(berdy.model()); dq = iDynTree.JointDOFsDoubleArray(berdy.model()); currentBase = berdy.model().getLinkName(traversal.getBaseLink().getIndex()); baseIndex = berdy.model().getFrameIndex(currentBase); base_angVel = iDynTree.Vector3(); for i = 1 : samples q.fromMatlab(state.q(:,i)); dq.fromMatlab(state.dq(:,i)); base_angVel.fromMatlab(baseAngVel(:,i)); berdy.updateKinematicsFromFloatingBase(q,dq,baseIndex,base_angVel); berdy.getBerdyMatrices(berdyMatrices.D,... berdyMatrices.b_D,... berdyMatrices.Y,... berdyMatrices.b_Y); D = sparse(berdyMatrices.D.toMatlab()); b_D = berdyMatrices.b_D.toMatlab(); Y_nonsparse = berdyMatrices.Y.toMatlab(); Y_nonsparse(rangeOfRemovedSensors, :) = []; Y = sparse(Y_nonsparse); b_Y = berdyMatrices.b_Y.toMatlab(); b_Y(rangeOfRemovedSensors) = []; % Check on the [Y; D] matrix rank if (i==1) bigMatrix = full([Y; D]); rowsOfbigMatrix = size(bigMatrix,1); columnsOfbigMatrix = size(bigMatrix,2); % svd % [U_bigMatrix,S_bigMatrix,V_bigMatrix] = svd(bigMatrix); svd_bigMatrix = svd(bigMatrix); rank_bigMatrix = nnz(svd_bigMatrix); if (rowsOfbigMatrix > columnsOfbigMatrix) if rank_bigMatrix == nrOfDynVariables disp('[Info] [Y; D] is a full rank matrix with rows > columns'); else disp('[Info] [Y; D] is a matrix with rows > columns'); end else error('[Info] [Y; D] is a matrix with rows < columns! Check the matrix!!'); end end SigmaBarD_inv = D' * SigmaD_inv * D + Sigmad_inv; % the permutation matrix for SigmaBarD_inv is computed only for the first % sample, beacuse this matrix does not change in the experiment if (i==1) [~,~,PBarD]= chol(SigmaBarD_inv); end rhsBarD = Sigmad_inv * mud - D' * (SigmaD_inv * b_D); muBarD = CholSolve(SigmaBarD_inv , rhsBarD, PBarD); Sigma_dgiveny_inv = SigmaBarD_inv + Y' * Sigmay_inv * Y; % the permutation matrix for Sigma_dgiveny_inv is computed only for the first % sample, beacuse this matrix does not change in the experiment if (i==1) [~,~,P]= chol(Sigma_dgiveny_inv); end rhs = Y' * (Sigmay_inv * (y(:,i) - b_Y)) + SigmaBarD_inv * muBarD; if nargout > 1 % Sigma_dgiveny requested as output Sigma_dgiveny{i} = inv(Sigma_dgiveny_inv); mu_dgiveny(:,i) = Sigma_dgiveny{i} * rhs; else % Sigma_dgiveny does not requested as output mu_dgiveny(:,i) = CholSolve(Sigma_dgiveny_inv, rhs, P); end end end function [x] = CholSolve(A, b, P) if ~issymmetric(A) A = (A+A')/2; end C = P'*A*P; % P is given as input [R] = chol(C); % R is such that R'*R = P'*C*P w_forward = P\b; z_forward = R'\w_forward; y_forward = R\z_forward; x = P'\y_forward; end
github
claudia-lat/MAPest-master
matchOrderToTraversal.m
.m
MAPest-master/src/matchOrderToTraversal.m
647
utf_8
404c4d927481166123de53813847d5b3
function [ orderedData ] = matchOrderToTraversal( originalOrder, originalData, finalOrder ) %UNTITLED5 Summary of this function goes here % Detailed explanation goes here orderedData = zeros(size(originalData)); for i = 1 : length(finalOrder) index = indexOfString (originalOrder, finalOrder{i}); orderedData(i,:) = originalData(index,:); end end function [ index ] = indexOfString ( cellArray, stringName) %UNTITLED5 Summary of this function goes here % Detailed explanation goes here index = -1; for i = 1 : length(cellArray) if strcmp (cellArray{i}, stringName) index = i; break; end end end
github
claudia-lat/MAPest-master
computeSuitSensorPosition.m
.m
MAPest-master/Experiments/23links_human/src/computeSuitSensorPosition.m
1,530
utf_8
2ac3f049adfb5cd57aa88a128a0911a9
function [suit] = computeSuitSensorPosition(suit, len) % COMPUTESUITSENSORPOSITION computes the position of the sensors in the % suit wrt the link frame. It returns its value in a new field of the same % suit stucture. Notation: G = global, S = sensor; L = link. % NOTE: Check/modify manually len value. You can decide to insert a fixed % number of frames useful to capture all the movements performed during % your own experiment. for sIdx = 1: suit.properties.nrOfSensors sensor = suit.sensors{sIdx}; [link, ~] = linksFromName(suit.links, sensor.attachedLink); A = zeros(3*len,3); b = zeros(3*len,1); for i = 1 : len S1 = skewMatrix(link.meas.angularAcceleration(:,i)); S2 = skewMatrix(link.meas.angularVelocity(:,i)); G_R_L_mat = quat2Mat(link.meas.orientation(:,i)); A(3*i-2:3*i,:) = (S1 + S2*S2) * G_R_L_mat; G_acc_S = sensor.meas.sensorFreeAcceleration(:,i); G_acc_L = link.meas.acceleration(:,i); b(3*i-2:3*i) = G_acc_S - G_acc_L; G_R_S_mat = quat2Mat(sensor.meas.sensorOrientation(:,i)); S_R_L = G_R_S_mat' * G_R_L_mat; L_RPY_S(i,:) = mat2RPY(S_R_L'); %RPY in rad end % matrix system B_pos_SL = A\b; sensor.origin = B_pos_SL; suit.sensors{sIdx}.position = sensor.origin; suit.sensors{sIdx}.RPY = mean(L_RPY_S); end end function [ S ] = skewMatrix(x) %SKEWMATRIX computes the skew matrix given a vector x 3x1 S = [ 0 -x(3) x(2); x(3) 0 -x(1); -x(2) x(1) 0 ]; end
github
gkaguirrelab/WheresWaldo_EyeTracking-master
preprocessEyetracking_general.m
.m
WheresWaldo_EyeTracking-master/preprocessEyetracking_general.m
4,810
utf_8
2b71cc5847e1848c4fbf6c63bcb7d900
function preprocessEyetracking_general(subFolder,saveME) %%function for preprocessing LiveTrack eye tracking data. %expects data to be in the form output from HID2struct %subFolder is a string of the directory name containing t he data to be %analyzed %saveME is either 1 or 0, depending if you want to save outputs, including %calibrated position data, and a logical indicating i blinks occur % Get Calibration Matrices calibrationMatrices = dir([subFolder '/*cal*.mat']); calNames = cat(2,{calibrationMatrices(:).name}); % Get targets targets = dir([subFolder '/*dat*.mat']); targetNames = cat(2,{targets(:).name}); % Rip calibration times from name calTimes = nan(1,length(calNames)); for i = 1:length(calNames) calTimes(i) = str2num(calNames{i}(find('_' == calNames{i},1,'last')+1:find('.' == calNames{i},1,'last')-1)); end rawData = dir([subFolder '/*REPORT*.mat']); for dataName = cat(2,{rawData(:).name}) runNumber = find(ismember(cat(2,{rawData(:).name}),dataName)); % load data dat = load([subFolder '/' dataName{1}]); dat = dat.Report; rawX = cat(1,dat.PupilCameraX_Ch01); rawY = cat(1,dat.PupilCameraY_Ch01); glintX = cat(1,dat.Glint1CameraX_Ch01); glintY = cat(1,dat.Glint1CameraY_Ch01); isBlink = ~cat(1,dat.PupilTracked_Ch01); % Linearly interpolate blinks [linX linY] = linterpBlinkGaps(rawX,rawY,isBlink); [linGlintX linGlintY] = linterpBlinkGaps(glintX,glintY,isBlink); % Load the appropriate calibration matrix datTime = str2num(dataName{1}(find('_' == dataName{1},1,'last')+1:find('.' == dataName{1},1,'last')-1)); calMatInd = find(calTimes<datTime & calTimes==max(calTimes(calTimes<datTime))); calMat = load([subFolder '/' calNames{calMatInd}]); Rpc = calMat.Rpc; calMat = calMat.CalMat; tar = load([subFolder '/' targetNames{calMatInd}]); % Transform data with calibration matrix tmp = calMat*[([linX-linGlintX]./Rpc)'; ([linY-linGlintY]./Rpc)'; ... (1-sqrt(([linX-linGlintX]./Rpc).^2 + ([linY-linGlintY]./Rpc).^2))'; ones(1,length(linX))]; calibratedXYZ = [bsxfun(@rdivide,tmp(1:3,:),tmp(4,:))]'; [movementAngle b] = cart2pol(diff(calibratedXYZ(:,1)),diff(calibratedXYZ(:,2))); movementSpeed = (sqrt((diff(calibratedXYZ(:,1)).^2+diff(calibratedXYZ(:,2)).^2))); %% Make Plots figure(1) %set(gcf,'position',[50 50 900 600]) subplot(1,3,1) plot(rawX,rawY) axis equal title('Raw Data') axis square subplot(1,3,2) plot(linX,linY) axis equal title('Linearly Interpolated Data') axis square subplot(1,3,3) plot(calibratedXYZ(:,1),calibratedXYZ(:,2)) axis equal title('Calibrated Data') axis square %% Write Output if saveME subName = subFolder(find(subFolder=='/',1,'last')+1:end); save(['CalibratedEyetrackingData/' subName '_CalibratedData_Run_' num2str(runNumber)],'calibratedXYZ','isBlink'); if ~isdir(['Plots/' subName]) mkdir(['Plots/' subName]); end outP = ['Plots/' subName '/Eyetracking_Descriptives_Run_' num2str(runNumber)]; drawnow; print(outP,'-dtiff','-r300') close all drawnow; end end end %% Linearly interpolate tracking gaps caused by blinking function [linX linY] = linterpBlinkGaps(x,y,isB) linX = x; linY = y; oldIsB = isB; while any(isB) % Get first unlinterped blink startBlink = find(isB,1,'first'); if startBlink == length(isB) finishBlink = 0; else finishBlink = find(~isB(startBlink+1:end),1,'first')-1; if isempty(finishBlink) finishBlink = length(isB(startBlink+1:end)); end end linInds = startBlink:startBlink+finishBlink; % Interpolation values (edge cases if blinks are at the beginning % or end dealt with by just setting all to the neighboring value) %% Dumb edge case stuff try xIn1 = x(linInds(1)-1); catch xIn1 = nan; end try xIn2 = x(linInds(end)+1); catch xIn2 = nan; end try yIn1 = y(linInds(1)-1); catch yIn1 = nan; end try yIn2 = y(linInds(end)+1); catch yIn2 = nan; end if isnan(xIn1) xIn1 = xIn2; end if isnan(xIn2) xIn2 = xIn1; end if isnan(yIn1) yIn1 = yIn2; end if isnan(yIn2) yIn2 = yIn1; end %% Interpolate linX(linInds) = linterp([linInds(1)-1 linInds(end)+1],[xIn1 xIn2],linInds); linY(linInds) = linterp([linInds(1)-1 linInds(end)+1],[yIn1 yIn2],linInds); % Remove the interpolated blink isB(linInds) = false; end end
github
gkaguirrelab/WheresWaldo_EyeTracking-master
preprocessEyetracking.m
.m
WheresWaldo_EyeTracking-master/preprocessEyetracking.m
5,710
utf_8
263e05e962fbfa001b851da6499cf84f
function preprocessEyetracking(subFolder) % Get Calibration Matrices calibrationMatrices = dir([subFolder '/*cal*.mat']); calNames = cat(2,{calibrationMatrices(:).name}); % Get targets targets = dir([subFolder '/*dat*.mat']); targetNames = cat(2,{targets(:).name}); % Rip calibration times from name calTimes = nan(1,length(calNames)); for i = 1:length(calNames) calTimes(i) = str2num(calNames{i}(find('_' == calNames{i},1,'last')+1:find('.' == calNames{i},1,'last')-1)); end rawData = dir([subFolder '/*REPORT*.mat']); for dataName = cat(2,{rawData(:).name}) runNumber = find(ismember(cat(2,{rawData(:).name}),dataName)); % load data dat = load([subFolder '/' dataName{1}]); dat = dat.Report; rawX = cat(1,dat.PupilCameraX_Ch01); rawY = cat(1,dat.PupilCameraY_Ch01); glintX = cat(1,dat.Glint1CameraX_Ch01); glintY = cat(1,dat.Glint1CameraY_Ch01); isBlink = ~cat(1,dat.PupilTracked_Ch01); % Linearly interpolate blinks [linX linY] = linterpBlinkGaps(rawX,rawY,isBlink); [linGlintX linGlintY] = linterpBlinkGaps(glintX,glintY,isBlink); % Load the appropriate calibration matrix datTime = str2num(dataName{1}(find('_' == dataName{1},1,'last')+1:find('.' == dataName{1},1,'last')-1)); calMatInd = find(calTimes<datTime & calTimes==max(calTimes(calTimes<datTime))); calMat = load([subFolder '/' calNames{calMatInd}]); Rpc = calMat.Rpc; calMat = calMat.CalMat; tar = load([subFolder '/' targetNames{calMatInd}]); % Transform data with calibration matrix tmp = calMat*[([linX-linGlintX]./Rpc)'; ([linY-linGlintY]./Rpc)'; ... (1-sqrt(([linX-linGlintX]./Rpc).^2 + ([linY-linGlintY]./Rpc).^2))'; ones(1,length(linX))]; calibratedXYZ = [bsxfun(@rdivide,tmp(1:3,:),tmp(4,:))]'; [movementAngle b] = cart2pol(diff(calibratedXYZ(:,1)),diff(calibratedXYZ(:,2))); movementSpeed = (sqrt((diff(calibratedXYZ(:,1)).^2+diff(calibratedXYZ(:,2)).^2))); %% Make Plots figure(1) set(gcf,'position',[50 50 900 600]) subplot(2,3,1) plot(rawX,rawY) axis equal title('Raw Data') subplot(2,3,2) plot(linX,linY) axis equal title('Linearly Interpolated Data') subplot(2,3,3) plot(calibratedXYZ(:,1),calibratedXYZ(:,2)) axis equal title('Calibrated Data') % subplot(2,3,4) % polarHeatmap(movementAngle,movementSpeed,[0:pi.*2./24:pi*2]-pi,[0 10000]); % title('Movement Angle'); % colorbar subplot(2,3,6) polarHeatmap(movementAngle,movementSpeed,[0:pi.*2./24:pi*2]-pi,0:2:36); title('Movement Angle x Speed'); colorbar %% Make Regressors regressors.movementAngle_sin = sin(movementAngle.*6); regressors.movementAngle_cos = cos(movementAngle.*6); regressors.speed = movementSpeed; %% Write Output subName = subFolder(find(subFolder=='/',1,'last')+1:end); save(['CalibratedEyetrackingData/' subName '_CalibratedData_Run_' num2str(runNumber)],'calibratedXYZ','isBlink','regressors'); if ~isdir(['Plots/' subName]) mkdir(['Plots/' subName]); end outP = ['Plots/' subName '/Eyetracking_Descriptives_Run_' num2str(runNumber)]; drawnow; print(outP,'-dtiff','-r300') close all drawnow; end end %% Linearly interpolate tracking gaps caused by blinking function [linX linY] = linterpBlinkGaps(x,y,isB) linX = x; linY = y; oldIsB = isB; while any(isB) % Get first unlinterped blink startBlink = find(isB,1,'first'); if startBlink == length(isB) finishBlink = 0; else finishBlink = find(~isB(startBlink+1:end),1,'first')-1; if isempty(finishBlink) finishBlink = length(isB(startBlink+1:end)); end end linInds = startBlink:startBlink+finishBlink; % Interpolation values (edge cases if blinks are at the beginning % or end dealt with by just setting all to the neighboring value) %% Dumb edge case stuff try xIn1 = x(linInds(1)-1); catch xIn1 = nan; end try xIn2 = x(linInds(end)+1); catch xIn2 = nan; end try yIn1 = y(linInds(1)-1); catch yIn1 = nan; end try yIn2 = y(linInds(end)+1); catch yIn2 = nan; end if isnan(xIn1) xIn1 = xIn2; end if isnan(xIn2) xIn2 = xIn1; end if isnan(yIn1) yIn1 = yIn2; end if isnan(yIn2) yIn2 = yIn1; end %% Interpolate linX(linInds) = linterp([linInds(1)-1 linInds(end)+1],[xIn1 xIn2],linInds); linY(linInds) = linterp([linInds(1)-1 linInds(end)+1],[yIn1 yIn2],linInds); % Remove the interpolated blink isB(linInds) = false; end end
github
gkaguirrelab/WheresWaldo_EyeTracking-master
help_fit_match.m
.m
WheresWaldo_EyeTracking-master/for_videos/Functions/help_fit_match.m
1,085
utf_8
c6bde26f487492b8e93ecb3be73dfbe6
function [distance path transform matched] = help_fit_match(oldX,oldY,pupil_X,pupil_Y,frameInds,isBlink,shift) shift = round(shift); badInds = find(frameInds==1,1,'first')-1; frameInds = frameInds+shift; oldX(isBlink) = nan; oldY(isBlink) = nan; oldX(1:badInds) = nan; oldY(1:badInds) = nan; matched = [[oldX(frameInds<length(pupil_X)&frameInds>0),oldY(frameInds<length(pupil_X)&frameInds>0)],... [pupil_X(frameInds((frameInds<length(pupil_X)&frameInds>0))),... pupil_Y(frameInds((frameInds<length(pupil_X)&frameInds>0)))]]; matched(any(isnan(matched),2),:) = []; [distance path transform] = procrustes(matched(:,[1 2]), matched(:,[3 4]),'reflection',false); % [distance path transform] = help_crust(matched(:,[1 2]), matched(:,[3 4]));%,'reflection',false); end function [d p t] = help_crust(a,b) [t] = fminsearch(@(v)help_dist(a,b,v),[1 1 0 0]); [d p] = help_dist(a,b,t); end function [d b] = help_dist(a,b,v) b = [b(:,1).*v(1)+v(3) b(:,2).*v(2)+v(4)]; d = mean(sqrt(sum((a-b).^2,2)),1); end
github
zhouli2025/some-gadgets-scripts-master
detectMSERFeatures_zx.m
.m
some-gadgets-scripts-master/matlab_tools/mser/detectMSERFeatures_zx.m
11,886
utf_8
6f3850f8d1f0fd28e22c677002bc4bdc
