plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
skovnats/madmm-master
sympositivedefinitefactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/symfixedrank/sympositivedefinitefactory.m
5,506
utf_8
352c21fe40d0e4f75e7c0fa89ea4ab04
function M = sympositivedefinitefactory(n) % Manifold of n-by-n symmetric positive definite matrices with % the bi-invariant geometry. % % function M = sympositivedefinitefactory(n) % % A point X on the manifold is represented as a symmetric positive definite % matrix X (nxn). % % The following material is referenced from Chapter 6 of the book: % Rajendra Bhatia, "Positive definite matrices", % Princeton University Press, 2007. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, August 29, 2013. % Contributors: Nicolas Boumal % Change log: % % March 5, 2014 (NB) % There were a number of mistakes in the code owing to the tacit % assumption that if X and eta are symmetric, then X\eta is % symmetric too, which is not the case. See discussion on the Manopt % forum started on Jan. 19, 2014. Functions norm, dist, exp and log % were modified accordingly. Furthermore, they only require matrix % inversion (as well as matrix log or matrix exp), not matrix square % roots or their inverse. % % July 28, 2014 (NB) % The dim() function returned n*(n-1)/2 instead of n*(n+1)/2. % Implemented proper parallel transport from Sra and Hosseini (not % used by default). % Also added symmetrization in exp and log (to be sure). symm = @(X) .5*(X+X'); M.name = @() sprintf('Symmetric positive definite geometry of %dx%d matrices', n, n); M.dim = @() n*(n+1)/2; % Choice of the metric on the orthnormal space is motivated by the % symmetry present in the space. The metric on the positive definite % cone is its natural bi-invariant metric. M.inner = @(X, eta, zeta) trace( (X\eta) * (X\zeta) ); % Notice that X\eta is *not* symmetric in general. M.norm = @(X, eta) sqrt(trace((X\eta)^2)); % Same here: X\Y is not symmetric in general. There should be no need % to take the real part, but rounding errors may cause a small % imaginary part to appear, so we discard it. M.dist = @(X, Y) sqrt(real(trace((logm(X\Y))^2))); M.typicaldist = @() sqrt(n*(n+1)/2); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) eta = X*symm(eta)*X; end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) % Directional derivatives of the Riemannian gradient Hess = X*symm(ehess)*X + 2*symm(eta*symm(egrad)*X); % Correction factor for the non-constant metric Hess = Hess - symm(eta*symm(egrad)*X); end M.proj = @(X, eta) symm(eta); M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @exponential; M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end % The symm() and real() calls are mathematically not necessary but % are numerically necessary. Y = symm(X*real(expm(X\(t*eta)))); end M.log = @logarithm; function H = logarithm(X, Y) % Same remark regarding the calls to symm() and real(). H = symm(X*real(logm(X\Y))); end M.hash = @(X) ['z' hashmd5(X(:))]; % Generate a random symmetric positive definite matrix following a % certain distribution. The particular choice of a distribution is of % course arbitrary, and specific applications might require different % ones. M.rand = @random; function X = random() D = diag(1+rand(n, 1)); [Q, R] = qr(randn(n)); %#ok<NASGU> X = Q*D*Q'; end % Generate a uniformly random unit-norm tangent vector at X. M.randvec = @randomvec; function eta = randomvec(X) eta = symm(randn(n)); nrm = M.norm(X, eta); eta = eta / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) zeros(n); % Poor man's vector transport: exploit the fact that all tangent spaces % are the set of symmetric matrices, so that the identity is a sort of % vector transport. It may perform poorly if the origin and target (X1 % and X2) are far apart though. This should not be the case for typical % optimization algorithms, which perform small steps. M.transp = @(X1, X2, eta) eta; % For reference, a proper vector transport is given here, following % work by Sra and Hosseini (2014), "Conic geometric optimisation on the % manifold of positive definite matrices", % http://arxiv.org/abs/1312.1039 % This will not be used by default. To force the use of this transport, % call "M.transp = M.paralleltransp;" on your M returned by the present % factory. M.paralleltransp = @parallel_transport; function zeta = parallel_transport(X, Y, eta) E = sqrtm((Y/X)); zeta = E*eta*E'; end % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) U(:); M.mat = @(X, u) reshape(u, n, n); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(X, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of sympositivedefinitefactory.lincomb.'); end end
github
skovnats/madmm-master
symfixedrankYYfactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/symfixedrank/symfixedrankYYfactory.m
3,628
utf_8
ed10332d6c3f8af67578d34eb7817b8c
function M = symfixedrankYYfactory(n, k) % Manifold of n-by-n symmetric positive semidefinite matrices of rank k. % % function M = symfixedrankYYfactory(n, k) % % The geometry is based on the paper, % M. Journee, P.-A. Absil, F. Bach and R. Sepulchre, % "Low-Rank Optimization on the Cone of Positive Semidefinite Matrices", % SIAM Journal on Optimization, 2010. % % Paper link: http://www.di.ens.fr/~fbach/journee2010_sdp.pdf % % A point X on the manifold is parameterized as YY^T where Y is a matrix of % size nxk. The matrix Y (nxk) is a full column-rank matrix. Hence, we deal % directly with Y. % % Notice that this manifold is not complete: if optimization leads Y to be % rank-deficient, the geometry will break down. Hence, this geometry should % only be used if it is expected that the points of interest will have rank % exactly k. Reduce k if that is not the case. % % An alternative, complete, geometry for positive semidefinite matrices of % rank k is described in Bonnabel and Sepulchre 2009, "Riemannian Metric % and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank", % SIAM Journal on Matrix Analysis and Applications. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: % July 10, 2013 (NB) % Added vec, mat, tangent, tangent2ambient ; % Correction for the dimension of the manifold. M.name = @() sprintf('YY'' quotient manifold of %dx%d PSD matrices of rank %d', n, k); M.dim = @() k*n - k*(k-1)/2; % Euclidean metric on the total space M.inner = @(Y, eta, zeta) trace(eta'*zeta); M.norm = @(Y, eta) sqrt(M.inner(Y, eta, eta)); M.dist = @(Y, Z) error('symfixedrankYYfactory.dist not implemented yet.'); M.typicaldist = @() 10*k; M.proj = @projection; function etaproj = projection(Y, eta) % Projection onto the horizontal space YtY = Y'*Y; SS = YtY; AS = Y'*eta - eta'*Y; Omega = lyap(SS, -AS); etaproj = eta - Y*Omega; end M.tangent = M.proj; M.tangent2ambient = @(Y, eta) eta; M.retr = @retraction; function Ynew = retraction(Y, eta, t) if nargin < 3 t = 1.0; end Ynew = Y + t*eta; end M.egrad2rgrad = @(Y, eta) eta; M.ehess2rhess = @(Y, egrad, ehess, U) M.proj(Y, ehess); M.exp = @exponential; function Ynew = exponential(Y, eta, t) if nargin < 3 t = 1.0; end Ynew = retraction(Y, eta, t); warning('manopt:symfixedrankYYfactory:exp', ... ['Exponential for symmetric, fixed-rank ' ... 'manifold not implemented yet. Used retraction instead.']); end % Notice that the hash of two equivalent points will be different... M.hash = @(Y) ['z' hashmd5(Y(:))]; M.rand = @random; function Y = random() Y = randn(n, k); end M.randvec = @randomvec; function eta = randomvec(Y) eta = randn(n, k); eta = projection(Y, eta); nrm = M.norm(Y, eta); eta = eta / nrm; end M.lincomb = @lincomb; M.zerovec = @(Y) zeros(n, k); M.transp = @(Y1, Y2, d) projection(Y2, d); M.vec = @(Y, u_mat) u_mat(:); M.mat = @(Y, u_vec) reshape(u_vec, [n, k]); M.vecmatareisometries = @() true; end % Linear conbination of tangent vectors function d = lincomb(Y, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of symfixedrankYYfactory.lincomb.'); end end
github
skovnats/madmm-master
complexcirclefactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/complexcircle/complexcirclefactory.m
3,696
utf_8
f317f1fdbb76c8fb6cb2c39cee5c0db0
function M = complexcirclefactory(n) % Returns a manifold struct to optimize over unit-modulus complex numbers. % % function M = complexcirclefactory() % function M = complexcirclefactory(n) % % Description of vectors z in C^n (complex) such that each component z(i) % has unit modulus. The manifold structure is the Riemannian submanifold % structure from the embedding space R^2 x ... x R^2, i.e., the complex % circle is identified with the unit circle in the real plane. % % By default, n = 1. % % See also spherecomplexfactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % % July 7, 2014 (NB): Added ehess2rhess function. % if ~exist('n', 'var') n = 1; end M.name = @() sprintf('Complex circle (S^1)^%d', n); M.dim = @() n; M.inner = @(z, v, w) real(v'*w); M.norm = @(x, v) norm(v); M.dist = @(x, y) norm(acos(conj(x) .* y)); M.typicaldist = @() pi*sqrt(n); M.proj = @(z, u) u - real( conj(u) .* z ) .* z; M.tangent = M.proj; % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(z, egrad, ehess, zdot) rhess = M.proj(z, ehess - real(z.*conj(egrad)).*zdot); end M.exp = @exponential; function y = exponential(z, v, t) if nargin <= 2 t = 1.0; end y = zeros(n, 1); tv = t*v; nrm_tv = abs(tv); % We need to distinguish between very small steps and the others. % For very small steps, we use a a limit version of the exponential % (which actually coincides with the retraction), so as to not % divide by very small numbers. mask = nrm_tv > 1e-6; y(mask) = z(mask).*cos(nrm_tv(mask)) + ... tv(mask).*(sin(nrm_tv(mask))./nrm_tv(mask)); y(~mask) = z(~mask) + tv(~mask); y(~mask) = y(~mask) ./ abs(y(~mask)); end M.retr = @retraction; function y = retraction(z, v, t) if nargin <= 2 t = 1.0; end y = z+t*v; y = y ./ abs(y); end M.log = @logarithm; function v = logarithm(x1, x2) v = M.proj(x1, x2 - x1); di = M.dist(x1, x2); nv = norm(v); v = v * (di / nv); end M.hash = @(z) ['z' hashmd5( [real(z(:)) ; imag(z(:))] ) ]; M.rand = @random; function z = random() z = randn(n, 1) + 1i*randn(n, 1); z = z ./ abs(z); end M.randvec = @randomvec; function v = randomvec(z) % i*z(k) is a basis vector of the tangent vector to the k-th circle v = randn(n, 1) .* (1i*z); v = v / norm(v); end M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, 1); M.transp = @(x1, x2, d) M.proj(x2, d); M.pairmean = @pairmean; function z = pairmean(z1, z2) z = z1+z2; z = z ./ abs(z); end M.vec = @(x, u_mat) [real(u_mat) ; imag(u_mat)]; M.mat = @(x, u_vec) u_vec(1:n) + 1i*u_vec((n+1):end); M.vecmatareisometries = @() true; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of sphere.lincomb.'); end end
github
skovnats/madmm-master
fixedrankfactory_3factors_preconditioned.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/fixedrank/fixedrankfactory_3factors_preconditioned.m
11,730
utf_8
25828327278d65ab2cb851ea6574833c
function M = fixedrankfactory_3factors_preconditioned(m, n, k) % Manifold of m-by-n matrices of rank k with polar quotient geometry. % % function M = fixedrankLSRquotientfactory(m, n, k) % % A point X on the manifold is represented as a structure with three % fields: L, S and R. The matrices L (mxk) and R (nxk) are orthonormal, % while the matrix S (kxk) is a full rank matrix % matrix. % % Tangent vectors are represented as a structure with three fields: L, S % and R. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('LSR'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Some precomputations at the point X to be used in the inner product (and % pretty much everywhere else). function X = prepare(X) if ~all(isfield(X,{'StS','SSt','invStS','invSSt'}) == 1) X.SSt = X.S*X.S'; X.StS = X.S'*X.S; X.invSSt = eye(size(X.S, 2))/X.SSt; X.invStS = eye(size(X.S, 2))/X.StS; end end % Choice of the metric on the orthnormal space is the low-rank matrix completio cost function. M.inner = @iproduct; function ip = iproduct(X, eta, zeta) X = prepare(X); ip = trace(X.SSt*(eta.L'*zeta.L)) + trace(X.StS*(eta.R'*zeta.R)) ... + trace(eta.S'*zeta.S); end M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankLSRquotientfactory.dist not implemented yet.'); M.typicaldist = @() 10*k; skew = @(X) .5*(X-X'); symm = @(X) .5*(X+X'); M.egrad2rgrad = @egrad2rgrad; function rgrad = egrad2rgrad(X, egrad) X = prepare(X); SSL = X.SSt; ASL = 2*symm(SSL*(egrad.S*X.S')); SSR = X.StS; ASR = 2*symm(SSR*(egrad.S'*X.S)); % BL1 = lyap(SSL, -ASL); % BR1 = lyap(SSR, -ASR); [BL, BR] = tangent_space_lyap(X.S, ASL, ASR); rgrad.L = (egrad.L - X.L*BL)*X.invSSt; rgrad.R = (egrad.R - X.R*BR)*X.invStS; rgrad.S = egrad.S; % norm(skew(X.SSt*(rgrad.L'*X.L) + rgrad.S*X.S'), 'fro') % norm(skew(X.StS*(rgrad.R'*X.R) - X.S'*rgrad.S), 'fro') end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) X = prepare(X); % Riemannian gradient SSL = X.SSt; ASL = 2*symm(SSL*(egrad.S*X.S')); SSR = X.StS; ASR = 2*symm(SSR*(egrad.S'*X.S)); [BL, BR] = tangent_space_lyap(X.S, ASL, ASR); rgrad.L = (egrad.L - X.L*BL)*X.invSSt; rgrad.R = (egrad.R - X.R*BR)*X.invStS; rgrad.S = egrad.S; % Directional derivative of the Riemannian gradient ASLdot = 2*symm((2*symm(X.S*eta.S')*(egrad.S*X.S')) + X.SSt*(ehess.S*X.S' + egrad.S*eta.S')) - 4*symm(symm(eta.S*X.S')*BL); ASRdot = 2*symm((2*symm(X.S'*eta.S)*(egrad.S'*X.S)) + X.StS*(ehess.S'*X.S + egrad.S'*eta.S)) - 4*symm(symm(eta.S'*X.S)*BR); % SSLdot = X.SSt; % SSRdot = X.StS; % BLdot = lyap(SSLdot, -ASLdot); % BRdot = lyap(SSRdot, -ASRdot); [BLdot, BRdot] = tangent_space_lyap(X.S, ASLdot, ASRdot); Hess.L = (ehess.L - eta.L*BL - X.L*BLdot - 2*rgrad.L*symm(eta.S*X.S'))*X.invSSt; Hess.R = (ehess.R - eta.R*BR - X.R*BRdot - 2*rgrad.R*symm(eta.S'*X.S))*X.invStS; Hess.S = ehess.S; % BM comments: Till this, everything seems correct. % We still need a correction factor for the non-constant metric % The correction factor owes itself to the Koszul formula... % This is the Riemannian connection in the Euclidean space with the % scaled metric. Hess.L = Hess.L + (eta.L*symm(rgrad.S*X.S') + rgrad.L*symm(eta.S*X.S'))*X.invSSt; Hess.R = Hess.R + (eta.R*symm(rgrad.S'*X.S) + rgrad.R*symm(eta.S'*X.S))*X.invStS; Hess.S = Hess.S - symm(rgrad.L'*eta.L)*X.S - X.S*symm(rgrad.R'*eta.R); % The Riemannian connection on the quotient space is the % projection on the tangent space of the total space and then onto the horizontal % space. This is accomplished by the following operation. Hess = M.proj(X, Hess); % norm(skew(X.SSt*(Hess.L'*X.L) + Hess.S*X.S')) % norm(skew(X.StS*(Hess.R'*X.R) - X.S'*Hess.S)) end M.proj = @projection; function etaproj = projection(X, eta) X = prepare(X); % First, projection onto the tangent space of the total sapce SSL = X.SSt; ASL = 2*symm(X.SSt*(X.L'*eta.L)*X.SSt); BL = lyap(SSL, -ASL); eta.L = eta.L - X.L*BL*X.invSSt; SSR = X.StS; ASR = 2*symm(X.StS*(X.R'*eta.R)*X.StS); BR = lyap(SSR, -ASR); eta.R = eta.R - X.R*BR*X.invStS; % Project onto the horizontal space PU = skew((X.L'*eta.L)*X.SSt) + skew(X.S*eta.S'); PV = skew((X.R'*eta.R)*X.StS) + skew(X.S'*eta.S); [Omega1, Omega2] = coupled_lyap(X.S, PU, PV); % norm(2*skew(Omega1*X.SSt) - PU -(X.S*Omega2*X.S'),'fro' ) % norm(2*skew(Omega2*X.StS) - PV -(X.S'*Omega1*X.S),'fro' ) % etaproj.L = eta.L - (X.L*Omega1); etaproj.S = eta.S - (X.S*Omega2 - Omega1*X.S) ; etaproj.R = eta.R - (X.R*Omega2); % norm(skew(X.SSt*(etaproj.L'*X.L) + etaproj.S*X.S')) % norm(skew(X.StS*(etaproj.R'*X.R) - X.S'*etaproj.S)) % % norm(skew(X.SSt*(etaproj.L'*X.L) - X.S*etaproj.S')) % norm(skew(X.StS*(etaproj.R'*X.R) + etaproj.S'*X.S)) end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.S = (X.S + t*eta.S); Y.L = uf((X.L + t*eta.L)); Y.R = uf((X.R + t*eta.R)); Y = prepare(Y); end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end Y = retraction(X, eta, t); warning('manopt:fixedrankLSRquotientfactory:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Used retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.S(:) ; X.R(:)])]; M.rand = @random; % Factors L and R live on Stiefel manifolds, hence we will reuse % their random generator. stiefelm = stiefelfactory(m, k); stiefeln = stiefelfactory(n, k); function X = random() X.L = stiefelm.rand(); X.R = stiefeln.rand(); X.S = diag(1+rand(k, 1)); X = prepare(X); end M.randvec = @randomvec; function eta = randomvec(X) % A random vector on the horizontal space eta.L = randn(m, k); eta.R = randn(n, k); eta.S = randn(k, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; eta.S = eta.S / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k), 'S', zeros(k, k), ... 'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.S(:); U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'S', reshape(u((m*k+1): m*k + k*k), k, k), ... 'R', reshape(u((m*k+ k*k + 1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INLSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; d.S = a1*d1.S; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; d.S = a1*d1.S + a2*d2.S; else error('Bad use of fixedrankLSRquotientfactory.lincomb.'); end end function A = uf(A) [L, unused, R] = svd(A, 0); %#ok A = L*R'; end function[BU, BV] = tangent_space_lyap(R, E, F) % We intent to solve RR^T BU + BU RR^T = E % R^T R BV + BV R^T R = F % % This can be solved using two calls to the Matlab lyap. % However, we can still have a more efficient implementations as shown % below... [U, Sigma, V] = svd(R); E_mod = U'*E*U; F_mod = V'*F*V; b1 = E_mod(:); b2 = F_mod(:); r = size(Sigma, 1); sig = diag(Sigma); % all the singular values in a vector sig1 = sig*ones(1, r); % columns repeat sig1t = sig1'; % rows repeat s1 = sig1(:); s2 = sig1t(:); % The block elements a = s1.^2 + s2.^2; % a column vector % solve the linear system of equations cu = b1./a; %a.\b1; cv = b2./a; %a.\b2; % devectorize CU = reshape(cu, r, r); CV = reshape(cv, r, r); % Do the similarity transforms BU = U*CU*U'; BV = V*CV*V'; % %% debug % % norm(R*R'*BU + BU*R*R' - E, 'fro'); % norm((Sigma.^2)*CU + CU*(Sigma.^2) - E_mod, 'fro'); % norm(a.*cu - b1, 'fro'); % % norm(R'*R*BV + BV*R'*R - F, 'fro'); % % BU1 = lyap(R*R', - E); % norm(R*R'*BU1 + BU1*R*R' - E, 'fro'); % % BV1 = lyap(R'*R, - F); % norm(R'*R*BV1 + BV1*R'*R - F, 'fro'); % % % as accurate as the lyap % norm(BU - BU1, 'fro') % norm(BV - BV1, 'fro') end function[Omega1, Omega2] = coupled_lyap(R, E, F) % We intent to solve the coupled system of Lyapunov equations % % RR^T Omega1 + Omega1 RR^T - R Omega2 R^T = E % R^T R Omega2 + Omega1 R^T R - R^T Omega2 R = F % % Below is an efficient implementation [U, Sigma, V] = svd(R); E_mod = U'*E*U; F_mod = V'*F*V; b1 = E_mod(:); b2 = F_mod(:); r = size(Sigma, 1); sig = diag(Sigma); % all the singular values in a vector sig1 = sig*ones(1, r); % columns repeat sig1t = sig1'; % rows repeat s1 = sig1(:); s2 = sig1t(:); % The block elements a = s1.^2 + s2.^2; % a column vector c = s1.*s2; % Solve directly using the formula % A = diag(a); % C = diag(c); % Y1_sol = (A*(C\A) - C) \ (b2 + A*(C\b1)); % Y2_sol = A\(b2 + C*Y1_sol); Y1_sol = (b2 + (a./c).*b1) ./ ((a.^2)./c - c); Y2_sol = (b2 + c.*Y1_sol)./a; % devectorize Omega1 = reshape(Y1_sol, r, r); Omega2 = reshape(Y2_sol, r, r); % Do the similarity transforms Omega1 = U*Omega1*U'; Omega2 = V*Omega2*V'; % %% debug whether we have the right solution % norm(R*R'*Omega1 + Omega1*R*R' - R*Omega2*R' - E, 'fro') % norm(R'*R*Omega2 + Omega2*R'*R - R'*Omega1*R - F, 'fro') end
github
skovnats/madmm-master
fixedrankfactory_2factors_subspace_projection.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/fixedrank/fixedrankfactory_2factors_subspace_projection.m
6,255
utf_8
4232d28fbaabbc139761a8fbcca4ea4c
function M = fixedrankfactory_2factors_subspace_projection(m, n, k) % Manifold of m-by-n matrices of rank k with quotient geometry. % % function M = fixedrankfactory_2factors_subspace_projection(m, n, k) % % This follows the quotient geometry described in the following paper: % B. Mishra, G. Meyer, S. Bonnabel and R. Sepulchre % "Fixed-rank matrix factorizations and Riemannian low-rank optimization", % arXiv, 2012. % % Paper link: http://arxiv.org/abs/1209.0430 % % A point X on the manifold is represented as a structure with two % fields: L and R. The matrices L (mxk) is orthonormal, % while the matrix R (nxk) is a full column-rank % matrix. % % Tangent vectors are represented as a structure with two fields: L, R. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('LR'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Some precomputations at the point X to be used in the inner product (and % pretty much everywhere else). function X = prepare(X) if ~all(isfield(X,{'RtR','invRtR'}) == 1) X.RtR = X.R'*X.R; X.invRtR = eye(size(X.R,2))/ X.RtR; end end % The choice of the metric is motivated by symmetry and scale % invariance in the total space M.inner = @iproduct; function ip = iproduct(X, eta, zeta) X = prepare(X); ip = eta.L(:).'*zeta.L(:) + trace(X.invRtR*(eta.R'*zeta.R) ); end M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankfactory_2factors_subspace_projection.dist not implemented yet.'); M.typicaldist = @() 10*k; skew = @(X) .5*(X-X'); symm = @(X) .5*(X+X'); stiefel_proj = @(L, H) H - L*symm(L'*H); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) X = prepare(X); eta.L = stiefel_proj(X.L, eta.L); eta.R = eta.R*X.RtR; end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) X = prepare(X); % Riemannian gradient rgrad = egrad2rgrad(X, egrad); % Directional derivative of the Riemannian gradient Hess.L = ehess.L - eta.L*symm(X.L'*egrad.L); Hess.L = stiefel_proj(X.L, Hess.L); Hess.R = ehess.R*X.RtR + 2*egrad.R*symm(eta.R'*X.R); % Correction factor for the non-constant metric on the factor R Hess.R = Hess.R - rgrad.R*((X.invRtR)*symm(X.R'*eta.R)) - eta.R*(X.invRtR*symm(X.R'*rgrad.R)) + X.R*(X.invRtR*symm(eta.R'*rgrad.R)); % Projection onto the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; function etaproj = projection(X, eta) X = prepare(X); eta.L = stiefel_proj(X.L, eta.L); % On the tangent space SS = X.RtR; AS1 = 2*X.RtR*skew(X.L'*eta.L)*X.RtR; AS2 = 2*skew(X.RtR*(X.R'*eta.R)); AS = skew(AS1 + AS2); Omega = nested_sylvester(SS,AS); etaproj.L = eta.L - X.L*Omega; etaproj.R = eta.R - X.R*Omega; end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.L = uf(X.L + t*eta.L); Y.R = X.R + t*eta.R; % These are reused in the computation of the gradient and Hessian Y = prepare(Y); end M.exp = @exponential; function R = exponential(X, eta, t) if nargin < 3 t = 1.0; end R = retraction(X, eta, t); warning('manopt:fixedrankfactory_2factors_subspace_projection:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Lsed retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.R(:)])]; M.rand = @random; % Factors L lives on Stiefel manifold, hence we will reuse % its random generator. stiefelm = stiefelfactory(m, k); function X = random() X.L = stiefelm.rand(); X.R = randn(n, k); end M.randvec = @randomvec; function eta = randomvec(X) eta.L = randn(m, k); eta.R = randn(n, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k),... 'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'R', reshape(u((m*k+1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INLSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; else error('Bad use of fixedrankfactory_2factors_subspace_projection.lincomb.'); end end function A = uf(A) [L, unused, R] = svd(A, 0); %#ok A = L*R'; end function omega = nested_sylvester(sym_mat, asym_mat) % omega=nested_sylvester(sym_mat,asym_mat) % This function solves the system of nested Sylvester equations: % % X*sym_mat + sym_mat*X = asym_mat % Omega*sym_mat+sym_mat*Omega = X % Mishra, Meyer, Bonnabel and Sepulchre, 'Fixed-rank matrix factorizations and Riemannian low-rank optimization' % Lses built-in lyap function, but does not exploit the fact that it's % twice the same sym_mat matrix that comes into play. X = lyap(sym_mat, -asym_mat); omega = lyap(sym_mat, -X); end
github
skovnats/madmm-master
fixedrankfactory_2factors_preconditioned.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/fixedrank/fixedrankfactory_2factors_preconditioned.m
5,832
utf_8
de03349c31333faef49955c31b7478b1
function M = fixedrankfactory_2factors_preconditioned(m, n, k) % Manifold of m-by-n matrices of rank k with new balanced quotient geometry % % function M = fixedrankfactory_2factors_preconditioned(m, n, k) % % This follows the quotient geometry described in the following paper: % B. Mishra, K. Adithya Apuroop and R. Sepulchre, % "A Riemannian geometry for low-rank matrix completion", % arXiv, 2012. % % Paper link: http://arxiv.org/abs/1211.1550 % % This geoemtry is tuned to least square problems such as low-rank matrix % completion. % % A point X on the manifold is represented as a structure with two % fields: L and R. The matrices L (mxk) and R (nxk) are full column-rank % matrices. % % Tangent vectors are represented as a structure with two fields: L, R % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('LR''(tuned for least square problems) quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Some precomputations at the point X to be used in the inner product (and % pretty much everywhere else). function X = prepare(X) if ~all(isfield(X,{'LtL','RtR','invRtR','invLtL'})) L = X.L; R = X.R; X.LtL = L'*L; X.RtR = R'*R; X.invLtL = inv(X.LtL); X.invRtR = inv(X.RtR); end end % The choice of metric is motivated by symmetry and tuned to least square % objective function M.inner = @iproduct; function ip = iproduct(X, eta, zeta) X = prepare(X); ip = trace(X.RtR*(eta.L'*zeta.L)) + trace(X.LtL*(eta.R'*zeta.R)); end M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankfactory_2factors_preconditioned.dist not implemented yet.'); M.typicaldist = @() 10*k; symm = @(M) .5*(M+M'); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) X = prepare(X); eta.L = eta.L*X.invRtR; eta.R = eta.R*X.invLtL; end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) X = prepare(X); % Riemannian gradient rgrad = egrad2rgrad(X, egrad); % Directional derivative of the Riemannian gradient Hess.L = ehess.L*X.invRtR - 2*egrad.L*(X.invRtR * symm(eta.R'*X.R) * X.invRtR); Hess.R = ehess.R*X.invLtL - 2*egrad.R*(X.invLtL * symm(eta.L'*X.L) * X.invLtL); % We still need a correction factor for the non-constant metric Hess.L = Hess.L + rgrad.L*(symm(eta.R'*X.R)*X.invRtR) + eta.L*(symm(rgrad.R'*X.R)*X.invRtR) - X.L*(symm(eta.R'*rgrad.R)*X.invRtR); Hess.R = Hess.R + rgrad.R*(symm(eta.L'*X.L)*X.invLtL) + eta.R*(symm(rgrad.L'*X.L)*X.invLtL) - X.R*(symm(eta.L'*rgrad.L)*X.invLtL); % Project on the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; function etaproj = projection(X, eta) X = prepare(X); Lambda = (eta.R'*X.R)*X.invRtR - X.invLtL*(X.L'*eta.L); Lambda = Lambda/2; etaproj.L = eta.L + X.L*Lambda; etaproj.R = eta.R - X.R*Lambda'; end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.L = X.L + t*eta.L; Y.R = X.R + t*eta.R; % Numerical conditioning step: A simpler version. % We need to ensure that L and R are do not have very relative % skewed norms. scaling = norm(X.L, 'fro')/norm(X.R, 'fro'); scaling = sqrt(scaling); Y.L = Y.L / scaling; Y.R = Y.R * scaling; % These are reused in the computation of the gradient and Hessian Y = prepare(Y); end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end Y = retraction(X, eta, t); warning('manopt:fixedrankfactory_2factors_preconditioned:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Used retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.R(:)])]; M.rand = @random; function X = random() X.L = randn(m, k); X.R = randn(n, k); end M.randvec = @randomvec; function eta = randomvec(X) eta.L = randn(m, k); eta.R = randn(n, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k),'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'R', reshape(u((m*k+1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; else error('Bad use of fixedrankfactory_2factors_preconditioned.lincomb.'); end end
github
skovnats/madmm-master
fixedrankembeddedfactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/fixedrank/fixedrankembeddedfactory.m
10,833
utf_8
1c1a04e099a39f2931eaf8763455c433
function M = fixedrankembeddedfactory(m, n, k) % Manifold struct to optimize fixed-rank matrices w/ an embedded geometry. % % function M = fixedrankembeddedfactory(m, n, k) % % Manifold of m-by-n real matrices of fixed rank k. This follows the % geometry described in this paper (which for now is the documentation): % B. Vandereycken, "Low-rank matrix completion by Riemannian optimization", % 2011. % % Paper link: http://arxiv.org/pdf/1209.3834.pdf % % A point X on the manifold is represented as a structure with three % fields: U, S and V. The matrices U (mxk) and V (nxk) are orthonormal, % while the matrix S (kxk) is any /diagonal/, full rank matrix. % Following the SVD formalism, X = U*S*V'. Note that the diagonal entries % of S are not constrained to be nonnegative. % % Tangent vectors are represented as a structure with three fields: Up, M % and Vp. The matrices Up (mxk) and Vp (mxk) obey Up'*U = 0 and Vp'*V = 0. % The matrix M (kxk) is arbitrary. Such a structure corresponds to the % following tangent vector in the ambient space of mxn matrices: % Z = U*M*V' + Up*V' + U*Vp' % where (U, S, V) is the current point and (Up, M, Vp) is the tangent % vector at that point. % % Vectors in the ambient space are best represented as mxn matrices. If % these are low-rank, they may also be represented as structures with % U, S, V fields, such that Z = U*S*V'. Their are no resitrictions on what % U, S and V are, as long as their product as indicated yields a real, mxn % matrix. % % The chosen geometry yields a Riemannian submanifold of the embedding % space R^(mxn) equipped with the usual trace (Frobenius) inner product. % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % % Feb. 20, 2014 (NB): % Added function tangent to work with checkgradient. % June 24, 2014 (NB): % A couple modifications following % Bart Vandereycken's feedback: % - The checksum (hash) was replaced for a faster alternative: it's a % bit less "safe" in that collisions could arise with higher % probability, but they're still very unlikely. % - The vector transport was changed. % The typical distance was also modified, hopefully giving the % trustregions method a better initial guess for the trust region % radius, but that should be tested for different cost functions too. % July 11, 2014 (NB): % Added ehess2rhess and tangent2ambient, supplied by Bart. % July 14, 2014 (NB): % Added vec, mat and vecmatareisometries so that hessianspectrum now % works with this geometry. Implemented the tangent function. % Made it clearer in the code and in the documentation in what format % ambient vectors may be supplied, and generalized some functions so % that they should now work with both accepted formats. % It is now clearly stated that for a point X represented as a % triplet (U, S, V), the matrix S needs to be diagonal. M.name = @() sprintf('Manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; M.inner = @(x, d1, d2) d1.M(:).'*d2.M(:) + d1.Up(:).'*d2.Up(:) ... + d1.Vp(:).'*d2.Vp(:); M.norm = @(x, d) sqrt(M.inner(x, d, d)); M.dist = @(x, y) error('fixedrankembeddedfactory.dist not implemented yet.'); M.typicaldist = @() M.dim(); % Given Z in tangent vector format, projects the components Up and Vp % such that they satisfy the tangent space constraints up to numerical % errors. If Z was indeed a tangent vector at X, this should barely % affect Z (it would not at all if we had infinite numerical accuracy). M.tangent = @tangent; function Z = tangent(X, Z) Z.Up = Z.Up - X.U*(X.U'*Z.Up); Z.Vp = Z.Vp - X.V*(X.V'*Z.Vp); end % For a given ambient vector Z, applies it to a matrix W. If Z is given % as a matrix, this is straightfoward. If Z is given as a structure % with fields U, S, V such that Z = U*S*V', the product is executed % efficiently. function ZW = apply_ambient(Z, W) if ~isstruct(Z) ZW = Z*W; else ZW = Z.U*(Z.S*(Z.V'*W)); end end % Same as apply_ambient, but applies Z' to W. function ZtW = apply_ambient_transpose(Z, W) if ~isstruct(Z) ZtW = Z'*W; else ZtW = Z.V*(Z.S'*(Z.U'*W)); end end % Orthogonal projection of an ambient vector Z represented as an mxn % matrix or as a structure with fields U, S, V to the tangent space at % X, in a tangent vector structure format. M.proj = @projection; function Zproj = projection(X, Z) ZV = apply_ambient(Z, X.V); UtZV = X.U'*ZV; ZtU = apply_ambient_transpose(Z, X.U); Zproj.M = UtZV; Zproj.Up = ZV - X.U*UtZV; Zproj.Vp = ZtU - X.V*UtZV'; end M.egrad2rgrad = @projection; % Code supplied by Bart. % Given the Euclidean gradient at X and the Euclidean Hessian at X % along H, where egrad and ehess are vectors in the ambient space and H % is a tangent vector at X, returns the Riemannian Hessian at X along % H, which is a tangent vector. M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(X, egrad, ehess, H) % Euclidean part rhess = projection(X, ehess); % Curvature part T = apply_ambient(egrad, H.Vp)/X.S; rhess.Up = rhess.Up + (T - X.U*(X.U'*T)); T = apply_ambient_transpose(egrad, H.Up)/X.S; rhess.Vp = rhess.Vp + (T - X.V*(X.V'*T)); end % Transforms a tangent vector Z represented as a structure (Up, M, Vp) % into a structure with fields (U, S, V) that represents that same % tangent vector in the ambient space of mxn matrices, as U*S*V'. % This matrix is equal to X.U*Z.M*X.V' + Z.Up*X.V' + X.U*Z.Vp'. The % latter is an mxn matrix, which could be too large to build % explicitly, and this is why we return a low-rank representation % instead. Note that there are no guarantees on U, S and V other than % that USV' is the desired matrix. In particular, U and V are not (in % general) orthonormal and S is not (in general) diagonal. % (In this implementation, S is identity, but this might change.) M.tangent2ambient = @tangent2ambient; function Zambient = tangent2ambient(X, Z) Zambient.U = [X.U*Z.M + Z.Up, X.U]; Zambient.S = eye(2*k); Zambient.V = [X.V, Z.Vp]; end % This retraction is second order, following general results from % Absil, Malick, "Projection-like retractions on matrix manifolds", % SIAM J. Optim., 22 (2012), pp. 135-158. M.retr = @retraction; function Y = retraction(X, Z, t) if nargin < 3 t = 1.0; end % See personal notes June 28, 2012 (NB) [Qu, Ru] = qr(Z.Up, 0); [Qv, Rv] = qr(Z.Vp, 0); % Calling svds or svd should yield the same result, but BV % advocated svd is more robust, and it doesn't change the % asymptotic complexity to call svd then trim rather than call % svds. Also, apparently Matlab calls ARPACK in a suboptimal way % for svds in this scenario. % [Ut St Vt] = svds([X.S+t*Z.M , t*Rv' ; t*Ru , zeros(k)], k); [Ut, St, Vt] = svd([X.S+t*Z.M , t*Rv' ; t*Ru , zeros(k)]); Y.U = [X.U Qu]*Ut(:, 1:k); Y.V = [X.V Qv]*Vt(:, 1:k); Y.S = St(1:k, 1:k) + eps*eye(k); % equivalent but very slow code % [U S V] = svds(X.U*X.S*X.V' + t*(X.U*Z.M*X.V' + Z.Up*X.V' + X.U*Z.Vp'), k); % Y.U = U; Y.V = V; Y.S = S; end M.exp = @exponential; function Y = exponential(X, Z, t) if nargin < 3 t = 1.0; end Y = retraction(X, Z, t); warning('manopt:fixedrankembeddedfactory:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Used retraction instead.']); end % Less safe but much faster checksum, June 24, 2014. % Older version right below. M.hash = @(X) ['z' hashmd5([sum(X.U(:)) ; sum(X.S(:)); sum(X.V(:)) ])]; %M.hash = @(X) ['z' hashmd5([X.U(:) ; X.S(:) ; X.V(:)])]; M.rand = @random; % Factors U and V live on Stiefel manifolds, hence we will reuse % their random generator. stiefelm = stiefelfactory(m, k); stiefeln = stiefelfactory(n, k); function X = random() X.U = stiefelm.rand(); X.V = stiefeln.rand(); X.S = diag(sort(rand(k, 1), 1, 'descend')); end % Generate a random tangent vector at X. % TODO: consider a possible imbalance between the three components Up, % Vp and M, when m, n and k are widely different (which is typical). M.randvec = @randomvec; function Z = randomvec(X) Z.Up = randn(m, k); Z.Vp = randn(n, k); Z.M = randn(k); Z = tangent(X, Z); nrm = M.norm(X, Z); Z.Up = Z.Up / nrm; Z.Vp = Z.Vp / nrm; Z.M = Z.M / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('Up', zeros(m, k), 'M', zeros(k, k), ... 'Vp', zeros(n, k)); % New vector transport on June 24, 2014 (as indicated by Bart) % Reference: Absil, Mahony, Sepulchre 2008 section 8.1.3: % For Riemannian submanifolds of a Euclidean space, it is acceptable to % transport simply by orthogonal projection of the tangent vector % translated in the ambient space. M.transp = @project_tangent; function Z2 = project_tangent(X1, X2, Z1) Z2 = projection(X2, tangent2ambient(X1, Z1)); end M.vec = @vec; function Zvec = vec(X, Z) Zamb = tangent2ambient(X, Z); Zamb_mat = Zamb.U*Zamb.S*Zamb.V'; Zvec = Zamb_mat(:); end M.mat = @(X, Zvec) projection(X, reshape(Zvec, [m, n])); M.vecmatareisometries = @() true; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d.Up = a1*d1.Up; d.Vp = a1*d1.Vp; d.M = a1*d1.M; elseif nargin == 5 d.Up = a1*d1.Up + a2*d2.Up; d.Vp = a1*d1.Vp + a2*d2.Vp; d.M = a1*d1.M + a2*d2.M; else error('fixedrank.lincomb takes either 3 or 5 inputs.'); end end
github
skovnats/madmm-master
fixedrankfactory_3factors.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/fixedrank/fixedrankfactory_3factors.m
6,035
utf_8
a8c0a4812c73be5a82cf3918fe2d77c1
function M = fixedrankfactory_3factors(m, n, k) % Manifold of m-by-n matrices of rank k with polar quotient geometry. % % function M = fixedrankfactory_3factors(m, n, k) % % Follows the polar quotient geometry described in the following paper: % G. Meyer, S. Bonnabel and R. Sepulchre, % "Linear regression under fixed-rank constraints: a Riemannian approach", % ICML 2011. % % Paper link: http://www.icml-2011.org/papers/350_icmlpaper.pdf % % Additional reference is % % B. Mishra, R. Meyer, S. Bonnabel and R. Sepulchre % "Fixed-rank matrix factorizations and Riemannian low-rank optimization", % arXiv, 2012. % % Paper link: http://arxiv.org/abs/1209.0430 % % A point X on the manifold is represented as a structure with three % fields: L, S and R. The matrices L (mxk) and R (nxk) are orthonormal, % while the matrix S (kxk) is a symmetric positive definite full rank % matrix. % % Tangent vectors are represented as a structure with three fields: L, S % and R. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('LSR'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Choice of the metric on the orthnormal space is motivated by the symmetry present in the % space. The metric on the positive definite space is its natural metric. M.inner = @(X, eta, zeta) eta.L(:).'*zeta.L(:) + eta.R(:).'*zeta.R(:) ... + trace( (X.S\eta.S) * (X.S\zeta.S) ); M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankfactory_3factors.dist not implemented yet.'); M.typicaldist = @() 10*k; skew = @(X) .5*(X-X'); symm = @(X) .5*(X+X'); stiefel_proj = @(L, H) H - L*symm(L'*H); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) eta.L = stiefel_proj(X.L, eta.L); eta.S = X.S*symm(eta.S)*X.S; eta.R = stiefel_proj(X.R, eta.R); end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) % Riemannian gradient for the factor S rgrad.S = X.S*symm(egrad.S)*X.S; % Directional derivatives of the Riemannian gradient Hess.L = ehess.L - eta.L*symm(X.L'*egrad.L); Hess.L = stiefel_proj(X.L, Hess.L); Hess.R = ehess.R - eta.R*symm(X.R'*egrad.R); Hess.R = stiefel_proj(X.R, Hess.R); Hess.S = X.S*symm(ehess.S)*X.S + 2*symm(eta.S*symm(egrad.S)*X.S); % Correction factor for the non-constant metric on the factor S Hess.S = Hess.S - symm(eta.S*(X.S\rgrad.S)); % Projection onto the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; function etaproj = projection(X, eta) % First, projection onto the tangent space of the total sapce eta.L = stiefel_proj(X.L, eta.L); eta.R = stiefel_proj(X.R, eta.R); eta.S = symm(eta.S); % Then, projection onto the horizontal space SS = X.S*X.S; AS = X.S*(skew(X.L'*eta.L) + skew(X.R'*eta.R) - 2*skew(X.S\eta.S))*X.S; omega = lyap(SS, -AS); etaproj.L = eta.L - X.L*omega; etaproj.S = eta.S - (X.S*omega - omega*X.S); etaproj.R = eta.R - X.R*omega; end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end L = chol(X.S); Y.S = L'*expm(L'\(t*eta.S)/L)*L; Y.L = uf(X.L + t*eta.L); Y.R = uf(X.R + t*eta.R); end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end Y = retraction(X, eta, t); warning('manopt:fixedrankfactory_3factors:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Lsed retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.S(:) ; X.R(:)])]; M.rand = @random; % Factors L and R live on Stiefel manifolds, hence we will reuse % their random generator. stiefelm = stiefelfactory(m, k); stiefeln = stiefelfactory(n, k); function X = random() X.L = stiefelm.rand(); X.R = stiefeln.rand(); X.S = diag(1+rand(k, 1)); end M.randvec = @randomvec; function eta = randomvec(X) % A random vector on the horizontal space eta.L = randn(m, k); eta.R = randn(n, k); eta.S = randn(k, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; eta.S = eta.S / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k), 'S', zeros(k, k), ... 'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.S(:); U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'S', reshape(u((m*k+1): m*k + k*k), k, k), ... 'R', reshape(u((m*k+ k*k + 1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INLSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; d.S = a1*d1.S; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; d.S = a1*d1.S + a2*d2.S; else error('Bad use of fixedrankfactory_3factors.lincomb.'); end end function A = uf(A) [L, unused, R] = svd(A, 0); %#ok A = L*R'; end
github
skovnats/madmm-master
fixedrankMNquotientfactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/fixedrank/fixedrankMNquotientfactory.m
4,472
utf_8
12343fec86ae2648fcd915623ae645c5
function M = fixedrankMNquotientfactory(m, n, k) % Manifold of m-by-n matrices of rank k with quotient geometry. % % function M = fixedrankMNquotientfactory(m, n, k) % % This follows the quotient geometry described in the following paper: % P.-A. Absil, L. Amodei and G. Meyer, % "Two Newton methods on the manifold of fixed-rank matrices endowed % with Riemannian quotient geometries", arXiv, 2012. % % Paper link: http://arxiv.org/abs/1209.0068 % % A point X on the manifold is represented as a structure with two % fields: M and N. The matrix M (mxk) is orthonormal, while the matrix N % (nxk) is full-rank. % % Tangent vectors are represented as a structure with two fields (M, N). % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('MN'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Choice of the metric is motivated by the symmetry present in the % space M.inner = @(X, eta, zeta) eta.M(:).'*zeta.M(:) + eta.N(:).'*zeta.N(:); M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankMNquotientfactory.dist not implemented yet.'); M.typicaldist = @() 10*k; symm = @(X) .5*(X+X'); stiefel_proj = @(M, H) H - M*symm(M'*H); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) eta.M = stiefel_proj(X.M, eta.M); end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) % Directional derivative of the Riemannian gradient Hess.M = ehess.M - eta.M*symm(X.M'*egrad.M); Hess.M = stiefel_proj(X.M, Hess.M); Hess.N = ehess.N; % Projection onto the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; function etaproj = projection(X, eta) % Start by projecting the vector from Rmp x Rnp to the tangent % space to the total space, that is, eta.M should be in the % tangent space to Stiefel at X.M and eta.N is arbitrary. eta.M = stiefel_proj(X.M, eta.M); % Now project from the tangent space to the horizontal space, that % is, take care of the quotient. % First solve a Sylvester equation (A symm., B skew-symm.) A = X.N'*X.N + eye(k); B = eta.M'*X.M + eta.N'*X.N; B = B-B'; omega = lyap(A, -B); % And project along the vertical space to the horizontal space. etaproj.M = eta.M + X.M*omega; etaproj.N = eta.N + X.N*omega; end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end A = t*X.M'*eta.M; S = t^2*eta.M'*eta.M; Y.M = [X.M t*eta.M]*expm([A -S ; eye(k) A])*eye(2*k, k)*expm(-A); % re-orthonormalize (seems necessary from time to time) [Q R] = qr(Y.M, 0); Y.M = Q * diag(sign(diag(R))); Y.N = X.N + t*eta.N; end % Factor M lives on the Stiefel manifold, hence we will reuse its % random generator. stiefelm = stiefelfactory(m, k); M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.M = uf(X.M + t*eta.M); % This is a valid retraction Y.N = X.N + t*eta.N; end M.hash = @(X) ['z' hashmd5([X.M(:) ; X.N(:)])]; M.rand = @random; function X = random() X.M = stiefelm.rand(); X.N = randn(n, k); end M.randvec = @randomvec; function eta = randomvec(X) eta.M = randn(m, k); eta.N = randn(n, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.M = eta.M / nrm; eta.N = eta.N / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('M', zeros(m, k), 'N', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INMSL> if nargin == 3 d.M = a1*d1.M; d.N = a1*d1.N; elseif nargin == 5 d.M = a1*d1.M + a2*d2.M; d.N = a1*d1.N + a2*d2.N; else error('Bad use of fixedrankMNquotientfactory.lincomb.'); end end function A = uf(A) [L, unused, R] = svd(A, 0); A = L*R'; end
github
skovnats/madmm-master
fixedrankfactory_2factors.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/fixedrank/fixedrankfactory_2factors.m
5,813
utf_8
70044d83ff10591a75b81f415cb920c2
function M = fixedrankfactory_2factors(m, n, k) % Manifold of m-by-n matrices of rank k with balanced quotient geometry. % % function M = fixedrankfactory_2factors(m, n, k) % % This follows the balanced quotient geometry described in the following paper: % G. Meyer, S. Bonnabel and R. Sepulchre, % "Linear regression under fixed-rank constraints: a Riemannian approach", % ICML 2011. % % Paper link: http://www.icml-2011.org/papers/350_icmlpaper.pdf % % A point X on the manifold is represented as a structure with two % fields: L and R. The matrices L (mxk) and R (nxk) are full column-rank % matrices such that X = L*R'. % % Tangent vectors are represented as a structure with two fields: L, R % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: % July 10, 2013 (NB) : added vec, mat, tangent, tangent2ambient M.name = @() sprintf('LR'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Some precomputations at the point X to be used in the inner product (and % pretty much everywhere else). function X = prepare(X) if ~all(isfield(X,{'LtL','RtR','invRtR','invLtL'})) L = X.L; R = X.R; X.LtL = L'*L; X.RtR = R'*R; X.invLtL = inv(X.LtL); X.invRtR = inv(X.RtR); end end % Choice of the metric is motivated by the symmetry present in the space M.inner = @iproduct; function ip = iproduct(X, eta, zeta) X = prepare(X); ip = trace(X.invLtL*(eta.L'*zeta.L)) + trace( X.invRtR*(eta.R'*zeta.R)); end M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankfactory_2factors.dist not implemented yet.'); M.typicaldist = @() 10*k; symm = @(M) .5*(M+M'); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) X = prepare(X); eta.L = eta.L*X.LtL; eta.R = eta.R*X.RtR; end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) X = prepare(X); % Riemannian gradient rgrad = egrad2rgrad(X, egrad); % Directional derivative of the Riemannian gradient Hess.L = ehess.L*X.LtL + 2*egrad.L*symm(eta.L'*X.L); Hess.R = ehess.R*X.RtR + 2*egrad.R*symm(eta.R'*X.R); % We need a correction term for the non-constant metric Hess.L = Hess.L - rgrad.L*((X.invLtL)*symm(X.L'*eta.L)) - eta.L*(X.invLtL*symm(X.L'*rgrad.L)) + X.L*(X.invLtL*symm(eta.L'*rgrad.L)); Hess.R = Hess.R - rgrad.R*((X.invRtR)*symm(X.R'*eta.R)) - eta.R*(X.invRtR*symm(X.R'*rgrad.R)) + X.R*(X.invRtR*symm(eta.R'*rgrad.R)); % Projection onto the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; % Projection of the vector eta onto the horizontal space function etaproj = projection(X, eta) X = prepare(X); SS = (X.LtL)*(X.RtR); AS = (X.LtL)*(X.R'*eta.R) - (eta.L'*X.L)*(X.RtR); Omega = lyap(SS, SS,-AS); etaproj.L = eta.L + X.L*Omega'; etaproj.R = eta.R - X.R*Omega; end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.L = X.L + t*eta.L; Y.R = X.R + t*eta.R; % Numerical conditioning step: A simpler version. % We need to ensure that L and R do not have very relative % skewed norms. scaling = norm(X.L, 'fro')/norm(X.R, 'fro'); scaling = sqrt(scaling); Y.L = Y.L / scaling; Y.R = Y.R * scaling; % These are reused in the computation of the gradient and Hessian Y = prepare(Y); end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end Y = retraction(X, eta, t); warning('manopt:fixedrankfactory_2factors:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Used retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.R(:)])]; M.rand = @random; function X = random() % A random point on the total space X.L = randn(m, k); X.R = randn(n, k); X = prepare(X); end M.randvec = @randomvec; function eta = randomvec(X) % A random vector in the horizontal space eta.L = randn(m, k); eta.R = randn(n, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k),'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'R', reshape(u((m*k+1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; else error('Bad use of fixedrankfactory_2factors.lincomb.'); end end
github
skovnats/madmm-master
obliquefactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/oblique/obliquefactory.m
6,609
utf_8
1031640cf68e1bf9252af77d1002836a
function M = obliquefactory(n, m, transposed) % Returns a manifold struct to optimize over matrices w/ unit-norm columns. % % function M = obliquefactory(n, m) % function M = obliquefactory(n, m, transposed) % % Oblique manifold: deals with matrices of size n x m such that each column % has unit 2-norm, i.e., is a point on the unit sphere in R^n. The metric % is such that the oblique manifold is a Riemannian submanifold of the % space of nxm matrices with the usual trace inner product, i.e., the usual % metric. % % If transposed is set to true (it is false by default), then the matrices % are transposed: a point Y on the manifold is a matrix of size m x n and % each row has unit 2-norm. It is the same geometry, just a different % representation. % % See also: spherefactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % % July 16, 2013 (NB) : % Added 'transposed' option, mainly for ease of comparison with the % elliptope geometry. % % Nov. 29, 2013 (NB) : % Added normalize_columns function to make it easier to exploit the % bsxfun formulation of column normalization, which avoids using for % loops and provides performance gains. The exponential still uses a % for loop. if ~exist('transposed', 'var') || isempty(transposed) transposed = false; end if transposed trnsp = @(X) X'; else trnsp = @(X) X; end M.name = @() sprintf('Oblique manifold OB(%d, %d)', n, m); M.dim = @() (n-1)*m; M.inner = @(x, d1, d2) d1(:).'*d2(:); M.norm = @(x, d) norm(d(:)); M.dist = @(x, y) norm(real(acos(sum(trnsp(x).*trnsp(y), 1)))); M.typicaldist = @() pi*sqrt(m); M.proj = @(X, U) trnsp(projection(trnsp(X), trnsp(U))); M.tangent = M.proj; % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(X, egrad, ehess, U) X = trnsp(X); egrad = trnsp(egrad); ehess = trnsp(ehess); U = trnsp(U); PXehess = projection(X, ehess); inners = sum(X.*egrad, 1); rhess = PXehess - bsxfun(@times, U, inners); rhess = trnsp(rhess); end M.exp = @exponential; % Exponential on the oblique manifold function y = exponential(x, d, t) x = trnsp(x); d = trnsp(d); if nargin < 3 t = 1.0; end m = size(x, 2); y = zeros(size(x)); if t ~= 0 for i = 1 : m y(:, i) = sphere_exponential(x(:, i), d(:, i), t); end else y = x; end y = trnsp(y); end M.log = @logarithm; function v = logarithm(x1, x2) x1 = trnsp(x1); x2 = trnsp(x2); v = M.proj(x1, x2 - x1); dists = acos(sum(x1.*x2, 1)); norms = sqrt(sum(v.^2, 1)); factors = dists./norms; % factors(dists <= 1e-6) = 1; v = bsxfun(@times, v, factors); v = trnsp(v); end M.retr = @retraction; % Retraction on the oblique manifold function y = retraction(x, d, t) x = trnsp(x); d = trnsp(d); if nargin < 3 t = 1.0; end m = size(x, 2); if t ~= 0 y = normalize_columns(x + t*d); else y = x; end y = trnsp(y); end M.hash = @(x) ['z' hashmd5(x(:))]; M.rand = @() trnsp(random(n, m)); M.randvec = @(x) trnsp(randomvec(n, m, trnsp(x))); M.lincomb = @lincomb; M.zerovec = @(x) trnsp(zeros(n, m)); M.transp = @(x1, x2, d) M.proj(x2, d); M.pairmean = @pairmean; function y = pairmean(x1, x2) y = trnsp(x1+x2); y = normalize_columns(y); y = trnsp(y); end % vec returns a vector representation of an input tangent vector which % is represented as a matrix. mat returns the original matrix % representation of the input vector representation of a tangent % vector. vec and mat are thus inverse of each other. They are % furthermore isometries between a subspace of R^nm and the tangent % space at x. vect = @(X) X(:); M.vec = @(x, u_mat) vect(trnsp(u_mat)); M.mat = @(x, u_vec) trnsp(reshape(u_vec, [n, m])); M.vecmatareisometries = @() true; end % Given a matrix X, returns the same matrix but with each column scaled so % that they have unit 2-norm. function X = normalize_columns(X) norms = sqrt(sum(X.^2, 1)); X = bsxfun(@times, X, 1./norms); end % Orthogonal projection of the ambient vector H onto the tangent space at X function PXH = projection(X, H) % Compute the inner product between each vector H(:, i) with its root % point X(:, i), that is, X(:, i).' * H(:, i). Returns a row vector. inners = sum(X.*H, 1); % Subtract from H the components of the H(:, i)'s that are parallel to % the root points X(:, i). PXH = H - bsxfun(@times, X, inners); % % Equivalent but slow code: % m = size(X, 2); % PXH = zeros(size(H)); % for i = 1 : m % PXH(:, i) = H(:, i) - X(:, i) * (X(:, i)'*H(:, i)); % end end % Exponential on the sphere. function y = sphere_exponential(x, d, t) if nargin == 2 t = 1.0; end td = t*d; nrm_td = norm(td); if nrm_td > 1e-6 y = x*cos(nrm_td) + (td/nrm_td)*sin(nrm_td); else % if the step is too small, to avoid dividing by nrm_td, we choose % to approximate with this retraction-like step. y = x + td; y = y / norm(y); end end % Uniform random sampling on the sphere. function x = random(n, m) x = normalize_columns(randn(n, m)); end % Random normalized tangent vector at x. function d = randomvec(n, m, x) d = randn(n, m); d = projection(x, d); d = d / norm(d(:)); end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of oblique.lincomb.'); end end
github
skovnats/madmm-master
stiefelfactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/stiefel/stiefelfactory.m
4,989
utf_8
5cc739262d8e75c600af8497647ee711
function M = stiefelfactory(n, p, k) % Returns a manifold structure to optimize over orthonormal matrices. % % function M = stiefelfactory(n, p) % function M = stiefelfactory(n, p, k) % % The Stiefel manifold is the set of orthonormal nxp matrices. If k % is larger than 1, this is the Cartesian product of the Stiefel manifold % taken k times. The metric is such that the manifold is a Riemannian % submanifold of R^nxp equipped with the usual trace inner product, that % is, it is the usual metric. % % Points are represented as matrices X of size n x p x k (or n x p if k=1, % which is the default) such that each n x p matrix is orthonormal, % i.e., X'*X = eye(p) if k = 1, or X(:, :, i)' * X(:, :, i) = eye(p) for % i = 1 : k if k > 1. Tangent vectors are represented as matrices the same % size as points. % % By default, k = 1. % % See also: grassmannfactory rotationsfactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % July 5, 2013 (NB) : Added ehess2rhess. % Jan. 27, 2014 (BM) : Bug in ehess2rhess corrected. % June 24, 2014 (NB) : Added true exponential map and changed the randvec % function so that it now returns a globally % normalized vector, not a vector where each % component is normalized (this only matters if k>1). if ~exist('k', 'var') || isempty(k) k = 1; end if k == 1 M.name = @() sprintf('Stiefel manifold St(%d, %d)', n, p); elseif k > 1 M.name = @() sprintf('Product Stiefel manifold St(%d, %d)^%d', n, p, k); else error('k must be an integer no less than 1.'); end M.dim = @() k*(n*p - .5*p*(p+1)); M.inner = @(x, d1, d2) d1(:).'*d2(:); M.norm = @(x, d) norm(d(:)); M.dist = @(x, y) error('stiefel.dist not implemented yet.'); M.typicaldist = @() sqrt(p*k); M.proj = @projection; function Up = projection(X, U) XtU = multiprod(multitransp(X), U); symXtU = multisym(XtU); Up = U - multiprod(X, symXtU); % The code above is equivalent to, but much faster than, the code below. % % Up = zeros(size(U)); % function A = sym(A), A = .5*(A+A'); end % for i = 1 : k % Xi = X(:, :, i); % Ui = U(:, :, i); % Up(:, :, i) = Ui - Xi*sym(Xi'*Ui); % end end M.tangent = M.proj; % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(X, egrad, ehess, H) XtG = multiprod(multitransp(X), egrad); symXtG = multisym(XtG); HsymXtG = multiprod(H, symXtG); rhess = projection(X, ehess - HsymXtG); end M.retr = @retraction; function Y = retraction(X, U, t) if nargin < 3 t = 1.0; end Y = X + t*U; for i = 1 : k [Q, R] = qr(Y(:, :, i), 0); % The instruction with R assures we are not flipping signs % of some columns, which should never happen in modern Matlab % versions but may be an issue with older versions. Y(:, :, i) = Q * diag(sign(sign(diag(R))+.5)); end end M.exp = @exponential; function Y = exponential(X, U, t) if nargin == 2 t = 1; end tU = t*U; Y = zeros(size(X)); for i = 1 : k % From a formula by Ross Lippert, Example 5.4.2 in AMS08. Xi = X(:, :, i); Ui = tU(:, :, i); Y(:, :, i) = [Xi Ui] * ... expm([Xi'*Ui , -Ui'*Ui ; eye(p) , Xi'*Ui]) * ... [ expm(-Xi'*Ui) ; zeros(p) ]; end end M.hash = @(X) ['z' hashmd5(X(:))]; M.rand = @random; function X = random() X = zeros(n, p, k); for i = 1 : k [Q, unused] = qr(randn(n, p), 0); %#ok<NASGU> X(:, :, i) = Q; end end M.randvec = @randomvec; function U = randomvec(X) U = projection(X, randn(n, p, k)); U = U / norm(U(:)); end M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, p, k); M.transp = @(x1, x2, d) projection(x2, d); M.vec = @(x, u_mat) u_mat(:); M.mat = @(x, u_vec) reshape(u_vec, [n, p, k]); M.vecmatareisometries = @() true; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of stiefel.lincomb.'); end end
github
skovnats/madmm-master
rotationsfactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/rotations/rotationsfactory.m
4,857
utf_8
421ccf6b88f519f989d6dd87fb0a1128
function M = rotationsfactory(n, k) % Returns a manifold structure to optimize over rotation matrices. % % function M = rotationsfactory(n) % function M = rotationsfactory(n, k) % % Special orthogonal group (the manifold of rotations): deals with matrices % R of size n x n x k (or n x n if k = 1, which is the default) such that % each n x n matrix is orthogonal, with determinant 1, i.e., X'*X = eye(n) % if k = 1, or X(:, :, i)' * X(:, :, i) = eye(n) for i = 1 : k if k > 1. % % This is a description of SO(n)^k with the induced metric from the % embedding space (R^nxn)^k, i.e., this manifold is a Riemannian % submanifold of (R^nxn)^k endowed with the usual trace inner product. % % Tangent vectors are represented in the Lie algebra, i.e., as skew % symmetric matrices. Use the function M.tangent2ambient(X, H) to switch % from the Lie algebra representation to the embedding space % representation. % % By default, k = 1. % % See also: stiefelfactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % Jan. 31, 2013, NB : added egrad2rgrad and ehess2rhess if ~exist('k', 'var') || isempty(k) k = 1; end if k == 1 M.name = @() sprintf('Rotations manifold SO(%d)', n); elseif k > 1 M.name = @() sprintf('Product rotations manifold SO(%d)^%d', n, k); else error('k must be an integer no less than 1.'); end M.dim = @() k*nchoosek(n, 2); M.inner = @(x, d1, d2) d1(:).'*d2(:); M.norm = @(x, d) norm(d(:)); M.typicaldist = @() pi*sqrt(n*k); M.proj = @(X, H) multiskew(multiprod(multitransp(X), H)); M.tangent = @(X, H) multiskew(H); M.tangent2ambient = @(X, U) multiprod(X, U); M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function Rhess = ehess2rhess(X, Egrad, Ehess, H) % Reminder : H contains skew-symmeric matrices. The actual % direction that the point X is moved along is X*H. Xt = multitransp(X); XtEgrad = multiprod(Xt, Egrad); symXtEgrad = multisym(XtEgrad); XtEhess = multiprod(Xt, Ehess); Rhess = multiskew( XtEhess - multiprod(H, symXtEgrad) ); end M.retr = @retraction; function Y = retraction(X, U, t) if nargin == 3 tU = t*U; else tU = U; end Y = X + multiprod(X, tU); for i = 1 : k [Q R] = qr(Y(:, :, i)); % The instruction with R ensures we are not flipping signs % of some columns, which should never happen in modern Matlab % versions but may be an issue with older versions. Y(:, :, i) = Q * diag(sign(sign(diag(R))+.5)); % This is guaranteed to always yield orthogonal matrices with % determinant +1. Simply look at the eigenvalues of a skew % symmetric matrix, than at those of identity plus that matrix, % and compute their product for the determinant: it's stricly % positive in all cases. end end M.exp = @exponential; function Y = exponential(X, U, t) if nargin == 3 exptU = t*U; else exptU = U; end for i = 1 : k exptU(:, :, i) = expm(exptU(:, :, i)); end Y = multiprod(X, exptU); end M.log = @logarithm; function U = logarithm(X, Y) U = multiprod(multitransp(X), Y); for i = 1 : k % The result of logm should be real in theory, but it is % numerically useful to force it. U(:, :, i) = real(logm(U(:, :, i))); end % Ensure the tangent vector is in the Lie algebra. U = multiskew(U); end M.hash = @(X) ['z' hashmd5(X(:))]; M.rand = @() randrot(n, k); M.randvec = @randomvec; function U = randomvec(X) %#ok<INUSD> U = randskew(n, k); nrmU = sqrt(U(:).'*U(:)); U = U / nrmU; end M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, n, k); M.transp = @(x1, x2, d) d; M.pairmean = @pairmean; function Y = pairmean(X1, X2) V = M.log(X1, X2); Y = M.exp(X1, .5*V); end M.dist = @(x, y) M.norm(x, M.log(x, y)); M.vec = @(x, u_mat) u_mat(:); M.mat = @(x, u_vec) reshape(u_vec, [n, n, k]); M.vecmatareisometries = @() true; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of rotations.lincomb.'); end end
github
skovnats/madmm-master
spherecomplexfactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/sphere/spherecomplexfactory.m
3,285
utf_8
28cbdaa05de778558800a89c16acad64
function M = spherecomplexfactory(n, m) % Returns a manifold struct to optimize over unit-norm complex matrices. % % function M = spherecomplexfactory(n) % function M = spherecomplexfactory(n, m) % % Manifold of n-by-m complex matrices of unit Frobenius norm. % By default, m = 1, which corresponds to the unit sphere in C^n. The % metric is such that the sphere is a Riemannian submanifold of the space % of 2nx2m real matrices with the usual trace inner product, i.e., the % usual metric. % % See also: spherefactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: if ~exist('m', 'var') m = 1; end if m == 1 M.name = @() sprintf('Complex sphere S^%d', n-1); else M.name = @() sprintf('Unit F-norm %dx%d complex matrices', n, m); end M.dim = @() 2*(n*m)-1; M.inner = @(x, d1, d2) real(d1(:)'*d2(:)); M.norm = @(x, d) norm(d, 'fro'); M.dist = @(x, y) acos(real(x(:)'*y(:))); M.typicaldist = @() pi; M.proj = @(x, d) reshape(d(:) - x(:)*(real(x(:)'*d(:))), n, m); % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.tangent = M.proj; M.exp = @exponential; M.retr = @retraction; M.log = @logarithm; function v = logarithm(x1, x2) error('The logarithmic map is not yet implemented for this manifold.'); end M.hash = @(x) ['z' hashmd5([real(x(:)) ; imag(x(:))])]; M.rand = @() random(n, m); M.randvec = @(x) randomvec(n, m, x); M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, m); M.transp = @(x1, x2, d) M.proj(x2, d); M.pairmean = @pairmean; function y = pairmean(x1, x2) y = x1+x2; y = y / norm(y, 'fro'); end end % Exponential on the sphere function y = exponential(x, d, t) if nargin == 2 t = 1; end td = t*d; nrm_td = norm(td, 'fro'); if nrm_td > 1e-6 y = x*cos(nrm_td) + td*(sin(nrm_td)/nrm_td); else % If the step is too small, to avoid dividing by nrm_td, we choose % to approximate with this retraction-like step. y = x + td; y = y / norm(y, 'fro'); end end % Retraction on the sphere function y = retraction(x, d, t) if nargin == 2 t = 1; end y = x+t*d; y = y/norm(y, 'fro'); end % Uniform random sampling on the sphere. function x = random(n, m) x = randn(n, m) + 1i*randn(n, m); x = x/norm(x, 'fro'); end % Random normalized tangent vector at x. function d = randomvec(n, m, x) d = randn(n, m) + 1i*randn(n, m); d = reshape(d(:) - x(:)*(real(x(:)'*d(:))), n, m); d = d / norm(d, 'fro'); end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of spherecomplex.lincomb.'); end end
github
skovnats/madmm-master
spherefactory.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/manifolds/sphere/spherefactory.m
3,447
utf_8
1b575cecaef843bcda1574bc09b4760c
function M = spherefactory(n, m) % Returns a manifold struct to optimize over unit-norm vectors or matrices. % % function M = spherefactory(n) % function M = spherefactory(n, m) % % Manifold of n-by-m real matrices of unit Frobenius norm. % By default, m = 1, which corresponds to the unit sphere in R^n. The % metric is such that the sphere is a Riemannian submanifold of the space % of nxm matrices with the usual trace inner product, i.e., the usual % metric. % % See also: obliquefactory spherecomplexfactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: if ~exist('m', 'var') m = 1; end if m == 1 M.name = @() sprintf('Sphere S^%d', n-1); else M.name = @() sprintf('Unit F-norm %dx%d matrices', n, m); end M.dim = @() n*m-1; M.inner = @(x, d1, d2) d1(:).'*d2(:); M.norm = @(x, d) norm(d, 'fro'); M.dist = @(x, y) real(acos(x(:).'*y(:))); M.typicaldist = @() pi; M.proj = @(x, d) d - x*(x(:).'*d(:)); M.tangent = M.proj; % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(x, egrad, ehess, u) rhess = M.proj(x, ehess) - (x(:)'*egrad(:))*u; end M.exp = @exponential; M.retr = @retraction; M.log = @logarithm; function v = logarithm(x1, x2) v = M.proj(x1, x2 - x1); di = M.dist(x1, x2); nv = norm(v, 'fro'); v = v * (di / nv); end M.hash = @(x) ['z' hashmd5(x(:))]; M.rand = @() random(n, m); M.randvec = @(x) randomvec(n, m, x); M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, m); M.transp = @(x1, x2, d) M.proj(x2, d); M.pairmean = @pairmean; function y = pairmean(x1, x2) y = x1+x2; y = y / norm(y, 'fro'); end M.vec = @(x, u_mat) u_mat(:); M.mat = @(x, u_vec) reshape(u_vec, [n, m]); M.vecmatareisometries = @() true; end % Exponential on the sphere function y = exponential(x, d, t) if nargin == 2 t = 1; end td = t*d; nrm_td = norm(td, 'fro'); if nrm_td > 1e-6 y = x*cos(nrm_td) + td*(sin(nrm_td)/nrm_td); else % if the step is too small, to avoid dividing by nrm_td, we choose % to approximate with this retraction-like step. y = x + td; y = y / norm(y, 'fro'); end end % Retraction on the sphere function y = retraction(x, d, t) if nargin == 2 t = 1; end y = x + t*d; y = y / norm(y, 'fro'); end % Uniform random sampling on the sphere. function x = random(n, m) x = randn(n, m); x = x/norm(x, 'fro'); end % Random normalized tangent vector at x. function d = randomvec(n, m, x) d = randn(n, m); d = d - x*(x(:).'*d(:)); d = d / norm(d, 'fro'); end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of sphere.lincomb.'); end end
github
skovnats/madmm-master
trustregions.m
.m
madmm-master/functional_maps_L21norm/help_functions/manopt/manopt/solvers/trustregions/trustregions.m
27,503
utf_8
16c81a00a44c928fd6ca503399b04111
function [x, cost, info, options] = trustregions(problem, x, options) % Riemannian trust-regions solver for optimization on manifolds. % % function [x, cost, info, options] = trustregions(problem) % function [x, cost, info, options] = trustregions(problem, x0) % function [x, cost, info, options] = trustregions(problem, x0, options) % function [x, cost, info, options] = trustregions(problem, [], options) % % This is the Riemannian Trust-Region solver (with tCG inner solve), named % RTR. This solver will attempt to minimize the cost function described in % the problem structure. It requires the availability of the cost function % and of its gradient. It will issue calls for the Hessian. If no Hessian % nor approximate Hessian is provided, a standard approximation of the % Hessian based on the gradient will be computed. If a preconditioner for % the Hessian is provided, it will be used. % % For a description of the algorithm and theorems offering convergence % guarantees, see the references below. Documentation for this solver is % available online at: % % http://www.manopt.org/solver_documentation_trustregions.html % % % The initial iterate is x0 if it is provided. Otherwise, a random point on % the manifold is picked. To specify options whilst not specifying an % initial iterate, give x0 as [] (the empty matrix). % % The two outputs 'x' and 'cost' are the last reached point on the manifold % and its cost. Notice that x is not necessarily the best reached point, % because this solver is not forced to be a descent method. In particular, % very close to convergence, it is sometimes preferable to accept very % slight increases in the cost value (on the order of the machine epsilon) % in the process of reaching fine convergence. In practice, this is not a % limiting factor, as normally one does not need fine enough convergence % that this becomes an issue. % % The output 'info' is a struct-array which contains information about the % iterations: % iter (integer) % The (outer) iteration number, or number of steps considered % (whether accepted or rejected). The initial guess is 0. % cost (double) % The corresponding cost value. % gradnorm (double) % The (Riemannian) norm of the gradient. % numinner (integer) % The number of inner iterations executed to compute this iterate. % Inner iterations are truncated-CG steps. Each one requires a % Hessian (or approximate Hessian) evaluation. % time (double) % The total elapsed time in seconds to reach the corresponding cost. % rho (double) % The performance ratio for the iterate. % rhonum, rhoden (double) % Regularized numerator and denominator of the performance ratio: % rho = rhonum/rhoden. See options.rho_regularization. % accepted (boolean) % Whether the proposed iterate was accepted or not. % stepsize (double) % The (Riemannian) norm of the vector returned by the inner solver % tCG and which is retracted to obtain the proposed next iterate. If % accepted = true for the corresponding iterate, this is the size of % the step from the previous to the new iterate. If accepted is % false, the step was not executed and this is the size of the % rejected step. % Delta (double) % The trust-region radius at the outer iteration. % cauchy (boolean) % Whether the Cauchy point was used or not (if useRand is true). % And possibly additional information logged by options.statsfun. % For example, type [info.gradnorm] to obtain a vector of the successive % gradient norms reached at each (outer) iteration. % % The options structure is used to overwrite the default values. All % options have a default value and are hence optional. To force an option % value, pass an options structure with a field options.optionname, where % optionname is one of the following and the default value is indicated % between parentheses: % % tolgradnorm (1e-6) % The algorithm terminates if the norm of the gradient drops below % this. For well-scaled problems, a rule of thumb is that you can % expect to reduce the gradient norm by 8 orders of magnitude % (sqrt(eps)) compared to the gradient norm at a "typical" point (a % rough initial iterate for example). Further decrease is sometimes % possible, but inexact floating point arithmetic will eventually % limit the final accuracy. If tolgradnorm is set too low, the % algorithm may end up iterating forever (or at least until another % stopping criterion triggers). % maxiter (1000) % The algorithm terminates if maxiter (outer) iterations were executed. % maxtime (Inf) % The algorithm terminates if maxtime seconds elapsed. % miniter (3) % Minimum number of outer iterations (used only if useRand is true). % mininner (1) % Minimum number of inner iterations (for tCG). % maxinner (problem.M.dim() : the manifold's dimension) % Maximum number of inner iterations (for tCG). % Delta_bar (problem.M.typicaldist() or sqrt(problem.M.dim())) % Maximum trust-region radius. If you specify this parameter but not % Delta0, then Delta0 will be set to 1/8 times this parameter. % Delta0 (Delta_bar/8) % Initial trust-region radius. If you observe a long plateau at the % beginning of the convergence plot (gradient norm VS iteration), it % may pay off to try to tune this parameter to shorten the plateau. % You should not set this parameter without setting Delta_bar. % useRand (false) % Set to true if the trust-region solve is to be initiated with a % random tangent vector. If set to true, no preconditioner will be % used. This option is set to true in some scenarios to escape saddle % points, but is otherwise seldom activated. % kappa (0.1) % Inner kappa convergence tolerance. % theta (1.0) % Inner theta convergence tolerance. % rho_prime (0.1) % Accept/reject ratio : if rho is at least rho_prime, the outer % iteration is accepted. Otherwise, it is rejected. In case it is % rejected, the trust-region radius will have been decreased. % To ensure this, rho_prime must be strictly smaller than 1/4. % rho_regularization (1e3) % Close to convergence, evaluating the performance ratio rho is % numerically challenging. Meanwhile, close to convergence, the % quadratic model should be a good fit and the steps should be % accepted. Regularization lets rho go to 1 as the model decrease and % the actual decrease go to zero. Set this option to zero to disable % regularization (not recommended). See in-code for the specifics. % statsfun (none) % Function handle to a function that will be called after each % iteration to provide the opportunity to log additional statistics. % They will be returned in the info struct. See the generic Manopt % documentation about solvers for further information. statsfun is % called with the point x that was reached last, after the % accept/reject decision. See comment below. % stopfun (none) % Function handle to a function that will be called at each iteration % to provide the opportunity to specify additional stopping criteria. % See the generic Manopt documentation about solvers for further % information. % verbosity (2) % Integer number used to tune the amount of output the algorithm % generates during execution (mostly as text in the command window). % The higher, the more output. 0 means silent. 3 and above includes a % display of the options structure at the beginning of the execution. % debug (false) % Set to true to allow the algorithm to perform additional % computations for debugging purposes. If a debugging test fails, you % will be informed of it, usually via the command window. Be aware % that these additional computations appear in the algorithm timings % too. % storedepth (20) % Maximum number of different points x of the manifold for which a % store structure will be kept in memory in the storedb. If the % caching features of Manopt are not used, this is irrelevant. If % memory usage is an issue, you may try to lower this number. % Profiling may then help to investigate if a performance hit was % incured as a result. % % Notice that statsfun is called with the point x that was reached last, % after the accept/reject decision. Hence: if the step was accepted, we get % that new x, with a store which only saw the call for the cost and for the % gradient. If the step was rejected, we get the same x as previously, with % the store structure containing everything that was computed at that point % (possibly including previous rejects at that same point). Hence, statsfun % should not be used in conjunction with the store to count operations for % example. Instead, you could use a global variable and increment that % variable directly from the cost related functions. It is however possible % to use statsfun with the store to compute, for example, alternate merit % functions on the point x. % % See also: steepestdescent conjugategradient manopt/examples % This file is part of Manopt: www.manopt.org. % This code is an adaptation to Manopt of the original GenRTR code: % RTR - Riemannian Trust-Region % (c) 2004-2007, P.-A. Absil, C. G. Baker, K. A. Gallivan % Florida State University % School of Computational Science % (http://www.math.fsu.edu/~cbaker/GenRTR/?page=download) % See accompanying license file. % The adaptation was executed by Nicolas Boumal. % % Change log: % % NB April 3, 2013: % tCG now returns the Hessian along the returned direction eta, so % that we do not compute that Hessian redundantly: some savings at % each iteration. Similarly, if the useRand flag is on, we spare an % extra Hessian computation at each outer iteration too, owing to % some modifications in the Cauchy point section of the code specific % to useRand = true. % % NB Aug. 22, 2013: % This function is now Octave compatible. The transition called for % two changes which would otherwise not be advisable. (1) tic/toc is % now used as is, as opposed to the safer way: % t = tic(); elapsed = toc(t); % And (2), the (formerly inner) function savestats was moved outside % the main function to not be nested anymore. This is arguably less % elegant, but Octave does not (and likely will not) support nested % functions. % % NB Dec. 2, 2013: % The in-code documentation was largely revised and expanded. % % NB Dec. 2, 2013: % The former heuristic which triggered when rhonum was very small and % forced rho = 1 has been replaced by a smoother heuristic which % consists in regularizing rhonum and rhoden before computing their % ratio. It is tunable via options.rho_regularization. Furthermore, % the solver now detects if tCG did not obtain a model decrease % (which is theoretically impossible but may happen because of % numerical errors and/or because of a nonlinear/nonsymmetric Hessian % operator, which is the case for finite difference approximations). % When such an anomaly is detected, the step is rejected and the % trust region radius is decreased. % % NB Dec. 3, 2013: % The stepsize is now registered at each iteration, at a small % additional cost. The defaults for Delta_bar and Delta0 are better % defined. Setting Delta_bar in the options will automatically set % Delta0 accordingly. In Manopt 1.0.4, the defaults for these options % were not treated appropriately because of an incorrect use of the % isfield() built-in function. % Verify that the problem description is sufficient for the solver. if ~canGetCost(problem) warning('manopt:getCost', ... 'No cost provided. The algorithm will likely abort.'); end if ~canGetGradient(problem) warning('manopt:getGradient', ... 'No gradient provided. The algorithm will likely abort.'); end if ~canGetHessian(problem) warning('manopt:getHessian:approx', ... 'No Hessian provided. Using an approximation instead.'); end % Define some strings for display tcg_stop_reason = {'negative curvature',... 'exceeded trust region',... 'reached target residual-kappa',... 'reached target residual-theta',... 'dimension exceeded',... 'model increased'}; % Set local defaults here localdefaults.verbosity = 2; localdefaults.maxtime = inf; localdefaults.miniter = 3; localdefaults.maxiter = 1000; localdefaults.mininner = 1; localdefaults.maxinner = problem.M.dim(); localdefaults.tolgradnorm = 1e-6; localdefaults.kappa = 0.1; localdefaults.theta = 1.0; localdefaults.rho_prime = 0.1; localdefaults.useRand = false; localdefaults.rho_regularization = 1e3; % Merge global and local defaults, then merge w/ user options, if any. localdefaults = mergeOptions(getGlobalDefaults(), localdefaults); if ~exist('options', 'var') || isempty(options) options = struct(); end options = mergeOptions(localdefaults, options); % Set default Delta_bar and Delta0 separately to deal with additional % logic: if Delta_bar is provided but not Delta0, let Delta0 automatically % be some fraction of the provided Delta_bar. if ~isfield(options, 'Delta_bar') if isfield(problem.M, 'typicaldist') options.Delta_bar = problem.M.typicaldist(); else options.Delta_bar = sqrt(problem.M.dim()); end end if ~isfield(options,'Delta0') options.Delta0 = options.Delta_bar / 8; end % Check some option values assert(options.rho_prime < 1/4, ... 'options.rho_prime must be strictly smaller than 1/4.'); assert(options.Delta_bar > 0, ... 'options.Delta_bar must be positive.'); assert(options.Delta0 > 0 && options.Delta0 < options.Delta_bar, ... 'options.Delta0 must be positive and smaller than Delta_bar.'); % It is sometimes useful to check what the actual option values are. if options.verbosity >= 3 disp(options); end % Create a store database storedb = struct(); tic(); % If no initial point x is given by the user, generate one at random. if ~exist('x', 'var') || isempty(x) x = problem.M.rand(); end %% Initializations % k counts the outer (TR) iterations. The semantic is that k counts the % number of iterations fully executed so far. k = 0; % initialize solution and companion measures: f(x), fgrad(x) [fx fgradx storedb] = getCostGrad(problem, x, storedb); norm_grad = problem.M.norm(x, fgradx); % initialize trust-region radius Delta = options.Delta0; % Save stats in a struct array info, and preallocate % (see http://people.csail.mit.edu/jskelly/blog/?x=entry:entry091030-033941) if ~exist('used_cauchy', 'var') used_cauchy = []; end stats = savestats(problem, x, storedb, options, k, fx, norm_grad, Delta); info(1) = stats; info(min(10000, options.maxiter+1)).iter = []; % ** Display: if options.verbosity == 2 fprintf(['%3s %3s %5s %5s ',... 'f: %e |grad|: %e\n'],... ' ',' ',' ',' ', fx, norm_grad); elseif options.verbosity > 2 fprintf('************************************************************************\n'); fprintf('%3s %3s k: %5s num_inner: %5s %s\n',... '','','______','______',''); fprintf(' f(x) : %e |grad| : %e\n', fx, norm_grad); fprintf(' Delta : %f\n', Delta); end % ********************** % ** Start of TR loop ** % ********************** while true % Start clock for this outer iteration tic(); % Run standard stopping criterion checks [stop reason] = stoppingcriterion(problem, x, options, info, k+1); % If the stopping criterion that triggered is the tolerance on the % gradient norm but we are using randomization, make sure we make at % least miniter iterations to give randomization a chance at escaping % saddle points. if stop == 2 && options.useRand && k < options.miniter stop = 0; end if stop if options.verbosity >= 1 fprintf([reason '\n']); end break; end if options.verbosity > 2 || options.debug > 0 fprintf('************************************************************************\n'); end % ************************* % ** Begin TR Subproblem ** % ************************* % Determine eta0 if ~options.useRand % Pick the zero vector eta = problem.M.zerovec(x); else % Random vector in T_x M (this has to be very small) eta = problem.M.lincomb(x, 1e-6, problem.M.randvec(x)); % Must be inside trust-region while problem.M.norm(x, eta) > Delta eta = problem.M.lincomb(x, sqrt(sqrt(eps)), eta); end end % solve TR subproblem [eta Heta numit stop_inner storedb] = ... tCG(problem, x, fgradx, eta, Delta, options, storedb); srstr = tcg_stop_reason{stop_inner}; % This is only computed for logging purposes, because it may be useful % for some user-defined stopping criteria. If this is not cheap for % specific application (compared to evaluating the cost), we should % reconsider this. norm_eta = problem.M.norm(x, eta); if options.debug > 0 testangle = problem.M.inner(x, eta, fgradx) / (norm_eta*norm_grad); end % If using randomized approach, compare result with the Cauchy point. % Convergence proofs assume that we achieve at least the reduction of % the Cauchy point. After this if-block, either all eta-related % quantities have been changed consistently, or none of them have % changed. if options.useRand used_cauchy = false; % Check the curvature, [Hg storedb] = getHessian(problem, x, fgradx, storedb); g_Hg = problem.M.inner(x, fgradx, Hg); if g_Hg <= 0 tau_c = 1; else tau_c = min( norm_grad^3/(Delta*g_Hg) , 1); end % and generate the Cauchy point. eta_c = problem.M.lincomb(x, -tau_c * Delta / norm_grad, fgradx); Heta_c = problem.M.lincomb(x, -tau_c * Delta / norm_grad, Hg); % Now that we have computed the Cauchy point in addition to the % returned eta, we might as well keep the best of them. mdle = fx + problem.M.inner(x, fgradx, eta) ... + .5*problem.M.inner(x, Heta, eta); mdlec = fx + problem.M.inner(x, fgradx, eta_c) ... + .5*problem.M.inner(x, Heta_c, eta_c); if mdle > mdlec eta = eta_c; Heta = Heta_c; % added April 11, 2012 used_cauchy = true; end end % Compute the retraction of the proposal x_prop = problem.M.retr(x, eta); % Compute the function value of the proposal [fx_prop storedb] = getCost(problem, x_prop, storedb); % Will we accept the proposed solution or not? % Check the performance of the quadratic model against the actual cost. rhonum = fx - fx_prop; rhoden = -problem.M.inner(x, fgradx, eta) ... -.5*problem.M.inner(x, eta, Heta); % Heuristic -- added Dec. 2, 2013 (NB) to replace the former heuristic. % This heuristic is documented in the book by Conn Gould and Toint on % trust-region methods, section 17.4.2. % rhonum measures the difference between two numbers. Close to % convergence, these two numbers are very close to each other, so % that computing their difference is numerically challenging: there may % be a significant loss in accuracy. Since the acceptance or rejection % of the step is conditioned on the ratio between rhonum and rhoden, % large errors in rhonum result in a large error in rho, hence in % erratic acceptance / rejection. Meanwhile, close to convergence, % steps are usually trustworthy and we should transition to a Newton- % like method, with rho=1 consistently. The heuristic thus shifts both % rhonum and rhoden by a small amount such that far from convergence, % the shift is irrelevant and close to convergence, the ratio rho goes % to 1, effectively promoting acceptance of the step. % The rationale is that close to convergence, both rhonum and rhoden % are quadratic in the distance between x and x_prop. Thus, when this % distance is on the order of sqrt(eps), the value of rhonum and rhoden % is on the order of eps, which is indistinguishable from the numerical % error, resulting in badly estimated rho's. % For abs(fx) < 1, this heuristic is invariant under offsets of f but % not under scaling of f. For abs(fx) > 1, the opposite holds. This % should not alarm us, as this heuristic only triggers at the very last % iterations if very fine convergence is demanded. rho_reg = max(1, abs(fx)) * eps * options.rho_regularization; rhonum = rhonum + rho_reg; rhoden = rhoden + rho_reg; if options.debug > 0 fprintf('DBG: rhonum : %e\n', rhonum); fprintf('DBG: rhoden : %e\n', rhoden); end % This is always true if a linear, symmetric operator is used for the % Hessian (approximation) and if we had infinite numerical precision. % In practice, nonlinear approximations of the Hessian such as the % built-in finite difference approximation and finite numerical % accuracy can cause the model to increase. In such scenarios, we % decide to force a rejection of the step and a reduction of the % trust-region radius. We test the sign of the regularized rhoden since % the regularization is supposed to capture the accuracy to which % rhoden is computed: if rhoden were negative before regularization but % not after, that should not be (and is not) detected as a failure. model_decreased = (rhoden >= 0); if ~model_decreased srstr = [srstr ', model did not decrease']; %#ok<AGROW> end rho = rhonum / rhoden; if options.debug > 0 m = @(x, eta) ... getCost(problem, x, storedb) + ... getDirectionalDerivative(problem, x, eta, storedb) + ... .5*problem.M.inner(x, getHessian(problem, x, eta, storedb), eta); zerovec = problem.M.zerovec(x); actrho = (fx - fx_prop) / (m(x, zerovec) - m(x, eta)); fprintf('DBG: new f(x) : %e\n', fx_prop); fprintf('DBG: actual rho : %e\n', actrho); fprintf('DBG: used rho : %e\n', rho); end % Choose the new TR radius based on the model performance trstr = ' '; % If the actual decrease is smaller than 1/4 of the predicted decrease, % then reduce the TR radius. if rho < 1/4 || ~model_decreased trstr = 'TR-'; Delta = Delta/4; % If the actual decrease is at least 3/4 of the precicted decrease and % the tCG (inner solve) hit the TR boundary, increase the TR radius. elseif rho > 3/4 && (stop_inner == 1 || stop_inner == 2) trstr = 'TR+'; Delta = min(2*Delta, options.Delta_bar); end % Otherwise, keep the TR radius constant. % Choose to accept or reject the proposed step based on the model % performance. if model_decreased && rho > options.rho_prime accept = true; accstr = 'acc'; x = x_prop; fx = fx_prop; [fgradx storedb] = getGradient(problem, x, storedb); norm_grad = problem.M.norm(x, fgradx); else accept = false; accstr = 'REJ'; end % Make sure we don't use too much memory for the store database storedb = purgeStoredb(storedb, options.storedepth); % k is the number of iterations we have accomplished. k = k + 1; % Log statistics for freshly executed iteration. % Everything after this in the loop is not accounted for in the timing. stats = savestats(problem, x, storedb, options, k, fx, norm_grad, ... Delta, info, rho, rhonum, rhoden, accept, numit, ... norm_eta, used_cauchy); info(k+1) = stats; %#ok<AGROW> % ** Display: if options.verbosity == 2, fprintf(['%3s %3s k: %5d num_inner: %5d ', ... 'f: %e |grad|: %e %s\n'], ... accstr,trstr,k,numit,fx,norm_grad,srstr); elseif options.verbosity > 2, if options.useRand && used_cauchy, fprintf('USED CAUCHY POINT\n'); end fprintf('%3s %3s k: %5d num_inner: %5d %s\n', ... accstr, trstr, k, numit, srstr); fprintf(' f(x) : %e |grad| : %e\n',fx,norm_grad); if options.debug > 0 fprintf(' Delta : %f |eta| : %e\n',Delta,norm_eta); end fprintf(' rho : %e\n',rho); end if options.debug > 0, fprintf('DBG: cos ang(eta,gradf): %d\n',testangle); if rho == 0 fprintf('DBG: rho = 0, this will likely hinder further convergence.\n'); end end end % of TR loop (counter: k) % Restrict info struct-array to useful part info = info(1:k+1); if (options.verbosity > 2) || (options.debug > 0), fprintf('************************************************************************\n'); end if (options.verbosity > 0) || (options.debug > 0) fprintf('Total time is %f [s] (excludes statsfun)\n', info(end).time); end % Return the best cost reached cost = fx; end % Routine in charge of collecting the current iteration stats function stats = savestats(problem, x, storedb, options, k, fx, ... norm_grad, Delta, info, rho, rhonum, ... rhoden, accept, numit, norm_eta, used_cauchy) stats.iter = k; stats.cost = fx; stats.gradnorm = norm_grad; stats.Delta = Delta; if k == 0 stats.time = toc(); stats.rho = inf; stats.rhonum = NaN; stats.rhoden = NaN; stats.accepted = true; stats.numinner = NaN; stats.stepsize = NaN; if options.useRand stats.cauchy = false; end else stats.time = info(k).time + toc(); stats.rho = rho; stats.rhonum = rhonum; stats.rhoden = rhoden; stats.accepted = accept; stats.numinner = numit; stats.stepsize = norm_eta; if options.useRand, stats.cauchy = used_cauchy; end end % See comment about statsfun above: the x and store passed to statsfun % are that of the most recently accepted point after the iteration % fully executed. stats = applyStatsfun(problem, x, storedb, options, stats); end
github
skovnats/madmm-master
MADMM_comptr.m
.m
madmm-master/compressed_modes/MADMM_comptr.m
2,379
utf_8
6b9420c94a0f051a1efd4b0488e967c4
function [X,Xcost bm tm] = MADMM_comptr(L,N,lambda,rho,steps,it,X0) % Manifold ADMM method % Minimizes lambda*|X|_1+trace(X'LX) % on the manifold of n x N- orthogonal matrices. % INPUT: % L: is the discretized Hamiltonian, a n x n- matrix % N: number of colums of X (approximate eigenvectors) % lambda: parameter in cost function % rho>0: penalty parameter for ADMM % steps: number of inner (Manopt) iterations % it: is the number of outer iterations (updating the Lagrange vector U) % OUTPUT: % X is the optimum matrix of the main variable % Xcost is the optimal value of the cost function % bm: history of function values (outer iteration) n=size(L,1); % Initializing all variables %X=polar_svd(rand(n,N)); %X=rand(n,N); %[X SX]=eigs(H,N); if exist('X0','var') X=X0; else [X,~] = svd(randn(n,N),0); end Z=X; U=zeros(n,N); % bm=lambda*sum(abs(X(:)))+trace(X.'*L*X); tm=0; % ADMM outer iteration t_=cputime; % t=tic; for i=1:it X=iterX(L,N,X,Z,U,lambda,rho,steps); Z=iterZ(X,U,lambda,rho); U=U+X-Z; Xcost=lambda*sum(abs(X(:)))+trace(X.'*L*X); bm=[bm Xcost]; % tm=[tm toc]; tm=[tm cputime-t_]; fprintf('%d:%f\n',i,Xcost); end; % tm=tm-t_; end function X=iterX(L,N,X,Z,U,lambda,rho,steps) n=size(X,1); % Create the problem structure. manifold = stiefelfactory(n, N, 1); problem.M = manifold; % Define the problem cost function and its gradient. problem.cost = @(X) trace(X'*L*X)+rho*norm(X-Z+U,'fro')^2/2; egrad = @(X) egra(L,X,Z,U,rho); problem.grad = @(Y) manifold.egrad2rgrad(Y, egrad(Y)); % Numerically check the differential % checkgradient(problem); % Stopfunction options.stopfun = @mystopfun; function stopnow = mystopfun(problem, x, info, last) stopnow = (last >= 3 && (info(last-2).cost - info(last).cost)/info(last).cost < 1e-8); end options.maxiter=steps; options.verbosity=0; % Solve. warning off [X, Xcost, info, options] = trustregions(problem,X,options); % [X, Xcost, info, options] = conjugategradient(problem,X,options); warning on Xcost=lambda*sum(abs(X(:)))+trace(X'*L*X); end function Z=iterZ(X,U,lambda,rho) % Z=shrink(X+U,lambda/rho); function [z]=shrink(z,l) z=sign(z).*max(0,abs(z)-l); end end function eg=egra(L,X,Z,U,rho) % gradient of cost function [n m]=size(X); g1=(L+L')*X; g2=rho*(X-Z+U); eg=g1+g2; end
github
skovnats/madmm-master
dsh.m
.m
madmm-master/compressed_modes/dsh.m
2,720
utf_8
4280c07d43da54dee64aaed8d33fe7b8
% script for dispalying shape function [] = dsh( varargin ) % input: %{ {1} - title {2} - if save %} vector = false; flag = true; name = []; switch nargin case 1 shape = varargin{ 1 }; case 2 shape = varargin{ 1 }; tname = varargin{ 2 }; if isnumeric(tname) vector = true; else vector = false; end case 3 shape = varargin{ 1 }; tname = varargin{ 2 }; issave = varargin{ 3 }; if isnumeric(tname) vector = true; else vector = false; end if isstr( issave ) name = issave; issave = false; end case 4 shape = varargin{ 1 }; tname = varargin{ 2 }; vector = true; name = varargin{ 3 }; issave = varargin{ 4 }; end if iscell( shape ) flag = false; for i = 1:length( shape ) dsh( shape{ i } ); title( sprintf( 'shape %d/%d', i, length( shape ) ) ); waitforbuttonpress; end end if flag if ~vector % displaying if ~isfield( shape, 'C' ) trisurf( shape.TRIV, shape.X, shape.Y, shape.Z, ones(size((shape.X))) ), ... end else trisurf( shape.TRIV, shape.X, shape.Y, shape.Z, full(tname) ), ... end if isfield( shape, 'C' ) if ~vector try %% % UPD: 15.11.2011 lab = [shape.L, shape.a, shape.b]; lab = colorspace( 'lab->rgb', lab ); shape.C = lab; trisurf( shape.TRIV, shape.X, shape.Y, shape.Z, 1:(length(shape.X)) ) catch end %% colormap(shape.C), % colormap(ones( length(shape.X), 3 )), end axis off, axis image, shading interp; % lighting phong, camlight('headlight'); % was commented else if ~vector colormap(ones( length(shape.X), 3 )), end axis off, axis image, shading interp, lighting phong, camlight('headlight'); end switch nargin case 2 if ~vector title(tname); end case 3 if ~vector title(tname); end % if isstr( name ) title(name); end if issave saveas( gcf, [tname '.png'] ) end case 4 title( name ); if issave saveas( gcf, [name '.png'] ) end end set(gcf,'Color','w'); cameratoolbar; %% % try % caxis( [-max(abs(tname)), max(abs(tname))] ); % colormap(temp(64)); % catch % end %% end
github
skovnats/madmm-master
MADMM_comp.m
.m
madmm-master/compressed_modes/MADMM_comp.m
2,354
utf_8
69c9f062e75434e34f506a3e9d02c53f
function [X,Xcost bm tm] = MADMM_comp(L,N,lambda,rho,steps,it,X0) % Manifold ADMM method % Minimizes lambda*|X|_1+trace(X'LX) % on the manifold of n x N- orthogonal matrices. % INPUT: % L: is the discretized Hamiltonian, a n x n- matrix % N: number of colums of X (approximate eigenvectors) % lambda: parameter in cost function % rho>0: penalty parameter for ADMM % steps: number of inner (Manopt) iterations % it: is the number of outer iterations (updating the Lagrange vector U) % OUTPUT: % X is the optimum matrix of the main variable % Xcost is the optimal value of the cost function % bm: history of function values (outer iteration) n=size(L,1); % Initializing all variables %X=polar_svd(rand(n,N)); %X=rand(n,N); %[X SX]=eigs(H,N); if exist('X0','var') X=X0; else [X,~] = svd(randn(n,N),0); end Z=X; U=zeros(n,N); % bm=lambda*sum(abs(X(:)))+trace(X.'*L*X); tm=0; % ADMM outer iteration t_=cputime; % t=tic; for i=1:it X=iterX(L,N,X,Z,U,lambda,rho,steps); Z=iterZ(X,U,lambda,rho); U=U+X-Z; Xcost=lambda*sum(abs(X(:)))+trace(X.'*L*X); bm=[bm Xcost]; % tm=[tm toc]; tm=[tm cputime-t_]; fprintf('%d:%f\n',i,Xcost); end; % tm=tm-t_; end function X=iterX(L,N,X,Z,U,lambda,rho,steps) n=size(X,1); % Create the problem structure. manifold = stiefelfactory(n, N, 1); problem.M = manifold; % Define the problem cost function and its gradient. problem.cost = @(X) trace(X'*L*X)+rho*norm(X-Z+U,'fro')^2/2; egrad = @(X) egra(L,X,Z,U,rho); problem.grad = @(Y) manifold.egrad2rgrad(Y, egrad(Y)); % Numerically check the differential % checkgradient(problem); % Stopfunction options.stopfun = @mystopfun; function stopnow = mystopfun(problem, x, info, last) stopnow = (last >= 3 && (info(last-2).cost - info(last).cost)/info(last).cost < 1e-8); end options.maxiter=steps; options.verbosity=0; % Solve. % [X, Xcost, info, options] = trustregions(problem,X,options); [X, Xcost, info, options] = conjugategradient(problem,X,options); Xcost=lambda*sum(abs(X(:)))+trace(X'*L*X); end function Z=iterZ(X,U,lambda,rho) % Z=shrink(X+U,lambda/rho); function [z]=shrink(z,l) z=sign(z).*max(0,abs(z)-l); end end function eg=egra(L,X,Z,U,rho) % gradient of cost function [n m]=size(X); g1=(L+L')*X; g2=rho*(X-Z+U); eg=g1+g2; end
github
skovnats/madmm-master
SL1_Manopt.m
.m
madmm-master/compressed_modes/SL1_Manopt.m
2,109
utf_8
3640ab4e879252685fd9afa563f8fa2c
function [X, Xcost b0 t0]=SL1_Manopt(H,N,mu,eps,it,X0) % Minimizes |X|_eps/mu+trace(X'HX) % on the Stiefel manifold X'*X=I % Here |.|_eps is the smoothed L1- norm |x|=sqrt(x^2+eps), eps>0. % INPUT: % H: discrete Hamiltonian % N: number of colums of X % eps: smoothing parameter for L1 norm (eps = 10^(-6) ) % it: number of iterations of MANOPT conjugate gradient algorithm % OUTPUT: % X solution of smoothed L1 minimization by MANOPT % Xcost optimal value of cost function f(X)=|X|_eps/mu+trace(X'HX) warning('off'); n=size(H,1); % Start matrix %[X0 SX]=eigs(H,N); if exist('X0','var') X=X0; else [X,~] = svd(randn(n,N),0); end %X0=rand(n,N); b0=cost(H,X0,mu,eps); t0=0; % Create the problem structure. manifold = stiefelfactory(n, N, 1); problem.M = manifold; % Define the problem cost function and its gradient. problem.cost = @(X) cost(H,X,mu,eps); egrad = @(X) egra(H,X,mu,eps); problem.grad = @(Y) manifold.egrad2rgrad(Y, egrad(Y)); % Numerically check the differential % checkgradient(problem); % Stopfunction % options.stopfun = @mystopfun; function stopnow = mystopfun(problem, x, info, last) stopnow = (last >= 3 && (info(last-2).cost - info(last).cost)/info(last).cost < 1e-8); end options.maxiter=it; % options.minstepsize=1e-1; % options.verbosity=0; options.verbosity=2; % Solve. problem.ff = @(X) trace(X.'*H*X) + sum(abs(X(:)))/mu; [X, Xcost, info, options] = trustregions(problem,X0,options); % [X, Xcost, info, options] = conjugategradient(problem,X0,options); Xcost=cost(H,X,mu,eps); % t0=[]; % b0=[]; for i=1:size(info,2) b0=[b0, info(i).cost]; t0=[t0, info(i).time]; end; end function cc=cost(H,X,mu,eps); % smoothed L1 norm in cost function cc = sum(sqrt(X(:).^2+eps))/mu+trace(X'*H*X); end function eg=egra(H,X,mu,eps) % gradient of cost function [n m]=size(X); g1=X./sqrt(X.*X+eps*ones(n,m)); g2=(H+H')*X; eg=g1/mu+g2; end
github
skovnats/madmm-master
NEUMANN.m
.m
madmm-master/compressed_modes/NEUMANN.m
1,914
utf_8
3c56c114705af05e0b37e8334ed39359
function [X,Xcost bo to] = NEUMANN(L,N,lambda,rho,it,X0); % Neumann's ADMM method % Minimizes lambda*|X|_1+trace(X'LX) % on the manifold of n x N- orthogonal matrices. % INPUT: % L: is the discretized Hamiltonian, a n x n- matrix % N: number of colums of X (approximate eigenvectors) % lambda: parameter in cost function % rho>0: penalty parameter for ADMM % steps NOT USED (it is for the inner iteration for minimizing wrt. E) % IN OUR PROGRAM WE SOLVE THE LIN. EQU. FOR E EXACTLY (USING % LINSOLVE()). % it: is the number of outer iterations (updating the Lagrange vector U) % OUTPUT: % X is the optimum matrix of the main variable % Xcost is the optimal value of the cost function % bo: history of function values (outer iteration) n=size(L,1); % Initializing all variables %X=polar_svd(rand(n,N)); %X=rand(n,N); %[X SX]=eigs(H,N); if exist('X0','var') X=X0; else [X,~] = svd(randn(n,N),0); end E=X; S=X; Ue=zeros(n,N); Us=zeros(n,N); % bo=lambda*sum(abs(X0(:)))-trace(X0'*L*X0); to=0; % ADMM outer iteration t_=cputime; % tic; for i=1:it X=iterX(L,S,E,Us,Ue); E=iterE(L,X,Ue,rho); S=iterS(X,Us,lambda,rho); Ue=Ue+X-E; Us=Us+X-S; Xcost=lambda*sum(abs(X(:)))-trace(X'*L*X); bo=[bo Xcost]; to=[to cputime-t_]; % to=[to toc]; fprintf('%d:%f\n',i,Xcost); end; end function X=iterX(L,S,E,Us,Ue,rho) % formula (14) n=size(E,1); Y=(S-Us+E-Ue)/2; % % try [U S V]=svd(Y,'econ'); % catch % save('Y','Y'); % pause; % end X=U*V'; end function E=iterE(L,X,Ue,rho) % formula (17) n=size(L,1); R=rho*(X+Ue); A=(rho*eye(n)-L-L'); E=linsolve(A,R); % try [U S V]=svd(E,'econ'); % catch % save('E','E'); % pause; % end end function S=iterS(X,Us,lambda,rho) % S=shrink(X+Us,lambda/rho); function [z]=shrink(z,l) z=sign(z).*max(0,abs(z)-l); end end
github
skovnats/madmm-master
OSHER.m
.m
madmm-master/compressed_modes/OSHER.m
1,885
utf_8
51162b58ba309528a609bc58d3cfaa10
function [X,Xcost bo, to] = OSHER(H,N,mu,lambda,rho,it,X0); % Osher's ADMM method % Minimizes |X|_1/mu+trace(X'HX) % on the manifold of n x N- matrices. % INPUT: % H: is the discretized Hamiltonian, a n x n- matrix % N: number of colums of X (approximate eigenvectors) % mu: penalty parameter in cost function % lambda>0: penalty parameter for ADMM % rho>0: second penalty parameter % steps NOT USED (is for the inner iteration for minimizing wrt. X) % it: is the number of outer iterations (updating the Lagrange vector U) % OUTPUT: % X is the optimum matrix of the main variable % Xcost is the optimal value of the cost function % bo: history of function values (outer iteration) n=size(H,1); % Initializing all variables %X=polar_svd(rand(n,N)); %X=rand(n,N); %[X SX]=eigs(H,N); if exist('X0','var') X=X0; else [X,~] = svd(randn(n,N),0); end P=X; Q=X; B=zeros(n,N); b=zeros(n,N); % bo=sum(abs(X(:)))/mu+trace(X'*H*X); to=0; % ADMM outer iteration % tic; % to=[]; t_=cputime; for i=1:it X=iterX(H,P,Q,B,b,lambda,rho); P=iterP(X,B); Q=iterQ(X,b,mu,lambda); B=B+X-P; b=b+X-Q; Xcost=sum(abs(X(:)))/mu+trace(X'*H*X); bo=[bo Xcost]; to=[to, cputime-t_]; % to=[to, toc]; % fprintf('%d:%f\n',i,Xcost); end; end function X=iterX(H,P,Q,B,b,lambda,rho) warning('off'); % Dimensions of data n=size(P,1); R=rho*(P-B)+lambda*(Q-b); A=2*H+(lambda+rho)*eye(n,n); X=linsolve(A,R); end function Q=iterQ(X,b,mu,lambda) % This is the shrinking operation on the variable Q Q=shrink(X+b,1/(mu*lambda)); function [z]=shrink(z,l) z=sign(z).*max(0,abs(z)-l); end end function P=iterP(X,B) [U S V]=svd(X+B,'econ'); P=U*V'; end
github
skovnats/madmm-master
MADMM_compcg.m
.m
madmm-master/compressed_modes/MADMM_compcg.m
2,524
utf_8
958d53554d16a56d1712b9673ee29188
function [X,Xcost bm tm] = MADMM_compcg(L,N,lambda,rho,steps,it,X0) % Manifold ADMM method % Minimizes lambda*|X|_1+trace(X'LX) % on the manifold of n x N- orthogonal matrices. % INPUT: % L: is the discretized Hamiltonian, a n x n- matrix % N: number of colums of X (approximate eigenvectors) % lambda: parameter in cost function % rho>0: penalty parameter for ADMM % steps: number of inner (Manopt) iterations % it: is the number of outer iterations (updating the Lagrange vector U) % OUTPUT: % X is the optimum matrix of the main variable % Xcost is the optimal value of the cost function % bm: history of function values (outer iteration) n=size(L,1); tol=1e-6; % Initializing all variables %X=polar_svd(rand(n,N)); %X=rand(n,N); %[X SX]=eigs(H,N); if exist('X0','var') X=X0; else [X,~] = svd(randn(n,N),0); end Z=X; U=zeros(n,N); % bm=lambda*sum(abs(X(:)))+trace(X.'*L*X); tm=0; % ADMM outer iteration t_=cputime; % t=tic; for i=1:it X=iterX(L,N,X,Z,U,lambda,rho,steps); Z=iterZ(X,U,lambda,rho); U=U+X-Z; Xcost=lambda*sum(abs(X(:)))+trace(X.'*L*X); bm=[bm Xcost]; % tm=[tm toc]; tm=[tm cputime-t_]; fprintf('%d:%f\n',i,Xcost); %%abs(bm(end-1)-bm(end) % abs(bm(end-1)-bm(end)) %{ if i>4 if (abs(bm(end-3)-bm(end))/bm(end))<tol return; end end %} end; % tm=tm-t_; end function X=iterX(L,N,X,Z,U,lambda,rho,steps) n=size(X,1); % Create the problem structure. manifold = stiefelfactory(n, N, 1); problem.M = manifold; % Define the problem cost function and its gradient. problem.cost = @(X) trace(X'*L*X)+rho*norm(X-Z+U,'fro')^2/2; egrad = @(X) egra(L,X,Z,U,rho); problem.grad = @(Y) manifold.egrad2rgrad(Y, egrad(Y)); % Numerically check the differential % checkgradient(problem); % Stopfunction options.stopfun = @mystopfun; function stopnow = mystopfun(problem, x, info, last) stopnow = (last >= 3 && (info(last-2).cost - info(last).cost)/info(last).cost < 1e-8); end options.maxiter=steps; options.verbosity=0; % Solve. % [X, Xcost, info, options] = trustregions(problem,X,options); [X, Xcost, info, options] = conjugategradient(problem,X,options); Xcost=lambda*sum(abs(X(:)))+trace(X'*L*X); end function Z=iterZ(X,U,lambda,rho) % Z=shrink(X+U,lambda/rho); function [z]=shrink(z,l) z=sign(z).*max(0,abs(z)-l); end end function eg=egra(L,X,Z,U,rho) % gradient of cost function [n m]=size(X); g1=(L+L')*X; g2=rho*(X-Z+U); eg=g1+g2; end
github
skovnats/madmm-master
maxcut.m
.m
madmm-master/compressed_modes/manopt/examples/maxcut.m
12,136
utf_8
7f2745544840a7cd9263ab6e5e7fccf6
function [x cutvalue cutvalue_upperbound Y] = maxcut(L, r) % Algorithm to (try to) compute a maximum cut of a graph, via SDP approach. % % function x = maxcut(L) % function [x cutvalue cutvalue_upperbound Y] = maxcut(L, r) % % L is the Laplacian matrix describing the graph to cut. The Laplacian of a % graph is L = D - A, where D is the diagonal degree matrix (D(i, i) is the % sum of the weights of the edges adjacent to node i) and A is the % symmetric adjacency matrix of the graph (A(i, j) = A(j, i) is the weight % of the edge joining nodes i and j). If L is sparse, this will be % exploited. % % If the graph has n nodes, then L is nxn and the output x is a vector of % length n such that x(i) is +1 or -1. This partitions the nodes of the % graph in two classes, in an attempt to maximize the sum of the weights of % the edges that go from one class to the other (MAX CUT problem). % % cutvalue is the sum of the weights of the edges 'cut' by the partition x. % % If the algorithm reached the global optimum of the underlying SDP % problem, then it produces an upperbound on the maximum cut value. This % value is returned in cutvalue_upperbound if it is found. Otherwise, that % output is set to NaN. % % If r is specified (by default, r = n), the algorithm will stop at rank r. % This may prevent the algorithm from reaching a globally optimal solution % for the underlying SDP problem (but can greatly help in keeping the % execution time under control). If a global optimum of the SDP is reached % before rank r, the algorithm will stop of course. % % Y is a matrix of size nxp, with p <= r, such that X = Y*Y' is the best % solution found for the underlying SDP problem. If cutvalue_upperbound is % not NaN, then Y*Y' is optimal for the SDP and cutvalue_upperbound is its % cut value. % % By Goemans and Williamson 1995, it is known that if the optimal value of % the SDP is reached, then the returned cut, in expectation, is at most at % a fraction 0.878 of the optimal cut. (This is not exactly valid because % we do not use random projection here; sign(Y*randn(size(Y, 2), 1)) will % give a cut that respects this statement -- it's usually worse though). % % The algorithm is essentially that of: % Journee, Bach, Absil and Sepulchre, 2010 % Low-rank optimization on the code of positive semidefinite matrices. % % It is itself based on the famous SDP relaxation of MAX CUT: % Goemans and Williamson, 1995 % Improved approximation algorithms for maximum cut and satisfiability % problems using semidefinite programming. % This file is part of Manopt and is copyrighted. See the license file. % % Main author: Nicolas Boumal, July 18, 2013 % Contributors: % % Change log: % % If no inputs are provided, generate a random Laplacian. % This is for illustration purposes only. if ~exist('L', 'var') || isempty(L) n = 20; A = triu(randn(n) <= .4, 1); A = A+A'; D = diag(sum(A, 2)); L = D-A; end n = size(L, 1); assert(size(L, 2) == n, 'L must be square.'); if ~exist('r', 'var') || isempty(r) || r > n r = n; end % We will let the rank increase. Each rank value will generate a cut. % We have to go up in the rank to eventually find a certificate of SDP % optimality. This in turn will give us an upperbound on the MAX CUT % value and assure us that we're doing well, according to Goemans and % Williamson's argument. In practice though, the good cuts often come % up for low rank values, so we better keep track of the best one. best_x = ones(n, 1); best_cutvalue = 0; cutvalue_upperbound = NaN; time = []; cost = []; for rr = 2 : r manifold = elliptopefactory(n, rr); if rr == 2 % At first, for rank 2, generate a random point. Y0 = manifold.rand(); else % To increase the rank, we could just add a column of zeros to % the Y matrix. Unfortunately, this lands us in a saddle point. % To escape from the saddle, we may compute an eigenvector of % Sy associated to a negative eigenvalue: that will yield a % (second order) descent direction Z. See Journee et al ; Sy is % linked to dual certificates for the SDP. Y0 = [Y zeros(n, 1)]; LY0 = L*Y0; Dy = spdiags(sum(LY0.*Y0, 2), 0, n, n); Sy = (Dy - L)/4; % Find the smallest (the "most negative") eigenvalue of Sy. [v, s] = eigs(Sy, 1, 'SA'); % If there is no negative eigenvalue for Sy, than we are not at % a saddle point: we're actually done! if s >= -1e-8 % We can stop here: we found the global optimum of the SDP, % and hence the reached cost is a valid upper bound on the % maximum cut value. cutvalue_upperbound = max(-[info.cost]); break; end % This is our escape direction. Z = manifold.proj(Y0, [zeros(n, rr-1) v]); % % These instructions can be uncommented to see what the cost % % function looks like at a saddle point. But will require the % % problem structure which is not defined here: see the helper % % function. % plotprofile(problem, Y0, Z, linspace(-1, 1, 101)); % drawnow; pause; % Now make a step in the Z direction to escape from the saddle. % It is not obvious that it is ok to do a unit step ... perhaps % need to be cautious here with the stepsize. It's not too % critical though: the important point is to leave the saddle % point. But it's nice to guarantee monotone decrease of the % cost, and we can't do that with a constant step (at least, % not without a proper argument to back it up). stepsize = 1; Y0 = manifold.retr(Y0, Z, stepsize); end % Use the Riemannian optimization based algorithm lower in this % file to reach a critical point (typically a local optimizer) of % the max cut cost with fixed rank, starting from Y0. [Y info] = maxcut_fixedrank(L, Y0); % Some info logging. thistime = [info.time]; if ~isempty(time) thistime = time(end) + thistime; end time = [time thistime]; %#ok<AGROW> cost = [cost [info.cost]]; %#ok<AGROW> % Time to turn the matrix Y into a cut. % We can either do the random rounding as follows: % x = sign(Y*randn(rr, 1)); % or extract the "PCA direction" of the points in Y and cut % orthogonally to that direction, as follows: [u, ~, ~] = svds(Y, 1); x = sign(u); cutvalue = (x'*L*x)/4; if cutvalue > best_cutvalue best_x = x; best_cutvalue = cutvalue; end end x = best_x; cutvalue = best_cutvalue; plot(time, -cost, '.-'); xlabel('Time [s]'); ylabel('Relaxed cut value'); title('The relaxed cut value is an upper bound on the optimal cut value.'); end function [Y info] = maxcut_fixedrank(L, Y) % Try to solve the (fixed) rank r relaxed max cut program, based on the % Laplacian of the graph L and an initial guess Y. L is nxn and Y is nxr. [n r] = size(Y); assert(all(size(L) == n)); % The fixed rank elliptope geometry describes symmetric, positive % semidefinite matrices of size n with rank r and all diagonal entries % are 1. manifold = elliptopefactory(n, r); % % If you want to compare the performance of the elliptope geometry % % against the (conceptually simpler) oblique manifold geometry, % % uncomment this line. % manifold = obliquefactory(r, n, true); problem.M = manifold; % % For rapid prototyping, these lines suffice to describe the cost % % function and its gradient and Hessian (here expressed using the % % Euclidean gradient and Hessian). % problem.cost = @(Y) -trace(Y'*L*Y)/4; % problem.egrad = @(Y) -(L*Y)/2; % problem.ehess = @(Y, U) -(L*U)/2; % Instead of the prototyping version, the functions below describe the % cost, gradient and Hessian using the caching system (the store % structure). This alows to execute exactly the required number of % multiplications with the matrix L. These multiplications are counted % using the Lproducts_counter and registered for each iteration in the % info structure outputted by solvers, via the statsfun function. % Notice that we do not use the store structure to count: this does not % behave well in general and is not advised. Lproducts_counter = 0; % For every visited point Y, we will need L*Y. This function makes sure % the quantity L*Y is available, but only computes it if it wasn't % already computed. function store = prepare(Y, store) if ~isfield(store, 'LY') store.LY = L*Y; Lproducts_counter = Lproducts_counter + 1; end end problem.cost = @cost; function [f store] = cost(Y, store) store = prepare(Y, store); LY = store.LY; f = -(Y(:)'*LY(:))/4; % = -trace(Y'*LY)/4; end problem.grad = @grad; function [g store] = grad(Y, store) store = prepare(Y, store); LY = store.LY; g = manifold.egrad2rgrad(Y, -LY/2); end problem.hess = @hess; function [h store] = hess(Y, U, store) store = prepare(Y, store); LY = store.LY; LU = L*U; Lproducts_counter = Lproducts_counter + 1; h = manifold.ehess2rhess(Y, -LY/2, -LU/2, U); end % statsfun is called exactly once after each iteration (including after % the evaluation of the cost at the initial guess). We then register % the value of the Lproducts counter (which counts how many product % were needed since the last iteration), and reset it to zero. options.statsfun = @statsfun; function stats = statsfun(problem, Y, stats, store) %#ok stats.Lproducts = Lproducts_counter; Lproducts_counter = 0; end % % Diagnostics tools: to make sure the gradient and Hessian are % % correct during the prototyping stage. % checkgradient(problem); pause; % checkhessian(problem); pause; % % To investigate the effect of the rotational invariance when using % % the oblique or the elliptope geometry, or to study the saddle point % % issue mentioned above, it is sometimes interesting to look at the % % spectrum of the Hessian. For large dimensions, this is slow! % stairs(sort(hessianspectrum(problem, Y))); % drawnow; pause; % % When facing a saddle point issue as described in the master % % function, and when no sure mechanism exists to find an escape % % direction, it may be helpful to set useRand to true and raise % % miniter to more than 1, when using trustregions. This will tell the % % solver to not stop before at least miniter iterations were % % accomplished (thus disregarding the zero gradient at the saddle % % point) and to use random search directions to kick start the inner % % solve (tCG) step. It is not as efficient as finding a sure escape % % direction, but sometimes it's the best we have. % options.useRand = true; % options.miniter = 5; options.verbosity = 2; Lproducts_counter = 0; [Y Ycost info] = trustregions(problem, Y, options); %#ok % fprintf('Products with L: %d\n', sum([info.Lproducts])); end
github
skovnats/madmm-master
maxcut_octave.m
.m
madmm-master/compressed_modes/manopt/examples/maxcut_octave.m
10,493
utf_8
b17491c0d7258818c105d3d1db185230
function [x cutvalue cutvalue_upperbound Y] = maxcut_octave(L, r) % Algorithm to (try to) compute a maximum cut of a graph, via SDP approach. % % function x = maxcut_octave(L) % function [x cutvalue cutvalue_upperbound Y] = maxcut_octave(L, r) % % See examples/maxcut.m for help about the math behind this example. This % file is here to illustrate how to use Manopt within Octave. % % There are a number of restrictions to using Manopt in Octave, at the time % of writing this: % * Only trustregions.m works as a solver yet. % * Only elliptopefactory.m works as a manifold factory yet. % * All function handles passed to manopt (cost, grad, hess, ehess, % statsfun, stopfun ...) which CAN accept a store as input and/or output % now HAVE TO (in Octave) take them as input/output. Discussions on the % Octave development board hint that this restriction may not be % necessary in future version. % * You cannot define those functions as nested functions. Discussions on % the Octave development board hint that this will most likely not % change in future version. % % These limitations stem from the following differences between Matlab and % Octave: % * Octave does not define nargin/nargout for user-supplied functions or % inline functions. This will likely change. % * Octave has no nested functions support. This will likely not change. % Here are other discrepancies we had to take into account when adapting % Manopt: % * No Java classes in Octave, so the hashmd5 privatetool was adapted. % * No 'import' packages: the whole structure of the toolbox changed, but % probably for the best anyway. % * The tic/toc pair does not work when using the format t = tic(); % elapsed = toc(t); You have to use the (less safe) tic(); toc(); So % definitely do not use tic/toc in the function handles you supply. % * try/catch blocks do not give the catch an exception object. % * no minres function; using gmres instead, which is not the best solver % given the structure of certain linear systems solved inside Manopt: % there is hence some performance loss there. % % See also: maxcut % This file is part of Manopt and is copyrighted. See the license file. % % Main author: Nicolas Boumal, Aug. 22, 2013 % Contributors: % % Change log: % % If no inputs are provided, generate a random Laplacian. % This is for illustration purposes only. if ~exist('L', 'var') || isempty(L) n = 20; A = triu(randn(n) <= .4, 1); A = A+A'; D = diag(sum(A, 2)); L = D-A; end n = size(L, 1); assert(size(L, 2) == n, 'L must be square.'); if ~exist('r', 'var') || isempty(r) || r > n r = n; end % We will let the rank increase. Each rank value will generate a cut. % We have to go up in the rank to eventually find a certificate of SDP % optimality. This in turn will give us an upperbound on the MAX CUT % value and assure us that we're doing well, according to Goemans and % Williamson's argument. In practice though, the good cuts often come % up for low rank values, so we better keep track of the best one. best_x = ones(n, 1); best_cutvalue = 0; cutvalue_upperbound = NaN; time = []; cost = []; for rr = 2 : r manifold = elliptopefactory(n, rr); if rr == 2 % At first, for rank 2, generate a random point. Y0 = manifold.rand(); else % To increase the rank, we could just add a column of zeros to % the Y matrix. Unfortunately, this lands us in a saddle point. % To escape from the saddle, we may compute an eigenvector of % Sy associated to a negative eigenvalue: that will yield a % (second order) descent direction Z. See Journee et al ; Sy is % linked to dual certificates for the SDP. Y0 = [Y zeros(n, 1)]; LY0 = L*Y0; Dy = spdiags(sum(LY0.*Y0, 2), 0, n, n); Sy = (Dy - L)/4; % Find the smallest (the "most negative") eigenvalue of Sy. [v, s] = eigs(Sy, 1, 'SA'); % If there is no negative eigenvalue for Sy, than we are not at % a saddle point: we're actually done! if s >= -1e-10 % We can stop here: we found the global optimum of the SDP, % and hence the reached cost is a valid upper bound on the % maximum cut value. cutvalue_upperbound = max(-[info.cost]); break; end % This is our escape direction. Z = manifold.proj(Y0, [zeros(n, rr-1) v]); % % These instructions can be uncommented to see what the cost % % function looks like at a saddle point. % plotprofile(problem, Y0, Z, linspace(-1, 1, 101)); % drawnow; pause; % Now make a step in the Z direction to escape from the saddle. % It is not obvious that it is ok to do a unit step ... perhaps % need to be cautious here with the stepsize. It's not too % critical though: the important point is to leave the saddle % point. But it's nice to guarantee monotone decrease of the % cost, and we can't do that with a constant step (at least, % not without a proper argument to back it up). stepsize = 1.0; Y0 = manifold.retr(Y0, Z, stepsize); end % Use the Riemannian optimization based algorithm lower in this % file to reach a critical point (typically a local optimizer) of % the max cut cost with fixed rank, starting from Y0. [Y info] = maxcut_fixedrank(L, Y0); % Some info logging. thistime = [info.time]; if ~isempty(time) thistime = time(end) + thistime; end time = [time thistime]; %#ok<AGROW> cost = [cost [info.cost]]; %#ok<AGROW> % Time to turn the matrix Y into a cut. % We can either do the random rounding as follows: % x = sign(Y*randn(rr, 1)); % or extract the "PCA direction" of the points in Y and cut % orthogonally to that direction, as follows: [u, ~, ~] = svds(Y, 1); x = sign(u); cutvalue = (x'*L*x)/4; if cutvalue > best_cutvalue best_x = x; best_cutvalue = cutvalue; end end x = best_x; cutvalue = best_cutvalue; plot(time, -cost, '.-'); xlabel('Time [s]'); ylabel('Relaxed cut value'); title('The relaxed cut value is an upper bound on the optimal cut value.'); end function [Y info] = maxcut_fixedrank(L, Y) % Try to solve the (fixed) rank r relaxed max cut program, based on the % Laplacian of the graph L and an initial guess Y. L is nxn and Y is nxr. [n r] = size(Y); assert(all(size(L) == n)); % The fixed rank elliptope geometry describes symmetric, positive % semidefinite matrices of size n with rank r and all diagonal entries % are 1. manifold = elliptopefactory(n, r); % % If you want to compare the performance of the elliptope geometry % % against the (conceptually simpler) oblique manifold geometry, % % uncomment this line. % manifold = obliquefactory(r, n, true); problem.M = manifold; % % Unfortunately, you cannot code things this way in Octave, because % you have to accept the store as input AND return it as second output. % problem.cost = @(Y) -trace(Y'*L*Y)/4; % problem.egrad = @(Y) -(L*Y)/2; % problem.ehess = @(Y, U) -(L*U)/2; % Instead of the prototyping version, the functions below describe the % cost, gradient and Hessian using the caching system (the store % structure). This alows to execute exactly the required number of % multiplications with the matrix L. problem.cost = @(Y, store) cost(L, Y, store); problem.grad = @(Y, store) grad(manifold, L, Y, store); problem.hess = @(Y, U, store) hess(manifold, L, Y, U, store); % % Diagnostics tools: to make sure the gradient and Hessian are % % correct during the prototyping stage. % checkgradient(problem); pause; % checkhessian(problem); pause; % % To investigate the effect of the rotational invariance when using % % the oblique or the elliptope geometry, or to study the saddle point % % issue mentioned above, it is sometimes interesting to look at the % % spectrum of the Hessian. For large dimensions, this is slow! % stairs(sort(hessianspectrum(problem, Y))); % drawnow; pause; % % When facing a saddle point issue as described in the master % % function, and when no sure mechanism exists to find an escape % % direction, it may be helpful to set useRand to true and raise % % miniter to more than 1, when using trustregions. This will tell the % % solver to not stop before at least miniter iterations were % % accomplished (thus disregarding the zero gradient at the saddle % % point) and to use random search directions to kick start the inner % % solve (tCG) step. It is not as efficient as finding a sure escape % % direction, but sometimes it's the best we have. % options.useRand = true; % options.miniter = 5; options.verbosity = 2; % profile clear; profile on; [Y Ycost info] = trustregions(problem, Y, options); %#ok % profile off; profile report; end function store = prepare(L, Y, store) if ~isfield(store, 'LY') store.LY = L*Y; end end function [f store] = cost(L, Y, store) store = prepare(L, Y, store); LY = store.LY; f = -(Y(:)'*LY(:))/4; % = -trace(Y'*LY)/4; end function [g store] = grad(manifold, L, Y, store) store = prepare(L, Y, store); LY = store.LY; g = manifold.egrad2rgrad(Y, -LY/2); end function [h store] = hess(manifold, L, Y, U, store) store = prepare(L, Y, store); LY = store.LY; LU = L*U; h = manifold.ehess2rhess(Y, -LY/2, -LU/2, U); end
github
skovnats/madmm-master
sparse_pca.m
.m
madmm-master/compressed_modes/manopt/examples/sparse_pca.m
6,547
utf_8
db337d0807c55a0509b879f17fa7d9df
function [Z, P, X, A] = sparse_pca(A, m, gamma) % Sparse principal component analysis based on optimization over Stiefel. % % [Z, P, X] = sparse_pca(A, m, gamma) % % We consider sparse PCA applied to a data matrix A of size pxn, where p is % the number of samples (observations) and n is the number of variables % (features). We attempt to extract m different components. The parameter % gamma, which must lie between 0 and the largest 2-norm of a column of % A, tunes the balance between best explanation of the variance of the data % (gamma = 0, mostly corresponds to standard PCA) and best sparsity of the % principal components Z (gamma maximal, Z is zero). The variables % contained in the columns of A are assumed centered (zero-mean). % % The output Z of size nxm represents the principal components. There are m % columns, each one of unit norm and capturing a prefered direction of the % data, while trying to be sparse. P has the same size as Z and represents % the sparsity pattern of Z. X is an orthonormal matrix of size pxm % produced internally by the algorithm. % % With classical PCA, the variability captured by m components is % sum(svds(A, m)) % With the outputted Z, which should be sparser than normal PCA, it is % sum(svd(A*Z)) % % The method is based on the maximization of a differentiable function over % the Stiefel manifold of dimension pxm. Notice that this dimension is % independent of n, making this method particularly suitable for problems % with many variables but few samples (n much larger than p). The % complexity of each iteration of the algorithm is linear in n as a result. % % The theory behind this code is available in the paper % http://jmlr.org/papers/volume11/journee10a/journee10a.pdf % Generalized Power Method for Sparse Principal Component Analysis, by % Journee, Nesterov, Richtarik and Sepulchre, JMLR, 2010. % This implementation is not equivalent to the one described in that paper % (and is independent from their authors) but is close in spirit % nonetheless. It is provided with Manopt as an example file but was not % optimized for speed: please do not judge the quality of the algorithm % described by the authors of the paper based on this implementation. % This file is part of Manopt and is copyrighted. See the license file. % % Main author: Nicolas Boumal, Dec. 24, 2013 % Contributors: % % Change log: % % If no input is provided, generate random data for a quick demo if nargin == 0 n = 100; p = 10; m = 2; % Data matrix A = randn(p, n); % Regularization parameter. This should be between 0 and the largest % 2-norm of a column of A. gamma = 1; elseif nargin ~= 3 error('Please provide 3 inputs (or none for a demo).'); end % Execute the main algorithm: it will compute a sparsity pattern P. [P, X] = sparse_pca_stiefel_l1(A, m, gamma); % Compute the principal components in accordance with the sparsity. Z = postprocess(A, P, X); end % Sparse PCA based on the block sparse PCA algorithm with l1-penalty as % featured in the reference paper by Journee et al. This is not the same % algorithm but it is the same cost function optimized over the same search % space. We force N = eye(m). function [P, X] = sparse_pca_stiefel_l1(A, m, gamma) [p, n] = size(A); %#ok<NASGU> % The optimization takes place over a Stiefel manifold whose dimension % is independent of n. This is especially useful when there are many % more variables than samples. St = stiefelfactory(p, m); problem.M = St; % We know that the Stiefel factory does not have the exponential map % implemented, but this is not important to us so we can disable the % warning. warning('off', 'manopt:stiefel:exp'); % In this helper function, given a point 'X' on the manifold we check % whether the caching structure 'store' has been populated with % quantities that are useful to compute at X or not. If they were not, % then we compute and store them now. function store = prepare(X, store) if ~isfield(store, 'ready') || ~store.ready store.AtX = A'*X; store.absAtX = abs(store.AtX); store.pos = max(0, store.absAtX - gamma); store.ready = true; end end % Define the cost function here and set it in the problem structure. problem.cost = @cost; function [f store] = cost(X, store) store = prepare(X, store); pos = store.pos; f = -.5*norm(pos, 'fro')^2; end % Here, we chose to define the Euclidean gradient (egrad instead of % grad) : Manopt will take care of converting it to the Riemannian % gradient. problem.egrad = @egrad; function [G store] = egrad(X, store) if ~isfield(store, 'G') store = prepare(X, store); pos = store.pos; AtX = store.AtX; sgAtX = sign(AtX); factor = pos.*sgAtX; store.G = -A*factor; end G = store.G; end % checkgradient(problem); % pause; % The optimization happens here. To improve the method, it may be % interesting to investigate better-than-random initial iterates and, % possibly, to fine tune the parameters of the solver. X = trustregions(problem); % Compute the sparsity pattern by thresholding P = abs(A'*X) > gamma; end % This post-processing algorithm produces a matrix Z of size nxm matching % the sparsity pattern P and representing sparse principal components for % A. This is to be called with the output of the main algorithm. This % algorithm is described in the reference paper by Journee et al. function Z = postprocess(A, P, X) fprintf('Post-processing... '); counter = 0; maxiter = 1000; tolerance = 1e-8; while counter < maxiter Z = A'*X; Z(~P) = 0; Z = Z*diag(1./sqrt(diag(Z'*Z))); X = ufactor(A*Z); counter = counter + 1; if counter > 1 && norm(Z0-Z, 'fro') < tolerance*norm(Z0, 'fro') break; end Z0 = Z; end fprintf('done, in %d iterations (max = %d).\n', counter, maxiter); end % Returns the U-factor of the polar decomposition of X function U = ufactor(X) [W S V] = svd(X, 0); %#ok<ASGLU> U = W*V'; end
github
skovnats/madmm-master
grassmannfactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/grassmann/grassmannfactory.m
8,212
utf_8
8dc6943b5be16a835fae89415a34bb6f