function Regions=detectMSERFeatures_zx(I, varargin) %detectMSERFeatures Finds MSER features. % regions = detectMSERFeatures(I) returns an MSERRegions object, regions, % containing region pixel lists and other information about MSER features % detected in a 2-D grayscale image I. detectMSERFeatures uses Maximally % Stable Extremal Regions (MSER) algorithm to find regions. % % regions = detectMSERFeatures(I,Name,Value) specifies additional % name-value pair arguments described below: % % 'ThresholdDelta' Scalar value, 0 < ThresholdDelta <= 100, expressed % as a percentage of the input data type range. This % value specifies the step size between intensity % threshold levels used in selecting extremal regions % while testing for their stability. Decrease this % value to return more regions. Typical values range % from 0.8 to 4. % % Default: 2 % % 'RegionAreaRange' Two-element vector, [minArea maxArea], which % specifies the size of the regions in pixels. This % value allows the selection of regions containing % pixels between minArea and maxArea, inclusive. % % Default: [30 14000] % % 'MaxAreaVariation' Positive scalar. Increase this value to return a % greater number of regions at the cost of their % stability. Stable regions are very similar in % size over varying intensity thresholds. Typical % values range from 0.1 to 1.0. % % Default: 0.25 % % 'ROI' A vector of the format [X Y WIDTH HEIGHT], % specifying a rectangular region in which corners % will be detected. [X Y] is the upper left corner of % the region. % % Default: [1 1 size(I,2) size(I,1)] % % Class Support % ------------- % The input image I can be uint8, int16, uint16, single or double, % and it must be real and nonsparse. % % Example % ------- % % Find MSER regions % I = imread('cameraman.tif'); % regions = detectMSERFeatures(I); % % % Visualize MSER regions which are described by pixel lists stored % % inside the returned 'regions' object % figure; imshow(I); hold on; % plot(regions, 'showPixelList', true, 'showEllipses', false); % % % Display ellipses and centroids fit into the regions % figure; imshow(I); hold on; % plot(regions); % by default, plot displays ellipses and centroids % % See also MSERRegions, extractFeatures, matchFeatures, % detectBRISKFeatures, detectFASTFeatures, detectHarrisFeatures, % detectMinEigenFeatures, detectSURFFeatures, SURFPoints % Copyright 2011 The MathWorks, Inc. % References: % Jiri Matas, Ondrej Chum, Martin Urban, Tomas Pajdla. "Robust % wide-baseline stereo from maximally stable extremal regions", % Proc. of British Machine Vision Conference, pages 384-396, 2002. % % David Nister and Henrik Stewenius, "Linear Time Maximally Stable % Extremal Regions", European Conference on Computer Vision, % pages 183-196, 2008. %#codegen %#ok<*EMCA> [Iu8, params] = parseInputs(I,varargin{:}); if isSimMode() % regionsCell is pixelLists in a cell array {a x 2; b x 2; c x 2; ...} and % can only be handled in simulation mode since cell arrays are not supported % in code genereration regionsCell = ocvExtractMSER(Iu8, params); if params.usingROI && ~isempty(params.ROI) regionsCell = offsetPixelList(regionsCell, params.ROI); end Regions = MSERRegions(regionsCell); else [pixelList, lengths] = ... vision.internal.buildable.detectMserBuildable.detectMser_uint8(Iu8, params); if params.usingROI && ~isempty(params.ROI) % offset location values pixelList = offsetPixelListCodegen(pixelList, params.ROI); end Regions = MSERRegions(pixelList, lengths); end %========================================================================== % Parse and check inputs %========================================================================== function [img, params] = parseInputs(I, varargin) validateattributes(I,{'logical', 'uint8', 'int16', 'uint16', ... 'single', 'double'}, {'2d', 'nonempty', 'nonsparse', 'real'},... mfilename, 'I', 1); % Logical input is not supported Iu8 = im2uint8(I); imageSize = size(I); if isSimMode() params = parseInputs_sim(imageSize, varargin{:}); else params = parseInputs_cg(imageSize, varargin{:}); end %-------------------------------------------------------------------------- % Other OpenCV parameters which are not exposed in the main interface %-------------------------------------------------------------------------- params.minDiversity = single(0.2); params.maxEvolution = int32(200); params.areaThreshold = 1; params.minMargin = 0.003; params.edgeBlurSize = int32(5); img = vision.internal.detector.cropImageIfRequested(Iu8, params.ROI, params.usingROI); %========================================================================== function params = parseInputs_sim(imageSize, varargin) % Parse the PV pairs parser = inputParser; defaults = getDefaultParameters(imageSize); % parser.addParameter('ThresholdDelta', 2); % parser.addParameter('RegionAreaRange', defaults.RegionAreaRange); % parser.addParameter('MaxAreaVariation', defaults.MaxAreaVariation); % parser.addParameter('ROI', defaults.ROI) parser.addParameter('ThresholdDelta', 5); parser.addParameter('RegionAreaRange', [30 20000]); parser.addParameter('MaxAreaVariation', 0.1); parser.addParameter('ROI', defaults.ROI) % display(parser); % Parse input parser.parse(varargin{:}); checkThresholdDelta(parser.Results.ThresholdDelta); params.usingROI = ~ismember('ROI', parser.UsingDefaults); roi = parser.Results.ROI; if params.usingROI vision.internal.detector.checkROI(roi, imageSize); end isAreaRangeUserSpecified = ~ismember('RegionAreaRange', parser.UsingDefaults); if isAreaRangeUserSpecified checkRegionAreaRange(parser.Results.RegionAreaRange, imageSize, ... params.usingROI, roi); end checkMaxAreaVariation(parser.Results.MaxAreaVariation); % Populate the parameters to pass into OpenCV's ocvExtractMSER() params.delta = parser.Results.ThresholdDelta*255/100; params.minArea = parser.Results.RegionAreaRange(1); params.maxArea = parser.Results.RegionAreaRange(2); params.maxVariation = parser.Results.MaxAreaVariation; params.ROI = parser.Results.ROI; %========================================================================== function params = parseInputs_cg(imageSize, varargin) % Optional Name-Value pair: 3 pairs (see help section) defaults = getDefaultParameters(imageSize); defaultsNoVal = getDefaultParametersNoVal(); properties = getEmlParserProperties(); optarg = eml_parse_parameter_inputs(defaultsNoVal, properties, varargin{:}); parser_Results.ThresholdDelta = (eml_get_parameter_value( ... optarg.ThresholdDelta, defaults.ThresholdDelta, varargin{:})); parser_Results.RegionAreaRange = (eml_get_parameter_value( ... optarg.RegionAreaRange, defaults.RegionAreaRange, varargin{:})); parser_Results.MaxAreaVariation = (eml_get_parameter_value( ... optarg.MaxAreaVariation, defaults.MaxAreaVariation, varargin{:})); parser_ROI = eml_get_parameter_value(optarg.ROI, defaults.ROI, varargin{:}); checkThresholdDelta(parser_Results.ThresholdDelta); % check whether ROI parameter is specified usingROI = optarg.ROI ~= uint32(0); if usingROI vision.internal.detector.checkROI(parser_ROI, imageSize); end % check whether area range parameter is specified isAreaRangeUserSpecified = optarg.RegionAreaRange ~= uint32(0); if isAreaRangeUserSpecified checkRegionAreaRange(parser_Results.RegionAreaRange, imageSize,... usingROI, parser_ROI); end checkMaxAreaVariation(parser_Results.MaxAreaVariation); params.delta = cCast('int32_T', parser_Results.ThresholdDelta*255/100); params.minArea = cCast('int32_T', parser_Results.RegionAreaRange(1)); params.maxArea = cCast('int32_T', parser_Results.RegionAreaRange(2)); params.maxVariation = cCast('real32_T', parser_Results.MaxAreaVariation); params.ROI = parser_ROI; params.usingROI = usingROI; %========================================================================== % Offset pixel list locations based on ROI %========================================================================== function pixListOut = offsetPixelList(pixListIn, roi) n = size(pixListIn,1); pixListOut = cell(n,1); for i = 1:n pixListOut{i} = vision.internal.detector.addOffsetForROI(pixListIn{i}, roi, true); end %========================================================================== % Offset pixel list locations based on ROI %========================================================================== function pixListOut = offsetPixelListCodegen(pixListIn, roi) pixListOut = vision.internal.detector.addOffsetForROI(pixListIn, roi, true); %========================================================================== function defaults = getDefaultParameters(imgSize) defaults = struct(... 'ThresholdDelta', 5*100/255, ... 'RegionAreaRange', [30 14000], ... 'MaxAreaVariation', 0.25,... 'ROI', [1 1 imgSize(2) imgSize(1)]); %========================================================================== function defaultsNoVal = getDefaultParametersNoVal() defaultsNoVal = struct(... 'ThresholdDelta', uint32(0), ... 'RegionAreaRange', uint32(0), ... 'MaxAreaVariation', uint32(0), ... 'ROI', uint32(0)); %========================================================================== function properties = getEmlParserProperties() properties = struct( ... 'CaseSensitivity', false, ... 'StructExpand', true, ... 'PartialMatching', false); %========================================================================== function tf = checkThresholdDelta(thresholdDelta) validateattributes(thresholdDelta, {'numeric'}, {'scalar',... 'nonsparse', 'real', 'positive', '<=', 100}, mfilename); tf = true; %========================================================================== function checkRegionAreaRange(regionAreaRange, imageSize, usingROI, roi) if usingROI % When an ROI is specified, the region area range validation should % be done with respect to the ROI size. sz = int32([roi(4) roi(3)]); else sz = int32(imageSize); end imgArea = sz(1)*sz(2); validateattributes(regionAreaRange, {'numeric'}, {'integer',... 'nonsparse', 'real', 'positive', 'size', [1,2]}, mfilename); coder.internal.errorIf(regionAreaRange(2) < regionAreaRange(1), ... 'vision:detectMSERFeatures:invalidRegionSizeRange'); % When the imageSize is less than area range, throw a warning. if imgArea < int32(regionAreaRange(1)) coder.internal.warning('vision:detectMSERFeatures:imageAreaLessThanAreaRange') end %========================================================================== function tf = checkMaxAreaVariation(maxAreaVariation) validateattributes(maxAreaVariation, {'numeric'}, {'nonsparse', ... 'real', 'scalar', '>=', 0}, mfilename); tf = true; %========================================================================== function flag = isSimMode() flag = isempty(coder.target); %========================================================================== function outVal = cCast(outClass, inVal) outVal = coder.nullcopy(zeros(1,1,outClass)); outVal = coder.ceval(['(' outClass ')'], inVal);
github
clatfd/ThresSeg3d-master
sliderimg.m
.m
ThresSeg3d-master/sliderimg.m
3,314
utf_8
46e46c45854a6912b4e961e205cdc6da
function varargout=sliderimg(img) S.SystemFrameHandle=figure; clf reset set(gcf,'name','img','numbertitle','off',... 'unit','normalized','position',[0.2,0.1,0.5,0.5]); % menu_file=uimenu(gcf,'Label','File(&F)'); % menu_open_image=uimenu(menu_file,'Label','Open Images(&O)'); S.OriImageShowHandle=axes('Units','normalized',... 'position',[0.2 0.5 .3 .4],'Color',[0.2 0.2 0.2],'Visible','off','Parent',S.SystemFrameHandle); S.NewImageShowHandle=axes('Units','normalized',... 'position',[0.6 0.5 .3 .4],'Color',[0.2 0.2 0.2],'Visible','off','Parent',S.SystemFrameHandle); imshow(img(:,:,1),'Parent',S.OriImageShowHandle); thresimg=im2bw(img(:,:,1),0.5); imshow(thresimg,'Parent',S.NewImageShowHandle); % slider_h = uicontrol(S.SystemFrameHandle,'Style','slider',... % 'Tag','Slider_h', ... % 'Position', [100 100 20 200], ... % 'Max',1,'Min',0,'Value',0.5,... % 'SliderStep',[0.05 0.2],... % 'Callback',{@callback_slider_h,S}); S.h = uicontrol('style','slide',... 'unit','pixel',... 'position',[100 200 20 200],... 'SliderStep',[0.05 0.2],... 'value',0.5,... 'min',0,'max',1); S.sliceslide = uicontrol('style','slide',... 'unit','pixel',... 'position',[150 100 400 20],... 'value',1,... 'SliderStep',[1 5],... 'min',1,'max',size(img,3)); set(S.h,'callback',{@callback_slider_h,S}); set(S.sliceslide,'callback',{@callback_slider_sliceid,S}); setappdata(gcf, 'imgsrc', img); setappdata(gcf, 'thres_value', 0.5); setappdata(gcf, 'sliceId', 1); setappdata(gcf, 'clicktime', 0); set(gcf,'WindowButtonDownFcn',@ButttonDownFcn); end function callback_slider_h(hObject,eventdata,handles) slide_value=get(hObject,'Value'); assignin('base','thres',slide_value); setappdata(gcf, 'thres_value', slide_value); img=getappdata(gcf,'imgsrc'); sliceId=getappdata(gcf,'sliceId'); thresimg=im2bw(img(:,:,sliceId),slide_value); axes(handles.NewImageShowHandle); imshow(thresimg); % disp(slide_value); end function callback_slider_sliceid(hObject,eventdata,handles) sliceId=round(get(hObject,'Value')); setappdata(gcf, 'sliceId', sliceId); img=getappdata(gcf,'imgsrc'); axes(handles.OriImageShowHandle); imshow(img(:,:,sliceId)); axes(handles.NewImageShowHandle); slide_value=getappdata(gcf,'thres_value'); thresimg=im2bw(img(:,:,sliceId),slide_value); imshow(thresimg); % disp(sliceId); end function ButttonDownFcn(src,event) pt = get(gca,'CurrentPoint'); ptx = round(pt(1,1)); pty = round(pt(1,2)); if ptx>=0 && pty>=0 hold on;plot(ptx,pty,'b+'); clicktime=getappdata(gcf,'clicktime'); if clicktime==0 setappdata(gcf, 'clicktime', 1); cmd=sprintf('crop(1)=%d;',ptx); evalin('base',cmd); cmd=sprintf('crop(2)=%d;',pty); evalin('base',cmd); setappdata(gcf, 'crop', [ptx pty]); else cmd=sprintf('crop(3)=%d;',ptx); evalin('base',cmd); cmd=sprintf('crop(4)=%d;',pty); evalin('base',cmd); crop=getappdata(gcf,'crop'); line([crop(1) ptx],[crop(2) crop(2)]); line([crop(1) ptx],[pty pty]); line([crop(1) crop(1)],[crop(2) pty]); line([ptx ptx],[crop(2) pty]); end end end
github
mitschabaude/nanopores-master
CloneFig.m
.m
nanopores-master/scripts/finfet/collocation_methods/CloneFig.m
667
utf_8
cca00ad847ab499d1396a59a594a07df
function CloneFig(inFigNum,OutFigNum) % this program copies a figure to another figure % example: CloneFig(1,4) would copy Fig. 1 to Fig. 4 % Matt Fetterman, 2009 % pretty much taken from Matlab Technical solutions: % http://www.mathworks.com/support/solutions/en/data/1-1UTBOL/?solution=1-1UTBOL hf1=figure(inFigNum); hf2=figure(OutFigNum); clf; compCopy(hf1,hf2); function compCopy(op, np) %COMPCOPY copies a figure object represented by "op" and its % descendants to another figure "np" preserving the same hierarchy. ch = get(op, 'children'); if ~isempty(ch) nh = copyobj(ch,np); for k = 1:length(ch) compCopy(ch(k),nh(k)); end end; return;
github
matheusmlopess-zz/Fuzzy-Logic-power-transmission-analysis-master
ktropf_solver.m
.m
Fuzzy-Logic-power-transmission-analysis-master/matpower5.1/ktropf_solver.m
11,710
utf_8
5cd97b9ba5b0916c199be22be6a70a8f
function [results, success, raw] = ktropf_solver(om, mpopt) %KTROPF_SOLVER Solves AC optimal power flow using KNITRO. % % [RESULTS, SUCCESS, RAW] = KTROPF_SOLVER(OM, MPOPT) % % Inputs are an OPF model object and a MATPOWER options struct. % % Outputs are a RESULTS struct, SUCCESS flag and RAW output struct. % % RESULTS is a MATPOWER case struct (mpc) with the usual baseMVA, bus % branch, gen, gencost fields, along with the following additional % fields: % .order see 'help ext2int' for details of this field % .x final value of optimization variables (internal order) % .f final objective function value % .mu shadow prices on ... % .var % .l lower bounds on variables % .u upper bounds on variables % .nln % .l lower bounds on nonlinear constraints % .u upper bounds on nonlinear constraints % .lin % .l lower bounds on linear constraints % .u upper bounds on linear constraints % % SUCCESS 1 if solver converged successfully, 0 otherwise % % RAW raw output in form returned by MINOS % .xr final value of optimization variables % .pimul constraint multipliers % .info solver specific termination code % .output solver specific output information % % See also OPF, KTRLINK. % MATPOWER % Copyright (c) 2000-2015 by Power System Engineering Research Center (PSERC) % by Ray Zimmerman, PSERC Cornell % and Carlos E. Murillo-Sanchez, PSERC Cornell & Universidad Autonoma de Manizales % % $Id: ktropf_solver.m 2644 2015-03-11 19:34:22Z ray $ % % This file is part of MATPOWER. % Covered by the 3-clause BSD License (see LICENSE file for details). % See http://www.pserc.cornell.edu/matpower/ for more info. %%----- initialization ----- %% define named indices into data matrices [PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ... VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus; [GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ... MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ... QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen; [F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ... TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ... ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch; [PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost; %% options use_ktropts_file = 1; %% use a KNITRO options file to pass options create_ktropts_file = 0; %% generate a KNITRO options file on the fly %% unpack data mpc = get_mpc(om); [baseMVA, bus, gen, branch, gencost] = ... deal(mpc.baseMVA, mpc.bus, mpc.gen, mpc.branch, mpc.gencost); [vv, ll, nn] = get_idx(om); %% problem dimensions nb = size(bus, 1); %% number of buses ng = size(gen, 1); %% number of gens nl = size(branch, 1); %% number of branches ny = getN(om, 'var', 'y'); %% number of piece-wise linear costs %% bounds on optimization vars [x0, xmin, xmax] = getv(om); %% linear constraints [A, l, u] = linear_constraints(om); %% split l <= A*x <= u into less than, equal to, greater than, and %% doubly-bounded sets ieq = find( abs(u-l) <= eps ); %% equality igt = find( u >= 1e10 & l > -1e10 ); %% greater than, unbounded above ilt = find( l <= -1e10 & u < 1e10 ); %% less than, unbounded below ibx = find( (abs(u-l) > eps) & (u < 1e10) & (l > -1e10) ); Af = [ A(ilt, :); -A(igt, :); A(ibx, :); -A(ibx, :) ]; bf = [ u(ilt); -l(igt); u(ibx); -l(ibx)]; Afeq = A(ieq, :); bfeq = u(ieq); %% build admittance matrices [Ybus, Yf, Yt] = makeYbus(baseMVA, bus, branch); %% try to select an interior initial point if mpopt.opf.init_from_mpc ~= 1 ll = xmin; uu = xmax; ll(xmin == -Inf) = -1e10; %% replace Inf with numerical proxies uu(xmax == Inf) = 1e10; x0 = (ll + uu) / 2; %% set x0 mid-way between bounds k = find(xmin == -Inf & xmax < Inf); %% if only bounded above x0(k) = xmax(k) - 1; %% set just below upper bound k = find(xmin > -Inf & xmax == Inf); %% if only bounded below x0(k) = xmin(k) + 1; %% set just above lower bound Varefs = bus(bus(:, BUS_TYPE) == REF, VA) * (pi/180); x0(vv.i1.Va:vv.iN.Va) = Varefs(1); %% angles set to first reference angle if ny > 0 ipwl = find(gencost(:, MODEL) == PW_LINEAR); % PQ = [gen(:, PMAX); gen(:, QMAX)]; % c = totcost(gencost(ipwl, :), PQ(ipwl)); c = gencost(sub2ind(size(gencost), ipwl, NCOST+2*gencost(ipwl, NCOST))); %% largest y-value in CCV data x0(vv.i1.y:vv.iN.y) = max(c) + 0.1 * abs(max(c)); % x0(vv.i1.y:vv.iN.y) = c + 0.1 * abs(c); end end %% find branches with flow limits il = find(branch(:, RATE_A) ~= 0 & branch(:, RATE_A) < 1e10); nl2 = length(il); %% number of constrained lines %% build Jacobian and Hessian structure nA = size(A, 1); %% number of original linear constraints nx = length(x0); f = branch(:, F_BUS); %% list of "from" buses t = branch(:, T_BUS); %% list of "to" buses Cf = sparse(1:nl, f, ones(nl, 1), nl, nb); %% connection matrix for line & from buses Ct = sparse(1:nl, t, ones(nl, 1), nl, nb); %% connection matrix for line & to buses Cl = Cf + Ct; Cb = Cl' * Cl + speye(nb); Cl2 = Cl(il, :); Cg = sparse(gen(:, GEN_BUS), (1:ng)', 1, nb, ng); nz = nx - 2*(nb+ng); nxtra = nx - 2*nb; Js = [ Cl2 Cl2 sparse(nl2, 2*ng) sparse(nl2,nz); Cl2 Cl2 sparse(nl2, 2*ng) sparse(nl2,nz); Cb Cb Cg sparse(nb,ng) sparse(nb,nz); Cb Cb sparse(nb,ng) Cg sparse(nb,nz); ]; [f, df, d2f] = opf_costfcn(x0, om); Hs = d2f + [ Cb Cb sparse(nb,nxtra); Cb Cb sparse(nb,nxtra); sparse(nxtra,nx); ]; %% basic optimset options needed for ktrlink hess_fcn = @(x, lambda)opf_hessfcn(x, lambda, 1, om, Ybus, Yf(il,:), Yt(il,:), mpopt, il); fmoptions = optimset('GradObj', 'on', 'GradConstr', 'on', ... 