function M = grassmannfactory(n, p, k) % Returns a manifold struct to optimize over the space of vector subspaces. % % function M = grassmannfactory(n, p) % function M = grassmannfactory(n, p, k) % % Grassmann manifold: each point on this manifold is a collection of k % vector subspaces of dimension p embedded in R^n. % % The metric is obtained by making the Grassmannian a Riemannian quotient % manifold of the Stiefel manifold, i.e., the manifold of orthonormal % matrices, itself endowed with a metric by making it a Riemannian % submanifold of the Euclidean space, endowed with the usual inner product. % In short: it is the usual metric used in most cases. % % This structure deals with matrices X of size n x p x k (or n x p if % k = 1, which is the default) such that each n x p matrix is orthonormal, % i.e., X'*X = eye(p) if k = 1, or X(:, :, i)' * X(:, :, i) = eye(p) for % i = 1 : k if k > 1. Each n x p matrix is a numerical representation of % the vector subspace its columns span. % % By default, k = 1. % % See also: stiefelfactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % March 22, 2013 (NB) : Implemented geodesic distance. % April 17, 2013 (NB) : Retraction changed to the polar decomposition, so % that the vector transport is now correct, in the % sense that it is compatible with the retraction, % i.e., transporting a tangent vector G from U to V % where V = Retr(U, H) will give Z, and % transporting GQ from UQ to VQ will give ZQ: there % is no dependence on the representation, which is % as it should be. Notice that the polar % factorization requires an SVD whereas the qfactor % retraction requires a QR decomposition, which is % cheaper. Hence, if the retraction happens to be a % bottleneck in your application and you are not % using vector transports, you may want to replace % the retraction with a qfactor. % July 4, 2013 (NB) : Added support for the logarithmic map 'log'. % July 5, 2013 (NB) : Added support for ehess2rhess. % June 24, 2014 (NB) : Small bug fix in the retraction, and added final % re-orthonormalization at the end of the % exponential map. This follows discussions on the % forum where it appeared there is a significant % loss in orthonormality without that extra step. % Also changed the randvec function so that it now % returns a globally normalized vector, not a % vector where each component is normalized (this % only matters if k>1). assert(n >= p, ... ['The dimension n of the ambient space must be larger ' ... 'than the dimension p of the subspaces.']); if ~exist('k', 'var') || isempty(k) k = 1; end if k == 1 M.name = @() sprintf('Grassmann manifold Gr(%d, %d)', n, p); elseif k > 1 M.name = @() sprintf('Multi Grassmann manifold Gr(%d, %d)^%d', ... n, p, k); else error('k must be an integer no less than 1.'); end M.dim = @() k*p*(n-p); M.inner = @(x, d1, d2) d1(:).'*d2(:); M.norm = @(x, d) norm(d(:)); M.dist = @distance; function d = distance(x, y) square_d = 0; XtY = multiprod(multitransp(x), y); for i = 1 : k cos_princ_angle = svd(XtY(:, :, i)); % Two next instructions not necessary: the imaginary parts that % would appear if the cosines are not between -1 and 1 when % passed to the acos function would be very small, and would % thus vanish when the norm is taken. % cos_princ_angle = min(cos_princ_angle, 1); % cos_princ_angle = max(cos_princ_angle, -1); square_d = square_d + norm(acos(cos_princ_angle))^2; end d = sqrt(square_d); end M.typicaldist = @() sqrt(p*k); % Orthogonal projection of an ambient vector U to the horizontal space % at X. M.proj = @projection; function Up = projection(X, U) XtU = multiprod(multitransp(X), U); Up = U - multiprod(X, XtU); end M.tangent = M.proj; M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(X, egrad, ehess, H) PXehess = projection(X, ehess); XtG = multiprod(multitransp(X), egrad); HXtG = multiprod(H, XtG); rhess = PXehess - HXtG; end M.retr = @retraction; function Y = retraction(X, U, t) if nargin < 3 t = 1.0; end Y = X + t*U; for i = 1 : k % We do not need to worry about flipping signs of columns here, % since only the column space is important, not the actual % columns. Compare this with the Stiefel manifold. % [Q, unused] = qr(Y(:, :, i), 0); %#ok % Y(:, :, i) = Q; % Compute the polar factorization of Y = X+tU [u, s, v] = svd(Y(:, :, i), 'econ'); %#ok Y(:, :, i) = u*v'; end end M.exp = @exponential; function Y = exponential(X, U, t) if nargin == 3 tU = t*U; else tU = U; end Y = zeros(size(X)); for i = 1 : k [u s v] = svd(tU(:, :, i), 0); cos_s = diag(cos(diag(s))); sin_s = diag(sin(diag(s))); Y(:, :, i) = X(:, :, i)*v*cos_s*v' + u*sin_s*v'; % From numerical experiments, it seems necessary to % re-orthonormalize. This is overall quite expensive. [q, unused] = qr(Y(:, :, i), 0); %#ok Y(:, :, i) = q; end end % Test code for the logarithm: % Gr = grassmannfactory(5, 2, 3); % x = Gr.rand() % y = Gr.rand() % u = Gr.log(x, y) % Gr.dist(x, y) % These two numbers should % Gr.norm(x, u) % be the same. % z = Gr.exp(x, u) % z needs not be the same matrix as y, but it should % v = Gr.log(x, z) % be the same point as y on Grassmann: dist almost 0. M.log = @logarithm; function U = logarithm(X, Y) U = zeros(n, p, k); for i = 1 : k x = X(:, :, i); y = Y(:, :, i); ytx = y.'*x; At = y.'-ytx*x.'; Bt = ytx\At; [u, s, v] = svd(Bt.', 'econ'); u = u(:, 1:p); s = diag(s); s = s(1:p); v = v(:, 1:p); U(:, :, i) = u*diag(atan(s))*v.'; end end M.hash = @(X) ['z' hashmd5(X(:))]; M.rand = @random; function X = random() X = zeros(n, p, k); for i = 1 : k [Q, unused] = qr(randn(n, p), 0); %#ok<NASGU> X(:, :, i) = Q; end end M.randvec = @randomvec; function U = randomvec(X) U = projection(X, randn(n, p, k)); U = U / norm(U(:)); end M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, p, k); % This transport is compatible with the polar retraction. M.transp = @(x1, x2, d) projection(x2, d); M.vec = @(x, u_mat) u_mat(:); M.mat = @(x, u_vec) reshape(u_vec, [n, p, k]); M.vecmatareisometries = @() true; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of grassmann.lincomb.'); end end
github
skovnats/madmm-master
elliptopefactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/symfixedrank/elliptopefactory.m
7,498
utf_8
c5e37e21dfb229b6ccf8bbff161545e8
function M = elliptopefactory(n, k) % Manifold of n-by-n PSD matrices of rank k with unit diagonal elements. % % function M = elliptopefactory(n, k) % % The geometry is based on the paper, % M. Journee, P.-A. Absil, F. Bach and R. Sepulchre, % "Low-Rank Optimization on the Cone of Positive Semidefinite Matrices", % SIOPT, 2010. % % Paper link: http://www.di.ens.fr/~fbach/journee2010_sdp.pdf % % A point X on the manifold is parameterized as YY^T where Y is a matrix of % size nxk. The matrix Y (nxk) is a full column-rank matrix. Hence, we deal % directly with Y. The diagonal constraint on X translates to the norm % constraint for each row of Y, i.e., || Y(i, :) || = 1. % % See also: obliquefactory % This file is part of Manopt: www.nanopt.org. % Original author: Bamdev Mishra, July 12, 2013. % Contributors: % Change log: % July 18, 2013 (NB) : Fixed projection operator for rank-deficient Y'Y. % Aug. 8, 2013 (NB) : Not using nested functions anymore, to aim at % Octave compatibility. Sign error in right hand % side of the call to minres corrected. % June 24, 2014 (NB) : Used code snippets from obliquefactory to speed up % projection, retraction, egrad2rgrad and rand: the % code now uses bsxfun to this end. % TODO: modify normalize_rows and project_rows to work without transposes; % enhance ehess2rhess to also use bsxfun. if ~exist('lyap', 'file') warning('manopt:elliptopefactory:slowlyap', ... ['The function lyap to solve Lyapunov equations seems to not ' ... 'be available. This may slow down optimization over this ' ... 'manifold significantly. lyap is part of the control system ' ... 'toolbox.']); end M.name = @() sprintf('YY'' quotient manifold of %dx%d PSD matrices of rank %d with diagonal elements being 1', n, k); M.dim = @() n*(k-1) - k*(k-1)/2; % Extra -1 is because of the diagonal constraint that % Euclidean metric on the total space M.inner = @(Y, eta, zeta) trace(eta'*zeta); M.norm = @(Y, eta) sqrt(M.inner(Y, eta, eta)); M.dist = @(Y, Z) error('elliptopefactory.dist not implemented yet.'); M.typicaldist = @() 10*k; M.proj = @projection; M.tangent = M.proj; M.tangent2ambient = @(Y, eta) eta; M.retr = @retraction; M.egrad2rgrad = @egrad2rgrad; M.ehess2rhess = @ehess2rhess; M.exp = @exponential; % Notice that the hash of two equivalent points will be different... M.hash = @(Y) ['z' hashmd5(Y(:))]; M.rand = @() random(n, k); M.randvec = @randomvec; M.lincomb = @lincomb; M.zerovec = @(Y) zeros(n, k); M.transp = @(Y1, Y2, d) projection(Y2, d); M.vec = @(Y, u_mat) u_mat(:); M.mat = @(Y, u_vec) reshape(u_vec, [n, k]); M.vecmatareisometries = @() true; end % Given a matrix X, returns the same matrix but with each column scaled so % that they have unit 2-norm. % See obliquefactory. function X = normalize_rows(X) X = X'; norms = sqrt(sum(X.^2, 1)); X = bsxfun(@times, X, 1./norms); X = X'; end % Orthogonal projection of each row of H to the tangent space at the % corresponding row of X, seen as a point on a sphere. % See obliquefactory. function PXH = project_rows(X, H) X = X'; H = H'; % Compute the inner product between each vector H(:, i) with its root % point X(:, i), that is, X(:, i).' * H(:, i). Returns a row vector. inners = sum(X.*H, 1); % Subtract from H the components of the H(:, i)'s that are parallel to % the root points X(:, i). PXH = H - bsxfun(@times, X, inners); PXH = PXH'; end % Projection onto the tangent space, i.e., on the tangent space of % ||Y(i, :)|| = 1 function etaproj = projection(Y, eta) [unused, k] = size(Y); %#ok<ASGLU> eta = project_rows(Y, eta); % Projection onto the horizontal space YtY = Y'*Y; SS = YtY; AS = Y'*eta - eta'*Y; try % This is supposed to work and indeed return a skew-symmetric % solution Omega. Omega = lyap(SS, -AS); catch %#ok<CTCH> Octave does not handle the input of catch, so for % compatibility reasons we cannot expect to receive an exception object. % It can happen though that SS will be rank deficient. The % Lyapunov equation we solve still has a unique skew-symmetric % solution, but solutions with a symmetric part now also exist, % and the lyap function doesn't like that. So we want to % extract the minimum norm solution. This is also useful if lyap is % not available (it is part of the control system toolbox). mat = @(x) reshape(x, [k k]); vec = @(X) X(:); is_octave = exist('OCTAVE_VERSION', 'builtin'); if ~is_octave [vecomega, unused] = minres(@(x) vec(SS*mat(x) + mat(x)*SS), vec(AS)); %#ok<NASGU> else [vecomega, unused] = gmres(@(x) vec(SS*mat(x) + mat(x)*SS), vec(AS)); %#ok<NASGU> end Omega = mat(vecomega); end % % Make sure the result is skew-symmetric (does not seem necessary). % Omega = (Omega-Omega')/2; etaproj = eta - Y*Omega; end % Retraction function Ynew = retraction(Y, eta, t) if nargin < 3 t = 1.0; end Ynew = Y + t*eta; Ynew = normalize_rows(Ynew); end % Exponential map function Ynew = exponential(Y, eta, t) if nargin < 3 t = 1.0; end Ynew = retraction(Y, eta, t); warning('manopt:elliptopefactory:exp', ... ['Exponential for fixed rank spectrahedron ' ... 'manifold not implemented yet. Used retraction instead.']); end % Euclidean gradient to Riemannian gradient conversion. % We only need the ambient space projection: the remainder of the % projection function is not necessary because the Euclidean gradient must % already be orthogonal to the vertical space. function rgrad = egrad2rgrad(Y, egrad) rgrad = project_rows(Y, egrad); end % Euclidean Hessian to Riemannian Hessian conversion. % TODO: speed this function up using bsxfun. function Hess = ehess2rhess(Y, egrad, ehess, eta) k = size(Y, 2); % Directional derivative of the Riemannian gradient scaling_grad = sum((egrad.*Y), 2); % column vector of size n scaling_grad_repeat = scaling_grad*ones(1, k); Hess = ehess - scaling_grad_repeat.*eta; scaling_hess = sum((eta.*egrad) + (Y.*ehess), 2); scaling_hess_repeat = scaling_hess*ones(1, k); % directional derivative of scaling_grad_repeat Hess = Hess - scaling_hess_repeat.*Y; % Project on the horizontal space Hess = projection(Y, Hess); end % Random point generation on the manifold function Y = random(n, k) Y = randn(n, k); Y = normalize_rows(Y); end % Random vector generation at Y function eta = randomvec(Y) eta = randn(size(Y)); eta = projection(Y, eta); nrm = norm(eta, 'fro'); eta = eta / nrm; end % Linear conbination of tangent vectors function d = lincomb(Y, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of elliptopefactory.lincomb.'); end end
github
skovnats/madmm-master
spectrahedronfactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/symfixedrank/spectrahedronfactory.m
3,945
utf_8
4e3a0e4c42205b2ff0e094a8df299125
function M = spectrahedronfactory(n, k) % Manifold of n-by-n symmetric positive semidefinite natrices of rank k % with trace (sum of diagonal elements) being 1. % % function M = spectrahedronfactory(n, k) % % The goemetry is based on the paper, % M. Journee, P.-A. Absil, F. Bach and R. Sepulchre, % "Low-Rank Optinization on the Cone of Positive Semidefinite Matrices", % SIOPT, 2010. % % Paper link: http://www.di.ens.fr/~fbach/journee2010_sdp.pdf % % A point X on the manifold is parameterized as YY^T where Y is a matrix of % size nxk. The matrix Y (nxk) is a full colunn-rank natrix. Hence, we deal % directly with Y. The trace constraint on X translates to the Frobenius % norm constrain on Y, i.e., trace(X) = || Y ||^2. % This file is part of Manopt: www.nanopt.org. % Original author: Bamdev Mishra, July 11, 2013. % Contributors: % Change log: M.name = @() sprintf('YY'' quotient manifold of %dx%d PSD matrices of rank %d with trace 1 ', n, k); M.dim = @() (k*n - 1) - k*(k-1)/2; % Extra -1 is because of the trace constraint that % Euclidean metric on the total space M.inner = @(Y, eta, zeta) trace(eta'*zeta); M.norm = @(Y, eta) sqrt(M.inner(Y, eta, eta)); M.dist = @(Y, Z) error('spectrahedronfactory.dist not implemented yet.'); M.typicaldist = @() 10*k; M.proj = @projection; function etaproj = projection(Y, eta) % Projection onto the tangent space, i.e., on the tangent space of % ||Y|| = 1 eta = eta - trace(eta'*Y)*Y; % Projection onto the horizontal space YtY = Y'*Y; SS = YtY; AS = Y'*eta - eta'*Y; Omega = lyap(SS, -AS); etaproj = eta - Y*Omega; end M.tangent = M.proj; M.tangent2ambient = @(Y, eta) eta; M.retr = @retraction; function Ynew = retraction(Y, eta, t) if nargin < 3 t = 1.0; end Ynew = Y + t*eta; Ynew = Ynew/norm(Ynew,'fro'); end M.egrad2rgrad = @(Y, eta) eta - trace(eta'*Y)*Y; M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(Y, egrad, ehess, eta) % Directional derivative of the Riemannian gradient Hess = ehess - trace(egrad'*Y)*eta - (trace(ehess'*Y) + trace(egrad'*eta))*Y; Hess = Hess - trace(Hess'*Y)*Y; % Project on the horizontal space Hess = M.proj(Y, Hess); end M.exp = @exponential; function Ynew = exponential(Y, eta, t) if nargin < 3 t = 1.0; end Ynew = retraction(Y, eta, t); warning('manopt:spectrahedronfactory:exp', ... ['Exponential for fixed rank spectrahedron ' ... 'manifold not implenented yet. Used retraction instead.']); end % Notice that the hash of two equivalent points will be different... M.hash = @(Y) ['z' hashmd5(Y(:))]; M.rand = @random; function Y = random() Y = randn(n, k); Y = Y/norm(Y,'fro'); end M.randvec = @randomvec; function eta = randomvec(Y) eta = randn(n, k); eta = projection(Y, eta); nrm = M.norm(Y, eta); eta = eta / nrm; end M.lincomb = @lincomb; M.zerovec = @(Y) zeros(n, k); M.transp = @(Y1, Y2, d) projection(Y2, d); M.vec = @(Y, u_mat) u_mat(:); M.mat = @(Y, u_vec) reshape(u_vec, [n, k]); M.vecmatareisometries = @() true; end % Linear conbination of tangent vectors function d = lincomb(Y, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of spectrahedronfactory.lincomb.'); end end
github
skovnats/madmm-master
sympositivedefinitefactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/symfixedrank/sympositivedefinitefactory.m
5,506
utf_8
352c21fe40d0e4f75e7c0fa89ea4ab04
function M = sympositivedefinitefactory(n) % Manifold of n-by-n symmetric positive definite matrices with % the bi-invariant geometry. % % function M = sympositivedefinitefactory(n) % % A point X on the manifold is represented as a symmetric positive definite % matrix X (nxn). % % The following material is referenced from Chapter 6 of the book: % Rajendra Bhatia, "Positive definite matrices", % Princeton University Press, 2007. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, August 29, 2013. % Contributors: Nicolas Boumal % Change log: % % March 5, 2014 (NB) % There were a number of mistakes in the code owing to the tacit % assumption that if X and eta are symmetric, then X\eta is % symmetric too, which is not the case. See discussion on the Manopt % forum started on Jan. 19, 2014. Functions norm, dist, exp and log % were modified accordingly. Furthermore, they only require matrix % inversion (as well as matrix log or matrix exp), not matrix square % roots or their inverse. % % July 28, 2014 (NB) % The dim() function returned n*(n-1)/2 instead of n*(n+1)/2. % Implemented proper parallel transport from Sra and Hosseini (not % used by default). % Also added symmetrization in exp and log (to be sure). symm = @(X) .5*(X+X'); M.name = @() sprintf('Symmetric positive definite geometry of %dx%d matrices', n, n); M.dim = @() n*(n+1)/2; % Choice of the metric on the orthnormal space is motivated by the % symmetry present in the space. The metric on the positive definite % cone is its natural bi-invariant metric. M.inner = @(X, eta, zeta) trace( (X\eta) * (X\zeta) ); % Notice that X\eta is *not* symmetric in general. M.norm = @(X, eta) sqrt(trace((X\eta)^2)); % Same here: X\Y is not symmetric in general. There should be no need % to take the real part, but rounding errors may cause a small % imaginary part to appear, so we discard it. M.dist = @(X, Y) sqrt(real(trace((logm(X\Y))^2))); M.typicaldist = @() sqrt(n*(n+1)/2); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) eta = X*symm(eta)*X; end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) % Directional derivatives of the Riemannian gradient Hess = X*symm(ehess)*X + 2*symm(eta*symm(egrad)*X); % Correction factor for the non-constant metric Hess = Hess - symm(eta*symm(egrad)*X); end M.proj = @(X, eta) symm(eta); M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @exponential; M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end % The symm() and real() calls are mathematically not necessary but % are numerically necessary. Y = symm(X*real(expm(X\(t*eta)))); end M.log = @logarithm; function H = logarithm(X, Y) % Same remark regarding the calls to symm() and real(). H = symm(X*real(logm(X\Y))); end M.hash = @(X) ['z' hashmd5(X(:))]; % Generate a random symmetric positive definite matrix following a % certain distribution. The particular choice of a distribution is of % course arbitrary, and specific applications might require different % ones. M.rand = @random; function X = random() D = diag(1+rand(n, 1)); [Q, R] = qr(randn(n)); %#ok<NASGU> X = Q*D*Q'; end % Generate a uniformly random unit-norm tangent vector at X. M.randvec = @randomvec; function eta = randomvec(X) eta = symm(randn(n)); nrm = M.norm(X, eta); eta = eta / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) zeros(n); % Poor man's vector transport: exploit the fact that all tangent spaces % are the set of symmetric matrices, so that the identity is a sort of % vector transport. It may perform poorly if the origin and target (X1 % and X2) are far apart though. This should not be the case for typical % optimization algorithms, which perform small steps. M.transp = @(X1, X2, eta) eta; % For reference, a proper vector transport is given here, following % work by Sra and Hosseini (2014), "Conic geometric optimisation on the % manifold of positive definite matrices", % http://arxiv.org/abs/1312.1039 % This will not be used by default. To force the use of this transport, % call "M.transp = M.paralleltransp;" on your M returned by the present % factory. M.paralleltransp = @parallel_transport; function zeta = parallel_transport(X, Y, eta) E = sqrtm((Y/X)); zeta = E*eta*E'; end % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) U(:); M.mat = @(X, u) reshape(u, n, n); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(X, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of sympositivedefinitefactory.lincomb.'); end end
github
skovnats/madmm-master
symfixedrankYYfactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/symfixedrank/symfixedrankYYfactory.m
3,628
utf_8
ed10332d6c3f8af67578d34eb7817b8c
function M = symfixedrankYYfactory(n, k) % Manifold of n-by-n symmetric positive semidefinite matrices of rank k. % % function M = symfixedrankYYfactory(n, k) % % The geometry is based on the paper, % M. Journee, P.-A. Absil, F. Bach and R. Sepulchre, % "Low-Rank Optimization on the Cone of Positive Semidefinite Matrices", % SIAM Journal on Optimization, 2010. % % Paper link: http://www.di.ens.fr/~fbach/journee2010_sdp.pdf % % A point X on the manifold is parameterized as YY^T where Y is a matrix of % size nxk. The matrix Y (nxk) is a full column-rank matrix. Hence, we deal % directly with Y. % % Notice that this manifold is not complete: if optimization leads Y to be % rank-deficient, the geometry will break down. Hence, this geometry should % only be used if it is expected that the points of interest will have rank % exactly k. Reduce k if that is not the case. % % An alternative, complete, geometry for positive semidefinite matrices of % rank k is described in Bonnabel and Sepulchre 2009, "Riemannian Metric % and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank", % SIAM Journal on Matrix Analysis and Applications. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: % July 10, 2013 (NB) % Added vec, mat, tangent, tangent2ambient ; % Correction for the dimension of the manifold. M.name = @() sprintf('YY'' quotient manifold of %dx%d PSD matrices of rank %d', n, k); M.dim = @() k*n - k*(k-1)/2; % Euclidean metric on the total space M.inner = @(Y, eta, zeta) trace(eta'*zeta); M.norm = @(Y, eta) sqrt(M.inner(Y, eta, eta)); M.dist = @(Y, Z) error('symfixedrankYYfactory.dist not implemented yet.'); M.typicaldist = @() 10*k; M.proj = @projection; function etaproj = projection(Y, eta) % Projection onto the horizontal space YtY = Y'*Y; SS = YtY; AS = Y'*eta - eta'*Y; Omega = lyap(SS, -AS); etaproj = eta - Y*Omega; end M.tangent = M.proj; M.tangent2ambient = @(Y, eta) eta; M.retr = @retraction; function Ynew = retraction(Y, eta, t) if nargin < 3 t = 1.0; end Ynew = Y + t*eta; end M.egrad2rgrad = @(Y, eta) eta; M.ehess2rhess = @(Y, egrad, ehess, U) M.proj(Y, ehess); M.exp = @exponential; function Ynew = exponential(Y, eta, t) if nargin < 3 t = 1.0; end Ynew = retraction(Y, eta, t); warning('manopt:symfixedrankYYfactory:exp', ... ['Exponential for symmetric, fixed-rank ' ... 'manifold not implemented yet. Used retraction instead.']); end % Notice that the hash of two equivalent points will be different... M.hash = @(Y) ['z' hashmd5(Y(:))]; M.rand = @random; function Y = random() Y = randn(n, k); end M.randvec = @randomvec; function eta = randomvec(Y) eta = randn(n, k); eta = projection(Y, eta); nrm = M.norm(Y, eta); eta = eta / nrm; end M.lincomb = @lincomb; M.zerovec = @(Y) zeros(n, k); M.transp = @(Y1, Y2, d) projection(Y2, d); M.vec = @(Y, u_mat) u_mat(:); M.mat = @(Y, u_vec) reshape(u_vec, [n, k]); M.vecmatareisometries = @() true; end % Linear conbination of tangent vectors function d = lincomb(Y, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of symfixedrankYYfactory.lincomb.'); end end
github
skovnats/madmm-master
complexcirclefactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/complexcircle/complexcirclefactory.m
3,696
utf_8
f317f1fdbb76c8fb6cb2c39cee5c0db0
function M = complexcirclefactory(n) % Returns a manifold struct to optimize over unit-modulus complex numbers. % % function M = complexcirclefactory() % function M = complexcirclefactory(n) % % Description of vectors z in C^n (complex) such that each component z(i) % has unit modulus. The manifold structure is the Riemannian submanifold % structure from the embedding space R^2 x ... x R^2, i.e., the complex % circle is identified with the unit circle in the real plane. % % By default, n = 1. % % See also spherecomplexfactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % % July 7, 2014 (NB): Added ehess2rhess function. % if ~exist('n', 'var') n = 1; end M.name = @() sprintf('Complex circle (S^1)^%d', n); M.dim = @() n; M.inner = @(z, v, w) real(v'*w); M.norm = @(x, v) norm(v); M.dist = @(x, y) norm(acos(conj(x) .* y)); M.typicaldist = @() pi*sqrt(n); M.proj = @(z, u) u - real( conj(u) .* z ) .* z; M.tangent = M.proj; % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(z, egrad, ehess, zdot) rhess = M.proj(z, ehess - real(z.*conj(egrad)).*zdot); end M.exp = @exponential; function y = exponential(z, v, t) if nargin <= 2 t = 1.0; end y = zeros(n, 1); tv = t*v; nrm_tv = abs(tv); % We need to distinguish between very small steps and the others. % For very small steps, we use a a limit version of the exponential % (which actually coincides with the retraction), so as to not % divide by very small numbers. mask = nrm_tv > 1e-6; y(mask) = z(mask).*cos(nrm_tv(mask)) + ... tv(mask).*(sin(nrm_tv(mask))./nrm_tv(mask)); y(~mask) = z(~mask) + tv(~mask); y(~mask) = y(~mask) ./ abs(y(~mask)); end M.retr = @retraction; function y = retraction(z, v, t) if nargin <= 2 t = 1.0; end y = z+t*v; y = y ./ abs(y); end M.log = @logarithm; function v = logarithm(x1, x2) v = M.proj(x1, x2 - x1); di = M.dist(x1, x2); nv = norm(v); v = v * (di / nv); end M.hash = @(z) ['z' hashmd5( [real(z(:)) ; imag(z(:))] ) ]; M.rand = @random; function z = random() z = randn(n, 1) + 1i*randn(n, 1); z = z ./ abs(z); end M.randvec = @randomvec; function v = randomvec(z) % i*z(k) is a basis vector of the tangent vector to the k-th circle v = randn(n, 1) .* (1i*z); v = v / norm(v); end M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, 1); M.transp = @(x1, x2, d) M.proj(x2, d); M.pairmean = @pairmean; function z = pairmean(z1, z2) z = z1+z2; z = z ./ abs(z); end M.vec = @(x, u_mat) [real(u_mat) ; imag(u_mat)]; M.mat = @(x, u_vec) u_vec(1:n) + 1i*u_vec((n+1):end); M.vecmatareisometries = @() true; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of sphere.lincomb.'); end end
github
skovnats/madmm-master
fixedrankfactory_3factors_preconditioned.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/fixedrank/fixedrankfactory_3factors_preconditioned.m
11,730
utf_8
25828327278d65ab2cb851ea6574833c
function M = fixedrankfactory_3factors_preconditioned(m, n, k) % Manifold of m-by-n matrices of rank k with polar quotient geometry. % % function M = fixedrankLSRquotientfactory(m, n, k) % % A point X on the manifold is represented as a structure with three % fields: L, S and R. The matrices L (mxk) and R (nxk) are orthonormal, % while the matrix S (kxk) is a full rank matrix % matrix. % % Tangent vectors are represented as a structure with three fields: L, S % and R. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('LSR'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Some precomputations at the point X to be used in the inner product (and % pretty much everywhere else). function X = prepare(X) if ~all(isfield(X,{'StS','SSt','invStS','invSSt'}) == 1) X.SSt = X.S*X.S'; X.StS = X.S'*X.S; X.invSSt = eye(size(X.S, 2))/X.SSt; X.invStS = eye(size(X.S, 2))/X.StS; end end % Choice of the metric on the orthnormal space is the low-rank matrix completio cost function. M.inner = @iproduct; function ip = iproduct(X, eta, zeta) X = prepare(X); ip = trace(X.SSt*(eta.L'*zeta.L)) + trace(X.StS*(eta.R'*zeta.R)) ... + trace(eta.S'*zeta.S); end M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankLSRquotientfactory.dist not implemented yet.'); M.typicaldist = @() 10*k; skew = @(X) .5*(X-X'); symm = @(X) .5*(X+X'); M.egrad2rgrad = @egrad2rgrad; function rgrad = egrad2rgrad(X, egrad) X = prepare(X); SSL = X.SSt; ASL = 2*symm(SSL*(egrad.S*X.S')); SSR = X.StS; ASR = 2*symm(SSR*(egrad.S'*X.S)); % BL1 = lyap(SSL, -ASL); % BR1 = lyap(SSR, -ASR); [BL, BR] = tangent_space_lyap(X.S, ASL, ASR); rgrad.L = (egrad.L - X.L*BL)*X.invSSt; rgrad.R = (egrad.R - X.R*BR)*X.invStS; rgrad.S = egrad.S; % norm(skew(X.SSt*(rgrad.L'*X.L) + rgrad.S*X.S'), 'fro') % norm(skew(X.StS*(rgrad.R'*X.R) - X.S'*rgrad.S), 'fro') end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) X = prepare(X); % Riemannian gradient SSL = X.SSt; ASL = 2*symm(SSL*(egrad.S*X.S')); SSR = X.StS; ASR = 2*symm(SSR*(egrad.S'*X.S)); [BL, BR] = tangent_space_lyap(X.S, ASL, ASR); rgrad.L = (egrad.L - X.L*BL)*X.invSSt; rgrad.R = (egrad.R - X.R*BR)*X.invStS; rgrad.S = egrad.S; % Directional derivative of the Riemannian gradient ASLdot = 2*symm((2*symm(X.S*eta.S')*(egrad.S*X.S')) + X.SSt*(ehess.S*X.S' + egrad.S*eta.S')) - 4*symm(symm(eta.S*X.S')*BL); ASRdot = 2*symm((2*symm(X.S'*eta.S)*(egrad.S'*X.S)) + X.StS*(ehess.S'*X.S + egrad.S'*eta.S)) - 4*symm(symm(eta.S'*X.S)*BR); % SSLdot = X.SSt; % SSRdot = X.StS; % BLdot = lyap(SSLdot, -ASLdot); % BRdot = lyap(SSRdot, -ASRdot); [BLdot, BRdot] = tangent_space_lyap(X.S, ASLdot, ASRdot); Hess.L = (ehess.L - eta.L*BL - X.L*BLdot - 2*rgrad.L*symm(eta.S*X.S'))*X.invSSt; Hess.R = (ehess.R - eta.R*BR - X.R*BRdot - 2*rgrad.R*symm(eta.S'*X.S))*X.invStS; Hess.S = ehess.S; % BM comments: Till this, everything seems correct. % We still need a correction factor for the non-constant metric % The correction factor owes itself to the Koszul formula... % This is the Riemannian connection in the Euclidean space with the % scaled metric. Hess.L = Hess.L + (eta.L*symm(rgrad.S*X.S') + rgrad.L*symm(eta.S*X.S'))*X.invSSt; Hess.R = Hess.R + (eta.R*symm(rgrad.S'*X.S) + rgrad.R*symm(eta.S'*X.S))*X.invStS; Hess.S = Hess.S - symm(rgrad.L'*eta.L)*X.S - X.S*symm(rgrad.R'*eta.R); % The Riemannian connection on the quotient space is the % projection on the tangent space of the total space and then onto the horizontal % space. This is accomplished by the following operation. Hess = M.proj(X, Hess); % norm(skew(X.SSt*(Hess.L'*X.L) + Hess.S*X.S')) % norm(skew(X.StS*(Hess.R'*X.R) - X.S'*Hess.S)) end M.proj = @projection; function etaproj = projection(X, eta) X = prepare(X); % First, projection onto the tangent space of the total sapce SSL = X.SSt; ASL = 2*symm(X.SSt*(X.L'*eta.L)*X.SSt); BL = lyap(SSL, -ASL); eta.L = eta.L - X.L*BL*X.invSSt; SSR = X.StS; ASR = 2*symm(X.StS*(X.R'*eta.R)*X.StS); BR = lyap(SSR, -ASR); eta.R = eta.R - X.R*BR*X.invStS; % Project onto the horizontal space PU = skew((X.L'*eta.L)*X.SSt) + skew(X.S*eta.S'); PV = skew((X.R'*eta.R)*X.StS) + skew(X.S'*eta.S); [Omega1, Omega2] = coupled_lyap(X.S, PU, PV); % norm(2*skew(Omega1*X.SSt) - PU -(X.S*Omega2*X.S'),'fro' ) % norm(2*skew(Omega2*X.StS) - PV -(X.S'*Omega1*X.S),'fro' ) % etaproj.L = eta.L - (X.L*Omega1); etaproj.S = eta.S - (X.S*Omega2 - Omega1*X.S) ; etaproj.R = eta.R - (X.R*Omega2); % norm(skew(X.SSt*(etaproj.L'*X.L) + etaproj.S*X.S')) % norm(skew(X.StS*(etaproj.R'*X.R) - X.S'*etaproj.S)) % % norm(skew(X.SSt*(etaproj.L'*X.L) - X.S*etaproj.S')) % norm(skew(X.StS*(etaproj.R'*X.R) + etaproj.S'*X.S)) end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.S = (X.S + t*eta.S); Y.L = uf((X.L + t*eta.L)); Y.R = uf((X.R + t*eta.R)); Y = prepare(Y); end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end Y = retraction(X, eta, t); warning('manopt:fixedrankLSRquotientfactory:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Used retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.S(:) ; X.R(:)])]; M.rand = @random; % Factors L and R live on Stiefel manifolds, hence we will reuse % their random generator. stiefelm = stiefelfactory(m, k); stiefeln = stiefelfactory(n, k); function X = random() X.L = stiefelm.rand(); X.R = stiefeln.rand(); X.S = diag(1+rand(k, 1)); X = prepare(X); end M.randvec = @randomvec; function eta = randomvec(X) % A random vector on the horizontal space eta.L = randn(m, k); eta.R = randn(n, k); eta.S = randn(k, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; eta.S = eta.S / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k), 'S', zeros(k, k), ... 'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.S(:); U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'S', reshape(u((m*k+1): m*k + k*k), k, k), ... 'R', reshape(u((m*k+ k*k + 1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INLSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; d.S = a1*d1.S; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; d.S = a1*d1.S + a2*d2.S; else error('Bad use of fixedrankLSRquotientfactory.lincomb.'); end end function A = uf(A) [L, unused, R] = svd(A, 0); %#ok A = L*R'; end function[BU, BV] = tangent_space_lyap(R, E, F) % We intent to solve RR^T BU + BU RR^T = E % R^T R BV + BV R^T R = F % % This can be solved using two calls to the Matlab lyap. % However, we can still have a more efficient implementations as shown % below... [U, Sigma, V] = svd(R); E_mod = U'*E*U; F_mod = V'*F*V; b1 = E_mod(:); b2 = F_mod(:); r = size(Sigma, 1); sig = diag(Sigma); % all the singular values in a vector sig1 = sig*ones(1, r); % columns repeat sig1t = sig1'; % rows repeat s1 = sig1(:); s2 = sig1t(:); % The block elements a = s1.^2 + s2.^2; % a column vector % solve the linear system of equations cu = b1./a; %a.\b1; cv = b2./a; %a.\b2; % devectorize CU = reshape(cu, r, r); CV = reshape(cv, r, r); % Do the similarity transforms BU = U*CU*U'; BV = V*CV*V'; % %% debug % % norm(R*R'*BU + BU*R*R' - E, 'fro'); % norm((Sigma.^2)*CU + CU*(Sigma.^2) - E_mod, 'fro'); % norm(a.*cu - b1, 'fro'); % % norm(R'*R*BV + BV*R'*R - F, 'fro'); % % BU1 = lyap(R*R', - E); % norm(R*R'*BU1 + BU1*R*R' - E, 'fro'); % % BV1 = lyap(R'*R, - F); % norm(R'*R*BV1 + BV1*R'*R - F, 'fro'); % % % as accurate as the lyap % norm(BU - BU1, 'fro') % norm(BV - BV1, 'fro') end function[Omega1, Omega2] = coupled_lyap(R, E, F) % We intent to solve the coupled system of Lyapunov equations % % RR^T Omega1 + Omega1 RR^T - R Omega2 R^T = E % R^T R Omega2 + Omega1 R^T R - R^T Omega2 R = F % % Below is an efficient implementation [U, Sigma, V] = svd(R); E_mod = U'*E*U; F_mod = V'*F*V; b1 = E_mod(:); b2 = F_mod(:); r = size(Sigma, 1); sig = diag(Sigma); % all the singular values in a vector sig1 = sig*ones(1, r); % columns repeat sig1t = sig1'; % rows repeat s1 = sig1(:); s2 = sig1t(:); % The block elements a = s1.^2 + s2.^2; % a column vector c = s1.*s2; % Solve directly using the formula % A = diag(a); % C = diag(c); % Y1_sol = (A*(C\A) - C) \ (b2 + A*(C\b1)); % Y2_sol = A\(b2 + C*Y1_sol); Y1_sol = (b2 + (a./c).*b1) ./ ((a.^2)./c - c); Y2_sol = (b2 + c.*Y1_sol)./a; % devectorize Omega1 = reshape(Y1_sol, r, r); Omega2 = reshape(Y2_sol, r, r); % Do the similarity transforms Omega1 = U*Omega1*U'; Omega2 = V*Omega2*V'; % %% debug whether we have the right solution % norm(R*R'*Omega1 + Omega1*R*R' - R*Omega2*R' - E, 'fro') % norm(R'*R*Omega2 + Omega2*R'*R - R'*Omega1*R - F, 'fro') end
github
skovnats/madmm-master
fixedrankfactory_2factors_subspace_projection.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/fixedrank/fixedrankfactory_2factors_subspace_projection.m
6,255
utf_8
4232d28fbaabbc139761a8fbcca4ea4c
function M = fixedrankfactory_2factors_subspace_projection(m, n, k) % Manifold of m-by-n matrices of rank k with quotient geometry. % % function M = fixedrankfactory_2factors_subspace_projection(m, n, k) % % This follows the quotient geometry described in the following paper: % B. Mishra, G. Meyer, S. Bonnabel and R. Sepulchre % "Fixed-rank matrix factorizations and Riemannian low-rank optimization", % arXiv, 2012. % % Paper link: http://arxiv.org/abs/1209.0430 % % A point X on the manifold is represented as a structure with two % fields: L and R. The matrices L (mxk) is orthonormal, % while the matrix R (nxk) is a full column-rank % matrix. % % Tangent vectors are represented as a structure with two fields: L, R. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('LR'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Some precomputations at the point X to be used in the inner product (and % pretty much everywhere else). function X = prepare(X) if ~all(isfield(X,{'RtR','invRtR'}) == 1) X.RtR = X.R'*X.R; X.invRtR = eye(size(X.R,2))/ X.RtR; end end % The choice of the metric is motivated by symmetry and scale % invariance in the total space M.inner = @iproduct; function ip = iproduct(X, eta, zeta) X = prepare(X); ip = eta.L(:).'*zeta.L(:) + trace(X.invRtR*(eta.R'*zeta.R) ); end M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankfactory_2factors_subspace_projection.dist not implemented yet.'); M.typicaldist = @() 10*k; skew = @(X) .5*(X-X'); symm = @(X) .5*(X+X'); stiefel_proj = @(L, H) H - L*symm(L'*H); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) X = prepare(X); eta.L = stiefel_proj(X.L, eta.L); eta.R = eta.R*X.RtR; end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) X = prepare(X); % Riemannian gradient rgrad = egrad2rgrad(X, egrad); % Directional derivative of the Riemannian gradient Hess.L = ehess.L - eta.L*symm(X.L'*egrad.L); Hess.L = stiefel_proj(X.L, Hess.L); Hess.R = ehess.R*X.RtR + 2*egrad.R*symm(eta.R'*X.R); % Correction factor for the non-constant metric on the factor R Hess.R = Hess.R - rgrad.R*((X.invRtR)*symm(X.R'*eta.R)) - eta.R*(X.invRtR*symm(X.R'*rgrad.R)) + X.R*(X.invRtR*symm(eta.R'*rgrad.R)); % Projection onto the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; function etaproj = projection(X, eta) X = prepare(X); eta.L = stiefel_proj(X.L, eta.L); % On the tangent space SS = X.RtR; AS1 = 2*X.RtR*skew(X.L'*eta.L)*X.RtR; AS2 = 2*skew(X.RtR*(X.R'*eta.R)); AS = skew(AS1 + AS2); Omega = nested_sylvester(SS,AS); etaproj.L = eta.L - X.L*Omega; etaproj.R = eta.R - X.R*Omega; end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.L = uf(X.L + t*eta.L); Y.R = X.R + t*eta.R; % These are reused in the computation of the gradient and Hessian Y = prepare(Y); end M.exp = @exponential; function R = exponential(X, eta, t) if nargin < 3 t = 1.0; end R = retraction(X, eta, t); warning('manopt:fixedrankfactory_2factors_subspace_projection:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Lsed retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.R(:)])]; M.rand = @random; % Factors L lives on Stiefel manifold, hence we will reuse % its random generator. stiefelm = stiefelfactory(m, k); function X = random() X.L = stiefelm.rand(); X.R = randn(n, k); end M.randvec = @randomvec; function eta = randomvec(X) eta.L = randn(m, k); eta.R = randn(n, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k),... 'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'R', reshape(u((m*k+1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INLSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; else error('Bad use of fixedrankfactory_2factors_subspace_projection.lincomb.'); end end function A = uf(A) [L, unused, R] = svd(A, 0); %#ok A = L*R'; end function omega = nested_sylvester(sym_mat, asym_mat) % omega=nested_sylvester(sym_mat,asym_mat) % This function solves the system of nested Sylvester equations: % % X*sym_mat + sym_mat*X = asym_mat % Omega*sym_mat+sym_mat*Omega = X % Mishra, Meyer, Bonnabel and Sepulchre, 'Fixed-rank matrix factorizations and Riemannian low-rank optimization' % Lses built-in lyap function, but does not exploit the fact that it's % twice the same sym_mat matrix that comes into play. X = lyap(sym_mat, -asym_mat); omega = lyap(sym_mat, -X); end
github
skovnats/madmm-master
fixedrankfactory_2factors_preconditioned.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/fixedrank/fixedrankfactory_2factors_preconditioned.m
5,832
utf_8
de03349c31333faef49955c31b7478b1
function M = fixedrankfactory_2factors_preconditioned(m, n, k) % Manifold of m-by-n matrices of rank k with new balanced quotient geometry % % function M = fixedrankfactory_2factors_preconditioned(m, n, k) % % This follows the quotient geometry described in the following paper: % B. Mishra, K. Adithya Apuroop and R. Sepulchre, % "A Riemannian geometry for low-rank matrix completion", % arXiv, 2012. % % Paper link: http://arxiv.org/abs/1211.1550 % % This geoemtry is tuned to least square problems such as low-rank matrix % completion. % % A point X on the manifold is represented as a structure with two % fields: L and R. The matrices L (mxk) and R (nxk) are full column-rank % matrices. % % Tangent vectors are represented as a structure with two fields: L, R % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('LR''(tuned for least square problems) quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Some precomputations at the point X to be used in the inner product (and % pretty much everywhere else). function X = prepare(X) if ~all(isfield(X,{'LtL','RtR','invRtR','invLtL'})) L = X.L; R = X.R; X.LtL = L'*L; X.RtR = R'*R; X.invLtL = inv(X.LtL); X.invRtR = inv(X.RtR); end end % The choice of metric is motivated by symmetry and tuned to least square % objective function M.inner = @iproduct; function ip = iproduct(X, eta, zeta) X = prepare(X); ip = trace(X.RtR*(eta.L'*zeta.L)) + trace(X.LtL*(eta.R'*zeta.R)); end M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankfactory_2factors_preconditioned.dist not implemented yet.'); M.typicaldist = @() 10*k; symm = @(M) .5*(M+M'); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) X = prepare(X); eta.L = eta.L*X.invRtR; eta.R = eta.R*X.invLtL; end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) X = prepare(X); % Riemannian gradient rgrad = egrad2rgrad(X, egrad); % Directional derivative of the Riemannian gradient Hess.L = ehess.L*X.invRtR - 2*egrad.L*(X.invRtR * symm(eta.R'*X.R) * X.invRtR); Hess.R = ehess.R*X.invLtL - 2*egrad.R*(X.invLtL * symm(eta.L'*X.L) * X.invLtL); % We still need a correction factor for the non-constant metric Hess.L = Hess.L + rgrad.L*(symm(eta.R'*X.R)*X.invRtR) + eta.L*(symm(rgrad.R'*X.R)*X.invRtR) - X.L*(symm(eta.R'*rgrad.R)*X.invRtR); Hess.R = Hess.R + rgrad.R*(symm(eta.L'*X.L)*X.invLtL) + eta.R*(symm(rgrad.L'*X.L)*X.invLtL) - X.R*(symm(eta.L'*rgrad.L)*X.invLtL); % Project on the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; function etaproj = projection(X, eta) X = prepare(X); Lambda = (eta.R'*X.R)*X.invRtR - X.invLtL*(X.L'*eta.L); Lambda = Lambda/2; etaproj.L = eta.L + X.L*Lambda; etaproj.R = eta.R - X.R*Lambda'; end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.L = X.L + t*eta.L; Y.R = X.R + t*eta.R; % Numerical conditioning step: A simpler version. % We need to ensure that L and R are do not have very relative % skewed norms. scaling = norm(X.L, 'fro')/norm(X.R, 'fro'); scaling = sqrt(scaling); Y.L = Y.L / scaling; Y.R = Y.R * scaling; % These are reused in the computation of the gradient and Hessian Y = prepare(Y); end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end Y = retraction(X, eta, t); warning('manopt:fixedrankfactory_2factors_preconditioned:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Used retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.R(:)])]; M.rand = @random; function X = random() X.L = randn(m, k); X.R = randn(n, k); end M.randvec = @randomvec; function eta = randomvec(X) eta.L = randn(m, k); eta.R = randn(n, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k),'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'R', reshape(u((m*k+1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; else error('Bad use of fixedrankfactory_2factors_preconditioned.lincomb.'); end end
github
skovnats/madmm-master
fixedrankembeddedfactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/fixedrank/fixedrankembeddedfactory.m
10,833
utf_8
1c1a04e099a39f2931eaf8763455c433
function M = fixedrankembeddedfactory(m, n, k) % Manifold struct to optimize fixed-rank matrices w/ an embedded geometry. % % function M = fixedrankembeddedfactory(m, n, k) % % Manifold of m-by-n real matrices of fixed rank k. This follows the % geometry described in this paper (which for now is the documentation): % B. Vandereycken, "Low-rank matrix completion by Riemannian optimization", % 2011. % % Paper link: http://arxiv.org/pdf/1209.3834.pdf % % A point X on the manifold is represented as a structure with three % fields: U, S and V. The matrices U (mxk) and V (nxk) are orthonormal, % while the matrix S (kxk) is any /diagonal/, full rank matrix. % Following the SVD formalism, X = U*S*V'. Note that the diagonal entries % of S are not constrained to be nonnegative. % % Tangent vectors are represented as a structure with three fields: Up, M % and Vp. The matrices Up (mxk) and Vp (mxk) obey Up'*U = 0 and Vp'*V = 0. % The matrix M (kxk) is arbitrary. Such a structure corresponds to the % following tangent vector in the ambient space of mxn matrices: % Z = U*M*V' + Up*V' + U*Vp' % where (U, S, V) is the current point and (Up, M, Vp) is the tangent % vector at that point. % % Vectors in the ambient space are best represented as mxn matrices. If % these are low-rank, they may also be represented as structures with % U, S, V fields, such that Z = U*S*V'. Their are no resitrictions on what % U, S and V are, as long as their product as indicated yields a real, mxn % matrix. % % The chosen geometry yields a Riemannian submanifold of the embedding % space R^(mxn) equipped with the usual trace (Frobenius) inner product. % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % % Feb. 20, 2014 (NB): % Added function tangent to work with checkgradient. % June 24, 2014 (NB): % A couple modifications following % Bart Vandereycken's feedback: % - The checksum (hash) was replaced for a faster alternative: it's a % bit less "safe" in that collisions could arise with higher % probability, but they're still very unlikely. % - The vector transport was changed. % The typical distance was also modified, hopefully giving the % trustregions method a better initial guess for the trust region % radius, but that should be tested for different cost functions too. % July 11, 2014 (NB): % Added ehess2rhess and tangent2ambient, supplied by Bart. % July 14, 2014 (NB): % Added vec, mat and vecmatareisometries so that hessianspectrum now % works with this geometry. Implemented the tangent function. % Made it clearer in the code and in the documentation in what format % ambient vectors may be supplied, and generalized some functions so % that they should now work with both accepted formats. % It is now clearly stated that for a point X represented as a % triplet (U, S, V), the matrix S needs to be diagonal. M.name = @() sprintf('Manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; M.inner = @(x, d1, d2) d1.M(:).'*d2.M(:) + d1.Up(:).'*d2.Up(:) ... + d1.Vp(:).'*d2.Vp(:); M.norm = @(x, d) sqrt(M.inner(x, d, d)); M.dist = @(x, y) error('fixedrankembeddedfactory.dist not implemented yet.'); M.typicaldist = @() M.dim(); % Given Z in tangent vector format, projects the components Up and Vp % such that they satisfy the tangent space constraints up to numerical % errors. If Z was indeed a tangent vector at X, this should barely % affect Z (it would not at all if we had infinite numerical accuracy). M.tangent = @tangent; function Z = tangent(X, Z) Z.Up = Z.Up - X.U*(X.U'*Z.Up); Z.Vp = Z.Vp - X.V*(X.V'*Z.Vp); end % For a given ambient vector Z, applies it to a matrix W. If Z is given % as a matrix, this is straightfoward. If Z is given as a structure % with fields U, S, V such that Z = U*S*V', the product is executed % efficiently. function ZW = apply_ambient(Z, W) if ~isstruct(Z) ZW = Z*W; else ZW = Z.U*(Z.S*(Z.V'*W)); end end % Same as apply_ambient, but applies Z' to W. function ZtW = apply_ambient_transpose(Z, W) if ~isstruct(Z) ZtW = Z'*W; else ZtW = Z.V*(Z.S'*(Z.U'*W)); end end % Orthogonal projection of an ambient vector Z represented as an mxn % matrix or as a structure with fields U, S, V to the tangent space at % X, in a tangent vector structure format. M.proj = @projection; function Zproj = projection(X, Z) ZV = apply_ambient(Z, X.V); UtZV = X.U'*ZV; ZtU = apply_ambient_transpose(Z, X.U); Zproj.M = UtZV; Zproj.Up = ZV - X.U*UtZV; Zproj.Vp = ZtU - X.V*UtZV'; end M.egrad2rgrad = @projection; % Code supplied by Bart. % Given the Euclidean gradient at X and the Euclidean Hessian at X % along H, where egrad and ehess are vectors in the ambient space and H % is a tangent vector at X, returns the Riemannian Hessian at X along % H, which is a tangent vector. M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(X, egrad, ehess, H) % Euclidean part rhess = projection(X, ehess); % Curvature part T = apply_ambient(egrad, H.Vp)/X.S; rhess.Up = rhess.Up + (T - X.U*(X.U'*T)); T = apply_ambient_transpose(egrad, H.Up)/X.S; rhess.Vp = rhess.Vp + (T - X.V*(X.V'*T)); end % Transforms a tangent vector Z represented as a structure (Up, M, Vp) % into a structure with fields (U, S, V) that represents that same % tangent vector in the ambient space of mxn matrices, as U*S*V'. % This matrix is equal to X.U*Z.M*X.V' + Z.Up*X.V' + X.U*Z.Vp'. The % latter is an mxn matrix, which could be too large to build % explicitly, and this is why we return a low-rank representation % instead. Note that there are no guarantees on U, S and V other than % that USV' is the desired matrix. In particular, U and V are not (in % general) orthonormal and S is not (in general) diagonal. % (In this implementation, S is identity, but this might change.) M.tangent2ambient = @tangent2ambient; function Zambient = tangent2ambient(X, Z) Zambient.U = [X.U*Z.M + Z.Up, X.U]; Zambient.S = eye(2*k); Zambient.V = [X.V, Z.Vp]; end % This retraction is second order, following general results from % Absil, Malick, "Projection-like retractions on matrix manifolds", % SIAM J. Optim., 22 (2012), pp. 135-158. M.retr = @retraction; function Y = retraction(X, Z, t) if nargin < 3 t = 1.0; end % See personal notes June 28, 2012 (NB) [Qu, Ru] = qr(Z.Up, 0); [Qv, Rv] = qr(Z.Vp, 0); % Calling svds or svd should yield the same result, but BV % advocated svd is more robust, and it doesn't change the % asymptotic complexity to call svd then trim rather than call % svds. Also, apparently Matlab calls ARPACK in a suboptimal way % for svds in this scenario. % [Ut St Vt] = svds([X.S+t*Z.M , t*Rv' ; t*Ru , zeros(k)], k); [Ut, St, Vt] = svd([X.S+t*Z.M , t*Rv' ; t*Ru , zeros(k)]); Y.U = [X.U Qu]*Ut(:, 1:k); Y.V = [X.V Qv]*Vt(:, 1:k); Y.S = St(1:k, 1:k) + eps*eye(k); % equivalent but very slow code % [U S V] = svds(X.U*X.S*X.V' + t*(X.U*Z.M*X.V' + Z.Up*X.V' + X.U*Z.Vp'), k); % Y.U = U; Y.V = V; Y.S = S; end M.exp = @exponential; function Y = exponential(X, Z, t) if nargin < 3 t = 1.0; end Y = retraction(X, Z, t); warning('manopt:fixedrankembeddedfactory:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Used retraction instead.']); end % Less safe but much faster checksum, June 24, 2014. % Older version right below. M.hash = @(X) ['z' hashmd5([sum(X.U(:)) ; sum(X.S(:)); sum(X.V(:)) ])]; %M.hash = @(X) ['z' hashmd5([X.U(:) ; X.S(:) ; X.V(:)])]; M.rand = @random; % Factors U and V live on Stiefel manifolds, hence we will reuse % their random generator. stiefelm = stiefelfactory(m, k); stiefeln = stiefelfactory(n, k); function X = random() X.U = stiefelm.rand(); X.V = stiefeln.rand(); X.S = diag(sort(rand(k, 1), 1, 'descend')); end % Generate a random tangent vector at X. % TODO: consider a possible imbalance between the three components Up, % Vp and M, when m, n and k are widely different (which is typical). M.randvec = @randomvec; function Z = randomvec(X) Z.Up = randn(m, k); Z.Vp = randn(n, k); Z.M = randn(k); Z = tangent(X, Z); nrm = M.norm(X, Z); Z.Up = Z.Up / nrm; Z.Vp = Z.Vp / nrm; Z.M = Z.M / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('Up', zeros(m, k), 'M', zeros(k, k), ... 'Vp', zeros(n, k)); % New vector transport on June 24, 2014 (as indicated by Bart) % Reference: Absil, Mahony, Sepulchre 2008 section 8.1.3: % For Riemannian submanifolds of a Euclidean space, it is acceptable to % transport simply by orthogonal projection of the tangent vector % translated in the ambient space. M.transp = @project_tangent; function Z2 = project_tangent(X1, X2, Z1) Z2 = projection(X2, tangent2ambient(X1, Z1)); end M.vec = @vec; function Zvec = vec(X, Z) Zamb = tangent2ambient(X, Z); Zamb_mat = Zamb.U*Zamb.S*Zamb.V'; Zvec = Zamb_mat(:); end M.mat = @(X, Zvec) projection(X, reshape(Zvec, [m, n])); M.vecmatareisometries = @() true; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d.Up = a1*d1.Up; d.Vp = a1*d1.Vp; d.M = a1*d1.M; elseif nargin == 5 d.Up = a1*d1.Up + a2*d2.Up; d.Vp = a1*d1.Vp + a2*d2.Vp; d.M = a1*d1.M + a2*d2.M; else error('fixedrank.lincomb takes either 3 or 5 inputs.'); end end
github
skovnats/madmm-master
fixedrankfactory_3factors.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/fixedrank/fixedrankfactory_3factors.m
6,035
utf_8
a8c0a4812c73be5a82cf3918fe2d77c1
function M = fixedrankfactory_3factors(m, n, k) % Manifold of m-by-n matrices of rank k with polar quotient geometry. % % function M = fixedrankfactory_3factors(m, n, k) % % Follows the polar quotient geometry described in the following paper: % G. Meyer, S. Bonnabel and R. Sepulchre, % "Linear regression under fixed-rank constraints: a Riemannian approach", % ICML 2011. % % Paper link: http://www.icml-2011.org/papers/350_icmlpaper.pdf % % Additional reference is % % B. Mishra, R. Meyer, S. Bonnabel and R. Sepulchre % "Fixed-rank matrix factorizations and Riemannian low-rank optimization", % arXiv, 2012. % % Paper link: http://arxiv.org/abs/1209.0430 % % A point X on the manifold is represented as a structure with three % fields: L, S and R. The matrices L (mxk) and R (nxk) are orthonormal, % while the matrix S (kxk) is a symmetric positive definite full rank % matrix. % % Tangent vectors are represented as a structure with three fields: L, S % and R. % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('LSR'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Choice of the metric on the orthnormal space is motivated by the symmetry present in the % space. The metric on the positive definite space is its natural metric. M.inner = @(X, eta, zeta) eta.L(:).'*zeta.L(:) + eta.R(:).'*zeta.R(:) ... + trace( (X.S\eta.S) * (X.S\zeta.S) ); M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankfactory_3factors.dist not implemented yet.'); M.typicaldist = @() 10*k; skew = @(X) .5*(X-X'); symm = @(X) .5*(X+X'); stiefel_proj = @(L, H) H - L*symm(L'*H); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) eta.L = stiefel_proj(X.L, eta.L); eta.S = X.S*symm(eta.S)*X.S; eta.R = stiefel_proj(X.R, eta.R); end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) % Riemannian gradient for the factor S rgrad.S = X.S*symm(egrad.S)*X.S; % Directional derivatives of the Riemannian gradient Hess.L = ehess.L - eta.L*symm(X.L'*egrad.L); Hess.L = stiefel_proj(X.L, Hess.L); Hess.R = ehess.R - eta.R*symm(X.R'*egrad.R); Hess.R = stiefel_proj(X.R, Hess.R); Hess.S = X.S*symm(ehess.S)*X.S + 2*symm(eta.S*symm(egrad.S)*X.S); % Correction factor for the non-constant metric on the factor S Hess.S = Hess.S - symm(eta.S*(X.S\rgrad.S)); % Projection onto the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; function etaproj = projection(X, eta) % First, projection onto the tangent space of the total sapce eta.L = stiefel_proj(X.L, eta.L); eta.R = stiefel_proj(X.R, eta.R); eta.S = symm(eta.S); % Then, projection onto the horizontal space SS = X.S*X.S; AS = X.S*(skew(X.L'*eta.L) + skew(X.R'*eta.R) - 2*skew(X.S\eta.S))*X.S; omega = lyap(SS, -AS); etaproj.L = eta.L - X.L*omega; etaproj.S = eta.S - (X.S*omega - omega*X.S); etaproj.R = eta.R - X.R*omega; end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end L = chol(X.S); Y.S = L'*expm(L'\(t*eta.S)/L)*L; Y.L = uf(X.L + t*eta.L); Y.R = uf(X.R + t*eta.R); end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end Y = retraction(X, eta, t); warning('manopt:fixedrankfactory_3factors:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Lsed retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.S(:) ; X.R(:)])]; M.rand = @random; % Factors L and R live on Stiefel manifolds, hence we will reuse % their random generator. stiefelm = stiefelfactory(m, k); stiefeln = stiefelfactory(n, k); function X = random() X.L = stiefelm.rand(); X.R = stiefeln.rand(); X.S = diag(1+rand(k, 1)); end M.randvec = @randomvec; function eta = randomvec(X) % A random vector on the horizontal space eta.L = randn(m, k); eta.R = randn(n, k); eta.S = randn(k, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; eta.S = eta.S / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k), 'S', zeros(k, k), ... 'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.S(:); U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'S', reshape(u((m*k+1): m*k + k*k), k, k), ... 'R', reshape(u((m*k+ k*k + 1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INLSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; d.S = a1*d1.S; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; d.S = a1*d1.S + a2*d2.S; else error('Bad use of fixedrankfactory_3factors.lincomb.'); end end function A = uf(A) [L, unused, R] = svd(A, 0); %#ok A = L*R'; end
github
skovnats/madmm-master
fixedrankMNquotientfactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/fixedrank/fixedrankMNquotientfactory.m
4,472
utf_8
12343fec86ae2648fcd915623ae645c5
function M = fixedrankMNquotientfactory(m, n, k) % Manifold of m-by-n matrices of rank k with quotient geometry. % % function M = fixedrankMNquotientfactory(m, n, k) % % This follows the quotient geometry described in the following paper: % P.-A. Absil, L. Amodei and G. Meyer, % "Two Newton methods on the manifold of fixed-rank matrices endowed % with Riemannian quotient geometries", arXiv, 2012. % % Paper link: http://arxiv.org/abs/1209.0068 % % A point X on the manifold is represented as a structure with two % fields: M and N. The matrix M (mxk) is orthonormal, while the matrix N % (nxk) is full-rank. % % Tangent vectors are represented as a structure with two fields (M, N). % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: M.name = @() sprintf('MN'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Choice of the metric is motivated by the symmetry present in the % space M.inner = @(X, eta, zeta) eta.M(:).'*zeta.M(:) + eta.N(:).'*zeta.N(:); M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankMNquotientfactory.dist not implemented yet.'); M.typicaldist = @() 10*k; symm = @(X) .5*(X+X'); stiefel_proj = @(M, H) H - M*symm(M'*H); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) eta.M = stiefel_proj(X.M, eta.M); end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) % Directional derivative of the Riemannian gradient Hess.M = ehess.M - eta.M*symm(X.M'*egrad.M); Hess.M = stiefel_proj(X.M, Hess.M); Hess.N = ehess.N; % Projection onto the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; function etaproj = projection(X, eta) % Start by projecting the vector from Rmp x Rnp to the tangent % space to the total space, that is, eta.M should be in the % tangent space to Stiefel at X.M and eta.N is arbitrary. eta.M = stiefel_proj(X.M, eta.M); % Now project from the tangent space to the horizontal space, that % is, take care of the quotient. % First solve a Sylvester equation (A symm., B skew-symm.) A = X.N'*X.N + eye(k); B = eta.M'*X.M + eta.N'*X.N; B = B-B'; omega = lyap(A, -B); % And project along the vertical space to the horizontal space. etaproj.M = eta.M + X.M*omega; etaproj.N = eta.N + X.N*omega; end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end A = t*X.M'*eta.M; S = t^2*eta.M'*eta.M; Y.M = [X.M t*eta.M]*expm([A -S ; eye(k) A])*eye(2*k, k)*expm(-A); % re-orthonormalize (seems necessary from time to time) [Q R] = qr(Y.M, 0); Y.M = Q * diag(sign(diag(R))); Y.N = X.N + t*eta.N; end % Factor M lives on the Stiefel manifold, hence we will reuse its % random generator. stiefelm = stiefelfactory(m, k); M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.M = uf(X.M + t*eta.M); % This is a valid retraction Y.N = X.N + t*eta.N; end M.hash = @(X) ['z' hashmd5([X.M(:) ; X.N(:)])]; M.rand = @random; function X = random() X.M = stiefelm.rand(); X.N = randn(n, k); end M.randvec = @randomvec; function eta = randomvec(X) eta.M = randn(m, k); eta.N = randn(n, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.M = eta.M / nrm; eta.N = eta.N / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('M', zeros(m, k), 'N', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INMSL> if nargin == 3 d.M = a1*d1.M; d.N = a1*d1.N; elseif nargin == 5 d.M = a1*d1.M + a2*d2.M; d.N = a1*d1.N + a2*d2.N; else error('Bad use of fixedrankMNquotientfactory.lincomb.'); end end function A = uf(A) [L, unused, R] = svd(A, 0); A = L*R'; end
github
skovnats/madmm-master
fixedrankfactory_2factors.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/fixedrank/fixedrankfactory_2factors.m
5,813
utf_8
70044d83ff10591a75b81f415cb920c2
function M = fixedrankfactory_2factors(m, n, k) % Manifold of m-by-n matrices of rank k with balanced quotient geometry. % % function M = fixedrankfactory_2factors(m, n, k) % % This follows the balanced quotient geometry described in the following paper: % G. Meyer, S. Bonnabel and R. Sepulchre, % "Linear regression under fixed-rank constraints: a Riemannian approach", % ICML 2011. % % Paper link: http://www.icml-2011.org/papers/350_icmlpaper.pdf % % A point X on the manifold is represented as a structure with two % fields: L and R. The matrices L (mxk) and R (nxk) are full column-rank % matrices such that X = L*R'. % % Tangent vectors are represented as a structure with two fields: L, R % This file is part of Manopt: www.manopt.org. % Original author: Bamdev Mishra, Dec. 30, 2012. % Contributors: % Change log: % July 10, 2013 (NB) : added vec, mat, tangent, tangent2ambient M.name = @() sprintf('LR'' quotient manifold of %dx%d matrices of rank %d', m, n, k); M.dim = @() (m+n-k)*k; % Some precomputations at the point X to be used in the inner product (and % pretty much everywhere else). function X = prepare(X) if ~all(isfield(X,{'LtL','RtR','invRtR','invLtL'})) L = X.L; R = X.R; X.LtL = L'*L; X.RtR = R'*R; X.invLtL = inv(X.LtL); X.invRtR = inv(X.RtR); end end % Choice of the metric is motivated by the symmetry present in the space M.inner = @iproduct; function ip = iproduct(X, eta, zeta) X = prepare(X); ip = trace(X.invLtL*(eta.L'*zeta.L)) + trace( X.invRtR*(eta.R'*zeta.R)); end M.norm = @(X, eta) sqrt(M.inner(X, eta, eta)); M.dist = @(x, y) error('fixedrankfactory_2factors.dist not implemented yet.'); M.typicaldist = @() 10*k; symm = @(M) .5*(M+M'); M.egrad2rgrad = @egrad2rgrad; function eta = egrad2rgrad(X, eta) X = prepare(X); eta.L = eta.L*X.LtL; eta.R = eta.R*X.RtR; end M.ehess2rhess = @ehess2rhess; function Hess = ehess2rhess(X, egrad, ehess, eta) X = prepare(X); % Riemannian gradient rgrad = egrad2rgrad(X, egrad); % Directional derivative of the Riemannian gradient Hess.L = ehess.L*X.LtL + 2*egrad.L*symm(eta.L'*X.L); Hess.R = ehess.R*X.RtR + 2*egrad.R*symm(eta.R'*X.R); % We need a correction term for the non-constant metric Hess.L = Hess.L - rgrad.L*((X.invLtL)*symm(X.L'*eta.L)) - eta.L*(X.invLtL*symm(X.L'*rgrad.L)) + X.L*(X.invLtL*symm(eta.L'*rgrad.L)); Hess.R = Hess.R - rgrad.R*((X.invRtR)*symm(X.R'*eta.R)) - eta.R*(X.invRtR*symm(X.R'*rgrad.R)) + X.R*(X.invRtR*symm(eta.R'*rgrad.R)); % Projection onto the horizontal space Hess = M.proj(X, Hess); end M.proj = @projection; % Projection of the vector eta onto the horizontal space function etaproj = projection(X, eta) X = prepare(X); SS = (X.LtL)*(X.RtR); AS = (X.LtL)*(X.R'*eta.R) - (eta.L'*X.L)*(X.RtR); Omega = lyap(SS, SS,-AS); etaproj.L = eta.L + X.L*Omega'; etaproj.R = eta.R - X.R*Omega; end M.tangent = M.proj; M.tangent2ambient = @(X, eta) eta; M.retr = @retraction; function Y = retraction(X, eta, t) if nargin < 3 t = 1.0; end Y.L = X.L + t*eta.L; Y.R = X.R + t*eta.R; % Numerical conditioning step: A simpler version. % We need to ensure that L and R do not have very relative % skewed norms. scaling = norm(X.L, 'fro')/norm(X.R, 'fro'); scaling = sqrt(scaling); Y.L = Y.L / scaling; Y.R = Y.R * scaling; % These are reused in the computation of the gradient and Hessian Y = prepare(Y); end M.exp = @exponential; function Y = exponential(X, eta, t) if nargin < 3 t = 1.0; end Y = retraction(X, eta, t); warning('manopt:fixedrankfactory_2factors:exp', ... ['Exponential for fixed rank ' ... 'manifold not implemented yet. Used retraction instead.']); end M.hash = @(X) ['z' hashmd5([X.L(:) ; X.R(:)])]; M.rand = @random; function X = random() % A random point on the total space X.L = randn(m, k); X.R = randn(n, k); X = prepare(X); end M.randvec = @randomvec; function eta = randomvec(X) % A random vector in the horizontal space eta.L = randn(m, k); eta.R = randn(n, k); eta = projection(X, eta); nrm = M.norm(X, eta); eta.L = eta.L / nrm; eta.R = eta.R / nrm; end M.lincomb = @lincomb; M.zerovec = @(X) struct('L', zeros(m, k),'R', zeros(n, k)); M.transp = @(x1, x2, d) projection(x2, d); % vec and mat are not isometries, because of the unusual inner metric. M.vec = @(X, U) [U.L(:) ; U.R(:)]; M.mat = @(X, u) struct('L', reshape(u(1:(m*k)), m, k), ... 'R', reshape(u((m*k+1):end), n, k)); M.vecmatareisometries = @() false; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d.L = a1*d1.L; d.R = a1*d1.R; elseif nargin == 5 d.L = a1*d1.L + a2*d2.L; d.R = a1*d1.R + a2*d2.R; else error('Bad use of fixedrankfactory_2factors.lincomb.'); end end
github
skovnats/madmm-master
obliquefactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/oblique/obliquefactory.m
6,609
utf_8
1031640cf68e1bf9252af77d1002836a
function M = obliquefactory(n, m, transposed) % Returns a manifold struct to optimize over matrices w/ unit-norm columns. % % function M = obliquefactory(n, m) % function M = obliquefactory(n, m, transposed) % % Oblique manifold: deals with matrices of size n x m such that each column % has unit 2-norm, i.e., is a point on the unit sphere in R^n. The metric % is such that the oblique manifold is a Riemannian submanifold of the % space of nxm matrices with the usual trace inner product, i.e., the usual % metric. % % If transposed is set to true (it is false by default), then the matrices % are transposed: a point Y on the manifold is a matrix of size m x n and % each row has unit 2-norm. It is the same geometry, just a different % representation. % % See also: spherefactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % % July 16, 2013 (NB) : % Added 'transposed' option, mainly for ease of comparison with the % elliptope geometry. % % Nov. 29, 2013 (NB) : % Added normalize_columns function to make it easier to exploit the % bsxfun formulation of column normalization, which avoids using for % loops and provides performance gains. The exponential still uses a % for loop. if ~exist('transposed', 'var') || isempty(transposed) transposed = false; end if transposed trnsp = @(X) X'; else trnsp = @(X) X; end M.name = @() sprintf('Oblique manifold OB(%d, %d)', n, m); M.dim = @() (n-1)*m; M.inner = @(x, d1, d2) d1(:).'*d2(:); M.norm = @(x, d) norm(d(:)); M.dist = @(x, y) norm(real(acos(sum(trnsp(x).*trnsp(y), 1)))); M.typicaldist = @() pi*sqrt(m); M.proj = @(X, U) trnsp(projection(trnsp(X), trnsp(U))); M.tangent = M.proj; % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(X, egrad, ehess, U) X = trnsp(X); egrad = trnsp(egrad); ehess = trnsp(ehess); U = trnsp(U); PXehess = projection(X, ehess); inners = sum(X.*egrad, 1); rhess = PXehess - bsxfun(@times, U, inners); rhess = trnsp(rhess); end M.exp = @exponential; % Exponential on the oblique manifold function y = exponential(x, d, t) x = trnsp(x); d = trnsp(d); if nargin < 3 t = 1.0; end m = size(x, 2); y = zeros(size(x)); if t ~= 0 for i = 1 : m y(:, i) = sphere_exponential(x(:, i), d(:, i), t); end else y = x; end y = trnsp(y); end M.log = @logarithm; function v = logarithm(x1, x2) x1 = trnsp(x1); x2 = trnsp(x2); v = M.proj(x1, x2 - x1); dists = acos(sum(x1.*x2, 1)); norms = sqrt(sum(v.^2, 1)); factors = dists./norms; % factors(dists <= 1e-6) = 1; v = bsxfun(@times, v, factors); v = trnsp(v); end M.retr = @retraction; % Retraction on the oblique manifold function y = retraction(x, d, t) x = trnsp(x); d = trnsp(d); if nargin < 3 t = 1.0; end m = size(x, 2); if t ~= 0 y = normalize_columns(x + t*d); else y = x; end y = trnsp(y); end M.hash = @(x) ['z' hashmd5(x(:))]; M.rand = @() trnsp(random(n, m)); M.randvec = @(x) trnsp(randomvec(n, m, trnsp(x))); M.lincomb = @lincomb; M.zerovec = @(x) trnsp(zeros(n, m)); M.transp = @(x1, x2, d) M.proj(x2, d); M.pairmean = @pairmean; function y = pairmean(x1, x2) y = trnsp(x1+x2); y = normalize_columns(y); y = trnsp(y); end % vec returns a vector representation of an input tangent vector which % is represented as a matrix. mat returns the original matrix % representation of the input vector representation of a tangent % vector. vec and mat are thus inverse of each other. They are % furthermore isometries between a subspace of R^nm and the tangent % space at x. vect = @(X) X(:); M.vec = @(x, u_mat) vect(trnsp(u_mat)); M.mat = @(x, u_vec) trnsp(reshape(u_vec, [n, m])); M.vecmatareisometries = @() true; end % Given a matrix X, returns the same matrix but with each column scaled so % that they have unit 2-norm. function X = normalize_columns(X) norms = sqrt(sum(X.^2, 1)); X = bsxfun(@times, X, 1./norms); end % Orthogonal projection of the ambient vector H onto the tangent space at X function PXH = projection(X, H) % Compute the inner product between each vector H(:, i) with its root % point X(:, i), that is, X(:, i).' * H(:, i). Returns a row vector. inners = sum(X.*H, 1); % Subtract from H the components of the H(:, i)'s that are parallel to % the root points X(:, i). PXH = H - bsxfun(@times, X, inners); % % Equivalent but slow code: % m = size(X, 2); % PXH = zeros(size(H)); % for i = 1 : m % PXH(:, i) = H(:, i) - X(:, i) * (X(:, i)'*H(:, i)); % end end % Exponential on the sphere. function y = sphere_exponential(x, d, t) if nargin == 2 t = 1.0; end td = t*d; nrm_td = norm(td); if nrm_td > 1e-6 y = x*cos(nrm_td) + (td/nrm_td)*sin(nrm_td); else % if the step is too small, to avoid dividing by nrm_td, we choose % to approximate with this retraction-like step. y = x + td; y = y / norm(y); end end % Uniform random sampling on the sphere. function x = random(n, m) x = normalize_columns(randn(n, m)); end % Random normalized tangent vector at x. function d = randomvec(n, m, x) d = randn(n, m); d = projection(x, d); d = d / norm(d(:)); end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of oblique.lincomb.'); end end
github
skovnats/madmm-master
stiefelfactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/stiefel/stiefelfactory.m
4,989
utf_8
5cc739262d8e75c600af8497647ee711
function M = stiefelfactory(n, p, k) % Returns a manifold structure to optimize over orthonormal matrices. % % function M = stiefelfactory(n, p) % function M = stiefelfactory(n, p, k) % % The Stiefel manifold is the set of orthonormal nxp matrices. If k % is larger than 1, this is the Cartesian product of the Stiefel manifold % taken k times. The metric is such that the manifold is a Riemannian % submanifold of R^nxp equipped with the usual trace inner product, that % is, it is the usual metric. % % Points are represented as matrices X of size n x p x k (or n x p if k=1, % which is the default) such that each n x p matrix is orthonormal, % i.e., X'*X = eye(p) if k = 1, or X(:, :, i)' * X(:, :, i) = eye(p) for % i = 1 : k if k > 1. Tangent vectors are represented as matrices the same % size as points. % % By default, k = 1. % % See also: grassmannfactory rotationsfactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % July 5, 2013 (NB) : Added ehess2rhess. % Jan. 27, 2014 (BM) : Bug in ehess2rhess corrected. % June 24, 2014 (NB) : Added true exponential map and changed the randvec % function so that it now returns a globally % normalized vector, not a vector where each % component is normalized (this only matters if k>1). if ~exist('k', 'var') || isempty(k) k = 1; end if k == 1 M.name = @() sprintf('Stiefel manifold St(%d, %d)', n, p); elseif k > 1 M.name = @() sprintf('Product Stiefel manifold St(%d, %d)^%d', n, p, k); else error('k must be an integer no less than 1.'); end M.dim = @() k*(n*p - .5*p*(p+1)); M.inner = @(x, d1, d2) d1(:).'*d2(:); M.norm = @(x, d) norm(d(:)); M.dist = @(x, y) error('stiefel.dist not implemented yet.'); M.typicaldist = @() sqrt(p*k); M.proj = @projection; function Up = projection(X, U) XtU = multiprod(multitransp(X), U); symXtU = multisym(XtU); Up = U - multiprod(X, symXtU); % The code above is equivalent to, but much faster than, the code below. % % Up = zeros(size(U)); % function A = sym(A), A = .5*(A+A'); end % for i = 1 : k % Xi = X(:, :, i); % Ui = U(:, :, i); % Up(:, :, i) = Ui - Xi*sym(Xi'*Ui); % end end M.tangent = M.proj; % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(X, egrad, ehess, H) XtG = multiprod(multitransp(X), egrad); symXtG = multisym(XtG); HsymXtG = multiprod(H, symXtG); rhess = projection(X, ehess - HsymXtG); end M.retr = @retraction; function Y = retraction(X, U, t) if nargin < 3 t = 1.0; end Y = X + t*U; for i = 1 : k [Q, R] = qr(Y(:, :, i), 0); % The instruction with R assures we are not flipping signs % of some columns, which should never happen in modern Matlab % versions but may be an issue with older versions. Y(:, :, i) = Q * diag(sign(sign(diag(R))+.5)); end end M.exp = @exponential; function Y = exponential(X, U, t) if nargin == 2 t = 1; end tU = t*U; Y = zeros(size(X)); for i = 1 : k % From a formula by Ross Lippert, Example 5.4.2 in AMS08. Xi = X(:, :, i); Ui = tU(:, :, i); Y(:, :, i) = [Xi Ui] * ... expm([Xi'*Ui , -Ui'*Ui ; eye(p) , Xi'*Ui]) * ... [ expm(-Xi'*Ui) ; zeros(p) ]; end end M.hash = @(X) ['z' hashmd5(X(:))]; M.rand = @random; function X = random() X = zeros(n, p, k); for i = 1 : k [Q, unused] = qr(randn(n, p), 0); %#ok<NASGU> X(:, :, i) = Q; end end M.randvec = @randomvec; function U = randomvec(X) U = projection(X, randn(n, p, k)); U = U / norm(U(:)); end M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, p, k); M.transp = @(x1, x2, d) projection(x2, d); M.vec = @(x, u_mat) u_mat(:); M.mat = @(x, u_vec) reshape(u_vec, [n, p, k]); M.vecmatareisometries = @() true; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of stiefel.lincomb.'); end end
github
skovnats/madmm-master
rotationsfactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/rotations/rotationsfactory.m
4,857
utf_8
421ccf6b88f519f989d6dd87fb0a1128
function M = rotationsfactory(n, k) % Returns a manifold structure to optimize over rotation matrices. % % function M = rotationsfactory(n) % function M = rotationsfactory(n, k) % % Special orthogonal group (the manifold of rotations): deals with matrices % R of size n x n x k (or n x n if k = 1, which is the default) such that % each n x n matrix is orthogonal, with determinant 1, i.e., X'*X = eye(n) % if k = 1, or X(:, :, i)' * X(:, :, i) = eye(n) for i = 1 : k if k > 1. % % This is a description of SO(n)^k with the induced metric from the % embedding space (R^nxn)^k, i.e., this manifold is a Riemannian % submanifold of (R^nxn)^k endowed with the usual trace inner product. % % Tangent vectors are represented in the Lie algebra, i.e., as skew % symmetric matrices. Use the function M.tangent2ambient(X, H) to switch % from the Lie algebra representation to the embedding space % representation. % % By default, k = 1. % % See also: stiefelfactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: % Jan. 31, 2013, NB : added egrad2rgrad and ehess2rhess if ~exist('k', 'var') || isempty(k) k = 1; end if k == 1 M.name = @() sprintf('Rotations manifold SO(%d)', n); elseif k > 1 M.name = @() sprintf('Product rotations manifold SO(%d)^%d', n, k); else error('k must be an integer no less than 1.'); end M.dim = @() k*nchoosek(n, 2); M.inner = @(x, d1, d2) d1(:).'*d2(:); M.norm = @(x, d) norm(d(:)); M.typicaldist = @() pi*sqrt(n*k); M.proj = @(X, H) multiskew(multiprod(multitransp(X), H)); M.tangent = @(X, H) multiskew(H); M.tangent2ambient = @(X, U) multiprod(X, U); M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function Rhess = ehess2rhess(X, Egrad, Ehess, H) % Reminder : H contains skew-symmeric matrices. The actual % direction that the point X is moved along is X*H. Xt = multitransp(X); XtEgrad = multiprod(Xt, Egrad); symXtEgrad = multisym(XtEgrad); XtEhess = multiprod(Xt, Ehess); Rhess = multiskew( XtEhess - multiprod(H, symXtEgrad) ); end M.retr = @retraction; function Y = retraction(X, U, t) if nargin == 3 tU = t*U; else tU = U; end Y = X + multiprod(X, tU); for i = 1 : k [Q R] = qr(Y(:, :, i)); % The instruction with R ensures we are not flipping signs % of some columns, which should never happen in modern Matlab % versions but may be an issue with older versions. Y(:, :, i) = Q * diag(sign(sign(diag(R))+.5)); % This is guaranteed to always yield orthogonal matrices with % determinant +1. Simply look at the eigenvalues of a skew % symmetric matrix, than at those of identity plus that matrix, % and compute their product for the determinant: it's stricly % positive in all cases. end end M.exp = @exponential; function Y = exponential(X, U, t) if nargin == 3 exptU = t*U; else exptU = U; end for i = 1 : k exptU(:, :, i) = expm(exptU(:, :, i)); end Y = multiprod(X, exptU); end M.log = @logarithm; function U = logarithm(X, Y) U = multiprod(multitransp(X), Y); for i = 1 : k % The result of logm should be real in theory, but it is % numerically useful to force it. U(:, :, i) = real(logm(U(:, :, i))); end % Ensure the tangent vector is in the Lie algebra. U = multiskew(U); end M.hash = @(X) ['z' hashmd5(X(:))]; M.rand = @() randrot(n, k); M.randvec = @randomvec; function U = randomvec(X) %#ok<INUSD> U = randskew(n, k); nrmU = sqrt(U(:).'*U(:)); U = U / nrmU; end M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, n, k); M.transp = @(x1, x2, d) d; M.pairmean = @pairmean; function Y = pairmean(X1, X2) V = M.log(X1, X2); Y = M.exp(X1, .5*V); end M.dist = @(x, y) M.norm(x, M.log(x, y)); M.vec = @(x, u_mat) u_mat(:); M.mat = @(x, u_vec) reshape(u_vec, [n, n, k]); M.vecmatareisometries = @() true; end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of rotations.lincomb.'); end end
github
skovnats/madmm-master
spherecomplexfactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/sphere/spherecomplexfactory.m
3,285
utf_8
28cbdaa05de778558800a89c16acad64
function M = spherecomplexfactory(n, m) % Returns a manifold struct to optimize over unit-norm complex matrices. % % function M = spherecomplexfactory(n) % function M = spherecomplexfactory(n, m) % % Manifold of n-by-m complex matrices of unit Frobenius norm. % By default, m = 1, which corresponds to the unit sphere in C^n. The % metric is such that the sphere is a Riemannian submanifold of the space % of 2nx2m real matrices with the usual trace inner product, i.e., the % usual metric. % % See also: spherefactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: if ~exist('m', 'var') m = 1; end if m == 1 M.name = @() sprintf('Complex sphere S^%d', n-1); else M.name = @() sprintf('Unit F-norm %dx%d complex matrices', n, m); end M.dim = @() 2*(n*m)-1; M.inner = @(x, d1, d2) real(d1(:)'*d2(:)); M.norm = @(x, d) norm(d, 'fro'); M.dist = @(x, y) acos(real(x(:)'*y(:))); M.typicaldist = @() pi; M.proj = @(x, d) reshape(d(:) - x(:)*(real(x(:)'*d(:))), n, m); % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.tangent = M.proj; M.exp = @exponential; M.retr = @retraction; M.log = @logarithm; function v = logarithm(x1, x2) error('The logarithmic map is not yet implemented for this manifold.'); end M.hash = @(x) ['z' hashmd5([real(x(:)) ; imag(x(:))])]; M.rand = @() random(n, m); M.randvec = @(x) randomvec(n, m, x); M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, m); M.transp = @(x1, x2, d) M.proj(x2, d); M.pairmean = @pairmean; function y = pairmean(x1, x2) y = x1+x2; y = y / norm(y, 'fro'); end end % Exponential on the sphere function y = exponential(x, d, t) if nargin == 2 t = 1; end td = t*d; nrm_td = norm(td, 'fro'); if nrm_td > 1e-6 y = x*cos(nrm_td) + td*(sin(nrm_td)/nrm_td); else % If the step is too small, to avoid dividing by nrm_td, we choose % to approximate with this retraction-like step. y = x + td; y = y / norm(y, 'fro'); end end % Retraction on the sphere function y = retraction(x, d, t) if nargin == 2 t = 1; end y = x+t*d; y = y/norm(y, 'fro'); end % Uniform random sampling on the sphere. function x = random(n, m) x = randn(n, m) + 1i*randn(n, m); x = x/norm(x, 'fro'); end % Random normalized tangent vector at x. function d = randomvec(n, m, x) d = randn(n, m) + 1i*randn(n, m); d = reshape(d(:) - x(:)*(real(x(:)'*d(:))), n, m); d = d / norm(d, 'fro'); end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of spherecomplex.lincomb.'); end end
github
skovnats/madmm-master
spherefactory.m
.m
madmm-master/compressed_modes/manopt/manopt/manifolds/sphere/spherefactory.m
3,447
utf_8
1b575cecaef843bcda1574bc09b4760c
function M = spherefactory(n, m) % Returns a manifold struct to optimize over unit-norm vectors or matrices. % % function M = spherefactory(n) % function M = spherefactory(n, m) % % Manifold of n-by-m real matrices of unit Frobenius norm. % By default, m = 1, which corresponds to the unit sphere in R^n. The % metric is such that the sphere is a Riemannian submanifold of the space % of nxm matrices with the usual trace inner product, i.e., the usual % metric. % % See also: obliquefactory spherecomplexfactory % This file is part of Manopt: www.manopt.org. % Original author: Nicolas Boumal, Dec. 30, 2012. % Contributors: % Change log: if ~exist('m', 'var') m = 1; end if m == 1 M.name = @() sprintf('Sphere S^%d', n-1); else M.name = @() sprintf('Unit F-norm %dx%d matrices', n, m); end M.dim = @() n*m-1; M.inner = @(x, d1, d2) d1(:).'*d2(:); M.norm = @(x, d) norm(d, 'fro'); M.dist = @(x, y) real(acos(x(:).'*y(:))); M.typicaldist = @() pi; M.proj = @(x, d) d - x*(x(:).'*d(:)); M.tangent = M.proj; % For Riemannian submanifolds, converting a Euclidean gradient into a % Riemannian gradient amounts to an orthogonal projection. M.egrad2rgrad = M.proj; M.ehess2rhess = @ehess2rhess; function rhess = ehess2rhess(x, egrad, ehess, u) rhess = M.proj(x, ehess) - (x(:)'*egrad(:))*u; end M.exp = @exponential; M.retr = @retraction; M.log = @logarithm; function v = logarithm(x1, x2) v = M.proj(x1, x2 - x1); di = M.dist(x1, x2); nv = norm(v, 'fro'); v = v * (di / nv); end M.hash = @(x) ['z' hashmd5(x(:))]; M.rand = @() random(n, m); M.randvec = @(x) randomvec(n, m, x); M.lincomb = @lincomb; M.zerovec = @(x) zeros(n, m); M.transp = @(x1, x2, d) M.proj(x2, d); M.pairmean = @pairmean; function y = pairmean(x1, x2) y = x1+x2; y = y / norm(y, 'fro'); end M.vec = @(x, u_mat) u_mat(:); M.mat = @(x, u_vec) reshape(u_vec, [n, m]); M.vecmatareisometries = @() true; end % Exponential on the sphere function y = exponential(x, d, t) if nargin == 2 t = 1; end td = t*d; nrm_td = norm(td, 'fro'); if nrm_td > 1e-6 y = x*cos(nrm_td) + td*(sin(nrm_td)/nrm_td); else % if the step is too small, to avoid dividing by nrm_td, we choose % to approximate with this retraction-like step. y = x + td; y = y / norm(y, 'fro'); end end % Retraction on the sphere function y = retraction(x, d, t) if nargin == 2 t = 1; end y = x + t*d; y = y / norm(y, 'fro'); end % Uniform random sampling on the sphere. function x = random(n, m) x = randn(n, m); x = x/norm(x, 'fro'); end % Random normalized tangent vector at x. function d = randomvec(n, m, x) d = randn(n, m); d = d - x*(x(:).'*d(:)); d = d / norm(d, 'fro'); end % Linear combination of tangent vectors function d = lincomb(x, a1, d1, a2, d2) %#ok<INUSL> if nargin == 3 d = a1*d1; elseif nargin == 5 d = a1*d1 + a2*d2; else error('Bad use of sphere.lincomb.'); end end
github
skovnats/madmm-master
trustregions.m
.m
madmm-master/compressed_modes/manopt/manopt/solvers/trustregions/trustregions.m
27,503
utf_8
16c81a00a44c928fd6ca503399b04111
function [x, cost, info, options] = trustregions(problem, x, options) % Riemannian trust-regions solver for optimization on manifolds. % % function [x, cost, info, options] = trustregions(problem) % function [x, cost, info, options] = trustregions(problem, x0) % function [x, cost, info, options] = trustregions(problem, x0, options) % function [x, cost, info, options] = trustregions(problem, [], options) % % This is the Riemannian Trust-Region solver (with tCG inner solve), named % RTR. This solver will attempt to minimize the cost function described in % the problem structure. It requires the availability of the cost function % and of its gradient. It will issue calls for the Hessian. If no Hessian % nor approximate Hessian is provided, a standard approximation of the % Hessian based on the gradient will be computed. If a preconditioner for % the Hessian is provided, it will be used. % % For a description of the algorithm and theorems offering convergence % guarantees, see the references below. Documentation for this solver is % available online at: % % http://www.manopt.org/solver_documentation_trustregions.html % % % The initial iterate is x0 if it is provided. Otherwise, a random point on % the manifold is picked. To specify options whilst not specifying an % initial iterate, give x0 as [] (the empty matrix). % % The two outputs 'x' and 'cost' are the last reached point on the manifold % and its cost. Notice that x is not necessarily the best reached point, % because this solver is not forced to be a descent method. In particular, % very close to convergence, it is sometimes preferable to accept very % slight increases in the cost value (on the order of the machine epsilon) % in the process of reaching fine convergence. In practice, this is not a % limiting factor, as normally one does not need fine enough convergence % that this becomes an issue. % % The output 'info' is a struct-array which contains information about the % iterations: % iter (integer) % The (outer) iteration number, or number of steps considered % (whether accepted or rejected). The initial guess is 0. % cost (double) % The corresponding cost value. % gradnorm (double) % The (Riemannian) norm of the gradient. % numinner (integer) % The number of inner iterations executed to compute this iterate. % Inner iterations are truncated-CG steps. Each one requires a % Hessian (or approximate Hessian) evaluation. % time (double) % The total elapsed time in seconds to reach the corresponding cost. % rho (double) % The performance ratio for the iterate. % rhonum, rhoden (double) % Regularized numerator and denominator of the performance ratio: % rho = rhonum/rhoden. See options.rho_regularization. % accepted (boolean) % Whether the proposed iterate was accepted or not. % stepsize (double) % The (Riemannian) norm of the vector returned by the inner solver % tCG and which is retracted to obtain the proposed next iterate. If % accepted = true for the corresponding iterate, this is the size of % the step from the previous to the new iterate. If accepted is % false, the step was not executed and this is the size of the % rejected step. % Delta (double) % The trust-region radius at the outer iteration. % cauchy (boolean) % Whether the Cauchy point was used or not (if useRand is true). % And possibly additional information logged by options.statsfun. % For example, type [info.gradnorm] to obtain a vector of the successive % gradient norms reached at each (outer) iteration. % % The options structure is used to overwrite the default values. All % options have a default value and are hence optional. To force an option % value, pass an options structure with a field options.optionname, where % optionname is one of the following and the default value is indicated % between parentheses: % % tolgradnorm (1e-6) % The algorithm terminates if the norm of the gradient drops below % this. For well-scaled problems, a rule of thumb is that you can % expect to reduce the gradient norm by 8 orders of magnitude % (sqrt(eps)) compared to the gradient norm at a "typical" point (a % rough initial iterate for example). Further decrease is sometimes % possible, but inexact floating point arithmetic will eventually % limit the final accuracy. If tolgradnorm is set too low, the % algorithm may end up iterating forever (or at least until another % stopping criterion triggers). % maxiter (1000) % The algorithm terminates if maxiter (outer) iterations were executed. % maxtime (Inf) % The algorithm terminates if maxtime seconds elapsed. % miniter (3) % Minimum number of outer iterations (used only if useRand is true). % mininner (1) % Minimum number of inner iterations (for tCG). % maxinner (problem.M.dim() : the manifold's dimension) % Maximum number of inner iterations (for tCG). % Delta_bar (problem.M.typicaldist() or sqrt(problem.M.dim())) % Maximum trust-region radius. If you specify this parameter but not % Delta0, then Delta0 will be set to 1/8 times this parameter. % Delta0 (Delta_bar/8) % Initial trust-region radius. If you observe a long plateau at the % beginning of the convergence plot (gradient norm VS iteration), it % may pay off to try to tune this parameter to shorten the plateau. % You should not set this parameter without setting Delta_bar. % useRand (false) % Set to true if the trust-region solve is to be initiated with a % random tangent vector. If set to true, no preconditioner will be % used. This option is set to true in some scenarios to escape saddle % points, but is otherwise seldom activated. % kappa (0.1) % Inner kappa convergence tolerance. % theta (1.0) % Inner theta convergence tolerance. % rho_prime (0.1) % Accept/reject ratio : if rho is at least rho_prime, the outer % iteration is accepted. Otherwise, it is rejected. In case it is % rejected, the trust-region radius will have been decreased. % To ensure this, rho_prime must be strictly smaller than 1/4. % rho_regularization (1e3) % Close to convergence, evaluating the performance ratio rho is % numerically challenging. Meanwhile, close to convergence, the % quadratic model should be a good fit and the steps should be % accepted. Regularization lets rho go to 1 as the model decrease and % the actual decrease go to zero. Set this option to zero to disable % regularization (not recommended). See in-code for the specifics. % statsfun (none) % Function handle to a function that will be called after each % iteration to provide the opportunity to log additional statistics. % They will be returned in the info struct. See the generic Manopt % documentation about solvers for further information. statsfun is % called with the point x that was reached last, after the % accept/reject decision. See comment below. % stopfun (none) % Function handle to a function that will be called at each iteration % to provide the opportunity to specify additional stopping criteria. % See the generic Manopt documentation about solvers for further % information. % verbosity (2) % Integer number used to tune the amount of output the algorithm % generates during execution (mostly as text in the command window). % The higher, the more output. 0 means silent. 3 and above includes a % display of the options structure at the beginning of the execution. % debug (false) % Set to true to allow the algorithm to perform additional % computations for debugging purposes. If a debugging test fails, you % will be informed of it, usually via the command window. Be aware % that these additional computations appear in the algorithm timings % too. % storedepth (20) % Maximum number of different points x of the manifold for which a % store structure will be kept in memory in the storedb. If the % caching features of Manopt are not used, this is irrelevant. If % memory usage is an issue, you may try to lower this number. % Profiling may then help to investigate if a performance hit was % incured as a result. % % Notice that statsfun is called with the point x that was reached last, % after the accept/reject decision. Hence: if the step was accepted, we get % that new x, with a store which only saw the call for the cost and for the % gradient. If the step was rejected, we get the same x as previously, with % the store structure containing everything that was computed at that point % (possibly including previous rejects at that same point). Hence, statsfun % should not be used in conjunction with the store to count operations for % example. Instead, you could use a global variable and increment that % variable directly from the cost related functions. It is however possible % to use statsfun with the store to compute, for example, alternate merit % functions on the point x. % % See also: steepestdescent conjugategradient manopt/examples % This file is part of Manopt: www.manopt.org. % This code is an adaptation to Manopt of the original GenRTR code: % RTR - Riemannian Trust-Region % (c) 2004-2007, P.-A. Absil, C. G. Baker, K. A. Gallivan % Florida State University % School of Computational Science % (http://www.math.fsu.edu/~cbaker/GenRTR/?page=download) % See accompanying license file. % The adaptation was executed by Nicolas Boumal. % % Change log: % % NB April 3, 2013: % tCG now returns the Hessian along the returned direction eta, so % that we do not compute that Hessian redundantly: some savings at % each iteration. Similarly, if the useRand flag is on, we spare an % extra Hessian computation at each outer iteration too, owing to % some modifications in the Cauchy point section of the code specific % to useRand = true. % % NB Aug. 22, 2013: % This function is now Octave compatible. The transition called for % two changes which would otherwise not be advisable. (1) tic/toc is % now used as is, as opposed to the safer way: % t = tic(); elapsed = toc(t); % And (2), the (formerly inner) function savestats was moved outside % the main function to not be nested anymore. This is arguably less % elegant, but Octave does not (and likely will not) support nested % functions. % % NB Dec. 2, 2013: % The in-code documentation was largely revised and expanded. % % NB Dec. 2, 2013: % The former heuristic which triggered when rhonum was very small and % forced rho = 1 has been replaced by a smoother heuristic which % consists in regularizing rhonum and rhoden before computing their % ratio. It is tunable via options.rho_regularization. Furthermore, % the solver now detects if tCG did not obtain a model decrease % (which is theoretically impossible but may happen because of % numerical errors and/or because of a nonlinear/nonsymmetric Hessian % operator, which is the case for finite difference approximations). % When such an anomaly is detected, the step is rejected and the % trust region radius is decreased. % % NB Dec. 3, 2013: % The stepsize is now registered at each iteration, at a small % additional cost. The defaults for Delta_bar and Delta0 are better % defined. Setting Delta_bar in the options will automatically set % Delta0 accordingly. In Manopt 1.0.4, the defaults for these options % were not treated appropriately because of an incorrect use of the % isfield() built-in function. % Verify that the problem description is sufficient for the solver. if ~canGetCost(problem) warning('manopt:getCost', ... 'No cost provided. The algorithm will likely abort.'); end if ~canGetGradient(problem) warning('manopt:getGradient', ... 'No gradient provided. The algorithm will likely abort.'); end if ~canGetHessian(problem) warning('manopt:getHessian:approx', ... 'No Hessian provided. Using an approximation instead.'); end % Define some strings for display tcg_stop_reason = {'negative curvature',... 'exceeded trust region',... 'reached target residual-kappa',... 'reached target residual-theta',... 'dimension exceeded',... 'model increased'}; % Set local defaults here localdefaults.verbosity = 2; localdefaults.maxtime = inf; localdefaults.miniter = 3; localdefaults.maxiter = 1000; localdefaults.mininner = 1; localdefaults.maxinner = problem.M.dim(); localdefaults.tolgradnorm = 1e-6; localdefaults.kappa = 0.1; localdefaults.theta = 1.0; localdefaults.rho_prime = 0.1; localdefaults.useRand = false; localdefaults.rho_regularization = 1e3; % Merge global and local defaults, then merge w/ user options, if any. localdefaults = mergeOptions(getGlobalDefaults(), localdefaults); if ~exist('options', 'var') || isempty(options) options = struct(); end options = mergeOptions(localdefaults, options); % Set default Delta_bar and Delta0 separately to deal with additional % logic: if Delta_bar is provided but not Delta0, let Delta0 automatically % be some fraction of the provided Delta_bar. if ~isfield(options, 'Delta_bar') if isfield(problem.M, 'typicaldist') options.Delta_bar = problem.M.typicaldist(); else options.Delta_bar = sqrt(problem.M.dim()); end end if ~isfield(options,'Delta0') options.Delta0 = options.Delta_bar / 8; end % Check some option values assert(options.rho_prime < 1/4, ... 'options.rho_prime must be strictly smaller than 1/4.'); assert(options.Delta_bar > 0, ... 'options.Delta_bar must be positive.'); assert(options.Delta0 > 0 && options.Delta0 < options.Delta_bar, ... 'options.Delta0 must be positive and smaller than Delta_bar.'); % It is sometimes useful to check what the actual option values are. if options.verbosity >= 3 disp(options); end % Create a store database storedb = struct(); tic(); % If no initial point x is given by the user, generate one at random. if ~exist('x', 'var') || isempty(x) x = problem.M.rand(); end %% Initializations % k counts the outer (TR) iterations. The semantic is that k counts the % number of iterations fully executed so far. k = 0; % initialize solution and companion measures: f(x), fgrad(x) [fx fgradx storedb] = getCostGrad(problem, x, storedb); norm_grad = problem.M.norm(x, fgradx); % initialize trust-region radius Delta = options.Delta0; % Save stats in a struct array info, and preallocate % (see http://people.csail.mit.edu/jskelly/blog/?x=entry:entry091030-033941) if ~exist('used_cauchy', 'var') used_cauchy = []; end stats = savestats(problem, x, storedb, options, k, fx, norm_grad, Delta); info(1) = stats; info(min(10000, options.maxiter+1)).iter = []; % ** Display: if options.verbosity == 2 fprintf(['%3s %3s %5s %5s ',... 'f: %e |grad|: %e\n'],... ' ',' ',' ',' ', fx, norm_grad); elseif options.verbosity > 2 fprintf('************************************************************************\n'); fprintf('%3s %3s k: %5s num_inner: %5s %s\n',... '','','______','______',''); fprintf(' f(x) : %e |grad| : %e\n', fx, norm_grad); fprintf(' Delta : %f\n', Delta); end % ********************** % ** Start of TR loop ** % ********************** while true % Start clock for this outer iteration tic(); % Run standard stopping criterion checks [stop reason] = stoppingcriterion(problem, x, options, info, k+1); % If the stopping criterion that triggered is the tolerance on the % gradient norm but we are using randomization, make sure we make at % least miniter iterations to give randomization a chance at escaping % saddle points. if stop == 2 && options.useRand && k < options.miniter stop = 0; end if stop if options.verbosity >= 1 fprintf([reason '\n']); end break; end if options.verbosity > 2 || options.debug > 0 fprintf('************************************************************************\n'); end % ************************* % ** Begin TR Subproblem ** % ************************* % Determine eta0 if ~options.useRand % Pick the zero vector eta = problem.M.zerovec(x); else % Random vector in T_x M (this has to be very small) eta = problem.M.lincomb(x, 1e-6, problem.M.randvec(x)); % Must be inside trust-region while problem.M.norm(x, eta) > Delta eta = problem.M.lincomb(x, sqrt(sqrt(eps)), eta); end end % solve TR subproblem [eta Heta numit stop_inner storedb] = ... tCG(problem, x, fgradx, eta, Delta, options, storedb); srstr = tcg_stop_reason{stop_inner}; % This is only computed for logging purposes, because it may be useful % for some user-defined stopping criteria. If this is not cheap for % specific application (compared to evaluating the cost), we should % reconsider this. norm_eta = problem.M.norm(x, eta); if options.debug > 0 testangle = problem.M.inner(x, eta, fgradx) / (norm_eta*norm_grad); end % If using randomized approach, compare result with the Cauchy point. % Convergence proofs assume that we achieve at least the reduction of % the Cauchy point. After this if-block, either all eta-related % quantities have been changed consistently, or none of them have % changed. if options.useRand used_cauchy = false; % Check the curvature, [Hg storedb] = getHessian(problem, x, fgradx, storedb); g_Hg = problem.M.inner(x, fgradx, Hg); if g_Hg <= 0 tau_c = 1; else tau_c = min( norm_grad^3/(Delta*g_Hg) , 1); end % and generate the Cauchy point. eta_c = problem.M.lincomb(x, -tau_c * Delta / norm_grad, fgradx); Heta_c = problem.M.lincomb(x, -tau_c * Delta / norm_grad, Hg); % Now that we have computed the Cauchy point in addition to the % returned eta, we might as well keep the best of them. mdle = fx + problem.M.inner(x, fgradx, eta) ... + .5*problem.M.inner(x, Heta, eta); mdlec = fx + problem.M.inner(x, fgradx, eta_c) ... + .5*problem.M.inner(x, Heta_c, eta_c); if mdle > mdlec eta = eta_c; Heta = Heta_c; % added April 11, 2012 used_cauchy = true; end end % Compute the retraction of the proposal x_prop = problem.M.retr(x, eta); % Compute the function value of the proposal [fx_prop storedb] = getCost(problem, x_prop, storedb); % Will we accept the proposed solution or not? % Check the performance of the quadratic model against the actual cost. rhonum = fx - fx_prop; rhoden = -problem.M.inner(x, fgradx, eta) ... -.5*problem.M.inner(x, eta, Heta); % Heuristic -- added Dec. 2, 2013 (NB) to replace the former heuristic. % This heuristic is documented in the book by Conn Gould and Toint on % trust-region methods, section 17.4.2. % rhonum measures the difference between two numbers. Close to % convergence, these two numbers are very close to each other, so % that computing their difference is numerically challenging: there may % be a significant loss in accuracy. Since the acceptance or rejection % of the step is conditioned on the ratio between rhonum and rhoden, % large errors in rhonum result in a large error in rho, hence in % erratic acceptance / rejection. Meanwhile, close to convergence, % steps are usually trustworthy and we should transition to a Newton- % like method, with rho=1 consistently. The heuristic thus shifts both % rhonum and rhoden by a small amount such that far from convergence, % the shift is irrelevant and close to convergence, the ratio rho goes % to 1, effectively promoting acceptance of the step. % The rationale is that close to convergence, both rhonum and rhoden % are quadratic in the distance between x and x_prop. Thus, when this % distance is on the order of sqrt(eps), the value of rhonum and rhoden % is on the order of eps, which is indistinguishable from the numerical % error, resulting in badly estimated rho's. % For abs(fx) < 1, this heuristic is invariant under offsets of f but % not under scaling of f. For abs(fx) > 1, the opposite holds. This % should not alarm us, as this heuristic only triggers at the very last % iterations if very fine convergence is demanded. rho_reg = max(1, abs(fx)) * eps * options.rho_regularization; rhonum = rhonum + rho_reg; rhoden = rhoden + rho_reg; if options.debug > 0 fprintf('DBG: rhonum : %e\n', rhonum); fprintf('DBG: rhoden : %e\n', rhoden); end % This is always true if a linear, symmetric operator is used for the % Hessian (approximation) and if we had infinite numerical precision. % In practice, nonlinear approximations of the Hessian such as the % built-in finite difference approximation and finite numerical % accuracy can cause the model to increase. In such scenarios, we % decide to force a rejection of the step and a reduction of the % trust-region radius. We test the sign of the regularized rhoden since % the regularization is supposed to capture the accuracy to which % rhoden is computed: if rhoden were negative before regularization but % not after, that should not be (and is not) detected as a failure. model_decreased = (rhoden >= 0); if ~model_decreased srstr = [srstr ', model did not decrease']; %#ok<AGROW> end rho = rhonum / rhoden; if options.debug > 0 m = @(x, eta) ... getCost(problem, x, storedb) + ... getDirectionalDerivative(problem, x, eta, storedb) + ... .5*problem.M.inner(x, getHessian(problem, x, eta, storedb), eta); zerovec = problem.M.zerovec(x); actrho = (fx - fx_prop) / (m(x, zerovec) - m(x, eta)); fprintf('DBG: new f(x) : %e\n', fx_prop); fprintf('DBG: actual rho : %e\n', actrho); fprintf('DBG: used rho : %e\n', rho); end % Choose the new TR radius based on the model performance trstr = ' '; % If the actual decrease is smaller than 1/4 of the predicted decrease, % then reduce the TR radius. if rho < 1/4 || ~model_decreased trstr = 'TR-'; Delta = Delta/4; % If the actual decrease is at least 3/4 of the precicted decrease and % the tCG (inner solve) hit the TR boundary, increase the TR radius. elseif rho > 3/4 && (stop_inner == 1 || stop_inner == 2) trstr = 'TR+'; Delta = min(2*Delta, options.Delta_bar); end % Otherwise, keep the TR radius constant. % Choose to accept or reject the proposed step based on the model % performance. if model_decreased && rho > options.rho_prime accept = true; accstr = 'acc'; x = x_prop; fx = fx_prop; [fgradx storedb] = getGradient(problem, x, storedb); norm_grad = problem.M.norm(x, fgradx); else accept = false; accstr = 'REJ'; end % Make sure we don't use too much memory for the store database storedb = purgeStoredb(storedb, options.storedepth); % k is the number of iterations we have accomplished. k = k + 1; % Log statistics for freshly executed iteration. % Everything after this in the loop is not accounted for in the timing. stats = savestats(problem, x, storedb, options, k, fx, norm_grad, ... Delta, info, rho, rhonum, rhoden, accept, numit, ... norm_eta, used_cauchy); info(k+1) = stats; %#ok<AGROW> % ** Display: if options.verbosity == 2, fprintf(['%3s %3s k: %5d num_inner: %5d ', ... 'f: %e |grad|: %e %s\n'], ... accstr,trstr,k,numit,fx,norm_grad,srstr); elseif options.verbosity > 2, if options.useRand && used_cauchy, fprintf('USED CAUCHY POINT\n'); end fprintf('%3s %3s k: %5d num_inner: %5d %s\n', ... accstr, trstr, k, numit, srstr); fprintf(' f(x) : %e |grad| : %e\n',fx,norm_grad); if options.debug > 0 fprintf(' Delta : %f |eta| : %e\n',Delta,norm_eta); end fprintf(' rho : %e\n',rho); end if options.debug > 0, fprintf('DBG: cos ang(eta,gradf): %d\n',testangle); if rho == 0 fprintf('DBG: rho = 0, this will likely hinder further convergence.\n'); end end end % of TR loop (counter: k) % Restrict info struct-array to useful part info = info(1:k+1); if (options.verbosity > 2) || (options.debug > 0), fprintf('************************************************************************\n'); end if (options.verbosity > 0) || (options.debug > 0) fprintf('Total time is %f [s] (excludes statsfun)\n', info(end).time); end % Return the best cost reached cost = fx; end % Routine in charge of collecting the current iteration stats function stats = savestats(problem, x, storedb, options, k, fx, ... norm_grad, Delta, info, rho, rhonum, ... rhoden, accept, numit, norm_eta, used_cauchy) stats.iter = k; stats.cost = fx; stats.gradnorm = norm_grad; stats.Delta = Delta; if k == 0 stats.time = toc(); stats.rho = inf; stats.rhonum = NaN; stats.rhoden = NaN; stats.accepted = true; stats.numinner = NaN; stats.stepsize = NaN; if options.useRand stats.cauchy = false; end else stats.time = info(k).time + toc(); stats.rho = rho; stats.rhonum = rhonum; stats.rhoden = rhoden; stats.accepted = accept; stats.numinner = numit; stats.stepsize = norm_eta; if options.useRand, stats.cauchy = used_cauchy; end end % See comment about statsfun above: the x and store passed to statsfun % are that of the most recently accepted point after the iteration % fully executed. stats = applyStatsfun(problem, x, storedb, options, stats); end
github
skovnats/madmm-master
calcVoronoiRegsCircCent.m
.m
madmm-master/compressed_modes/LB/calcVoronoiRegsCircCent.m
2,497
utf_8
b33c6683c5fafa8ead79d9436c30477f
function [VorRegsVertices] = calcVoronoiRegsCircCent(Tri, Vertices) %% Preps.: A1 = Vertices(Tri(:,1), :); A2 = Vertices(Tri(:,2), :); A3 = Vertices(Tri(:,3), :); a = A1 - A2; % Nx3 b = A3 - A2; % Nx3 c = A1 - A3; % Nx3 M1 = 1/2*(A2 + A3); % Nx3 M2 = 1/2*(A1 + A3); % Nx3 M3 = 1/2*(A2 + A1); % Nx3 N = size(A1, 1); %% Circumcenters calculation O = zeros(size(A1)); obtuseAngMat = [(dot(a, b, 2) < 0), (dot(-b, c, 2) < 0), (dot(-c, -a, 2) < 0)]; obtuseAngInds = any(obtuseAngMat, 2); O(obtuseAngInds, :) = ... M1(obtuseAngInds, :).*(obtuseAngMat(obtuseAngInds, 1)*[1 1 1]) + ... M2(obtuseAngInds, :).*(obtuseAngMat(obtuseAngInds, 2)*[1 1 1]) + ... M3(obtuseAngInds, :).*(obtuseAngMat(obtuseAngInds, 3)*[1 1 1]); OM3 = -repmat(dot(c, a, 2), 1, 3).*b + repmat(dot(b, a, 2), 1, 3).*c; OM1 = -repmat(dot(c, b, 2), 1, 3).*a + repmat(dot(a, b, 2), 1, 3).*c; M1M3 = M1 - M3; tmp = M3 + OM3.*repmat(dot(cross(M1M3, OM1, 2), cross(OM3, OM1, 2), 2), 1, 3)./... repmat(dot(cross(OM3, OM1, 2), cross(OM3, OM1, 2), 2), 1, 3); O(not(obtuseAngInds), :) = tmp(not(obtuseAngInds), :); %% Voronoi Regions calculation (for each vertex in each triangle. VorRegs = zeros(N, 3); % For all the triangles do (though the calculation is correct for % non-obtuse triangles only: VorRegs(:,1) = calcArea(A1, M3, O) + calcArea(A1, M2, O); VorRegs(:,2) = calcArea(A2, M1, O) + calcArea(A2, M3, O); VorRegs(:,3) = calcArea(A3, M2, O) + calcArea(A3, M1, O); % % For obtuse triangles: % TriA = calcArea(A1, A2, A3); % VorRegs(obtuseAngInds, :) = (1/4*ones(sum(obtuseAngInds), 3) + ... % 1/4*obtuseAngMat(obtuseAngInds, :)).*repmat(TriA(obtuseAngInds), [1 3]); %% Voronoi Regions per Vertex M = size(Vertices, 1); % VorRegsVertices = zeros(M, 1); VorRegsVertices = sparse(M, M); for k = 1:M % VorRegsVertices(k) = sum(VorRegs(Tri == k)); % as I understand - at diagonal areas of Voronois cells VorRegsVertices(k, k) = sum(VorRegs(Tri == k)); %% UPD 12.08.2012 by Artiom VorRegsVertices(k, k) = max( VorRegsVertices(k, k), 1e-7 ); end end %% --------------------------------------------------------------------- %% function [area_tri] = calcArea(A, B, C) % Calculate areas of triangles % Calculate area of each triangle % area_tri = cross(B - A, C - A, 2); % area_tri = 1/2*sqrt(sum(area_tri.^2, 2)); area_tri = 1/2*sqrt(sum((B - A).^2, 2).*sum((C - A).^2, 2) - dot(B - A, C - A, 2).^2); end
github
skovnats/madmm-master
gencols.m
.m
madmm-master/compressed_modes/LB/gencols.m
5,738
utf_8
497e10b44a80cff59db8f7c18b5a9608
function colors = gencols(n_colors,bg,func) % DISTINGUISHABLE_COLORS: pick colors that are maximally perceptually distinct % % When plotting a set of lines, you may want to distinguish them by color. % By default, Matlab chooses a small set of colors and cycles among them, % and so if you have more than a few lines there will be confusion about % which line is which. To fix this problem, one would want to be able to % pick a much larger set of distinct colors, where the number of colors % equals or exceeds the number of lines you want to plot. Because our % ability to distinguish among colors has limits, one should choose these % colors to be "maximally perceptually distinguishable." % % This function generates a set of colors which are distinguishable % by reference to the "Lab" color space, which more closely matches % human color perception than RGB. Given an initial large list of possible % colors, it iteratively chooses the entry in the list that is farthest (in % Lab space) from all previously-chosen entries. While this "greedy" % algorithm does not yield a global maximum, it is simple and efficient. % Moreover, the sequence of colors is consistent no matter how many you % request, which facilitates the users' ability to learn the color order % and avoids major changes in the appearance of plots when adding or % removing lines. % % Syntax: % colors = distinguishable_colors(n_colors) % Specify the number of colors you want as a scalar, n_colors. This will % generate an n_colors-by-3 matrix, each row representing an RGB % color triple. If you don't precisely know how many you will need in % advance, there is no harm (other than execution time) in specifying % slightly more than you think you will need. % % colors = distinguishable_colors(n_colors,bg) % This syntax allows you to specify the background color, to make sure that % your colors are also distinguishable from the background. Default value % is white. bg may be specified as an RGB triple or as one of the standard % "ColorSpec" strings. You can even specify multiple colors: % bg = {'w','k'} % or % bg = [1 1 1; 0 0 0] % will only produce colors that are distinguishable from both white and % black. % % colors = distinguishable_colors(n_colors,bg,rgb2labfunc) % By default, distinguishable_colors uses the image processing toolbox's % color conversion functions makecform and applycform. Alternatively, you % can supply your own color conversion function. % % Example: % c = distinguishable_colors(25); % figure % image(reshape(c,[1 size(c)])) % % Example using the file exchange's 'colorspace': % func = @(x) colorspace('RGB->Lab',x); % c = distinguishable_colors(25,'w',func); % Copyright 2010-2011 by Timothy E. Holy % Parse the inputs if (nargin < 2) bg = [1 1 1]; % default white background else if iscell(bg) % User specified a list of colors as a cell aray bgc = bg; for i = 1:length(bgc) bgc{i} = parsecolor(bgc{i}); end bg = cat(1,bgc{:}); else % User specified a numeric array of colors (n-by-3) bg = parsecolor(bg); end end % Generate a sizable number of RGB triples. This represents our space of % possible choices. By starting in RGB space, we ensure that all of the % colors can be generated by the monitor. n_grid = 30; % number of grid divisions along each axis in RGB space x = linspace(0,1,n_grid); [R,G,B] = ndgrid(x,x,x); rgb = [R(:) G(:) B(:)]; if (n_colors > size(rgb,1)/3) error('You can''t readily distinguish that many colors'); end % Convert to Lab color space, which more closely represents human % perception if (nargin > 2) lab = func(rgb); bglab = func(bg); else C = makecform('srgb2lab'); lab = applycform(rgb,C); bglab = applycform(bg,C); end % If the user specified multiple background colors, compute distances % from the candidate colors to the background colors mindist2 = inf(size(rgb,1),1); for i = 1:size(bglab,1)-1 dX = bsxfun(@minus,lab,bglab(i,:)); % displacement all colors from bg dist2 = sum(dX.^2,2); % square distance mindist2 = min(dist2,mindist2); % dist2 to closest previously-chosen color end % Iteratively pick the color that maximizes the distance to the nearest % already-picked color colors = zeros(n_colors,3); lastlab = bglab(end,:); % initialize by making the "previous" color equal to background for i = 1:n_colors dX = bsxfun(@minus,lab,lastlab); % displacement of last from all colors on list dist2 = sum(dX.^2,2); % square distance mindist2 = min(dist2,mindist2); % dist2 to closest previously-chosen color [~,index] = max(mindist2); % find the entry farthest from all previously-chosen colors colors(i,:) = rgb(index,:); % save for output lastlab = lab(index,:); % prepare for next iteration end end function c = parsecolor(s) if ischar(s) c = colorstr2rgb(s); elseif isnumeric(s) && size(s,2) == 3 c = s; else error('MATLAB:InvalidColorSpec','Color specification cannot be parsed.'); end end function c = colorstr2rgb(c) % Convert a color string to an RGB value. % This is cribbed from Matlab's whitebg function. % Why don't they make this a stand-alone function? rgbspec = [1 0 0;0 1 0;0 0 1;1 1 1;0 1 1;1 0 1;1 1 0;0 0 0]; cspec = 'rgbwcmyk'; k = find(cspec==c(1)); if isempty(k) error('MATLAB:InvalidColorString','Unknown color string.'); end if k~=3 || length(c)==1, c = rgbspec(k,:); elseif length(c)>2, if strcmpi(c(1:3),'bla') c = [0 0 0]; elseif strcmpi(c(1:3),'blu') c = [0 0 1]; else error('MATLAB:UnknownColorString', 'Unknown color string.'); end end end
github
skovnats/madmm-master
calcLB.m
.m
madmm-master/compressed_modes/LB/calcLB.m
4,269
utf_8
5d1e4c81097a7b2a73eac18edb6af2d1
function [M, DiagS] = calcLB(shape) % The L-B operator matrix is computed by DiagS^-1*M. % Calculate the weights matrix M M = calcCotMatrixM1([shape.X, shape.Y, shape.Z], shape.TRIV); M = -M; % Calculate the diagonal of matrix S DiagS = calcVoronoiRegsCircCent(shape.TRIV, [shape.X, shape.Y, shape.Z]); %% DiagS = abs( DiagS ); %% end % ----------------------------------------------------------------------- % function [M] = calcCotMatrixM1(Vertices, Tri) N = size(Vertices, 1); M = sparse(N, N); v1 = Vertices(Tri(:, 2), :) - Vertices(Tri(:, 1), :); %v1 = v1./repmat(normVec(v1), 1, 3); v2 = Vertices(Tri(:, 3), :) - Vertices(Tri(:, 1), :); %v2 = v2./repmat(normVec(v2), 1, 3); v3 = Vertices(Tri(:, 3), :) - Vertices(Tri(:, 2), :); %v3 = v3./repmat(normVec(v3), 1, 3); % cot1 = dot( v1, v2, 2)./normVec(cross( v1, v2, 2)); %cot1(cot1 < 0) = 0; % cot2 = dot(-v1, v3, 2)./normVec(cross(-v1, v3, 2)); %cot2(cot2 < 0) = 0; % cot3 = dot(-v2, -v3, 2)./normVec(cross(-v2, -v3, 2)); %cot3(cot3 < 0) = 0; tmp1 = dot( v1, v2, 2); cot1 = tmp1./sqrt(normVec(v1).^2.*normVec(v2).^2 - (tmp1).^2); clear tmp1; tmp2 = dot(-v1, v3, 2); cot2 = tmp2./sqrt(normVec(v1).^2.*normVec(v3).^2 - (tmp2).^2); clear tmp2; tmp3 = dot(-v2, -v3, 2); cot3 = tmp3./sqrt(normVec(v2).^2.*normVec(v3).^2 - (tmp3).^2); clear tmp3; for k = 1:size(Tri, 1) M(Tri(k, 1), Tri(k, 2)) = M(Tri(k, 1), Tri(k, 2)) + cot3(k); M(Tri(k, 1), Tri(k, 3)) = M(Tri(k, 1), Tri(k, 3)) + cot2(k); M(Tri(k, 2), Tri(k, 3)) = M(Tri(k, 2), Tri(k, 3)) + cot1(k); end M = 0.5*(M + M'); % here she does the normalization (comment - Artiom) % inds = sub2ind([N, N], [Tri(:, 2); Tri(:, 1); Tri(:, 1)], [Tri(:, 3); Tri(:, 3); Tri(:, 2)]); % M(inds) = M(inds) + [cot1; cot2; cot3]; % inds = sub2ind([N, N], [Tri(:, 3); Tri(:, 3); Tri(:, 2)], [Tri(:, 2); Tri(:, 1); Tri(:, 1)]); % M(inds) = M(inds) + [cot1; cot2; cot3]; % M = 0.5*(M + M'); % % M(M < 0) = 0; M = M - diag(sum(M, 2)); % making it Laplacian function normV = normVec(vec) normV = sqrt(sum(vec.^2, 2)); end % function normalV = normalizeVec(vec) % normalV = vec./repmat(normVec(vec), 1, 3); % end end % ----------------------------------------------------------------------- % function [M] = calcCotMatrixM(Vertices, Tri) %#ok<DEFNU> N = size(Vertices, 1); [transmat] = calcTransmat(N, Tri); % Calculate the matrix M, when {M}_ij = (cot(alpha_ij) + cot(beta_ij))/2 % [transrow, transcol] = find(triu(transmat,1) > 0); [transrow, transcol] = find((triu(transmat,1) > 0) | (triu(transmat',1) > 0)); M = sparse(N, N); for k = 1:length(transrow) P = transrow(k); Q = transcol(k); S = transmat(P,Q); R = transmat(Q,P); %% % u1 = Vertices(Q, :) - Vertices(R, :); u1 = u1./norm(u1); % v1 = Vertices(P, :) - Vertices(R, :); v1 = v1./norm(v1); % u2 = Vertices(P, :) - Vertices(S, :); u2 = u2./norm(u2); % v2 = Vertices(Q, :) - Vertices(S, :); v2 = v2./norm(v2); % M(P,Q) = -1/2*(dot(u1, v1)/norm(cross(u1, v1)) + dot(u2, v2)/norm(cross(u2, v2))); tmp1 = 0; tmp2 = 0; if (R ~= 0) u1 = Vertices(Q, :) - Vertices(R, :); u1 = u1./norm(u1); v1 = Vertices(P, :) - Vertices(R, :); v1 = v1./norm(v1); tmp1 = dot(u1, v1)/norm(cross(u1, v1)); end if (S ~= 0) u2 = Vertices(P, :) - Vertices(S, :); u2 = u2./norm(u2); v2 = Vertices(Q, :) - Vertices(S, :); v2 = v2./norm(v2); tmp2 = dot(u2, v2)/norm(cross(u2, v2)); end M(P,Q) = -1/2*(tmp1 + tmp2); %% end M = 0.5*(M + M'); M = M - diag(sum(M, 2)); end % ----------------------------------------------------------------------- % function [transmat] = calcTransmat(N, Tri) % Calculation of the map of all the connected vertices: for each i,j, % transmat(i,j) equals to the third vertex of the triangle which connectes % them; if the vertices aren't connected - transmat(i,j) = 0. transmat = sparse(N, N); transmat(sub2ind(size(transmat), Tri(:,1), Tri(:,2))) = Tri(:,3); transmat(sub2ind(size(transmat), Tri(:,2), Tri(:,3))) = Tri(:,1); transmat(sub2ind(size(transmat), Tri(:,3), Tri(:,1))) = Tri(:,2); end
github
AndrewCWalker/rsm_tool_suite-master
gCovMat.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gCovMat.m
2,683
utf_8
c21141d4e605a0a8905593b499eea2cb
% function Scov = gCovMat(dist,beta,lamz,lams) % given n x p matrix x of spatial coords, and dependence parameters % beta p x 1, this function returns a matrix built from the % correlation function % Scov_ij = exp{- sum_k=1:p beta(k)*(x(i,k)-x(j,k))^2 } ./lamz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Scov = gCovMat(dist,beta,lamz,lams) % check for case of a null dataset %if isempty(dist.d); Scov=[]; return; end switch dist.type case 1 n=dist.n; Scov=zeros(n); if n>0 % if it's not a null dataset, do the distances % Scov(dist.indm)=exp(-(dist.d*beta))./lamz; %%% this is faster: t=exp(-(dist.d*beta))./lamz; Scov(dist.indm)=t; Scov=Scov+Scov'; diagInds = 1:(n+1):(n*n); Scov(diagInds)=1/lamz; if exist('lams','var') Scov(diagInds)=Scov(diagInds) + 1/lams; end end case 2 n=dist.n; m=dist.m; Scov=zeros(n,m); if n*m >0 % if it's not a null dataset, do the distances %Scov(dist.indm)=exp(-(dist.d*beta))./lamz; %%% this is faster: t=exp(-(dist.d*beta))./lamz; Scov(dist.indm)=t; end otherwise error('invalid distance matrix type in gaspcov'); end
github
AndrewCWalker/rsm_tool_suite-master
qEst.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/qEst.m
11,985
utf_8
b02a0efa556c1750551ac034a08a8883
function th=qEst(pout,pvec,thProb, densFun, varargin) % function th=subRegionSamp(pout,pvec,thProb, densFun, varargin) % collect response MLpost, into sets H, M, L, based on the % vl and vh estimates. Estimate response from M set, given integrated % density from L and H. % Operations are generally defined on the native scale, requiring the % simData.orig.xmin and simData.orig.xrange structures to be in place % Arguments: % pvec - candidates for random draws of parameter sets % thProb - threshold probability % densFun - density function handle, to get probability of draw from X. % The density function computes a density of each row vector in the % matrix it is called with. It operates on the native scale space. % Optional arguments: % poolSamp - the number of samples in the vl estimation pool; def. 1e6 % drawNewPoints - default 1; if false load previously saved vl est. pool % savePool - default 0; if true, saved vl est. pool to 'estPoolDraws' % numDraws - the number of threshold draws to perform; default 10 % rlzSamp - the sample size of realizations; default 500 % intMin, intMax - the boundaries of integration. Default is [0,1] in % each dimension. Scale is native space. % GPest - default false; true indicates that the samples from the M set % should be modeled by a GP and oversampled from the mean % GPestSamp - number of samples from M to generate per realization % (default 1e5) % doPlot, doPlot2 - default false, perform diagnostic plots (see code) % saveFile - name of samples datafile, default 'estPoolDraws' numDraws=10; rlzSamp=500; poolSamp=1e6; numVars=pout.model.p; cubeMin=zeros(1,numVars); cubeMax=ones(1,numVars); drawNewPoints=1; savePool=0; GPest=0; GPestSamp=1e5; doPlot1=0; doPlot2=0; saveFile='estPoolDraws'; k1=2; k2=3; parseAssignVarargs({'numDraws','poolSamp','rlzSamp','cubeMin','cubeMax', ... 'drawNewPoints','savePool','GPest','GPestSamp',... 'doPlot1','doPlot2','saveFile','k1','k2'}); pvals=pout.pvals(pvec); % set up the sampling region [offset range] sampCube.range=cubeMax(:)'-cubeMin(:)'; sampCube.offset=cubeMin(:)'; % mapping from the sampling cube to the scaled x prediction area % d starts in [0,1], projects to sampCube in native scale, then back to % the prediction scaling. % native = d*scrange+scoffset % scaled = (native-pcoffset)/pcrange % = (d*scrange+scoffset - pcoffset)/pcrange % = d*scrange/pcrange + (scoffset-pcoffset)/pcrange predMap.range=sampCube.range ./ pout.simData.orig.xrange; predMap.offset=(sampCube.offset - pout.simData.orig.xmin) ... ./ pout.simData.orig.xrange; % find the vl and vh estimates regions if drawNewPoints % get new points, and put them in the specified interval in scaled % space. d=rand(poolSamp,numVars) .* ... repmat(predMap.range,poolSamp,1) + ... repmat(predMap.offset,poolSamp,1); % prob function is in native scale p=densFun(d.*repmat(pout.simData.orig.xrange,poolSamp,1) + ... repmat(pout.simData.orig.xmin,poolSamp,1) ); % pred is, of course, in scaled space [r rs]=predictPointwise(pout,d,'mode','MAP'); % Normalize probability - outmoded % p=p*prod(pout.simData.orig.xrange.*sampCube.range); [v sri ]=calcRespThresh(p,r,thProb); [vl sril]=calcRespThresh(p,r-k1*rs,thProb); [vh srih]=calcRespThresh(p,r+k1*rs,thProb); fprintf('MAP thresh=%f\n',v); % break into 3 sets. LFlag= (r+k2*rs)<vl; UFlag= (r-k2*rs)>vh; Ld=d(LFlag,:); Ud=d(UFlag,:); Md=d(~(LFlag|UFlag),:); Lr=r(LFlag); Ur=r(UFlag); Mr=r(~(LFlag|UFlag)); Lp=p(LFlag); Up=p(UFlag); Mp=p(~(LFlag|UFlag)); Lprob=sum(Lp)/sum(p); Uprob=sum(Up)/sum(p); if savePool fprintf('Saving new ML mean draws\n'); save(saveFile,'d','p','r','rs','v','sri','vl','sril','vh','srih',... 'thProb','poolSamp','LFlag','UFlag','Ld','Ud','Md',... 'Lr','Ur','Mr','Lp','Up','Mp','Lprob','Uprob') ; end else fprintf('Loading saved ML mean draws\n'); load(saveFile); fprintf('Loaded %d draws and threshold %f calculated sets \n',poolSamp,thProb); end fprintf('p(r<vl=%6.3f): %d elements with %f prob\n',vl,sum(LFlag),Lprob); fprintf('p(r>vh=%6.3f): %d elements with %f prob\n',vh,sum(UFlag),Uprob); if doPlot1 clf; plot(cumsum(p(sri))/sum(p),r(sri), 'b'); hold on; plot(cumsum(p(sril))/sum(p),r(sril)-k1*rs(sril), 'r'); plot(cumsum(p(srih))/sum(p),r(srih)+k1*rs(srih), 'r'); a=axis; plot (thProb* [1 1], a ([3 4]),'k:') ; plot([0 1],vl*[1 1 ],'k:') ; plot([0 1],vh*[1 1 ],'k:'); plot([0 1], v*[1 1 ],'k:') ; end if doPlot2 clf; % Bill changed plotxy(Ld(ilinspace(1,end,10000),:),'.'); (3 calls) plotxy(Ld(round(linspace(1,end,10000)),:),'.'); hold on; plotxy(Md(round(linspace(1,end,1000)),:),'g.'); plotxy(Ud(round(linspace(1,end,2000)),:),'r.') end % Purge M set of the draws that are irrelevant due to no prob. mass % we could mess up in the case of uniform distributions, throwing away % everything by mistake, so make sure we have a lot of values before % starting this if length(unique(Mp))/length(Mp) > 0.1 Ms=sort(Mp,1,'descend'); pThresh = Ms(find(cumsum(Ms)/sum(Ms) > 0.9999,1)); Md=Md(Mp>pThresh,:); Mr=Mr(Mp>pThresh); Mp=Mp(Mp>pThresh); end % sample threshold with draws from the M-relevant set %counter('stime',l,numDraws,10,0); if size(Md,1)<rlzSamp; error('\n not enough samples for realization sample size \n'); end if numDraws; th(numDraws).th=[]; end for ii=1:numDraws %counter(ii); tic; samp=gSample(size(Md,1),rlzSamp); pred=gPredict(Md(samp, :),pvals(ceil(rand*end)), ... pout.model,pout.data,'addResidVar',1,'returnMuSigma',1); if GPest % set up a new model that includes the new predictions in M % (which was a realization in M) fprintf('Drawing from GP mean ...') pouts=pout; pouts.model.m = pouts.model.m+rlzSamp; pouts.model.w =[pouts.model.w;pred.Myhat']; pouts.data.w=pouts.model.w; pouts.data.zt=[pouts.data.zt; Md(samp,:)]; pouts.model.ztDist=genDist(pouts.data.zt); % predict a whole lot of points, and keep whatever fraction is in % M -- should it loop until a minimum number are found? Mresp=[]; Mprob=[]; Mdes=[]; while length(Mresp)<GPestSamp GPd=rand(GPestSamp,numVars) .* ... repmat(predMap.range,GPestSamp,1) + ... repmat(predMap.offset,GPestSamp,1); [GPr GPrs]=predictPointwise(pouts,GPd,'toNative',0); GPLFlag= (GPr+3*GPrs)<vl; GPUFlag= (GPr-3*GPrs)>vh; Mresp=[Mresp; GPr(~(GPLFlag|GPUFlag))]; GPMd=GPd(~(GPLFlag|GPUFlag),:); GPMdNum=size(GPMd,1); Mprob=[Mprob; densFun(GPMd.*repmat(pout.simData.orig.xrange,GPMdNum,1) + ... repmat(pout.simData.orig.xmin,GPMdNum,1) ) ]; Mdes=[Mdes;GPMd]; end probs=[Lprob; (1-Lprob-Uprob)* Mprob/sum(Mprob); Uprob]; yhat=Mresp*pout.simData.orig.ysd + pout.simData.orig.ymean; hats=[-Inf; yhat; Inf]; else ypr=squeeze(pred.w); yhat=ypr*pout.simData.orig.ysd + pout.simData.orig.ymean; probs=[Lprob; (1-Lprob-Uprob)* Mp(samp)/sum(Mp(samp)); Uprob]; hats=[-Inf; yhat; Inf]; end th(ii).th=calcRespThresh(probs,hats,thProb); th(ii).probs=probs; th(ii).yhat=hats; if GPest th(ii).Mdes=Mdes; end fprintf('Draw %2d threshold %f; took %4.1fs\n',ii,th(ii).th,toc); end %counter ( 'end' ) end function [th sri]=calcRespThresh(p,r,thProb) % do the magic [sr sri]=sort(r); syp=p(sri); sypc=cumsum(syp)/sum(syp); pthi=find( (sypc-thProb)>0 , 1); % response cutoff between sypc(pthi-1) and sypc(pthi) % linear interp th=interp1(sypc([pthi-1 pthi]),sr([pthi-1 pthi]),thProb,'linear'); end function [r rs]=predictPointwise(pout,xp,varargin) mode='MAP'; pvec=1:length(pout.pvals); toNative=1; verbose=0; parseAssignVarargs({'mode','pvec','toNative','verbose'}); switch(mode) case 'MAP' % get the most likely model pvals=pout.pvals; lp=[pvals.logPost]; [lpm lpi]=max(lp); pvalM=pvals(lpi); case 'Mean' % get the mean model vars={'betaU','lamUz','lamWs','lamWOs'}; for ii=1:length(vars) pvalM.(vars{ii})=mean([pout.pvals(pvec).(vars{ii})],2); end end % get the response from that model chunk=50; numSamp=size(xp,1); if (numSamp/chunk)~=round(numSamp/chunk) error('samples not a multiple of chunk (=%d)\n',chunk); end xp(xp<0)=0; xp(xp>1)=1; r=zeros(numSamp,1); rs=r; SigDataInv=computeSigDataInv(pout,pvalM); if verbose; fprintf('predictModML: predicting\n'); end if verbose; counter('stime',1,numSamp,10,6); end for ii=1:numSamp/chunk; if verbose; counter(ii*chunk); end x=xp((ii-1)*chunk +1:ii*chunk, :); pred=gPredLocal(x,pout,pvalM,SigDataInv); yhs=squeeze(pred.Myhat); shs=sqrt(diag(pred.Syhat)); if toNative r((ii-1)*chunk +1:ii*chunk)=... yhs*pout.simData.orig.ysd+pout.simData.orig.ymean; rs((ii-1)*chunk +1:ii*chunk)=shs*pout.simData.orig.ysd; else r((ii-1)*chunk +1:ii*chunk)=yhs; rs((ii-1)*chunk +1:ii*chunk)=shs; end end if verbose; counter ( 'end' ) ; end end function SigDataInv=computeSigDataInv(pout,pvals) model=pout.model; m=model.m;p=model.p;q=model.q;pu=model.pu; betaU=reshape(pvals.betaU,p+q,pu); lamUz=pvals.lamUz; lamWs=pvals.lamWs; lamWOs=pvals.lamWOs; diags1=diagInds(m*pu); SigData=zeros(m*pu); for jj=1:pu bStart=(jj-1)*m+1; bEnd=bStart+m-1; SigData(bStart:bEnd,bStart:bEnd)=... gCovMat(model.ztDist,betaU(:,jj),lamUz(jj)); end SigData(diags1)=SigData(diags1)+ ... kron(1./(model.LamSim*lamWOs)',ones(1,m)) + ... kron(1./(lamWs)',ones(1,m)) ; SigDataInv=inv(SigData); end function pred=gPredLocal(xpred,pout,pvals,SigDataInv) data=pout.data; model=pout.model; m=model.m;p=model.p;q=model.q;pu=model.pu; npred=size(xpred,1); diags2=diagInds(npred*pu); betaU=reshape(pvals.betaU,p+q,pu); lamUz=pvals.lamUz; lamWs=pvals.lamWs; lamWOs=pvals.lamWOs; xpredDist=genDist (xpred) ; zxpredDist=genDist2(data.zt,xpred); SigPred=zeros(npred*pu); for jj=1:pu bStart=(jj-1)*npred+1; bEnd=bStart+npred-1; SigPred(bStart:bEnd,bStart:bEnd)= ... gCovMat(xpredDist,betaU(:,jj),lamUz(jj)); end SigPred(diags2)=SigPred(diags2)+ ... kron(1./(model.LamSim*lamWOs)',ones(1,npred)) + ... % resid var kron(1./(lamWs)',ones(1,npred)) ; SigCross=zeros(m*pu,npred*pu); for jj=1:pu bStartI=(jj-1)*m+1; bEndI=bStartI+m-1; bStartJ=(jj-1) *npred+1; bEndJ=bStartJ+npred-1; SigCross(bStartI:bEndI,bStartJ:bEndJ)=... gCovMat(zxpredDist,betaU(:,jj),lamUz(jj)); end % Get the stats for the prediction stuff. W=(SigCross')*SigDataInv; pred.Myhat=W*(data.w(:)); pred.Syhat=SigPred-W*SigCross; end
github
AndrewCWalker/rsm_tool_suite-master
gBoxPlot.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gBoxPlot.m
3,489
utf_8
c6c0b1747e1e919db397f161884e099c
% function gBoxPlot(x,varargin) % substitute for stats toolbox boxplot function, by Gatt % shows a boxplot-like summary for each column of x % lines of the box are at the lower quartile, median, and upper quartile % whiskers extend to the most extreme values with 1.5 times the % inter-quartile range, % extreme values outside that are plotted as 'x' % the only option currently implemented is 'labels' as cell array, i.e.: % gBoxPlot(rand(10,2),'labels',{'varname1','varname2'}); % May also request no outlier labels, with 'noOutliers' optional argument=1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function gBoxPlot(x,varargin) labels=[]; noOutliers=0; parseAssignVarargs({'labels','noOutliers'}); if exist('boxplot')==2 && ~noOutliers; % use the builtin if available if ~isempty(labels) boxplot(x,'labels',labels); else boxplot(x); end return end cla; hold on; if min(size(x))==1; x=x(:); end [m n]=size(x); boxsize=[-1 1] * (0.05 + 0.2*(1-exp(-(n-1)))); for jj=1:size(x,2); col=x(:,jj); qs=gQuantile(col,[0.25 0.5 0.75]); plot(jj+boxsize,[1 1]*qs(1)); plot(jj+boxsize,[1 1]*qs(2),'r'); plot(jj+boxsize,[1 1]*qs(3)); plot([1 1]*boxsize(1)+jj,qs([1 3])); plot([1 1]*boxsize(2)+jj,qs([1 3])); % establish whisker low and high limits xlr=(qs(1)-1.5*(qs(3)-qs(1))); xlh=(qs(3)+1.5*(qs(3)-qs(1))); %get the whisker levels & plot (nearest within limit) wlow=min(col(col>xlr)); whig=max(col(col<xlh)); plot(0.5*boxsize+jj,[1 1]*wlow,'k'); plot([1 1]*jj,[wlow qs(1)],'k--'); plot(0.5*boxsize+jj,[1 1]*whig,'k'); plot([1 1]*jj,[whig qs(3)],'k--'); if ~noOutliers %plot the remaining extremes xlow=col(col<xlr); xhig=col(col>xlh); for ii=[xlow; xhig]'; plot(jj,ii,'r+'); end end end xmin=min(x(:)); xmax=max(x(:)); xrange=xmax-xmin; a=axis; axis([0.5 jj+0.5 xmin-0.05*xrange xmax+0.05*xrange]); set(gca,'xtick',1:n); if ~isempty(labels) set(gca,'xticklabel',labels); else xlabel('Column number'); end ylabel('Values');
github
AndrewCWalker/rsm_tool_suite-master
gLogBetaPrior.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gLogBetaPrior.m
1,867
utf_8
78659b95a74e58bce6b3dc05d90f580a
%function model = gLogBetaPrior(x,parms) % % Computes unscaled log beta pdf, % sum of 1D distributions for each (x,parms) in the input vectors % for use in prior likelihood calculation % parms = [a-parameter-vector b-parameter-vector] % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function p = gLogBetaPrior(x,parms) a=parms(:,1); b=parms(:,2); x=x(:); p=sum( (a-1).*log(x) + (b-1).*log(1-x) );
github
AndrewCWalker/rsm_tool_suite-master
gPlotMatrix.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gPlotMatrix.m
9,865
utf_8
05634a43bd2c67952be44a7ae7aa6ea5