'Hessian', 'user-supplied', 'HessFcn', hess_fcn, ... 'JacobPattern', Js, 'HessPattern', Hs ); if use_ktropts_file if ~isempty(mpopt.knitro.opt_fname) opt_fname = mpopt.knitro.opt_fname; elseif mpopt.knitro.opt opt_fname = sprintf('knitro_user_options_%d.txt', mpopt.knitro.opt); else %% create ktropts file ktropts.algorithm = 1; ktropts.outlev = mpopt.verbose; ktropts.feastol = mpopt.opf.violation; ktropts.xtol = mpopt.knitro.tol_x; ktropts.opttol = mpopt.knitro.tol_f; if mpopt.fmincon.max_it ~= 0 ktropts.maxit = mpopt.fmincon.max_it; end ktropts.bar_directinterval = 0; opt_fname = write_ktropts(ktropts); create_ktropts_file = 1; %% make a note that I created it end else fmoptions = optimset(fmoptions, 'Algorithm', 'interior-point', ... 'TolCon', mpopt.opf.violation, 'TolX', mpopt.knitro.tol_x, ... 'TolFun', mpopt.knitro.tol_f ); if mpopt.fmincon.max_it ~= 0 fmoptions = optimset(fmoptions, 'MaxIter', mpopt.fmincon.max_it, ... 'MaxFunEvals', 4 * mpopt.fmincon.max_it); end if mpopt.verbose == 0, fmoptions.Display = 'off'; elseif mpopt.verbose == 1 fmoptions.Display = 'iter'; else fmoptions.Display = 'testing'; end opt_fname = []; end %%----- run opf ----- f_fcn = @(x)opf_costfcn(x, om); gh_fcn = @(x)opf_consfcn(x, om, Ybus, Yf(il,:), Yt(il,:), mpopt, il); if have_fcn('knitromatlab') [x, f, info, Output, Lambda] = knitromatlab(f_fcn, x0, Af, bf, Afeq, bfeq, ... xmin, xmax, gh_fcn, [], fmoptions, opt_fname); else [x, f, info, Output, Lambda] = ktrlink(f_fcn, x0, Af, bf, Afeq, bfeq, ... xmin, xmax, gh_fcn, fmoptions, opt_fname); end success = (info == 0); %% delete ktropts file if create_ktropts_file %% ... but only if I created it delete(opt_fname); end %% update solution data Va = x(vv.i1.Va:vv.iN.Va); Vm = x(vv.i1.Vm:vv.iN.Vm); Pg = x(vv.i1.Pg:vv.iN.Pg); Qg = x(vv.i1.Qg:vv.iN.Qg); V = Vm .* exp(1j*Va); %%----- calculate return values ----- %% update voltages & generator outputs bus(:, VA) = Va * 180/pi; bus(:, VM) = Vm; gen(:, PG) = Pg * baseMVA; gen(:, QG) = Qg * baseMVA; gen(:, VG) = Vm(gen(:, GEN_BUS)); %% compute branch flows Sf = V(branch(:, F_BUS)) .* conj(Yf * V); %% cplx pwr at "from" bus, p.u. St = V(branch(:, T_BUS)) .* conj(Yt * V); %% cplx pwr at "to" bus, p.u. branch(:, PF) = real(Sf) * baseMVA; branch(:, QF) = imag(Sf) * baseMVA; branch(:, PT) = real(St) * baseMVA; branch(:, QT) = imag(St) * baseMVA; %% line constraint is actually on square of limit %% so we must fix multipliers muSf = zeros(nl, 1); muSt = zeros(nl, 1); if ~isempty(il) muSf(il) = 2 * Lambda.ineqnonlin(1:nl2) .* branch(il, RATE_A) / baseMVA; muSt(il) = 2 * Lambda.ineqnonlin((1:nl2)+nl2) .* branch(il, RATE_A) / baseMVA; end %% update Lagrange multipliers bus(:, MU_VMAX) = Lambda.upper(vv.i1.Vm:vv.iN.Vm); bus(:, MU_VMIN) = -Lambda.lower(vv.i1.Vm:vv.iN.Vm); gen(:, MU_PMAX) = Lambda.upper(vv.i1.Pg:vv.iN.Pg) / baseMVA; gen(:, MU_PMIN) = -Lambda.lower(vv.i1.Pg:vv.iN.Pg) / baseMVA; gen(:, MU_QMAX) = Lambda.upper(vv.i1.Qg:vv.iN.Qg) / baseMVA; gen(:, MU_QMIN) = -Lambda.lower(vv.i1.Qg:vv.iN.Qg) / baseMVA; bus(:, LAM_P) = Lambda.eqnonlin(nn.i1.Pmis:nn.iN.Pmis) / baseMVA; bus(:, LAM_Q) = Lambda.eqnonlin(nn.i1.Qmis:nn.iN.Qmis) / baseMVA; branch(:, MU_SF) = muSf / baseMVA; branch(:, MU_ST) = muSt / baseMVA; %% package up results nlnN = getN(om, 'nln'); nlt = length(ilt); ngt = length(igt); nbx = length(ibx); %% extract multipliers for nonlinear constraints kl = find(Lambda.eqnonlin < 0); ku = find(Lambda.eqnonlin > 0); nl_mu_l = zeros(nlnN, 1); nl_mu_u = [zeros(2*nb, 1); muSf; muSt]; nl_mu_l(kl) = -Lambda.eqnonlin(kl); nl_mu_u(ku) = Lambda.eqnonlin(ku); %% extract multipliers for linear constraints kl = find(Lambda.eqlin < 0); ku = find(Lambda.eqlin > 0); mu_l = zeros(size(u)); mu_l(ieq(kl)) = -Lambda.eqlin(kl); mu_l(igt) = Lambda.ineqlin(nlt+(1:ngt)); mu_l(ibx) = Lambda.ineqlin(nlt+ngt+nbx+(1:nbx)); mu_u = zeros(size(u)); mu_u(ieq(ku)) = Lambda.eqlin(ku); mu_u(ilt) = Lambda.ineqlin(1:nlt); mu_u(ibx) = Lambda.ineqlin(nlt+ngt+(1:nbx)); mu = struct( ... 'var', struct('l', -Lambda.lower, 'u', Lambda.upper), ... 'nln', struct('l', nl_mu_l, 'u', nl_mu_u), ... 'lin', struct('l', mu_l, 'u', mu_u) ); results = mpc; [results.bus, results.branch, results.gen, ... results.om, results.x, results.mu, results.f] = ... deal(bus, branch, gen, om, x, mu, f); pimul = [ ... results.mu.nln.l - results.mu.nln.u; results.mu.lin.l - results.mu.lin.u; -ones(ny>0, 1); results.mu.var.l - results.mu.var.u; ]; raw = struct('xr', x, 'pimul', pimul, 'info', info, 'output', Output); %%----- write_ktropts ----- function fname = write_ktropts(ktropts) %% generate file name fname = sprintf('ktropts_%06d.txt', fix(1e6*rand)); %% open file [fd, msg] = fopen(fname, 'wt'); %% write options file if fd == -1 error('could not create %d : %s', fname, msg); end %% write options fields = fieldnames(ktropts); for k = 1:length(fields) fprintf(fd, '%s %g\n', fields{k}, ktropts.(fields{k})); end %% close file if fd ~= 1 fclose(fd); end
github
matheusmlopess-zz/Fuzzy-Logic-power-transmission-analysis-master
modcost.m
.m
Fuzzy-Logic-power-transmission-analysis-master/matpower5.1/modcost.m
4,148
utf_8
7ad37d349aef8613d44ca72096179496
function gencost = modcost(gencost, alpha, modtype) %MODCOST Modifies generator costs by shifting or scaling (F or X). % NEWGENCOST = MODCOST(GENCOST, ALPHA) % NEWGENCOST = MODCOST(GENCOST, ALPHA, MODTYPE) % % For each generator cost F(X) (for real or reactive power) in % GENCOST, this function modifies the cost by scaling or shifting % the function by ALPHA, depending on the value of MODTYPE, and % and returns the modified GENCOST. Rows of GENCOST can be a mix % of polynomial or piecewise linear costs. ALPHA can be a scalar, % applied to each row of GENCOST, or an NG x 1 vector, where each % element is applied to the corresponding row of GENCOST. % % MODTYPE takes one of the 4 possible values (let F_alpha(X) denote the % the modified function): % 'SCALE_F' (default) : F_alpha(X) == F(X) * ALPHA % 'SCALE_X' : F_alpha(X * ALPHA) == F(X) % 'SHIFT_F' : F_alpha(X) == F(X) + ALPHA % 'SHIFT_X' : F_alpha(X + ALPHA) == F(X) % MATPOWER % Copyright (c) 2010-2015 by Power System Engineering Research Center (PSERC) % by Ray Zimmerman, PSERC Cornell % % $Id: modcost.m 2644 2015-03-11 19:34:22Z ray $ % % This file is part of MATPOWER. % Covered by the 3-clause BSD License (see LICENSE file for details). % See http://www.pserc.cornell.edu/matpower/ for more info. %% define named indices into data matrices [PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost; if nargin < 3 modtype = 'SCALE_F'; end [ng, m] = size(gencost); if ng ~= 0 if length(alpha) ~= ng if length(alpha) == 1 && ng > 1 %% scalar, make it a col vector alpha = alpha * ones(ng, 1); else error('modcost: ALPHA must be a scalar or col vector with NG rows'); end elseif size(alpha, 2) ~= 1 alpha = alpha'; %% convert row vector to col vector end ipwl = find(gencost(:, MODEL) == PW_LINEAR); ipol = find(gencost(:, MODEL) == POLYNOMIAL); c = gencost(ipol, COST:m); switch modtype case 'SCALE_F', gencost(ipol, COST:m) = diag(alpha(ipol)) * c; gencost(ipwl, COST+1:2:m) = diag(alpha(ipwl)) * gencost(ipwl, COST+1:2:m); case 'SCALE_X', for k = 1:length(ipol) n = gencost(ipol(k), NCOST); for i = 1:n gencost(ipol(k), COST+i-1) = c(k, i) / alpha(ipol(k))^(n-i); end end gencost(ipwl, COST:2:m-1) = diag(alpha(ipwl)) * gencost(ipwl, COST:2:m-1); case 'SHIFT_F', for k = 1:length(ipol) n = gencost(ipol(k), NCOST); gencost(ipol(k), COST+n-1) = alpha(ipol(k)) + c(k, n); end gencost(ipwl, COST+1:2:m) = ... diag(alpha(ipwl)) * ones(length(ipwl), (m+1-COST)/2) + ... gencost(ipwl, COST+1:2:m); case 'SHIFT_X', for k = 1:length(ipol) n = gencost(ipol(k), NCOST); gencost(ipol(k), COST:COST+n-1) = polyshift(c(k, 1:n)', alpha(ipol(k)))'; end gencost(ipwl, COST:2:m-1) = ... diag(alpha(ipwl)) * ones(length(ipwl), (m+1-COST)/2) + ... gencost(ipwl, COST:2:m-1); otherwise error('modcost: ''%s'' is not a valid modtype\n', modtype); end end %%----- POLYSHIFT ----- function d = polyshift(c, a) %POLYSHIFT Returns the coefficients of a horizontally shifted polynomial. % % D = POLYSHIFT(C, A) shifts to the right by A, the polynomial whose % coefficients are given in the column vector C. % % Example: For any polynomial with n coefficients in c, and any values % for x and shift a, the f - f0 should be zero. % x = rand; % a = rand; % c = rand(n, 1); % f0 = polyval(c, x) % f = polyval(polyshift(c, a), x+a) n = length(c); d = zeros(size(c)); A = (-a * ones(n, 1)) .^ ((0:n-1)'); b = ones(n, 1); for k = 1:n d(n-k+1) = b' * ( c(n-k+1:-1:1) .* A(1:n-k+1) ); b = cumsum(b(1:n-k)); end
github
matheusmlopess-zz/Fuzzy-Logic-power-transmission-analysis-master
ipoptopf_solver.m
.m
Fuzzy-Logic-power-transmission-analysis-master/matpower5.1/ipoptopf_solver.m
11,041
utf_8
591f13b41b7cc6d1cc333c404ad42ffd
function [results, success, raw] = ipoptopf_solver(om, mpopt) %IPOPTOPF_SOLVER Solves AC optimal power flow using MIPS. % % [RESULTS, SUCCESS, RAW] = IPOPTOPF_SOLVER(OM, MPOPT) % % Inputs are an OPF model object and a MATPOWER options struct. % % Outputs are a RESULTS struct, SUCCESS flag and RAW output struct. % % RESULTS is a MATPOWER case struct (mpc) with the usual baseMVA, bus % branch, gen, gencost fields, along with the following additional % fields: % .order see 'help ext2int' for details of this field % .x final value of optimization variables (internal order) % .f final objective function value % .mu shadow prices on ... % .var % .l lower bounds on variables % .u upper bounds on variables % .nln % .l lower bounds on nonlinear constraints % .u upper bounds on nonlinear constraints % .lin % .l lower bounds on linear constraints % .u upper bounds on linear constraints % % SUCCESS 1 if solver converged successfully, 0 otherwise % % RAW raw output in form returned by MINOS % .xr final value of optimization variables % .pimul constraint multipliers % .info solver specific termination code % .output solver specific output information % % See also OPF, IPOPT. % MATPOWER % Copyright (c) 2000-2015 by Power System Engineering Research Center (PSERC) % by Ray Zimmerman, PSERC Cornell % and Carlos E. Murillo-Sanchez, PSERC Cornell & Universidad Autonoma de Manizales % % $Id: ipoptopf_solver.m 2644 2015-03-11 19:34:22Z ray $ % % This file is part of MATPOWER. % Covered by the 3-clause BSD License (see LICENSE file for details). % See http://www.pserc.cornell.edu/matpower/ for more info. %%----- initialization ----- %% define named indices into data matrices [PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ... VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus; [GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ... MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ... QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen; [F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ... TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ... ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch; [PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost; %% unpack data mpc = get_mpc(om); [baseMVA, bus, gen, branch, gencost] = ... deal(mpc.baseMVA, mpc.bus, mpc.gen, mpc.branch, mpc.gencost); [vv, ll, nn] = get_idx(om); %% problem dimensions nb = size(bus, 1); %% number of buses ng = size(gen, 1); %% number of gens nl = size(branch, 1); %% number of branches ny = getN(om, 'var', 'y'); %% number of piece-wise linear costs %% linear constraints [A, l, u] = linear_constraints(om); %% bounds on optimization vars [x0, xmin, xmax] = getv(om); %% build admittance matrices [Ybus, Yf, Yt] = makeYbus(baseMVA, bus, branch); %% try to select an interior initial point if mpopt.opf.init_from_mpc ~= 1 ll = xmin; uu = xmax; ll(xmin == -Inf) = -1e10; %% replace Inf with numerical proxies uu(xmax == Inf) = 1e10; x0 = (ll + uu) / 2; %% set x0 mid-way between bounds k = find(xmin == -Inf & xmax < Inf); %% if only bounded above x0(k) = xmax(k) - 1; %% set just below upper bound k = find(xmin > -Inf & xmax == Inf); %% if only bounded below x0(k) = xmin(k) + 1; %% set just above lower bound Varefs = bus(bus(:, BUS_TYPE) == REF, VA) * (pi/180); x0(vv.i1.Va:vv.iN.Va) = Varefs(1); %% angles set to first reference angle if ny > 0 ipwl = find(gencost(:, MODEL) == PW_LINEAR); % PQ = [gen(:, PMAX); gen(:, QMAX)]; % c = totcost(gencost(ipwl, :), PQ(ipwl)); c = gencost(sub2ind(size(gencost), ipwl, NCOST+2*gencost(ipwl, NCOST))); %% largest y-value in CCV data x0(vv.i1.y:vv.iN.y) = max(c) + 0.1 * abs(max(c)); % x0(vv.i1.y:vv.iN.y) = c + 0.1 * abs(c); end end %% find branches with flow limits il = find(branch(:, RATE_A) ~= 0 & branch(:, RATE_A) < 1e10); nl2 = length(il); %% number of constrained lines %%----- run opf ----- %% build Jacobian and Hessian structure nA = size(A, 1); %% number of original linear constraints nx = length(x0); f = branch(:, F_BUS); %% list of "from" buses t = branch(:, T_BUS); %% list of "to" buses Cf = sparse(1:nl, f, ones(nl, 1), nl, nb); %% connection matrix for line & from buses Ct = sparse(1:nl, t, ones(nl, 1), nl, nb); %% connection matrix for line & to buses Cl = Cf + Ct; Cb = Cl' * Cl + speye(nb); Cl2 = Cl(il, :); Cg = sparse(gen(:, GEN_BUS), (1:ng)', 1, nb, ng); nz = nx - 2*(nb+ng); nxtra = nx - 2*nb; Js = [ Cb Cb Cg sparse(nb,ng) sparse(nb,nz); Cb Cb sparse(nb,ng) Cg sparse(nb,nz); Cl2 Cl2 sparse(nl2, 2*ng) sparse(nl2,nz); Cl2 Cl2 sparse(nl2, 2*ng) sparse(nl2,nz); A; ]; [f, df, d2f] = opf_costfcn(x0, om); Hs = tril(d2f + [ Cb Cb sparse(nb,nxtra); Cb Cb sparse(nb,nxtra); sparse(nxtra,nx); ]); %% set options struct for IPOPT options.ipopt = ipopt_options([], mpopt); %% extra data to pass to functions options.auxdata = struct( ... 'om', om, ... 'Ybus', Ybus, ... 'Yf', Yf(il,:), ... 'Yt', Yt(il,:), ... 'mpopt', mpopt, ... 'il', il, ... 'A', A, ... 'nA', nA, ... 'neqnln', 2*nb, ... 'niqnln', 2*nl2, ... 'Js', Js, ... 'Hs', Hs ); % %% check Jacobian and Hessian structure % xr = rand(size(x0)); % lambda = rand(2*nb+2*nl2, 1); % options.auxdata.Js = jacobian(xr, options.auxdata); % options.auxdata.Hs = tril(hessian(xr, 1, lambda, options.auxdata)); % Js1 = options.auxdata.Js; % options.auxdata.Js = Js; % Hs1 = options.auxdata.Hs; % [i1, j1, s] = find(Js); % [i2, j2, s] = find(Js1); % if length(i1) ~= length(i2) || norm(i1-i2) ~= 0 || norm(j1-j2) ~= 0 % error('something''s wrong with the Jacobian structure'); % end % [i1, j1, s] = find(Hs); % [i2, j2, s] = find(Hs1); % if length(i1) ~= length(i2) || norm(i1-i2) ~= 0 || norm(j1-j2) ~= 0 % error('something''s wrong with the Hessian structure'); % end %% define variable and constraint bounds options.lb = xmin; options.ub = xmax; options.cl = [zeros(2*nb, 1); -Inf(2*nl2, 1); l]; options.cu = [zeros(2*nb, 1); zeros(2*nl2, 1); u]; %% assign function handles funcs.objective = @objective; funcs.gradient = @gradient; funcs.constraints = @constraints; funcs.jacobian = @jacobian; funcs.hessian = @hessian; funcs.jacobianstructure = @(d) Js; funcs.hessianstructure = @(d) Hs; %funcs.jacobianstructure = @jacobianstructure; %funcs.hessianstructure = @hessianstructure; %% run the optimization if have_fcn('ipopt_auxdata') [x, info] = ipopt_auxdata(x0,funcs,options); else [x, info] = ipopt(x0,funcs,options); end if info.status == 0 || info.status == 1 success = 1; else success = 0; end if isfield(info, 'iter') output.iterations = info.iter; else output.iterations = []; end f = opf_costfcn(x, om); %% update solution data Va = x(vv.i1.Va:vv.iN.Va); Vm = x(vv.i1.Vm:vv.iN.Vm); Pg = x(vv.i1.Pg:vv.iN.Pg); Qg = x(vv.i1.Qg:vv.iN.Qg); V = Vm .* exp(1j*Va); %%----- calculate return values ----- %% update voltages & generator outputs bus(:, VA) = Va * 180/pi; bus(:, VM) = Vm; gen(:, PG) = Pg * baseMVA; gen(:, QG) = Qg * baseMVA; gen(:, VG) = Vm(gen(:, GEN_BUS)); %% compute branch flows Sf = V(branch(:, F_BUS)) .* conj(Yf * V); %% cplx pwr at "from" bus, p.u. St = V(branch(:, T_BUS)) .* conj(Yt * V); %% cplx pwr at "to" bus, p.u. branch(:, PF) = real(Sf) * baseMVA; branch(:, QF) = imag(Sf) * baseMVA; branch(:, PT) = real(St) * baseMVA; branch(:, QT) = imag(St) * baseMVA; %% line constraint is actually on square of limit %% so we must fix multipliers muSf = zeros(nl, 1); muSt = zeros(nl, 1); if ~isempty(il) muSf(il) = 2 * info.lambda(2*nb+ (1:nl2)) .