function [h bigAx]=gPlotMatrix(data,varargin) % function [h bigAx]=gPlotMatrix(data,varargin) % data - contains vectors for scatterplots % each row is an vector, as expected for plotmatrix % varargs include % 'Pcontours' are the percentile levels for the contour plot % 'ngrid' is axis grid size (symmetric) (a good guess is 25, default=10) % 'labels', a cell array of variable names [optional] % 'ttl', an overall plot title [optional] % 'axRange', a 2-vector of axis scalings, default [0,1] or data range % 'ksd', the sd of the contour smoothing kernel (default=0.05) % 'Pcontours', probability contours, default [0.5 0.9] % 'ustyle', 'lstyle' is the type of the off-diagonal plots % 'scatter' is xy scatterplots [default] % 'imcont' is a smoothed image (2d est. pdf) with contours % 'shade' causes the scatterplots to to shade from blue to red over % the input sequence of points % 'marksize' is the MarkerSize argument to plot for scatterplots % 'XTickDes' and 'YTickDes', if specified, are double cell arrays, containing % pairs of designators. Designator {[0.5 0.75], {'1','blue'}} puts the % labels '1' and 'blue' at 0.5 and 0.75 on the pane, resp. The % outer cell array is length the number of axes. % 'oneCellOnly' indicates that only one cell will be picked out, the cell % designated, e.g., [1 2] % 'plotPoints' is a matrix of points to over-plot on scatterplots of images, % it has the same variables as the matrix being plotted % 'plotPointsDes' is a plot designator for plotpoints, it's a cell array, % for example {'r*'} or {'r*','markersize',10} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [n p]=size(data); % defaults for varargs labels=[]; if any((data(:)<0)|any(data(:)>1)); axRange=[min(data)' max(data)']; else axRange=repmat([0 1],p,1); end ksd=0.05; ngrid=10; Pcontours=[0.5;0.9]; ustyle='scatter'; lstyle='scatter'; shade=0; ttl=[]; marksize=6; XTickDes=[]; YTickDes=[]; oneCellOnly=0; plotPoints=[]; plotPointsDes={'r*'}; ldata=[]; parseAssignVarargs({'labels','axRange','ngrid','ksd','Pcontours', ... 'ustyle','lstyle','shade','ttl','marksize', ... 'XTickDes','YTickDes','oneCellOnly', ... 'plotPoints','plotPointsDes','ldata'}); histldata=1; if isempty(ldata); ldata=data; histldata=0; end Pcontours=Pcontours(:); ncont=length(Pcontours); % if shading is enabled, set up the shade structs. if shade shgroups=min(n,100); % need to set up groups if n is large sls=linspace(1,n,shgroups+1)'; slc=linspace(0,1,shgroups); for shi=1:shgroups; % define a range and a color for each group sh(shi).ix=ceil(sls(shi)):floor(sls(shi+1)); sh(shi).color=(1-slc(shi))*[0 0 1] + slc(shi)*[1 0 0]; end else shgroups=1; sh.ix=1:n; sh.color=[0 0 1]; end % Put the data into the specified range % (scale data to [0 1], where the axes will be set below) data=(data-repmat(axRange(:,1)',n,1)) ./ ... repmat((axRange(:,2)-axRange(:,1))',n,1); if ~isempty(plotPoints) ppn=size(plotPoints,1); plotPoints=(plotPoints - repmat(axRange(:,1)',ppn,1)) ./ ... repmat((axRange(:,2)-axRange(:,1))',ppn,1); end % Generate a grid and supporting data structures gridvals = linspace(0,1,ngrid); [g1 g2] = meshgrid(gridvals,gridvals); g1v = g1(:); g2v = g2(:); gvlen = length(g1v); dens = zeros(gvlen,1); % begin clf; % establish the subplots for ii=1:p; for jj=1:p; h(ii,jj)=gPackSubplot(p,p,ii,jj); end; end % Put in the histograms for ii=1:p axes(h(ii,ii)); if ~histldata % single hist on diag hist(data(:,ii)); else % two datasets; overlay kernel smooths for kk=1:length(gridvals) hdens(kk)=sum(calcNormpdf(data(:,ii),gridvals(kk),ksd)); end plot(gridvals,hdens); hold on; for kk=1:length(gridvals) hdens(kk)=sum(calcNormpdf(ldata(:,ii),gridvals(kk),ksd)); end plot(gridvals,hdens,'r'); end %axisNorm(h(ii,ii),'x',[0 1]); end % Go through the 2D plots for ii=1:p-1; for jj=ii+1:p % compute the smooth and contours, if it's called for either triangle if any(strcmp({ustyle,lstyle},'imcont')) % compute the smooth response for i=1:gvlen f = calcNormpdf(data(:,jj),g1v(i),ksd) ... .*calcNormpdf(data(:,ii),g2v(i),ksd); dens(i) = sum(f); end % normalize dens dens = dens/sum(dens); % get the contours for j=1:ncont hlevels(j) = fzero(@(x) getp(x,dens)-Pcontours(j),[0 max(dens)]); end % precompute for data in lower triangle % compute the smooth response for i=1:gvlen f = calcNormpdf(ldata(:,jj),g1v(i),ksd) ... .*calcNormpdf(ldata(:,ii),g2v(i),ksd); ldens(i) = sum(f); end % normalize dens ldens = ldens/sum(ldens); % get the contours for j=1:ncont lhlevels(j) = fzero(@(x) getp(x,dens)-Pcontours(j),[0 max(dens)]); end end % Do the upper triangle plots axes(h(ii,jj)); switch ustyle case 'scatter' for shi=1:shgroups plot(data(sh(shi).ix,jj),data(sh(shi).ix,ii),'.', ... 'MarkerSize',marksize,'Color',sh(shi).color); hold on; end case 'imcont' imagesc(g1v,g2v,reshape(dens,ngrid,ngrid)); axis xy; hold on; colormap(repmat([.9:-.02:.3]',[1 3])); contour(g1,g2,reshape(dens,ngrid,ngrid),hlevels,'LineWidth',1.0,'Color','b'); otherwise error('bad specification for lstyle'); end if ~isempty(plotPoints) plot(plotPoints(:,jj),plotPoints(:,ii),plotPointsDes{:}); end axis([0 1 0 1]); % Do the lower triangle plots axes(h(jj,ii)); switch lstyle case 'scatter' for shi=1:shgroups plot(ldata(sh(shi).ix,ii),ldata(sh(shi).ix,jj),'.', ... 'MarkerSize',marksize,'Color',sh(shi).color); hold on; end hold on; case 'imcont' imagesc(g1v,g2v,reshape(ldens,ngrid,ngrid)'); axis xy; hold on; colormap(repmat([.9:-.02:.3]',[1 3])); contour(g1,g2,reshape(ldens,ngrid,ngrid)',lhlevels,'LineWidth',1.0,'Color','b'); otherwise error('bad specification for lstyle'); end if ~isempty(plotPoints) plot(plotPoints(:,ii),plotPoints(:,jj),plotPointsDes{:}); end axis([0 1 0 1]); end; end % Ticks and Tick labels, by default they're not there set(h,'XTick',[],'YTick',[]); % but put them on if specified. if ~isempty(XTickDes) for ii=1:size(h,2) set(h(end,ii),'XTick',XTickDes{ii}{1}); set(h(end,ii),'XTickLabel',XTickDes{ii}{2}); end end if ~isempty(YTickDes) for ii=1:size(h,1) set(h(ii,1),'YTick',YTickDes{ii}{1}); set(h(ii,1),'YTickLabel',YTickDes{ii}{2}); end end % labels if ~isempty(labels) for ii=1:p %title(h(1,ii),labels{ii}); ylabel(h(ii,1),labels{ii}); xlabel(h(end,ii),labels{ii}); end end % if a title was supplied, put it up relative to an invisible axes if ~isempty(ttl) bigAx=axes('position',[0.1 0.1 0.8 0.8],'visible','off'); hold on; text(0.5,1.05,ttl,'horizontalalignment','center','fontsize',14); end if oneCellOnly set(h(oneCellOnly(1),oneCellOnly(2)), ... 'position',[0.075 0.075 0.85 0.85]); end end % function to get probability of a given level h function pout = getp(h,d); iabove = (d >= h); pout = sum(d(iabove)); end function y=calcNormpdf(x,m,s) %calculate a multivariate normal pdf value n=size(s); nf=1./( sqrt(2*pi) .* s ); up=exp(-0.5* ((x-m)./s).^2); y=nf.*up; end
github
AndrewCWalker/rsm_tool_suite-master
setupModel.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/setupModel.m
14,699
utf_8
91a9639a208d5021b3a83b639c968ea8
% function params=setupModel(obsData,simData,optParms) % Sets up a gpmsa runnable struct from raw data. % Please refer to associated documentation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function params=setupModel(obsData,simData,optParms,varargin) verbose=1; parseAssignVarargs({'verbose'}); % a shortcut version if isfield(obsData,'obsData') && isfield(obsData,'simData') && ... ~exist('optParms') simData=obsData.simData; obsData=obsData.obsData; end % params is optional if ~exist('optParms'); optParms=[]; end % check for scalar output if isfield(optParms,'scalarOutput'); scOut=optParms.scalarOutput; else scOut=0; end model.scOut=scOut; % grab some parms to local (short named) vars n=length(obsData); if n==0; % eta-only model % dummy up some empty fields obsData(1).x=[]; obsData(1).Dobs=[]; obsData(1).yStd=[]; % all vars are x, otherwise some are x some are theta if iscell(simData.x) % separable design p=0; for ii=1:length(simData.x); p=p+size(simData.x{ii},2); end else p=size(simData.x,2); end q=0; else p=length(obsData(1).x); if iscell(simData.x) % separable design q=-p; for ii=1:length(simData.x); q=q+size(simData.x{ii},2); end else q=size(simData.x,2)-p; end end m=size(simData.yStd,2); pu=size(simData.Ksim,2); pv=size(obsData(1).Dobs,2); if verbose fprintf('SetupModel: Determined data sizes as follows: \n') if n==0 fprintf('SetupModel: This is a simulator (eta) -only model\n'); fprintf('SetupModel: m=%3d (number of simulated data)\n',m); fprintf('SetupModel: p=%3d (number of inputs)\n',p); fprintf('SetupModel: pu=%3d (transformed response dimension)\n',pu); else fprintf('SetupModel: n=%3d (number of observed data)\n',n); fprintf('SetupModel: m=%3d (number of simulated data)\n',m); fprintf('SetupModel: p=%3d (number of parameters known for observations)\n',p); fprintf('SetupModel: q=%3d (number of additional simulation inputs (to calibrate))\n',q); fprintf('SetupModel: pu=%3d (response dimension (transformed))\n',pu); fprintf('SetupModel: pv=%3d (discrepancy dimension (transformed))\n',pv); end if iscell(simData.x) fprintf('SetupModel: Kronecker separable design specified\n'); end fprintf('\n'); end % check for and process lamVzGroups if isfield(optParms,'lamVzGroup'); lamVzGroup=optParms.lamVzGroup; else lamVzGroup=ones(pv,1); end lamVzGnum=length(unique(lamVzGroup)); if ~isempty(setxor(unique(lamVzGroup),1:lamVzGnum)) error('invalid lamVzGroup specification in setupModel'); end % put in a Sigy param if not supplied (backward compatability) if ~isfield(obsData,'Sigy') for k=1:n; obsData(k).Sigy=eye(size(obsData(k).Kobs,1)); end end % make a local copy of Lamy for use in this routine (do inv() only once) for k=1:n; obs(k).Lamy=inv(obsData(k).Sigy); end % Construct the transformed obs if scOut data.x=[]; data.u=[]; for k=1:n; data.x(k,:)=obsData(k).x; data.u(k)=obsData(k).yStd; end; else % ridge to be used for stabilization DKridge=eye(pu+pv)*1e-6; data.x=[]; data.v=[]; data.u=[]; for k=1:n; if (p>0); data.x(k,:)=obsData(k).x; end % Transform the obs data DK=[obsData(k).Dobs obsData(k).Kobs]; vu=inv( DK'*obs(k).Lamy*DK + DKridge )* ... DK'*obs(k).Lamy*obsData(k).yStd; data.v(k,:)=vu(1:pv); data.u(k,:)=vu(pv+1:end)'; end; end if iscell(simData.x) % add a composed zt to the struct data.ztSep=simData.x; tdes=simData.x{end}; if size(tdes,1)==1; tdes=tdes'; end for ii=length(simData.x)-1:-1:1 ndes=simData.x{ii}; if size(ndes,1)==1; ndes=ndes'; end [r1 r2]=meshgrid(1:size(simData.x{ii},1),1:size(tdes,1)); tdes=[ndes(r1(:),:) tdes(r2(:),:)]; end data.zt=tdes; else data.zt=simData.x; data.ztSep=[]; end data.w=(simData.Ksim\simData.yStd)'; % Construct the transformed sim % Set initial parameter values model.theta=0.5*ones(1,q); % Estimated calibration variable model.betaV=ones(p,lamVzGnum)*0.1; % Spatial dependence for V discrep model.lamVz=ones(lamVzGnum,1)*20; % Marginal discrepancy precision model.betaU=ones(p+q,pu)*0.1; % Sim PC surface spatial dependence model.lamUz=ones(pu,1)*1; % Marginal precision model.lamWs=ones(pu,1)*1000; % Simulator data precision % Set up partial results to be stored and passed around; % Sizes, for reference: model.n=n; model.m=m; model.p=p; model.q=q; model.pu=pu; model.pv=pv; model.lamVzGnum=lamVzGnum; model.lamVzGroup=lamVzGroup; % Precomputable data forms and covariograms. model.x0Dist=genDist(data.x); model.ztDist=genDist(data.zt); if iscell(data.ztSep) % then compute components of separable design for ii=1:length(data.ztSep) model.ztSepDist{ii}=genDist(data.ztSep{ii}); end end model.w=data.w(:); if scOut model.uw=[data.u(:);data.w(:)]; model.u=data.u(:); else model.vuw=[data.v(:);data.u(:);data.w(:)]; model.vu=[data.v(:);data.u(:)]; end % compute the PC loadings corrections model.LamSim=diag(simData.Ksim'*simData.Ksim); % initialize the acceptance record field model.acc=1; % compute LamObs, the u/v spatial correlation if scOut LO = zeros(n*pu); for kk=1:n ivals = (1:pu)+(kk-1)*pu; LO(ivals,ivals) = obs(kk).Lamy; end rankLO = rank(LO); else LO = zeros(n*(pv+pu)); for kk=1:n DK = [obsData(kk).Dobs obsData(kk).Kobs]; ivals = (1:pv+pu)+(kk-1)*(pv+pu); LO(ivals,ivals) = DK'*obs(kk).Lamy*DK; end rankLO = rank(LO); for kk=1:n ivals = (1:pv+pu)+(kk-1)*(pv+pu); LO(ivals,ivals) = LO(ivals,ivals) + DKridge; end % now reindex LamObs so that it has the v's first and the % u's 2nd. LamObs is n*(pu+pv) in size and indexed in % the order v1 u1 v2 u2 ... vn un. We want to arrange the % order to be v1 v2 ... vn u1 u2 ... un. inew = []; for kk=1:pv inew = [inew; (kk:(pu+pv):n*(pu+pv))']; end for kk=1:pu inew = [inew; ((pv+kk):(pu+pv):n*(pu+pv))']; end LO = LO(inew,inew); end % compute the Penrose inverse of LO model.SigObs=inv(LO)+1e-8*eye(size(LO,1)); % Set prior distribution types and parameters priors.lamVz.fname ='gLogGammaPrior'; priors.lamVz.params=repmat([1 0.0010],lamVzGnum,1); priors.lamUz.fname ='gLogGammaPrior'; priors.lamUz.params=repmat([5 5],pu,1); priors.lamWOs.fname='gLogGammaPrior'; priors.lamWOs.params=[5 0.005]; priors.lamWs.fname ='gLogGammaPrior'; priors.lamWs.params=repmat([3 0.003],pu,1); priors.lamOs.fname ='gLogGammaPrior'; priors.lamOs.params=[1 0.001]; priors.rhoU.fname ='gLogBetaPrior'; priors.rhoU.params=repmat([1 0.1],pu*(p+q),1); priors.rhoV.fname ='gLogBetaPrior'; priors.rhoV.params=repmat([1 0.1],p*lamVzGnum); priors.theta.fname ='gLogNormalPrior'; priors.theta.params=repmat([0.5 10],q,1); % Modification of lamOs and lamWOs prior distributions if isfield(optParms,'priors') if isfield(optParms.priors,'lamWOs') priors.lamWOs.params=optParms.priors.lamWOs.params; end if isfield(optParms.priors,'lamOs') priors.lamOs.params=optParms.priors.lamOs.params; end end % Prior correction for lamOs and lamWOs prior values (due to D,K basis xform) %for lamOs, need DK basis correction totElements=0; for ii=1:length(obsData); totElements=totElements+length(obsData(ii).yStd); end aCorr=0.5*(totElements-rankLO); bCorr=0; if ~scOut for ii=1:n DKii = [obsData(ii).Dobs obsData(ii).Kobs]; vuii = [data.v(ii,:)'; data.u(ii,:)']; resid=obsData(ii).yStd(:) - DKii*vuii; bCorr=bCorr+0.5*sum(resid'*obs(ii).Lamy*resid); end end priors.lamOs.params(:,1)=priors.lamOs.params(:,1)+aCorr; priors.lamOs.params(:,2)=priors.lamOs.params(:,2)+bCorr; %for lamWOs, need K basis correction aCorr=0.5*(size(simData.yStd,1)-pu)*m; ysimStdHat = simData.Ksim*data.w'; bCorr=0.5*sum(sum((simData.yStd-ysimStdHat).^2)); priors.lamWOs.params(:,1)=priors.lamWOs.params(:,1)+aCorr; priors.lamWOs.params(:,2)=priors.lamWOs.params(:,2)+bCorr; % Set the initial values of lamOs and lamWOs based on the priors. model.lamWOs=max(100,priors.lamWOs.params(:,1)/priors.lamWOs.params(:,2)); model.lamOs=max(20, priors.lamOs.params(:,1)/priors.lamOs.params(:,2)); % Set prior bounds priors.lamVz.bLower=0; priors.lamVz.bUpper=Inf; priors.lamUz.bLower=0.3; priors.lamUz.bUpper=Inf; priors.lamWs.bLower=60; priors.lamWs.bUpper=1e5; priors.lamWOs.bLower=60; priors.lamWOs.bUpper=1e5; priors.lamOs.bLower=0; priors.lamOs.bUpper=Inf; priors.betaU.bLower=0; priors.betaU.bUpper=Inf; priors.betaV.bLower=0; priors.betaV.bUpper=Inf; priors.theta.bLower=0; priors.theta.bUpper=1; % if thetaConstraintFunction supplied, use that, otherwise % use a dummy constraint function if isfield(optParms,'thetaConstraints') priors.theta.constraints=optParms.thetaConstraints; % update with the supplied initial theta model.theta=optParms.thetaInit; %ii=0; %while (ii<1e6) && ~tryConstraints(priors.theta.constraints,model.theta) % model.theta=rand(size(model.theta)); % ii=ii+1; %end %if ii==1e6; error('unable to draw theta within constraints'); end else priors.theta.constraints={}; end function constraintsOK=tryConstraints(constraints,theta) constraintsOK=1; for const=constraints constraintsOK=constraintsOK & eval(const{1}); end end % Set mcmc step interval values mcmc.thetawidth=0.2 * ones(1,numel(model.theta)); mcmc.rhoUwidth=0.1* ones(1,numel(model.betaU)); mcmc.rhoVwidth=0.1* ones(1,numel(model.betaV)); mcmc.lamVzwidth=10* ones(1,numel(model.lamVz)); mcmc.lamUzwidth=5* ones(1,numel(model.lamUz)); mcmc.lamWswidth=100* ones(1,numel(model.lamWs)); mcmc.lamWOswidth=100* ones(1,numel(model.lamWOs)); mcmc.lamOswidth=model.lamOs/2* ones(size(model.lamOs)); % set up control var lists for sampling and logging % pvars is the list of variables from model struct to log % svars is the list of variables to sample (and compute prior on) % svarSize is the length of each svar variable % wvars is the list of corresponding mcmc width names if n>0 % if there's obsData, do the full deal. if pv>0 mcmc.pvars={'theta','betaV','betaU','lamVz','lamUz','lamWs', ... 'lamWOs','lamOs','logLik','logPrior','logPost'}; mcmc.svars={'theta','betaV','betaU','lamVz', ... 'lamUz','lamWs','lamWOs','lamOs'}; mcmc.svarSize=[q % theta p*lamVzGnum % betaV pu*(p+q) % betaU lamVzGnum % lamVz pu % lamUz pu % lamWs 1 % lamWOs 1]'; % lamOs mcmc.wvars={'thetawidth','rhoVwidth','rhoUwidth','lamVzwidth', ... 'lamUzwidth','lamWswidth','lamWOswidth','lamOswidth'}; else %this is a no-discrepancy model with observations mcmc.pvars={'theta','betaU','lamUz','lamWs', ... 'lamWOs','logLik','logPrior','logPost'}; mcmc.svars={'theta','betaU','lamUz','lamWs','lamWOs'}; mcmc.svarSize=[q %theta pu*(p+q) % betaU pu % lamUz pu % lamWs 1]'; % lamWOs mcmc.wvars={'thetawidth','rhoUwidth', ... 'lamUzwidth','lamWswidth','lamWOswidth'}; end else % we're doing just an eta model, so a subset of the params. mcmc.pvars={'betaU','lamUz','lamWs', ... 'lamWOs','logLik','logPrior','logPost'}; mcmc.svars={'betaU','lamUz','lamWs','lamWOs'}; mcmc.svarSize=[pu*(p+q) % betaU pu % lamUz pu % lamWs 1]'; % lamWOs mcmc.wvars={'rhoUwidth', ... 'lamUzwidth','lamWswidth','lamWOswidth'}; end % Over and out params.data=data; params.model=model; params.priors=priors; params.mcmc=mcmc; params.obsData=obsData; params.simData =simData; params.optParms=optParms; params.pvals=[]; % initialize the struct end
github
AndrewCWalker/rsm_tool_suite-master
diagInds.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/diagInds.m
1,688
utf_8
f59b568d366c4b91f80524bae479d267
% function inds=createDiagInds(n) % % Return the 1-D indices of the diagonal of an nxn matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function inds=diagInds(n) inds = 1:(n+1):(n*n);
github
AndrewCWalker/rsm_tool_suite-master
gPredict.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gPredict.m
12,969
utf_8
0faae2364a770f2bd0a51297aae3cb08
%function pred=gPredict(xpred,pvals,model,data,varargs) % Predict using a gpmsa constructed model. % result is a 3-dimensional prediction matrix: % #pvals by model-dims by length-xpred % model-dims is the simulation basis size for a w-prediction (a model % with no observation data) or the v (discrepancy basis loadings) and u % (simulation basis loadings) for uv-prediction % argument pair keywords are % mode - 'wpred' or 'uvpred' % theta - the calibration variable value(s) to use, either one value or % one for each xpred. Default is the calibrated param in pvals % addResidVar - default 0, whether to add the residual variability % returnRealization - default 1, whether to return realizations of the % process specified. values will be in a .w field for wpred, or % .v and .u fields for uvpred. % returnMuSigma - default 0, whether to return the mean and covariance of % the process specified. results will be in a matrix .Myhat field % and a cell array .Syhat field. % returnCC - default 0, return the cross-covariance of the data and % predictors. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pred=gPredict(xpred,pvals,model,data,varargin) if model.n==0 mode='wpred'; else mode='uvpred'; end theta=[]; addResidVar=0; returnRealization=1; returnMuSigma=0; returnCC=0; parseAssignVarargs({'mode','theta','addResidVar', ... 'returnRealization','returnMuSigma', ... 'returnCC'}); switch mode case 'uvpred' pred=uvPred(xpred,pvals,model,data,theta,addResidVar, ... returnRealization,returnMuSigma,returnCC); case 'wpred' pred=wPred(xpred,pvals,model,data,theta,addResidVar, ... returnRealization,returnMuSigma,returnCC); otherwise error('invalid mode in gPredict'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pred=wPred(xpred,pvals,model,data,thetapred,addResidVar,retRlz,retMS,retC) n=model.n; m=model.m;p=model.p;q=model.q;pu=model.pu; npred=size(xpred,1); diags1=diagInds(m*pu); diags2=diagInds(npred*pu); nreal=length(pvals); tpred=zeros([nreal,npred*pu]); for ii=1:length(pvals) if n>0 theta=pvals(ii).theta'; end betaU=reshape(pvals(ii).betaU,p+q,pu); lamUz=pvals(ii).lamUz; lamWs=pvals(ii).lamWs; lamWOs=pvals(ii).lamWOs; if n>0 if isempty(thetapred) xpredt=[xpred repmat(theta,npred,1)]; else xpredt=[xpred thetapred]; end else xpredt=xpred; end xpredDist=genDist(xpredt); zxpredDist=genDist2(data.zt,xpredt); SigW=zeros(m*pu); for jj=1:pu bStart=(jj-1)*m+1; bEnd=bStart+m-1; SigW(bStart:bEnd,bStart:bEnd)=... gCovMat(model.ztDist,betaU(:,jj),lamUz(jj)); end SigW(diags1)=SigW(diags1)+ ... kron(1./(model.LamSim*lamWOs)',ones(1,m)) + ... kron(1./(lamWs)',ones(1,m)) ; SigWp=zeros(npred*pu); for jj=1:pu bStart=(jj-1)*npred+1; bEnd=bStart+npred-1; SigWp(bStart:bEnd,bStart:bEnd)= ... gCovMat(xpredDist,betaU(:,jj),lamUz(jj)); end SigWp(diags2)=SigWp(diags2)+ ... kron(1./(lamWs)',ones(1,npred)) ; if addResidVar SigWp(diags2)=SigWp(diags2)+ ... kron(1./(model.LamSim*lamWOs)',ones(1,npred)); end SigWWp=zeros(m*pu,npred*pu); for jj=1:pu bStartI=(jj-1)*m+1; bEndI=bStartI+m-1; bStartJ=(jj-1)*npred+1; bEndJ=bStartJ+npred-1; SigWWp(bStartI:bEndI,bStartJ:bEndJ)=... gCovMat(zxpredDist,betaU(:,jj),lamUz(jj)); end SigData=SigW; SigPred=SigWp; SigCross=SigWWp; % Get the stats for the prediction stuff. %W=(SigCross')/SigData; W=linsolve(SigData,SigCross,struct('SYM',true,'POSDEF',true))'; Myhat=W*(data.w(:)); Syhat=SigPred-W*SigCross; if retRlz % And do a realization tpred(ii,:)=rmultnormsvd(1,Myhat,Syhat')'; end if retMS % add the distribution params pred.Myhat(ii,:)=Myhat; pred.Syhat{ii}=Syhat; end if retC pred.CC{ii}=SigCross; end end if retRlz % Reshape the pred matrix to 3D: % first dim - (number of realizations [pvals]) % second dim - (number of principal components) % third dim - (number of points [x,theta]s) pred.w=zeros(length(pvals),pu,npred); for ii=1:pu pred.w(:,ii,:)=tpred(:,(ii-1)*npred+1:ii*npred); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pred=uvPred(xpred,pvals,model,data,thetapred,addResidVar,retRlz,retMS,retC) n=model.n;m=model.m;p=model.p;q=model.q;pu=model.pu;pv=model.pv; lamVzGnum=model.lamVzGnum; lamVzGroup=model.lamVzGroup; npred=size(xpred,1); diags0=diagInds(n*pu); diags1=diagInds(m*pu); diags2=diagInds(npred*pu); x0Dist=genDist(data.x); xpred0Dist=genDist(xpred); xxpred0Dist=genDist2(data.x,xpred); nreal=length(pvals); tpred=zeros([nreal,npred*(pv+pu)]); for ii=1:length(pvals) theta=pvals(ii).theta'; betaV=reshape(pvals(ii).betaV,p,lamVzGnum); betaU=reshape(pvals(ii).betaU,p+q,pu); lamVz=pvals(ii).lamVz; lamUz=pvals(ii).lamUz; lamWOs=pvals(ii).lamWOs; lamWs=pvals(ii).lamWs; lamOs=pvals(ii).lamOs; if isempty(thetapred) xpredt=[xpred repmat(theta,npred,1)]; else xpredt=[xpred thetapred]; end xDist=genDist([data.x repmat(theta,n,1)]); ztDist=genDist(data.zt); xzDist=genDist2([data.x repmat(theta,n,1)],data.zt); xpredDist=genDist(xpredt); xxpredDist=genDist2([data.x repmat(theta,n,1)],xpredt); zxpredDist=genDist2(data.zt,xpredt); % Generate the part of the matrix related to the data % Four parts to compute: Sig_v, Sig_u, Sig_w, and the Sig_uw crossterm SigV=zeros(n*pv); for jj=1:lamVzGnum; vCov(jj).mat=gCovMat(x0Dist, betaV(:,jj), lamVz(jj)); end for jj=1:pv bStart=(jj-1)*n+1; bEnd=bStart+n-1; SigV(bStart:bEnd,bStart:bEnd)=vCov(lamVzGroup(jj)).mat; end SigU=zeros(n*pu); for jj=1:pu bStart=(jj-1)*n+1; bEnd=bStart+n-1; SigU(bStart:bEnd,bStart:bEnd)= ... gCovMat(xDist,betaU(:,jj),lamUz(jj)); end SigU(diags0)=SigU(diags0)+... kron(1./(lamWs)',ones(1,n)) ; SigW=zeros(m*pu); for jj=1:pu bStart=(jj-1)*m+1; bEnd=bStart+m-1; SigW(bStart:bEnd,bStart:bEnd)=... gCovMat(ztDist,betaU(:,jj),lamUz(jj)); end SigW(diags1)=SigW(diags1)+ ... kron(1./(model.LamSim*lamWOs)',ones(1,m)) + ... kron(1./(lamWs)',ones(1,m)) ; SigUW=zeros(n*pu,m*pu); for jj=1:pu bStartI=(jj-1)*n+1; bEndI=bStartI+n-1; bStartJ=(jj-1)*m+1; bEndJ=bStartJ+m-1; SigUW(bStartI:bEndI,bStartJ:bEndJ)=... gCovMat(xzDist,betaU(:,jj),lamUz(jj)); end if model.scOut SigData=[ SigU+SigV SigUW; ... SigUW' SigW ]; SigData(1:n*pu,1:n*pu) = ... SigData(1:n*pu,1:n*pu) + model.SigObs*1/lamOs; else SigData=[SigV zeros(n*pv,(n+m)*pu); ... zeros((n+m)*pu,n*pv) [ SigU SigUW; ... SigUW' SigW ] ]; SigData(1:n*(pv+pu),1:n*(pv+pu)) = ... SigData(1:n*(pv+pu),1:n*(pv+pu)) + model.SigObs*1/lamOs; end % Generate the part of the matrix related to the predictors % Parts to compute: Sig_vpred, Sig_upred SigVp=zeros(npred*pv); for jj=1:lamVzGnum; vpCov(jj).mat=gCovMat(xpred0Dist, betaV(:,jj), lamVz(jj)); end for jj=1:pv bStart=(jj-1)*npred+1; bEnd=bStart+npred-1; SigVp(bStart:bEnd,bStart:bEnd)=vpCov(lamVzGroup(jj)).mat; end %SigVp(diagInds(npred*pv))=SigVp(diagInds(npred*pv))+1; SigUp=zeros(npred*pu); for jj=1:pu bStart=(jj-1)*npred+1; bEnd=bStart+npred-1; SigUp(bStart:bEnd,bStart:bEnd)= ... gCovMat(xpredDist,betaU(:,jj),lamUz(jj)); end SigUp(diags2)=SigUp(diags2)+... kron(1./(lamWs)',ones(1,npred)) ; if addResidVar SigUp(diags2)=SigUp(diags2)+ ... kron(1./(model.LamSim*lamWOs)',ones(1,npred)) ; end SigPred=[SigVp zeros(npred*pv,npred*pu); ... zeros(npred*pu,npred*pv) SigUp ]; % Now the cross-terms. SigVVx=zeros(n*pv,npred*pv); for jj=1:lamVzGnum; vvCov(jj).mat=gCovMat(xxpred0Dist, betaV(:,jj), lamVz(jj)); end for jj=1:pv bStartI=(jj-1)*n+1; bEndI=bStartI+n-1; bStartJ=(jj-1)*npred+1; bEndJ=bStartJ+npred-1; SigVVx(bStartI:bEndI,bStartJ:bEndJ)=vvCov(lamVzGroup(jj)).mat; end SigUUx=zeros(n*pu,npred*pu); for jj=1:pu bStartI=(jj-1)*n+1; bEndI=bStartI+n-1; bStartJ=(jj-1)*npred+1; bEndJ=bStartJ+npred-1; SigUUx(bStartI:bEndI,bStartJ:bEndJ)=... gCovMat(xxpredDist,betaU(:,jj),lamUz(jj)); end SigWUx=zeros(m*pu,npred*pu); for jj=1:pu bStartI=(jj-1)*m+1; bEndI=bStartI+m-1; bStartJ=(jj-1)*npred+1; bEndJ=bStartJ+npred-1; SigWUx(bStartI:bEndI,bStartJ:bEndJ)=... gCovMat(zxpredDist,betaU(:,jj),lamUz(jj)); end if model.scOut SigCross=[SigVVx SigUUx; ... zeros(m*pu,npred*pv) SigWUx]; else SigCross=[SigVVx zeros(n*pv,npred*pu); ... zeros(n*pu,npred*pv) SigUUx; ... zeros(m*pu,npred*pv) SigWUx]; end if 0 figure(3) subplot(2,2,1); imagesc(gScale(SigData,'sqrt')) subplot(2,2,2); imagesc(gScale(SigCross,'sqrt')) subplot(2,2,3); imagesc(gScale(SigCross','sqrt')) subplot(2,2,4); imagesc(gScale(SigPred,'sqrt')) keyboard end % Get the stats for the prediction stuff. %W=(SigCross')/SigData; W=linsolve(SigData,SigCross,struct('SYM',true,'POSDEF',true))'; if model.scOut, Myhat=W*model.uw; else Myhat=W*model.vuw; end Syhat=SigPred-W*SigCross; if retRlz % And do a realization tpred(ii,:)=rmultnormsvd(1,Myhat,Syhat')'; end if retMS % log the distribution params pred.Myhat(ii,:)=Myhat; pred.Syhat{ii}=Syhat; end if retC pred.CC{ii}=SigCross; end end if retRlz % Reshape the pred matrix to 3D, for each component: % first dim - (number of realizations [pvals]) % second dim - (number of principal components) % third dim - (number of points [x,theta]s) pred.v=zeros(length(pvals),pv,npred); pred.u=zeros(length(pvals),pu,npred); for ii=1:pv pred.v(:,ii,:)=tpred(:,(ii-1)*npred+1:ii*npred); end for ii=1:pu pred.u(:,ii,:)=tpred(:,pv*npred+((ii-1)*npred+1:ii*npred) ); end end end % % Helper function rmultnormSVD computes multivariate normal realizations function rnorm = rmultnormsvd(n,mu,cov) [U S] = svd(cov); rnorm = repmat(mu,1,n) + U*sqrt(S) * randn(size(mu,1),n); end
github
AndrewCWalker/rsm_tool_suite-master
computeLogPrior.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/computeLogPrior.m
2,422
utf_8
df71fa1621e6def310ce84163c42cc8d
%function model = computeLogPrior(priors,mcmc,model) % % Builds the prior likelihood % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function model = computeLogPrior(priors,mcmc,model) f=mcmc.svars; logprior=0; lastp=0; for ii=1:length(f); curf=f{ii}; switch(curf) % betaU ad betaV have to be handled with rho/beta transformation case 'betaU' rhoU= exp(-model.betaU.*(0.5^2)); rhoU(rhoU>0.999)=0.999; logprior=logprior + feval(priors.rhoU.fname,rhoU,priors.rhoU.params); case 'betaV' rhoV= exp(-model.betaV.*(0.5^2)); rhoV(rhoV>0.999)=0.999; logprior=logprior + feval(priors.rhoV.fname,rhoV,priors.rhoV.params); otherwise % it's general case for the others logprior=logprior + ... feval(priors.(curf).fname,model.(curf),priors.(curf).params); end %fprintf('%10s %f\n',curf,logprior-lastp); lastp=logprior; %fprintf('%10s %f\n',curf,logprior); end model.logPrior=logprior;
github
AndrewCWalker/rsm_tool_suite-master
showPvals.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/showPvals.m
2,687
utf_8
7afb8f157187182f1163280278447048
% function showPvals(pvals, skip) % skip = the beginning index to display; optional %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function showPvals(pvals, skip) if ~exist('skip'); skip = 1; end; fprintf('Processing pval struct from index %d to %d\n',skip,length(pvals)); f=fieldnames(pvals); fdel=false(length(f),1); for ii=1:length(f) if ~isempty(strfind(f{ii},'Acc')); fdel(ii)=1; end; end f=f(~fdel); flen=length(f); x=skip:length(pvals); pvals=pvals(skip:end); cla for ii=1:flen y=[pvals.(f{ii})]; h(ii)=pvalSubplot(flen,ii); if length(x)==length(y) plot(x,y); else plot(y); end ylabel(f{ii}); fprintf('%10s: mean s.d. \n',f{ii}) for ii=1:size(y,1) fprintf(' %3d: %12.4g %12.4g \n', ... ii,mean(y(ii,:)),std(y(ii,:)) ); end end set(h(1:end-1),'XTick',[]); end % An internal function is needed to get the subplots to use more of the % available figure space function h=pvalSubplot(n,i) sep=0.25; left =0.1; sizelr=0.8; bottom=(1-(i/n))*0.8+0.1; sizetb=(1/n)*0.8*(1-sep/2); h=subplot('position',[left bottom sizelr sizetb]); end
github
AndrewCWalker/rsm_tool_suite-master
counter.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/counter.m
3,295
utf_8
c028bb3c870f6796e476f67360b9a36c
% function counter('start',first_value,last_value,skip_counts,feed) % function counter('stime',first_value,last_value,skip_seconds,feed) % Setup mode % first_value=first value in counter % last_value=last value in counter (for time computation) % feed = count of display events for computing time remaining (and linefeed) % skip_counts = count to skip any printout % skip_seconds = time delay for progress display % function counter(index) % Run Mode % index = the current loop index % function counter('end') % print the final time %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function out=counter(arg1,arg2,arg3,arg4,arg5) persistent first last feed lval skip mode dcount; out=0; if strcmp(arg1,'start') tic; mode=0; first=arg2; last=arg3; skip=arg4; feed=arg5; lval=first-skip; dcount=0; fprintf('Started value counter, vals %d -> %d\n',first,last); fprintf(' '); return; elseif strcmp(arg1,'stime') tic; mode=1; first=arg2; last=arg3; skip=arg4; feed=arg5; lval=0; dcount=0; fprintf('Started timed counter, vals %d -> %d\n',first,last); fprintf(' '); return; elseif strcmp(arg1,'end') etime=toc; if etime>60; fprintf('%dmin:',floor(toc/60)); end; fprintf('%5.2fsec \n',mod(toc,60)); return; end val=arg1; switch(mode) case 0 i=val; case 1 i=toc; %fprintf('%f..\n',i); end if i>(lval+skip-1) out=1; lval=i; fprintf('%d..',val); dcount=dcount+1; if (dcount>=feed); if (last>first) fprintf('%5.1f min, %5.1f min remain\n ',toc/60,toc/60*(last-val+1)/(val-first)); end dcount=0; out=2; end; end
github
AndrewCWalker/rsm_tool_suite-master
genDist2.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/genDist2.m
2,533
utf_8
82783b882e1fc9d1b4096cb0d3db2da6
% function d = gendist2(data1,data2,dataDesc); % generates the nxmxp distance array values and supporting % information, given the nxp matrix data1 and mxp data2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function d = genDist2(data1,data2,dataDesc) d.type=2; [n p1] = size(data1); [m p2] = size(data2); p=max(p1,p2); %generate & store the list of n*m distance indices inds=n*m; indi=repmat(1:n,1,m); indj=repmat(1:m,n,1); indj=indj(:)'; d.n=n; d.m=m; d.p=p; d.indi=indi; d.indj=indj; d.indm=indi + n*(indj-1); if any([p1 p2]==0); d.d=[]; return; end % if either dataset is empty d.d=(data1(indi,:)-data2(indj,:)).^2; %if ~exist('dataDesc','var'); cat=any([data1;data2]<0); % else cat=[dataDesc.typeCategorical]; %end %cat0=find(~cat); cat1=find(cat); % %if isempty(cat1); % d.d=(data1(indi,:)-data2(indj,:)).^2; %else % d.d=zeros(inds,p); % d.d(:,cat0)=(data1(indi,cat0)-data2(indj,cat0)).^2; % d.d(:,cat1)=(data1(indi,cat1)~=data2(indj,cat1))*0.5; %end
github
AndrewCWalker/rsm_tool_suite-master
gLogGammaPrior.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gLogGammaPrior.m
1,859
utf_8
d710e649ff2ed42a891da063011c5753
%function model = gLogGammaPrior(x,parms) % % Computes unscaled log normal pdf, % sum of 1D distributions for each (x,parms) in the input vectors % for use in prior likelihood calculation % parms = [a-parameter-vector b-parameter-vector] % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function p = gLogGammaPrior(x,parms) a=parms(:,1); b=parms(:,2); x=x(:); p=sum( (a-1).*log(x) - b.*x );
github
AndrewCWalker/rsm_tool_suite-master
parseAssignVarargs.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/parseAssignVarargs.m
2,382
utf_8
41948e793af8c4b330571f7498b71208
% function parseAssignVarargs(validVars) % assigns specified caller varargs to the corresponding variable name % in the calling workspace. vars not specified are not assigned. % validVars is a cell array of strings that represents possible % arg names, and the variable name in the workspace (identical) % varargs is the varargin cell array to parse %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function parseAssignVarargs(validVars) pr=0; bargs=evalin('caller','varargin'); for ii=1:2:length(bargs) varID=find(strcmp(validVars,bargs{ii})); if length(varID)~=1; error('bad argument detected by parseAssignVarargs'); end if pr; fprintf('Assigning: %s\n', validVars{varID}); bargs{ii+1}, end if evalin('caller',['exist(''' validVars{varID} ''');']) assignin('caller',validVars{varID},bargs{ii+1}); else error('Variable (argument) %s not initialized\n',validVars{varID}); end end
github
AndrewCWalker/rsm_tool_suite-master
gAnalyzePCA.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gAnalyzePCA.m
2,848
utf_8
b90e5f67f23f598aa3fbb2d3c866aa60
%function a=gAnalyzePCA(y,y1) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [a K]=gAnalyzePCA(y,y1) [U S V]=svd(y,0); K = (U*S)/sqrt(size(y,2)); a=cumsum(diag(S).^2); a=a/a(end); figure(10); clf; subplot(1,2,1); hold on; plot(a); axis([1 length(a) 0 1]) subplot(1,2,2); hold on; plot(a(1:min(end,10))); axis([1 10 0 1]) % add the mean absolute deviation of the simulators if exist('y1') for ii=1:size(K,1); y1pcv(ii)=sum(abs(y1-K(:,1:ii)*(K(:,1:ii)\y1))); ypcv(ii)=sum(sum(abs(y-K(:,1:ii)*(K(:,1:ii)\y)))); end y1pcv=1-y1pcv/sum(abs(y1)); ypcv=1-ypcv/sum(abs(y(:))); subplot(1,2,1); plot(ypcv,'g'); plot(y1pcv,'r'); legend({'variance explained','sim abs resid explained','obs abs resid explained'},'location','Best'); subplot(1,2,2); plot(ypcv(1:min(end,10)),'g'); plot(y1pcv(1:min(end,10)),'r'); legend({'variance explained','sim abs resid explained','obs abs resid explained'},'location','Best'); title('zoom on first 10 PCs') end figure(11); clf PC=U*S; for ii=1:5; h(ii)=subplot(5,1,ii); plot(PC(:,ii)); title(['PC ' num2str(ii)]); end axisNorm(h,'xymax'); figure(12); clf; for ii=1:10; h(ii)=subplot(10,1,ii); K=U(:,1:ii)*S(1:ii,1:ii); pc=K\y; yhat=K*pc; plot(yhat-y); title(['reconstruction error with ' num2str(ii) ' PC']); end; axisNorm(h,'ymax')
github
AndrewCWalker/rsm_tool_suite-master
gLogNormalPrior.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gLogNormalPrior.m
1,868
utf_8
34a389d335f9f51af952c938fcfcde8a
%function model = gLogNormalPrior(x,parms) % % Computes unscaled log normal pdf, % sum of 1D distributions for each (x,parms) in the input vectors % for use in prior likelihood calculation % parms = [mean-vector standard-deviation-vector] % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function p = gLogNormalPrior(x,parms) mu=parms(:,1); std=parms(:,2); x=x(:); p = - .5 * sum( ((x-mu)./std).^2 );
github
AndrewCWalker/rsm_tool_suite-master
axisNorm.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/axisNorm.m
3,170
utf_8
0db8d59bce06058f104cfb06a9cafea6
% function axisNorm(handles, mode, axisVals) % Tool to set 2S plot axes to the same values. % handles is a list of handles to the plots in question % mode is combinations of 'x', 'y', and 'z', optionally followed by 'max' % indicating which axes are to be set, and whether they are to be % autoscaled to the outer bounds of all, or to the given values % in axisVals. % For example % 'xmax' scales the x axis in all handles to the max bounds; % 'xyzmax' scales all axes to their max enclosures % 'xy' scales the x and y axes to values in axisVals % axisVals, if supplied, has dummy values in unspecified positions % 'imrange' mode normalizes the range of the images (that is, % the CLim axis properties) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function axisNorm(h, mode, ax) %test h=h(:); if strcmp(mode,'imrange') clim=[inf -inf]; for ii=1:length(h); cl=get(h(ii),'CLim'); clim(1)=min(clim(1),cl(1)); clim(2)=max(clim(2),cl(2)); end set(h,'CLim',clim); return end maxMode=0; xParm=0; yParm=0; zParm=0; if regexp(mode,'max'); maxMode=1; mode=mode(1:regexp(mode,'max')-1); end if regexp(mode,'x'); xParm=1; end if regexp(mode,'y'); yParm=1; end if regexp(mode,'z'); zParm=1; end if maxMode % then determine the enclosing axes axNum=length(axis(h(1))); axMult=repmat([-1 1],1,axNum/2); ax=-Inf*ones(1,axNum); for ii=1:length(h) ax=max([ax; axis(h(ii)).*axMult]); end ax=ax.*axMult; mode=mode(1:regexp(mode,'max')-1); end for ii=1:length(h) a=axis(h(ii)); if xParm a([1 2])=ax([1 2]); end if yParm a([3 4])=ax([3 4]); end if zParm a([5 6])=ax([5 6]); end axis(h(ii),a); end
github
AndrewCWalker/rsm_tool_suite-master
gGMICDF.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gGMICDF.m
1,058
utf_8
a8ecc3f457ad1127cf36f1cc5da6f0f5
function icVals = gGMICDF(means,vars,cVals) % function icVals = gGMICDF(means,vars,Cvals) % compute inverse CDF of a gaussian mixture(s) % each row of means and vars defines a mixture % output icVals is (rows of means&vars) by (length of cVals) icVals=zeros(size(means,1),length(cVals)); sds=sqrt(vars); for ii=1:size(means,1) mingrid=min(means(ii,:)-4*sds(ii,:)); maxgrid=max(means(ii,:)+4*sds(ii,:)); grid=linspace(mingrid,maxgrid,1e4); fullMix=zeros(size(means,2),length(grid)); for jj=1:size(means,2); fullMix(jj,:)=gNormpdf(grid,means(ii,jj),sds(ii,jj)); end mm=sum(fullMix); icVals(ii,:)=empiricalICDF(grid,mm,cVals); end end function icdf=empiricalICDF(grid,updf,cdfVals) ecdf=cumsum(updf)/sum(updf); icdf=zeros(size(cdfVals)); for ii=1:length(cdfVals) cLoc=find(ecdf>cdfVals(ii),1); if isempty(cLoc) icdf(ii)=grid(end); elseif cLoc==1 icdf(ii)=grid(1); else icdf(ii)=interp1(ecdf([cLoc-1 cLoc]),grid([cLoc-1,cLoc]),cdfVals(ii)); end end end
github
AndrewCWalker/rsm_tool_suite-master
computeLogLik.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/computeLogLik.m
7,999
utf_8
cab080bb792a424e4b553052e849bdc1
% function model = computeLogLik(model,data,C) % % Builds the log likelihood of the data given the model parameters. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function model = computeLogLik(model,data,C) n=model.n; m=model.m; pu=model.pu; pv=model.pv; p=model.p; q=model.q; lamVzGnum=model.lamVzGnum; lamVzGroup=model.lamVzGroup; % validate and process the changed field do.theta=0;do.betaV=0;do.lamVz=0;do.betaU=0;do.lamUz=0; do.lamWs=0;do.lamWOs=0; if strcmp(C.var,'theta') || strcmp(C.var,'all') % update distances model.xDist=genDist([data.x repmat(model.theta,n,1)]); model.xzDist=genDist2([data.x repmat(model.theta,n,1)],data.zt); end switch C.var case 'all' do.theta=1; do.betaV=1; do.lamVz=1; do.betaU=1; do.lamUz=1; do.lamWs=1; do.lamWOs=1; do.lamOs=1; model.SigWl=zeros(pu,1); case 'theta'; do.theta=1; case 'betaV'; do.betaV=1; case 'lamVz'; do.lamVz=1; case 'betaU'; do.betaU=1; case 'lamUz'; do.lamUz=1; case 'lamWs'; do.lamWs=1; case 'lamWOs'; do.lamWOs=1; case 'lamOs'; do.lamOs=1; otherwise %error('Invalid Subtype in computeLogLik'); end betaV=model.betaV; lamVz=model.lamVz; betaU=model.betaU; lamUz=model.lamUz; lamWs=model.lamWs; lamWOs=model.lamWOs; lamOs=model.lamOs; % Four parts to compute: Sig_v, Sig_u, Sig_w, and the Sig_uw crossterm if (do.theta || do.betaV || do.lamVz) SigV=[]; for jj=1:lamVzGnum SigV(jj).mat=gCovMat(model.x0Dist, betaV(:,jj), lamVz(jj)); end model.SigV=SigV; else SigV=model.SigV; end if (do.theta || do.betaU || do.lamUz || do.lamWs) SigU(pu).mat=[]; diags1=diagInds(n); for jj=1:pu SigU(jj).mat=gCovMat(model.xDist,betaU(:,jj),lamUz(jj)); SigU(jj).mat(diags1)=SigU(jj).mat(diags1)+1/lamWs(jj); end model.SigU=SigU; else SigU=model.SigU; end if (do.betaU || do.lamUz || do.lamWs || do.lamWOs) diags2=diagInds(m); switch C.var case 'all' jinds=1:pu; case 'betaU' jinds=ceil( C.index/(p+q) ); case {'lamUz','lamWs'} jinds=C.index; case 'lamWOs' jinds=1:pu; end for jj=jinds if isempty(data.ztSep) cg=gCovMat(model.ztDist,betaU(:,jj),lamUz(jj)); cg(diags2)=cg(diags2)+1/(model.LamSim(jj)*lamWOs) + 1/lamWs(jj); % calculate the SigW likelihood for each block model.SigWl(jj)=doLogLik(cg,model.w((jj-1)*m+1:jj*m)); % calculate the SigW inverse for each block model.SigWi(jj).mat=inv(cg); else % there is a separable design, so compute these as kron'ed blocks segVarStart=1; for ii=1:length(data.ztSep) segVars=segVarStart:(segVarStart + model.ztSepDist{ii}.p-1); segVarStart=segVarStart+ model.ztSepDist{ii}.p; cg{ii}=gCovMat(model.ztSepDist{ii},betaU(segVars,jj),lamUz(jj)); end cgNugget=1/(model.LamSim(jj)*lamWOs) + 1/lamWs(jj); [model.SigWl(jj) model.SigWi(jj).mat]= ... doLogLikSep(cg,cgNugget,model.w((jj-1)*m+1:jj*m)); end end end if (do.theta || do.betaU || do.lamUz) SigUW(pu).mat=[]; for jj=1:pu SigUW(jj).mat=gCovMat(model.xzDist,betaU(:,jj),lamUz(jj)); end model.SigUW=SigUW; else SigUW=model.SigUW; end % The computation is decomposed into the likelihood of W, % and the likelihood of VU|W. % Compute the likelihood of the W part (already done the blocks) LogLikW=sum(model.SigWl); % Compute the likelihood of the VU|W % This requires using the gaussian model estimation stuff. % It is complicated because of shortcuts allowed by lack of correlation % between W and V % do these ops, on the block diagonal blocks: % W=SigUW*model.SigWi; % SigUgW=SigU-W*SigUW'; W(pu).mat=[]; SigUgW(pu).mat=[]; for ii=1:pu W(ii).mat=SigUW(ii).mat*model.SigWi(ii).mat; SigUgW(ii).mat=SigU(ii).mat-W(ii).mat*SigUW(ii).mat'; end %for scalar output: SigVUgW=[SigV+SigUgW] ... % + model.SigObs/lamOs; %otherwise: SigVUgW=[SigV zeros(n*pv,n*pu); ... % zeros(n*pu,n*pv) SigUgW ] ... % + model.SigObs/lamOs; SigVUgW=model.SigObs/lamOs; for ii=1:pv blkRange=(ii-1)*n+1:ii*n; SigVUgW(blkRange,blkRange)=SigVUgW(blkRange,blkRange)+ ... SigV(lamVzGroup(ii)).mat; end if model.scOut for ii=1:pu blkRange=(ii-1)*n+1:ii*n; SigVUgW(blkRange,blkRange)=SigVUgW(blkRange,blkRange)+SigUgW(ii).mat; end else for ii=1:pu blkRange=n*pv+[(ii-1)*n+1:ii*n]; SigVUgW(blkRange,blkRange)=SigVUgW(blkRange,blkRange)+SigUgW(ii).mat; end end % do this op: MuVUgW =W*model.w; MuVUgW=zeros(n*pu,1); for ii=1:pu blkRange1=(ii-1)*n+1:ii*n; blkRange2=(ii-1)*m+1:ii*m; MuVUgW(blkRange1)=W(ii).mat*model.w(blkRange2); end % for scalar output: MuDiff= [u] - [MuVUgW] % otherwise: MuDiff= [v;u] - [0;MuVUgW] if model.scOut MuDiff=model.u; MuDiff=MuDiff-MuVUgW; else MuDiff=model.vu; MuDiff(pv*n+1:end)=MuDiff(pv*n+1:end)-MuVUgW; end % Now we can get the LL of VU|W LogLikVUgW=doLogLik(SigVUgW,MuDiff); % Final Answer, LL(VU) = LL(VU|W) + LL(W) model.logLik=LogLikVUgW+LogLikW; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [L chCov]=doLogLik(Sigma,data) chCov=chol(Sigma); logDet=sum(log(diag(chCov))); % actually, the log sqrt(det) p1=(chCov')\data; L=-logDet-0.5*(p1'*p1); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [L Sinv]=doLogLikSep(Sigma,nugget,data) % get the eigenDecomp for the blocks for ii=1:length(Sigma) [V{ii} D{ii}]=eig(Sigma{ii}); end % compute the determinant from the eigenvalues and the nugget dkron=diag(D{end}); for ii=(length(Sigma)-1):-1:1 dkron=kron(diag(D{ii}),dkron); end logDet=log(prod(dkron+nugget)); % compute the composite inverse, including the nugget vkron=V{end}; for ii=(length(Sigma)-1):-1:1 vkron=kron(V{ii},vkron); end Sinv=vkron * diag(1./(dkron+nugget)) * vkron'; % compute the log likelihood L=-0.5*logDet-0.5*data'*Sinv*data; end
github
AndrewCWalker/rsm_tool_suite-master
gpmmcmc.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gpmmcmc.m
21,190
utf_8
0c98b80fe8dff8fc32c33dc786814458
% function [params hierParams] = gpmmcmc(params,nmcmc,varargin) % params - a parameters struct or array of structs % nmcmc - number of full draws to perform (overridden for stepInit mode) % varargs are in string/value pairs % 'noCounter' - default 0, 1 ==> do not output a counter of iterations % 'step' - default 0, 1 ==> specified step size mode % 'initOnly' - only do & return the precomputaton of partial results % 'noInit' - initialization is not necessary, skip precomputation % 'clist' - for multiple models, the description of common thetas % each row is for one linked variable (theta). A row is a % list of indicators the same length as the number of % models (the params array). A zero indicates the % corresponding theta is not in the corresponding model, a % nonzero entry indicates the index of that theta in that % model. % 'hierParams'- parameter structure for hierarchical model linking of % theta parameters in joint models. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % Brian Williams, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [params hierParams] = gpmmcmc(params,nmcmc,varargin) % Grab to local variable numMods=length(params); % Process input arguments noCounter=0; clist=zeros(0,numMods); step=0; initOnly=0; noInit=0; hierParams=[]; parseAssignVarargs({'noCounter', 'clist','hierParams', ... 'step','initOnly','noInit'}); % Backwards compatibility for modi=1:numMods % for zt as a single field if ~isfield(params(modi).data,'zt'); params(modi).data.zt=[params(modi).data.z params(modi).data.t]; end % for separable design field (indicator) if ~isfield(params(modi).data,'ztSep'); params(modi).data.ztSep=[]; end end % if there is a hierarchical model, seed the models' priors. params=copyHPriors(params,hierParams); % Initialize the models if ~noInit for modi=1:numMods % computing the likelihood sets up partial results inside the model structure C.var='all'; params(modi).model=computeLogLik(params(modi).model,params(modi).data,C); params(modi).model=computeLogPrior(params(modi).priors,params(modi).mcmc,... params(modi).model); params(modi).model.logPost=params(modi).model.logPrior+params(modi).model.logLik; end end if initOnly; return; end % initialize the structure that will record draw info for modi=1:numMods if numel(params(modi).pvals); pvals=params(modi).pvals; poff=length(pvals); else for var=params(modi).mcmc.pvars; params(modi).pvals(1).(var{1})=0; end for var=params(modi).mcmc.svars; params(modi).pvals(1).([var{1} 'Acc'])=0; end; poff=0; end params(modi).pvals(poff+nmcmc)=params(modi).pvals(1); end % pull out the minimal subset data structure to pass around for modi=1:numMods; subParams(modi).model=params(modi).model; subParams(modi).data=params(modi).data; subParams(modi).priors=params(modi).priors; subParams(modi).mcmc=params(modi).mcmc; end % Counter will be used and displayed if we are not in linked model mode if ~noCounter; counter('stime',1,nmcmc,10,10); end % Do mcmc draws for iter=1:nmcmc if ~noCounter; counter(iter); end for modi=1:numMods % Get some local vars picked out svars=subParams(modi).mcmc.svars; svarSize=subParams(modi).mcmc.svarSize; wvars=subParams(modi).mcmc.wvars; for varNum=1:length(svars) C.var=svars{varNum}; C.aCorr=1; % default is no step correction. switch(C.var) case {'theta'} for k=1:svarSize(varNum) C.index=k;C.val=subParams(modi).model.(C.var)(k) + ... (rand(1)-.5)*subParams(modi).mcmc.(wvars{varNum})(k); subParams=mcmcEval(subParams,modi,C,clist); acc.(C.var)(k)=subParams(modi).model.acc; end case {'betaV','betaU'} for k=1:svarSize(varNum) cand = exp(-subParams(modi).model.(svars{varNum})(k).*(.5^2))+ ... (rand(1)-.5)*subParams(modi).mcmc.(wvars{varNum})(k); C.index=k;C.val=-log(cand)/(0.5^2); subParams=mcmcEval(subParams,modi,C,clist); acc.(C.var)(k)=subParams(modi).model.acc; end case {'lamVz','lamUz','lamWs','lamWOs','lamOs'} for k=1:svarSize(varNum) if ~step C.index=k; [C.val C.aCorr]=chooseVal(subParams(modi).model.(C.var)(k)); subParams(modi).model.acc=0; %might not call eval if C.aCorr; subParams=mcmcEval(subParams,modi,C,clist); end else C.index=k;C.val=subParams(modi).model.(C.var)(k) + ... (rand(1)-.5)*subParams(modi).mcmc.(wvars{varNum})(k); subParams=mcmcEval(subParams,modi,C,clist); end acc.(C.var)(k)=subParams(modi).model.acc; end otherwise error('Unknown sample variable in gpmmcmc mcmcStep') end end % Save the designated fields for varName=subParams(modi).mcmc.pvars params(modi).pvals(poff+iter).(varName{1})=... subParams(modi).model.(varName{1})(:); end for varName=subParams(modi).mcmc.svars params(modi).pvals(poff+iter).([varName{1} 'Acc'])=acc.(varName{1})(:); end end % going through the models % if there is a hierarchical models structure, perform sampling if ~isempty(hierParams) [subParams hierParams] = mcmcHier(subParams,hierParams,step,poff+iter); for hi=1:length(hierParams); for vi=1:length(hierParams(hi).vars) modi=hierParams(hi).vars(vi).modNum; varNum=hierParams(hi).vars(vi).varNum; if hierParams(hi).pvals(poff+iter).acc(3) params(modi).pvals(poff+iter).theta(varNum)=... subParams(modi).model.theta(varNum); end end end end end % going through the iterations if ~noCounter; counter('end'); end % end the counter % recover the main data structure for modi=1:numMods; params(modi).model= subParams(modi).model; params(modi).data= subParams(modi).data; params(modi).priors=subParams(modi).priors; end % And that's it for the main function .... end %main function gaspmcmc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [params hP] = mcmcHier(params,hP,step,logi) pr=0; oldPriorStyle=0; % if there is a hierarchical model on thetas, this is where % the hyperparameters are sampled and updated % go through all hierarchical models specified for hi=1:length(hP) reject=zeros(7,1); % First, sample the hyperparameters % generate a candidate draw and evaluate for mean cand=hP(hi).model.mean + (rand(1)-.5)*hP(hi).mcmc.meanWidth; if cand<hP(hi).priors.mean.bLower || cand>hP(hi).priors.mean.bUpper if pr; fprintf(' Reject, out of bounds 1\n'); end reject(1)=1; end if ~reject(1) constraintsOK=1; for jj=1:length(hP(hi).vars) modind=hP(hi).vars(jj).modNum; varNum=hP(hi).vars(jj).varNum; theta=params(modind).priors.theta.params(:,1); theta(varNum)=cand; for const=params(modind).priors.theta.constraints constraintsOK=constraintsOK & eval(const{1}); end end if ~constraintsOK if pr fprintf(' Reject, from hierarchical mean constraint set 1\n'); end reject(1)=1; end end if ~reject(1) [params hP reject(2)]=evalHierDraw(cand,hP(hi).model.lam,1,params,hP,hi); end % generate a candidate draw and evaluate for lam aCorr=1; if ~step [cand aCorr]=chooseVal(hP(hi).model.lam); else cand=hP(hi).model.lam+(rand(1)-.5)*hP(hi).mcmc.lamWidth; end if cand<hP(hi).priors.lam.bLower || cand>hP(hi).priors.lam.bUpper if pr; fprintf(' Reject, out of bounds 3\n'); end reject(3)=1; else [params hP reject(4)]=evalHierDraw(hP(hi).model.mean,cand,aCorr,params,hP,hi); end % Second, try a lockstep update of the hierarchical and individual % theta means (to avoid shrinkage overstability problems) This moves % all of the points and the h.model mean by the same shift, so the % only changes are the models' likelihoods and the hier mean prior candDelta=(rand(1)-.5)*hP(hi).mcmc.lockstepMeanWidth; % candidate for the hierarchical mean newHmean=hP(hi).model.mean+ candDelta; if pr fprintf('candDelta=%f, old=%f new=%f; ', ... candDelta, hP(hi).model.mean,newHmean); end % Check bounds if newHmean < hP(hi).priors.mean.bLower || ... newHmean > hP(hi).priors.mean.bUpper if pr; fprintf(' Reject, out of bounds 5\n'); end reject(5)=1; end if ~reject(5) constraintsOK=1; for jj=1:length(hP(hi).vars) modind=hP(hi).vars(jj).modNum; varNum=hP(hi).vars(jj).varNum; theta=params(modind).priors.theta.params(:,1); theta(varNum)=newHmean; for const=params(modind).priors.theta.constraints constraintsOK=constraintsOK & eval(const{1}); end end if ~constraintsOK if pr fprintf(' Reject, from hierarchical mean constraint set 5\n'); end reject(5)=1; end end if ~reject(5) % compute the updated Normal prior for the hier. model mean if oldPriorStyle curHPrior=-0.5*( (hP(hi).model.mean-hP(hi).priors.mean.mean)./ ... (hP(hi).priors.mean.std) ).^2; newHPrior=-0.5*( (newHmean-hP(hi).priors.mean.mean)./ ... (hP(hi).priors.mean.std) ).^2; else curHPrior=gLogNormalPrior(hP(hi).model.mean, ... [hP(hi).priors.mean.mean hP(hi).priors.mean.std]); newHPrior=gLogNormalPrior(newHmean, ... [hP(hi).priors.mean.mean hP(hi).priors.mean.std]); end if pr fprintf('prior from %f to %f; ',curHPrior,newHPrior); end % Compute the updated likelihood for the associated models C.var='theta'; for jj=1:length(hP(hi).vars) modind=hP(hi).vars(jj).modNum; varNum=hP(hi).vars(jj).varNum; modelT(jj)=params(modind).model; curLik(jj)=modelT(jj).logLik; modelT(jj).theta(varNum)=modelT(jj).theta(varNum)+candDelta; % check bounds for the model if modelT(jj).theta(varNum) < params(modind).priors.theta.bLower || ... modelT(jj).theta(varNum) > params(modind).priors.theta.bUpper if pr; fprintf(' Reject, out of bounds 6\n'); end reject(6)=1; end theta=modelT(jj).theta'; constraintsOK=1; for const=params(modind).priors.theta.constraints constraintsOK=constraintsOK & eval(const{1}); end if ~constraintsOK if pr; fprintf(' Reject, from theta constraint set 6\n'); end reject(6)=1; end if ~reject(6) % set the var and compute the new likelihood modelT(jj)=computeLogLik(modelT(jj),params(modind).data,C); % extract the new likelihood value newLik(jj)=modelT(jj).logLik; end end end if ~any(reject(5:6)) % Add up the priors and likelihoods oldPost=sum(curLik)+curHPrior; newPost=sum(newLik)+newHPrior; if pr fprintf('lik from %f to %f; ',sum(curLik),sum(newLik)); end % Test acceptance and update if log(rand)<(newPost-oldPost) % record the new hier model mean hP(hi).model.mean=newHmean; for jj=1:length(hP(hi).vars) modind=hP(hi).vars(jj).modNum; varNum=hP(hi).vars(jj).varNum; % Update models, after adding up the correct posterior lik modelT(jj).logPost=modelT(jj).logLik+modelT(jj).logPrior; params(modind).model=modelT(jj); % Update model prior mean as the new hyper param mean params(modind).priors.theta.params(varNum,1)= newHmean; end else reject(7)=1; end end if pr; if ~any(reject); fprintf('accept \n'); else fprintf('reject %d\n',find(reject)); end end hP(hi).pvals(logi).mean=hP(hi).model.mean; hP(hi).pvals(logi).lam=hP(hi).model.lam; hP(hi).pvals(logi).acc=[~any(reject(1:2)) ~any(reject(3:4)) ... ~any(reject(5:7))]'; end end % function mcmcHier %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % evaluate whether to accept a change to hier priors. function [params hP reject]=evalHierDraw(mean,lam,aCorr,params,hP,hi) oldPriorStyle=0; % go through each linked var, find out what the updated prior is for vari=1:length(hP(hi).vars) modind=hP(hi).vars(vari).modNum; varNum=hP(hi).vars(vari).varNum; curPrior(vari)=params(modind).model.logPrior; priorsT(vari)=params(modind).priors; priorsT(vari).theta.params(varNum,1)=mean; priorsT(vari).theta.params(varNum,2)=sqrt(1/lam); modelT=computeLogPrior(priorsT(vari),... params(hP(hi).vars(vari).modNum).mcmc, ... params(hP(hi).vars(vari).modNum).model); newPrior(vari)=modelT.logPrior; end % compute the hierarchical prior parameter likelihoods % mean is a normal prior % lambda is a gamma prior if oldPriorStyle curHPrior=0.5* ( (hP(hi).model.mean-hP(hi).priors.mean.mean)./ ... (hP(hi).priors.mean.std) ).^2; newHPrior=0.5* ( (mean-hP(hi).priors.mean.mean)./ ... (hP(hi).priors.mean.std) ).^2; curHPrior=curHPrior+(hP(hi).priors.lam.a-1).*log(hP(hi).model.lam)- ... hP(hi).priors.lam.b*hP(hi).model.lam; newHPrior=newHPrior+(hP(hi).priors.lam.a-1).*log(lam)- ... hP(hi).priors.lam.b*lam; else curHPrior=gLogNormalPrior(hP(hi).model.mean, ... [hP(hi).priors.mean.mean hP(hi).priors.mean.std]); newHPrior=gLogNormalPrior(mean, ... [hP(hi).priors.mean.mean hP(hi).priors.mean.std]); curHPrior=curHPrior+gLogGammaPrior(hP(hi).model.lam, ... [hP(hi).priors.lam.a hP(hi).priors.lam.b]); newHPrior=newHPrior+gLogGammaPrior(lam, ... [hP(hi).priors.lam.a hP(hi).priors.lam.b]); end % sum up the priors oldLogPrior=sum(curPrior) + curHPrior; newLogPrior=sum(newPrior) + newHPrior; % check for acceptance if ( log(rand)<(newLogPrior-oldLogPrior + log(aCorr)) ) reject=0; % accept! record the current vals hP(hi).model.mean=mean; hP(hi).model.lam=lam; % put stuff back into the submodel prior structs, update the % calculated prior and posterior lik. for vari=1:length(hP(hi).vars) modind=hP(hi).vars(vari).modNum; params(modind).priors=priorsT(vari); params(modind).model.logPrior=newPrior(vari); params(modind).model.logPost=newPrior(vari)+params(modind).model.logLik; end else reject=1; end end % function EvalHierDraw %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function params=mcmcEval(params,modi,C,clist) params(modi).model.acc=0; % default status is to not accept model=params(modi).model; data=params(modi).data; priors=params(modi).priors; mcmc=params(modi).mcmc; pr=0; % print diagnostics if pr; fprintf('%s %2d %.2f ',C.var,C.index,C.val); end if pr; fprintf(':: %.2f %.2f ',model.logLik,model.logPrior); end % If var is a theta, must check whether it is linked to other models thisVarLinks=[]; if strcmp(C.var,'theta') thisVarLinks=clist(clist(:,modi)==C.index,:); if any(thisVarLinks) & ~all(thisVarLinks(1:modi-1)==0) % only the first in round robin samples the linked variable if pr; fprintf(' Skipping linked var, index %d\n',C.index); end return end end % Check hard parameter bounds. if (C.val<priors.(C.var).bLower || ... priors.(C.var).bUpper<C.val || ... ~isreal(C.val)); if pr; fprintf(' Reject, out of bounds\n'); end return end modelT=model; modelT.(C.var)(C.index)=C.val; modelT=computeLogPrior(priors,mcmc,modelT); modelT=computeLogLik(modelT,data,C); modelT.logPost=modelT.logPrior+modelT.logLik; % if theta, consult the constraint function if strcmp(C.var,'theta') theta=modelT.theta'; constraintsOK=1; for const=priors.theta.constraints constraintsOK=constraintsOK & eval(const{1}); end if ~constraintsOK if pr; fprintf(' Reject, from theta constraint set\n'); end return end end % If we are in a linked model, compute the likelihood correction lOldLik=[]; lNewLik=[]; linkInds=find(thisVarLinks~=0); %all the links if linkInds; linkInds(find(linkInds==modi))=[]; end %this mod's doesn't count as a link for link=1:length(linkInds) lModelT(link)=params(linkInds(link)).model; lOldLik(link)=lModelT(link).logLik; lModelT(link).theta(thisVarLinks(linkInds(link)))=modelT.theta(C.index); D.var='theta'; lModelT(link)=computeLogLik(lModelT(link),params(linkInds(link)).data,D); lNewLik(link)=lModelT(link).logLik; if pr; fprintf('\n Linked vars; LL of model %d var %d from %8.5f to %8.5f', ... linkInds(link),thisVarLinks(linkInds(link)),lOldLik(link),lNewLik(link)); end end if pr && ~isempty(linkInds); fprintf('\n'); end oldLogPost=model. logPost + sum(lOldLik); newLogPost=modelT.logPost + sum(lNewLik); if pr; fprintf(':: %.2f %.2f ',modelT.logLik,modelT.logPrior); end if pr && ~isempty(linkInds); fprintf('\n links changge LL as old %f to new %f',oldLogPost,newLogPost); end if ( log(rand)<(newLogPost-oldLogPost + log(C.aCorr)) ) if pr; fprintf(' Accept \n'); end model=modelT; model.acc=1; % if we are in a linked model, update the linked theta vals & mods for link=1:length(linkInds) lModelT(link)=computeLogPrior(params(linkInds(link)).priors,... params(linkInds(link)).mcmc,lModelT(link)); lModelT(link).logPost=lModelT(link).logPrior+lModelT(link).logLik; params(linkInds(link)).model=lModelT(link); if pr; fprintf('updated linked model %d\n',linkInds(link)); end end else if pr; fprintf(' Reject \n'); end end params(modi).model=model; end % function mcmcEval %%%%%%%%%%%%%%%%%%%%%%%%%% function [dval,acorr]=chooseVal(cval) % select the interval, and draw a new value. w=max(1,cval/3); dval=cval + (rand*2-1)*w; % do a correction, which depends on the old and new interval w1=max(1,dval/3); if cval > (dval+w1) acorr=0; else acorr=w/w1; end % fprintf('cval=%10.4f, dval=%10.4f, acorr=%10.4f\n',cval,dval,acorr) end %%%%%%%%%%%%%%%%%%%%%%%%%% function params=copyHPriors(params,hP) % if there is a hierarchical model, sync the models' priors. for ii=1:length(hP) for jj=1:length(hP(ii).vars) modind=hP(ii).vars(jj).modNum; varNum=hP(ii).vars(jj).varNum; params(modind).priors.theta.params(varNum,1)=hP(ii).model.mean; params(modind).priors.theta.params(varNum,2) =sqrt(1/hP(ii).model.lam); end end end
github
AndrewCWalker/rsm_tool_suite-master
gPred.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/gPred.m
2,011
utf_8
c55122a8c3a1f97dc4ace2271cd35a75
%function pred=gPred(xpred,pvals,model,data,mode,theta) % Predict using a gpmsa constructed model. % this is an interface to the new gPredict for backward compatibility %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pred=gPred(xpred,pvals,model,data,mode,theta) if strcmp(mode,'etamod'); mode='wpred'; theta=[]; end if exist('theta','var'); pred=gPredict(xpred,pvals,model,data,'mode',mode,'theta',theta,'returnMuSigma',1); else pred=gPredict(xpred,pvals,model,data,'mode',mode,'returnMuSigma',1); end end
github
AndrewCWalker/rsm_tool_suite-master
setupDefaultHierParams.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/setupDefaultHierParams.m
3,063
utf_8
69fff5dc392d1cc5a1bc4f30f9d4a835
% This defines a hierarchical model parameter structure as an example. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hierParams=setupDefaultHierParams % Hier is a struct array, each element represents one hierarchical % model that addresses variables from models in a joint model analysis % the links define the variables. This example creates a hierarchical model % with two variables, the first variable (theta) in models 1 and 2. hierParams(1).vars(1).modNum=1; hierParams(1).vars(1).varNum=1; hierParams(1).vars(2).modNum=2; hierParams(1).vars(2).varNum=1; % a starting point and a stored location for the hierarchical model % the hierarchical distribution is a normal, with mean and precision hierParams(1).model.mean=0.5; hierParams(1).model.lam=10; % priors for the hierarchical parameters % the mean is from a normal dist, the lam is from a gamma hierParams(1).priors.mean.mean=0.5; hierParams(1).priors.mean.std=10; hierParams(1).priors.mean.bLower=0; hierParams(1).priors.mean.bUpper=1; hierParams(1).priors.lam.a=1; hierParams(1).priors.lam.b=1e-8; hierParams(1).priors.lam.bLower=0; hierParams(1).priors.lam.bUpper=Inf; % and a place for mcmc control parameters hierParams(1).mcmc.meanWidth=0.1; % lockstep update parameters hierParams(1).mcmc.lockstepMeanWidth=0.1; % lambda will be sampled as an adaptive parameter % a place for recording the samples, in the pvals structure hierParams(1).pvals.mean=[]; hierParams(1).pvals.lam=[]; % this is where you would put in the next hierParams struct array to cover % further hierarchical models in the analysis end
github
AndrewCWalker/rsm_tool_suite-master
genDist.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/genDist.m
2,605
utf_8
fc3644a58bfe56b543e25af38b5d6bbd
% function d = gendist(data,dataDesc); % generates the nxnxp distance array values and supporting % information, given the nxp location matrix x % or if a d is passed in, just update the distances %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function d = genDist(data,dataDesc) d.type=1; [n p] = size(data); %generate the list of (n-1)*(n-1) distance indices inds=n*(n-1)/2; indi=zeros(inds,1);indj=zeros(inds,1); ind=1;for ii=1:n-1; indi(ind:ind+n-ii-1)=ii; indj(ind:ind+n-ii-1)=ii+1:n; ind=ind+n-ii; end; d.n=n; d.p=p; d.indi=indi; d.indj=indj; d.indm=indi + n*(indj-1); if p==0; d.d=[]; return; end d.d=(data(indj,:)-data(indi,:)).^2; % This is to support categoricals; depricated %if ~exist('dataDesc','var'); cat=any(data<0); % else cat=[dataDesc.typeCategorical]; %end %cat0=find(~cat); cat1=find(cat); % if isempty(cat1) % d.d=(data(indj,:)-data(indi,:)).^2; % else % d.d=zeros(inds,p); % d.d(:,cat0)=(data(indj,cat0)-data(indi,cat0)).^2; % d.d(:,cat1)=(data(indj,cat1)~=data(indi,cat1))*0.5; % end
github
AndrewCWalker/rsm_tool_suite-master
diagPlots.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/diagPlots.m
8,497
utf_8
808d30c93261db1c54070040fc633472
% function ret=diagPlots(pout,pvec,plotNum,varargin) % Some generic plots for GPS/SA diagnostics. Note that most plots of % response surfaces and predictions are application specific because of % the unknown structure of the data. (see basicExPlots for examples) % pout - the structure output from a gaspMCMC function call % pvec - a vector of the elements of the associated MCMC chain to process % plotnum - which plot (1-8) to do; scalar. % 1 - rho plot for the theta and x variables by PC % 101 - summary rho plot across all PC's (weighted by var contrib.) % 2 - theta calibration plot % 3 - lamOS and lamVz combined s.d. (joint model capable) % 4 - PC diagnostics from the simulation dataset (for PC settings analysis) % 5 - 1D conditional plot eta MAP mean and pointwise +/-2sd, % non-active vars at mid-range (for scalar response model) % 6 - 2D conditional eta MAP mean response, non-active vars at mid-range, % default vars [1,2], specify with 'vars2D' optional arg % (for scalar response model) % TBD - Response plot of the simulation model basis loadings vs. params % Possible variable/value sets: % 'labels' - cell array of labels for input variable names % 'labels2' - cell array of labels for output variable names % 'figNum' - figure number to plot into % 'evenWeight' - do weighting calculations evenly (no PCs weighting) % 'ngrid' - pass to gPlotMatrix % 'ksd' - pass to gPlotMatrix % 'standardized' - output variables in standardized scale % 'var1D' - variables to be varied in a conditional plot % (type 5), default 1 % 'vars2D' - 2-vector of variables to be varied in a conditional plot % (type 6), default [1 2] % 'gridCond' - prediction grid for conditional plot (type 5 or 6), % default is linspace(0,1,10) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ret=diagPlots(pout,pvec,plotNum,varargin) ret=[]; % Extract some variables from the structure, for convenience pvals=pout(1).pvals(pvec); model=pout(1).model; data=pout(1).data; obsData=pout(1).obsData; simData=pout(1).simData; pu=model.pu; pv=model.pv; p=model.p; q=model.q; py=size(obsData(1).Dobs,1); % set defaults, then parse arguments labels=[]; for ii=1:p; labels=[labels {['x ' num2str(ii)]}]; end for ii=1:q; labels=[labels {['theta ' num2str(ii)]}]; end closeFig=false; figNum=plotNum; evenWeight=false; ngrid=40; ksd=0.05; standardized=true; for ii=1:py; labels2{ii}=['Var ',num2str(ii)]; end vars2D=[1 2]; var1D=1; gridCond=linspace(0,1,10); parseAssignVarargs({'labels','figNum','closeFig','evenWeight', ... 'ngrid','ksd','standardized','labels2', ... 'var1D','vars2D','gridCond'}); % Plot the rhoU response in box plots, by principal component % The rhoU indicates the degree to which the variable affects the % principal component. rho is in (0,1), rho=1 indicates no effect. if plotNum==1; figure(figNum); clf; % Collect the MCMC record of the betas bu=[pvals.betaU]'; % Transform them into rhos ru = exp(-bu*0.25); % set up labels for the plot for ii=1:pu; r=ru(:,(ii-1)*(p+q)+1:ii*(p+q)); subplot(pu,1,ii); gBoxPlot(r,'labels',labels); title(['PC' num2str(ii)]); a=axis; axis([a(1) a(2) 0 1]); end end % boxplot the mean rhoU response across PCs if plotNum==101 figure(figNum); clf; % recreate the PC variability [U,S,V]=svd(simData.yStd,0); a=diag(S).^2; a=a./sum(a); a=a(1:pu); % Collect the MCMC record of the betas bu=[pvals.betaU]'; % get the weighted mean of each across PCs bumean=zeros(length(pvec),p+q); aweight=repmat(a,1,p+q)/sum(a); if evenWeight; aweight=ones(pu,p+q)/pu; end for ii=1:length(pvec) bumean(ii,:)=sum( reshape(bu(ii,:),p+q,pu)' .* aweight ); end % plot the means transformed into rhos gBoxPlot(exp(-0.25*bumean),'labels',labels); a=axis; axis([a(1:2) 0 1]); ret.bwm=bumean; end % Examine the theta posterior calibration % Each theta was estimated with MCMC, the result is a sample of the % underlying theta distribution if plotNum==2 figure(figNum); clf; t=[pvals.theta]'; gPlotMatrix(t,'shade',1,'lstyle','imcont','ngrid',ngrid, ... 'ksd',ksd,'shade',1,'labels',labels); end % Plot the lamOS and lamVz combined s.d. These together indicate % how much the simulation model is regularized, corresponds to how % important the simulation data is. This is particularly interesting % in joint models, or models with lamVz groups. if plotNum==3 figure(figNum); clf; lovSD=[]; L={}; for ii=1:length(pout) los=[pout(ii).pvals(pvec).lamOs]'; lvz=[pout(ii).pvals(pvec).lamVz]'; lovSD=[lovSD sqrt(1./repmat(los,1,size(lvz,2)) + 1./lvz) ]; for jj=1:size(lvz,2) L{end+1}=['Mod ' num2str(ii) ' Grp ' num2str(jj)]; end end boxplot(lovSD,'labels',L); a=axis; axis([a(1:2) 0 max(a(4),1)]); end % Plot the calibrated discrepancy, each output point as a % discrete response in its own histogram if plotNum==4 figure(figNum); clf % predict in uvpred mode over the specified realizations pred=gPred(0.5,pvals,pout.model,pout.data,'uvpred'); v=(pred.v * obsData(1).Dobs)'; if ~standardized if isscalar(simData.orig.ysd) v=v.* simData.orig.ysd; else v=v.*repmat(simData.orig.ysd,1,size(v,2)); end v=v+repmat(simData.orig.ymean,1,size(v,2)); end isize=ceil(sqrt(py)); jsize=ceil(py/isize); for ii=1:py ret.h(ii)=gPackSubplot(isize,jsize,ii,0,0.4); hold on; hist(v(ii,:)); a=axis; text(a([1 2])*[0.9 0.1]',a([3 4])*[0.1 0.9]',labels2{ii}); end end % plot a 1D conditional response mean plot of the simulation emulator (eta). if plotNum==5 figure(figNum); xpred=0.5*ones(numel(gridCond),p); xpred(:,var1D)=gridCond; [mapVal pvecMAP]=max([pout.pvals(pvec).logPost]); pred=gPredict(xpred,pout.pvals(pvec(pvecMAP)),pout.model,pout.data, ... 'returnMuSigma',1); plot(gridCond,pred.Myhat); hold on; plot(gridCond,pred.Myhat+diag(pred.Syhat{1})'*2,':'); plot(gridCond,pred.Myhat-diag(pred.Syhat{1})'*2,':'); mean(pred.Myhat) xlabel(labels{var1D}); end % plot a 2D conditional response mean plot of the simulation emulator (eta). if plotNum==6 figure(figNum); [g1 g2]=meshgrid(gridCond); xpred=0.5*ones(numel(gridCond)^2,p); xpred(:,vars2D(1))=g1(:); xpred(:,vars2D(2))=g2(:); [mapVal pvecMAP]=max([pout.pvals(pvec).logPost]); pred=gPredict(xpred,pout.pvals(pvec(pvecMAP)),pout.model,pout.data, ... 'returnMuSigma',1); mesh(g1,g2,reshape(pred.Myhat,size(g1))); xlabel( labels{vars2D(1)} ); ylabel( labels{vars2D(2)} ); end if closeFig; close(figNum); end end %main plot function
github
AndrewCWalker/rsm_tool_suite-master
stepsize.m
.m
rsm_tool_suite-master/Automated_RSM/MCMC/gpmsa/matlab/stepsize.m
7,516
utf_8
cd004244c3bf737b639f5c735e93d34a
% function [params hierParams] = stepsize(params,nBurn,nLev,varargin) % compute step sizes from step size data collect run in gpmmcmc % please see associated documentation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: James R. Gattiker, Los Alamos National Laboratory % Brian Williams, Los Alamos National Laboratory % % This file was distributed as part of the GPM/SA software package % Los Alamos Computer Code release LA-CC-06-079, C-06,114 % % Copyright 2008. Los Alamos National Security, LLC. This material % was produced under U.S. Government contract DE-AC52-06NA25396 for % Los Alamos National Laboratory (LANL), which is operated by Los Alamos % National Security, LLC for the U.S. Department of Energy. The U.S. % Government has rights to use, reproduce, and distribute this software. % NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY % WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF % THIS SOFTWARE. If software is modified to produce derivative works, % such modified software should be clearly marked, so as not to confuse % it with the version available from LANL. % Additionally, this program is free software; you can redistribute it % and/or modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; version 2.0 of the License. % Accordingly, this program is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [params hierParams] = stepsize(params,nBurn,nLev,varargin) numMods=length(params); clist=zeros(0,numMods); hierParams=[]; parseAssignVarargs({'clist','hierParams'}); numHMods=length(hierParams); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set up ranges, and precompute structures for quick&easy sampling fprintf('Setting up structures for stepsize statistics collect ...\n'); ex = -(nLev-1)/2:(nLev-1)/2; for ii=1:numMods for varNum=1:length(params(ii).mcmc.svars) svar=params(ii).mcmc.svars{varNum}; svarS=params(ii).mcmc.svarSize(varNum); base.(svar)=2*ones(nLev,svarS); acc.(svar)=zeros(nLev,svarS); end % specialize in some cases for varNum=1:length(params(ii).mcmc.svars) var=params(ii).mcmc.svars{varNum}; switch(var) case 'theta' base.(var)(ex>0,:)=20.0^(2.0/(nLev-1)); case {'betaV','betaU'} base.(var)(ex>0,:)=10.0^(2.0/(nLev-1)); case {'lamUz','lamOs'} base.(var)(ex>0,:)=100.0^(2.0/(nLev-1)); end end step(ii).base=base; step(ii).ex=ex; end if ~isempty(hierParams) base.mean=2*ones(nLev); base.mean(ex>0)=20.0^(2.0/(nLev-1)); base.lam=2*ones(nLev); end % pre-compute the widths for the levels, making whole mcmc structs to % substitute in and out of the params as we go through the levels for ii=1:numMods smcmc(ii,1:nLev)=params(ii).mcmc; for lev=1:nLev for varNum=1:length(params(ii).mcmc.svars) wvar=params(ii).mcmc.wvars{varNum}; svar=params(ii).mcmc.svars{varNum}; svarS=params(ii).mcmc.svarSize(varNum); for k=1:svarS smcmc(ii,lev).(wvar)(k)=smcmc(ii,lev).(wvar)(k)* ... step(ii).base.(svar)(lev,k)^step(ii).ex(lev); wrec(ii).(wvar)(k,lev)=smcmc(ii,lev).(wvar)(k); end end end end for hi=1:numHMods smcmcH(hi,1:nLev)=hierParams(hi).mcmc; for lev=1:nLev smcmcH(hi,lev).meanWidth=smcmcH(hi,lev).meanWidth* ... base.mean(lev)^ex(lev); wrecH(hi).meanWidth(lev)=smcmcH(hi,lev).meanWidth; smcmcH(hi,lev).lamWidth=smcmcH(hi,lev).lamWidth* ... base.lam(lev)^ex(lev); wrecH(hi).lamWidth(lev)=smcmcH(hi,lev).lamWidth; smcmcH(hi,lev).lockstepMeanWidth=smcmcH(hi,lev).lockstepMeanWidth* ... base.mean(lev)^ex(lev); wrecH(hi).lockstepMeanWidth(lev)=smcmcH(hi,lev).lockstepMeanWidth; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Herein goeth the sampling code. fprintf('Collecting stepsize acceptance stats ...\n'); %init the params structs [params hierParams]=gpmmcmc(params,0,'initOnly',1,'clist',clist,... 'hierParams',hierParams); fprintf('Drawing %d samples (nBurn) over %d levels (nLev) \n',nBurn,nLev); counter('stime',1,nBurn*nLev,15,10); for burn=1:nBurn for lev=1:nLev counter((burn-1)*nLev+1+lev); for ii=1:numMods params(ii).mcmc=smcmc(ii,lev); end for hi=1:numHMods hierParams(hi).mcmc=smcmcH(hi,lev); end [params hierParams]=gpmmcmc(params,1,'noInit',1,'noCounter',1,... 'step',1,'clist',clist,'hierParams',hierParams); end end counter('end'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Estimate the optimal step size fprintf('Computing optimal step sizes ...\n'); for ii=1:numMods for varNum=1:length(params(ii).mcmc.svars) svar=params(ii).mcmc.svars{varNum}; svarS=params(ii).mcmc.svarSize(varNum); acc=[params(ii).pvals.([svar 'Acc'])]'; accCount(ii).(svar)=zeros(nLev,svarS); for k=1:svarS accCount(ii).(svar)(:,k)=sum(reshape(acc(:,k),nLev,nBurn),2); end end end for hi=1:numHMods acc=[hierParams(hi).pvals.acc]'; accCountH(hi).mean=sum(reshape(acc(:,1),nLev,nBurn),2); accCountH(hi).lam=sum(reshape(acc(:,2),nLev,nBurn),2); accCountH(hi).lockstepMean=sum(reshape(acc(:,3),nLev,nBurn),2); end nTrials=ones(nLev,1)*nBurn; logit = log(1/(exp(1)-1)); for ii=1:numMods for varNum=1:length(params(ii).mcmc.svars) wvar=params(ii).mcmc.wvars{varNum}; svar=params(ii).mcmc.svars{varNum}; svarS=params(ii).mcmc.svarSize(varNum); switch(svar) case {'theta'} for k=1:svarS thisVarLinks=clist(clist(:,ii)==k,:); if any(thisVarLinks) & ~all(thisVarLinks(1:ii-1)==0) stepWidth(ii).(wvar)(k)=0; else widths=wrec(ii).(wvar)(k,:); b=glmfit(log(widths),[accCount(ii).(svar)(:,k) nTrials],'binomial'); stepWidth(ii).(wvar)(k)=exp((logit-b(1))/b(2)); end end otherwise for k=1:svarS widths=wrec(ii).(wvar)(k,:); b=glmfit(log(widths),[accCount(ii).(svar)(:,k) nTrials],'binomial'); stepWidth(ii).(wvar)(k)=exp((logit-b(1))/b(2)); end end end end for hi=1:numHMods widths=wrecH(hi).meanWidth; b=glmfit(log(widths),[accCountH(hi).mean nTrials],'binomial'); stepWidthH(hi).meanWidth=exp((logit-b(1))/b(2)); widths=wrecH(hi).lamWidth; b=glmfit(log(widths),[accCountH(hi).lam nTrials],'binomial'); stepWidthH(hi).lamWidth=exp((logit-b(1))/b(2)); widths=wrecH(hi).lockstepMeanWidth; b=glmfit(log(widths),[accCountH(hi).lockstepMean nTrials],'binomial'); stepWidthH(hi).lockstepMeanWidth=exp((logit-b(1))/b(2)); end %put the estimated step sizes back into the params struct for ii=1:numMods for varNum=1:length(params(ii).mcmc.svars) wvar=params(ii).mcmc.wvars{varNum}; params(ii).mcmc.(wvar)=stepWidth(ii).(wvar); end end for hi=1:numHMods hierParams(hi).mcmc.meanWidth=stepWidthH(hi).meanWidth; hierParams(hi).mcmc.lamWidth=stepWidthH(hi).lamWidth; hierParams(hi).mcmc.lockstepMeanWidth=stepWidthH(hi).lockstepMeanWidth; end fprintf('Step size assignment complete.\n'); %params.mcmc.acc=accCount; %params.mcmc.wrec=wrec; %params.mcmc.smcmc=smcmc;
github
mbuckler/ReversiblePipeline-master
ImgPipe_Matlab.m
.m
ReversiblePipeline-master/src/Matlab/ImgPipe_Matlab.m
18,556
utf_8
3cb3d09d6499bf586ac0162d62fbe26d
%============================================================== % Image Processing Pipeline % % This is a Matlab implementation of a pre-learned image % processing model. A description of the model can be found in % "A New In-Camera Imaging Model for Color Computer Vision % and its Application" by Seon Joo Kim, Hai Ting Lin, % Michael Brown, et al. Code for learning a new model can % be found at the original project page. This particular % implementation was written by Mark Buckler. % % Original Project Page: % http://www.comp.nus.edu.sg/~brown/radiometric_calibration/ % % Model Format Readme: % http://www.comp.nus.edu.sg/~brown/radiometric_calibration/datasets/Model_param/readme.pdf % %============================================================== function ImgPipe_Matlab % Model directory model_dir = '../../camera_models/NikonD7000/'; % White balance index (select from the transform file) % First white balance in file has wb_index of 1 % For more information see the model readme wb_index = 6; % Image directory image_dir = '../../imgs/NikonD7000FL/'; % Results directory results_dir = 'pipe_results/'; % Raw image raw_image_name = 'DSC_0916.NEF.raw_1C.tiff'; % Jpg image jpg_image_name = 'DSC_0916.JPG'; % Create directories for results mkdir(pwd, results_dir); mkdir(pwd, strcat(results_dir,'forward_images/')); mkdir(pwd, strcat(results_dir,'backward_images/')); % Patch start locations % [xstart,ystart] % % NOTE: Must align patch start in raw file with the demosiac % pattern start. Otherwise colors will be switched in the % final result. patchstarts = [ ... [551, 2751]; ... % 1 [1001, 2751]; ... % 2 [1501, 2751]; ... % 3 [2001, 2751]; ... % 4 [551, 2251]; ... % 5 [1001, 2251]; ... % 6 [1501, 2251]; ... % 7 [2001, 2251]; ... % 8 [551, 1751]; ... % 9 [1001, 1751]; ... % 10 [1501, 1751]; ... % 11 [2001, 1751]; ... % 12 ]; % Number of patch tests to run patchnum = 12; % Define patch size (patch width and height in pixels patchsize = 10; % Initialize results forward_results = zeros(patchnum,3,3); backward_results = zeros(patchnum,3,3); % Process patches for i=1:patchnum % Run the forward model on the patch [demosaiced, transformed, gamutmapped, tonemapped, forward_ref] = ... ForwardPipe(model_dir, image_dir, results_dir, wb_index, ... raw_image_name, jpg_image_name, ... patchstarts(i,2), patchstarts(i,1), patchsize, i); % Compare the pipeline output to the reference [refavg, resultavg, error] = ... patch_compare(tonemapped, forward_ref); forward_results(i,1,:) = resultavg; forward_results(i,2,:) = refavg; forward_results(i,3,:) = error; % Run the backward model on the patch [revtonemapped, revgamutmapped, revtransformed, remosaiced, backward_ref] = ... BackwardPipe(model_dir, image_dir, results_dir, wb_index, ... jpg_image_name, raw_image_name, ... patchstarts(i,2), patchstarts(i,1), patchsize, i); % Compare the pipeline output to the reference [refavg, resultavg, error] = ... patch_compare(remosaiced, backward_ref); backward_results(i,1,:) = resultavg; backward_results(i,2,:) = refavg; backward_results(i,3,:) = error; end write_results(forward_results, patchnum, ... strcat(results_dir,'forward_results.txt')); write_results(backward_results, patchnum, ... strcat(results_dir,'backward_results.txt')); disp(strcat('Avg % color channel error for forward: ', ... num2str(mean(mean(abs(forward_results(:,3,:))))))); disp(strcat('Avg % color channel error for backward: ', ... num2str(mean(mean(abs(backward_results(:,3,:))))))); disp(strcat('Max % color channel error for forward: ', ... num2str(max(max(abs(forward_results(:,3,:))))))); disp(strcat('Max % color channel error for backward: ', ... num2str(max(max(abs(backward_results(:,3,:))))))); disp('See results folder for error per patch and per color channel'); end function [demosaiced, transformed, gamutmapped, tonemapped, ref_image] = ... ForwardPipe(model_dir, image_dir, results_dir, wb_index, ... in_image_name, ref_image_name, ystart, xstart, patchsize, patchid) % Establish patch xend = xstart + patchsize - 1; yend = ystart + patchsize - 1; %============================================================== % Import Forward Model Data % % Note: This assumes a camera model folder with a single % camera setting and transform. This is not the case for % every folder, but it is for the Nikon D40 on the Normal % setting and with Fl(L14)/florescent color. % Model file reading transforms_file = dlmread( ... strcat(model_dir,'raw2jpg_transform.txt')); ctrl_points_file = dlmread( ... strcat(model_dir,'raw2jpg_ctrlPoints.txt')); coeficients_file = dlmread( ... strcat(model_dir,'raw2jpg_coefs.txt')); resp_funct_file = dlmread( ... strcat(model_dir,'raw2jpg_respFcns.txt')); % Color space transform Ts = transforms_file(2:4,:); % Calculate base for the white balance transform selected % For more details see the camera model readme wb_base = 6 + 5*(wb_index-1); % White balance transform Tw = diag(transforms_file(wb_base+3,:)); % Combined transforms TsTw = Ts*Tw; TsTw_file = transforms_file(wb_base:wb_base+2,:); % Perform quick check to determine equivalence with provided model % Round to nearest 4 decimal representation for check TsTw_4dec = round(TsTw*10000)/10000; TsTw_file_4dec = round(TsTw_file*10000)/10000; assert( isequal( TsTw_4dec, TsTw_file_4dec), ... 'Transform multiplication not equal to result found in model file, or import failed' ) % Gamut mapping: Control points ctrl_points = ctrl_points_file(2:end,:); % Gamut mapping: Weights weights = coeficients_file(2:(size(coeficients_file,1)-4),:); % Gamut mapping: c c = coeficients_file((size(coeficients_file,1)-3):end,:); % Tone mapping (reverse function is what is contained within model % file) frev = resp_funct_file(2:end,:); %============================================================== % Import Raw Image Data % NOTE: Can use RAW2TIFF.cpp to convert raw to tiff. This isn't % automatically called by this script yet, but could be. in_image = imread(strcat(image_dir,in_image_name)); %============================================================== % Import Reference image ref_image = imread(strcat(image_dir,ref_image_name)); % Downsize to match patch size ref_image = ref_image(ystart:yend,xstart:xend,:); %============================================================== % Forward pipeline function % Convert to uint16 representation for demosaicing in_image_unit16 = im2uint16(in_image); % Demosaic image demosaiced = im2uint8(demosaic(in_image_unit16,'rggb'));%gbrg %rggb % Convert to double precision for transforming and gamut mapping image_float = im2double(demosaiced); % Downsize image to patch size demosaiced = demosaiced(ystart:yend,xstart:xend,:); image_float = image_float(ystart:yend,xstart:xend,:); % Pre-allocate memory height = size(image_float,1); width = size(image_float,2); transformed = zeros(height,width,3); gamutmapped = zeros(height,width,3); tonemapped = zeros(height,width,3); for y = 1:height for x = 1:width % transformed = RAWdemosaiced * Ts * Tw transformed(y,x,:) = transpose(squeeze(image_float(y,x,:))) ... * transpose(TsTw); % gamut mapping gamutmapped(y,x,:) = RBF(squeeze(transformed(y,x,:)), ... ctrl_points, weights, c); % tone mapping tonemapped(y,x,:) = tonemap(im2uint8(squeeze(gamutmapped(y,x,:))), frev); end % Let user know how far along we are disp((y/size(image_float,1))*100) end %============================================================== % Export Image(s) ref_image = im2uint8(ref_image); image_float = im2uint8(image_float); transformed = im2uint8(transformed); gamutmapped = im2uint8(gamutmapped); tonemapped = im2uint8(tonemapped); imwrite(ref_image, strcat(results_dir, ... 'forward_images/', in_image_name, ... '.p',int2str(patchid),'.forward_reference.tif')); imwrite(tonemapped, strcat(results_dir, ... 'forward_images/', in_image_name, ... '.p',int2str(patchid),'.forward_result.tif')); end function [revtonemapped, revgamutmapped, revtransformed, remosaiced, ref_image_colored] = ... BackwardPipe(model_dir, image_dir, results_dir, wb_index, ... in_image_name, ref_image_name, ystart, xstart, patchsize, patchid) % Establish patch xend = xstart + patchsize - 1; yend = ystart + patchsize - 1; %============================================================== % Import Backward Model Data % % Note: This assumes a camera model folder with a single % camera setting and transform. This is not the case for % every folder, but it is for the Nikon D40 on the Normal % setting and with Fl(L14)/florescent color. % Model file reading % Model file reading transforms_file = dlmread( ... strcat(model_dir,'jpg2raw_transform.txt')); ctrl_points_file = dlmread( ... strcat(model_dir,'jpg2raw_ctrlPoints.txt')); coeficients_file = dlmread( ... strcat(model_dir,'jpg2raw_coefs.txt')); resp_funct_file = dlmread( ... strcat(model_dir,'jpg2raw_respFcns.txt')); % Color space transform Ts = transforms_file(2:4,:); % Calculate base for the white balance transform selected % For more details see the camera model readme wb_base = 6 + 5*(wb_index-1); % White balance transform Tw = diag(transforms_file(wb_base+3,:)); % Combined transforms TsTw = Ts*Tw; TsTw_file = transforms_file(wb_base:wb_base+2,:); % Perform quick check to determine equivalence with provided model % Round to nearest 4 decimal representation for check TsTw_4dec = round(TsTw*10000)/10000; TsTw_file_4dec = round(TsTw_file*10000)/10000; assert( isequal( TsTw_4dec, TsTw_file_4dec), ... 'Transform multiplication not equal to result found in model file, or import failed' ) % Gamut mapping: Control points ctrl_points = ctrl_points_file(2:end,:); % Gamut mapping: Weights weights = coeficients_file(2:(size(coeficients_file,1)-4),:); % Gamut mapping: c c = coeficients_file((size(coeficients_file,1)-3):end,:); % Tone mapping (reverse function is what is contained within model % file) frev = resp_funct_file(2:end,:); %============================================================== % Import Image Data in_image = imread(strcat(image_dir,in_image_name)); ref_image = imread(strcat(image_dir,ref_image_name)); % Convert the input image to double represenation ref_image = im2double(ref_image); %============================================================== % Backward pipeline function % Convert to double precision for processing image_float = im2double(in_image); % Extract patches image_float = image_float(ystart:yend,xstart:xend,:); ref_image = ref_image (ystart:yend,xstart:xend); % Pre-allocate memory height = size(image_float,1); width = size(image_float,2); revtransformed = zeros(height,width,3); revtonemapped = zeros(height,width,3); revgamutmapped = zeros(height,width,3); remosaiced = zeros(height,width,3); ref_image_colored = zeros(height,width,3); for y = 1:height for x = 1:width % Reverse tone mapping revtonemapped(y,x,:) = revtonemap(squeeze(image_float(y,x,:)), frev); % Reverse gamut mapping revgamutmapped(y,x,:) = RBF(squeeze(revtonemapped(y,x,:)), ... ctrl_points, weights, c); % Reverse color mapping and white balancing % RAWdemosaiced = transformed * inv(TsTw) = transformed / TsTw revtransformed(y,x,:) = transpose(squeeze(revgamutmapped(y,x,:))) ... * inv(transpose(TsTw)); % Re-mosaicing % Note: This is not currently parameterizable, assumes rggb yodd = mod(y,2); xodd = mod(x,2); % If a red pixel if yodd && xodd remosaiced(y,x,:) = [revtransformed(y,x,1), 0, 0]; % If a green pixel elseif xor(yodd,xodd) remosaiced(y,x,:) = [0, revtransformed(y,x,2), 0]; % If a blue pixel elseif ~yodd && ~xodd remosaiced(y,x,:) = [0, 0, revtransformed(y,x,3)]; end %====================================================== % Reorganize reference image % Note: This is not currently parameterizable, assumes rggb % If a red pixel if yodd && xodd ref_image_colored(y,x,:) = [ref_image(y,x), 0, 0]; % If a green pixel elseif xor(yodd,xodd) ref_image_colored(y,x,:) = [0, ref_image(y,x), 0]; % If a blue pixel elseif ~yodd && ~xodd ref_image_colored(y,x,:) = [0, 0, ref_image(y,x)]; end end % Let user know how far along we are disp((y/size(image_float,1))*100) end %============================================================== % Export Image(s) ref_image = im2uint8(ref_image); ref_image_colored = im2uint8(ref_image_colored); revtransformed = im2uint8(revtransformed); revtonemapped = im2uint8(revtonemapped); revgamutmapped = im2uint8(revgamutmapped); remosaiced = im2uint8(remosaiced); imwrite(ref_image, strcat(results_dir, ... 'backward_images/', in_image_name, ... '.p',int2str(patchid),'.back_ref.tif')); imwrite(ref_image_colored, strcat(results_dir, ... 'backward_images/', in_image_name, ... '.p',int2str(patchid),'.back_ref_colored.tif')); imwrite(remosaiced, strcat(results_dir, ... 'backward_images/', in_image_name, ... '.p',int2str(patchid),'.back_result.tif')); end % Radial basis function for forward and reverse gamut mapping function out = RBF (in, ctrl_points, weights, c) out = zeros(3,1); % Weighted control points for idx = 1:size(ctrl_points,1) dist = norm(transpose(in) - ctrl_points(idx,:)); for color = 1:3 out(color) = out(color) + weights(idx,color) * dist; end end % Biases for color = 1:3 out(color) = out(color) + c(1,color); out(color) = out(color) + (c(2,color) * in(1)); out(color) = out(color) + (c(3,color) * in(2)); out(color) = out(color) + (c(4,color) * in(3)); end end % Forward mapping function function out = tonemap (in, revf) out = zeros(3,1); for color = 1:3 % 1-R, 2-G, 3-B % Find index of value which is closest to the input [~,idx] = min(abs(revf(:,color)-im2double(in(color)))); % If index is zero, bump up to 1 to prevent 0 indexing in Matlab if idx == 0 idx = 1; end % Convert the index to float representation of image value out(color) = idx/256; end end % Reverse tone mapping function function out = revtonemap (in, revf) out = zeros(3,1); for color = 1:3 % 1-R, 2-G, 3-B % Convert the input to an integer between 1 and 256 idx = round(in(color)*256); % If index is zero, bump up to 1 to prevent 0 indexing in Matlab if idx == 0 idx = 1; end % Index the reverse tone mapping function out(color) = revf(idx,color); end end % Patch color analysis and comparison function function [refavg, resultavg, error] = patch_compare(resultpatch, referencepatch) refavg = zeros(3,1); resultavg = zeros(3,1); error = zeros(3,1); for color = 1:3 % 1-R, 2-G, 3-B % Take two dimensional pixel averages refavg(color) = mean(mean(referencepatch(:,:,color))); resultavg(color) = mean(mean(resultpatch(:,:,color))); % Compute error diff = resultavg(color)-refavg(color); error(color) = (diff/256.0)*100; end end % Write the pipeline data results to an output file function write_results(results, patchnum, file_name) outfileID = fopen(file_name, 'w'); % Display results fprintf(outfileID, 'res(red), res(green), res(blue)\n'); fprintf(outfileID, 'ref(red), ref(green), ref(blue)\n'); fprintf(outfileID, 'err(red), err(green), err(blue)\n'); fprintf(outfileID, '\n'); for i=1:patchnum fprintf(outfileID, 'Patch %d: \n', i); % Print results fprintf(outfileID, '%4.2f, %4.2f, %4.2f \n', ... results(i,1,1), results(i,1,2), results(i,1,3)); % Print reference fprintf(outfileID, '%4.2f, %4.2f, %4.2f \n', ... results(i,2,1), results(i,2,2), results(i,2,3)); % Print error fprintf(outfileID, '%4.2f, %4.2f, %4.2f \n', ... results(i,3,1), results(i,3,2), results(i,3,3)); fprintf(outfileID, '\n'); end end
github
zhangliliang/caffe-master
classification_demo.m
.m
caffe-master/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
EnricoGiordano1992/LMI-Matlab-master
yalmiptest.m
.m
LMI-Matlab-master/yalmip/yalmiptest.m
17,035
utf_8
4a8ad7d56c1153743ca991381cc2f3a6
function out = yalmiptest(prefered_solver,auto) %YALMIPTEST Runs a number of test problems. % % YALMIPTEST is recommended when a new solver or a new version % of YALMIP installed. % % EXAMPLES % YALMIPTEST % Without argument, default solver used % YALMIPTEST('solver tag') % Test with specified solver % YALMIPTEST(options) % Test with specific options structure from % % See also SDPSETTINGS if ~exist('sedumi2pen.m') disp('Add /yalmip/extras etc to your path first...') disp('Read the <a href="http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Tutorials.Installation">Installation notes</a>.') return end if ~exist('callsedumi.m') disp('Still missing paths...Just do an addpath(genpath(''yalmiprootdirectory''));') return end detected = which('yalmip.m','-all'); % Will not work in Octave as Octave only reports first item found? if isa(detected,'cell') if length(detected)>1 disp('You seem to have multiple installations of YALMIP in your path. Please correct this...'); detected return end end % Pagination really doesn't work well with solvers more off donttest = 0; if (nargin==1) && isa(prefered_solver,'char') && strcmp(prefered_solver,'test') donttest = 0; prefered_solver = ''; else donttest = 1; end if nargin==0 prefered_solver = ''; else if ~(isa(prefered_solver,'struct') | isa(prefered_solver,'char')) error('Argument should be a solver tag, or a sdpsettings structure'); end if isa(prefered_solver,'char') donttest = 1; end end if ~(exist('callsedumi')==2) disp('The directory yalmip/solvers is not in your path.') disp('Put yalmip/, yalmip/solvers, yalmip/extras and yalmip/demos in your MATLAB path.'); return end foundstring = {'not found','found'}; teststring = {'-failed','+passed'}; if ~donttest header = {'Solver','Version/module','Status','Unit test'}; else header = {'Solver','Version/module','Status'}; end [solvers,found] = getavailablesolvers(0); solvers = solvers([find(found);find(~found)]); found = [found(find(found));found(find(~found))]; j = 1; for i = 1:length(solvers) if solvers(i).show data{j,1} = upper(solvers(i).tag); data{j,2} = solvers(i).version; if length(solvers(i).subversion)>0 data{j,2} = [data{j,2} ' ' solvers(i).subversion]; end data{j,3} = foundstring{found(i)+1}; if ~donttest if found(i) if options.verbose disp(['Testing ' solvers(i).tag '...']); end try if solvers(i).maxdet pass = lyapell(sdpsettings('solver',solvers(i).tag,'verbose',0)); else if solvers(i).sdp pass = stabtest(sdpsettings('solver',solvers(i).tag,'verbose',0)); else pass = feasiblelp(sdpsettings('solver',solvers(i).tag,'verbose',0)); end end data{j,4} = teststring{pass+1}; catch data{j,4} = '-failed'; end else data{j,4} = 'not tested'; end end j = j+1; end end if isa(prefered_solver,'char') ops = sdpsettings('Solver',prefered_solver); else ops = prefered_solver; end if ~((nargin==2) & (ops.verbose==0)) yalmiptable({'Searching for installed solvers'},header,data); disp(' ') end if nargin<2 disp('Press any key to continue test') pause end i=1; test{i}.fcn = 'testsdpvar'; test{i}.desc = 'Core functionalities'; i = i+1; test{i}.fcn = 'feasiblelp'; test{i}.desc = 'LP'; i = i+1; test{i}.fcn = 'toepapprox'; test{i}.desc = 'LP'; i = i+1; test{i}.fcn = 'feasibleqp'; test{i}.desc = 'QP'; i = i+1; test{i}.fcn = 'toepapprox2'; test{i}.desc = 'QP'; i = i+1; test{i}.fcn = 'socptest1'; test{i}.desc = 'SOCP'; i = i+1; test{i}.fcn = 'socptest2'; test{i}.desc = 'SOCP'; i = i+1; test{i}.fcn = 'socptest3'; test{i}.desc = 'SOCP'; i = i+1; test{i}.fcn = 'complete'; test{i}.desc = 'SDP'; i = i+1; test{i}.fcn = 'complete_2'; test{i}.desc = 'SDP'; i = i+1; test{i}.fcn = 'maxcut'; test{i}.desc = 'SDP'; i = i+1; test{i}.fcn = 'feasible'; test{i}.desc = 'SDP'; i = i+1; test{i}.fcn = 'lyapell'; test{i}.desc = 'MAXDET'; i = i+1; test{i}.fcn = 'lyapell2'; test{i}.desc = 'MAXDET'; i = i+1; %test{i}.fcn = 'circuit1'; %test{i}.desc = 'GP'; %i = i+1; test{i}.fcn = 'infeasible'; test{i}.desc = 'Infeasible LP'; i = i+1; test{i}.fcn = 'infeasibleqp'; test{i}.desc = 'Infeasible QP'; i = i+1; test{i}.fcn = 'infeasiblesdp'; test{i}.desc = 'Infeasible SDP'; i = i+1; test{i}.fcn = 'momenttest'; test{i}.desc = 'Moment relaxation'; i = i+1; test{i}.fcn = 'sostest'; test{i}.desc = 'Sum-of-squares'; i = i+1; test{i}.fcn = 'bmitest'; test{i}.desc = 'Bilinear SDP'; i = i+1; pass_strings = {'Error','Passed','Solver not available'}; tt = cputime; % Run test-problems for i = 1:length(test) try t=cputime; if ops.verbose disp(' '); disp(['Testing function ' test{i}.fcn]); disp(' '); end [pp,ss,res] = eval([test{i}.fcn '(ops)']); pass(i) = pp; sols{i} = ss.info; results{i}=res; ttime(i) = cputime-t; catch pass(i) = 0; results{i} = 'NAN'; sols{i} = 'Unknown problem in YALMIP'; ttime(i) = cputime-tt; end end totaltime = cputime-tt; clear data; header = {'Test','Solution', 'Solver message'}; for i = 1:length(pass) thetime = num2str(ttime(i),4); data{i,1} = test{i}.desc; data{i,2} = results{i}; data{i,3} = sols{i}; end if ops.verbose disp(' '); end formats{1}.data.just = 'right'; formats{2}.data.just = 'right'; formats{3}.data.just = 'right'; formats{1}.header.just = 'right'; formats{2}.header.just = 'right'; formats{3}.header.just = 'right'; clc yalmiptable([],header,data,formats) % Test if any LMI solver is installed. x = sdpvar(2);[p,aux1,aux2,m] = export(x>=0,[],[],[],[],0); if ~isempty(m) only_lmilab = strcmpi(m.solver.tag,'lmilab'); else only_lmilab = 0; end x = binvar(1);[p,aux1,aux2,m] = export(x>=0,[],[],[],[],0); if ~isempty(m) only_bnb = strcmpi(m.solver.tag,'bnb'); else only_bnb = 0; end if only_lmilab disp('You do not have any efficient LMI solver installed (only found <a href=" http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Solvers.LMILAB">LMILAB</a>).') disp('If you intend to solve LMIs, please install a better solver.') end if only_bnb disp('You do not have any efficient MILP solver installed (only found internal <a href=" http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Solvers.BNB">BNB</a>).') disp('If you intend to solve MILPs, please install a better solver.') end if only_lmilab || only_bnb disp('See <a href=" http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Solvers">Interfaced solvers in YALMIP</a>') end function [pass,sol,result] = testsdpvar(ops) % Test the sdpvar implementation pass = 1; sol.info = yalmiperror(0,'YALMIP'); try x = sdpvar(2,2); x = sdpvar(2,2,'symmetric'); x = sdpvar(2,2,'full'); x = sdpvar(2,2,'toeplitz'); x = sdpvar(2,2,'hankel'); x = sdpvar(2,2,'skew'); if ~ishermitian(sdpvar(2,2,'hermitian','complex')) error('bug') end if ~issymmetric(sdpvar(2,2,'symmetric','complex')) error('bug') end if ~isreal(real(sdpvar(2,2,'symmetric','complex'))) error('bug') end if isreal(sqrt(-1)*real(sdpvar(2,2,'symmetric','complex'))) error('bug') end x = sdpvar(2,1,'','co'); if ~isreal(x'*x) error('bug') end x = sdpvar(2,2,'','co'); if ~isreal(diag(x'*x)) error('bug') end x = sdpvar(1,1); y = sdpvar(2,2); x*eye(2); eye(2)*x; y*3; 3*y; x = sdpvar(2,3); y = sdpvar(2,3); assign(x,randn(2,3)); z = replace(x,x(1,1:2),[8 9]); z = x+y; z = x-y; z = x+1; z = x-1; z = x+ones(2,3); z = x-ones(2,3); z = ones(2,3)-x; z = ones(2,3)-x; z = eye(2)*x; z = x*eye(3); z = diag(x); z = trace(x(1:2,1:2)); z = diff(x); z = fliplr(x); z = flipud(x); z = kron(x,eye(3)); z = kron(eye(3),x); z = rot90(x); z = sum(x); z = diff(x); z = x'; z = x.'; z = tril(x); z = triu(x); z = [x y]; z = [x;y]; sdpvar x y diag([x y])*[x^-1;y^-1]; assert(isequal([x x;x x]*x,[x x;x x].*x)) assert(isequal(trace([x x;x x]*[x y;y x]),x*x+x*y+y*x+x*x)) % Regression ?? yalmip('clear') sdpvar x (1+x+x^4)*(1-x^2); % Regression complex multiplcation A = randn(10,5)+sqrt(-1)*randn(10,5); b = randn(10,1)+sqrt(-1)*randn(10,1); x = sdpvar(5,1); res = A*x-b; assert(nnz(clean([res res]'*[res res]-res'*res,1e-8))==0) assert(isreal(clean(res'*res,1e-8))) assert(isreal(x*x')) result = 'N/A'; catch sol.info = 'Problems'; result = 'N/A'; pass = 0; end function [pass,sol,result] = feasible(ops) t = sdpvar(1,1); Y = sdpvar(2,2); F = [Y<=t*eye(2), Y>=[1 0.2;0.2 1]]; sol = solvesdp(F,t,ops); pass = ismember(sol.problem,[0 3 4 5]); if pass result = resultstring(t,1.2); else result = 'N/A'; end function [pass,sol,result] = infeasible(ops) t = sdpvar(1,1); F = [t>=0, t<=-10]; sol = solvesdp(F,t,ops); pass = ~(sol.problem==0); result = 'N/A'; function [pass,sol,result] = lyapell(ops) A = [1 0;0.4 1]; B = [0.4;0.08]; L = [1.9034 1.1501]; Y = sdpvar(2,2); F = [Y Y*(A-B*L)';(A-B*L)*Y Y]>=0; F = F+[L*Y*L'<=1]; sol = solvesdp(F,-logdet(Y),ops); Y = double(Y); pass = ismember(sol.problem,[0 3 4 5]); if pass result = resultstring(Y,[2.9957 -4.1514;-4.1514 6.2918]); else result = 'N/A'; end %pass = pass & (sum(sum(abs(Y-[2.9957 -4.15;-4.15 6.29])))<0.01); function [pass,sol,result] = lyapell2(ops) A = [1 0;0.4 1]; B = [0.4;0.08]; L = [1.9034 1.1501]; Y = sdpvar(2,2); F = [Y Y*(A-B*L)';(A-B*L)*Y Y]>=0; F = F+[L*Y*L'<=1]; sol = solvesdp(F,-logdet(Y),ops); Y = double(Y); pass = ismember(sol.problem,[0 3 4 5]); if pass result = resultstring(Y,[2.9957 -4.1514;-4.1514 6.2918]); else result = 'N/A'; end function [pass,sol,result] = complete(ops) x = sdpvar(1,1); y = sdpvar(1,1); z = sdpvar(1,1); X = [[x 1 2];[1 y 3];[2 3 100]]; F = [X>=0,x>=10,y>=0,z>=0, x<=1000, y<=1000,z<=1000]; sol = solvesdp(F,x+y+z,ops); x = double(x); y = double(y); z = double(z); pass = ismember(sol.problem,[0 3 4 5]); result = 'N/A'; if pass result = resultstring([x;y;z],[10;0.1787;0]); else result = 'N/A'; end function [pass,sol,result] = complete_2(ops) yalmip('clear') x = sdpvar(1,1); z = sdpvar(1,1); X = [[x 2];[2 z]]; F = [X>=0, x>=0,z>=0,x<=10,z<=10]; sol = solvesdp(F,x+z,ops); x = double(x); z = double(z); pass = ismember(sol.problem,[0 3 4 5]); result = 'N/A'; if pass result = resultstring([x;z],[2;2]); else result = 'N/A'; end function [pass,sol,result] = maxcut(ops) % Upper bound on maxcut of a n-cycle n = 15; Q = zeros(n); for i = 1:n-1 Q(i,i+1) = 1;Q(i+1,i) = 1; end Q(n,1) = 1;Q(1,n) = 1; Q = 0.25*(diag(Q*ones(n,1))-Q); t = sdpvar(1,1); tau = sdpvar(n,1); F = t>=0; M = [[-Q zeros(n,1)];[zeros(1,n) t]]; for i = 1:n ei = zeros(n,1);ei(i,1) = 1; M = M+tau(i)*[ei*ei' zeros(n,1);zeros(1,n) -1]; end F = F+[M>=0]; sol = solvesdp(F,t,ops); t = double(t); tau = double(t); pass = ismember(sol.problem,[0 3 4 5]); if pass result = resultstring(t,14.8361); else result = 'N/A'; end function [pass,sol,result] = socptest1(ops) yalmip('clear') x = sdpvar(2,1); a = [0;1]; b = [1;1]; F = norm(x-a)<=1; F = F+[norm(x-b) <= 1]; sol = solvesdp(F,sum(x),ops); pass = ismember(sol.problem,[0 3 4 5]); x = double(x); if pass result = resultstring(sum(x),0.58578); else result = 'N/A'; end function [pass,sol,result] = socptest2(ops) z = sdpvar(3,1); x = sdpvar(3,1); y = sdpvar(3,1); a = [0;1;0]; b = [1;1;0]; F = norm(x-a)<=1; F = F+[norm(x-b)<=1]; F = F+[x(1)==0.35]; F = F+[z(2:3)==[5;6]]; sol = solvesdp(F,sum(x),ops); pass = ismember(sol.problem,[0 3 4 5]); x = double(x); y = double(y); z = double(z); if pass result = resultstring(sum(x),0.27592); else result = 'N/A'; end function [pass,sol,result] = socptest3(ops) z = sdpvar(2,1); x = sdpvar(2,1); y = sdpvar(3,1); a = [0;1]; b = [1;1]; F = norm(x-a)<=1; F = F+[norm(x-b)<=1]; F = F+[x(1)==0.35]; F = F+[z(1,end)>=5]; F = F+[z(2,end)<=100]; F = F+[z(2)==5]; sol = solvesdp(F,sum(x),ops); pass = ismember(sol.problem,[0 3 4 5]); x = double(x); y = double(y); z = double(z); if pass result = resultstring(sum(x),0.59); else result = 'N/A'; end function [pass,sol,result] = feasiblelp(ops) N = 5; A = [2 -1;1 0]; B = [1;0]; C = [0.5 0.5]; [H,S] = create_CHS(A,B,C,N); x = [2;0]; t = sdpvar(2*N,1); U = sdpvar(N,1); Y = H*x+S*U; F = (U<=1)+(U>=-1); F = F+(Y(N)>=-1); F = F+(Y(N)<=1); F = F+([Y;U]<=t)+([Y;U]>=-t); sol = solvesdp(F,sum(t),ops); pass = ismember(sol.problem,[0 3 4 5]); if pass result = resultstring(sum(t),12.66666); else result = 'N/A'; end function [pass,sol,result] = feasibleqp(ops) N = 5; A = [2 -1;1 0]; B = [1;0]; C = [0.5 0.5]; [H,S] = create_CHS(A,B,C,N); x = [2;0]; U = sdpvar(N,1); Y = H*x+S*U; F = (U<=1)+(U>=-1); F = F+(Y(N)>=-1); F = F+(Y(N)<=1); sol = solvesdp(F,Y'*Y+U'*U,ops); pass = ismember(sol.problem,[0 3 4 5]); if pass result = resultstring(Y'*Y+U'*U,26.35248); else result = 'N/A'; end function [pass,sol,result] = infeasibleqp(ops) N = 5; A = [2 -1;1 0]; B = [1;0]; C = [0.5 0.5]; [H,S] = create_CHS(A,B,C,N); x = [2;0]; U = sdpvar(N,1); Y = H*x+S*U; F = (U<=1)+(U>=-1); F = F+(Y(N)>=-1); F = F+(Y(N)<=1); F = F + (U>=0); sol = solvesdp(F,Y'*Y+U'*U,ops); pass = ismember(sol.problem,[1]); result = 'N/A'; function [pass,sol,result] = infeasiblesdp(ops) A = magic(6); A = A*A'; P = sdpvar(6,6); sol = solvesdp((A'*P+P*A <= -P) + (P>=eye(6)),trace(P),ops); pass = (sol.problem==1); result = 'N/A'; function [pass,sol,result]=toepapprox(ops) n = 5; P = magic(n); Z = sdpvar(n,n,'toeplitz'); t = sdpvar(n,n,'full'); F = (P-Z<=t)+(P-Z>=-t); sol = solvesdp(F,sum(sum(t)),ops); pass = ismember(sol.problem,[0 3 4 5]); result = 'N/A'; if pass result = resultstring(sum(sum(t)),156); else result = 'N/A'; end function [pass,sol,result]=toepapprox2(ops) n = 5; P = magic(n); Z = sdpvar(n,n,'toeplitz'); t = sdpvar(n,n,'full'); resid = P-Z;resid = resid(:); sol = solvesdp([],resid'*resid,ops); pass = ismember(sol.problem,[0 3 4 5]); result = 'N/A'; if pass result = resultstring(resid'*resid,1300); else result = 'N/A'; end function [pass,sol,result]=momenttest(ops) x1 = sdpvar(1,1); x2 = sdpvar(1,1); x3 = sdpvar(1,1); objective = -2*x1+x2-x3; F = (x1*(4*x1-4*x2+4*x3-20)+x2*(2*x2-2*x3+9)+x3*(2*x3-13)+24>=0); F = F + (4-(x1+x2+x3)>=0); F = F + (6-(3*x2+x3)>=0); F = F + (x1>=0); F = F + (2-x1>=0); F = F + (x2>=0); F = F + (x3>=0); F = F + (3-x3>=0); sol = solvemoment(F,objective,ops); pass = ismember(sol.problem,[0 3 4 5]); result = 'N/A'; if pass result = resultstring(objective,-6); else result = 'N/A'; end function [pass,sol,result]=sostest(ops) yalmip('clear') x = sdpvar(1,1); y = sdpvar(1,1); t = sdpvar(1,1); F = (sos(1+x^7+x^8+y^4-t)); sol = solvesos(F,-t,ops); pass = ismember(sol.problem,[0 3 4 5]); result = 'N/A'; if pass result = resultstring(t,0.9509); else result = 'N/A'; end function [pass,sol,result]=bmitest(ops) A = [-1 2;-3 -4]; P = sdpvar(2,2); alpha = sdpvar(1,1); F = (P>=eye(2))+(A'*P+P*A <= -2*alpha*P)+(alpha >= 0); sol = solvesdp([F,P(:) <= 100],-alpha,ops); pass = ismember(sol.problem,[0 3 4 5]); result = 'N/A'; if pass result = resultstring(alpha,2.5); else result = 'N/A'; end function [pass,sol,result]=circuit1(ops) x = sdpvar(7,1); % Data a = ones(7,1); alpha = ones(7,1); beta = ones(7,1); gamma = ones(7,1); f = [1 0.8 1 0.7 0.7 0.5 0.5]'; e = [1 2 1 1.5 1.5 1 2]'; Cout6 = 10; Cout7 = 10; % Model C = alpha+beta.*x; A = sum(a.*x); P = sum(f.*e.*x); R = gamma./x; D1 = R(1)*(C(4)); D2 = R(2)*(C(4)+C(5)); D3 = R(3)*(C(5)+C(7)); D4 = R(4)*(C(6)+C(7)); D5 = R(5)*(C(7)); D6 = R(6)*Cout6; D7 = R(7)*Cout7; % Constraints F = (x >= 1) + (P <= 20) + (A <= 100); % Objective D = max((D1+D4+D6),(D1+D4+D7),(D2+D4+D6),(D2+D4+D7),(D2+D5+D7),(D3+D5+D6),(D3+D7)); sol = solvesdp(F,D,ops); pass = ismember(sol.problem,[0 3 4 5]); result = 'N/A'; if pass result = resultstring(D,7.8936); else result = 'N/A'; end function result = resultstring(x,xopt) if norm(double(x(:))-xopt(:))<=1e-3*(1+norm(xopt(:))) result = 'Correct'; else result = 'Incorrect'; end function assert(a) if ~a error('Assertion failed!'); end
github
EnricoGiordano1992/LMI-Matlab-master
solvesdp.m
.m
LMI-Matlab-master/yalmip/solvesdp.m
15,551
utf_8
8aa9cfafe34ac3e4c7a88041a3fd9d2d
function diagnostic = solvesdp(varargin) %SOLVESDP Obsolete command, please use OPTIMIZE yalmiptime = clock; % Let us see how much time we spend % ********************************* % CHECK INPUT % ********************************* nargin = length(varargin); % First check of objective for early transfer to multiple solves if nargin>=2 if isa(varargin{2},'double') varargin{2} = []; elseif isa(varargin{2},'sdpvar') && numel(varargin{2})>1 % Several objectives diagnostic = solvesdp_multiple(varargin{:}); return end end if nargin<1 help solvesdp return else F = varargin{1}; if isa(F,'constraint') F = lmi(F); end if isa(F,'lmi') F = flatten(F); end if isa(F,'sdpvar') % We do allow sloppy coding of logic constraints, i.e writing a % constraints as [a|b true(a)] Fnew = []; for i = 1:length(F) if length(getvariables(F(i)))>1 Fnew = nan; break end operator = yalmip('extstruct',getvariables(F(i))); if isempty(operator) Fnew = nan; break end if length(operator)>1 Fnew = nan; break end if ~strcmp(operator.fcn,'or') Fnew = nan; break end Fnew = Fnew + (true(F(i))); end if isnan(Fnew) error('First argument (F) should be a constraint object.'); else F = Fnew; end elseif isempty(F) F = lmi([]); elseif ~isa(F,'lmi') error('First argument (F) should be a constraint object.'); end end if nargin>=2 h = varargin{2}; if isa(h,'double') h = []; end if ~(isempty(h) | isa(h,'sdpvar') | isa(h,'logdet') | isa(h,'ncvar')) if isa(h,'struct') error('Second argument (the objective function h) should be an sdpvar or logdet object (or empty). It appears as if you sent an options structure in the second argument.'); else error('Second argument (the objective function h) should be an sdpvar or logdet object (or empty).'); end end if isa(h,'logdet') logdetStruct.P = getP(h); logdetStruct.gain = getgain(h); h = getcx(h); if isempty(F) F = ([]); end else logdetStruct = []; end else logdetStruct = []; h = []; end if ~isempty(F) if any(is(F,'sos')) diagnostic = solvesos(varargin{:}); return end end if isa(h,'sdpvar') if is(h,'complex') error('Complex valued objective does not make sense.'); end end if nargin>=3 options = varargin{3}; if ~(isempty(options) | isa(options,'struct')) error('Third argument (options) should be an sdpsettings struct (or empty).'); end if isempty(options) options = sdpsettings; end else options = sdpsettings; end options.solver = lower(options.solver); % If user has logdet term, but no preference on solver, we try to hook up % with SDPT3 if possible. if ~isempty(logdetStruct) if strcmp(options.solver,'') % options.solver = 'sdpt3,*'; end end % Call chance solver? if length(F) > 0 rand_declarations = is(F,'random'); if any(rand_declarations) % diagnostic = solverandom(F(find(~rand_declarations)),h,options,recover(getvariables(sdpvar(F(find(unc_declarations)))))); return end end % Call robust solver? if length(F) > 0 unc_declarations = is(F,'uncertain'); if any(unc_declarations) diagnostic = solverobust(F(find(~unc_declarations)),h,options,recover(getvariables(sdpvar(F(find(unc_declarations)))))); return end end if isequal(options.solver,'mpt') | nargin>=4 solving_parametric = 1; else solving_parametric = 0; end % Just for safety if isempty(F) & isempty(logdetStruct) F = lmi; end if any(is(F,'sos')) error('You have SOS constraints. Perhaps you meant to call SOLVESOS.'); end % Super stupido if length(F) == 0 & isempty(h) & isempty(logdetStruct) diagnostic.yalmiptime = 0; diagnostic.solvertime = 0; diagnostic.info = 'No problems detected (YALMIP)'; diagnostic.problem = 0; diagnostic.dimacs = [NaN NaN NaN NaN NaN NaN]; return end % Dualize the problem? if ~isempty(F) if options.dualize == -1 sdp = find(is(F,'sdp')); if ~isempty(sdp) if all(is(F(sdp),'sdpcone')) options.dualize = 1; end end end end if options.dualize == 1 [Fd,objd,aux1,aux2,aux3,complexInfo] = dualize(F,h,[],[],[],options); options.dualize = 0; diagnostic = solvesdp(Fd,-objd,options); if ~isempty(complexInfo) for i = 1:length(complexInfo.replaced) n = size(complexInfo.replaced{i},1); re = 2*double(complexInfo.new{i}(1:n,1:n)); im = 2*double(complexInfo.new{i}(1:n,n+1:end)); im=triu((im-im')/2)-(triu((im-im')/2))'; assign(complexInfo.replaced{i},re + sqrt(-1)*im); end end return end % ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ % DID WE SELECT THE MOMENT SOLVER % ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ if isequal(options.solver,'moment') if ~isempty(logdetStruct) error('Cannot dualize problems with logaritmic objective') end options.solver = options.moment.solver; [diagnostic,x,momentdata] = solvemoment(F,h,options,options.moment.order); diagnostic.momentdata = momentdata; diagnostic.xoptimal = x; return end % ****************************************** % COMPILE IN GENERALIZED YALMIP FORMAT % ****************************************** [interfacedata,recoverdata,solver,diagnostic,F,Fremoved,ForiginalQuadratics] = compileinterfacedata(F,[],logdetStruct,h,options,0,solving_parametric); % ****************************************** % FAILURE? % ****************************************** if ~isempty(diagnostic) diagnostic.yalmiptime = etime(clock,yalmiptime); return end % ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ % DID WE SELECT THE LMILAB SOLVER WITH A KYP % ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ if strcmpi(solver.tag,'lmilab') & any(is(F,'kyp')) [diagnostic,failed] = calllmilabstructure(F,h,options); if ~failed % Did this problem pass (otherwise solve using unstructured call) diagnostic.yalmiptime = etime(clock,yalmiptime)-diagnostic.solvertime; return end end % ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ % DID WE SELECT THE KYPD SOLVER % ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ if strcmpi(solver.tag,'kypd') diagnostic = callkypd(F,h,options); diagnostic.yalmiptime = etime(clock,yalmiptime)-diagnostic.solvertime; return end % ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ % DID WE SELECT THE STRUL SOLVER % ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ if strfind(solver.tag,'STRUL') diagnostic = callstrul(F,h,options); diagnostic.yalmiptime = etime(clock,yalmiptime)-diagnostic.solvertime; return end %****************************************** % DID WE SELECT THE MPT solver (backwards comb) %****************************************** actually_save_output = interfacedata.options.savesolveroutput; if strcmpi(solver.tag,'mpt-2') | strcmpi(solver.tag,'mpt-3') | strcmpi(solver.tag,'mpcvx') | strcmpi(solver.tag,'mplcp') interfacedata.options.savesolveroutput = 1; if isempty(interfacedata.parametric_variables) if (nargin < 4 | ~isa(varargin{4},'sdpvar')) error('You must specify parametric variables.') else interfacedata.parametric_variables = []; for i = 1:length(varargin{4}) interfacedata.parametric_variables = [interfacedata.parametric_variables;find(ismember(recoverdata.used_variables,getvariables(varargin{4}(i))))]; end if isempty(varargin{5}) interfacedata.requested_variables = []; else interfacedata.requested_variables = []; for i = 1:length(varargin{5}) interfacedata.requested_variables = [interfacedata.requested_variables;find(ismember(recoverdata.used_variables,getvariables(varargin{5}(i))))]; end end end end end % ************************************************************************* % Just return the YALMIP model. Used when solving multiple objectives % ************************************************************************* if isfield(options,'pureexport') interfacedata.recoverdata = recoverdata; diagnostic = interfacedata; return end if strcmpi(solver.version,'geometric') % Actual linear user variables if options.assertgpnonnegativity check = find(interfacedata.variabletype==0); check = setdiff(check,interfacedata.aux_variables); check = setdiff(check,interfacedata.evalVariables); check = setdiff(check,interfacedata.extended_variables); [lb,ub] = findulb(interfacedata.F_struc,interfacedata.K); if ~all(lb(check)>=0) % User appears to have explictly selected a GP solver if ~isempty(strfind(options.solver,'geometric')) || ~isempty(strfind(options.solver,'mosek')) || ~isempty(strfind(options.solver,'gpposy')) % There are missing non-negativity bounds output = createOutputStructure(zeros(length(interfacedata.c),1)+NaN,[],[],18,yalmiperror(18,''),[],[],nan); diagnostic.yalmiptime = etime(clock,yalmiptime); diagnostic.solvertime = output.solvertime; try diagnostic.info = output.infostr; catch diagnostic.info = yalmiperror(output.problem,solver.tag); end diagnostic.problem = output.problem; if options.dimacs diagnostic.dimacs = dimacs; end return else % YALMIP selected solver and picked a GP solver. As this is % no GP, we call again, but this time explicitly tell % YALMIP that it isn't a GP options.thisisnotagp = 1; varargin{3} = options; diagnostic = solvesdp(varargin{:}); return end end end end % ************************************************************************* % TRY TO SOLVE PROBLEM % ************************************************************************* if options.debug eval(['output = ' solver.call '(interfacedata);']); else try eval(['output = ' solver.call '(interfacedata);']); catch output = createOutputStructure(zeros(length(interfacedata.c),1)+NaN,[],[],9,yalmiperror(9,lasterr),[],[],nan); end end if options.dimacs try b = -interfacedata.c; c = interfacedata.F_struc(:,1); A = -interfacedata.F_struc(:,2:end)'; x = output.Dual; y = output.Primal; % FIX this nonlinear crap (return variable type in % compileinterfacedata) if options.relax == 0 & any(full(sum(interfacedata.monomtable,2)~=0)) if ~isempty(find(sum(interfacedata.monomtable | interfacedata.monomtable,2)>1)) z=real(exp(interfacedata.monomtable*log(y+eps))); y = z; end end if isfield(output,'Slack') s = output.Slack; else s = []; end dimacs = computedimacs(b,c,A,x,y,s,interfacedata.K); catch dimacs = [nan nan nan nan nan nan]; end else dimacs = [nan nan nan nan nan nan]; end % ******************************** % ORIGINAL COORDINATES % ******************************** output.Primal = recoverdata.x_equ+recoverdata.H*output.Primal; % ******************************** % OUTPUT % ******************************** diagnostic.yalmiptime = etime(clock,yalmiptime)-output.solvertime; diagnostic.solvertime = output.solvertime; try diagnostic.info = output.infostr; catch diagnostic.info = yalmiperror(output.problem,solver.tag); end diagnostic.problem = output.problem; if options.dimacs diagnostic.dimacs = dimacs; end % Some more info is saved internally solution_internal = diagnostic; solution_internal.variables = recoverdata.used_variables(:); solution_internal.optvar = output.Primal; if ~isempty(interfacedata.parametric_variables) diagnostic.mpsol = output.solveroutput; options.savesolveroutput = actually_save_output; end; if interfacedata.options.savesolveroutput diagnostic.solveroutput = output.solveroutput; end if interfacedata.options.savesolverinput diagnostic.solverinput = output.solverinput; end if interfacedata.options.saveyalmipmodel diagnostic.yalmipmodel = interfacedata; end if options.warning & warningon & isempty(findstr(diagnostic.info,'No problems detected')) disp(['Warning: ' output.infostr]); end if ismember(output.problem,options.beeponproblem) try beep; % does not exist on all ML versions catch end end % And we are done! Save the result if ~isempty(output.Primal) if size(output.Primal,2)>1 for j = 1:size(output.Primal,2) temp = solution_internal; temp.optvar = temp.optvar(:,j); yalmip('setsolution',temp,j); end else yalmip('setsolution',solution_internal); end end if interfacedata.options.saveduals & solver.dual if isempty(interfacedata.Fremoved) | (nnz(interfacedata.Q)>0) try setduals(F,output.Dual,interfacedata.K); catch end else try % Duals related to equality constraints/free variables % have to be recovered b-A*x-Ht == 0 b = -interfacedata.oldc; A = -interfacedata.oldF_struc(1+interfacedata.oldK.f:end,2:end)'; H = -interfacedata.oldF_struc(1:interfacedata.oldK.f,2:end)'; x = output.Dual; b_equ = b-A*x; newdual = H\b_equ; setduals(interfacedata.Fremoved + F,[newdual;output.Dual],interfacedata.oldK); catch % this is a new feature... disp('Dual recovery failed. Please report this issue.'); end end end % Hack to recover original QCQP duals from gurobi if strcmp(solver.tag,'GUROBI-GUROBI') if length(ForiginalQuadratics) > 0 if isfield(output,'qcDual') if length(output.qcDual) == length(ForiginalQuadratics) % Ktemp.l = length(output.qcDual); % Ktemp.f = 0; % Ktemp.q = 0; % Ktemp.s = 0; % Ktemp.r = 0; Ftemp = F + ForiginalQuadratics; K = interfacedata.K; Ktemp = K; Ktemp.l = Ktemp.l + length(ForiginalQuadratics); tempdual = output.Dual; tempdual = [tempdual(1:K.f + K.l);-output.qcDual;tempdual(1+K.f+K.l:end)]; setduals(Ftemp,tempdual,Ktemp); % setduals(ForiginalQuadratics,-output.qcDual,Ktemp); end end end end function yesno = warningon s = warning; yesno = isequal(s,'on');
github
EnricoGiordano1992/LMI-Matlab-master
deriveBasis.m
.m
LMI-Matlab-master/yalmip/modules/sos/deriveBasis.m
323
utf_8
0401f866c43215ad1c43d68dd8499dd3
function H = deriveBasis(A_equ) [L,U,P] = lu(A_equ); [L,U,P] = lu(A_equ'); r = colspaces(L'); AA = L'; H1 = AA(:,r); H2 = AA(:,setdiff(1:size(AA,2),r)); H = P'*[-H1\H2;speye(size(H2,2))]; function [indx]=colspaces(A) indx = []; for i = 1:size(A,2) s = max(find(A(:,i))); indx = [indx s]; end indx = unique(indx);
github
EnricoGiordano1992/LMI-Matlab-master
postprocesssos.m
.m
LMI-Matlab-master/yalmip/modules/sos/postprocesssos.m
3,702
utf_8
6716cb77d4d92dcbb793f478d7c47993
function [BlockedQ,residuals] = postprocesssos(BlockedA,Blockedb,BlockedQ,sparsityPattern,options); BlockedQ=applysparsity(BlockedQ,sparsityPattern); for passes = 1:1:options.sos.postprocess for constraint = 1:length(BlockedQ) mismatch = computeresiduals(BlockedA,Blockedb,BlockedQ,constraint); [ii,jj ]= sort(abs(mismatch)); jj = flipud(jj); for j = jj(:)'%1:size(BlockedA{constraint}{1},1) if abs(mismatch(j))>0 for i = 1:length(BlockedA{constraint}) n=sqrt(size(BlockedA{constraint}{i},2)); Ai=reshape(BlockedA{constraint}{i}(j,:),n,n); nnzAi = nnz(Ai); if nnzAi>0 dAi = Ai*mismatch(j)/nnzAi; Qi = BlockedQ{constraint}{i}; % [R,p] = chol(BlockedQ{constraint}{i}-Ai*mismatch(j)/nnzAi); [R,p] = chol(Qi-dAi); if p % gevps=eig(BlockedQ{constraint}{i},full(Ai)*mismatch(j)/nnzAi); gevps=eig(Qi,full(dAi)); gevps=gevps(gevps>=0); gevps=gevps(~isinf(gevps)); if isempty(gevps) gevps=1; end lambda=max(0,min(1,min(gevps))); % [R,p] = chol(BlockedQ{constraint}{i}-Ai*lambda*mismatch(j)/nnzAi); [R,p] = chol(Qi-dAi*lambda); else lambda = 1; end % dAi = Ai*mismatch(j)/nnzAi; if ~p % BlockedQ{constraint}{i}=BlockedQ{constraint}{i}-Ai*lambda*mismatch(j)/nnzAi; BlockedQ{constraint}{i}=Qi-dAi*lambda; mismatch(j)=mismatch(j)*(1-lambda); else %lambda=1; while lambda>1e-4 & (p~=0) lambda=lambda/sqrt(2); % [R,p]= chol(BlockedQ{constraint}{i}-Ai*lambda*mismatch(j)/nnzAi); [R,p]= chol(Qi-dAi*lambda); end % if min(eig(BlockedQ{constraint}{i}-Ai*lambda*mismatch(j)/nnzAi))>=0 if min(eig(Qi-dAi*lambda))>=0 % BlockedQ{constraint}{i}=BlockedQ{constraint}{i}-Ai*lambda*mismatch(j)/nnzAi; BlockedQ{constraint}{i}=Qi-dAi*lambda; mismatch(j)=mismatch(j)*(1-lambda); end end end end end end end end for constraint = 1:length(BlockedQ) residuals(constraint,1) = norm(computeresiduals(BlockedA,Blockedb,BlockedQ,constraint),'inf'); end function mismatch = computeresiduals(BlockedA,Blockedb,BlockedQ,constraint); lhs=0; for k=1:length(BlockedA{constraint}) lhs=lhs+BlockedA{constraint}{k}*BlockedQ{constraint}{k}(:); end mismatch = lhs-Blockedb{constraint}; function BlockedQ=applysparsity(BlockedQ,sparsityPattern); if ~isempty(sparsityPattern) for i = 1:length(BlockedQ) for j = 1:length(BlockedQ{i}) BlockedQ{i}{j}(sparsityPattern{i}{j}) = 0; end end end
github
EnricoGiordano1992/LMI-Matlab-master
generate_kernel_representation_data.m
.m
LMI-Matlab-master/yalmip/modules/sos/generate_kernel_representation_data.m
9,746
utf_8
408c65ea2806342ae7e7998a85c98ba7
function [A,b] = generate_kernel_representation_data(N,N_unique,exponent_m2,exponent_p,p,options,p_base_parametric,ParametricIndicies,MonomIndicies,FirstRun) persistent saveData exponent_p_parametric = exponent_p(:,ParametricIndicies); exponent_p_monoms = exponent_p(:,MonomIndicies); pcoeffs = getbase(p); if any(exponent_p_monoms(1,:)) pcoeffs=pcoeffs(:,2:end); % No constant term in p end b = []; parametric = full((~isempty(ParametricIndicies) & any(any(exponent_p_parametric)))); % For problems with a lot of similar cones, this saves some time reuse = 0; if ~isempty(saveData) && isequal(saveData.N,N) & ~FirstRun n = saveData.n; ind = saveData.ind; if isequal(saveData.N_unique,N_unique) & isequal(saveData.exponent_m2,exponent_m2)% & isequal(saveData.epm,exponent_p_monoms) reuse = 1; end else % Congruence partition sizes for k = 1:size(N,1) n(k) = size(N{k},1); end % Save old SOS definition saveData.N = N; saveData.n = n; saveData.N_unique = N_unique; saveData.exponent_m2 = exponent_m2; saveData.N_unique = N_unique; end if reuse & options.sos.reuse % Get old stuff if size(exponent_m2{1},2)==2 % Stupid (sos(parametric)) case ind = spalloc(1,1,0); ind(1)=1; allj = 1:size(exponent_p_monoms,1); used_in_p = ones(size(exponent_p_monoms,1),1); else allj = []; used_in_p = zeros(size(exponent_p_monoms,1),1); hash = randn(size(exponent_p_monoms,2),1); p_hash = exponent_p_monoms*hash; exponent_p_monoms_hash = exponent_p_monoms*hash; for i = 1:size(N_unique,1) monom = sparse(N_unique(i,3:end)); j = find(exponent_p_monoms_hash == (monom*hash)); if isempty(j) b = [b 0]; allj(end+1,1) = 0; else used_in_p(j) = 1; allj(end+1,1:length(j)) = j(:)'; end end ind = saveData.ind; end else allj = []; used_in_p = zeros(size(exponent_p_monoms,1),1); if size(exponent_m2{1},2)==2 % Stupid (sos(parametric)) case ind = spalloc(1,1,0); ind(1)=1; allj = 1:size(exponent_p_monoms,1); used_in_p = ones(size(exponent_p_monoms,1),1); else % To speed up some searching, we random-hash data hash = randn(size(exponent_p_monoms,2),1); for k = 1:length(exponent_m2) if isempty(exponent_m2{k}) exp_hash{k}=[]; else exp_hash{k} = sparse((exponent_m2{k}(:,3:end)))*hash; % SPARSE NEEDED DUE TO STRANGE NUMERICS IN MATLAB ON 0s (the stuff will differ on last bit in hex format) end end p_hash = exponent_p_monoms*hash; ind = spalloc(size(N_unique,1),sum(n.^2),0); for i = 1:size(N_unique,1) monom = N_unique(i,3:end); monom_hash = sparse(monom)*hash; LHS = 0; start = 0; for k = 1:size(N,1) j = find(exp_hash{k} == monom_hash); if ~isempty(j) pos=exponent_m2{k}(j,1:2); nss = pos(:,1); mss = pos(:,2); indicies = nss+(mss-1)*n(k); ind(i,indicies+start) = ind(i,indicies+start) + 1; end start = start + (n(k))^2; % start = start + (matrixSOSsize*n(k))^2; end j = find(p_hash == monom_hash); if isempty(j) allj(end+1,1) = 0; else used_in_p(j) = 1; allj(end+1,1:length(j)) = j(:)'; end end end end saveData.ind = ind; % Some parametric terms in p(x,t) do not appear in v'Qv % So these have to be added 0*Q = b not_dealt_with = find(used_in_p==0); while ~isempty(not_dealt_with) %j = findrows(exponent_p_monoms,exponent_p_monoms(not_dealt_with(1),:)); j = find(p_hash == p_hash(not_dealt_with(1))); allj(end+1,1:length(j)) = j(:)'; used_in_p(j) = 1; not_dealt_with = find(used_in_p==0); ind(end+1,1)=0; end matrixSOSsize = length(p); if parametric % Inconsistent behaviour in MATLAB if size(allj,1)==1 uu = [0;p_base_parametric]; b = sum(uu(allj+1))'; else b = []; for i = 1:matrixSOSsize for j = i:matrixSOSsize if i~=j uu = [0;2*p_base_parametric(:,(i-1)*matrixSOSsize+j)]; else uu = [0;p_base_parametric(:,(i-1)*matrixSOSsize+j)]; end b = [b sum(uu(allj+1),2)']; end end end else if matrixSOSsize == 1 uu = [zeros(size(pcoeffs,1),1) pcoeffs]'; b = sum(uu(allj+1,:),2)'; else b = []; for i = 1:matrixSOSsize for j = i:matrixSOSsize if i~=j uu = [0;2*pcoeffs((i-1)*matrixSOSsize+j,:)']; else uu = [0;pcoeffs((i-1)*matrixSOSsize+j,:)']; end b = [b;sum(uu(allj+1,:),2)']; end end end % uu = [0;pcoeffs(:)]; % b = sum(uu(allj+1),2)'; end b = b'; dualbase = ind; j = 1; A = cell(size(N,1),1); for k = 1:size(N,1) if matrixSOSsize==1 A{k} = dualbase(:,j:j+n(k)^2-1); else % Quick fix for matrix SOS case, should be optimized A{k} = inflate(dualbase(:,j:j+n(k)^2-1),matrixSOSsize,n(k)); end j = j + n(k)^2; end b = b(:); function newAi = inflate(Ai,matrixSOSsize,n); % Quick fix for matrix SOS case, should be optimized newAi = []; newAi = []; newAj = []; newAk = []; top = 1; for i = 1:matrixSOSsize for r = i:matrixSOSsize for m = 1:size(Ai,1) ai = reshape(Ai(m,:),n,n); if 1 % V = spalloc(matrixSOSsize,matrixSOSsize,2); % V(i,r)=1; % V(r,i)=1; % aii = kron(V,ai); % aii = aii(:); % [ii,jj,kk] = find(aii); % newAj = [newAj ii(:)']; % newAi = [newAi repmat(top,1,length(ii))]; % newAk = [newAk kk(:)']; [dnewAj,dnewAi,dnewAk] = inflatelocal(ai,matrixSOSsize,r,i,top); newAj = [newAj dnewAj]; newAi = [newAi dnewAi]; newAk = [newAk dnewAk]; % newAi = [newAi;ai(:)']; else [dnewAjC,dnewAiC,dnewAkC] = inflatelocal(ai,matrixSOSsize,r,i,top); [dnewAj,dnewAi,dnewAk] = inflatelocalnew(ai,matrixSOSsize,r,i,top,n); AA=reshape(full(sparse(dnewAi*0+1,dnewAj,dnewAk,1,(matrixSOSsize*n)^2)),n*matrixSOSsize,[]); AA2=reshape(full(sparse(dnewAiC*0+1,dnewAjC,dnewAkC,1,(matrixSOSsize*n)^2)),n*matrixSOSsize,[]); if norm(AA-AA2)>0 1 end newAj = [newAj dnewAj]; newAi = [newAi dnewAi]; newAk = [newAk dnewAk]; % % [ii,jj,kk] = find(ai-diag(diag(ai))); % iii = [(i-1)*n+ii;(r-1)*n+jj] % jjj = [(r-1)*n+jj;(i-1)*n+ii] % kkk = [kk;kk]; % indexi = repmat(top,1,length(iii)); % index = iii+(jjj-1)*matrixSOSsize*n % newAj = [newAj index(:)']; % newAi = [newAi indexi]; % newAk = [newAk kkk(:)']; % % [ii,jj,kk] = find(diag(diag(ai))); % iii = [(i-1)*n+ii] % jjj = [(r-1)*n+jj] % kkk = [kk]; % indexi = repmat(top,1,length(iii)); % index = iii+(jjj-1)*matrixSOSsize*n % newAj = [newAj index(:)']; % newAi = [newAi indexi]; % newAk = [newAk kkk(:)']; end %sparse(indexi,index,kkk,1,(n*nA)^2) top = top+1; end end end newAi = sparse(newAi,newAj,newAk,top-1,(matrixSOSsize*n)^2); function [Z,Q1,R] = sparsenull(A) [Q,R] = qr(A'); n = max(find(sum(abs(R),2))); Q1 = Q(:,1:n); R = R(1:n,:); Z = Q(:,n+1:end); % New basis function [dnewAj,dnewAi,dnewAk] = inflatelocal(ai,matrixSOSsize,r,i,top) V = spalloc(matrixSOSsize,matrixSOSsize,2); V(i,r)=1; V(r,i)=1; aii = kron(V,ai); aii = aii(:); [ii,jj,kk] = find(aii); dnewAj = ii(:)'; dnewAi = repmat(top,1,length(ii)); dnewAk = kk(:)'; % newAi = [newAi;ai(:)']; function [dnewAj,dnewAi,dnewAk] = inflatelocalnew(ai,matrixSOSsize,r,i,top,n) if r==i [ii,jj,kk] = find(ai-diag(diag(ai))); else [ii,jj,kk] = find(ai); end iii = [(i-1)*n+ii;(r-1)*n+jj]; jjj = [(r-1)*n+jj;(i-1)*n+ii]; kkk = [kk;kk]; indexi = repmat(top,1,length(iii)); index = iii+(jjj-1)*matrixSOSsize*n; dnewAj = [ index(:)']; dnewAi = [ indexi]; dnewAk = [ kkk(:)']; [ii,jj,kk] = find(diag(diag(ai))); iii = [(i-1)*n+ii]; jjj = [(r-1)*n+jj]; kkk = [kk]; indexi = repmat(top,1,length(iii)); index = iii+(jjj-1)*matrixSOSsize*n; dnewAj = [dnewAj index(:)']; dnewAi = [dnewAi indexi]; dnewAk = [dnewAk kkk(:)'];
github
EnricoGiordano1992/LMI-Matlab-master
solvebilevel.m
.m
LMI-Matlab-master/yalmip/modules/bilevel/solvebilevel.m
28,584
utf_8
ca5553a39360503959e1ef8141c91ee0