* branch(il, RATE_A) / baseMVA; muSt(il) = 2 * info.lambda(2*nb+nl2+(1:nl2)) .* branch(il, RATE_A) / baseMVA; end %% update Lagrange multipliers bus(:, MU_VMAX) = info.zu(vv.i1.Vm:vv.iN.Vm); bus(:, MU_VMIN) = info.zl(vv.i1.Vm:vv.iN.Vm); gen(:, MU_PMAX) = info.zu(vv.i1.Pg:vv.iN.Pg) / baseMVA; gen(:, MU_PMIN) = info.zl(vv.i1.Pg:vv.iN.Pg) / baseMVA; gen(:, MU_QMAX) = info.zu(vv.i1.Qg:vv.iN.Qg) / baseMVA; gen(:, MU_QMIN) = info.zl(vv.i1.Qg:vv.iN.Qg) / baseMVA; bus(:, LAM_P) = info.lambda(nn.i1.Pmis:nn.iN.Pmis) / baseMVA; bus(:, LAM_Q) = info.lambda(nn.i1.Qmis:nn.iN.Qmis) / baseMVA; branch(:, MU_SF) = muSf / baseMVA; branch(:, MU_ST) = muSt / baseMVA; %% package up results nlnN = getN(om, 'nln'); %% extract multipliers for nonlinear constraints kl = find(info.lambda(1:2*nb) < 0); ku = find(info.lambda(1:2*nb) > 0); nl_mu_l = zeros(nlnN, 1); nl_mu_u = [zeros(2*nb, 1); muSf; muSt]; nl_mu_l(kl) = -info.lambda(kl); nl_mu_u(ku) = info.lambda(ku); %% extract multipliers for linear constraints lam_lin = info.lambda(2*nb+2*nl2+(1:nA)); %% lambda for linear constraints kl = find(lam_lin < 0); %% lower bound binding ku = find(lam_lin > 0); %% upper bound binding mu_l = zeros(nA, 1); mu_l(kl) = -lam_lin(kl); mu_u = zeros(nA, 1); mu_u(ku) = lam_lin(ku); mu = struct( ... 'var', struct('l', info.zl, 'u', info.zu), ... 'nln', struct('l', nl_mu_l, 'u', nl_mu_u), ... 'lin', struct('l', mu_l, 'u', mu_u) ); results = mpc; [results.bus, results.branch, results.gen, ... results.om, results.x, results.mu, results.f] = ... deal(bus, branch, gen, om, x, mu, f); pimul = [ ... results.mu.nln.l - results.mu.nln.u; results.mu.lin.l - results.mu.lin.u; -ones(ny>0, 1); results.mu.var.l - results.mu.var.u; ]; raw = struct('xr', x, 'pimul', pimul, 'info', info.status, 'output', output); %----- callback functions ----- function f = objective(x, d) f = opf_costfcn(x, d.om); function df = gradient(x, d) [f, df] = opf_costfcn(x, d.om); function c = constraints(x, d) [hn, gn] = opf_consfcn(x, d.om, d.Ybus, d.Yf, d.Yt, d.mpopt, d.il); if isempty(d.A) c = [gn; hn]; else c = [gn; hn; d.A*x]; end function J = jacobian(x, d) [hn, gn, dhn, dgn] = opf_consfcn(x, d.om, d.Ybus, d.Yf, d.Yt, d.mpopt, d.il); J = [dgn'; dhn'; d.A]; function H = hessian(x, sigma, lambda, d) lam.eqnonlin = lambda(1:d.neqnln); lam.ineqnonlin = lambda(d.neqnln+(1:d.niqnln)); H = tril(opf_hessfcn(x, lam, sigma, d.om, d.Ybus, d.Yf, d.Yt, d.mpopt, d.il)); % function Js = jacobianstructure(d) % Js = d.Js; % % function Hs = hessianstructure(d) % Hs = d.Hs;
github
matheusmlopess-zz/Fuzzy-Logic-power-transmission-analysis-master
loadcase.m
.m
Fuzzy-Logic-power-transmission-analysis-master/matpower5.1/loadcase.m
9,744
utf_8
3b9f2a0546e217b2be54a408712e93bc
function [baseMVA, bus, gen, branch, areas, gencost, info] = loadcase(casefile) %LOADCASE Load .m or .mat case files or data struct in MATPOWER format. % % [BASEMVA, BUS, GEN, BRANCH, AREAS, GENCOST] = LOADCASE(CASEFILE) % [BASEMVA, BUS, GEN, BRANCH, GENCOST] = LOADCASE(CASEFILE) % [BASEMVA, BUS, GEN, BRANCH] = LOADCASE(CASEFILE) % MPC = LOADCASE(CASEFILE) % % Returns the individual data matrices or a struct containing them as fields. % % Here CASEFILE is either (1) a struct containing the fields baseMVA, % bus, gen, branch and, optionally, areas and/or gencost, or (2) a string % containing the name of the file. If CASEFILE contains the extension % '.mat' or '.m', then the explicit file is searched. If CASEFILE contains % no extension, then LOADCASE looks for a MAT-file first, then for an % M-file. If the file does not exist or doesn't define all required % matrices, the routine aborts with an appropriate error message. % % Alternatively, it can be called with the following syntax, though this % option is now deprecated and will be removed in a future version: % % [BASEMVA, BUS, GEN, BRANCH, AREAS, GENCOST, INFO] = LOADCASE(CASEFILE) % [MPC, INFO] = LOADCASE(CASEFILE) % % In this case, the function will not abort, but INFO will contain an exit % code as follows: % % 0: all variables successfully defined % 1: input argument is not a string or struct % 2: specified extension-less file name does not exist in search path % 3: specified MAT-file does not exist in search path % 4: specified M-file does not exist in search path % 5: specified file fails to define all matrices or contains syntax err % % If the input data is from an M-file or MAT-file defining individual % data matrices, or from a struct with out a 'version' field whose % GEN matrix has fewer than 21 columns, then it is assumed to be a % MATPOWER case file in version 1 format, and will be converted to % version 2 format. % MATPOWER % Copyright (c) 1996-2015 by Power System Engineering Research Center (PSERC) % by Carlos E. Murillo-Sanchez, PSERC Cornell & Universidad Autonoma de Manizales % and Ray Zimmerman, PSERC Cornell % % $Id: loadcase.m 2644 2015-03-11 19:34:22Z ray $ % % This file is part of MATPOWER. % Covered by the 3-clause BSD License (see LICENSE file for details). % See http://www.pserc.cornell.edu/matpower/ for more info. info = 0; if nargout < 3 return_as_struct = true; else return_as_struct = false; end if nargout >= 5 expect_gencost = true; if nargout > 5 expect_areas = true; else expect_areas = false; end else expect_gencost = false; expect_areas = false; end %%----- read data into struct ----- if ischar(casefile) [pathstr, fname, ext] = fileparts(casefile); if isempty(ext) if exist(fullfile(pathstr, [fname '.mat']), 'file') == 2 ext = '.mat'; elseif exist(fullfile(pathstr, [fname '.m']), 'file') == 2 ext = '.m'; else info = 2; end end %% attempt to read file if info == 0 if strcmp(ext,'.mat') %% from MAT file try s = load(fullfile(pathstr, fname)); if isfield(s, 'mpc') %% it's a struct s = s.mpc; else %% individual data matrices s.version = '1'; end catch info = 3; end elseif strcmp(ext,'.m') %% from M file if ~isempty(pathstr) cwd = cd; %% save working directory to string cd(pathstr); %% cd to specified directory end try %% assume it returns a struct s = feval(fname); catch info = 4; end if info == 0 && ~isstruct(s) %% if not try individual data matrices clear s; s.version = '1'; if expect_gencost try [s.baseMVA, s.bus, s.gen, s.branch, ... s.areas, s.gencost] = feval(fname); catch info = 4; end else if return_as_struct try [s.baseMVA, s.bus, s.gen, s.branch, ... s.areas, s.gencost] = feval(fname); catch try [s.baseMVA, s.bus, s.gen, s.branch] = feval(fname); catch info = 4; end end else try [s.baseMVA, s.bus, s.gen, s.branch] = feval(fname); catch info = 4; end end end end if info == 4 && exist(fullfile(pathstr, [fname '.m']), 'file') == 2 info = 5; err5 = lasterr; end if ~isempty(pathstr) %% change working directory back to original cd(cwd); end end end elseif isstruct(casefile) s = casefile; else info = 1; end %%----- check contents of struct ----- if info == 0 %% check for required fields if expect_areas && ~isfield(s,'areas') s.areas = []; %% add empty missing areas if needed for output end if ~( isfield(s,'baseMVA') && isfield(s,'bus') && ... isfield(s,'gen') && isfield(s,'branch') ) || ... ( expect_gencost && ~isfield(s, 'gencost') ) info = 5; %% missing some expected fields err5 = 'missing data'; else %% remove empty areas if not needed if isfield(s, 'areas') && isempty(s.areas) && ~expect_areas s = rmfield(s, 'areas'); end %% all fields present, copy to mpc mpc = s; if ~isfield(mpc, 'version') %% hmm, struct with no 'version' field if size(mpc.gen, 2) < 21 %% version 2 has 21 or 25 cols mpc.version = '1'; else mpc.version = '2'; end end if strcmp(mpc.version, '1') % convert from version 1 to version 2 [mpc.gen, mpc.branch] = mpc_1to2(mpc.gen, mpc.branch); mpc.version = '2'; end end end %%----- define output variables ----- if return_as_struct bus = info; end if info == 0 %% no errors if return_as_struct baseMVA = mpc; else baseMVA = mpc.baseMVA; bus = mpc.bus; gen = mpc.gen; branch = mpc.branch; if expect_gencost if expect_areas areas = mpc.areas; gencost = mpc.gencost; else areas = mpc.gencost; end end end else %% we have a problem captain if nargout == 2 || nargout == 7 %% return error code if return_as_struct baseMVA = struct([]); else baseMVA = []; bus = []; gen = []; branch = []; areas = []; gencost = []; end else %% die on error switch info case 1, error('loadcase: input arg should be a struct or a string containing a filename'); case 2, error('loadcase: specified case not in MATLAB''s search path'); case 3, error('loadcase: specified MAT file does not exist'); case 4, error('loadcase: specified M file does not exist'); case 5, error('loadcase: syntax error or undefined data matrix(ices) in the file\n%s', err5); otherwise, error('loadcase: unknown error'); end end end function [gen, branch] = mpc_1to2(gen, branch) %% define named indices into bus, gen, branch matrices [GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ... MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ... QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen; [F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ... TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ... ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch; %%----- gen ----- %% use the version 1 values for column names if size(gen, 2) > APF error('mpc_1to2: gen matrix appears to already be in version 2 format'); end shift = MU_PMAX - PMIN - 1; tmp = num2cell([MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN] - shift); [MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN] = deal(tmp{:}); %% add extra columns to gen tmp = zeros(size(gen, 1), shift); if size(gen, 2) >= MU_QMIN gen = [ gen(:, 1:PMIN) tmp gen(:, MU_PMAX:MU_QMIN) ]; else gen = [ gen(:, 1:PMIN) tmp ]; end %%----- branch ----- %% use the version 1 values for column names shift = PF - BR_STATUS - 1; tmp = num2cell([PF, QF, PT, QT, MU_SF, MU_ST] - shift); [PF, QF, PT, QT, MU_SF, MU_ST] = deal(tmp{:}); %% add extra columns to branch tmp = ones(size(branch, 1), 1) * [-360 360]; tmp2 = zeros(size(branch, 1), 2); if size(branch, 2) >= MU_ST branch = [ branch(:, 1:BR_STATUS) tmp branch(:, PF:MU_ST) tmp2 ]; elseif size(branch, 2) >= QT branch = [ branch(:, 1:BR_STATUS) tmp branch(:, PF:QT) ]; else branch = [ branch(:, 1:BR_STATUS) tmp ]; end
github
matheusmlopess-zz/Fuzzy-Logic-power-transmission-analysis-master
have_fcn.m
.m
Fuzzy-Logic-power-transmission-analysis-master/matpower5.1/have_fcn.m
23,477
utf_8
b233d7dc93c96513131e66f4ee959fbc
function rv = have_fcn(tag, rtype) %HAVE_FCN Test for optional functionality / version info. % TORF = HAVE_FCN(TAG) % TORF = HAVE_FCN(TAG, TOGGLE) % VER_STR = HAVE_FCN(TAG, 'vstr') % VER_NUM = HAVE_FCN(TAG, 'vnum') % DATE = HAVE_FCN(TAG, 'date') % INFO = HAVE_FCN(TAG, 'all') % % Returns availability, version and release information for optional % MATPOWER functionality. All information is cached, and the cached values % returned on subsequent calls. If the functionality exists, an attempt is % made to determine the release date and version number. The second % argument defines which value is returned, as follows: % <none> 1 = optional functionality is available, 0 = not available % 'vstr' version number as a string (e.g. '3.11.4') % 'vnum' version number as numeric value (e.g. 3.011004) % 'date' release date as a string (e.g. '20-Jan-2015') % 'all' struct with fields named 'av' (for 'availability'), 'vstr', % 'vnum' and 'date', and values corresponding to the above, % respectively. % % For functionality that is not available, all calls with a string-valued % second argument will return an empty value. % % Alternatively, the optional functionality specified by TAG can be toggled % OFF or ON by calling HAVE_FCN with a numeric second argument TOGGLE with % one of the following values: % 0 - turn OFF the optional functionality % 1 - turn ON the optional functionality (if available) % -1 - toggle the ON/OFF state of the optional functionality % % Possible values for input TAG and their meanings: % bpmpd - BP, BPMPD interior point solver % clp - CLP, LP/QP solver(http://www.coin-or.org/projects/Clp.xml) % opti_clp - version of CLP distributed with OPTI Toolbox % (http://www.i2c2.aut.ac.nz/Wiki/OPTI/) % cplex - CPLEX, IBM ILOG CPLEX Optimizer % fmincon - FMINCON, solver from Optimization Toolbox 2.x + % fmincon_ipm - FMINCON with Interior Point solver, from Opt Tbx 4.x + % glpk - GLPK, GNU Linear Programming Kit % gurobi - GUROBI, Gurobi solver (http://www.gurobi.com/), 5.x + % intlinprog - INTLINPROG, MILP solver from Optimization % Toolbox 7.0 (R2014a)+ % ipopt - IPOPT, NLP solver % (http://www.coin-or.org/projects/Ipopt.xml) % linprog - LINPROG, LP solver from Optimization Toolbox 2.x + % linprog_ds - LINPROG with dual-simplex solver % from Optimization Toolbox 7.1 (R2014b) + % knitro - KNITRO, NLP solver (http://www.ziena.com/) % knitromatlab - KNITRO, version 9.0.0+ % ktrlink - KNITRO, version < 9.0.0 (requires Opt Tbx) % matlab - code is running under Matlab, as opposed to Octave % minopf - MINOPF, MINOPF, MINOS-based OPF solver % mosek - MOSEK, LP/QP solver (http://www.mosek.com/) % optimoptions - OPTIMOPTIONS, option setting funciton for Optim Tbx 6.3+ % pardiso - PARDISO, Parallel Sparse Direct and Linear Solver % (http://www.pardiso-project.org) % quadprog - QUADPROG, QP solver from Optimization Toolbox 2.x + % quadprog_ls - QUADPROG with large-scale interior point convex solver % from Optimization Toolbox 6.x + % pdipmopf - PDIPMOPF, primal-dual interior point method OPF solver % scpdipmopf - SCPDIPMOPF, step-controlled PDIPM OPF solver % smartmarket - RUNMARKET and friends, for running an auction % tralmopf - TRALMOPF, trust region based augmented Langrangian % OPF solver % octave - code is running under Octave, as opposed to MATLAB % sdp_pf - SDP_PF applications of semi-definite programming % relaxation of power flow equations % yalmip - YALMIP SDP modeling platform % sedumi - SeDuMi SDP solver % sdpt3 - SDPT3 SDP solver % % Examples: % if have_fcn('minopf') % results = runopf(mpc, mpoption('opf.ac.solver', 'MINOPF')); % end % % Optional functionality can also be toggled OFF and ON by calling HAVE_FCN % with the following syntax, % TORF = HAVE_FCN(TAG, TOGGLE) % where TOGGLE takes a numeric value as follows: % Private tags for internal use only: % catchme - support for 'catch me' syntax in try/catch constructs % evalc - support for evalc() function % ipopt_auxdata - support for ipopt_auxdata(), required by 3.11 and later % regexp_split - support for 'split' argument to regexp() % MATPOWER % Copyright (c) 2004-2015 by Power System Engineering Research Center (PSERC) % by Ray Zimmerman, PSERC Cornell % % $Id: have_fcn.m 2662 2015-03-20 20:02:08Z ray $ % % This file is part of MATPOWER. % Covered by the 3-clause BSD License (see LICENSE file for details). % See http://www.pserc.cornell.edu/matpower/ for more info. if nargin > 1 && isnumeric(rtype) toggle = 1; on_off = rtype; if on_off < 0 TorF = have_fcn(tag); on_off = ~TorF; end else toggle = 0; end persistent fcns; if toggle %% change availability if on_off %% turn on if available fcns = rmfield(fcns, tag); %% delete field to force re-check else %% turn off if ~isfield(fcns, tag) %% not yet been checked TorF = have_fcn(tag); %% cache result first end fcns.(tag).av = 0; %% then turn off end TorF = have_fcn(tag); %% return cached value else %% detect availability %% info not yet cached? if ~isfield(fcns, tag) %%----- determine installation status, version number, etc. ----- %% initialize default values TorF = 0; vstr = ''; rdate = ''; switch tag %%----- public tags ----- case 'bpmpd' TorF = exist('bp', 'file') == 3; if TorF v = bpver('all'); vstr = v.Version; rdate = v.Date; end case 'clp' tmp = have_fcn('opti_clp', 'all'); if tmp.av %% have opti_clp TorF = tmp.av; vstr = tmp.vstr; rdate = tmp.date; elseif exist('clp','file') == 2 && exist('mexclp','file') == 3 TorF = 1; vstr = ''; end case 'opti_clp' TorF = exist('opti_clp', 'file') == 2 && exist('clp', 'file') == 3; if TorF str = evalc('clp'); pat = 'CLP: COIN-OR Linear Programming \[v([^\s,]+), Built ([^\]])+\]'; %% OPTI, Giorgetti/Currie [s,e,tE,m,t] = regexp(str, pat); if ~isempty(t) vstr = t{1}{1}; rdate = datestr(t{1}{2}, 'dd-mmm-yyyy'); end end case 'cplex' if exist('cplexqp', 'file') %% it's installed, but we need to check for MEX for this arch p = which('cplexqp'); %% get the path len = length(p) - length('cplexqp.p'); w = what(p(1:len)); %% look for mex files on the path for k = 1:length(w.mex) if regexp(w.mex{k}, 'cplexlink[^\.]*'); TorF = 1; break; end end end if TorF try cplex = Cplex('null'); vstr = cplex.getVersion; catch TorF = 0; end end case {'fmincon', 'fmincon_ipm', 'intlinprog', 'linprog', ... 