function [sol,info] = solvebilevel(OuterConstraints,OuterObjective,InnerConstraints,InnerObjective,InnerVariables,options) %SOLVEBILEVEL Simple global bilevel solver % % min CO(x,y) % subject to OO(x,y)>0 % y = arg min OI(x,y) % subject to CI(x,y)>0 % % [DIAGNOSTIC,INFO] = SOLVEBILEVEL(CO, OO, CI, OI, y, options) % % diagnostic : Struct with standard YALMIP diagnostics % info : Bilevel solver specific information % % Input % CI : Outer constraints (linear elementwise) % OI : Outer objective (convex quadratic) % CI : Inner constraints (linear elementwise) % OI : Inner objective (convex quadratic) % y : Inner variables % options : solver options from SDPSETTINGS. % % The behaviour of the bilevel solver can be controlled % using the field 'bilevel' in SDPSETTINGS % % bilevel.outersolver : Solver for outer problems with inner KKT removed % bilevel.innersolver : Solver for inner problem % bilevel.rootcut : Number of cuts (based on complementary % constraints) added in root (experimental) % bilevel.relgaptol : Termination tolerance % bilevel.compslacktol: Tolerance for accepting complementary slackness % bilevel.feastol : Tolerance for feasibility in outer problem % % % See also SDPVAR, SDPSETTINGS, SOLVESDP % min f(x,y) s.t g(x,y)<0, y = argmin [x;y]'*H*[x;y]+e'[x;y]+f, E[x;y]<d if nargin<6 options = sdpsettings; elseif isempty(options) options = sdpsettings; end y = InnerVariables; if ~isempty(InnerConstraints) if any(is(InnerConstraints,'sos2')) error('SOS2 structures not allowed in inner problem'); end end % User wants to use fmincon, cplex or something like if strcmp(options.bilevel.algorithm,'external') % Derive KKT conditions of inner problem, append with outer, and solve % using standard solver z = [depends(OuterConstraints) depends(OuterObjective) depends(InnerObjective) depends(InnerConstraints)]; z = setdiff(z,depends(y)); z = recover(unique(z)); [K,details] = kkt(InnerConstraints,InnerObjective,z,options); Constraints = [K,OuterConstraints]; sol = solvesdp(Constraints,OuterObjective,options); info = []; return end % Export the inner model, and select solver options.solver = options.bilevel.innersolver; if isa(InnerObjective, 'double') || is(InnerObjective,'linear') [Imodel,Iax1,Iax2,inner_p] = export(InnerConstraints,InnerObjective,options,[],[],0); elseif is(InnerObjective,'quadratic') % We have to be a bit careful about cases such as x'y. This is convex in % the inner problem, since x is constant there. % [Q,c,f,dummy,nonquadratic] = vecquaddecomp(InnerObjective); % Extract model for a fake quadratic model % [InnerConstraints,failure] = expandmodel(InnerConstraints,InnerObjective) %[Imodel,Iax1,Iax2,inner_p] = export(InnerConstraints,dummy'*diag(1+diag(Q{1}))*dummy+c{1}'*dummy,options,[],[],0); % toptions = options; % toptions.expandbilinear = 1; yy = recover(setdiff(depends(y),setdiff(depends(InnerObjective),depends(y)))); [Imodel,Iax1,Iax2,inner_p] = export(InnerConstraints,yy'*yy+sum(recover(depends(InnerObjective))),options,[],[],0); [Q,c,f,dummy,nonquadratic] = vecquaddecomp(InnerObjective,recover(inner_p.used_variables)); %[Imodel,Iax1,Iax2,inner_p] = export(InnerConstraints,InnerObjective,options,[],[],0); % Now plug in the real quadratic function if ~isequal(getvariables(dummy),inner_p.used_variables) error('This quadratic form is not supported yet. Please make feature request') else inner_p.Q = Q{1}; inner_p.c = c{1}; inner_p.f = f{1}; end else error('Only LPs or convex QPs allowed as inner problem'); end % Modeling of inner problem might have lead to more decision variables in % the inner problem. Append these v1 = getvariables(y); v2 = inner_p.used_variables(inner_p.extended_variables); v3 = inner_p.used_variables(inner_p.aux_variables(:)); y = recover(unique([v1(:);v2(:);v3(:)])); % Export the outer model, and select solver options.solver = options.bilevel.outersolver; [Omodel,Oax1,Oax2,outer_p] = export(OuterConstraints,OuterObjective,options,[],[],0); if isstruct(Oax2) sol = Oax2; info = 2; return end % Export a joint model with KKT removed, to simplify some setup later % [Auxmodel,Auxax1,Auxax2,outerinner_p] = export([OuterConstraints,InnerConstraints],OuterObjective+pi*InnerObjective,options,[],[],0); if ~all(inner_p.variabletype==0) | ~isequal(inner_p.K.s,0) | ~isequal(inner_p.K.q,0) error('Only LPs or convex QPs allowed as inner problem'); end if options.bilevel.rootcuts & (~(isequal(outer_p.K.s,0) & isequal(outer_p.K.q,0))) disp('Disjunctive cuts currently only supported when inner is a QP') options.bilevel.rootcuts = 0; end FRP0 = inner_p; [merged_mt,merged_vt] = mergemonoms(inner_p,outer_p); if ~isequal(inner_p.used_variables,outer_p.used_variables) invar = inner_p.used_variables; outvar = outer_p.used_variables; binary_variables = unique([inner_p.used_variables(inner_p.binary_variables) outer_p.used_variables(outer_p.binary_variables)]); integer_variables = unique([inner_p.used_variables(inner_p.integer_variables) outer_p.used_variables(outer_p.integer_variables)]); semi_variables = unique([inner_p.used_variables(inner_p.semicont_variables) outer_p.used_variables(outer_p.semicont_variables)]); all_variables = unique([inner_p.used_variables outer_p.used_variables]); if ~isequal(all_variables,inner_p.used_variables ) inner_p = pad(inner_p,all_variables); FRP0 = inner_p; FRP0.monomtable = speye(length(inner_p.c)); end if ~isequal(all_variables,outer_p.used_variables ) outer_p = pad(outer_p,all_variables); end else binary_variables = unique([inner_p.used_variables(inner_p.binary_variables) outer_p.used_variables(outer_p.binary_variables)]); integer_variables = unique([inner_p.used_variables(inner_p.integer_variables) outer_p.used_variables(outer_p.integer_variables)]); semi_variables = unique([inner_p.used_variables(inner_p.semicont_variables) outer_p.used_variables(outer_p.semicont_variables)]); all_variables = inner_p.used_variables; end outer_p.monomtable = merged_mt; outer_p.variabletype = merged_vt; inner_p.variabletype = merged_vt; inner_p.monomtable = merged_vt; % Index to inner variables for i = 1:length(y) y_var(i) = find(all_variables == getvariables(y(i))); end % Index to outer variables x_var = setdiff(1:length(all_variables),y_var); % Index to binary variables bin_var = []; for i = 1:length(binary_variables) bin_var(i) = find(all_variables == binary_variables(i)); end int_var = []; for i = 1:length(integer_variables) int_var(i) = find(all_variables == integer_variables(i)); end semi_var = []; for i = 1:length(semi_variables) semi_var(i) = find(all_variables == semi_variables(i)); end if ~isempty(intersect(y_var,bin_var)) error('Only LPs or convex QPs allowed as inner problem (inner variables can not be binary)'); end if ~isempty(intersect(y_var,int_var)) error('Only LPs or convex QPs allowed as inner problem (inner variables can not be integer)'); end if ~isempty(intersect(y_var,semi_var)) error('Only LPs or convex QPs allowed as inner problem (inner variables can not be semi-continuous)'); end inner_p.binary_variables = bin_var; outer_p.binary_variables = bin_var; inner_p.integer_variables = int_var; outer_p.integer_variables = int_var; inner_p.semicont_variables = semi_var; outer_p.semicont_variables = semi_var; % Number of inequalities in inner model = #bounded dual variables ninequalities = inner_p.K.l; nequalities = inner_p.K.f; % Add dual related to inequalities in inner model to the model dual_var = length(all_variables)+1:length(all_variables)+ninequalities; %dual_var = length(inner_p.c)+1:length(inner_p.c)+ninequalities; % Add dual related to inequalities in inner model to the model eqdual_var = dual_var(end)+1:dual_var(end)+inner_p.K.f; % No cost of duals in outer objective p = outer_p; if ~isempty(dual_var) p.c(dual_var(end))=0; p.Q(dual_var(end),dual_var(end)) = sparse(0); end if ~isempty(eqdual_var) p.c(eqdual_var(end))=0; p.Q(eqdual_var(end),eqdual_var(end)) = sparse(0); end % Structure of the constraints % % Stationary equalities % Outer equalities % Inner equalities % Inner LP inequalities % Duals positive % Outer inequalities (LP, SOCP, SDP) % Add stationarity to outer model stationary = [inner_p.c(y_var) 2*inner_p.Q(y_var,:)]; if length(dual_var)>0 stationary = [stationary -inner_p.F_struc(1+inner_p.K.f:inner_p.K.f+inner_p.K.l,1+y_var)']; end if length(eqdual_var)>0 stationary = [stationary -inner_p.F_struc(1:inner_p.K.f,1+y_var)']; end p.F_struc = [stationary;p.F_struc spalloc(size(p.F_struc,1),length(dual_var) + length(eqdual_var),0)]; p.K.f = p.K.f + length(y_var); % Add dual>0 to outer model p.F_struc = [p.F_struc(1:p.K.f,:);spalloc(ninequalities,length(x_var)+length(y_var)+1,0) speye(ninequalities) spalloc(ninequalities,nequalities,0);p.F_struc(1+p.K.f:end,:)]; p.K.l = p.K.l + ninequalities; % Add inner level constraints to outer model p.F_struc = [p.F_struc(1:p.K.f,:);inner_p.F_struc spalloc(ninequalities+nequalities,ninequalities+nequalities,0);p.F_struc(1+p.K.f:end,:)]; p.K.f = p.K.f + inner_p.K.f; p.K.l = p.K.l + inner_p.K.l; slack_index = p.K.f+1:+p.K.f+ninequalities; %p.lb = outerinner_p.lb; %p.ub = outerinner_p.ub; p.lb(dual_var) = 0; p.ub(dual_var) = inf; p.lb(eqdual_var) = -inf; p.ub(eqdual_var) = inf; p.x0 = []; %p.variabletype = outerinner_p.variabletype; %p.monomtable = outerinner_p.monomtable; %p.evalMap = outerinner_p.evalMap; %p.evalVariables = outerinner_p.evalVariables; for i = 1:length(dual_var) p.monomtable(dual_var(i),dual_var(i))=1; p.variabletype(dual_var(i)) = 0; end for i = 1:length(eqdual_var) p.monomtable(eqdual_var(i),eqdual_var(i))=1; p.variabletype(eqdual_var(i)) = 0; end % xy = sdpvar(length(x_var)+length(y_var),1); % z = sdpvar(length(dual_var),1); % res = p.F_struc*[1;xy;z] % % F_bilevel = [res(1:p.K.f) == 0,res(p.K.f+1:end)>0] % % Enable outer problem to be nonconvex etc p = build_recursive_scheme(p); % Turned off, generates crash. Unit test in test_bilevel_1 % p = compress_evaluation_scheme(p); p.lower = -inf; p.options.verbose = max([0 options.verbose-1]); p.level = 0; p.as_free = true(ninequalities,1); list{1} = p; lower = -inf; upper = inf; iter = 0; tol = 1e-8; ndomcuts = 0; ninfeascuts = 0; % Extract the inequalities in the inner problem. These are really the % interesting ones inner_p.F_struc = [inner_p.F_struc(1+inner_p.K.f:end,:) spalloc(inner_p.K.l,ninequalities+nequalities,0)]; if options.verbose disp('* Starting YALMIP bilevel solver.'); disp(['* Outer solver : ' outer_p.solver.tag]); disp(['* Inner solver : ' inner_p.solver.tag]); disp(['* Max iterations : ' num2str(p.options.bnb.maxiter)]); disp(' Node Upper Gap(%) Lower Open'); end gap = inf; xsol = []; sol.problem = 0; iter = 0; inner_p = detectdisjoint(inner_p); while length(list)>0 & gap > options.bilevel.relgaptol & iter < options.bilevel.maxiter iter = iter + 1; [p,list,lower] = select(list); Comment = ''; if p.lower<upper if strcmp(p.options.solver,'bmibnb') & ~isinf(upper) % Allow early termination in bmibnb if it is used in outer % probllem p.options.bmibnb.lowertarget = upper; end output = feval(p.solver.call,p); if output.problem==2 Comment = 'Unbounded node'; end if output.problem==1 % Infeasible ninfeascuts = ninfeascuts + 1; Comment = 'Infeasible in solver'; else switch output.problem case 0 Comment = 'Solved to optimality'; otherwise Comment = yalmiperror(output.problem); end z = apply_recursive_evaluation(p,output.Primal); cost = z'*p.Q*z + p.c'*z + p.f; ActuallyFeasible = checkfeasiblefast(p,z,options.bilevel.feastol); if ~ActuallyFeasible % Try to solve the relaxed feasibility problem using the % inner solver (i.e. treat as LP. If infeasible, it is for % sure infeasible pAux = p;pAux.c = p.c*0;pAux.Q = p.Q*0; outputCheck = feval(inner_p.solver.call,pAux); if outputCheck.problem == 1 % We will not continue branching, and let the user now % that this choice Comment = ['Infeasible']; cost = inf; sol.problem = 4; else % Hard to say anything Comment = ['Infeasible solution returned, resolve => continue']; sol.problem = 4; cost = p.lower; end end if cost<inf if strcmp(p.options.solver,'bmibnb') if output.problem == -6 sol.problem = -6; sol.info = yalmiperror(-6); info = []; return end p.lb = max([p.lb output.extra.propagatedlb],[],2); p.ub = min([p.ub output.extra.propagatedub],[],2); end % These are duals in the original inner problem lambda = output.Primal(dual_var); % Constraint slacks in original inner problem slack = inner_p.F_struc*[1;output.Primal]; % Outer variables xi = z(x_var); % Inner variables yi = z(y_var); res = (slack).*lambda; if ActuallyFeasible res = (slack).*lambda; else % Generate a dummy residual, to make sure we branch on % the first free res = (slack).*lambda*0; res(find(p.as_free)) = 1:length(find(p.as_free)); end if (all(p.as_free==0) | max(abs(res(p.as_free)))<options.bilevel.compslacktol) & ActuallyFeasible % Feasible! if upper>cost upper = cost; xsol = xi; zsol = yi; dualsol = output.Primal(dual_var); end elseif cost>upper-1e-10 ndomcuts = ndomcuts + 1; else % No official code, just playing around if ActuallyFeasible & options.bilevel.solvefrp FRP = FRP0; if 0 FRP = fixvariables(FRP0,x_var,xi,y_var); else FRP.F_struc = [xi -sparse(1:length(x_var),x_var,ones(length(x_var),1),length(x_var),length(x_var)+length(y_var));FRP.F_struc]; FRP.K.f = FRP.K.f + length(xi); FRP.options.verbose = 0; QQ = sparse(FRP0.Q); cc = sparse(FRP0.c); FRP.c(y_var) = FRP.c(y_var) + 2*FRP.Q(x_var,y_var)'*xi; FRP.Q(x_var,y_var)=0; FRP.Q(y_var,x_var)=0; FRP.Q(x_var,x_var)=0; end outputFRP = feval(inner_p.solver.call,FRP); if outputFRP.problem == 0 if 0 z = zeros(length(outer_p.c),1); z(x_var) = xi; z(y_var) = outputFRP.Primal; z2 = apply_recursive_evaluation(p,z); else z2 = apply_recursive_evaluation(p,outputFRP.Primal); end costFRP = z2'*outer_p.Q*z2 + outer_p.c'*z2 + outer_p.f; if costFRP < upper & isfeasible(outer_p,z2) upper = costFRP; xsol = z2(x_var); zsol = z2(y_var); end end end [ii,jj_tmp] = max(res(p.as_free)); ind_tmp = (1:length(res))'; ind_tmp = ind_tmp(p.as_free); jj = ind_tmp(jj_tmp); if strcmp(p.options.solver,'bmibnb') % Since BMIBNB solves a relaxation of relaxation, it % can generate a lower bound which is lower than % the lower bound before a compl. slack constraint % was added. p.lower = max(output.lower,lower); else p.lower = cost; end if iter<=options.bilevel.rootcuts % Add a disjunction cut p = disjunction(p,dual_var(jj),inner_p.F_struc(jj,:),output.Primal); % Put in queuee, it will be pulled back immediately list = {list{:},p}; else p1 = p; p2 = p; % Add dual == 0 on p1 p1.K.f = p1.K.f + 1; p1.F_struc = [zeros(1,size(p1.F_struc,2));p1.F_struc]; p1.F_struc(1,1+dual_var(jj))=1; p1.lb(dual_var(jj)) = -inf; p1.ub(dual_var(jj)) = inf; newequality = p1.F_struc(1,:); redundantinequality = findrows(p1.F_struc(p1.K.f+1:end,:),newequality); if ~isempty(redundantinequality) p1.F_struc(p1.K.f+redundantinequality,:)=[]; p1.K.l = p1.K.l-length(redundantinequality); end % Add slack == 0 p2.K.f = p2.K.f + 1; newequality = inner_p.F_struc(jj,:); p2.F_struc = [newequality;p2.F_struc]; redundantinequality = findrows(p2.F_struc(p2.K.f+1:end,:),newequality); if ~isempty(redundantinequality) p2.F_struc(p2.K.f+redundantinequality,:)=[]; p2.K.l = p2.K.l-length(redundantinequality); end p1.as_free(jj) = false; p2.as_free(jj) = false; if ~isempty(inner_p.disjoints) here = find(inner_p.disjoints(:,1) == j); if ~isempty(here) p1.as_free(inner_p.disjoints(here,2))=false; p2.as_free(inner_p.disjoints(here,2))=false; else here = find(inner_p.disjoints(:,2) == j); if ~isempty(here) p1.as_free(inner_p.disjoints(here,1))=false; p2.as_free(inner_p.disjoints(here,1))=false; end end end p1.level = p.level+1; p2.level = p.level+1; list = {list{:},p1}; list = {list{:},p2}; end end end end else ndomcuts = ndomcuts + 1; end [list,lower] = prune(list,upper); gap = abs((upper-lower)/(1e-3+abs(upper)+abs(lower))); if isnan(gap) gap = inf; end if options.verbose fprintf(' %4.0f : %12.3E %7.2f %12.3E %2.0f %s\n',iter,full(upper),100*full(gap),full(lower),length(list),Comment) end end info.upper = upper; info.iter = iter; info.ninfeascuts = ninfeascuts; info.ndomcuts = ndomcuts; if ~isempty(xsol) assign(recover(all_variables(x_var)),xsol); assign(recover(all_variables(y_var)),zsol); else sol.problem = 1; end function [list,lower] = prune(list,upper) l = []; for i = 1:length(list) l = [l list{i}.lower]; end j = find(upper > l+1e-10); list = {list{j}}; if length(list) == 0 lower = upper; else lower = min(l(j)); end function [p,list,lower] = select(list) l = []; for i = 1:length(list) l = [l list{i}.lower]; end [i,j] = min(l); p = list{j}; list = {list{1:j-1},list{j+1:end}}; lower = min(l); function p = addzero(p,i); p.K.f = p.K.f + 1; p.F_struc = [zeros(1,size(p.F_struc,2));p.F_struc]; p.F_struc(1,1+i)=1; function outer_p = pad(outer_p,all_variables) [i,loc] = find(ismember(all_variables,outer_p.used_variables)); p = outer_p; % Set all bounds to infinite, and then place the known bounds p.lb = -inf(length(all_variables),1); p.lb(loc) = outer_p.lb; p.ub = inf(length(all_variables),1); p.ub(loc) = outer_p.ub; % Set all variables as linear p.variabletype = zeros(1,length(all_variables)); p.variabletype(loc) = outer_p.variabletype; p.c = spalloc(length(all_variables),1,0); p.c(loc) = outer_p.c; if ~isempty(p.F_struc) p.F_struc = spalloc(size(p.F_struc,1),length(all_variables)+1,nnz(p.F_struc)); p.F_struc(:,1) = outer_p.F_struc(:,1); p.F_struc(:,1+loc) = outer_p.F_struc(:,2:end); end % if ~isempty(p.binary_variables) % end p.Q = spalloc(length(all_variables),length(all_variables),nnz(outer_p.Q)); p.Q(loc,loc) = outer_p.Q; outer_p = p; function p = disjunction(p,variable,const,xstar) neq = p.K.f+1; x = sdpvar(length(p.c),1); e = p.F_struc*[1;x]; Model1 = [x(variable)==0,-e(1:p.K.f)==0, e(1+p.K.f:end)>=0]; Model2 = [const*[1;x]==0,-e(1:p.K.f)==0, e(1+p.K.f:end)>=0]; Ab1 = getbase(sdpvar(Model1)); Ab2 = getbase(sdpvar(Model2)); b1 = -Ab1(:,1); A1 = Ab1(:,2:end); b2 = -Ab2(:,1); A2 = Ab2(:,2:end); % b1c = [0;-p.F_struc(:,1)]; % b2c = [const(1);-p.F_struc(:,1)]; % A1c = [-eyev(length(p.c),variable)';p.F_struc(:,2:end)]; % A2c = [-const(2:end);p.F_struc(:,2:end)]; %norm(b1-b1c) %norm(b2-b2c) %norm(A1-A1c,inf) %norm(A2-A2c,inf) alpha = sdpvar(length(xstar),1); beta = sdpvar(1); mu1 = sdpvar(length(b1),1); mu2 = sdpvar(length(b2),1); Objective = alpha'*xstar-beta; Constraint = [alpha' == mu1'*A1,alpha' == mu2'*A2,beta <= mu1'*b1, beta <= mu2'*b2,mu1(neq+1:end)>0,mu2(neq+1:end)>0]; %Constraint = [alpha' == mu1'*A1,alpha' == mu2'*A2,beta == mu1'*b1, beta == mu2'*b2,mu1(neq+1:end)>0,mu2(neq+1:end)>0]; %Constraint = [Constraint,-10<alpha<10,sum(mu1(neq+1:end))-sum(mu1(1:neq))<10,sum(mu2(neq+1:end))-sum(mu2(1:neq))<10]; %Constraint = [Constraint,-1<alpha<1,mu1(1)+mu2(1) == 1]; Constraint = [Constraint,-1<alpha<1,sum(mu1)+sum(mu2)==1]; %Constraint = [Constraint,sum(mu1(neq+1:end))-sum(mu1(1:neq))<10,sum(mu2(neq+1:end))-sum(mu2(1:neq))<10]; solvesdp(Constraint,Objective,sdpsettings('verbose',0)); p.K.l = p.K.l + 1; p.F_struc = [p.F_struc;-double(beta) double(alpha)']; function p = disjunctionFAST(p,variable,const,xstar) neq = p.K.f+1; n = length(p.c); b1 = [0;-p.F_struc(:,1)]; b2 = [const(1);-p.F_struc(:,1)]; A1 = [-eyev(length(p.c),variable)';p.F_struc(:,2:end)]; A2 = [-const(2:end);p.F_struc(:,2:end)]; alpha_ind = 1:length(xstar); beta_ind = alpha_ind(end)+1; mu1_ind = (1:length(b1))+beta_ind; mu2_ind = (1:length(b2))+mu1_ind(end); alpha = sdpvar(length(xstar),1); beta = sdpvar(1); mu1 = sdpvar(length(b1),1); mu2 = sdpvar(length(b2),1); p_hull = p; p_hull.c = zeros(mu2_ind(end),1); p_hull.c(alpha_ind) = xstar; p_hull.c(beta_ind) = -1; % equalities alpha = Ai'*mui, sum(mu)==1 p_hull.K.f = length(xstar)*2+1; p_hull.F_struc = [zeros(length(xstar),1) eye(length(xstar)) zeros(length(xstar),1) -A1' zeros(length(xstar),length(b2))]; p_hull.F_struc = [p_hull.F_struc; zeros(length(xstar),1) eye(length(xstar)) zeros(length(xstar),1) zeros(length(xstar),length(b2)) -A2']; p_hull.F_struc = [p_hull.F_struc ;1 zeros(1,length(xstar)) 0 -ones(1,length(b1)+length(b2))]; % Inequalities p_hull.F_struc = [p_hull.F_struc ;0 zeros(1,length(xstar)) -1 b1' b2'*0]; p_hull.F_struc = [p_hull.F_struc ;0 zeros(1,length(xstar)) -1 0*b1' b2']; npmu = length(b1)-neq; p_hull.F_struc = [p_hull.F_struc; zeros(npmu,1) zeros(npmu,length(xstar)) zeros(npmu,1) zeros(npmu,neq) eye(npmu) zeros(npmu,length(b2))]; p_hull.F_struc = [p_hull.F_struc; zeros(npmu,1) zeros(npmu,length(xstar)) zeros(npmu,1) zeros(npmu,length(b1)) zeros(npmu,neq) eye(npmu)]; p_hull.F_struc = [p_hull.F_struc; ones(length(xstar),1) -eye(length(xstar)) zeros(length(xstar),1+2*length(b1))]; p_hull.F_struc = [p_hull.F_struc; ones(length(xstar),1) eye(length(xstar)) zeros(length(xstar),1+2*length(b1))]; p_hull.K.l = 2+npmu*2+2*length(xstar); p_hull.lb = []; p_hull.ub = []; output = feval(p_hull.solver.call,p_hull); alpha = output.Primal(alpha_ind); beta = output.Primal(beta_ind); % Objective = alpha'*xstar-beta; % Constraint = [alpha' == mu1'*A1,alpha' == mu2'*A2,beta <= mu1'*b1, beta <= mu2'*b2,mu1(neq+1:end)>0,mu2(neq+1:end)>0]; % Constraint = [Constraint,-1<alpha<1,sum(mu1)+sum(mu2)==1]; % Constraint = [Constraint,sum(mu1)+sum(mu2)==1]; % solvesdp(Constraint,Objective,sdpsettings('verbose',0)); p.K.l = p.K.l + 1; p.F_struc = [p.F_struc;-double(beta) double(alpha)']; function feas = isfeasible(p,x) feas = checkfeasiblefast(p,x,1e-8); function p = detectdisjoint(p); p.disjoints = []; % for i = 1:p.K.l % row1 = p.F_struc(i+p.K.f,:); % for j = 2:1:p.K.l % row2 = p.F_struc(j+p.K.f,:); % % if all(abs(row1)-abs(row2)==0) % % candidate % if nnz(row1 == -row2 & row1~=0)==1 % p.disjoints = [p.disjoints;i j]; % end % end % end % end % function FRP = fixvariables(FRP0,x_var,xi,y_var); % Copy current model FRP = FRP0; % FRP.c(y_var) = FRP.c(y_var) + 2*FRP.Q(x_var,y_var)'*xi; FRP.c(x_var) = []; FRP.Q(:,x_var) = []; FRP.Q(x_var,:) = []; FRP.lb(x_var) = []; FRP.ub(x_var) = []; B = FRP.F_struc(:,1+x_var); FRP.F_struc(:,1+x_var)=[]; FRP.F_struc(:,1) = FRP.F_struc(:,1) + B*xi; % FRP.F_struc = [xi -sparse(1:length(x_var),x_var,ones(length(x_var),1),length(x_var),length(x_var)+length(y_var));FRP.F_struc]; % FRP.K.f = FRP.K.f + length(xi); % FRP.options.verbose = 0; % QQ = FRP0.Q; % cc = FRP0.c; % FRP.c(y_var) = FRP.c(y_var) + 2*FRP.Q(x_var,y_var)'*xi; % FRP.Q(x_var,y_var)=0; % FRP.Q(y_var,x_var)=0; % FRP.Q(x_var,x_var)=0; function [merged_mt,merged_vt] = mergemonoms(inner_p,outer_p); if isequal(inner_p.used_variables,outer_p.used_variables) merged_mt = inner_p.monomtable; merged_vt = inner_p.variabletype; else invar = inner_p.used_variables; outvar = outer_p.used_variables; all_variables = unique([invar outvar]); [i_inner,loc_inner] = find(ismember(all_variables,inner_p.used_variables)); [i_outer,loc_outer] = find(ismember(all_variables,outer_p.used_variables)); merged_mt = spalloc(length(all_variables),length(all_variables),0); merged_vt = zeros(1,length(all_variables)); for i = 1:length(i_inner) [ii,jj,kk] = find(inner_p.monomtable(i,:)); merged_mt(loc_inner(i),loc_inner(jj)) = kk; merged_vt(loc_inner(i)) = inner_p.variabletype(i); end for i = 1:length(i_outer) [ii,jj,kk] = find(outer_p.monomtable(i,:)); merged_mt(loc_outer(i),loc_outer(jj)) = kk; merged_vt(loc_outer(i)) = outer_p.variabletype(i); end end
github
EnricoGiordano1992/LMI-Matlab-master
robust_classify_variables_newest.m
.m
LMI-Matlab-master/yalmip/modules/robust/robust_classify_variables_newest.m
5,032
utf_8
71ff61f98a9e321589e7b9db9f902871
function [VariableType,F_x,F_w,F_xw,h] = robust_classify_variables_newest(F,h,ops,w); Dependency = iterateDependance( yalmip('monomtable') | yalmip('getdependence') | yalmip('getdependenceUser')); DependsOnw = find(any((Dependency(:,getvariables(w))),2)); h_variables = getvariables(h); h_w = find(ismember(h_variables,DependsOnw)); if ~isempty(h_w) base = getbase(h); h0 = base(1); base = base(2:end);base = base(:); sdpvar t F = [F,base(h_w(:))'*recover(h_variables(h_w)) <= t]; base(h_w) = 0; h = base(:)'*recover(h_variables) + t; Dependency = iterateDependance(yalmip('monomtable') | yalmip('getdependence') | yalmip('getdependenceUser')); DependsOnw = find(any((Dependency(:,getvariables(w))),2)); end DoesNotDependOnw = find(~any((Dependency(:,getvariables(w))),2)); [notused,x_variables] = find(Dependency(DoesNotDependOnw,:)); F_w = []; F_x = []; F_xw = []; for i = 1:length(F) F_vars = getvariables(F(i)); F_vars = find(any((Dependency(F_vars,:)),1)); if all(ismember(F_vars,DependsOnw)) F_w = F_w + F(i); elseif all(ismember(F_vars,DoesNotDependOnw)) F_x = F_x + F(i); else F_xw = F_xw + F(i); end end ops.removeequalities = 0; [F_x,failure,cause] = expandmodel(F_x,h,ops); [F_w,failure,cause] = expandmodel(F_w,[],ops); ops.expandbilinear = 1; ops.reusemodel = 1; % Might be case x+norm(w)<1, norm(w)<1 [F_xw,failure,cause] = expandmodel(F_xw,h,ops,w); w_variables = depends(F_w); x_variables = unique([depends(F_x) depends(F_xw) depends(h)]); x_variables = setdiff(x_variables,w_variables); % After exanding the conic represntable, we have introduced new variables Dependency = iterateDependance(yalmip('monomtable') | yalmip('getdependence') | yalmip('getdependenceUser')); auxiliary = unique([yalmip('extvariables') yalmip('auxvariables')]); if 1%~isempty(auxiliary) DependsOnw = find(any((Dependency(:,getvariables(w))),2)); DoesNotDependOnw = find(~any((Dependency(:,getvariables(w))),2)); temp = intersect(DependsOnw,x_variables); x_variables = setdiff(x_variables,DependsOnw); aux_with_w_dependence = temp; else aux_with_w_dependence = []; end % aux_w_or_w = union(aux_with_w_dependence,w_variables); % old_w_variables = []; % while ~isequal(w_variables,old_w_variables); % old_w_variables = w_variables; % for i = 1:length(F_xw) % if all(ismember(depends(F_xw(i)),aux_w_or_w)) % if ~any(ismember(depends(F_xw(i)),x_variables)) % new_w = intersect(depends(F_xw(i)),aux_w_or_w); % w_variables = union(w_variables,new_w); % aux_with_w_dependence = setdiff(aux_with_w_dependence,new_w); % goon = 1; % end % end % end % aux_w_or_w = union(aux_with_w_dependence,w_variables); % end x = recover(x_variables); w = recover(w_variables); if ~isempty(F_xw) F_xw_scalar = F_xw(find(is(F_xw,'elementwise') | is(F_xw,'equality'))); F_xw_multi = F_xw - F_xw_scalar; else F_xw_scalar = []; F_xw_multi = F_xw; end [MonomTable,Nonlinear] = yalmip('monomtable'); Dependency = yalmip('getdependenceUser'); evar = yalmip('extvariables'); if length(F_xw_scalar)>0 % Optimize dependency graph X = sdpvar(F_xw_scalar); Xvar = getvariables(X); Xbase = getbase(X);Xbase = Xbase(:,2:end); for i = 1:size(Xbase,1) used = Xvar(find(Xbase(i,:))); if any(Nonlinear(used)) used = find(any(MonomTable(used,:),1)); end auxUsed = intersect(used,aux_with_w_dependence); if ~isempty(auxUsed) wUsed = intersect(used,w_variables); if ~isempty(wUsed) Dependency(auxUsed,wUsed) = 1; end eUsed = intersect(used,evar); if ~isempty(eUsed) Dependency(eUsed,auxUsed) = 1; end end end end if length(F_xw_multi) > 0 for i = 1:length(F_xw_multi) used = getvariables(F_xw_multi(i)); used = find(any(MonomTable(used,:),1)); auxUsed = intersect((used),aux_with_w_dependence); wUsed = intersect((used),w_variables); if ~isempty(auxUsed) & ~isempty(wUsed) Dependency(auxUsed,wUsed) = 1; end eUsed = intersect((used),evar); if ~isempty(auxUsed) & ~isempty(eUsed) Dependency(eUsed,auxUsed) = 1; end end end UserDependency = yalmip('getdependenceUser'); fixed = find(any(UserDependency,2)); Dependency(fixed,:) = UserDependency(fixed,:); Dependency = iterateDependance(Dependency); VariableType.Graph = Dependency; VariableType.x_variables = x_variables; VariableType.w_variables = w_variables; VariableType.aux_with_w_dependence = aux_with_w_dependence; function Graph = iterateDependance(Graph) Graph = Graph + speye(length(Graph)); Graph0 = double(Graph*Graph ~=0); while ~isequal(Graph,Graph0) Graph = Graph0; Graph0 = double(Graph*Graph~=0); end
github
EnricoGiordano1992/LMI-Matlab-master
filter_polya.m
.m
LMI-Matlab-master/yalmip/modules/robust/filter_polya.m
5,003
utf_8
55fbd1c40e70d698b82c42d8aee3287f
function [F_xw,F_polya] = filter_polya(F_xw,w,N) F_polya = []; Fvars = getvariables(F_xw); wvars = getvariables(w); [mt,vt] = yalmip('monomtable'); if ~(N==ceil(N)) & (N>=0) error('The power in robust.polya must be a non-negative integer'); end F_new = []; if any(sum(mt(Fvars,wvars),2)>1) removeF = zeros(length(F_xw),1); for i = 1:length(F_xw) Fi = sdpvar(F_xw(i)); if length(Fi)>1 & is(Fi,'symmetric') % FIXME: SUUUUUPER SLOW P = polyapolynomial(sdpvar(Fi),w,N); C = []; V = []; for ii=1:length(P) t2 = []; for jj=1:length(P) if isa(P(ii,jj),'double') cc = cc*0; else [cc,vv] = (coefficients(P(ii,jj),w)); end try C = [C cc]; V = [V vv]; catch error('Polya filter not yet implemented for all SDP cone cases. Please report bug') end end end if ~isa(diff(V'),'double') error('Polya filter not yet implemented for all SDP cone cases. Please report bug') end for k = 1:size(C,1) F_new = F_new + (reshape(C(k,:),size(P,1),size(P,1)) >= 0); end removeF(i) = 1; else Fi = Fi(:); removeFi = zeros(length(Fi),1); if ~isempty(intersect(depends(Fi),wvars)) for k = 1:length(Fi) % disp('This was changed from >1') if any(sum(mt(getvariables(Fi(k)),wvars),2)>=1) p_polya = polyapolynomial(Fi(k),w,N); ci = coefficients(p_polya,w); if isa(ci,'sdpvar') F_polya = F_polya + (ci >= 0); else if any(ci)<0 error('Trivially infeasible. there are unparameterized negative coefficients in Polya relaxation') end % disp('Whoops, take care of this silly case in filter_polya...') end %F_polya = F_polya + (coefficients(p_polya,w) > 0); % this element has been taken care of removeFi(k) = 1; else % 1 end end end if all(removeFi) % all elements removed, so we can remove the whole % constraint removeF(i) = 1; else % Keep some of the elements F_xw(i) = (Fi(find(~removeFi)) >= 0); end end end F_xw(find(removeF)) = []; end F_polya = F_polya + F_new; function pi_monoms = homogenize_(pi_monoms,precalc)%w,Nmax,Nj) %pi_monoms = pi_monoms*sum(w)^(Nmax - Nj); pi_monoms = pi_monoms*precalc; function P = polyapolynomial(p,w,N) for i = 1:size(p,1) for j = 1:size(p,2) [pi_coeffs{i,j},pi_monoms{i,j}] = coefficients(p(i,j),w); end end Nmax = -inf; mt = yalmip('monomtable'); for i = 1:size(p,1) for j = 1:size(p,2) for k = 1:length(pi_monoms{i,j}) % deg_pi_monom{i,j}(k) = degree(pi_monoms{i,j}(k)); if isa(pi_monoms{i,j}(k),'double') deg_pi_monom{i,j}(k) = 0; else deg_pi_monom{i,j}(k) = sum(mt(getvariables(pi_monoms{i,j}(k)),:)); end Nmax = max(Nmax,deg_pi_monom{i,j}(k)); end end end for i = 1:size(p,1) for j = 1:size(p,2) if isa(pi_monoms{i,j},'sdpvar') preCalc = cell(Nmax+1,1); InvolvedDegrees = unique(deg_pi_monom{i,j}); for degrees = InvolvedDegrees(:)' k = find(deg_pi_monom{i,j} == degrees); %for k = 1:length(pi_monoms{i,j}) % Nj = 1+Nmax-deg_pi_monom{i,j}(k); Nj = 1+Nmax-degrees; if isempty(preCalc{Nj}) preCalc{Nj} = sum(w)^(Nj-1); % pi_monoms{i,j}(k) = homogenize_(pi_monoms{i,j}(k),w,Nmax,deg_pi_monom{i,j}(k)); pi_monoms{i,j}(k) = homogenize_(pi_monoms{i,j}(k),preCalc{Nj}); else pi_monoms{i,j}(k) = homogenize_(pi_monoms{i,j}(k),preCalc{Nj}); end end end end end P = []; sumNmax = sum(w)^(N + Nmax); sumN = sum(w)^(N); for i = 1:size(p,1) temp = []; for j = 1:size(p,2) if isa(pi_monoms{i,j},'sdpvar') pij = (pi_coeffs{i,j}'*pi_monoms{i,j})*sumN; else pij = p(i,j)*sumNmax; end temp = [temp pij]; end P = [P;temp]; end
github
EnricoGiordano1992/LMI-Matlab-master
dualtososrobustness.m
.m
LMI-Matlab-master/yalmip/modules/robust/dualtososrobustness.m
3,252
utf_8
499ac2bd7b66be04e843f1a3edb0611c
function SOSModel = dualtososrobustness(UncertainConstraint,UncertaintySet,UncertainVariables,DecisionVariables,p_tau_degree,localizer_tau_degree,Z_degree) [E,F] = getEFfromSET(UncertaintySet); [F0,Fz,Fx,Fxz] = getFzxfromSET(UncertainConstraint,UncertainVariables,DecisionVariables); if is(UncertainConstraint,'sdp') n = length(F0); v = sdpvar(n,1); d = v'*F0*v; b = [];for i = 1:length(Fx);b = [b;v'*Fx{i}*v];end c = [];for i = 1:length(Fz);c = [c;v'*Fz{i}*v];end if ~isempty(Fxz) A = []; for i = 1:size(Fxz,1); a = []; for j = 1:size(Fxz,2); a = [a v'*Fxz{i,j}*v]; end A = [A;a]; end else A = zeros(length(Fx),length(Fz)); end elseif is(UncertainConstraint,'socp') n = length(F0)-1; v = sdpvar(n,1); d = [1 v']*F0; b = [];for i = 1:length(Fx);b = [b;[1 v']*Fx{i}];end c = [];for i = 1:length(Fz);c = [c;[1 v']*Fz{i}];end A = zeros(length(Fx),length(Fz)); end [Z,coeffs] = createDualParameterization(UncertaintySet,v,Z_degree); coeffs = [DecisionVariables;coeffs(:)] Zblock = blkdiag(Z{:}); D = []; for i = 1:length(F) D = [D, coefficients(trace(Zblock'*F{i})-(A(:,i)'*DecisionVariables + c(i)),v)==0]; end [trivialFixed,thevalue] = fixedvariables(D); while ~isempty(trivialFixed) && length(D)>0 D = replace(D,trivialFixed,thevalue); % if ~isempty(D) % D = % D = sdpvar(replace(D,trivialFixed,thevalue))==0; for i = 1:length(Z) Z{i} = replace(Z{i},trivialFixed,thevalue); end Zblock = replace(Zblock, trivialFixed,thevalue); if length(D)>0 [trivialFixed,thevalue] = fixedvariables(D); end end % At this point Z is a function of v where v was used to scalarize the % uncertain constraint. Now we must ensure Z{i}(v) in cone gv = (1-v'*v); for i = 1:length(Z) if is(UncertaintySet(i),'sdp') % We use the matrix sos approach [tau,coefftau] = polynomial(v,localizer_tau_degree); coeffs = [coeffs;coefftau]; D=[D,sos(Z{i}-eye(length(Z{i}))*tau*gv)]; elseif is(UncertaintySet(i),'socp') % To get a SOS condition on dual Z{i}(v) in socp, we have to % introduce a new variable to scalarize the socp u = sdpvar(length(Z{i})-1,1); [tau,coefftau] = polynomial(v,localizer_tau_degree); coeffs = [coeffs;coefftau]; D = [D, sos([1 u']*Z{i}-tau*(1-u'*u))]; elseif is(UncertaintySet(i),'elementwise') [tau,coefftau] = polynomial(v,localizer_tau_degree); coeffs = [coeffs;coefftau]; D = [D, sos(Z{i}-tau*gv)]; elseif is(UncertaintySet(i),'equality') % No constraints on dual end end [tau,coefftau] = polynomial(v,p_tau_degree); p = -(trace(Zblock'*E) + b'*DecisionVariables + d) - tau*gv; coeffs = [coeffs;coefftau]; SOSModel = compilesos([D, sos(p)],[],sdpsettings('sos.model',2,'sos.scale',0),coeffs); function [z,val] = fixedvariables(D) Base = getbase(sdpvar(D)); A = -Base(:,2:end); b = Base(:,1); v = getvariables(D); z = []; val = []; for i = 1:size(A,1) j = find(A(i,:)); if length(j)==1 z = [z v(j)]; val = [val b(i)/A(i,j)]; end end z = recover(z);
github
EnricoGiordano1992/LMI-Matlab-master
filter_duality.m
.m
LMI-Matlab-master/yalmip/modules/robust/filter_duality.m
8,603
utf_8
91b1d25b80045a73fe70a694f9784e1a
function [F,feasible] = filter_duality(F_xw,Zmodel,x,w,ops) % Creates robustified version of the uncertain set of linear inequalities % s.t A(w)*x <= b(w) for all F(w) >= 0 where F(w) is a conic set, here % given in YALMIP numerical format. % % Based on Robust Optimization - Methodology and Applications. A. Ben-Tal % and A. Nemerovskii. Mathematical Programming (Series B), 92:453-480, 2002 % Note, there are some sign errors in the paper. % % The method introduces a large amount of new variables, equalities and % inequalities. By turning on robust.reducedual, the equalities are % eliminated, thus reducing the number of variables slightly feasible = 1; if length(F_xw) == 0 F = []; return end X = sdpvar(F_xw); b = []; A = []; % Some pre-calc xw = [x;w]; xind = find(ismembcYALMIP(getvariables(xw),getvariables(x))); wind = find(ismembcYALMIP(getvariables(xw),getvariables(w))); [Qs,cs,fs,dummy,nonquadratic] = vecquaddecomp(X,xw); c_wTbase = []; AAA = []; ccc = []; for i = 1:length(X) Q = Qs{i}; c = cs{i}; f = fs{i}; if nonquadratic error('Constraints can be at most quadratic, with the linear term uncertain'); end Q_ww = Q(wind,wind); Q_xw = Q(xind,wind); Q_xx = Q(xind,xind); c_x = c(xind); c_w = c(wind); %b = [b;f + c_w'*w]; %A = [A;-c_x'-w'*2*Q_xw']; % A = [A -c_x-2*Q_xw*w]; AAA = [AAA;sparse(-2*Q_xw)]; ccc = [ccc;-sparse(c_x)]; b = [b;f]; c_wTbase = [c_wTbase;c_w']; end b = b + c_wTbase*w; % Ac = A'; A = reshape(ccc + AAA*w,size(c_x,1),[]); if isa(A,'double') A = sparse(A); end A = A'; % Try to find variables that only have simple bound constraints. These % variables can explicitly be optimized and thus speed up the construction, % and allow a model with fewer variables. [Zmodel2,lower,upper] = find_simple_variable_bounds(Zmodel); % Partition the uncertain variables simple_w = find( ~isinf(lower) & ~isinf(upper)); general_w = find( isinf(lower) | isinf(upper)); simple_w = recover(simple_w); general_w = recover(general_w); % Linear uncertain constraint is (Bbetai*x + cdi) >= 0 for all w, or % (bi' + (Bi*w)')*x + (ci'*w + di). cd = b; Bbeta = -A; F = ([]); top = 1; % To speed up the construction, compute the ci vectors for all constraints % in one call ci_basis = [c1 c2 ...] ci_basis = basis(cd',w); if ops.verbose disp(' - Using duality to eliminate uncertainty'); end nv = yalmip('nvars'); simple_rows = []; for i = 1:length(b) Bbetai = Bbeta(i,:); if (nnz(ci_basis(:,i))==0) & isa(Bbetai,'double') % This constraint row does not depend on uncertainty %row = Bbetai*x + cdi; row = X(i); if isa(row,'sdpvar') % F = F + (row >= 0); simple_rows = [simple_rows;i]; else if row<0 feasible = 0; return end end else cdi = cd(i); if isempty(general_w) ci = ci_basis(:,i); di = basis(cdi,0); if isa(Bbetai,'double') Bi = zeros(1,length(w)); else Bi = basis(Bbetai,w)'; end bi = basis(Bbeta(i,:),0)'; % Scale to -1,1 uncertainty T = diag((upper-lower))/2; e = (upper+lower)/2; if nnz(Bi) == 0 if nnz(bi)==0 % Basically constant + w > 0 if (di+e'*ci) - norm(T*ci,1) < 0 error('Problem is trivially infeasible'); feasible = 0; return end else F = F + (bi'*x + (di+e'*ci) - norm(T*ci,1) >= 0); end else non_zeroBirow = find(sum(abs(Bi'),2)); zeroBirow = find(sum(abs(Bi'),2) == 0); if length(non_zeroBirow)>1 t = sdpvar(length(non_zeroBirow),1); F = F + ((bi'+e'*Bi')*x + (di+e'*ci) - sum(t) >= 0) + (-t <= T(non_zeroBirow,:)*(ci+Bi'*x) <= t); else F = F + ((bi'+e'*Bi')*x + (di+e'*ci) - T(non_zeroBirow,:)*(ci+Bi'*x) >= 0) ; F = F + ((bi'+e'*Bi')*x + (di+e'*ci) + T(non_zeroBirow,:)*(ci+Bi'*x) >= 0) ; end end else lhs1 = 0; lhs2 = 0; top = 1; Flocal = []; if Zmodel.K.f > 0 zeta = sdpvar(Zmodel.K.f,1); lhs1 = lhs1 + Zmodel.F_struc(top:top + Zmodel.K.f-1,2:end)'*zeta; lhs2 = lhs2 - Zmodel.F_struc(top:top + Zmodel.K.f-1,1)'*zeta; top = top + Zmodel.K.f; end if Zmodel.K.l > 0 zeta = sdpvar(Zmodel.K.l,1); Flocal = Flocal + (zeta >= 0); lhs1 = lhs1 + Zmodel.F_struc(top:top + Zmodel.K.l-1,2:end)'*zeta; lhs2 = lhs2 - Zmodel.F_struc(top:top + Zmodel.K.l-1,1)'*zeta; top = top + Zmodel.K.l; end if Zmodel.K.q(1) > 0 for j = 1:length(Zmodel.K.q) zeta = sdpvar(Zmodel.K.q(j),1); if length(zeta)>2 Flocal = Flocal + (cone(zeta)); else Flocal = Flocal + (zeta(2) <= zeta(1)) + (-zeta(2) <= zeta(1)); end lhs1 = lhs1 + Zmodel.F_struc(top:top + Zmodel.K.q(j)-1,2:end)'*zeta(:); lhs2 = lhs2 - Zmodel.F_struc(top:top + Zmodel.K.q(j)-1,1)'*zeta(:); top = top + Zmodel.K.q(j); end end if Zmodel.K.s(1) > 0 for j = 1:length(Zmodel.K.s) zeta = sdpvar(Zmodel.K.s(j)); Flocal = Flocal + (zeta >= 0); lhs1 = lhs1 + Zmodel.F_struc(top:top + Zmodel.K.s(j)^2-1,2:end)'*zeta(:); lhs2 = lhs2 - Zmodel.F_struc(top:top + Zmodel.K.s(j)^2-1,1)'*zeta(:); top = top + Zmodel.K.s(j)^2; end end % if isempty(simple_w) ci = basis(cd(i),w); di = basis(cd(i),0); Bi = basis(Bbeta(i,:),w)'; bi = basis(Bbeta(i,:),0)'; if ops.robust.reducedual Ablhs = getbase(lhs1); blhs = Ablhs(:,1); Alhs = Ablhs(:,2:end); % b+A*zeta == Bi'*x + ci % A*zeta == -b + Bi'*x + ci % zets ==... Anull = null(full(Alhs)); zeta2 = (Alhs\(-blhs + Bi'*x + ci))+Anull*sdpvar(size(Anull,2),1); lhs2 = replace(lhs2,recover(depends(lhs1)),zeta2); Flocal = replace(Flocal,recover(depends(lhs1)),zeta2); else Flocal = [Flocal,lhs1 == Bi'*x + ci]; % F = F + (lhs1 == Bi'*x + ci); end if isa(Bi,'double') & ops.robust.reducesemiexplicit ops2=ops;ops2.verbose = 0; sol = solvesdp([Flocal],-lhs2,ops); if sol.problem == 0 F = F + (double(lhs2) >= - (bi'*x + di)); else F = F + Flocal; F = F + (lhs2 >= - (bi'*x + di)); end else F = F + Flocal; F = F + (lhs2 >= - (bi'*x + di)); end end end end if ~isempty(simple_rows) F = [F, X(simple_rows)>=0]; end function b = basis(p,w) if isequal(w,0) b = getbasematrix(p,0); else n = length(w); if isequal(getbase(w),[spalloc(n,1,0) speye(n)]) if 0 b = []; lmi_variables = getvariables(w); for i = 1:length(w) b = [b ; getbasematrix(p,lmi_variables(i))]; end else lmi_variables = getvariables(w); b = spalloc(n,length(p),0); [~,loc] = ismember(getvariables(w),getvariables(p)); p_basis = getbase(p);p_basis = p_basis(:,2:end); used = find(loc); for i = 1:length(used) b(used(i),:) = p_basis(:,loc(used(i)))'; end end % if norm(b-b2)>1e-10 % error('sdfsdfsd') % end else b = []; for i = 1:length(w) b = [b ; getbasematrix(p,getvariables(w(i)))]; end end end b = full(b);
github
EnricoGiordano1992/LMI-Matlab-master
filter_enumeration.m
.m
LMI-Matlab-master/yalmip/modules/robust/filter_enumeration.m
7,383
utf_8
fd994fa46ec75e11eb5b4480d7d81510
function [F,mptmissing] = filter_enumeration(F_xw,Zmodel,x,w,ops,uncertaintyTypes,separatedZmodel,VariableType) mptmissing = 0; if length(F_xw) == 0 F = []; return; else if any(Zmodel.K.q) | any(Zmodel.K.s) error('Only polytope uncertainty supported in duality based robustification'); else if isempty(intersect(depends(F_xw),getvariables(w))) F = F_xw; elseif length(uncertaintyTypes)==1 & isequal(uncertaintyTypes{1},'inf-norm') if any(isinf((separatedZmodel{1}.lb))) | any(isinf(separatedZmodel{1}.ub)) error('You have unbounded uncertain variables') else n = length(separatedZmodel{1}.lb); vertices = []; lb = separatedZmodel{1}.lb(:)'; ub = separatedZmodel{1}.ub(:)'; E = dec2bin(0:2^n-1,n)'; E = double(E(:))-48; E = reshape(E,n,2^n); vertices = (repmat(lb(:),1,2^n) + E.*(repmat(ub(:),1,2^n)-repmat(lb(:),1,2^n)))'; %for i = 0:2^n-1 % vertices = [vertices;lb+dec2decbin(i,n).*(ub-lb)]; %end if ops.verbose disp([' - Enumerated ' num2str(2^n) ' vertices']) end vertices = unique(vertices,'rows'); if ops.verbose & 2^n > size(vertices,1) disp([' - Reduced to ' num2str( size(vertices,1)) ' unique vertices']) end F = replaceVertices(F_xw,w,vertices',VariableType,ops); end elseif length(uncertaintyTypes)==1 & isequal(uncertaintyTypes{1},'simplex') k = abs(Zmodel.F_struc(1,1)); n = length(w); vertices = zeros(n,1); for i = 1:n v = zeros(n,1); v(i) = k; vertices = [vertices v]; end if ops.verbose disp([' - Enumerated ' num2str(n) ' vertices']) end vertices = pruneequalities(vertices,Zmodel); F = replaceVertices(F_xw,w,vertices,VariableType,ops); else % FIX : Assumes all uncertainty in all constraints K = Zmodel.K; A = -Zmodel.F_struc((1+K.f):(K.f + K.l),2:end); b = Zmodel.F_struc((1+K.f):(K.f + K.l),1); try % Some preprocessing to extract bounds from equality % constraints in order to make the uncertainty polytope % bounded (required since we are going to run vertex % enumeration) % We might have x>=0, sum(x)=1, and this code simply extracts % the implied bounds x<=1 [lo,up] = findulb(Zmodel.F_struc(1:K.f + K.l,:),K); Zmodel.lb = lo;Zmodel.ub = up; Zmodel = propagate_bounds_from_equalities(Zmodel); up = Zmodel.ub; lo = Zmodel.lb; upfi = find(~isinf(up)); lofi = find(~isinf(lo)); aux = Zmodel; aux.F_struc = [aux.F_struc;-lo(lofi) sparse(1:length(lofi),lofi,1,length(lofi),size(A,2))]; aux.F_struc = [aux.F_struc;up(upfi) -sparse(1:length(upfi),upfi,1,length(upfi),size(A,2))] ; aux.K.l = aux.K.l + length(lofi) + length(upfi); K = aux.K; A = -aux.F_struc((1+K.f):(K.f + K.l),2:end); b = aux.F_struc((1+K.f):(K.f + K.l),1); P = polytope(full(A),full(b)); try vertices = extreme(P)'; catch error('The uncertainty space is unbounded (could be an artefact of YALMIPs modelling of nonolinear oeprators).') end %if ~isbounded(P) % error('The uncertainty space is unbounded (could be an artefact of YALMIPs modelling of nonolinear oeprators).') %else % vertices = extreme(polytope(A,b))'; %end catch mptmissing = 1; if ops.verbose>0 %lasterr disp(' - Enumeration of uncertainty polytope failed. Missing Multiparametric Toolbox?') disp(' - Switching to duality based approach') %disp('You probably need to install MPT (needed for vertex enumeration)') %disp('http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php?n=Solvers.MPT') %disp('Alternatively, you need to add bounds on your uncertainty.') %disp('Trying to switch to dualization approach') %error('MPT missing'); end F = []; return end % The vertex enumeration was done without any equality constraints. % We know check all vertices so see if they satisfy equalities. vertices = pruneequalities(vertices,Zmodel); if ops.verbose disp([' - Enumerated ' num2str(size(vertices,2)) ' vertices']) end F = replaceVertices(F_xw,w,vertices,VariableType,ops); end end end function F = replaceVertices(F_xw,w,vertices,VariableType,ops) % Doing LP constraints in a vectorized manner saves a lot of time F_xw_lp = F_xw(find(is(F_xw,'elementwise'))); F_xw_socp_sdp = F_xw - F_xw_lp; F = ([]); x_Flp = depends(F_xw_lp); uncAux = yalmip('auxvariablesW'); uncAux = recover(intersect(x_Flp,VariableType.aux_with_w_dependence)); if isequal(ops.robust.auxreduce,'none') uncAux = []; end w = flush(w); if length(F_xw_lp)>0 rLP = []; if ~isempty(uncAux) z = sdpvar(repmat(length(uncAux),1,size(vertices,2)),repmat(1,1,size(vertices,2)),'full'); end for i = 1:size(vertices,2) temp = replace(sdpvar(F_xw_lp),w,vertices(:,i),0); if ~isempty(uncAux) temp = replace(temp,uncAux,z{i}); end rLP = [rLP;temp]; end % FIXME: More general detection of silly constraints if isa(rLP,'double') & all(rLP>=-eps^0.75) F = ([]); else % Easily generates redundant constraints [aux,index] = uniquesafe(getbase(rLP),'rows'); try F = (rLP(index(randperm(length(index)))) >= 0); catch 1 end end end % Remaining conic stuff for j = 1:length(F_xw_socp_sdp) for i = 1:size(vertices,2) temp = replace(F_xw_socp_sdp(j),w,vertices(:,i),0); if ~isempty(uncAux) temp = replace(temp,uncAux,z{i}); end F = F + lmi(temp); end end function vertices = pruneequalities(vertices,Zmodel) K = Zmodel.K; % The vertex enumeration was done without any equality constraints. % We know check all vertices so see if they satisfy equalities. if K.f > 0 Aeq = -Zmodel.F_struc(1:K.f,2:end); beq = Zmodel.F_struc(1:K.f,1); feasible = sum(abs(Aeq*vertices - repmat(beq,1,size(vertices,2))),1) < 1e-6; vertices = vertices(:,feasible); if isempty(feasible) error('The uncertainty space is infeasible.') end end
github
EnricoGiordano1992/LMI-Matlab-master
decomposeUncertain.m
.m
LMI-Matlab-master/yalmip/modules/robust/decomposeUncertain.m
25,501
utf_8
de52048b978e055a2e273ab28fa80d85
function [UncertainModel,Uncertainty,VariableType,ops,failure] = decomposeUncertain(F,h,w,ops) failure = 0; % Do we have any uncertainty declarations variables? [F,w] = extractUncertain(F,w); if isempty(w) error('There is no uncertainty in the model.'); end % Partition the model into % F_x : Constraints in decision variables only % F_w : The uncertainty description % F_xw : The uncertain constraints % Note that this analysis might also declare som of the auxiliary variables % as simple uncertain variables. It might also create a new objective % function in order to have all uncertainty in the constraints F_original = F; [VariableType,F_x,F_w,F_xw,h] = robust_classify_variables_newest(F,h,ops,w); if length(F_w)==0 error('There is no uncertainty description in the model.'); end if ops.verbose dispsilent(ops.verbose,'***** Starting YALMIP robustification module. *********************'); if length(w)<length(VariableType.w_variables) dispsilent(ops.verbose,[' - Detected ' num2str(length(VariableType.w_variables)) ' uncertain variables (' num2str(length(VariableType.w_variables)-length(w)) ' artificial)']); else dispsilent(ops.verbose,[' - Detected ' num2str(length(w)) ' uncertain variables']); end end % Integer variables are OK in x, but not in the uncertainty integervars = [yalmip('binvariables') yalmip('intvariables')]; ind = find(is(F_original,'integer') | is(F_original,'binary')); if ~isempty(ind) integervars = [integervars getvariables(F(ind))]; if any(ismember(VariableType.w_variables,integervars)) failure = 1; return end end % Convert quadratic constraints in uncertainty model to SOCPs. This will % enable us to use duality based removal of uncertainties in linear % inequalities. We keep information about quadratic expression though, in % order to use them if possible in 2-norm explicit maximization F_w = convertquadratics(F_w); % Export uncertainty model to numerical format ops.solver = ''; ops.removeequalities = 0; [aux1,aux2,aux3,Zmodel] = export(F_w-F_w(find(is(F_w,'uncertain'))),[],ops,[],[],1); if ~isempty(Zmodel) if length(Zmodel.c) ~= length(VariableType.w_variables) error('Some uncertain variables are unconstrained.') end else error('Failed when exporting a model of the uncertainty.') end % The uncertainty model is in the full w-space. However, it might % happen that the uncertainty is separable. Find groups of uncertain % variables that can/should be treated separately. uncertaintyGroups = findSeparate(Zmodel); if ops.verbose dispsilent(ops.verbose,[' - Detected ' num2str(length(uncertaintyGroups)) ' independent group(s) of uncertain variables']); end % Trying to take care of cases such as norm([x+w;x-w]), i.e. epigraphs with % uncertainty. %[F_xw,ops] = prepareforAuxiliaryRemoval(VariableType,F_xw,F_w,ops); x = recover(VariableType.x_variables); w = recover(VariableType.w_variables); ops.robust.forced_enumeration = 0; switch ops.robust.auxreduce case {'none','affine','','projection','enumeration'} otherwise disp(' '); dispsilent(ops.verbose,['The flag ''auxreduce'' is wrong. Turning off removal of auxilliary variables']); disp(' '); ops.robust.auxreduce = 'none'; end if ~isempty(VariableType.aux_with_w_dependence) if ~strcmp('none',ops.robust.auxreduce) dispsilent(ops.verbose,[' - Detected ' num2str(length(VariableType.aux_with_w_dependence)) ' uncertainty dependent auxilliary variables']); end if strcmp('none',ops.robust.auxreduce) dispsilent(ops.verbose,[' - Using possibly conservative approach to deal with uncertainty dependent auxilliary variables.']); dispsilent(ops.verbose,[' - (change robust.auxreduce to ''projection'', ''enumeration'' for exact solution.)']) VariableType.x_variables = unique([VariableType.aux_with_w_dependence(:)' VariableType.x_variables(:)']); elseif strcmp('affine',ops.robust.auxreduce) % Add linear feedback on all uncertainty dependent auxilliary % variables. The new model is dealt with as usual dispsilent(ops.verbose,[' - Adding affine feedback on auxilliary variables.']) [F_xw,xnew,info] = adjustable(F_xw,w,unique(VariableType.aux_with_w_dependence),uncertaintyGroups,ops,VariableType); dispsilent(ops.verbose,[' - Feedback structure had sparsity ' num2str(info.sparsity) ' and required ' num2str(info.nvars) ' variable(s)']) %xnew = []; VariableType.x_variables = unique([VariableType.aux_with_w_dependence(:)' VariableType.x_variables(:)' getvariables(xnew)]); elseif strcmp('enumeration',ops.robust.auxreduce) % Uncertainty model is polytopic, hence enumeration can be used. if isequal(Zmodel.K.s,0) & isequal(Zmodel.K.q,0) dispsilent(ops.verbose,[' - Using enumeration to deal with uncertainty dependent auxilliary variables']); ops.robust.lplp = 'enumeration'; else disp([' - Cannot robustify model exactly with uncertainty dependent auxilliary variables and conic uncertainty']); disp([' - Change the option robust.auxreduce to ''projection'', ''affine'' or ''none''.']) error('robustification failed'); end % User wants to do enumeration based removal of auxilliary % variables, hence we cannot switch later ops.robust.forced_enumeration = 1; elseif ~(any(is(F_xw,'sdp')) | any(is(F_xw,'socp'))) | ~isempty(strfind('projection',ops.robust.auxreduce)) if isequal(ops.robust.auxreduce,'projection') dispsilent(ops.verbose,[' - Projecting out auxilliary variables. This can take time...']); end F_xw = projectOut(F_xw,w,unique(VariableType.aux_with_w_dependence),uncertaintyGroups,ops); else dispsilent(ops.verbose,[' - Cannot robustify model exactly with uncertainty dependent auxilliary variables and conic uncertainty']); dispsilent(ops.verbose,[' - Change the option robust.auxreduce to ''affine'' or ''none'' to compute conservative solution']) error('robustification failed'); end end % Separate the uncertainty models accroding to uncertainty groups separatedZmodel = separateUncertainty(Zmodel,uncertaintyGroups); % Conversion of bounded variables that have been modelled using % the norm operator (remove the epigraph variable to ensure explicit % maximization is used). This will be generalized in the next version [separatedZmodel, uncertaintyGroups] = convertUncertaintyGroups(separatedZmodel,uncertaintyGroups,VariableType); % Code will be added to detect uncertainty cases in a more general and % modular way. Additional code will also be added to find hidden simple % structures, such as norm(w,1)<1, which currently is treated as a general % polytopic uncertainty, since the expansion hides the simplicity % 'Bounds', 'Simplex', 'Conic', 'Polytopic', '2-norm', '1-norm', 'inf-norm' [uncertaintyTypes,separatedZmodel,uncertaintyGroups] = classifyUncertainty(separatedZmodel,uncertaintyGroups,w); % Misplaced constraints. Really isn't uncertain, but when we expanded an % uncertain operator, a new auxilliary variable was introduced, but has not % made dependent on w. Hewnce, it should really be moved. Taken care % outside now though % if length(F_xw)>0 % move = zeros(length(F_xw),1); % for i = 1:length(F_xw) % if all(ismember(getvariables(F_xw(i)),VariableType.x_variables)) % move(i) = 1; % end % end % if any(move) % F_x = [F_x, F_xw(find(move))]; % F_xw(find(move))=[]; % end % end UncertainModel.F_x = F_x; UncertainModel.F_xw = F_xw; UncertainModel.h = h; Uncertainty.F_w = F_w; Uncertainty.Zmodel = Zmodel; Uncertainty.separatedZmodel = separatedZmodel; Uncertainty.uncertaintyTypes = uncertaintyTypes; Uncertainty.separatedZmodel = separatedZmodel; Uncertainty.uncertaintyGroups = uncertaintyGroups; VariableType.x = recover(VariableType.x_variables); VariableType.w = recover(VariableType.w_variables); failure = 0; function dispsilent(notsilent,text) if notsilent disp(text); end function [F,w] = extractUncertain(F,w); if isempty(w) unc_declarations = is(F,'uncertain'); if any(unc_declarations) w = recover(getvariables(sdpvar(F(find(unc_declarations))))); F = F(find(~unc_declarations)); else error('There is no uncertainty definition in the model.') end end function groups = findSeparate(model) % This is an early bail-out to avoid any errors during the devlopment of % new features. Separable constraints are only support for Polya models if any(model.K.s > 0) %| any(model.K.q >0) groups{1} = 1:size(model.F_struc,2)-1; return end X = zeros(size(model.F_struc,2)-1); top = 1; if model.K.f + model.K.l > 0 A = model.F_struc(top:model.K.f+model.K.l,2:end); for i = 1:size(A,1) X(find(A(i,:)),find(A(i,:))) = 1; end top = top + model.K.f + model.K.l; end if any(model.K.q > 0) for j = 1:length(model.K.q) A = model.F_struc(top:top+model.K.q(j)-1,2:end);top = top + model.K.q(j); A = sum(abs(A),1); for i = 1:size(A,1) X(find(A),find(A)) = 1; end end end if any(model.K.s > 0) for j = 1:length(model.K.s) A = model.F_struc(top:top+model.K.s(j)^2-1,2:end);top = top + model.K.s(j)^2; A = sum(abs(A),1); for i = 1:size(A,1) X(find(A),find(A)) = 1; end end end [a,b,c,d] = dmperm(X); for i = 1:length(d)-1 groups{i} = sort(a(d(i):d(i+1)-1)); end function newModels = separateUncertainty(Zmodel,uncertaintyGroups); for i = 1:length(uncertaintyGroups) data = Zmodel.F_struc(:,[1 1+uncertaintyGroups{i}]); data_f = data(1:Zmodel.K.f,:); data_l = data(Zmodel.K.f+1:Zmodel.K.f+Zmodel.K.l,:); %data_q = data(Zmodel.K.f+Zmodel.K.l+1:sum(Zmodel.K.q),:); %data_s = data(Zmodel.K.f+Zmodel.K.l+1:sum(Zmodel.K.q)+1:end,:); eqIndex = find(any(data_f(:,2:end),2)); liIndex = find(any(data_l(:,2:end),2)); newModels{i}.F_struc = [data_f(eqIndex,:);data_l(liIndex,:)]; newModels{i}.K.f = length(eqIndex); newModels{i}.K.l = length(liIndex); newModels{i}.K.q = []; top = Zmodel.K.f+Zmodel.K.l+1; if Zmodel.K.q(1)>0 for j = 1:length(Zmodel.K.q) data_q = data(top:top+Zmodel.K.q(j)-1,:); if nnz(data_q(:,2:end))>0 newModels{i}.K.q(end+1) = Zmodel.K.q(j); newModels{i}.F_struc = [newModels{i}.F_struc;data_q]; end top = top + Zmodel.K.q(j); end end if isempty(newModels{i}.K.q) newModels{i}.K.q = 0; end newModels{i}.K.s = []; top = Zmodel.K.q+Zmodel.K.f+Zmodel.K.l+1; if Zmodel.K.s(1)>0 for j = 1:length(Zmodel.K.s) data_s = data(top:top+Zmodel.K.s(j)^2-1,:); if nnz(data_s(:,2:end))>0 newModels{i}.K.s(end+1) = Zmodel.K.s(j); newModels{i}.F_struc = [newModels{i}.F_struc;data_s]; end top = top + Zmodel.K.s(j)^2; end end if isempty(newModels{i}.K.s) newModels{i}.K.s = 0; end % newModels{i}.K.s = 0; newModels{i}.variabletype = Zmodel.variabletype(uncertaintyGroups{i}); end function Zmodel = convertuncertainty(Zmodel); % Temoporary hack, will be generalized once the framework for multiple % uncertainty models is supported % We are looking for k>t, -tw<t if size(Zmodel,1) == 1+(size(Zmodel,2)-1)*2 & Zmodel.K.f==0 & Zmodel.K.l==size(Zmodel.F_struc,1) n = size(Zmodel.F_struc,2)-1; if isequal(Zmodel.F_struc(:,2:end),sparse([zeros(1,n-1) -1;[eye(n-1);-eye(n-1)] ones(2*(n-1),1)])) Zmodel.F_struc = [ones(2*n,1)*Zmodel.F_struc(1,1) [eye(n);-eye(n)]]; Zmodel.K.l = 2*n; end end function [separatedZmodel, uncertaintyGroups,VariableType] = convertUncertaintyGroups(separatedZmodel,uncertaintyGroups,VariableType); % Temporary hack, will be generalized once the framework for multiple % uncertainty models is supported % We are looking for k>t, -t<w<t. This is the slightly redundant model for for i = 1:length(separatedZmodel) % -k<w<k genrated when YALMIP encounters norm(w,inf)<k if size(separatedZmodel{i},1) == 1+(size(separatedZmodel{i},2)-1)*2 & separatedZmodel{i}.K.f==0 & separatedZmodel{i}.K.l==size(separatedZmodel{i}.F_struc,1) n = size(separatedZmodel{i}.F_struc,2)-1; if isequal(separatedZmodel{i}.F_struc(:,2:end),sparse([zeros(1,n-1) -1;[eye(n-1);-eye(n-1)] ones(2*(n-1),1)])) k = separatedZmodel{i}.F_struc(1,1); c = separatedZmodel{i}.F_struc(2:2+n-2,1); separatedZmodel{i}.F_struc = [[k-c;k;c+k;k] [-eye(n);eye(n)]]; separatedZmodel{i}.K.l = 2*n; end elseif separatedZmodel{i}.K.l == 1 & separatedZmodel{i}.K.q(1)>0 & length(separatedZmodel{i}.K.q(1))==1 % Could be norm(w,2) < r. [n,m] = size(separatedZmodel{i}.F_struc); if n==m & n>=3 n = n-2; if isequal(separatedZmodel{i}.F_struc(:,2:end),sparse([zeros(2,n) [-1;1];eye(n) zeros(n,1)]))% isequal(separatedZmodel{i}.F_struc(:,2:end),sparse([zeros(2,n) [-1;1];eye(n) zeros(n,1)])) if separatedZmodel{i}.F_struc(1,1)>0 %& nnz(separatedZmodel{i}.F_struc(2:end,1))==0 % the user has written norm(w-xc) < r. YALMIP will handle % this using the nonlinear operator framework, and % introduce a variable t and write it as norm(w)<t, t<r % The variable t will be appended to the list of % uncertain variables, and thus the model is a SOCP % uncertainty in (w,t). We however want to interpret it % as a simple quadratic model. We thus write it as % (w,t)Q(w,t) < 1. Since t actually is unbounded in % this form (since t is an auxilliary variable that we % now through away, we arbitrarily say Q=[I/r^2 0;0 1] r = separatedZmodel{i}.F_struc(1,1); center = -separatedZmodel{i}.F_struc(3:end,1); % separatedZmodel{i}.Q = blkdiag(r*eye(n),1); % separatedZmodel{i}.center = [center;0]; separatedZmodel{i}.K.l = 0; separatedZmodel{i}.K.q = n+1; % r = separatedZmodel{i}.F_struc(1,1); % center = -separatedZmodel{i}.F_struc(3:end,1); separatedZmodel{i}.F_struc = [[1+r^2;-2*center;1-r^2] [zeros(1,n);eye(n)*2;zeros(1,n)]]; % VariableType.w_variables = setdiff(VariableType.w_variables,uncertaintyGroups{1}(end)); uncertaintyGroups{1}(end)=[]; end end end end end function [uncertaintyTypes,separatedZmodel,uncertaintyGroups] = classifyUncertainty(separatedZmodel,uncertaintyGroups,w) for i = 1:length(separatedZmodel) uncertaintyTypes{i} = 'unclassified'; end % Look for simplicies, which can be used in Polya simplex_members = find_simplex_models(separatedZmodel); for i = find(simplex_members) uncertaintyTypes{i} = 'simplex'; end % Look for simple bounds, and them combine them for i = 1:length(separatedZmodel) if strcmp(uncertaintyTypes{i},'unclassified') if any(separatedZmodel{i}.K.q > 0) | any(separatedZmodel{i}.K.s > 0) simplebounds = 0; else [aux,lower,upper] = find_simple_variable_bounds(separatedZmodel{i}); simplebounds = ~isinf(lower) & ~isinf(upper); end if all(simplebounds) if aux.K.l == 0 uncertaintyTypes{i} = 'inf-norm'; separatedZmodel{i}.lb = lower; separatedZmodel{i}.ub = upper; end end end end j = find(strcmp(uncertaintyTypes,'inf-norm')); if length(j)>1 allBounded = []; lb = []; ub = []; for i = 1:length(j) allBounded = [allBounded; uncertaintyGroups{j(i)}]; lb = [lb;separatedZmodel{j(i)}.lb]; ub = [ub;separatedZmodel{j(i)}.ub]; if any(lb > ub) error('There are inconsistent bounds in the uncertainty model'); end end separatedZmodel{j(1)}.lb = lb; separatedZmodel{j(1)}.ub = ub; uncertaintyGroups{j(1)} = allBounded(:)'; keep = setdiff(1:length(separatedZmodel),j(2:end)); separatedZmodel = {separatedZmodel{keep}}; uncertaintyGroups = {uncertaintyGroups{keep}}; uncertaintyTypes = {uncertaintyTypes{keep}}; end % Look for 2-norm balls norm(w) < r, written using norm(w) or w'*w for i = 1:length(separatedZmodel) if strcmp(uncertaintyTypes{i},'unclassified') if ~any(separatedZmodel{i}.K.s > 0) & separatedZmodel{i}.K.l==0 & separatedZmodel{i}.K.f==0 & length(separatedZmodel{i}.K.q)==1 % Hmm, only 1 SOCP if all(separatedZmodel{i}.F_struc(1,2:end)==0) if isequal(separatedZmodel{i}.F_struc(2:end,2:end),speye(separatedZmodel{i}.K.q(1)-1)) % r > norm(x) uncertaintyTypes{i} = '2-norm'; separatedZmodel{i}.center = -separatedZmodel{i}.F_struc(2:end,1); separatedZmodel{i}.r = sqrt(max(0,separatedZmodel{i}.F_struc(1,1)^2)); elseif size(separatedZmodel{i}.F_struc,1)==size(separatedZmodel{i}.F_struc,2) S = separatedZmodel{i}.F_struc(2:end,2:end); [ii,jj,kk] = find(S); if all(kk==2) & length(ii)==length(unique(ii)) & length(jj)==length(unique(jj)) % r > norm(x-center) uncertaintyTypes{i} = '2-norm'; separatedZmodel{i}.center = -separatedZmodel{i}.F_struc(2:end,1)/2; separatedZmodel{i}.r = sqrt((separatedZmodel{i}.F_struc(1,1)^2-separatedZmodel{i}.F_struc(end,1)^2)/4); end elseif separatedZmodel{i}.F_struc(1,1)^2-separatedZmodel{i}.F_struc(end,1)^2>0 S = separatedZmodel{i}.F_struc(2:end,2:end); [ii,jj,kk] = find(S); if all(kk==2) & length(ii)==length(unique(ii)) & length(jj)==length(unique(jj)) uncertaintyTypes{i} = '2-norm'; separatedZmodel{i}.center = -separatedZmodel{i}.F_struc(2:end-1,1)/2; separatedZmodel{i}.r = sqrt((separatedZmodel{i}.F_struc(1,1)^2-separatedZmodel{i}.F_struc(end,1)^2)/4); end end end end end end % Look for quadratic constraints, other than norm models % A bit redundant code should be integrated with the case above for i = 1:length(separatedZmodel) if strcmp(uncertaintyTypes{i},'unclassified') if ~any(separatedZmodel{i}.K.s > 0) & separatedZmodel{i}.K.l==0 & separatedZmodel{i}.K.f==0 & length(separatedZmodel{i}.K.q)==1 % 1 single SOCP ||Ax+b|| <= cx+d A = separatedZmodel{i}.F_struc(2:end,2:end); b = separatedZmodel{i}.F_struc(2:end,1); c = separatedZmodel{i}.F_struc(1,2:end); d = separatedZmodel{i}.F_struc(1,1); if min(eig(full(A'*A-c'*c))) % Originates in a quadratic constraint rhs = c*w(uncertaintyGroups{i}(:))+d; lhs = A*w(uncertaintyGroups{i}(:))+b; uncertaintyTypes{i} = 'quadratic'; separatedZmodel{i}.g = rhs^2-lhs'*lhs; separatedZmodel{i}.center = []; separatedZmodel{i}.r = []; end end end end % Look for 1-norm balls |w|1 < r^2 % We are looking for the auto-generate model -t<w<t, sum(t)<s,s<r^2 for i = 1:length(separatedZmodel) if strcmp(uncertaintyTypes{i},'unclassified') if ~any(separatedZmodel{i}.K.s > 0) & separatedZmodel{i}.K.l>0 & separatedZmodel{i}.K.f==0 & ~any(separatedZmodel{i}.K.q > 0) %if all(separatedZmodel{i}.F_struc(2:end,1)==0) if separatedZmodel{i}.F_struc(1,1)>0 n = (size(separatedZmodel{i}.F_struc,2)-2)/2; if n==fix(n) try if all(separatedZmodel{i}.F_struc(n+2:end-1,1)==-separatedZmodel{i}.F_struc(2:2+n-1,1)) shouldbe = [zeros(1,n) -1 zeros(1,n);eye(n) zeros(n,1) eye(n);-eye(n) zeros(n,1) eye(n);zeros(1,n) 1 -ones(1,n)];%; zeros(n,n+1) eye(n)];;zeros(1,n) 1 zeros(1,n)]; if isequal(full(separatedZmodel{i}.F_struc(:,2:end)),shouldbe) %if all(separatedZmodel{i}.F_struc(2:end,1)==0) uncertaintyTypes{i} = '1-norm'; separatedZmodel{i}.r = separatedZmodel{i}.F_struc(1,1); separatedZmodel{i}.center =separatedZmodel{i}.F_struc(n+2:end-1,1); %end end end catch %FIX ME, caught by -1<w<1, sum(w)<1 end end end %end end end end % Look for polytopes for i = 1:length(separatedZmodel) if strcmp(uncertaintyTypes{i},'unclassified') if ~any(separatedZmodel{i}.K.q > 0) | any(separatedZmodel{i}.K.s > 0) end end end function Fnew = projectOut(F,w,newAuxVariables,uncertaintyGroups,ops) w_variables = getvariables(w); Graph = yalmip('getdependence'); for i = 1:length(uncertaintyGroups) Graph(w_variables(uncertaintyGroups{i}),w_variables(uncertaintyGroups{i}))=1; end aux_and_w = union(newAuxVariables,w_variables); F_lp = F(find(is(F,'elementwise'))); X = sdpvar(F_lp); Xvars = getvariables(X); G = getbase(X);G = G(:,2:end); for i = 1:size(G,1) j = Xvars(find(G(i,:))); Graph(j,j) = 1; end Graph(:,setdiff(1:size(Graph,2),aux_and_w))=0; Graph(setdiff(1:size(Graph,2),aux_and_w),:)=0; Graph2 = Graph(1:max(aux_and_w),1:max(aux_and_w)); Graph2 = Graph2 + speye(length(Graph2)); [aa,bb,cc,dd] = dmperm(Graph2); commonProjections = {}; for r = 1:length(dd)-1 comps = dd(r):dd(r+1)-1; comps = intersect(aa(comps),newAuxVariables); if ~isempty(comps) commonProjections{end+1} = comps; end end if ops.verbose disp([' - * Partitioned these into ' num2str(length(commonProjections)) ' group(s)']); end keep = ones(length(F),1); Fnew = []; started = 0; for clique = 1:length(commonProjections) F_lp = []; for i = 1:length(F) F_vars = getvariables(F(i)); var_w = intersect(F_vars,w_variables); var_aux = intersect(F_vars,commonProjections{clique}); if is(F(i),'elementwise') if any(ismember(getvariables(F(i)),commonProjections{clique})) F_lp = [F_lp, F(i)]; keep(i) = 0; if ~started started = 1; if ops.verbose disp([' - * Performing projections of uncertain graph variables...']); end end end end end if ~isempty(F_lp) X = sdpvar(F_lp); [Ab] = getbase(X); b = Ab(:,1); A = -Ab(:,2:end); allVariables = getvariables(X); newAuxVariables = intersect(commonProjections{clique},allVariables); j = []; for i = 1:length(newAuxVariables) j(i) = find(allVariables==newAuxVariables(i)); end [A,b] = fourierMotzkin(A,b,sort(j)); A(:,j)=[]; left = recover(setdiff(allVariables,newAuxVariables)); X = b-A*left(:); Fnew = [Fnew,[[X >= 0] : 'Projected uncertain']]; end end if started & ops.verbose d = length(sdpvar(Fnew))-length(sdpvar(F_lp)); if d>0 disp([' - * Done with projections (generated ' num2str(d) ' new constraints)']); elseif d<0 disp([' - * Done with projections (actually reduced model with ' num2str(-d) ' constraints)']); else disp([' - * Done with projections (model size unchanged)']); end end Fnew = [Fnew,F(find(keep))]; function [A,b] = fourierMotzkin(A,b,dim) % Brute-force projection through Fourier-Motzkin for i = dim(:)' a = A(:,i); zero = find(a == 0); pos = find(a > 0); neg = find(a < 0); T = spalloc(length(zero) + length(pos)*length(neg),size(A,1),length(zero)+length(pos)*length(neg)*2); row = 1; for j = zero(:)' T(row,j) = 1; row = row+1; end for j = pos(:)' for k = neg(:)' T(row,j) = -a(k); T(row,k) = a(j); row = row+1; end end A = T*A; b = T*b; end function [Fnew,xnew,info] = adjustable(F,w,newAuxVariables,uncertaintyGroups,ops,VariableType) L = sdpvar(length(recover(newAuxVariables)),length(w),'full'); L = L.*VariableType.Graph(VariableType.aux_with_w_dependence,VariableType.w_variables); y0 = sdpvar(length(recover(newAuxVariables)),1); Fnew = replace(F,recover(newAuxVariables),y0+L*w); xnew = recover([getvariables(y0) getvariables(L)]); info.nvars = length(getvariables(L)); info.sparsity = length(getvariables(L))/prod(size(L));
github
EnricoGiordano1992/LMI-Matlab-master
root_node_tighten.m
.m
LMI-Matlab-master/yalmip/modules/global/root_node_tighten.m
4,114
utf_8
337752e11e3b4918818b979f123b0ae4
% ************************************************************************* % Tighten bounds at root % ************************************************************************* function p = root_node_tighten(p,upper); p.feasible = all(p.lb<=p.ub) & p.feasible; if p.options.bmibnb.roottight & p.feasible pin = p; if ~isempty(p.bilinears) % f = p.F_struc(1:p.K.f,:); % p.F_struc(1:p.K.f,:)=[]; % p = addBilinearVariableCuts(p); % p.F_struc = [f;p.F_struc]; % % p.K.l = 0; end if ~isempty(p.bilinears) && ~isinf(upper) p_cut = p; for i = 1:size(p.bilinears,1) if p_cut.c(p.bilinears(i,1)) p_cut.Q(p.bilinears(i,2),p.bilinears(i,3)) = p_cut.c(p.bilinears(i,1))/2; p_cut.Q(p.bilinears(i,3),p.bilinears(i,2)) = p_cut.Q(p.bilinears(i,3),p.bilinears(i,2))+p_cut.c(p.bilinears(i,1))/2; p_cut.c(p.bilinears(i,1)) = 0; end end if all(eig(p_cut.Q)>=0) [u,s,v] = svd(full(p_cut.Q)); % f + c'*x + x'*Q*x <= U % c'*x + x'*R*R*x <= U - f - c'*x % ||Rx||^2 <= upperbound U - f - c'*x % ||Rx||_inf <= n*sqrt(upperbound U - f - c'*x) rhs = upper - p.f neg = find(p_cut.c<0); pos = find(p_cut.c>0); rhs = rhs - sum(p.ub(neg).*p_cut.c(neg)); rhs = rhs - sum(p.lb(pos).*p_cut.c(pos)); if rhs > 0 R = diag(diag(s).^.5)*v'; R = R(diag(s)>1e-10,:); % -n*sqrt(rhs) <= R*x <= n*sqrt(R) p.F_struc = [p.F_struc;size(v,2)*sqrt(rhs)*ones(size(R,1),1) -R;size(v,2)*sqrt(rhs)*ones(size(R,1),1) R]; p.K.l = p.K.l + 2*size(R,1); end end end if all(p.K.q == 0) & all(p.K.s == 0) & all(p.K.r == 0) lowersolver = eval(['@' p.solver.lpcall]); else lowersolver = eval(['@' p.solver.lowercall]); end c = p.c; Q = p.Q; mt = p.monomtable; p.monomtable = eye(length(c)); i = 1; % Add an upper bound cut? if (upper < inf) % p.c'*x+p.f < upper newline = [upper-p.f -p.c']; p.F_struc = [p.F_struc(1:p.K.f,:);newline;p.F_struc(1+p.K.f:end,:)]; p.K.l = p.K.l + 1; end while i<=length(p.linears) & p.feasible j = p.linears(i); if p.lb(j) < p.ub(j) & (ismember(j,p.branch_variables) | (p.options.bmibnb.roottight == 2)) p.c = eyev(length(p.c),j); output = feval(lowersolver,removenonlinearity(p)); p.counter.lowersolved = p.counter.lowersolved + 1; if (output.problem == 0) & (output.Primal(j)>p.lb(j)+1e-4) p.lb(j) = output.Primal(j); p = updateonenonlinearbound(p,j); p = clean_bounds(p); end if output.problem == 1 p.feasible = 0; elseif p.lb(j) < p.ub(j) % We might have updated lb p.c = -eyev(length(p.c),j); output = feval(lowersolver,removenonlinearity(p)); p.counter.lowersolved = p.counter.lowersolved + 1; if (output.problem == 0) & (output.Primal(j) < p.ub(j)-1e-4) p.ub(j) = output.Primal(j); if p.ub(j)<p.lb(j) p.ub(j) = p.lb(j); end p = updateonenonlinearbound(p,j); p = clean_bounds(p); end if output.problem == 1 p.feasible = 0; end i = i+1; end else i = i + 1; end end % if upper < inf % p.F_struc(1+p.K.f,:) = []; % p.K.l = p.K.l - 1; % end % % p.c = c; % p.Q = Q; % p.monomtable = mt; p.lb(p.lb<-1e10) = -inf; p.ub(p.ub>1e10) = inf; pin.lb = p.lb; pin.ub = p.ub; pin.feasible = p.feasible; pin.counter = p.counter; p = pin; end