'linprog_ds', 'optimoptions', 'quadprog', 'quadprog_ls'} if license('test', 'optimization_toolbox') v = ver('optim'); vstr = v.Version; rdate = v.Date; switch tag case 'fmincon' TorF = exist('fmincon', 'file') == 2 || ... exist('fmincon', 'file') == 6; case 'intlinprog' TorF = exist('intlinprog', 'file') == 2; case 'linprog' TorF = exist('linprog', 'file') == 2; case 'quadprog' TorF = exist('quadprog', 'file') == 2; otherwise otver = vstr2num(vstr); switch tag case 'fmincon_ipm' if otver >= 4 %% Opt Tbx 4.0+ (R208a+, Matlab 7.6+) TorF = 1; else TorF = 0; end case 'linprog_ds' if otver >= 7.001 %% Opt Tbx 7.1+ (R2014b+, Matlab 8.4+) TorF = 1; else TorF = 0; end case 'optimoptions' if otver >= 6.003 %% Opt Tbx 6.3+ (R2013a+, Matlab 8.1+) TorF = 1; else TorF = 0; end case 'quadprog_ls' if otver >= 6 %% Opt Tbx 6.0+ (R2011a+, Matlab 7.12+) TorF = 1; else TorF = 0; end end end else TorF = 0; end case 'glpk' if exist('glpk','file') == 3 %% Windows OPTI install (no glpk.m) TorF = 1; str = evalc('glpk'); pat = 'GLPK: GNU Linear Programming Kit \[v([^\s,]+), Built ([^\]])+\]'; %% OPTI, Giorgetti/Currie [s,e,tE,m,t] = regexp(str, pat); if ~isempty(t) vstr = t{1}{1}; rdate = datestr(t{1}{2}, 'dd-mmm-yyyy'); end elseif exist('glpk','file') == 2 %% others have glpk.m and ... if exist('__glpk__','file') == 3 %% octave __glpk__ MEX TorF = 1; if have_fcn('evalc') str = evalc('glpk(1, 1, 1, 1, 1, ''U'', ''C'', -1, struct(''msglev'', 3))'); pat = 'GLPK Simplex Optimizer, v([^\s,]+)'; [s,e,tE,m,t] = regexp(str, pat); if ~isempty(t) vstr = t{1}{1}; end end elseif exist('glpkcc','file') == 3 %% Matlab glpkcc MEX TorF = 1; str = evalc('glpk'); pat = 'GLPK Matlab interface\. Version: ([^\s,]+)'; %% glpkccm, Giorgetti/Klitgord [s,e,tE,m,t] = regexp(str, pat); if ~isempty(t) vstr = t{1}{1}; end end end case 'gurobi' TorF = exist('gurobi', 'file') == 3; if TorF try model = struct( ... 'A', sparse(1), ... 'rhs', 1, ... 'sense', '=', ... 'vtype', 'C', ... 'obj', 1, ... 'modelsense', 'min' ... ); params = struct( ... 'outputflag', 0 ... ); result = gurobi(model, params); vstr = sprintf('%d.%d.%d', result.versioninfo.major, result.versioninfo.minor, result.versioninfo.technical); catch % gurobiError fprintf('Gurobi Error!\n'); % disp(gurobiError.message); end end case 'ipopt' TorF = exist('ipopt', 'file') == 3; if TorF str = evalc('qps_ipopt([],1,1,1,1,1,1,1,struct(''verbose'', 2))'); pat = 'Ipopt version ([^\s,]+)'; [s,e,tE,m,t] = regexp(str, pat); if ~isempty(t) vstr = t{1}{1}; if vstr2num(vstr) >= 3.011 && ... ~exist('ipopt_auxdata', 'file') TorF = 0; warning('Improper installation of IPOPT. Version %s detected, but IPOPT_AUXDATA.M is missing.', vstr); end end end case 'knitro' %% any Knitro tmp = have_fcn('knitromatlab', 'all'); if tmp.av TorF = tmp.av; vstr = tmp.vstr; rdate = tmp.date; else tmp = have_fcn('ktrlink', 'all'); if tmp.av TorF = tmp.av; vstr = tmp.vstr; rdate = tmp.date; end end case {'knitromatlab', 'ktrlink'} %% knitromatlab for Knitro 9.0 or greater %% ktrlink for pre-Knitro 9.0, requires Optim Toolbox TorF = exist(tag, 'file') == 2; if TorF try str = evalc(['[x fval] = ' tag '(@(x)1,1);']); end TorF = exist('fval', 'var') && fval == 1; if TorF pat = 'KNITRO ([^\s]+)\n'; [s,e,tE,m,t] = regexp(str, pat); if ~isempty(t) vstr = t{1}{1}; end end end case 'matlab' v = ver('matlab'); if ~isempty(v) && isfield(v, 'Version') && ~isempty(v.Version) TorF = 1; vstr = v.Version; rdate = v.Date; end case 'minopf' TorF = exist('minopf', 'file') == 3; if TorF v = minopfver('all'); vstr = v.Version; rdate = v.Date; end case 'mosek' TorF = exist('mosekopt', 'file') == 3; if TorF % MOSEK Version 6.0.0.93 (Build date: 2010-10-26 13:03:27) % MOSEK Version 6.0.0.106 (Build date: 2011-3-17 10:46:54) % MOSEK Version 7.0.0.134 (Build date: 2014-10-2 11:10:02) pat = 'Version (\.*\d)+.*Build date: (\d+-\d+-\d+)'; [s,e,tE,m,t] = regexp(evalc('mosekopt'), pat); if ~isempty(t) vstr = t{1}{1}; rdate = datestr(t{1}{2}, 'dd-mmm-yyyy'); end end case 'smartmarket' TorF = exist('runmarket', 'file') == 2; if TorF v = mpver('all'); vstr = v.Version; rdate = v.Date; end case 'octave' TorF = exist('OCTAVE_VERSION', 'builtin') == 5; if TorF v = ver('octave'); vstr = v.Version; rdate = v.Date; end case 'pardiso' TorF = exist('pardisoinit', 'file') == 3 && ... exist('pardisoreorder', 'file') == 3 && ... exist('pardisofactor', 'file') == 3 && ... exist('pardisosolve', 'file') == 3 && ... exist('pardisofree', 'file') == 3; if TorF try A = sparse([1 2; 3 4]); b = [1;1]; % Summary PARDISO 5.1.0: ( reorder to reorder ) pat = 'Summary PARDISO (\.*\d)+:'; info = pardisoinit(11, 0); info = pardisoreorder(A, info, false); % [s,e,tE,m,t] = regexp(evalc('info = pardisoreorder(A, info, true);'), pat); % if ~isempty(t) % vstr = t{1}{1}; % end info = pardisofactor(A, info, false); [x, info] = pardisosolve(A, b, info, false); pardisofree(info); if any(x ~= [-1; 1]) TorF = 0; end catch TorF = 0; end end case {'pdipmopf', 'scpdipmopf', 'tralmopf'} if have_fcn('matlab') v = ver('Matlab'); vn = vstr2num(v.Version); %% requires >= MATLAB 6.5 (R13) (released 20-Jun-2002) %% older versions do not have mxCreateDoubleScalar() function %% (they have mxCreateScalarDouble() instead) if vn >= 6.005 switch tag case 'pdipmopf' TorF = exist('pdipmopf', 'file') == 3; case 'scpdipmopf' TorF = exist('scpdipmopf', 'file') == 3; case 'tralmopf' %% requires >= MATLAB 7.3 (R2006b) (released 03-Aug-2006) %% older versions do not include the needed form of chol() if vn >= 7.003 TorF = exist('tralmopf', 'file') == 3; else TorF = 0; end end else TorF = 0; end if TorF v = feval([tag 'ver'], 'all'); vstr = v.Version; rdate = v.Date; end end case 'sdp_pf' TorF = have_fcn('yalmip') && exist('mpoption_info_sdp_pf', 'file') == 2; if TorF v = sdp_pf_ver('all'); vstr = v.Version; rdate = v.Date; end case 'yalmip' TorF = ~have_fcn('octave') && exist('yalmip','file') == 2; %% YALMIP does not yet work with Octave, rdz 1/6/14 if TorF str = evalc('yalmip;'); pat = 'Version\s+([^\s]+)\n'; [s,e,tE,m,t] = regexp(str, pat); if ~isempty(t) rdate = t{1}{1}; vstr = datestr(rdate, 'yy.mm.dd'); end end case 'sdpt3' TorF = exist('sdpt3','file') == 2; if TorF str = evalc('help sdpt3'); pat = 'version\s+([^\s]+).*Last Modified: ([^\n]+)\n'; [s,e,tE,m,t] = regexp(str, pat); if ~isempty(t) vstr = t{1}{1}; rdate = datestr(t{1}{2}, 'dd-mmm-yyyy'); end end case 'sedumi' TorF = exist('sedumi','file') == 2; if TorF str = evalc('x = sedumi([1 1], 1, [1;2])'); pat = 'SeDuMi\s+([^\s]+)'; [s,e,tE,m,t] = regexp(str, pat); if ~isempty(t) vstr = t{1}{1}; end end %%----- private tags ----- case 'catchme' %% not supported by Matlab <= 7.4 (R2007a), Octave <= 3.6 if have_fcn('octave') if have_fcn('octave', 'vnum') <= 3.006 TorF = 0; else TorF = 1; end else if have_fcn('matlab', 'vnum') <= 7.004 TorF = 0; else TorF = 1; end end case 'evalc' if have_fcn('octave') TorF = 0; else TorF = 1; end case 'ipopt_auxdata' if have_fcn('ipopt') vn = have_fcn('ipopt', 'vnum'); if ~isempty(vn) && vn >= 3.011 TorF = 1; end end case 'regexp_split' %% missing for Matlab < 7.3 & Octave < 3.8 if have_fcn('matlab') && have_fcn('matlab', 'vnum') >= 7.003 TorF = 1; elseif have_fcn('octave', 'vnum') >= 3.008 TorF = 1; end %%----- unknown tag ----- otherwise error('have_fcn: unknown functionality %s', tag); end %% assign values to cache fcns.(tag).av = TorF; fcns.(tag).vstr = vstr; if isempty(vstr) fcns.(tag).vnum = []; else fcns.(tag).vnum = vstr2num(vstr); end fcns.(tag).date = rdate; end end %% extract desired values from cache if nargin < 2 || toggle rv = fcns.(tag).av; else switch lower(rtype) case 'vstr' rv = fcns.(tag).vstr; case 'vnum' rv = fcns.(tag).vnum; case 'date' rv = fcns.(tag).date; case 'all' rv = fcns.(tag); end end function num = vstr2num(vstr) % Converts version string to numerical value suitable for < or > comparisons % E.g. '3.11.4' --> 3.011004 pat = '\.?(\d+)'; [s,e,tE,m,t] = regexp(vstr, pat); b = 1; num = 0; for k = 1:length(t) num = num + b * str2num(t{k}{1}); b = b / 1000; end
github
matheusmlopess-zz/Fuzzy-Logic-power-transmission-analysis-master
mpoption.m
.m
Fuzzy-Logic-power-transmission-analysis-master/matpower5.1/mpoption.m
65,137
utf_8
da412795e04899d174df7909834e891c
function opt = mpoption(varargin) %MPOPTION Used to set and retrieve a MATPOWER options struct. % % OPT = MPOPTION % Returns the default options struct. % % OPT = MPOPTION(OVERRIDES) % Returns the default options struct, with some fields overridden % by values from OVERRIDES, which can be a struct or the name of % a function that returns a struct. % % OPT = MPOPTION(NAME1, VALUE1, NAME2, VALUE2, ...) % Same as previous, except override options are specified by NAME, % VALUE pairs. This can be used to set any part of the options % struct. The names can be individual fields or multi-level fields % names with embedded periods. The values can be scalars or structs. % % For backward compatibility, the NAMES and VALUES may correspond % to old-style MATPOWER option names (elements in the old-style % options vector) as well. % % OPT = MPOPTION(OPT0) % Converts an old-style options vector OPT0 into the corresponding % options struct. If OPT0 is an options struct it does nothing. % % OPT = MPOPTION(OPT0, OVERRIDES) % Applies overrides to an existing set of options, OPT0, which % can be an old-style options vector or an options struct. % % OPT = MPOPTION(OPT0, NAME1, VALUE1, NAME2, VALUE2, ...) % Same as above except it uses the old-style options vector OPT0 % as a base instead of the old default options vector. % % OPT_VECTOR = MPOPTION(OPT, []) % Creates and returns an old-style options vector from an % options struct OPT. % % Note: The use of old-style MATPOWER options vectors and their % names and values has been deprecated and will be removed % in a future version of MATPOWER. Until then, all uppercase % option names are not permitted for new top-level options. % % Examples: % mpopt = mpoption('pf.alg', 'FDXB', 'pf.tol', 1e-4); % mpopt = mpoption(mpopt, 'opf.dc.solver', 'CPLEX', 'verbose', 2); % %The currently defined options are as follows: % % name default description [options] %---------------------- --------- ---------------------------------- %Model options: % model 'AC' AC vs. DC power flow model % [ 'AC' - use nonlinear AC model & corresponding algorithms/options ] % [ 'DC' - use linear DC model & corresponding algorithms/options ] % %Power Flow options: % pf.alg 'NR' AC power flow algorithm % [ 'NR' - Newton's method ] % [ 'FDXB' - Fast-Decoupled (XB version) ] % [ 'FDBX' - Fast-Decoupled (BX version) ] % [ 'GS' - Gauss-Seidel ] % pf.tol 1e-8 termination tolerance on per unit % P & Q mismatch % pf.nr.max_it 10 maximum number of iterations for % Newton's method % pf.fd.max_it 30 maximum number of iterations for % fast decoupled method % pf.gs.max_it 1000 maximum number of iterations for % Gauss-Seidel method % pf.enforce_q_lims 0 enforce gen reactive power limits at % expense of |V| % [ 0 - do NOT enforce limits ] % [ 1 - enforce limits, simultaneous bus type conversion ] % [ 2 - enforce limits, one-at-a-time bus type conversion ] % %Continuation Power Flow options: % cpf.parameterization 3 choice of parameterization % [ 1 - natural ] % [ 2 - arc length ] % [ 3 - pseudo arc length ] % cpf.stop_at 'NOSE' determins stopping criterion % [ 'NOSE' - stop when nose point is reached ] % [ 'FULL' - trace full nose curve ] % [ <lam_stop> - stop upon reaching specified target lambda value ] % cpf.step 0.05 continuation power flow step size % cpf.adapt_step 0 toggle adaptive step size feature % [ 0 - adaptive step size disabled ] % [ 1 - adaptive step size enabled ] % cpf.error_tol 1e-3 tolerance for adaptive step control % cpf.step_min 1e-4 minimum allowed step size % cpf.step_max 0.2 maximum allowed step size % cpf.plot.level 0 control plotting of noze curve % [ 0 - do not plot nose curve ] % [ 1 - plot when completed ] % [ 2 - plot incrementally at each iteration ] % [ 3 - same as 2, with 'pause' at each iteration ] % cpf.plot.bus <empty> index of bus whose voltage is to be % plotted % cpf.user_callback <empty> string or cell array of strings % with names of user callback functions % see 'help cpf_default_callback' % cpf.user_callback_args <empty> struct passed to user-defined % callback functions % %Optimal Power Flow options: % opf.ac.solver 'DEFAULT' AC optimal power flow solver % [ 'DEFAULT' - choose solver based on availability in the following ] % [ order: 'PDIPM', 'MIPS' ] % [ 'MIPS' - MIPS, Matlab Interior Point Solver, primal/dual ] % [ interior point method (pure Matlab) ] % [ 'FMINCON' - MATLAB Optimization Toolbox, FMINCON ] % [ 'IPOPT' - IPOPT, requires MEX interface to IPOPT solver ] % [ available from: ] % [ http://www.coin-or.org/projects/Ipopt.xml ] % [ 'KNITRO' - KNITRO, requires MATLAB Optimization Toolbox and ] % [ KNITRO libraries available from: http://www.ziena.com/] % [ 'MINOPF' - MINOPF, MINOS-based solver, requires optional ] % [ MEX-based MINOPF package, available from: ] % [ http://www.pserc.cornell.edu/minopf/ ] % [ 'PDIPM' - PDIPM, primal/dual interior point method, requires ] % [ optional MEX-based TSPOPF package, available from: ] % [ http://www.pserc.cornell.edu/tspopf/ ] % [ 'SDPOPF' - SDPOPF, solver based on semidefinite relaxation of ] % [ OPF problem, requires optional packages: ] % [ SDP_PF, available in extras/sdp_pf ] % [ YALMIP, available from: ] % [ http://users.isy.liu.se/johanl/yalmip/ ] % [ SDP solver such as SeDuMi, available from: ] % [ http://sedumi.ie.lehigh.edu/ ] % [ 'TRALM' - TRALM, trust region based augmented Langrangian ] % [ method, requires TSPOPF (see 'PDIPM') ] % opf.dc.solver 'DEFAULT' DC optimal power flow solver % [ 'DEFAULT' - choose solver based on availability in the following ] % [ order: 'CPLEX', 'GUROBI', 'MOSEK','BPMPD','OT', ] % [ 'GLPK' (linear costs only), 'MIPS' ] % [ 'MIPS' - MIPS, Matlab Interior Point Solver, primal/dual ] % [ interior point method (pure Matlab) ] % [ 'BPMPD' - BPMPD, requires optional MEX-based BPMPD_MEX package ] % [ available from: http://www.pserc.cornell.edu/bpmpd/ ] % [ 'CLP' - CLP, requires interface to COIN-OP LP solver ] % [ available from:http://www.coin-or.org/projects/Clp.xml] % [ 'CPLEX' - CPLEX, requires CPLEX solver available from: ] % [ http://www.ibm.com/software/integration/ ... ] % [ ... optimization/cplex-optimizer/ ] % [ 'GLPK' - GLPK, requires interface to GLPK solver ] % [ available from: http://www.gnu.org/software/glpk/ ] % [ (GLPK does not work with quadratic cost functions) ] % [ 'GUROBI' - GUROBI, requires Gurobi optimizer (v. 5+) ] % [ available from: http://www.gurobi.com/ ] % [ 'IPOPT' - IPOPT, requires MEX interface to IPOPT solver ] % [ available from: ] % [ http://www.coin-or.org/projects/Ipopt.xml ] % [ 'MOSEK' - MOSEK, requires Matlab interface to MOSEK solver ] % [ available from: http://www.mosek.com/ ] % [ 'OT' - MATLAB Optimization Toolbox, QUADPROG, LINPROG ] % opf.violation 5e-6 constraint violation tolerance % opf.flow_lim 'S' quantity limited by branch flow % constraints % [ 'S' - apparent power flow (limit in MVA) ] % [ 'P' - active power flow (limit in MW) ] % [ 'I' - current magnitude (limit in MVA at 1 p.u. voltage) ] % opf.ignore_angle_lim 0 angle diff limits for branches % [ 0 - include angle difference limits, if specified ] % [ 1 - ignore angle difference limits even if specified ] % opf.init_from_mpc -1 specify whether to use current state % in MATPOWER case to initialize OPF % (currently supported only for Ipopt, % Knitro and MIPS solvers) % [ -1 - MATPOWER decides, based on solver/algorithm ] % [ 0 - ignore current state when initializing OPF ] % [ 1 - use current state to initialize OPF ] % opf.return_raw_der 0 for AC OPF, return constraint and % derivative info in results.raw % (in fields g, dg, df, d2f) [ 0 or 1 ] % %Output options: % verbose 1 amount of progress info printed % [ 0 - print no progress info ] % [ 1 - print a little progress info ] % [ 2 - print a lot of progress info ] % [ 3 - print all progress info ] % out.all -1 controls pretty-printing of results % [ -1 - individual flags control what prints ] % [ 0 - do not print anything (overrides individual flags, ignored ] % [ for files specified as FNAME arg to runpf(), runopf(), etc.)] % [ 1 - print everything (overrides individual flags) ] % out.sys_sum 1 print system summary [ 0 or 1 ] % out.area_sum 0 print area summaries [ 0 or 1 ] % out.bus 1 print bus detail [ 0 or 1 ] % out.branch 1 print branch detail [ 0 or 1 ] % out.gen 0 print generator detail [ 0 or 1 ] % out.lim.all -1 controls constraint info output % [ -1 - individual flags control what constraint info prints ] % [ 0 - no constraint info (overrides individual flags) ] % [ 1 - binding constraint info (overrides individual flags) ] % [ 2 - all constraint info (overrides individual flags) ] % out.lim.v 1 control voltage limit info % [ 0 - do not print ] % [ 1 - print binding constraints only ] % [ 2 - print all constraints ] % [ (same options for OUT_LINE_LIM, OUT_PG_LIM, OUT_QG_LIM) ] % out.lim.line 1 control line flow limit info % out.lim.pg 1 control gen active power limit info % out.lim.qg 1 control gen reactive pwr limit info % out.force 0 print results even if success % flag = 0 [ 0 or 1 ] % out.suppress_detail -1 suppress all output but system summary % [ -1 - suppress details for large systems (> 500 buses) ] % [ 0 - do not suppress any output specified by other flags ] % [ 1 - suppress all output except system summary section ] % [ (overrides individual flags, but not out.all = 1) ] % %Solver specific options: % name default description [options] % ----------------------- --------- ---------------------------------- % MIPS: % mips.linsolver '' linear system solver % [ '' or '\' build-in backslash \ operator (e.g. x = A \ b) ] % [ 'PARDISO' PARDISO solver (if available) ] % mips.feastol 0 feasibility (equality) tolerance % (set to opf.violation by default) % mips.gradtol 1e-6 gradient tolerance % mips.comptol 1e-6 complementary condition % (inequality) tolerance % mips.costtol 1e-6 optimality tolerance % mips.max_it 150 maximum number of iterations % mips.step_control 0 enable step-size cntrl [ 0 or 1 ] % mips.sc.red_it 20 maximum number of reductions per % iteration with step control % mips.xi 0.99995 constant used in alpha updates* % mips.sigma 0.1 centering parameter* % mips.z0 1 used to initialize slack variables* % mips.alpha_min 1e-8 returns "Numerically Failed" if % either alpha parameter becomes % smaller than this value* % mips.rho_min 0.95 lower bound on rho_t* % mips.rho_max 1.05 upper bound on rho_t* % mips.mu_threshold 1e-5 KT multipliers smaller than this % value for non-binding constraints % are forced to zero % mips.max_stepsize 1e10 returns "Numerically Failed" if the % 2-norm of the reduced Newton step % exceeds this value* % * See the corresponding Appendix in the manual for details. % % CPLEX: % cplex.lpmethod 0 solution algorithm for LP problems % [ 0 - automatic: let CPLEX choose ] % [ 1 - primal simplex ] % [ 2 - dual simplex ] % [ 3 - network simplex ] % [ 4 - barrier ] % [ 5 - sifting ] % [ 6 - concurrent (dual, barrier, and primal) ] % cplex.qpmethod 0 solution algorithm for QP problems % [ 0 - automatic: let CPLEX choose ] % [ 1 - primal simplex optimizer ] % [ 2 - dual simplex optimizer ] % [ 3 - network optimizer ] % [ 4 - barrier optimizer ] % cplex.opts <empty> see CPLEX_OPTIONS for details % cplex.opt_fname <empty> see CPLEX_OPTIONS for details % cplex.opt 0 see CPLEX_OPTIONS for details % % FMINCON: % fmincon.alg 4 algorithm used by fmincon() for OPF % for Opt Toolbox 4 and later % [ 1 - active-set (not suitable for large problems) ] % [ 2 - interior-point, w/default 'bfgs' Hessian approx ] % [ 3 - interior-point, w/ 'lbfgs' Hessian approx ] % [ 4 - interior-point, w/exact user-supplied Hessian ] % [ 5 - interior-point, w/Hessian via finite differences ] % [ 6 - sqp (not suitable for large problems) ] % fmincon.tol_x 1e-4 termination tol on x % fmincon.tol_f 1e-4 termination tol on f % fmincon.max_it 0 maximum number of iterations % [ 0 => default ] % % GUROBI: % gurobi.method 0 solution algorithm (Method) % [ -1 - automatic, let Gurobi decide ] % [ 0 - primal simplex ] % [ 1 - dual simplex ] % [ 2 - barrier ] % [ 3 - concurrent (LP only) ] % [ 4 - deterministic concurrent (LP only) ] % gurobi.timelimit Inf maximum time allowed (TimeLimit) % gurobi.threads 0 max number of threads (Threads) % gurobi.opts <empty> see GUROBI_OPTIONS for details % gurobi.opt_fname <empty> see GUROBI_OPTIONS for details % gurobi.opt 0 see GUROBI_OPTIONS for details % % IPOPT: % ipopt.opts <empty> see IPOPT_OPTIONS for details % ipopt.opt_fname <empty> see IPOPT_OPTIONS for details % ipopt.opt 0 see IPOPT_OPTIONS for details % % KNITRO: % knitro.tol_x 1e-4 termination tol on x % knitro.tol_f 1e-4 termination tol on f % knitro.opt_fname <empty> name of user-supplied native % KNITRO options file that overrides % all other options % knitro.opt 0 if knitro.opt_fname is empty and % knitro.opt is a non-zero integer N % then knitro.opt_fname is auto- % generated as: % 'knitro_user_options_N.txt' % % LINPROG: % linprog <empty> LINPROG options passed to % OPTIMOPTIONS or OPTIMSET. % see LINPROG in the Optimization % Toolbox for details % % MINOPF: % minopf.feastol 0 (1e-3) primal feasibility tolerance % (set to opf.violation by default) % minopf.rowtol 0 (1e-3) row tolerance % minopf.xtol 0 (1e-4) x tolerance % minopf.majdamp 0 (0.5) major damping parameter % minopf.mindamp 0 (2.0) minor damping parameter % minopf.penalty 0 (1.0) penalty parameter % minopf.major_it 0 (200) major iterations % minopf.minor_it 0 (2500) minor iterations % minopf.max_it 0 (2500) iterations limit % minopf.verbosity -1 amount of progress info printed % [ -1 - controlled by 'verbose' option ] % [ 0 - print nothing ] % [ 1 - print only termination status message ] % [ 2 - print termination status and screen progress ] % [ 3 - print screen progress, report file (usually fort.9) ] % minopf.core 0 (1200*nb + 2*(nb+ng)^2) memory allocation % minopf.supbasic_lim 0 (2*nb + 2*ng) superbasics limit % minopf.mult_price 0 (30) multiple price % % MOSEK: % mosek.lp_alg 0 solution algorithm for LP problems % (MSK_IPAR_OPTIMIZER) % for MOSEK 7.x ... (see MOSEK_SYMBCON for a "better way") % [ 0 - automatic: let MOSEK choose ] % [ 1 - interior point ] % [ 3 - primal simplex ] % [ 4 - dual simplex ] % [ 5 - primal dual simplex ] % [ 6 - automatic simplex (MOSEK chooses which simplex method) ] % [ 7 - network primal simplex ] % [ 10 - concurrent ] % mosek.max_it 0 (400) interior point max iterations % (MSK_IPAR_INTPNT_MAX_ITERATIONS) % mosek.gap_tol 0 (1e-8) interior point relative gap tol % (MSK_DPAR_INTPNT_TOL_REL_GAP) % mosek.max_time 0 (-1) maximum time allowed % (MSK_DPAR_OPTIMIZER_MAX_TIME) % mosek.num_threads 0 (1) max number of threads % (MSK_IPAR_INTPNT_NUM_THREADS) % mosek.opts <empty> see MOSEK_OPTIONS for details % mosek.opt_fname <empty> see MOSEK_OPTIONS for details % mosek.opt 0 see MOSEK_OPTIONS for details % % QUADPROG: % quadprog <empty> QUADPROG options passed to % OPTIMOPTIONS or OPTIMSET. % see QUADPROG in the Optimization % Toolbox for details % % TSPOPF: % pdipm.feastol 0 feasibility (equality) tolerance % (set to opf.violation by default) % pdipm.gradtol 1e-6 gradient tolerance % pdipm.comptol 1e-6 complementary condition % (inequality) tolerance % pdipm.costtol 1e-6 optimality tolerance % pdipm.max_it 150 maximum number of iterations % pdipm.step_control 0 enable step-size cntrl [ 0 or 1 ] % pdipm.sc.red_it 20 maximum number of reductions per % iteration with step control % pdipm.sc.smooth_ratio 0.04 piecewise linear curve smoothing % ratio % % tralm.feastol 0 feasibility tolerance % (set to opf.violation by default) % tralm.primaltol 5e-4 primal variable tolerance % tralm.dualtol 5e-4 dual variable tolerance % tralm.costtol 1e-5 optimality tolerance % tralm.major_it 40 maximum number of major iterations % tralm.minor_it 40 maximum number of minor iterations % tralm.smooth_ratio 0.04 piecewise linear curve smoothing % ratio % MATPOWER % Copyright (c) 2013-2015 by Power System Engineering Research Center (PSERC) % by Ray Zimmerman, PSERC Cornell % % $Id: mpoption.m 2660 2015-03-20 02:10:18Z ray $ % % This file is part of MATPOWER. % Covered by the 3-clause BSD License (see LICENSE file for details). % See http://www.pserc.cornell.edu/matpower/ for more info. %% some constants N = 124; %% number of options in old-style vector v = mpoption_version; %% version number of MATPOWER options struct %% initialize flags and arg counter have_opt0 = 0; %% existing options struct or vector provided? have_old_style_ov = 0; %% override options using old-style names? return_old_style = 0; %% return value as old-style vector? k = 1; if nargin > 0 opt0 = varargin{k}; if (isstruct(opt0) && isfield(opt0, 'v')) || ... (isnumeric(opt0) && size(opt0, 1) == N && size(opt0, 2) == 1) have_opt0 = 1; k = k + 1; end end %% create base options vector to which overrides are made if have_opt0 if isstruct(opt0) %% it's already a valid options struct if DEBUG, fprintf('OPT0 is a valid options struct\n'); end if opt0.v < v %% convert older version to current version opt_d = mpoption_default(); if opt0.v == 1 %% convert version 1 to 2 if isfield(opt_d, 'linprog') opt0.lingprog = opt_d.linprog; end if isfield(opt_d, 'quadprog') opt0.quadprog = opt_d.quadprog; end end if opt0.v <= 2 %% convert version 2 to 3 opt0.out.suppress_detail = opt_d.out.suppress_detail; end %if opt0.v <= 3 %% convert version 3 to 4 %% new mips options were all optional, no conversion needed %end if opt0.v <= 4 %% convert version 4 to 5 opt0.opf.init_from_mpc = opt_d.opf.init_from_mpc; end if opt0.v <= 5 %% convert version 5 to 6 if isfield(opt_d, 'clp') opt0.clp = opt_d.clp; end end if opt0.v <= 6 %% convert version 6 to 7 if isfield(opt_d, 'intlinprog') opt0.intlinprog = opt_d.intlinprog; end end if opt0.v <= 7 %% convert version 7 to 8 opt0.mips.linsolver = opt_d.mips.linsolver; end opt0.v = v; end opt = opt0; else %% convert from old-style options vector if DEBUG, fprintf('OPT0 is a old-style options vector\n'); end opt = mpoption_v2s(opt0); end else %% use default options struct as base if DEBUG, fprintf('no OPT0, starting with default options struct\n'); end opt = mpoption_default(); end %% do we have OVERRIDES or NAME/VALUE pairs ov = []; if nargin - k == 0 %% looking at last arg, must be OVERRIDES if isstruct(varargin{k}) %% OVERRIDES provided as struct if DEBUG, fprintf('OVERRIDES struct\n'); end ov = varargin{k}; elseif ischar(varargin{k}) %% OVERRIDES provided as file/function name if DEBUG, fprintf('OVERRIDES file/function name\n'); end try ov = feval(varargin{k}); catch error('mpoption: Unable to load MATPOWER options from ''%s''', varargin{k}); end if ~isstruct(ov) error('mpoption: calling ''%s'' did not return a struct', varargin{k}); end elseif isempty(varargin{k}) return_old_style = 1; else error('mpoption: OVERRIDES must be a struct or the name of a function that returns a struct'); end elseif nargin - k > 0 && mod(nargin-k, 2) %% even number of remaining args if DEBUG, fprintf('NAME/VALUE pairs override defaults\n'); end %% process NAME/VALUE pairs if (have_opt0 && isnumeric(opt0)) ... %% modifying an old-style options vector || strcmp(varargin{k}, upper(varargin{k})) %% this code implies that top-level option fields %% cannot be all uppercase if have_opt0 have_old_style_ov = 1; %% convert pairs to struct while k < nargin name = varargin{k}; val = varargin{k+1}; k = k + 2; ov.(name) = val; end else opt_v = mpoption_old(varargin{:}); %% create modified vector ... opt = mpoption_v2s(opt_v); %% ... then convert end else %% modifying options struct %% convert pairs to struct while k < nargin name = varargin{k}; val = varargin{k+1}; k = k + 2; c = regexp(name, '([^\.]*)', 'tokens'); s = struct(); for i = 1:length(c) s(i).type = '.'; s(i).subs = c{i}{1}; end ov = subsasgn(ov, s, val); end end elseif nargin == 0 || nargin == 1 if DEBUG, fprintf('no OVERRIDES, return default options struct or converted OPT0 vector\n'); end else error('mpoption: invalid calling syntax, see ''help mpoption'' to double-check the valid options'); end %% apply overrides if ~isempty(ov) if have_old_style_ov opt = apply_old_mpoption_overrides(opt, ov); else vf = nested_struct_copy(mpoption_default(), mpoption_info_mips('V')); vf = nested_struct_copy(vf, mpoption_optional_fields()); ex = struct(... 'name', {... 'cpf.user_callback_args' ... }, ... 'check', {... 0 ... }, ... 'copy_mode', {... '' ... } ... ); %% add exceptions for optional packages opt_pkgs = mpoption_optional_pkgs(); n = length(ex); for k = 1:length(opt_pkgs) fname = ['mpoption_info_' opt_pkgs{k}]; if exist(fname, 'file') == 2 opt_ex = feval(fname, 'E'); nex = length(opt_ex); if ~isempty(opt_ex) for j = 1:nex ex(n+j).name = opt_ex(j).name; end if isfield(opt_ex, 'check') for j = 1:nex ex(n+j).check = opt_ex(j).check; end end if isfield(opt_ex, 'copy_mode') for j = 1:nex ex(n+j).copy_mode = opt_ex(j).copy_mode; end end if isfield(opt_ex, 'valid_fields') for j = 1:nex ex(n+j).valid_fields = opt_ex(j).valid_fields; end end n = n + nex; end end end nsc_opt = struct('check', 1, 'valid_fields', vf, 'exceptions', ex); % if have_fcn('catchme') % try % opt = nested_struct_copy(opt, ov, nsc_opt); % catch me % str = strrep(me.message, 'field', 'option'); % str = strrep(str, 'nested_struct_copy', 'mpoption'); % error(str); % end % else try opt = nested_struct_copy(opt, ov, nsc_opt); catch me = lasterr; str = strrep(me, 'field', 'option'); str = strrep(str, 'nested_struct_copy', 'mpoption'); error(str); end % end end end if return_old_style opt = mpoption_s2v(opt); end %%------------------------------------------------------------------- function opt = apply_old_mpoption_overrides(opt0, ov) % % OPT0 is assumed to already have all of the fields and sub-fields found % in the default options struct. %% initialize output opt = opt0; errstr = 'mpoption: %g is not a valid value for the old-style ''%s'' option'; fields = fieldnames(ov); for f = 1:length(fields) ff = fields{f}; switch ff case 'PF_ALG' switch ov.(ff) case 1 opt.pf.alg = 'NR'; %% Newton's method case 2 opt.pf.alg = 'FDXB'; %% fast-decoupled (XB version) case 3 opt.pf.alg = 'FDBX'; %% fast-decoupled (BX version) case 4 opt.pf.alg = 'GS'; %% Gauss-Seidel otherwise error(errstr, ov.(ff), ff); end case 'PF_TOL' opt.pf.tol = ov.(ff); case 'PF_MAX_IT' opt.pf.nr.max_it = ov.(ff); case 'PF_MAX_IT_FD' opt.pf.fd.max_it = ov.(ff); case 'PF_MAX_IT_GS' opt.pf.gs.max_it = ov.(ff); case 'ENFORCE_Q_LIMS' opt.pf.enforce_q_lims = ov.(ff); case 'PF_DC' switch ov.(ff) case 0 opt.model = 'AC'; case 1 opt.model = 'DC'; otherwise error(errstr, ov.(ff), ff); end case 'OPF_ALG' switch ov.(ff) case 0 opt.opf.ac.solver = 'DEFAULT'; case 500 opt.opf.ac.solver = 'MINOPF'; case 520 opt.opf.ac.solver = 'FMINCON'; case {540, 545} opt.opf.ac.solver = 'PDIPM'; if ov.(ff) == 545 opt.pdipm.step_control = 1; else opt.pdipm.step_control = 0; end case 550 opt.opf.ac.solver = 'TRALM'; case {560, 565} opt.opf.ac.solver = 'MIPS'; if ov.(ff) == 565 opt.mips.step_control = 1; else opt.mips.step_control = 0; end case 580 opt.opf.ac.solver = 'IPOPT'; case 600 opt.opf.ac.solver = 'KNITRO'; otherwise error(errstr, ov.(ff), ff); end case 'OPF_VIOLATION' opt.opf.violation = ov.(ff); case 'CONSTR_TOL_X' opt.fmincon.tol_x = ov.(ff); opt.knitro.tol_x = ov.(ff); case 'CONSTR_TOL_F' opt.fmincon.tol_f = ov.(ff); opt.knitro.tol_f = ov.(ff); case 'CONSTR_MAX_IT' opt.fmincon.max_it = ov.(ff); case 'OPF_FLOW_LIM' switch ov.(ff) case 0 opt.opf.flow_lim = 'S'; %% apparent power (MVA) case 1 opt.opf.flow_lim = 'P'; %% real power (MW) case 2 opt.opf.flow_lim = 'I'; %% current magnitude (MVA @ 1 p.u. voltage) otherwise error(errstr, ov.(ff), ff); end case 'OPF_IGNORE_ANG_LIM' opt.opf.ignore_angle_lim = ov.(ff); case 'OPF_ALG_DC' switch ov.(ff) case 0 opt.opf.dc.solver = 'DEFAULT'; case 100 opt.opf.dc.solver = 'BPMPD'; case {200, 250} opt.opf.dc.solver = 'MIPS'; if ov.(ff) == 250 opt.mips.step_control = 1; else opt.mips.step_control = 0; end case 300 opt.opf.dc.solver = 'OT'; %% QUADPROG, LINPROG case 400 opt.opf.dc.solver = 'IPOPT'; case 500 opt.opf.dc.solver = 'CPLEX'; case 600 opt.opf.dc.solver = 'MOSEK'; case 700 opt.opf.dc.solver = 'GUROBI'; otherwise error(errstr, ov.(ff), ff); end case 'VERBOSE' opt.verbose = ov.(ff); case 'OUT_ALL' opt.out.all = ov.(ff); case 'OUT_SYS_SUM' opt.out.sys_sum = ov.(ff); case 'OUT_AREA_SUM' opt.out.area_sum = ov.(ff); case 'OUT_BUS' opt.out.bus = ov.(ff); case 'OUT_BRANCH' opt.out.branch = ov.(ff); case 'OUT_GEN' opt.out.gen = ov.(ff); case 'OUT_ALL_LIM' opt.out.lim.all = ov.(ff); case 'OUT_V_LIM' opt.out.lim.v = ov.(ff); case 'OUT_LINE_LIM' opt.out.lim.line = ov.(ff); case 'OUT_PG_LIM' opt.out.lim.pg = ov.(ff); case 'OUT_QG_LIM' opt.out.lim.qg = ov.(ff); case 'OUT_FORCE' opt.out.force = ov.(ff); case 'RETURN_RAW_DER' opt.opf.return_raw_der = ov.(ff); case 'FMC_ALG' opt.fmincon.alg = ov.(ff); case 'KNITRO_OPT' opt.knitro.opt = ov.(ff); case 'IPOPT_OPT' opt.ipopt.opt = ov.(ff); case 'MNS_FEASTOL' opt.minopf.feastol = ov.(ff); case 'MNS_ROWTOL' opt.minopf.rowtol = ov.(ff); case 'MNS_XTOL' opt.minopf.xtol = ov.(ff); case 'MNS_MAJDAMP' opt.minopf.majdamp = ov.(ff); case 'MNS_MINDAMP' opt.minopf.mindamp = ov.(ff); case 'MNS_PENALTY_PARM' opt.minopf.penalty = ov.(ff); case 'MNS_MAJOR_IT' opt.minopf.major_it = ov.(ff); case 'MNS_MINOR_IT' opt.minopf.minor_it = ov.(ff); case 'MNS_MAX_IT' opt.minopf.max_it = ov.(ff); case 'MNS_VERBOSITY' opt.minopf.verbosity = ov.(ff); case 'MNS_CORE' opt.minopf.core = ov.(ff); case 'MNS_SUPBASIC_LIM' opt.minopf.supbasic_lim = ov.(ff); case 'MNS_MULT_PRICE' opt.minopf.mult_price = ov.(ff); case 'FORCE_PC_EQ_P0' opt.sopf.force_Pc_eq_P0 = ov.(ff); case 'PDIPM_FEASTOL' opt.mips.feastol = ov.(ff); opt.pdipm.feastol = ov.(ff); case 'PDIPM_GRADTOL' opt.mips.gradtol = ov.(ff); opt.pdipm.gradtol = ov.(ff); case 'PDIPM_COMPTOL' opt.mips.comptol = ov.(ff); opt.pdipm.comptol = ov.(ff); case 'PDIPM_COSTTOL' opt.mips.costtol = ov.(ff); opt.pdipm.costtol = ov.(ff); case 'PDIPM_MAX_IT' opt.mips.max_it = ov.(ff); opt.pdipm.max_it = ov.(ff); case 'SCPDIPM_RED_IT' opt.mips.sc.red_it = ov.(ff); opt.pdipm.sc.red_it = ov.(ff); case 'TRALM_FEASTOL' opt.tralm.feastol = ov.(ff); case 'TRALM_PRIMETOL' opt.tralm.primaltol = ov.(ff); case 'TRALM_DUALTOL' opt.tralm.dualtol = ov.(ff); case 'TRALM_COSTTOL' opt.tralm.costtol = ov.(ff); case 'TRALM_MAJOR_IT' opt.tralm.major_it = ov.(ff); case 'TRALM_MINOR_IT' opt.tralm.minor_it = ov.(ff); case 'SMOOTHING_RATIO' opt.pdipm.sc.smooth_ratio = ov.(ff); opt.tralm.smooth_ratio = ov.(ff); case 'CPLEX_LPMETHOD' opt.cplex.lpmethod = ov.(ff); case 'CPLEX_QPMETHOD' opt.cplex.qpmethod = ov.(ff); case 'CPLEX_OPT' opt.cplex.opt = ov.(ff); case 'MOSEK_LP_ALG' opt.mosek.lp_alg = ov.(ff); case 'MOSEK_MAX_IT' opt.mosek.max_it = ov.(ff); case 'MOSEK_GAP_TOL' opt.mosek.gap_tol = ov.(ff); case 'MOSEK_MAX_TIME' opt.mosek.max_time = ov.(ff); case 'MOSEK_NUM_THREADS' opt.mosek.num_threads = ov.(ff); case 'MOSEK_OPT' opt.mosek.opt = ov.(ff); case 'GRB_METHOD' opt.gurobi.method = ov.(ff); case 'GRB_TIMELIMIT' opt.gurobi.timelimit = ov.(ff); case 'GRB_THREADS' opt.gurobi.threads = ov.(ff); case 'GRB_OPT' opt.gurobi.opt = ov.(ff); otherwise error('mpoption: ''%s'' is not a valid old-style option name', ff); end end % ov %%------------------------------------------------------------------- function opt_s = mpoption_v2s(opt_v) if DEBUG, fprintf('mpoption_v2s()\n'); end opt_s = mpoption_default(); errstr = 'mpoption: %g is not a valid value for the old-style ''%s'' option'; switch opt_v(1) %% PF_ALG case 1 opt_s.pf.alg = 'NR'; %% Newton's method case 2 opt_s.pf.alg = 'FDXB'; %% fast-decoupled (XB version) case 3 opt_s.pf.alg = 'FDBX'; %% fast-decoupled (BX version) case 4 opt_s.pf.alg = 'GS'; %% Gauss-Seidel otherwise error(errstr, opt_v(1), 'PF_ALG'); end opt_s.pf.tol = opt_v(2); %% PF_TOL opt_s.pf.nr.max_it = opt_v(3); %% PF_MAX_IT opt_s.pf.fd.max_it = opt_v(4); %% PF_MAX_IT_FD opt_s.pf.gs.max_it = opt_v(5); %% PF_MAX_IT_GS opt_s.pf.enforce_q_lims = opt_v(6); %% ENFORCE_Q_LIMS switch opt_v(10) %% PF_DC case 0 opt_s.model = 'AC'; case 1 opt_s.model = 'DC'; otherwise error(errstr, opt_v(10), 'PF_DC'); end switch opt_v(11) %% OPF_ALG case 0 opt_s.opf.ac.solver = 'DEFAULT'; case 500 opt_s.opf.ac.solver = 'MINOPF'; case 520 opt_s.opf.ac.solver = 'FMINCON'; case {540, 545} opt_s.opf.ac.solver = 'PDIPM'; case 550 opt_s.opf.ac.solver = 'TRALM'; case {560, 565} opt_s.opf.ac.solver = 'MIPS'; case 580 opt_s.opf.ac.solver = 'IPOPT'; case 600 opt_s.opf.ac.solver = 'KNITRO'; otherwise error(errstr, opt_v(11), 'OPF_ALG'); end opt_s.opf.violation = opt_v(16); %% OPF_VIOLATION opt_s.fmincon.tol_x = opt_v(17); %% CONSTR_TOL_X opt_s.fmincon.tol_f = opt_v(18); %% CONSTR_TOL_F opt_s.fmincon.max_it = opt_v(19); %% CONSTR_MAX_IT opt_s.knitro.tol_x = opt_v(17); %% CONSTR_TOL_X opt_s.knitro.tol_f = opt_v(18); %% CONSTR_TOL_F switch opt_v(24) %% OPF_FLOW_LIM case 0 opt_s.opf.flow_lim = 'S'; %% apparent power (MVA) case 1 opt_s.opf.flow_lim = 'P'; %% real power (MW) case 2 opt_s.opf.flow_lim = 'I'; %% current magnitude (MVA @ 1 p.u. voltage) otherwise error(errstr, opt_v(10), 'PF_DC'); end opt_s.opf.ignore_angle_lim = opt_v(25); %% OPF_IGNORE_ANG_LIM switch opt_v(26) %% OPF_ALG_DC case 0 opt_s.opf.dc.solver = 'DEFAULT'; case 100 opt_s.opf.dc.solver = 'BPMPD'; case {200, 250} opt_s.opf.dc.solver = 'MIPS'; case 300 opt_s.opf.dc.solver = 'OT'; %% QUADPROG, LINPROG case 400 opt_s.opf.dc.solver = 'IPOPT'; case 500 opt_s.opf.dc.solver = 'CPLEX'; case 600 opt_s.opf.dc.solver = 'MOSEK'; case 700 opt_s.opf.dc.solver = 'GUROBI'; otherwise error(errstr, opt_v(26), 'OPF_ALG_DC'); end opt_s.verbose = opt_v(31); %% VERBOSE opt_s.out.all = opt_v(32); %% OUT_ALL opt_s.out.sys_sum = opt_v(33); %% OUT_SYS_SUM opt_s.out.area_sum = opt_v(34); %% OUT_AREA_SUM opt_s.out.bus = opt_v(35); %% OUT_BUS opt_s.out.branch = opt_v(36); %% OUT_BRANCH opt_s.out.gen = opt_v(37); %% OUT_GEN opt_s.out.lim.all = opt_v(38); %% OUT_ALL_LIM opt_s.out.lim.v = opt_v(39); %% OUT_V_LIM opt_s.out.lim.line = opt_v(40); %% OUT_LINE_LIM opt_s.out.lim.pg = opt_v(41); %% OUT_PG_LIM opt_s.out.lim.qg = opt_v(42); %% OUT_QG_LIM opt_s.out.force = opt_v(44); %% OUT_FORCE opt_s.opf.return_raw_der = opt_v(52); %% RETURN_RAW_DER opt_s.fmincon.alg = opt_v(55); %% FMC_ALG opt_s.knitro.opt = opt_v(58); %% KNITRO_OPT opt_s.ipopt.opt = opt_v(60); %% IPOPT_OPT opt_s.minopf.feastol = opt_v(61); %% MNS_FEASTOL opt_s.minopf.rowtol = opt_v(62); %% MNS_ROWTOL opt_s.minopf.xtol = opt_v(63); %% MNS_XTOL opt_s.minopf.majdamp = opt_v(64); %% MNS_MAJDAMP opt_s.minopf.mindamp = opt_v(65); %% MNS_MINDAMP opt_s.minopf.penalty = opt_v(66); %% MNS_PENALTY_PARM opt_s.minopf.major_it = opt_v(67); %% MNS_MAJOR_IT opt_s.minopf.minor_it = opt_v(68); %% MNS_MINOR_IT opt_s.minopf.max_it = opt_v(69); %% MNS_MAX_IT opt_s.minopf.verbosity = opt_v(70); %% MNS_VERBOSITY opt_s.minopf.core = opt_v(71); %% MNS_CORE opt_s.minopf.supbasic_lim = opt_v(72); %% MNS_SUPBASIC_LIM opt_s.minopf.mult_price = opt_v(73); %% MNS_MULT_PRICE opt_s.sopf.force_Pc_eq_P0 = opt_v(80); %% FORCE_PC_EQ_P0, for c3sopf if (opt_v(11) == 565 && opt_v(10) == 0) || (opt_v(26) == 250 && opt_v(10) == 1) opt_s.mips.step_control = 1; end opt_s.mips.feastol = opt_v(81); %% PDIPM_FEASTOL opt_s.mips.gradtol = opt_v(82); %% PDIPM_GRADTOL opt_s.mips.comptol = opt_v(83); %% PDIPM_COMPTOL opt_s.mips.costtol = opt_v(84); %% PDIPM_COSTTOL opt_s.mips.max_it = opt_v(85); %% PDIPM_MAX_IT opt_s.mips.sc.red_it = opt_v(86); %% SCPDIPM_RED_IT opt_s.pdipm.feastol = opt_v(81); %% PDIPM_FEASTOL opt_s.pdipm.gradtol = opt_v(82); %% PDIPM_GRADTOL opt_s.pdipm.comptol = opt_v(83); %% PDIPM_COMPTOL opt_s.pdipm.costtol = opt_v(84); %% PDIPM_COSTTOL opt_s.pdipm.max_it = opt_v(85); %% PDIPM_MAX_IT opt_s.pdipm.sc.red_it = opt_v(86); %% SCPDIPM_RED_IT opt_s.pdipm.sc.smooth_ratio = opt_v(93); %% SMOOTHING_RATIO if opt_v(11) == 545 && opt_v(10) == 0 opt_s.pdipm.step_control = 1; end opt_s.tralm.feastol = opt_v(87); %% TRALM_FEASTOL opt_s.tralm.primaltol = opt_v(88); %% TRALM_PRIMETOL opt_s.tralm.dualtol = opt_v(89); %% TRALM_DUALTOL opt_s.tralm.costtol = opt_v(90); %% TRALM_COSTTOL opt_s.tralm.major_it = opt_v(91); %% TRALM_MAJOR_IT opt_s.tralm.minor_it = opt_v(92); %% TRALM_MINOR_IT opt_s.tralm.smooth_ratio = opt_v(93); %% SMOOTHING_RATIO opt_s.cplex.lpmethod = opt_v(95); %% CPLEX_LPMETHOD opt_s.cplex.qpmethod = opt_v(96); %% CPLEX_QPMETHOD opt_s.cplex.opt = opt_v(97); %% CPLEX_OPT opt_s.mosek.lp_alg = opt_v(111); %% MOSEK_LP_ALG opt_s.mosek.max_it = opt_v(112); %% MOSEK_MAX_IT opt_s.mosek.gap_tol = opt_v(113); %% MOSEK_GAP_TOL opt_s.mosek.max_time = opt_v(114); %% MOSEK_MAX_TIME opt_s.mosek.num_threads = opt_v(115); %% MOSEK_NUM_THREADS opt_s.mosek.opt = opt_v(116); %% MOSEK_OPT opt_s.gurobi.method = opt_v(121); %% GRB_METHOD opt_s.gurobi.timelimit = opt_v(122); %% GRB_TIMELIMIT opt_s.gurobi.threads = opt_v(123); %% GRB_THREADS opt_s.gurobi.opt = opt_v(124); %% GRB_OPT %%------------------------------------------------------------------- function opt_v = mpoption_s2v(opt_s) if DEBUG, fprintf('mpoption_s2v()\n'); end %% PF_ALG old = mpoption_old; switch upper(opt_s.pf.alg) case 'NR' PF_ALG = 1; case 'FDXB' PF_ALG = 2; case 'FDBX' PF_ALG = 3; case 'GS' PF_ALG = 4; end %% PF_DC if strcmp(upper(opt_s.model), 'DC') PF_DC = 1; else PF_DC = 0; end %% OPF_ALG switch upper(opt_s.opf.ac.solver) case 'DEFAULT' OPF_ALG = 0; case 'MINOPF' OPF_ALG = 500; case 'FMINCON' OPF_ALG = 520; case 'PDIPM' if isfield(opt_s, 'pdipm') && opt_s.pdipm.step_control OPF_ALG = 545; else OPF_ALG = 540; end case 'TRALM' OPF_ALG = 550; case 'MIPS' if opt_s.mips.step_control OPF_ALG = 565; else OPF_ALG = 560; end case 'IPOPT' OPF_ALG = 580; case 'KNITRO' OPF_ALG = 600; end %% FMINCON, Knitro tol_x, tol_f, max_it if strcmp(upper(opt_s.opf.ac.solver), 'KNITRO') && isfield(opt_s, 'knitro') CONSTR_TOL_X = opt_s.knitro.tol_x; CONSTR_TOL_F = opt_s.knitro.tol_f; elseif isfield(opt_s, 'fmincon') CONSTR_TOL_X = opt_s.fmincon.tol_x; CONSTR_TOL_F = opt_s.fmincon.tol_f; else CONSTR_TOL_X = old(17); CONSTR_TOL_F = old(18); end if isfield(opt_s, 'fmincon') CONSTR_MAX_IT = opt_s.fmincon.max_it; FMC_ALG = opt_s.fmincon.alg; else CONSTR_MAX_IT = old(19); FMC_ALG = old(55); end %% OPF_FLOW_LIM switch upper(opt_s.opf.flow_lim) case 'S' OPF_FLOW_LIM = 0; case 'P' OPF_FLOW_LIM = 1; case 'I' OPF_FLOW_LIM = 2; end %% OPF_ALG_DC switch upper(opt_s.opf.dc.solver) case 'DEFAULT' OPF_ALG_DC = 0; case 'BPMPD' OPF_ALG_DC = 100; case 'MIPS' if opt_s.mips.step_control OPF_ALG_DC = 250; else OPF_ALG_DC = 200; end case 'OT' OPF_ALG_DC = 300; case 'IPOPT' OPF_ALG_DC = 400; case 'CPLEX' OPF_ALG_DC = 500; case 'MOSEK' OPF_ALG_DC = 600; case 'GUROBI' OPF_ALG_DC = 700; end %% KNITRO_OPT if isfield(opt_s, 'knitro') KNITRO_OPT = opt_s.knitro.opt; else KNITRO_OPT = old(58); end %% IPOPT_OPT if isfield(opt_s, 'ipopt') IPOPT_OPT = opt_s.ipopt.opt; else IPOPT_OPT = old(58); end %% MINOPF options if isfield(opt_s, 'minopf') MINOPF_OPTS = [ opt_s.minopf.feastol; %% 61 - MNS_FEASTOL opt_s.minopf.rowtol; %% 62 - MNS_ROWTOL opt_s.minopf.xtol; %% 63 - MNS_XTOL opt_s.minopf.majdamp; %% 64 - MNS_MAJDAMP opt_s.minopf.mindamp; %% 65 - MNS_MINDAMP opt_s.minopf.penalty; %% 66 - MNS_PENALTY_PARM opt_s.minopf.major_it; %% 67 - MNS_MAJOR_IT opt_s.minopf.minor_it; %% 68 - MNS_MINOR_IT opt_s.minopf.max_it; %% 69 - MNS_MAX_IT opt_s.minopf.verbosity; %% 70 - MNS_VERBOSITY opt_s.minopf.core; %% 71 - MNS_CORE opt_s.minopf.supbasic_lim; %% 72 - MNS_SUPBASIC_LIM opt_s.minopf.mult_price;%% 73 - MNS_MULT_PRICE ]; else MINOPF_OPTS = old(61:73); end %% FORCE_PC_EQ_P0 if isfield(opt_s, 'sopf') && isfield(opt_s.sopf, 'force_Pc_eq_P0') FORCE_PC_EQ_P0 = opt_s.sopf.force_Pc_eq_P0; else FORCE_PC_EQ_P0 = 0; end %% PDIPM options if isfield(opt_s, 'pdipm') PDIPM_OPTS = [ opt_s.pdipm.feastol; %% 81 - PDIPM_FEASTOL opt_s.pdipm.gradtol; %% 82 - PDIPM_GRADTOL opt_s.pdipm.comptol; %% 83 - PDIPM_COMPTOL opt_s.pdipm.costtol; %% 84 - PDIPM_COSTTOL opt_s.pdipm.max_it; %% 85 - PDIPM_MAX_IT opt_s.pdipm.sc.red_it; %% 86 - SCPDIPM_RED_IT ]; else PDIPM_OPTS = old(81:86); end %% TRALM options if isfield(opt_s, 'tralm') TRALM_OPTS = [ opt_s.tralm.feastol; %% 87 - TRALM_FEASTOL opt_s.tralm.primaltol; %% 88 - TRALM_PRIMETOL opt_s.tralm.dualtol; %% 89 - TRALM_DUALTOL opt_s.tralm.costtol; %% 90 - TRALM_COSTTOL opt_s.tralm.major_it; %% 91 - TRALM_MAJOR_IT opt_s.tralm.minor_it; %% 92 - TRALM_MINOR_IT ]; else TRALM_OPTS = old(87:92); end %% SMOOTHING_RATIO if strcmp(upper(opt_s.opf.ac.solver), 'TRALM') && isfield(opt_s, 'tralm') SMOOTHING_RATIO = opt_s.tralm.smooth_ratio; elseif isfield(opt_s, 'pdipm') SMOOTHING_RATIO = opt_s.pdipm.sc.smooth_ratio; else SMOOTHING_RATIO = old(93); end %% CPLEX options if isfield(opt_s, 'cplex') CPLEX_OPTS = [ opt_s.cplex.lpmethod; %% 95 - CPLEX_LPMETHOD opt_s.cplex.qpmethod; %% 96 - CPLEX_QPMETHOD opt_s.cplex.opt; %% 97 - CPLEX_OPT ]; else CPLEX_OPTS = old(95:97); end %% MOSEK options if isfield(opt_s, 'mosek') MOSEK_OPTS = [ opt_s.mosek.lp_alg; %% 111 - MOSEK_LP_ALG opt_s.mosek.max_it; %% 112 - MOSEK_MAX_IT opt_s.mosek.gap_tol; %% 113 - MOSEK_GAP_TOL opt_s.mosek.max_time; %% 114 - MOSEK_MAX_TIME opt_s.mosek.num_threads;%% 115 - MOSEK_NUM_THREADS opt_s.mosek.opt; %% 116 - MOSEK_OPT ]; else MOSEK_OPTS = old(111:116); end %% Gurobi options if isfield(opt_s, 'gurobi') GUROBI_OPTS = [ opt_s.gurobi.method; %% 121 - GRB_METHOD opt_s.gurobi.timelimit; %% 122 - GRB_TIMELIMIT opt_s.gurobi.threads; %% 123 - GRB_THREADS opt_s.gurobi.opt; %% 124 - GRB_OPT ]; else GUROBI_OPTS = old(121:124); end opt_v = [ %% power flow options PF_ALG; %% 1 - PF_ALG opt_s.pf.tol; %% 2 - PF_TOL opt_s.pf.nr.max_it; %% 3 - PF_MAX_IT opt_s.pf.fd.max_it; %% 4 - PF_MAX_IT_FD opt_s.pf.gs.max_it; %% 5 - PF_MAX_IT_GS opt_s.pf.enforce_q_lims;%% 6 - ENFORCE_Q_LIMS 0; %% 7 - RESERVED7 0; %% 8 - RESERVED8 0; %% 9 - RESERVED9 PF_DC; %% 10 - PF_DC %% OPF options OPF_ALG; %% 11 - OPF_ALG 0; %% 12 - RESERVED12 (was OPF_ALG_POLY = 100) 0; %% 13 - RESERVED13 (was OPF_ALG_PWL = 200) 0; %% 14 - RESERVED14 (was OPF_POLY2PWL_PTS = 10) 0; %% 15 - OPF_NEQ (removed) opt_s.opf.violation; %% 16 - OPF_VIOLATION CONSTR_TOL_X; %% 17 - CONSTR_TOL_X CONSTR_TOL_F; %% 18 - CONSTR_TOL_F CONSTR_MAX_IT; %% 19 - CONSTR_MAX_IT old(20); %% 20 - LPC_TOL_GRAD (removed) old(21); %% 21 - LPC_TOL_X (removed) old(22); %% 22 - LPC_MAX_IT (removed) old(23); %% 23 - LPC_MAX_RESTART (removed) OPF_FLOW_LIM; %% 24 - OPF_FLOW_LIM opt_s.opf.ignore_angle_lim; %% 25 - OPF_IGNORE_ANG_LIM OPF_ALG_DC; %% 26 - OPF_ALG_DC 0; %% 27 - RESERVED27 0; %% 28 - RESERVED28 0; %% 29 - RESERVED29 0; %% 30 - RESERVED30 %% output options opt_s.verbose; %% 31 - VERBOSE opt_s.out.all; %% 32 - OUT_ALL opt_s.out.sys_sum; %% 33 - OUT_SYS_SUM opt_s.out.area_sum; %% 34 - OUT_AREA_SUM opt_s.out.bus; %% 35 - OUT_BUS opt_s.out.branch; %% 36 - OUT_BRANCH opt_s.out.gen; %% 37 - OUT_GEN opt_s.out.lim.all; %% 38 - OUT_ALL_LIM opt_s.out.lim.v; %% 39 - OUT_V_LIM opt_s.out.lim.line; %% 40 - OUT_LINE_LIM opt_s.out.lim.pg; %% 41 - OUT_PG_LIM opt_s.out.lim.qg; %% 42 - OUT_QG_LIM 0; %% 43 - RESERVED43 (was OUT_RAW) opt_s.out.force; %% 44 - OUT_FORCE 0; %% 45 - RESERVED45 0; %% 46 - RESERVED46 0; %% 47 - RESERVED47 0; %% 48 - RESERVED48 0; %% 49 - RESERVED49 0; %% 50 - RESERVED50 %% other options old(51); %% 51 - SPARSE_QP (removed) opt_s.opf.return_raw_der; %% 52 - RETURN_RAW_DER 0; %% 53 - RESERVED53 0; %% 54 - RESERVED54 FMC_ALG; %% 55 - FMC_ALG 0; %% 56 - RESERVED56 0; %% 57 - RESERVED57 KNITRO_OPT; %% 58 - KNITRO_OPT 0; %% 59 - RESERVED59 IPOPT_OPT; %% 60 - IPOPT_OPT %% MINOPF options MINOPF_OPTS; %% 61-73 - MNS_FEASTOL-MNS_MULT_PRICE 0; %% 74 - RESERVED74 0; %% 75 - RESERVED75 0; %% 76 - RESERVED76 0; %% 77 - RESERVED77 0; %% 78 - RESERVED78 0; %% 79 - RESERVED79 FORCE_PC_EQ_P0; %% 80 - FORCE_PC_EQ_P0, for c3sopf %% MIPS, PDIPM, SC-PDIPM, and TRALM options PDIPM_OPTS; %% 81-86 - PDIPM_FEASTOL-SCPDIPM_RED_IT TRALM_OPTS; %% 87-92 - TRALM_FEASTOL-TRALM_MINOR_IT SMOOTHING_RATIO; %% 93 - SMOOTHING_RATIO 0; %% 94 - RESERVED94 %% CPLEX options CPLEX_OPTS; %% 95-97 - CPLEX_LPMETHOD-CPLEX_OPT 0; %% 98 - RESERVED98 0; %% 99 - RESERVED99 0; %% 100 - RESERVED100 0; %% 101 - RESERVED101 0; %% 102 - RESERVED102 0; %% 103 - RESERVED103 0; %% 104 - RESERVED104 0; %% 105 - RESERVED105 0; %% 106 - RESERVED106 0; %% 107 - RESERVED107 0; %% 108 - RESERVED108 0; %% 109 - RESERVED109 0; %% 110 - RESERVED110 %% MOSEK options MOSEK_OPTS; %% 111-116 - MOSEK_LP_ALG-MOSEK_OPT 0; %% 117 - RESERVED117 0; %% 118 - RESERVED118 0; %% 119 - RESERVED119 0; %% 120 - RESERVED120 %% Gurobi options GUROBI_OPTS; %% 121-124 - GRB_METHOD-GRB_OPT ]; %%------------------------------------------------------------------- function opt = mpoption_default() if DEBUG, fprintf('mpoption_default()\n'); end opt = struct(... 'v', mpoption_version, ... %% version 'model', 'AC', ... 'pf', struct(... 'alg', 'NR', ... 'tol', 1e-8, ... 'nr', struct(... 'max_it', 10 ), ... 'fd', struct(... 'max_it', 30 ), ... 'gs', struct(... 'max_it', 1000 ), ... 'enforce_q_lims', 0 ), ... 'cpf', struct(... 'parameterization', 3, ... 'stop_at', 'NOSE', ... %% 'NOSE', <lam val>, 'FULL' 'step', 0.05, ... 'adapt_step', 0, ... 'error_tol', 1e-3, ... 'step_min', 1e-4, ... 'step_max', 0.2, ... 'plot', struct(... 'level', 0, ... 'bus', [] ), ... 'user_callback', '', ... 'user_callback_args', struct() ), ... 'opf', struct(... 'ac', struct(... 'solver', 'DEFAULT' ), ... 'dc', struct(... 'solver', 'DEFAULT' ), ... 'violation', 5e-6, ... 'flow_lim', 'S', ... 'ignore_angle_lim', 0, ... 'init_from_mpc', -1, ... 'return_raw_der', 0 ), ... 'verbose', 1, ... 'out', struct(... 'all', -1, ... 'sys_sum', 1, ... 'area_sum', 0, ... 'bus', 1, ... 'branch', 1, ... 'gen', 0, ... 'lim', struct(... 'all', -1, ... 'v', 1, ... 'line', 1, ... 'pg', 1, ... 'qg', 1 ), ... 'force', 0, ... 'suppress_detail', -1 ), ... 'mips', struct(... %% see mpoption_info_mips() for optional fields 'step_control', 0, ... 'linsolver', '', ... 'feastol', 0, ... 'gradtol', 1e-6, ... 'comptol', 1e-6, ... 'costtol', 1e-6, ... 'max_it', 150, ... 'sc', struct(... 'red_it', 20 )) ... ); opt_pkgs = mpoption_optional_pkgs(); for k = 1:length(opt_pkgs) fname = ['mpoption_info_' opt_pkgs{k}]; if exist(fname, 'file') == 2 opt = nested_struct_copy(opt, feval(fname, 'D')); end end %%------------------------------------------------------------------- function opt = mpoption_optional_fields() if DEBUG, fprintf('mpoption_optional_fields()\n'); end opt_pkgs = mpoption_optional_pkgs(); opt = struct; for k = 1:length(opt_pkgs) fname = ['mpoption_info_' opt_pkgs{k}]; if exist(fname, 'file') == 2 opt = nested_struct_copy(opt, feval(fname, 'V')); end end %% globals %%------------------------------------------------------------------- function v = mpoption_version v = 8; %% version number of MATPOWER options struct %% (must be incremented every time structure is updated) %% v1 - first version based on struct (MATPOWER 5.0b1) %% v2 - added 'linprog' and 'quadprog' fields %% v3 - (forgot to increment v) added 'out.suppress_detail' %% field %% v4 - (forgot to increment v) MIPS 1.1, added optional %% fields to 'mips' options: xi, sigma, z0, alpha_min, %% rho_min, rho_max, mu_threshold and max_stepsize %% v5 - (forgot to increment v) added 'opf.init_from_mpc' %% field (MATPOWER 5.0) %% v6 - added 'clp' field %% v7 - added 'intlinprog' field %% v8 - MIPS 1.2, added 'linsolver' field to %% 'mips' options %%------------------------------------------------------------------- function db_level = DEBUG db_level = 0; %%------------------------------------------------------------------- function pkgs = mpoption_optional_pkgs() pkgs = {... 'clp', 'cplex', 'fmincon', 'gurobi', 'glpk', 'intlinprog', 'ipopt', ... 'knitro', 'linprog', 'minopf', 'mosek', 'quadprog', 'sdp_pf', 'sopf', ... 'tspopf', 'yalmip' ... };
github
jay-mahadeokar/deeplab-public-ver2-master
classification_demo.m
.m
deeplab-public-ver2-master/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
jay-mahadeokar/deeplab-public-ver2-master
MyVOCevalseg.m
.m
deeplab-public-ver2-master/matlab/my_script/MyVOCevalseg.m
4,625
utf_8
128c24319d520c2576168d1cf17e068f
%VOCEVALSEG Evaluates a set of segmentation results. % VOCEVALSEG(VOCopts,ID); prints out the per class and overall % segmentation accuracies. Accuracies are given using the intersection/union % metric: % true positives / (true positives + false positives + false negatives) % % [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class % percentage ACCURACIES, the average accuracy AVACC and the confusion % matrix CONF. % % [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns % the unnormalised confusion matrix, which contains raw pixel counts. function [accuracies,avacc,conf,rawcounts] = MyVOCevalseg(VOCopts,id) % image test set [gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d'); % number of labels = number of classes plus one for the background num = VOCopts.nclasses+1; confcounts = zeros(num); count=0; num_missing_img = 0; tic; for i=1:length(gtids) % display progress if toc>1 fprintf('test confusion: %d/%d\n',i,length(gtids)); drawnow; tic; end imname = gtids{i}; % ground truth label file gtfile = sprintf(VOCopts.seg.clsimgpath,imname); [gtim,map] = imread(gtfile); gtim = double(gtim); % results file resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname); try [resim,map] = imread(resfile); catch err num_missing_img = num_missing_img + 1; %fprintf(1, 'Fail to read %s\n', resfile); continue; end resim = double(resim); % Check validity of results image maxlabel = max(resim(:)); if (maxlabel>VOCopts.nclasses), error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses); end szgtim = size(gtim); szresim = size(resim); if any(szgtim~=szresim) error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2)); end %pixel locations to include in computation locs = gtim<255; % joint histogram sumim = 1+gtim+resim*num; hs = histc(sumim(locs),1:num*num); count = count + numel(find(locs)); confcounts(:) = confcounts(:) + hs(:); end if (num_missing_img > 0) fprintf(1, 'WARNING: There are %d missing results!\n', num_missing_img); end % confusion matrix - first index is true label, second is inferred label %conf = zeros(num); conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]); rawcounts = confcounts; % Pixel Accuracy overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:)); fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc); % Class Accuracy class_acc = zeros(1, num); class_count = 0; fprintf('Accuracy for each class (pixel accuracy)\n'); for i = 1 : num denom = sum(confcounts(i, :)); if (denom == 0) denom = 1; end class_acc(i) = 100 * confcounts(i, i) / denom; if i == 1 clname = 'background'; else clname = VOCopts.classes{i-1}; end if ~strcmp(clname, 'void') class_count = class_count + 1; fprintf(' %14s: %6.3f%%\n', clname, class_acc(i)); end end fprintf('-------------------------\n'); avg_class_acc = sum(class_acc) / class_count; fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc); % Pixel IOU accuracies = zeros(VOCopts.nclasses,1); fprintf('Accuracy for each class (intersection/union measure)\n'); real_class_count = 0; for j=1:num gtj=sum(confcounts(j,:)); resj=sum(confcounts(:,j)); gtjresj=confcounts(j,j); % The accuracy is: true positive / (true positive + false positive + false negative) % which is equivalent to the following percentage: denom = (gtj+resj-gtjresj); if denom == 0 denom = 1; end accuracies(j)=100*gtjresj/denom; clname = 'background'; if (j>1), clname = VOCopts.classes{j-1};end; if ~strcmp(clname, 'void') real_class_count = real_class_count + 1; else if denom ~= 1 fprintf(1, 'WARNING: this void class has denom = %d\n', denom); end end if ~strcmp(clname, 'void') fprintf(' %14s: %6.3f%%\n',clname,accuracies(j)); end end %accuracies = accuracies(1:end); %avacc = mean(accuracies); avacc = sum(accuracies) / real_class_count; fprintf('-------------------------\n'); fprintf('Average accuracy: %6.3f%%\n',avacc);
github
jay-mahadeokar/deeplab-public-ver2-master
MyVOCevalsegBoundary.m
.m
deeplab-public-ver2-master/matlab/my_script/MyVOCevalsegBoundary.m
4,415
utf_8
1b648714e61bafba7c08a8ce5824b105
%VOCEVALSEG Evaluates a set of segmentation results. % VOCEVALSEG(VOCopts,ID); prints out the per class and overall % segmentation accuracies. Accuracies are given using the intersection/union % metric: % true positives / (true positives + false positives + false negatives) % % [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class % percentage ACCURACIES, the average accuracy AVACC and the confusion % matrix CONF. % % [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns % the unnormalised confusion matrix, which contains raw pixel counts. function [accuracies,avacc,conf,rawcounts, overall_acc, avg_class_acc] = MyVOCevalsegBoundary(VOCopts, id, w) % get structural element st_w = 2*w + 1; se = strel('square', st_w); % image test set fn = sprintf(VOCopts.seg.imgsetpath,VOCopts.testset); fid = fopen(fn, 'r'); gtids = textscan(fid, '%s'); gtids = gtids{1}; fclose(fid); %[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d'); % number of labels = number of classes plus one for the background num = VOCopts.nclasses+1; confcounts = zeros(num); count=0; tic; for i=1:length(gtids) % display progress if toc>1 fprintf('test confusion: %d/%d\n',i,length(gtids)); drawnow; tic; end imname = gtids{i}; % ground truth label file gtfile = sprintf(VOCopts.seg.clsimgpath,imname); [gtim,map] = imread(gtfile); gtim = double(gtim); % results file resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname); try [resim,map] = imread(resfile); catch err fprintf(1, 'Fail to read %s\n', resfile); continue; end resim = double(resim); % Check validity of results image maxlabel = max(resim(:)); if (maxlabel>VOCopts.nclasses), error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses); end szgtim = size(gtim); szresim = size(resim); if any(szgtim~=szresim) error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2)); end % dilate gt binary_gt = gtim == 255; dilate_gt = imdilate(binary_gt, se); target_gt = dilate_gt & (gtim~=255); %pixel locations to include in computation locs = target_gt; %locs = gtim<255; % joint histogram sumim = 1+gtim+resim*num; hs = histc(sumim(locs),1:num*num); count = count + numel(find(locs)); confcounts(:) = confcounts(:) + hs(:); end % confusion matrix - first index is true label, second is inferred label %conf = zeros(num); conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]); rawcounts = confcounts; % Pixel Accuracy overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:)); fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc); % Class Accuracy class_acc = zeros(1, num); class_count = 0; fprintf('Accuracy for each class (pixel accuracy)\n'); for i = 1 : num denom = sum(confcounts(i, :)); if (denom == 0) denom = 1; else class_count = class_count + 1; end class_acc(i) = 100 * confcounts(i, i) / denom; if i == 1 clname = 'background'; else clname = VOCopts.classes{i-1}; end fprintf(' %14s: %6.3f%%\n', clname, class_acc(i)); end fprintf('-------------------------\n'); avg_class_acc = sum(class_acc) / class_count; fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc); % Pixel IOU accuracies = zeros(VOCopts.nclasses,1); fprintf('Accuracy for each class (intersection/union measure)\n'); for j=1:num gtj=sum(confcounts(j,:)); resj=sum(confcounts(:,j)); gtjresj=confcounts(j,j); % The accuracy is: true positive / (true positive + false positive + false negative) % which is equivalent to the following percentage: accuracies(j)=100*gtjresj/(gtj+resj-gtjresj); clname = 'background'; if (j>1), clname = VOCopts.classes{j-1};end; fprintf(' %14s: %6.3f%%\n',clname,accuracies(j)); end accuracies = accuracies(1:end); avacc = mean(accuracies); fprintf('-------------------------\n'); fprintf('Average accuracy: %6.3f%%\n',avacc);
github
happyharrycn/unsupervised_edges-master
computeColor.m
.m
unsupervised_edges-master/flow_utils/computeColor.m
3,139
utf_8
4344a6f1decdd6631805bd81be0b4442
function img = computeColor(u,v) % computeColor color codes flow field U, V % According to the c++ source code of Daniel Scharstein % Contact: [email protected] % Author: Deqing Sun, Department of Computer Science, Brown University % Contact: [email protected] % $Date: 2007-10-31 21:20:30 (Wed, 31 Oct 2006) $ % Copyright 2007, Deqing Sun. % % All Rights Reserved % % Permission to use, copy, modify, and distribute this software and its % documentation for any purpose other than its incorporation into a % commercial product is hereby granted without fee, provided that the % above copyright notice appear in all copies and that both that % copyright notice and this permission notice appear in supporting % documentation, and that the name of the author and Brown University not be used in % advertising or publicity pertaining to distribution of the software % without specific, written prior permission. % % THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, % INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY % PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR % ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES % WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN % ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF % OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. nanIdx = isnan(u) | isnan(v); u(nanIdx) = 0; v(nanIdx) = 0; colorwheel = makeColorwheel(); ncols = size(colorwheel, 1); rad = sqrt(u.^2+v.^2); a = atan2(-v, -u)/pi; fk = (a+1) /2 * (ncols-1) + 1; % -1~1 maped to 1~ncols k0 = floor(fk); % 1, 2, ..., ncols k1 = k0+1; k1(k1==ncols+1) = 1; f = fk - k0; for i = 1:size(colorwheel,2) tmp = colorwheel(:,i); col0 = tmp(k0)/255; col1 = tmp(k1)/255; col = (1-f).*col0 + f.*col1; idx = rad <= 1; col(idx) = 1-rad(idx).*(1-col(idx)); % increase saturation with radius col(~idx) = col(~idx)*0.75; % out of range img(:,:, i) = uint8(floor(255*col.*(1-nanIdx))); end; %% function colorwheel = makeColorwheel() % color encoding scheme % adapted from the color circle idea described at % http://members.shaw.ca/quadibloc/other/colint.htm RY = 15; YG = 6; GC = 4; CB = 11; BM = 13; MR = 6; ncols = RY + YG + GC + CB + BM + MR; colorwheel = zeros(ncols, 3); % r g b col = 0; %RY colorwheel(1:RY, 1) = 255; colorwheel(1:RY, 2) = floor(255*(0:RY-1)/RY)'; col = col+RY; %YG colorwheel(col+(1:YG), 1) = 255 - floor(255*(0:YG-1)/YG)'; colorwheel(col+(1:YG), 2) = 255; col = col+YG; %GC colorwheel(col+(1:GC), 2) = 255; colorwheel(col+(1:GC), 3) = floor(255*(0:GC-1)/GC)'; col = col+GC; %CB colorwheel(col+(1:CB), 2) = 255 - floor(255*(0:CB-1)/CB)'; colorwheel(col+(1:CB), 3) = 255; col = col+CB; %BM colorwheel(col+(1:BM), 3) = 255; colorwheel(col+(1:BM), 1) = floor(255*(0:BM-1)/BM)'; col = col+BM; %MR colorwheel(col+(1:MR), 3) = 255 - floor(255*(0:MR-1)/MR)'; colorwheel(col+(1:MR), 1) = 255;
github
happyharrycn/unsupervised_edges-master
distinguishable_colors.m
.m
unsupervised_edges-master/flow_utils/distinguishable_colors.m
5,753
utf_8
57960cf5d13cead2f1e291d1288bccb2
function colors = distinguishable_colors(n_colors,bg,func) % DISTINGUISHABLE_COLORS: pick colors that are maximally perceptually distinct % % When plotting a set of lines, you may want to distinguish them by color. % By default, Matlab chooses a small set of colors and cycles among them, % and so if you have more than a few lines there will be confusion about % which line is which. To fix this problem, one would want to be able to % pick a much larger set of distinct colors, where the number of colors % equals or exceeds the number of lines you want to plot. Because our % ability to distinguish among colors has limits, one should choose these % colors to be "maximally perceptually distinguishable." % % This function generates a set of colors which are distinguishable % by reference to the "Lab" color space, which more closely matches % human color perception than RGB. Given an initial large list of possible % colors, it iteratively chooses the entry in the list that is farthest (in % Lab space) from all previously-chosen entries. While this "greedy" % algorithm does not yield a global maximum, it is simple and efficient. % Moreover, the sequence of colors is consistent no matter how many you % request, which facilitates the users' ability to learn the color order % and avoids major changes in the appearance of plots when adding or % removing lines. % % Syntax: % colors = distinguishable_colors(n_colors) % Specify the number of colors you want as a scalar, n_colors. This will % generate an n_colors-by-3 matrix, each row representing an RGB % color triple. If you don't precisely know how many you will need in % advance, there is no harm (other than execution time) in specifying % slightly more than you think you will need. % % colors = distinguishable_colors(n_colors,bg) % This syntax allows you to specify the background color, to make sure that % your colors are also distinguishable from the background. Default value % is white. bg may be specified as an RGB triple or as one of the standard % "ColorSpec" strings. You can even specify multiple colors: % bg = {'w','k'} % or % bg = [1 1 1; 0 0 0] % will only produce colors that are distinguishable from both white and % black. % % colors = distinguishable_colors(n_colors,bg,rgb2labfunc) % By default, distinguishable_colors uses the image processing toolbox's % color conversion functions makecform and applycform. Alternatively, you % can supply your own color conversion function. % % Example: % c = distinguishable_colors(25); % figure % image(reshape(c,[1 size(c)])) % % Example using the file exchange's 'colorspace': % func = @(x) colorspace('RGB->Lab',x); % c = distinguishable_colors(25,'w',func); % Copyright 2010-2011 by Timothy E. Holy % Parse the inputs if (nargin < 2) bg = [1 1 1]; % default white background else if iscell(bg) % User specified a list of colors as a cell aray bgc = bg; for i = 1:length(bgc) bgc{i} = parsecolor(bgc{i}); end bg = cat(1,bgc{:}); else % User specified a numeric array of colors (n-by-3) bg = parsecolor(bg); end end % Generate a sizable number of RGB triples. This represents our space of % possible choices. By starting in RGB space, we ensure that all of the % colors can be generated by the monitor. n_grid = 30; % number of grid divisions along each axis in RGB space x = linspace(0,1,n_grid); [R,G,B] = ndgrid(x,x,x); rgb = [R(:) G(:) B(:)]; if (n_colors > size(rgb,1)/3) error('You can''t readily distinguish that many colors'); end % Convert to Lab color space, which more closely represents human % perception if (nargin > 2) lab = func(rgb); bglab = func(bg); else C = makecform('srgb2lab'); lab = applycform(rgb,C); bglab = applycform(bg,C); end % If the user specified multiple background colors, compute distances % from the candidate colors to the background colors mindist2 = inf(size(rgb,1),1); for i = 1:size(bglab,1)-1 dX = bsxfun(@minus,lab,bglab(i,:)); % displacement all colors from bg dist2 = sum(dX.^2,2); % square distance mindist2 = min(dist2,mindist2); % dist2 to closest previously-chosen color end % Iteratively pick the color that maximizes the distance to the nearest % already-picked color colors = zeros(n_colors,3); lastlab = bglab(end,:); % initialize by making the "previous" color equal to background for i = 1:n_colors dX = bsxfun(@minus,lab,lastlab); % displacement of last from all colors on list dist2 = sum(dX.^2,2); % square distance mindist2 = min(dist2,mindist2); % dist2 to closest previously-chosen color [~,index] = max(mindist2); % find the entry farthest from all previously-chosen colors colors(i,:) = rgb(index,:); % save for output lastlab = lab(index,:); % prepare for next iteration end end function c = parsecolor(s) if ischar(s) c = colorstr2rgb(s); elseif isnumeric(s) && size(s,2) == 3 c = s; else error('MATLAB:InvalidColorSpec','Color specification cannot be parsed.'); end end function c = colorstr2rgb(c) % Convert a color string to an RGB value. % This is cribbed from Matlab's whitebg function. % Why don't they make this a stand-alone function? rgbspec = [1 0 0;0 1 0;0 0 1;1 1 1;0 1 1;1 0 1;1 1 0;0 0 0]; cspec = 'rgbwcmyk'; k = find(cspec==c(1)); if isempty(k) error('MATLAB:InvalidColorString','Unknown color string.'); end if k~=3 || length(c)==1, c = rgbspec(k,:); elseif length(c)>2, if strcmpi(c(1:3),'bla') c = [0 0 0]; elseif strcmpi(c(1:3),'blu') c = [0 0 1]; else error('MATLAB:UnknownColorString', 'Unknown color string.'); end end end