github
EnricoGiordano1992/LMI-Matlab-master
update_sumsepquad_bounds.m
.m
LMI-Matlab-master/yalmip/modules/global/update_sumsepquad_bounds.m
2,079
utf_8
88e62143dd9ee6975b8f13423f79f346
function p = update_sumsepquad_bounds(p); % Looking for case z = b+ q1(x1) + q2(x2) + ... where q quadratic if p.boundpropagation.sepquad found = 0; for j = 1:p.K.f a = p.F_struc(j,2:end); b = p.F_struc(j,1); used = find(a); data = []; if nnz(a) > 2 && all(p.variabletype(used) == 2 | p.variabletype(used) == 0) % Only linear or quadratic and there is a mixed term nonlinears = find(p.variabletype(used)==2); if (nnz(a) > length(nonlinears)) && length(nonlinears) > 0 data = []; for i = 1:length(nonlinears) linear = find(p.monomtable(nonlinears(i),:)); data = [data;linear a(linear) a(nonlinears(i))]; a(linear)=0; a(nonlinears(i))=0; found = 1; end end end if nnz(a) == 1 & ~isempty(data) k = find(a); ai = a(k); data(:,2:end) = data(:,2:end)/(-ai); b = b/-ai; L = b; U = b; for i = 1:size(data,1) [Li,Ui] = wcquad(data(i,2:3),p.lb(data(i,1)),p.ub(data(i,1))); L = L + Li; U = U + Ui; end p.lb(k) = max(p.lb(k),L); p.ub(k) = min(p.ub(k),U); end end if ~found % Turn off this feature p.boundpropagation.sepquad = 0; end end function [Li,Ui] = wcquad(c,lb,ub) % Stationary point xs = -c(1)/(2*c(2)); fs = c(1)*xs+c(2)*xs^2; stationaryInBounds = (xs >= lb) && (xs <= ub); if isinf(lb) if c(2)>0 fl = inf; else fl = -inf; end else fl = c(1)*lb+c(2)*lb^2; end if isinf(ub) if c(2)>0 fu = inf; else fu = -inf; end else fu = c(1)*ub+c(2)*ub^2; end if stationaryInBounds Li = min([fl fu fs]); Ui = max([fl fu fs]); else Li = min([fl fu]); Ui = max([fl fu]); end if any(isnan([Li Ui])) error('hej') end
github
EnricoGiordano1992/LMI-Matlab-master
updateonenonlinearbound.m
.m
LMI-Matlab-master/yalmip/modules/global/updateonenonlinearbound.m
805
utf_8
97d5341706cf3ef397ec3383332f38ee
% ************************************************************************* % Code for setting the numerical values of nonlinear terms % ************************************************************************* function p = updateonenonlinearbound(p,changed_var) if ~isempty(p.bilinears) impactedVariables = find((p.bilinears(:,2) == changed_var) | (p.bilinears(:,3) == changed_var)); x = p.bilinears(impactedVariables,2); y = p.bilinears(impactedVariables,3); z = p.bilinears(impactedVariables,1); x_lb = p.lb(x); x_ub = p.ub(x); y_lb = p.lb(y); y_ub = p.ub(y); bounds = [x_lb.*y_lb x_lb.*y_ub x_ub.*y_lb x_ub.*y_ub]; p.lb(z) = max([p.lb(z) min(bounds,[],2)],[],2); p.ub(z) = min([p.ub(z) max(bounds,[],2)],[],2)'; p.lb(impactedVariables(x==y)<0) = 0; end
github
EnricoGiordano1992/LMI-Matlab-master
dmpermblockeig.m
.m
LMI-Matlab-master/yalmip/modules/global/dmpermblockeig.m
3,417
utf_8
7b1470816ba1634bcc2b8457f9a98036
function [V,D,permutation,failure] = dmpermblockeig(X,switchtosparse) [permutation,aux1,aux2,blocks] = dmperm(X+speye(length(X))); Xpermuted = X(permutation,permutation); V = []; D = []; V = zeros(size(X,1),1); top = 1; left = 1; anycholfail = 0; failure = 0; for i = 1:length(blocks)-1 Xi = Xpermuted(blocks(i):blocks(i+1)-1,blocks(i):blocks(i+1)-1); [R,fail] = chol(Xi); anycholfail = anycholfail | fail; if fail if length(Xi) >= switchtosparse [vi,di,eigfail] = eigs(Xi,5,'SA'); if eigfail || isempty(di) res = 0; for j = 1:size(vi,2) res(j) = norm(Xi*vi(:,j)-vi(:,j)*di(j,j)); end % We only trust these notfailed = abs(res) <= 1e-12; vi = vi(:,notfailed); di = di(notfailed,notfailed); if length(vi) == 0 [vi,di,eigfail] = eigs(sparse(Xi),25,'SA'); if eigfail res = 0; for j = 1:size(vi,2) res(j) = norm(Xi*vi(:,j)-vi(:,j)*di(j,j)); end % We only trust these notfailed = abs(res) <= 1e-12; vi = vi(:,notfailed); di = di(notfailed,notfailed); end end end else [vi,di] = eig(full(Xi)); end for j = 1:length(di) if di(j,j)<=0 V(top:top+length(Xi)-1,left)=vi(:,j); left = left + 1; D = blkdiag(D,di(1,1)); end end end top = top + length(Xi); end if (anycholfail && isempty(V)) || (anycholfail && all(diag(D)>0)) % OK, we have a problem. The Cholesky factorization failed for some of % the matrices, but yet no eigenvalue decomposition revealed a negative % eigenvalue (due to convergence issues in the sparse eigs) failure = 1; end function [vi,di,eigfail] = eigband(X,m) eigfail = 0; if nargin == 1 m = 5; end if m > 0 r = symrcm(X); Z = X(r,r); n = length(Z); bw = yalmipbandwidth(Z); % spy(Z);drawnow if bw > n/3 || n < 200 [vi,di] = eig(full(X)); return end mid = ceil(n/2); Z1 = Z(1:mid+bw,1:mid+bw); Z2 = Z(mid-bw:end,mid-bw:end); [v1,d1,eigfail] = eigband(Z1,m-1); [v2,d2,eigfail] = eigband(Z2,m-1); vi = blkdiag(v1,v2); di = blkdiag(d1,d2); i1 = find(diag(d1)<0); i2 = find(diag(d2)<0); vi = zeros(n,0); for i = 1:length(i1) vi(1:n/2+bw,end+1) = v1(:,i1(i)); end for i = 1:length(i2) vi(n/2-bw:end,end+1) = v2(:,i2(i)); end di = blkdiag(d1(i1,i1),d2(i2,i2)); [~,ir] = ismember(1:length(r),r); vi = vi(ir,:); return end r = symrcm(X); Z = X(r,r); n = length(Z); bw = yalmipbandwidth(Z); mid = ceil(n/2); Z1 = Z(1:mid+2*bw,1:mid+2*bw); Z2 = Z(mid-2*bw:end,mid-2*bw:end); [v1,d1] = eig(full(Z1)); [v2,d2] = eig(full(Z2)); i1 = find(diag(d1)<0); i2 = find(diag(d2)<0); vi = zeros(n,0); for i = 1:length(i1) vi(1:n/2+bw,end+1) = v1(:,i1(i)); end for i = 1:length(i2) vi(n/2-bw:end,end+1) = v2(:,i2(i)); end di = blkdiag(d1(i1,i1),d2(i2,i2)); [~,ir] = ismember(1:length(r),r); vi = vi(ir,:);
github
EnricoGiordano1992/LMI-Matlab-master
evaluate_nonlinear.m
.m
LMI-Matlab-master/yalmip/modules/global/evaluate_nonlinear.m
1,184
utf_8
6cee29d0c8963567fd541ab3ee434dcf
function x = evaluate_nonlinear(p,x,qq) % FIX: We have to apply computations to make sure we are evaluating % expressions such as log(1+sin(x.^2).^2) correctly if ~isempty(p.bilinears) & all(p.variabletype <= 2) & length(p.evalMap)==0 x(p.bilinears(:,1)) = x(p.bilinears(:,2)).*x(p.bilinears(:,3)); else oldx = 0*p.c;old(1:length(x))=x; %try x = process_polynomial(x,p); %catch % 1 %end x = process_evaluations(x,p); while norm(x - oldx)>1e-8 oldx = x; x = process_polynomial(x,p); x = process_evaluations(x,p); end end function x = process_evaluations(x,p) for i = 1:length(p.evalMap) arguments = {p.evalMap{i}.fcn,x(p.evalMap{i}.variableIndex)}; arguments = {arguments{:},p.evalMap{i}.arg{2:end-1}}; x(p.evalVariables(i)) = feval(arguments{:}); if ~isempty(p.bilinears) x = process_bilinear(x,p); end end function x = process_bilinear(x,p) x(p.bilinears(:,1)) = x(p.bilinears(:,2)).*x(p.bilinears(:,3)); function x = process_polynomial(x,p) x = x(1:length(p.c)); nonlinear = find(p.variabletype); x(nonlinear) = prod(repmat(x(:)',length(nonlinear),1).^p.monomtable(nonlinear,:),2);
github
EnricoGiordano1992/LMI-Matlab-master
cutsdp.m
.m
LMI-Matlab-master/yalmip/modules/global/cutsdp.m
26,156
utf_8
b0da964912e005a872def387efd1ee2c
function output = cutsdp(p) % CUTSDP % % See also OPTIMIZE, BNB, BINVAR, INTVAR, BINARY, INTEGER % ************************************************************************* %% INITIALIZE DIAGNOSTICS IN YALMIP % ************************************************************************* bnbsolvertime = clock; showprogress('Cutting plane solver started',p.options.showprogress); % ************************************************************************* %% If we want duals, we may not extract bounds. However, bounds must be % extracted in discrete problems. % ************************************************************************* if p.options.cutsdp.recoverdual warning('Dual recovery not implemented yet in CUTSDP') end % ************************************************************************* %% Define infinite bounds % ************************************************************************* if isempty(p.ub) p.ub = repmat(inf,length(p.c),1); end if isempty(p.lb) p.lb = repmat(-inf,length(p.c),1); end % ************************************************************************* %% ADD CONSTRAINTS 0<=x<=1 FOR BINARY % ************************************************************************* if ~isempty(p.binary_variables) p.ub(p.binary_variables) = min(p.ub(p.binary_variables),1); p.lb(p.binary_variables) = max(p.lb(p.binary_variables),0); end % ************************************************************************* %% Extract better bounds from model % ************************************************************************* if ~isempty(p.F_struc) [lb,ub,used_rows_eq,used_rows_lp] = findulb(p.F_struc,p.K); if ~isempty([used_rows_eq(:);used_rows_lp(:)]) lower_defined = find(~isinf(lb)); if ~isempty(lower_defined) p.lb(lower_defined) = max(p.lb(lower_defined),lb(lower_defined)); end upper_defined = find(~isinf(ub)); if ~isempty(upper_defined) p.ub(upper_defined) = min(p.ub(upper_defined),ub(upper_defined)); end p.F_struc(p.K.f+used_rows_lp,:)=[]; p.F_struc(used_rows_eq,:)=[]; p.K.l = p.K.l - length(used_rows_lp); p.K.f = p.K.f - length(used_rows_eq); end end % ************************************************************************* %% ADD CONSTRAINTS 0<x<1 FOR BINARY % ************************************************************************* if ~isempty(p.binary_variables) p.ub(p.binary_variables) = min(p.ub(p.binary_variables),1); p.lb(p.binary_variables) = max(p.lb(p.binary_variables),0); end p.ub = min(p.ub,p.options.cutsdp.variablebound'); p.lb = max(p.lb,-p.options.cutsdp.variablebound'); % ************************************************************************* %% PRE-SOLVE (nothing fancy coded) % ************************************************************************* if isempty(find(isinf([p.ub;p.lb]))) & p.K.l>0 [p.lb,p.ub] = tightenbounds(-p.F_struc(1+p.K.f:p.K.f+p.K.l,2:end),p.F_struc(1+p.K.f:p.K.f+p.K.l,1),p.lb,p.ub,p.integer_variables); end % ************************************************************************* %% PERTURBATION OF LINEAR COST % ************************************************************************* p.corig = p.c; if nnz(p.Q)~=0 g = randn('seed'); randn('state',1253); %For my testing, I keep this the same... % This perturbation has to be better. Crucial for many real LP problems p.c = (p.c).*(1+randn(length(p.c),1)*1e-4); randn('seed',g); end % ************************************************************************* %% We don't need this % ************************************************************************* p.options.savesolverinput = 0; p.options.savesolveroutput = 0; % ************************************************************************* %% Display logics % 0 : Silent % 1 : Display cut progress % 2 : Display node solver prints % ************************************************************************* switch max(min(p.options.verbose,3),0) case 0 p.options.cutsdp.verbose = 0; case 1 p.options.cutsdp.verbose = 1; p.options.verbose = 0; case 2 p.options.cutsdp.verbose = 2; p.options.verbose = 0; case 3 p.options.cutsdp.verbose = 2; p.options.verbose = 1; otherwise p.options.cutsdp.verbose = 0; p.options.verbose = 0; end % ************************************************************************* %% START CUTTING % ************************************************************************* [x_min,solved_nodes,lower,feasible,D_struc] = cutting(p); %% -- % ************************************************************************* %% CREATE SOLUTION % ************************************************************************* output.problem = 0; if ~feasible output.problem = 1; end if solved_nodes == p.options.cutsdp.maxiter output.problem = 3; end output.solved_nodes = solved_nodes; output.Primal = x_min; output.Dual = D_struc; output.Slack = []; output.solverinput = 0; output.solveroutput =[]; output.solvertime = etime(clock,bnbsolvertime); %% -- function [x,solved_nodes,lower,feasible,D_struc] = cutting(p) % ************************************************************************* %% Sanity check % ************************************************************************* if any(p.lb>p.ub) x = zeros(length(p.c),1); solved_nodes = 0; lower = inf; feasible = 0; D_struc = []; return end % ************************************************************************* %% Create function handle to solver % ************************************************************************* cutsolver = p.solver.lower.call; % ************************************************************************* %% Create copy of model without % the SDP part % ************************************************************************* p_lp = p; p_lp.F_struc = p_lp.F_struc(1:p.K.l+p.K.f,:); p_lp.K.s = 0; p_lp.K.q = 0; % ************************************************************************* %% DISPLAY HEADER % ************************************************************************* if p.options.cutsdp.verbose disp('* Starting YALMIP cutting plane for MISDP based on MILP'); disp(['* Lower solver : ' p.solver.lower.tag]); disp(['* Max iterations : ' num2str(p.options.cutsdp.maxiter)]); end if p.options.bnb.verbose; if p.K.s(1)>0 disp(' Node Infeasibility Lower bound Upper bound LP cuts Infeasible SDP cones'); else disp(' Node Infeasibility Lower bound Upper bound LP cuts'); end end %% Initialize diagnostic infeasibility = -inf; solved_nodes = 0; feasible = 1; lower = -inf; saveduals = 1; % Rhs of SOCP has to be non-negative if ~p.solver.lower.constraint.inequalities.secondordercone.linear p_lp = addSOCPCut(p,p_lp); end % SDP diagonal has to be non-negative p_lp = addDiagonalCuts(p,p_lp); % Experimentation with activation cuts on 2x2 structures in problems with % all binary variables 2x2 = constant not psd + M(x) means some x has to be % non-zero p_lp = addActivationCuts(p,p_lp); p_lp = removeRedundant(p_lp); goon = 1; rr = p_lp.integer_variables; rb = p_lp.binary_variables; only_solvelp = 0; pplot = 0; % ************************************************************************* % Crude lower bound % FIX for quadratic case % ************************************************************************* lower = 0; if nnz(p.Q) == 0 for i = 1:length(p.c) if p.c(i)>0 if isinf(p.lb(i)) lower = -inf; break else lower = lower + p.c(i)*p.lb(i); end elseif p.c(i)<0 if isinf(p.ub(i)) lower = -inf; break else lower = lower + p.c(i)*p.ub(i); end end end end %lower = sum(sign(p.c).*(p.lb)); if isinf(lower) | nnz(p.Q)~=0 lower = -1e6; end % ************************************************************************* % Experimental stuff for variable fixing % ************************************************************************* if p.options.cutsdp.nodefix & (p.K.s(1)>0) top=1+p.K.f+p.K.l+sum(p.K.q); for i=1:length(p.K.s) n=p.K.s(i); for j=1:size(p.F_struc,2)-1; X=full(reshape(p.F_struc(top:top+n^2-1,j+1),p.K.s(i),p.K.s(i))); X=(X+X')/2; v=real(eig(X+sqrt(eps)*eye(length(X)))); if all(v>=0) sdpmonotinicity(i,j)=-1; elseif all(v<=0) sdpmonotinicity(i,j)=1; else sdpmonotinicity(i,j)=nan; end end top=top+n^2; end else sdpmonotinicity=[]; end hist_infeasibility = []; mmm=[]; pool = []; % Avoid data shuffling later on when creating cuts for SDPs top = 1+p.K.f + sum(p.K.l)+sum(p.K.q); % Slicing columns much faster p.F_struc = p.F_struc'; for i = 1:length(p.K.s) p.semidefinite{i}.F_struc = p.F_struc(:,top:top+p.K.s(i)^2-1)'; p.semidefinite{i}.index = 1:p.K.s(i)^2; top = top + p.K.s(i)^2; end p.F_struc = p.F_struc'; p.F_struc = p.F_struc(1:p.K.f+p.K.l+sum(p.K.q),:); upper = inf; standard_options = p_lp.options; while goon p_lp = nodeTight(p,p_lp); p_lp = nodeFix(p,p_lp); % Add lower bound if ~isinf(lower) p_lp.F_struc = [p_lp.F_struc;-lower p_lp.c']; p_lp.K.l = p_lp.K.l + 1; end goon_locally = 1; p_lp.options = standard_options; while goon_locally if p.solver.lower.constraint.inequalities.secondordercone.linear ptemp = p_lp; ptemp.F_struc = [p_lp.F_struc;p.F_struc(1+p.K.f+p.K.l:p.K.f+p.K.l+sum(p.K.q),:)]; ptemp.K.q = p.K.q; output = feval(cutsolver,ptemp); else output = feval(cutsolver,p_lp); end % Assume we won't find a feasible solution which we try to improve goon_locally = 0; % Remove lower bound (avoid accumulating them) if ~isinf(lower) p_lp.K.l = p_lp.K.l - 1; p_lp.F_struc = p_lp.F_struc(1:end-1,:); end infeasible_socp_cones = ones(1,length(p.K.q)); infeasible_sdp_cones = ones(1,length(p.K.s)); eig_failure = 0; if output.problem == 1 | output.problem == 12 % LP relaxation was infeasible, hence problem is infeasible feasible = 0; lower = inf; goon = 0; x = zeros(length(p.c),1); lower = inf; cost = inf; else % Relaxed solution x = output.Primal; cost = p.f+p.c'*x+x'*p.Q*x; if output.problem == 0 lower = cost; end infeasibility = 0; [p_lp,infeasibility,infeasible_socp_cones] = add_socp_cut(p,p_lp,x,infeasibility); [p_lp,infeasibility,infeasible_sdp_cones,eig_failure] = add_sdp_cut(p,p_lp,x,infeasibility); [p_lp,infeasibility] = add_nogood_cut(p,p_lp,x,infeasibility); if ~isempty(pool) res = pool*[1;x]; j = find(res<0) if ~isempty(j) p_lp.F_struc = [p_lp.F_struc;pool(j,:)]; p_lp.K.l = p_lp.K.l + length(j); pool(j,:)=[]; end end if feasible && infeasibility >= p.options.cutsdp.feastol && ~eig_failure % This was actually a feasible solution upper = min(upper, cost); if upper > lower if isa(p_lp.options.cutsdp.resolver,'struct') s = p_lp.options.verbose; p_lp.options = p_lp.options.cutsdp.resolver; p_lp.options.verbose = s; goon_locally = 1; end end end goon = infeasibility <= p.options.cutsdp.feastol || output.problem ==3; goon = goon & feasible; goon = goon || eig_failure;% not psd, but no interesting eigenvalue correctly computed goon = goon & (solved_nodes < p.options.cutsdp.maxiter-1); goon = goon & ~(upper <=lower); end solved_nodes = solved_nodes + 1; if eig_failure infeasibility = nan; end if p.options.cutsdp.verbose; if p.K.s(1)>0 if output.problem == 3 fprintf(' %4.0f : %12.3E %12.3E* %12.3E %2.0f %2.0f/%2.0f\n',solved_nodes,infeasibility,lower,upper,p_lp.K.l-p.K.l,nnz(infeasible_sdp_cones),length(p.K.s)); else fprintf(' %4.0f : %12.3E %12.3E %12.3E %2.0f %2.0f/%2.0f\n',solved_nodes,infeasibility,lower,upper,p_lp.K.l-p.K.l,nnz(infeasible_sdp_cones),length(p.K.s)); end else fprintf(' %4.0f : %12.3E %12.3E %12.3E %2.0f\n',solved_nodes,infeasibility,lower,upper,p_lp.K.l-p.K.l); end end end end D_struc = []; function [p_lp,worstinfeasibility,infeasible_sdp_cones,eig_computation_failure] = add_sdp_cut(p,p_lp,x,infeasibility_in); worstinfeasibility = infeasibility_in; eig_computation_failure = 0; infeasible_sdp_cones = zeros(1,length(p.K.s)); if p.K.s(1)>0 % Solution found by MILP solver xsave = x; infeasibility = -1; eig_computation_failure = 1; for i = 1:1:length(p.K.s) x = xsave; iter = 1; keep_projecting = 1; infeasibility = 0; % lin = p_lp.K.l; while iter <= p.options.cutsdp.maxprojections & (infeasibility(end) < -p.options.cutsdp.feastol) && keep_projecting % Add one cut b + a'*x >= 0 (if x infeasible) %l0 = p_lp.K.l; [X,p_lp,infeasibility(iter),a,b,failure] = add_one_sdp_cut(p,p_lp,x,i); eig_computation_failure = eig_computation_failure & failure; if infeasibility(iter) < p_lp.options.cutsdp.feastol && p.options.cutsdp.cutlimit > 0 % Project current point on the hyper-plane associated with % the most negative eigenvalue and move towards the SDP % feasible region, and the iterate a couple of iterations % to generate a deeper cut x0 = x; try x = x + a*(-b-a'*x)/(a'*a); catch end keep_projecting = norm(x-x0)>= p.options.cutsdp.projectionthreshold; else keep_projecting = 0; end worstinfeasibility = min(worstinfeasibility,infeasibility(iter)); iter = iter + 1; end infeasible_sdp_cones(i) = infeasibility(1) < p_lp.options.cutsdp.feastol; end else worstinfeasibility = min(worstinfeasibility,0); end function [X,p_lp,infeasibility,asave,bsave,failure] = add_one_sdp_cut(p,p_lp,x,i); newcuts = 0; newF = []; n = p.K.s(i); X = p.semidefinite{i}.F_struc*sparse([1;x]); X = reshape(X,n,n);X = (X+X')/2; asave = []; bsave = []; % First check if it happens to be psd. Then we are done. Quicker % than computing all eigenvalues % This also acts as a slight safe-guard in case the sparse eigs % fails to prove that the smallest eigenvalue is non-negative %[R,indefinite] = chol(X+eye(length(X))*1e-12); %if indefinite % User is trying to solve by only generating no-good cuts permutation = []; failure = 0; if p.options.cutsdp.cutlimit == 0 [R,indefinite] = chol(X+eye(length(X))*1e-12); if indefinite infeasibility = -1; else infeasibility = 0; end return end % For not too large problems, we simply go with a dense % eigenvalue/vector computation if 0%n <= p_lp.options.cutsdp.switchtosparse [d,v] = eig(X); failure = 0; else % Try to perform a block-diagonalization of the current solution, % and compute eigenvalue/vectorsa for each block. % Sparse eigenvalues can easily fails so we catch info about this [d,v,permutation,failure] = dmpermblockeig(X,p_lp.options.cutsdp.switchtosparse); end if ~isempty(v) d(abs(d)<1e-12)=0; infeasibility = min(diag(v)); else infeasibility = 0; end if infeasibility<0 [ii,jj] = sort(diag(v)); if ~isempty(permutation) [~,inversepermutation] = ismember(1:length(permutation),permutation); localFstruc = p.semidefinite{i}.F_struc'; else localFstruc = p.semidefinite{i}.F_struc'; end for m = jj(1:min(length(jj),p.options.cutsdp.cutlimit))' if v(m,m)<-1e-12 if 0 index = reshape(1:n^2,n,n); indexpermuted = index(permutation,permutation); indexused = index(find(d(:,m)),find(d(:,m))); localFstruc = p.F_struc(indexused,:); dd=d(find(d(:,m)),m); bA = dd'*(kron(dd,speye(length(dd))).'*localFstruc); else try if ~isempty(permutation) dhere = sparse(d(inversepermutation,m)); else dhere = sparse(d(:,m)); end if nnz(dhere)>100 [~,ii] = sort(-abs(dhere)); dhere(abs(dhere) <= abs(dhere(ii(100))))=0; end dd = dhere*dhere';dd = dd(:); index = p.semidefinite{i}.index; used = find(dd); bA = (localFstruc(:,index(used))*sparse(dd(used)))'; catch bA = sparse(dd(used))'*p.F_struc(index(used),:); end end b = bA(:,1); A = -bA(:,2:end); newF = real([newF;[b -A]]); newcuts = newcuts + 1; if isempty(asave) A(abs(A)<1e-12)=0; b(abs(b)<1e-12)=0; asave = -A(:); bsave = b; end end end end newF(abs(newF)<1e-12) = 0; keep=find(any(newF(:,2:end),2)); newF = newF(keep,:); if size(newF,1)>0 p_lp.F_struc = [p_lp.F_struc(1:p_lp.K.f,:);newF;p_lp.F_struc(1+p_lp.K.f:end,:)]; p_lp.K.l = p_lp.K.l + size(newF,1); end function [p_lp,infeasibility] = add_nogood_cut(p,p_lp,x,infeasibility) if length(x) == length(p.binary_variables) % Add a nogood cut. Might already have been generated by % the SDP cuts, but it doesn't hurt to add it zv = find(x == 0); nz = find(x == 1); a = zeros(1,length(x)); a(zv) = 1; a(nz) = -1; b = length(x)-length(zv)-1; newF = [b a]; p_lp.F_struc = [p_lp.F_struc(1:p_lp.K.f,:);newF;p_lp.F_struc(1+p_lp.K.f:end,:)]; p_lp.K.l = p_lp.K.l + 1; end function [p_lp,infeasibility,infeasible_socp_cones] = add_socp_cut(p,p_lp,x,infeasibility); infeasible_socp_cones = zeros(1,length(p.K.q)); % Only add these cuts if solver doesn't support SOCP cones if ~p.solver.lower.constraint.inequalities.secondordercone.linear if p.K.q(1)>0 % Add cuts top = p.K.f+p.K.l+1; for i = 1:1:length(p.K.q) n = p.K.q(i); X = p.F_struc(top:top+n-1,:)*[1;x]; X = [X(1) X(2:end)';X(2:end) eye(n-1)*X(1)]; Y = randn(n,n); newcuts = 1; newF = zeros(n,size(p.F_struc,2)); [d,v] = eig(X); infeasibility = min(infeasibility,min(diag(v))); dummy=[]; newF = []; if infeasibility<0 [ii,jj] = sort(diag(v)); for m = jj(1:min(length(jj),p.options.cutsdp.cutlimit))'%find(diag(v<0))%1:1%length(v) if v(m,m)<0 v1 = d(1,m);v2 = d(2:end,m); newF = [newF;p.F_struc(top,:) + 2*v1*v2'*p.F_struc(top+1:top+n-1,:)]; newcuts = newcuts + 1; end end end newF(abs(newF)<1e-12) = 0; keep= any(newF(:,2:end),2); newF = newF(keep,:); if size(newF,1)>0 p_lp.F_struc = [p_lp.F_struc;newF]; p_lp.K.l = p_lp.K.l + size(newF,1); [i,j] = sort(p_lp.F_struc*[1;x]); end top = top+n; end end end function p_lp = addActivationCuts(p,p_lp) if p.options.cutsdp.activationcut && p.K.s(1) > 0 && length(p.binary_variables) == length(p.c) top = p.K.f + p.K.l+sum(p.K.q)+1; for k = 1:length(p.K.s) F0 = p.F_struc(top:top+p.K.s(k)^2-1,1); % Fij = p.F_struc(top:top+p.K.s(k)^2-1,2:end); % Fij = sum(Fij | Fij,2); F0 = reshape(F0,p.K.s(k),p.K.s(k)); % Fij = reshape(Fij,p.K.s(k),p.K.s(k)); % Fall = F0 | Fij; row = 1; added = 0; % Avoid adding more than 2*n cuts (we hope for sparse model...) while row <= p.K.s(k)-1 && added <= 2*p.K.s(k) % if 1 j = find(F0(row,:)); if min(eig(F0(j,j)))<0 [ii,jj] = find(F0(j,j)); ii = j(ii); jj = j(jj); index = sub2ind([p.K.s(k),p.K.s(k)],ii,jj); p.F_struc(top + index-1,2:end); S = p.F_struc(top + index-1,2:end); S = S | S;S = sum(S,1);S = S | S; % Some of these have to be different from 0 p_lp.F_struc = [p_lp.F_struc;-1 S]; p_lp.K.l = p_lp.K.l + 1; end % else j = find(F0(row,:)); j = j(j>row); for col = j(:)' if F0(row,row)*F0(col,col)-F0(row,col)^2<0 index = sub2ind([p.K.s(k),p.K.s(k)],[row row col],[row col col]); p.F_struc(top + index-1,2:end); S = p.F_struc(top + index-1,2:end); S = S | S;S = sum(S,1);S = S | S; % Some of these have to be different from 0 p_lp.F_struc = [p_lp.F_struc;-1 S]; added = added + 1; p_lp.K.l = p_lp.K.l + 1; end end row = row + 1; end end end function p_lp = addDiagonalCuts(p,p_lp) if p.K.s(1)>0 top = p.K.f+p.K.l+sum(p.K.q)+1; for i = 1:length(p.K.s) n = p.K.s(i); newF=[]; nouse = []; for m = 1:p.K.s(i) d = eyev(p.K.s(i),m); index = (1+(m-1)*(p.K.s(i)+1)); ab = p.F_struc(top+index-1,:); b = ab(1); a = -ab(2:end); % a*x <= b pos = find(a>0); neg = find(a<0); if a(pos)*p.ub(pos) + a(neg)*p.lb(neg)>b if length(p.binary_variables) == length(p.c) if all(p.F_struc(top+index-1,2:end) == fix(p.F_struc(top+index-1,2:end))) ab(1) = floor(ab(1)); if max(a)<=0 % Exclusive or in disguise ab = sign(ab); end end end newF = [newF;ab]; else nouse = [nouse m]; end end % Clean newF(abs(newF)<1e-12) = 0; keep=find(any(newF(:,2:end),2)); newF = newF(keep,:); p_lp.F_struc = [p_lp.F_struc;newF]; p_lp.K.l = p_lp.K.l + size(newF,1); top = top+n^2; end end function p_lp = addSOCPCut(p,p_lp) if p.K.q(1) > 0 top = p.K.f+p.K.l+1; for i = 1:length(p.K.q) n = p.K.q(i); newF = p.F_struc(top,:); % Clean newF(abs(newF)<1e-12) = 0; keep=find(any(newF(:,2:end),2)); newF = newF(keep,:); p_lp.F_struc = [p_lp.F_struc;newF]; p_lp.K.l = p_lp.K.l + size(newF,1); top = top+n; end end function p_lp = nodeTight(p,p_lp); if p.options.cutsdp.nodetight % Extract LP part Ax<=b A = -p_lp.F_struc(p_lp.K.f + (1:p_lp.K.l),2:end); b = p_lp.F_struc(p_lp.K.f + (1:p_lp.K.l),1); c = p_lp.c; % Tighten bounds and find redundant constraints [p_lp.lb,p_lp.ub,redundant,pss] = milppresolve(A,b,p_lp.lb,p_lp.ub,p.integer_variables,p.binary_variables,ones(length(p.lb),1)); A(redundant,:) = []; b(redundant) = []; p_lp.F_struc(p_lp.K.f+redundant,:) = []; p_lp.K.l = p_lp.K.l-length(redundant); end function p_lp = nodeFix(p,p_lp); if p.options.cutsdp.nodefix % Try to find variables to fix w.l.o.g [fix_up,fix_down] = presolve_fixvariables(A,b,c,p_lp.lb,p_lp.ub,sdpmonotinicity); p_lp.lb(fix_up) = p_lp.ub(fix_up); p_lp.ub(fix_down) = p_lp.lb(fix_down); while ~(isempty(fix_up) & isempty(fix_down)) [p_lp.lb,p_lp.ub,redundant,pss] = milppresolve(A,b,p_lp.lb,p_lp.ub,p.integer_variables,p.binary_variables,ones(length(p.lb),1)); A(redundant,:) = []; b(redundant) = []; p_lp.F_struc(p_lp.K.f+redundant,:) = []; p_lp.K.l = p_lp.K.l-length(redundant); fix_up = []; fix_down = []; % Try to find variables to fix w.l.o.g [fix_up,fix_down] = presolve_fixvariables(A,b,c,p_lp.lb,p_lp.ub,sdpmonotinicity); p_lp.lb(fix_up) = p_lp.ub(fix_up); p_lp.ub(fix_down) = p_lp.lb(fix_down); end end function p_lp = removeRedundant(p_lp); F = unique(p_lp.F_struc(1+p_lp.K.f:end,:),'rows'); if size(F,1) < p_lp.K.l p_lp.F_struc = [p_lp.F_struc(1:p_lp.K.f,:);F]; p_lp.K.l = size(F,1); end function plotP(p) b = p.F_struc(1+p.K.f:p.K.f+p.K.l,1); A = -p.F_struc(1+p.K.f:p.K.f+p.K.l,2:end); x = sdpvar(size(A,2),1); plot([A*x <= b, p.lb <= x <= p.ub],x,'b',[],sdpsettings('plot.shade',.2));
github
EnricoGiordano1992/LMI-Matlab-master
bnb_solvelower.m
.m
LMI-Matlab-master/yalmip/modules/global/bnb_solvelower.m
6,280
utf_8
2876e0b094d4dbbf73fc45f1454c259e
function output = bnb_solvelower(lowersolver,relaxed_p,upper,lower) if all(relaxed_p.lb==relaxed_p.ub) x = relaxed_p.lb; if checkfeasiblefast(relaxed_p,relaxed_p.lb,relaxed_p.options.bnb.feastol) output.problem = 0; else output.problem = 1; end output.Primal = x; return end p = relaxed_p; p.solver.tag = p.solver.lower.tag; removethese = p.lb==p.ub; if nnz(removethese)>0 & all(p.variabletype == 0) & isempty(p.evalMap)% ~isequal(lowersolver,'callfmincongp') & ~isequal(lowersolver,'callgpposy') if ~isinf(upper) & nnz(p.Q)==0 & isequal(p.K.m,0) p.F_struc = [p.F_struc(1:p.K.f,:);upper-p.f -p.c';p.F_struc(1+p.K.f:end,:)]; p.K.l=p.K.l+1; end if ~isempty(p.F_struc) if ~isequal(p.K.l,0) & p.options.bnb.ineq2eq affected = find(any(p.F_struc(:,1+find(removethese)),2)); end p.F_struc(:,1)=p.F_struc(:,1)+p.F_struc(:,1+find(removethese))*p.lb(removethese); p.F_struc(:,1+find(removethese))=[]; end idx = find(removethese); p.f = p.f + p.c(idx)'*p.lb(idx); p.c(idx)=[]; if nnz(p.Q)>0 p.c = p.c + 2*p.Q(find(~removethese),idx)*p.lb(idx); p.f = p.f + p.lb(idx)'*p.Q(idx,idx)*p.lb(idx); p.Q(:,find(removethese))=[]; p.Q(find(removethese),:)=[]; else p.Q = spalloc(length(p.c),length(p.c),0); end p.lb(removethese)=[]; p.ub(removethese)=[]; p.x0(removethese)=[]; p.monomtable(:,find(removethese))=[]; p.monomtable(find(removethese),:)=[]; % This is not necessarily correct!! x*y^2, fix y and we have a linear! p.variabletype(removethese) = []; % p.variabletype = []; % Reset, to messy to recompute if ~isequal(p.K.l,0) & p.options.bnb.ineq2eq Beq = p.F_struc(1:p.K.f,1); Aeq = -p.F_struc(1:p.K.f,2:end); B = p.F_struc(1+p.K.f:p.K.l+p.K.f,1); A = -p.F_struc(1+p.K.f:p.K.l+p.K.f,2:end); affected = affected(affected <= p.K.f + p.K.l); affected = affected(affected > p.K.f) - p.K.f; aaa = zeros(p.K.l,1);aaa(affected) = 1; A1 = A(find(~aaa),:); B1 = B(find(~aaa),:); [A,B,Aeq2,Beq2,index] = ineq2eq(A(affected,:),B(affected)); if ~isempty(index) actuallyused = find(any([Aeq2,Beq2],2)); Beq2 = Beq2(actuallyused);if size(Beq2,1)==0;Beq2 = [];end Aeq2 = Aeq2(actuallyused,:);if size(Aeq2,1)==0;Aeq2 = [];end p.F_struc = [Beq -Aeq;Beq2 -Aeq2;B1 -A1;B -A;p.F_struc(1+p.K.f + p.K.l:end,:)]; p.K.f = length(Beq) + length(Beq2); p.K.l = length(B) + length(B1); end end % Find completely empty rows zero_row = find(~any(p.F_struc,2)); zero_row = zero_row(zero_row <= p.K.f + p.K.l); if ~isempty(zero_row) p.F_struc(zero_row,:) = []; p.K.l = p.K.l - nnz(zero_row > p.K.f); p.K.f = p.K.f - nnz(zero_row <= p.K.f); end if p.K.l > 0 zero_row = find(~any(p.F_struc(1+p.K.f:p.K.f+p.K.l,2:end),2)); if ~isempty(zero_row) lhs = p.F_struc(p.K.f + zero_row,1); zero_row_pos = find(lhs >= 0); remove_these = zero_row(zero_row_pos); p.F_struc(p.K.f + remove_these,:) = []; p.K.l = p.K.l - length(remove_these); end end if p.K.q> 0 top = p.K.f + p.K.l+1; for i = 1:length(p.K.q) if ~any(p.F_struc(top,:)) i end %nnz(Ff(2:end,:)) % 1 %end end end % Derive bounds from this model, and if we fix more variables, apply % recursively if isempty(p.F_struc) lb = p.lb; ub = p.ub; else [lb,ub] = findulb(p.F_struc,p.K); end newub = min(ub,p.ub); newlb = max(lb,p.lb); if any(newub == newlb) dummy = p; dummy.lb = newlb; dummy.ub = newub; output = bnb_solvelower(lowersolver,dummy,upper,lower); else if any(p.lb>p.ub+0.1) output.problem = 1; output.Primal = zeros(length(p.lb),1); else p.solver.version = p.solver.lower.version; p.solver.subversion = p.solver.lower.subversion; output = feval(lowersolver,p); end end x=relaxed_p.c*0; x(removethese)=relaxed_p.lb(removethese); x(~removethese)=output.Primal; output.Primal=x; else p.solver = p.solver.lower; output = feval(lowersolver,p); end function [A, B, Aeq, Beq, ind_eq] = ineq2eq(A, B) % Copyright is with the following author(s): % % (C) 2006 Johan Loefberg, Automatic Control Laboratory, ETH Zurich, % [email protected] % (C) 2005 Michal Kvasnica, Automatic Control Laboratory, ETH Zurich, % [email protected] [ne, nx] = size(A); Aeq = []; Beq = []; ind_eq = []; if isempty(A) return end sumM = sum(A, 2) + B; for ii = 1:ne-1, s = sumM(1); % get matrix which contains all rows starting from ii+1 sumM = sumM(2:end,:); % possible candidates are those rows whose sum is equal to the sum of the % original row possible_eq = find(abs(sumM + s) < 1e-12); if isempty(possible_eq), continue end possible_eq = possible_eq + ii; b1 = B(ii); a1 = A(ii, :) ; % now compare if the two inequalities (the second one with opposite % sign) are really equal (hence they form an equality constraint) for jj = possible_eq', % first compare the B part, this is very cheap if abs(b1 + B(jj)) < 1e-12, % now compare the A parts as well if norm(a1 + A(jj, :) , Inf) < 1e-12, % jj-th inequality together with ii-th inequality forms an equality % constraint ind_eq = [ind_eq; ii jj]; break end end end end if isempty(ind_eq), % no equality constraints return else % indices of remaining constraints which are inequalities ind_ineq = setdiff(1:ne, ind_eq(:)); Aeq = A(ind_eq(:,1), :) ; Beq = B(ind_eq(:,1)); A = A(ind_ineq, :) ; B = B(ind_ineq); end
github
EnricoGiordano1992/LMI-Matlab-master
addEvalVariableCuts.m
.m
LMI-Matlab-master/yalmip/modules/global/addEvalVariableCuts.m
4,555
utf_8
ab6e9b7499b292402a9904e71b95ce68
function pcut = addEvalVariableCuts(p) pcut = p; if ~isempty(p.evalMap) pcut = emptyNumericalModel; for i = 1:length(p.evalMap) y = p.evalVariables(i); x = p.evalMap{i}.variableIndex; xL = p.lb(x); xU = p.ub(x); % Generate a convex hull polytope if xL<xU if ~isempty(p.evalMap{i}.properties.convexhull) % A convex hull generator function is available! % Might be able to reuse hull from last run node if isfield(p.evalMap{i},'oldhull') && isequal(p.evalMap{i}.oldhull.xL,xL) && isequal(p.evalMap{i}.oldhull.xU,xU) [Ax,Ay,b,K] = getOldHull(p,i); else [Ax,Ay,b,K,p] = updateHull(xL,xU,p,i); end else if length(xL)>1 disp(['The ' p.evalMap{i}.fcn ' operator does not have a convex hull operator']) disp('This is required for multi-input single output operators'); disp('Sampling approximation does not work in this case.'); error('Missing convex hull operator'); end % sample function z = linspace(xL,xU,100); if isequal(p.evalMap{i}.fcn,'power_internal2') % Special code for automatically converting sigmonial % terms to be solvable with bmibnb fz = feval(p.evalMap{i}.fcn,z,p.evalMap{i}.arg{2}); else arg = p.evalMap{i}.arg; arg{1} = z; fz = real(feval(p.evalMap{i}.fcn,arg{1:end-1})); % end [minval,minpos] = min(fz); [maxval,maxpos] = max(fz); xtestmin = linspace(z(max([1 minpos-5])),z(min([100 minpos+5])),100); xtestmax = linspace(z(max([1 maxpos-5])),z(min([100 maxpos+5])),100); arg{1} = xtestmin; fz1 = real(feval(p.evalMap{i}.fcn,arg{1:end-1})); arg{1} = xtestmax; fz2 = real(feval(p.evalMap{i}.fcn,arg{1:end-1})); z = [z(:);xtestmin(:);xtestmax(:)]; fz = [fz(:);fz1(:);fz2(:)]; [z,sorter] = sort(z); fz = fz(sorter); [z,ii,jj]=unique(z); fz = fz(ii); end % create 4 bounding planes % f(z) < k1*(x-XL) + f(xL) % f(z) > k2*(x-XL) + f(xL) % f(z) < k3*(x-XU) + f(xU) % f(z) > k4*(x-XU) + f(xU) k1 = max((fz(2:end)-fz(1))./(z(2:end)-xL))+1e-12; k2 = min((fz(2:end)-fz(1))./(z(2:end)-xL))-1e-12; k3 = min((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))+1e-12; k4 = max((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))-1e-12; Ax = [-k1;k2;-k3;k4]; Ay = [1;-1;1;-1]; b = [k1*(-z(1)) + fz(1);-(k2*(-z(1)) + fz(1));k3*(-z(end)) + fz(end);-(k4*(-z(end)) + fz(end))]; K = []; end if ~isempty(b) if isempty(K) % Compatibility with old code K.f = 0; K.l = length(b); end F_structemp = zeros(size(b,1),length(p.c)+1); F_structemp(:,1+y) = -Ay; F_structemp(:,1+x) = -Ax; F_structemp(:,1) = b; localModel = createNumericalModel(F_structemp,K); pcut = mergeNumericalModels(pcut,localModel); end end end pcut = mergeNumericalModels(p,pcut); end function [Ax,Ay,b,K] = getOldHull(p,i); Ax = p.evalMap{i}.oldhull.Ax; Ay = p.evalMap{i}.oldhull.Ay; b = p.evalMap{i}.oldhull.b; K = p.evalMap{i}.oldhull.K; function [Ax,Ay,b,K,p] = updateHull(xL,xU,p,i); try [Ax,Ay,b,K]=feval(p.evalMap{i}.properties.convexhull,xL,xU, p.evalMap{i}.arg{2:end-1}); catch [Ax,Ay,b]=feval(p.evalMap{i}.properties.convexhull,xL,xU, p.evalMap{i}.arg{2:end-1}); K = []; end p = saveOldHull(xL,xU,Ax,Ay,b,K,p,i); function p = saveOldHull(xL,xU,Ax,Ay,b,K,p,i) p.evalMap{i}.oldhull.xL = xL; p.evalMap{i}.oldhull.xU = xU; p.evalMap{i}.oldhull.Ax = Ax; p.evalMap{i}.oldhull.Ay = Ay; p.evalMap{i}.oldhull.b = b; p.evalMap{i}.oldhull.K = K;
github
EnricoGiordano1992/LMI-Matlab-master
branch_and_bound.m
.m
LMI-Matlab-master/yalmip/modules/global/branch_and_bound.m
27,802
utf_8
c2c7870f7780fbb463c2844fe548b6b5
function [x_min,solved_nodes,lower,upper,lower_hist,upper_hist,timing,counter] = branch_and_bound(p,x_min,upper,timing) % ************************************************************************* % Create handles to solvers % ************************************************************************* lowersolver = p.solver.lowersolver.call; % For relaxed lower bound problem uppersolver = p.solver.uppersolver.call; % Local nonlinear upper bound lpsolver = p.solver.lpsolver.call; % LP solver for bound propagation % *************************************************************************f % GLOBAL PROBLEM DATA (these variables are the same in all nodes) % ************************************************************************* c = p.c; Q = p.Q; f = p.f; K = p.K; options = p.options; % ************************************************************************* % DEFINE UPPER BOUND PROBLEM. Basically just remove the cuts % ************************************************************************* p_upper = cleanuppermodel(p); % ************************************************************************* % Active constraints in main model % 0 : Inactive constraint (i.e. a cut which unused) % 1 : Active constraint % inf : Removed constraint (found to be redundant) % ************************************************************************* p.InequalityConstraintState = ones(p.K.l,1); p.InequalityConstraintState(p.KCut.l,1) = 0; p.EqualityConstraintState = ones(p.K.f,1); % ************************************************************************* % LPs ARE USED IN BOX-REDUCTION % ************************************************************************* p.lpcuts = p.F_struc(1+p.K.f:1:p.K.l+p.K.f,:); p.cutState = ones(p.K.l,1); p.cutState(p.KCut.l,1) = 0; % Don't use to begin with % ************************************************************************* % INITIALITAZION % ************************************************************************* p.depth = 0; % depth in search tree p.dpos = 0; % used for debugging p.lower = NaN; lower = NaN; gap = inf; stack = []; solved_nodes = 0; numGlobalSolutions = 0; % ************************************************************************* % Silly hack to speed up solver calls % ************************************************************************* p.getsolvertime = 0; counter = p.counter; if options.bmibnb.verbose>0 disp('* Starting YALMIP global branch & bound.'); disp(['* Branch-variables : ' num2str(length(p.branch_variables))]); disp(['* Upper solver : ' p.solver.uppersolver.tag]); disp(['* Lower solver : ' p.solver.lowersolver.tag]); if p.options.bmibnb.lpreduce disp(['* LP solver : ' p.solver.lpsolver.tag]); end disp(' Node Upper Gap(%) Lower Open'); end t_start = cputime; go_on = 1; reduction_result = []; lower_hist = []; upper_hist = []; p.branchwidth = []; pseudo_costgain=[]; pseudo_variable=[]; while go_on % ********************************************************************* % ASSUME THAT WE WON'T FATHOME % ********************************************************************* keep_digging = 1; % ********************************************************************* % Strenghten variable bounds a couple of runs % ********************************************************************* p.changedbounds = 1; for i = 1:length(options.bmibnb.strengthscheme) if ~p.feasible break end switch options.bmibnb.strengthscheme(i) case 1 p = updatebounds_recursive_evaluation(p); case 2 p = updateboundsfromupper(p,upper,p.originalModel); case 3 p = propagatequadratics(p); case 4 p = propagate_bounds_from_complementary(p); case 5 tstart = tic; p = domain_reduction(p,upper,lower,lpsolver,x_min); timing.domainreduce = timing.domainreduce + toc(tstart); case 6 p = propagate_bounds_from_equalities(p); otherwise end end % ********************************************************************* % Detect redundant constraints % ********************************************************************* p = remove_redundant(p); % ********************************************************************* % SOLVE LOWER AND UPPER % ********************************************************************* if p.feasible [output,cost,p,timing] = solvelower(p,options,lowersolver,x_min,upper,timing); if output.problem == -1 % We have no idea what happened. % Behave as if it worked, so we can branch as see if things % clean up nicely cost = p.lower; if isnan(cost) cost = -inf; end output.problem = 3; end % Cplex sucks... if output.problem == 12 pp = p; pp.c = pp.c*0; [output2,cost2] = solvelower(pp,options,lowersolver,[],[],timing); if output2.problem == 0 output.problem = 2; else output.problem = 1; end end % GLPK sucks in st_e06 if abs(p.lb(p.linears)-p.ub(p.linears)) <= 1e-3 & output.problem==1 x = (p.lb+p.ub)/2; z = evaluate_nonlinear(p,x); oldCount = numGlobalSolutions; if numGlobalSolutions < p.options.bmibnb.numglobal [upper,x_min,cost,info_text,numGlobalSolutions] = heuristics_from_relaxed(p_upper,x,upper,x_min,cost,numGlobalSolutions); end end info_text = ''; switch output.problem case {1,12} % Infeasible info_text = 'Infeasible'; keep_digging = 0; cost = inf; feasible = 0; case 2 % Unbounded (should not happen!) cost = -inf; x = output.Primal; case {0,3,4} % No problems (disregard numerical problems) if (output.problem == 3) | (output.problem == 4) info_text = 'Numerical problems in lower bound solver'; end x = output.Primal; if ~isempty(p.branchwidth) if ~isempty(p.lower) pseudo_costgain = [pseudo_costgain (cost-p.lower)/p.branchwidth]; pseudo_variable = [pseudo_variable p.spliton]; end end % UPDATE THE LOWER BOUND if isnan(lower) lower = cost; end if ~isempty(stack) lower = min(cost,min([stack.lower])); else lower = min(lower,cost); end relgap = 100*(upper-lower)/(1+abs(upper)); relgap_too_big = (isinf(lower) | isnan(relgap) | relgap>options.bmibnb.relgaptol); if cost<upper-1e-5 & relgap_too_big z = evaluate_nonlinear(p,x); % Manage cuts etc p = addsdpcut(p,z); p = addlpcuts(p,x); oldCount = numGlobalSolutions; if numGlobalSolutions < p.options.bmibnb.numglobal [upper,x_min,cost,info_text2,numGlobalSolutions] = heuristics_from_relaxed(p_upper,x,upper,x_min,cost,numGlobalSolutions); if length(info_text)==0 info_text = info_text2; elseif length(info_text2)>0 info_text = [info_text ' | ' info_text2]; else info_text = info_text; end if ~isequal(p.solver.uppersolver.tag,'none') if upper > p.options.bmibnb.target if options.bmibnb.lowertarget > lower [upper,x_min,info_text,numGlobalSolutions,timing] = solve_upper_in_node(p,p_upper,x,upper,x_min,uppersolver,info_text,numGlobalSolutions,timing); p.counter.uppersolved = p.counter.uppersolved + 1; end end end end else keep_digging = 0; info_text = 'Poor bound'; end otherwise cost = -inf; x = (p.lb+p.ub)/2; end else info_text = 'Infeasible'; keep_digging = 0; cost = inf; feasible = 0; end solved_nodes = solved_nodes+1; % ************************************************ % PRUNE SUBOPTIMAL REGIONS BASED ON UPPER BOUND % ************************************************ if ~isempty(stack) [stack,lower] = prune(stack,upper,options,solved_nodes,p); end if isempty(stack) if isinf(cost) lower = upper; else lower = cost; end else lower = min(lower,cost); end % ************************************************ % CONTINUE SPLITTING? % ************************************************ if keep_digging & max(p.ub(p.branch_variables)-p.lb(p.branch_variables))>options.bmibnb.vartol node = []; % already_tested = [] % while ~isempty(setdiff(p.branch_variables,already_tested)) & isempty(node) % temp = p.branch_variables; % p.branch_variables=setdiff(p.branch_variables,already_tested); spliton = branchvariable(p,options,x); % p.branch_variables = union(p.branch_variables,already_tested); % already_tested = [already_tested spliton]; if ismember(spliton,p.complementary) i = find(p.complementary(:,1) == spliton); if isempty(i) i = find(p.complementary(:,2) == spliton); end % Either v1 or v2 is zero v1 = p.complementary(i,1); v2 = p.complementary(i,2); gap_over_v1 = (p.lb(v1)<=0) & (p.ub(v1)>=0) & (p.ub(v1)-p.lb(v2))>0; gap_over_v2 = (p.lb(v2)<=0) & (p.ub(v2)>=0) & (p.ub(v2)-p.lb(v2))>0; if gap_over_v1 pp = p; pp.complementary( find((pp.complementary(:,1)==v1) | (pp.complementary(:,2)==v1)),:)=[]; node = savetonode(pp,v1,0,0,-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState); node.bilinears = p.bilinears; node = updateonenonlinearbound(node,spliton); if all(node.lb <= node.ub) node.branchwidth=[]; stack = push(stack,node); end end if gap_over_v2 pp = p; %pp.complementary(i,:)=[]; pp.complementary( find((pp.complementary(:,1)==v2) | (pp.complementary(:,2)==v2)),:)=[]; node = savetonode(pp,v2,0,0,-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState); node.bilinears = p.bilinears; node = updateonenonlinearbound(node,spliton); if all(node.lb <= node.ub) node.branchwidth=[]; stack = push(stack,node); end end end if isempty(node) bounds = partition(p,options,spliton,x); if length(bounds)>3 error('REPORT BOUND LENGTH UNIMPLEMENTED BUG') end for i = 1:length(bounds)-1 if ismember(spliton,union(p.binary_variables,p.integer_variables)) & (i==2) node = savetonode(p,spliton,bounds(i)+1,bounds(i+1),-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState); else node = savetonode(p,spliton,bounds(i),bounds(i+1),-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState); end node.bilinears = p.bilinears; node = updateonenonlinearbound(node,spliton); node.branchwidth = [p.ub(spliton)-p.lb(spliton)]; if all(node.lb <= node.ub) stack = push(stack,node); end end end lower = min([stack.lower]); end if ~isempty(p) counter = p.counter; end % ************************************************ % Pick and create a suitable node % ************************************************ [p,stack] = selectbranch(p,options,stack,x_min,upper); if isempty(p) if ~isinf(upper) relgap = 0; end if isinf(upper) & isinf(lower) relgap = inf; end depth = 0; else relgap = 100*(upper-lower)/(1+max(abs(lower)+abs(upper))/2); depth = p.depth; end if options.bmibnb.verbose>0 fprintf(' %4.0f : %12.3E %7.2f %12.3E %2.0f %s \n',solved_nodes,upper,relgap,lower,length(stack)+length(p),info_text); end absgap = upper-lower; % ************************************************ % Continue? % ************************************************ time_ok = cputime-t_start < options.bmibnb.maxtime; iter_ok = solved_nodes < options.bmibnb.maxiter; any_nodes = ~isempty(p); relgap_too_big = (isinf(lower) | isnan(relgap) | relgap>100*options.bmibnb.relgaptol); absgap_too_big = (isinf(lower) | isnan(absgap) | absgap>options.bmibnb.absgaptol); uppertarget_not_met = upper > options.bmibnb.target; lowertarget_not_met = lower < options.bmibnb.lowertarget; go_on = uppertarget_not_met & lowertarget_not_met & time_ok & any_nodes & iter_ok & relgap_too_big & absgap_too_big; lower_hist = [lower_hist lower]; upper_hist = [upper_hist upper]; end if options.bmibnb.verbose>0 fprintf(['* Finished. Cost: ' num2str(upper) ' Gap: ' num2str(relgap) '\n']); end %save dummy x_min % ************************************************************************* % Stack functionality % ************************************************************************* function stack = push(stackin,p) if ~isempty(stackin) stack = [p;stackin]; else stack(1)=p; end function [p,stack] = pull(stack,method,x_min,upper,branch_variables); if ~isempty(stack) switch method case 'maxvol' for i = 1:length(stack) vol(i) = sum(stack(i).ub(branch_variables)-stack(i).lb(branch_variables)); end [i,j] = max(vol); p=stack(j); stack = stack([1:1:j-1 j+1:1:end]); case 'best' [i,j]=min([stack.lower]); p=stack(j); stack = stack([1:1:j-1 j+1:1:end]); otherwise end else p =[]; end function [stack,lower] = prune(stack,upper,options,solved_nodes,p) if ~isempty(stack) toolarge = find([stack.lower]>upper*(1+1e-4)); if ~isempty(toolarge) stack(toolarge)=[]; end if ~isempty(stack) for j = 1:length(stack) if nnz(p.c.*(stack(j).ub-stack(j).lb)) == 1 & nnz(p.Q)==0 i = find(p.c.*(stack(j).ub-stack(j).lb)); if p.c(i)>0 stack(j).ub(i) = min([stack(j).ub(i) upper]); end end end indPOS = find(p.c>0); indNEG = find(p.c<0); LB = [stack.lb]; UB = [stack.ub]; LOWER = p.c([indPOS(:);indNEG(:)])'*[LB(indPOS,:);UB(indNEG,:)]; toolarge = find(LOWER > upper*(1-1e-8)); stack(toolarge)=[]; end end if ~isempty(stack) lower = min([stack.lower]); else lower = upper; end function node = savetonode(p,spliton,bounds1,bounds2,direction,x,cost,EqualityConstraintState,InequalityConstraintState,cutState); node.lb = p.lb; node.ub = p.ub; node.lb(spliton) = bounds1; node.ub(spliton) = bounds2; node.lb(p.integer_variables) = ceil(node.lb(p.integer_variables)); node.ub(p.integer_variables) = floor(node.ub(p.integer_variables)); node.lb(p.binary_variables) = ceil(node.lb(p.binary_variables)); node.ub(p.binary_variables) = floor(node.ub(p.binary_variables)); node.complementary = p.complementary; if direction == -1 node.dpos = p.dpos-1/(2^sqrt(p.depth)); else node.dpos = p.dpos+1/(2^sqrt(p.depth)); end node.spliton = spliton; node.depth = p.depth+1; node.x0 = x; node.lpcuts = p.lpcuts; node.lower = cost; node.InequalityConstraintState = InequalityConstraintState; node.EqualityConstraintState = EqualityConstraintState; node.cutState = cutState; % ************************************* % DERIVE LINEAR CUTS FROM SDPs % ************************************* function p = addsdpcut(p,x) if p.K.s > 0 top = p.K.f+p.K.l+1; newcuts = 1; newF = []; for i = 1:length(p.K.s) n = p.K.s(i); X = p.F_struc(top:top+n^2-1,:)*[1;x]; X = reshape(X,n,n); [d,v] = eig(X); for m = 1:length(v) if v(m,m)<0 for j = 1:length(x)+1; newF(newcuts,j)= d(:,m)'*reshape(p.F_struc(top:top+n^2-1,j),n,n)*d(:,m); end % max(abs(newF(:,2:end)),[],2) newF(newcuts,1)=newF(newcuts,1)+1e-6; newcuts = newcuts + 1; if size(p.lpcuts,1)>0 dist = p.lpcuts*newF(newcuts-1,:)'/(newF(newcuts-1,:)*newF(newcuts-1,:)'); if any(abs(dist-1)<1e-3) newF = newF(1:end-1,:); newcuts = newcuts - 1; end end end end top = top+n^2; end if ~isempty(newF) % Don't keep all m = size(newF,2); % size(p.lpcuts) p.lpcuts = [newF;p.lpcuts]; p.cutState = [ones(size(newF,1),1);p.cutState]; violations = p.lpcuts*[1;x]; p.lpcuts = p.lpcuts(violations<0.1,:); if size(p.lpcuts,1)>15*m disp('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'); violations = p.lpcuts*[1;x]; [i,j] = sort(violations); %p.lpcuts = p.lpcuts(j(1:15*m),:); %p.cutState = lpcuts = p.lpcuts(j(1:15*m),:); %p.lpcuts = p.lpcuts(end-15*m+1:end,:); end end end function p = addlpcuts(p,z) inactiveCuts = find(~p.cutState); violation = p.lpcuts(inactiveCuts,:)*[1;z]; need_to_add = find(violation < -1e-4); if ~isempty(need_to_add) p.cutState(inactiveCuts(need_to_add)) = 1; end inactiveCuts = find(p.InequalityConstraintState == 0 ); violation = p.F_struc(p.K.f+inactiveCuts,:)*[1;z]; need_to_add = find(violation < -1e-4); if ~isempty(need_to_add) p.InequalityConstraintState(inactiveCuts(need_to_add)) = 1; end % ************************************************************************* % Strategy for deciding which variable to branch on % ************************************************************************* function spliton = branchvariable(p,options,x) % Split if box is to narrow width = abs(p.ub(p.branch_variables)-p.lb(p.branch_variables)); % if ~isempty(p.binary_variables) % width_bin = min([abs(1-x(p.binary_variables)) abs(x(p.binary_variables))],[],2); % end if isempty(p.bilinears) | ~isempty(p.evalMap) | any(p.variabletype > 2)%(min(width)/max(width) < 0.1) | (size(p.bilinears,1)==0) % [i,j] = max(width);%.*p.weight(p.branch_variables)); spliton = p.branch_variables(j); else res = x(p.bilinears(:,1))-x(p.bilinears(:,2)).*x(p.bilinears(:,3)); [ii,jj] = sort(abs(res)); v1 = p.bilinears(jj(end),2); v2 = p.bilinears(jj(end),3); acc_res1 = sum(abs(res(find((p.bilinears(:,2)==v1) | p.bilinears(:,3)==v1)))); acc_res2 = sum(abs(res(find((p.bilinears(:,2)==v2) | p.bilinears(:,3)==v2)))); if abs(acc_res1-acc_res2)<1e-3 & ismember(v2,p.branch_variables) & ismember(v1,p.branch_variables) if abs(p.ub(v1)-p.lb(v1))>abs(p.ub(v2)-p.lb(v2)) spliton = v1; elseif abs(p.ub(v1)-p.lb(v1))<abs(p.ub(v2)-p.lb(v2)) spliton = v2; else % Oops, two with the same impact. To avoid that we keep pruning on % a variable that doesn't influence the bounds, we flip a coin on % which to branch on if rand(1)>0.5 spliton = v1; else spliton = v2; end end else if (~ismember(v2,p.branch_variables) | (acc_res1>acc_res2)) & ismember(v1,p.branch_variables) spliton = v1; elseif ismember(v2,p.branch_variables) spliton = v2; else [i,j] = max(width); spliton = p.branch_variables(j); end end end % ************************************************************************* % Strategy for diving the search space % ************************************************************************* function bounds = partition(p,options,spliton,x_min) x = x_min; if isinf(p.lb(spliton)) %bounds = [p.lb(spliton) x_min(spliton) p.ub(spliton)] %return p.lb(spliton) = -1e6; end if isinf(p.ub(spliton)) %bounds = [p.lb(spliton) x_min(spliton) p.ub(spliton)] %return p.ub(spliton) = 1e6; end switch options.bmibnb.branchrule case 'omega' if ~isempty(x_min) U = p.ub(spliton); L = p.lb(spliton); x = x(spliton); bounds = [p.lb(spliton) 0.5*max(p.lb(spliton),min(x_min(spliton),p.ub(spliton)))+0.5*(p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)]; else bounds = [p.lb(spliton) (p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)]; end case 'bisect' bounds = [p.lb(spliton) (p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)]; otherwise bounds = [p.lb(spliton) (p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)]; end if isnan(bounds(2)) %FIX if isinf(p.lb(spliton)) p.lb(spliton) = -1e6; end if isinf(p.ub(spliton)) p.ub(spliton) = 1e6; end bounds(2) = (p.lb(spliton)+p.ub(spliton))/2; end function [p,stack] = selectbranch(p,options,stack,x_min,upper,cost_improvements) switch options.bmibnb.branchmethod case 'maxvol' [node,stack] = pull(stack,'maxvol',x_min,upper,p.branch_variables); case 'best' [node,stack] = pull(stack,'best',x_min,upper); case 'best-estimate' [node,stack] = pull(stack,'best-estimate',x_min,upper,[],cost_improvements); otherwise [node,stack] = pull(stack,'best',x_min,upper); end % Copy node data to p if isempty(node) p = []; else p.depth = node.depth; p.dpos = node.dpos; p.spliton = node.spliton; p.lb = node.lb; p.ub = node.ub; p.lower = node.lower; p.lpcuts = node.lpcuts; p.x0 = node.x0; p.InequalityConstraintState = node.InequalityConstraintState; p.EqualityConstraintState = node.EqualityConstraintState; p.complementary = node.complementary; p.cutState = node.cutState; p.feasible = 1; p.branchwidth = node.branchwidth; end % ************************************************************************* % Heuristics from relaxed % Basically nothing coded yet. Just check feasibility... % ************************************************************************* function [upper,x_min,cost,info_text,numglobals] = heuristics_from_relaxed(p_upper,x,upper,x_min,cost,numglobals) %load dummy;U = [x(1) x(2) x(4);0 x(3) x(5);0 0 x(6)];P=U'*U;i = find(triu(ones(length(A))-eye(length(A))));-log(det(U'*U))+trace(A*U'*U)+2*sum(invsathub(P(i),lambda)) x(p_upper.binary_variables) = round(x(p_upper.binary_variables)); x(p_upper.integer_variables) = round(x(p_upper.integer_variables)); z = apply_recursive_evaluation(p_upper,x(1:length(p_upper.c))); %z = evaluate_nonlinear(p_upper,x); relaxed_residual = constraint_residuals(p_upper,z); eq_ok = all(relaxed_residual(1:p_upper.K.f)>=-p_upper.options.bmibnb.eqtol); iq_ok = all(relaxed_residual(1+p_upper.K.f:end)>=p_upper.options.bmibnb.pdtol); relaxed_feasible = eq_ok & iq_ok; info_text = ''; if relaxed_feasible this_upper = p_upper.f+p_upper.c'*z+z'*p_upper.Q*z; if (this_upper < (1-1e-5)*upper) & (this_upper < upper - 1e-5) x_min = x; upper = this_upper; info_text = 'Improved solution'; cost = cost-1e-10; % Otherwise we'll fathome! numglobals = numglobals + 1; end end % ************************************************************************* % Detect redundant constraints % ************************************************************************* function p = remove_redundant(p); b = p.F_struc(1+p.K.f:p.K.l+p.K.f,1); A = -p.F_struc(1+p.K.f:p.K.l+p.K.f,2:end); redundant = find(((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <-1e-2)); if length(redundant)>1 p.InequalityConstraintState(redundant) = inf; end if p.options.bmibnb.lpreduce b = p.lpcuts(:,1); A = -p.lpcuts(:,2:end); redundant = find(((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <-1e-2)); if length(redundant)>1 p.lpcuts(redundant,:) = []; p.cutState(redundant) = []; end end if p.K.f > 0 b = p.F_struc(1:p.K.f,1); A = -p.F_struc(1:p.K.f,2:end); s1 = ((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <1e-6); s2 = ((-A>0).*(-A)*(p.ub-p.lb) - ((-b)-(-A)*p.lb) <1e-6); redundant = find(s1 & s2); if length(redundant)>1 p.EqualityConstraintState(redundant) = inf; end end % ************************************************************************* % Clean the upper bound model % Remove cut constraints, and % possibly unused variables not used % ************************************************************************* function p = cleanuppermodel(p); % We might have created a bilinear model from an original polynomial model. % We should use the original model when we solve the upper bound problem. p_bilinear = p; p = p.originalModel; % Remove cuts p.F_struc(p.K.f+p.KCut.l,:)=[]; p.K.l = p.K.l - length(p.KCut.l); n_start = length(p.c); % Quadratic mode, and quadratic aware solver? bilinear_variables = find(p.variabletype == 1 | p.variabletype == 2); if ~isempty(bilinear_variables) used_in_c = find(p.c); quadraticterms = used_in_c(find(ismember(used_in_c,bilinear_variables))); if ~isempty(quadraticterms) & p.solver.uppersolver.objective.quadratic.nonconvex usedinquadratic = zeros(1,length(p.c)); for i = 1:length(quadraticterms) Qij = p.c(quadraticterms(i)); power_index = find(p.monomtable(quadraticterms(i),:)); if length(power_index) == 1 p.Q(power_index,power_index) = Qij; else p.Q(power_index(1),power_index(2)) = Qij/2; p.Q(power_index(2),power_index(1)) = Qij/2; end p.c(quadraticterms(i)) = 0; end end end % Remove SDP cuts if length(p.KCut.s)>0 starts = p.K.f+p.K.l + [1 1+cumsum((p.K.s).^2)]; remove_these = []; for i = 1:length(p.KCut.s) j = p.KCut.s(i); remove_these = [remove_these;(starts(j):starts(j+1)-1)']; end p.F_struc(remove_these,:)=[]; p.K.s(p.KCut.s) = []; end p.lb = p_bilinear.lb(1:length(p.c)); p.ub = p_bilinear.ub(1:length(p.c)); p.bilinears = [];
github
EnricoGiordano1992/LMI-Matlab-master
propagate_bounds_from_equalities.m
.m
LMI-Matlab-master/yalmip/modules/global/propagate_bounds_from_equalities.m
10,554
utf_8
9d6b2fdfcaad8b64e3dc2691481565a7
function p = propagate_bounds_from_equalities(p) LU = [p.lb p.ub]; p_F_struc = p.F_struc; n_p_F_struc_cols = size(p_F_struc,2); fixedVars = find(p.lb == p.ub & p.variabletype(:) == 0); if ~isempty(fixedVars) p_F_struc_forbilin = p_F_struc; p_F_struc_forbilin(:,1) = p_F_struc(:,1) + p_F_struc(:,1+fixedVars)*p.lb(fixedVars); p_F_struc_forbilin(:,1+fixedVars) = 0; else p_F_struc_forbilin=p_F_struc; end usedVariables = find(any(p.F_struc(:,2:end))); if all(isinf(p.lb(usedVariables))) & all(isinf(p.ub(usedVariables))) return end if p.K.f >0 interestingRows = find(p_F_struc(1:p.K.f,1)); if ~isempty(interestingRows) S = p_F_struc(interestingRows,:); S(:,1)=0; S = sum(S|S,2) - abs(sum(S,2)); interestingRows = interestingRows(find(S==0)); for j = interestingRows(:)' thisrow = p_F_struc(j,:); if thisrow(1)<0 thisrow = -thisrow; end [row,col,val] = find(thisrow); % Find bounds from sum(xi) = 1, xi>0 if all(val(2:end) < 0) usedVars = col(2:end)-1; if all(p.lb(usedVars)>=0) p.ub(usedVars) = min( p.ub(usedVars) , val(1)./abs(val(2:end)')); end end end end % Presolve from bilinear x*y == k if any(p.variabletype == 1) for j = 1:p.K.f if p_F_struc_forbilin(j,1)~=0 [row,col,val] = find(p_F_struc_forbilin(j,:)); % Find bounds from sum(xi) = 1, xi>0 if length(col)==2 val = val/val(2); % val(1) + x==0 var = col(2)-1; if p.variabletype(var)==1 [ij] = find(p.monomtable(var,:)); if p.lb(ij(1))>=0 & p.lb(ij(2))>=0 % xi*xj == val(1) if -val(1)<0 p.feasible = 0; return else p.ub(ij(2)) = min( p.ub(ij(2)),-val(1)/p.lb(ij(1))); p.ub(ij(1)) = min( p.ub(ij(1)),-val(1)/p.lb(ij(2))); p.lb(ij(2)) = max( p.lb(ij(2)),-val(1)/p.ub(ij(1))); p.lb(ij(1)) = max( p.lb(ij(1)),-val(1)/p.ub(ij(2))); end elseif -val(1)>0 & p.lb(ij(1))>=0 p.lb(ij(2)) = max(0,p.lb(ij(2))); elseif -val(1)>0 & p.lb(ij(2))>=0 p.lb(ij(1)) = max(0,p.lb(ij(1))); end end end end end end A = p.F_struc(1:p.K.f,2:end); AT = A'; Ap = max(0,A);ApT = Ap'; Am = min(0,A);AmT = Am'; two_terms = sum(p.F_struc(1:p.K.f,2:end) | p.F_struc(1:p.K.f,2:end),2)==2; for j = find(sum(p.F_struc(1:p.K.f,2:end) | p.F_struc(1:p.K.f,2:end),2)>1)' % Simple x == y done = 0; b = full(p_F_struc(j,1)); if b==0 & two_terms(j) [row,col,val] = find(p_F_struc(j,:)); if length(row) == 2 if val(1) == -val(2) p.lb(col(1)-1) = max(p.lb(col(1)-1),p.lb(col(2)-1)); p.lb(col(2)-1) = max(p.lb(col(1)-1),p.lb(col(2)-1)); p.ub(col(1)-1) = min(p.ub(col(1)-1),p.ub(col(2)-1)); p.ub(col(2)-1) = min(p.ub(col(1)-1),p.ub(col(2)-1)); done = 1; elseif val(1) == val(2) p.lb(col(1)-1) = max(p.lb(col(1)-1),-p.ub(col(2)-1)); p.lb(col(2)-1) = max(-p.ub(col(1)-1),p.lb(col(2)-1)); p.ub(col(1)-1) = min(p.ub(col(1)-1),-p.lb(col(2)-1)); p.ub(col(2)-1) = min(-p.lb(col(1)-1),p.ub(col(2)-1)); done = 1; end end end if ~done a = AT(:,j)'; ap = (ApT(:,j)'); am = (AmT(:,j)'); find_a = find(a); p_ub = p.ub(find_a); p_lb = p.lb(find_a); inflb = isinf(p_lb); infub = isinf(p_ub); if ~all(inflb & infub) if any(inflb) | any(infub) [p_lb,p_ub] = propagatewINFreduced(full(a(find_a)),full(ap(find_a)),full(am(find_a)),p_lb,p_ub,b); p.lb(find_a) = p_lb; p.ub(find_a) = p_ub; else [p_lb,p_ub] = propagatewoINFreduced(full(a(find_a)),full(ap(find_a)),full(am(find_a)),p_lb,p_ub,b); p.lb(find_a) = p_lb; p.ub(find_a) = p_ub; end end end end end close = find(abs(p.lb - p.ub) < 1e-12); p.lb(close) = (p.lb(close)+p.ub(close))/2; p.ub(close) = p.lb(close); p = update_integer_bounds(p); if ~isequal(LU,[p.lb p.ub]) p.changedbounds = 1; end function [p_lb,p_ub] = propagatewINFreduced(a,ap,am,p_lb,p_ub,b); %a = AT(:,j)'; %ap = (ApT(:,j)'); %am = (AmT(:,j)'); %p_ub = p.ub; %p_lb = p.lb; %find_a = find(a); % find_a = find_a(min(find(isinf(p.lb(find_a)) | isinf(p.ub(find_a)))):end); for k = 1:length(a)%find_a p_ub_k = p_ub(k); p_lb_k = p_lb(k); if (p_ub_k-p_lb_k) > 1e-8 L = p_lb; U = p_ub; L(k) = 0; U(k) = 0; ak = a(k); if ak < 0 ak = -ak; aa = am; am = -ap; ap = -aa; b = -b; a = -a; end if ak > 0 use1 = find(ap'~=0); use2 = find(am'~=0); newlower = (-b - ap(use1)*U(use1) - am(use2)*L(use2))/ak; newupper = (-b - am(use2)*U(use2) - ap(use1)*L(use1))/ak; %newlower = (-b - ap*U - am*L)/ak; %newupper = (-b - am*U - ap*L)/ak; else newlower = (-b - am*U - ap*L)/ak; newupper = (-b - ap*U - am*L)/ak; end if p_ub_k>newupper p_ub(k) = newupper; end if p_lb_k<newlower p_lb(k) = newlower; end end end p.ub = p_ub; p.lb = p_lb; function [p_lb,p_ub] = propagatewoINFreduced(a,ap,am,p_lb,p_ub,b); L = p_lb; U = p_ub; apU = ap*U; amU = am*U; apL = ap*L; amL = am*L; papU = ap.*U'; pamU = am.*U'; papL = ap.*L'; pamL = am.*L'; minusbminusapUminusamL = -b-apU-amL; minusbminusamUminusapL = -b-amU-apL; for k = 1:length(a)%find_a p_ub_k = p_ub(k); p_lb_k = p_lb(k); if (p_ub_k-p_lb_k) > 1e-8 ak = a(k); if ak > 0 %newlower = (-b-apU+papU(k)-amL+pamL(k) )/ak; %newupper = (-b-amU+pamU(k)-apL+papL(k) )/ak; newlower = -1e-15 + (minusbminusapUminusamL+papU(k)+pamL(k) )/ak; newupper = 1e-15 + (minusbminusamUminusapL+pamU(k)+papL(k) )/ak; else newlower = -1e-15 + (minusbminusamUminusapL+pamU(k)+papL(k) )/ak; newupper = 1e-15 + (minusbminusapUminusamL+papU(k)+pamL(k) )/ak; end if p_ub_k>newupper p_ub(k) = newupper; U(k) = newupper; apU = ap*U; amU = am*U; papU = ap.*U'; pamU = am.*U'; minusbminusapUminusamL = -b-apU-amL; minusbminusamUminusapL = -b-amU-apL; end if p_lb_k<newlower p_lb(k) = newlower; L(k) = newlower; apL = ap*L; amL = am*L; papL = ap.*L'; pamL = am.*L'; minusbminusapUminusamL = -b-apU-amL; minusbminusamUminusapL = -b-amU-apL; end end end %p.ub = p_ub; %p.lb = p_lb; function p = propagatewINF(p,AT,ApT,AmT,j,b); a = AT(:,j)'; ap = (ApT(:,j)'); am = (AmT(:,j)'); p_ub = p.ub; p_lb = p.lb; find_a = find(a); % find_a = find_a(min(find(isinf(p.lb(find_a)) | isinf(p.ub(find_a)))):end); for k = find_a p_ub_k = p_ub(k); p_lb_k = p_lb(k); if (p_ub_k-p_lb_k) > 1e-8 L = p_lb; U = p_ub; L(k) = 0; U(k) = 0; ak = a(k); if ak > 0 newlower = (-b - ap*U - am*L)/ak; newupper = (-b - am*U - ap*L)/ak; else newlower = (-b - am*U - ap*L)/ak; newupper = (-b - ap*U - am*L)/ak; end % if isinf(newlower) | isinf(newupper) % z = newlower; % end if p_ub_k>newupper p_ub(k) = newupper; end if p_lb_k<newlower p_lb(k) = newlower; end end end p.ub = p_ub; p.lb = p_lb; function p = propagatewoINF(p,AT,ApT,AmT,j,b); a = full(AT(:,j)'); ap = full((ApT(:,j)')); am = full((AmT(:,j)')); p_ub = p.ub; p_lb = p.lb; find_a = find(a); L = p_lb; U = p_ub; apU = ap*U; amU = am*U; apL = ap*L; amL = am*L; papU = ap.*U'; pamU = am.*U'; papL = ap.*L'; pamL = am.*L'; minusbminusapUminusamL = -b-apU-amL; minusbminusamUminusapL = -b-amU-apL; for k = find_a p_ub_k = p_ub(k); p_lb_k = p_lb(k); if (p_ub_k-p_lb_k) > 1e-8 ak = a(k); if ak > 0 %newlower = (-b-apU+papU(k)-amL+pamL(k) )/ak; %newupper = (-b-amU+pamU(k)-apL+papL(k) )/ak; newlower = (minusbminusapUminusamL+papU(k)+pamL(k) )/ak; newupper = (minusbminusamUminusapL+pamU(k)+papL(k) )/ak; else newlower = (minusbminusamUminusapL+pamU(k)+papL(k) )/ak; newupper = (minusbminusapUminusamL+papU(k)+pamL(k) )/ak; end if p_ub_k>newupper p_ub(k) = newupper; U(k) = newupper; apU = ap*U; amU = am*U; papU = ap.*U'; pamU = am.*U'; minusbminusapUminusamL = -b-apU-amL; minusbminusamUminusapL = -b-amU-apL; end if p_lb_k<newlower p_lb(k) = newlower; L(k) = newlower; apL = ap*L; amL = am*L; papL = ap.*L'; pamL = am.*L'; minusbminusapUminusamL = -b-apU-amL; minusbminusamUminusapL = -b-amU-apL; end end end p.ub = p_ub; p.lb = p_lb;
github
EnricoGiordano1992/LMI-Matlab-master
bnb.m
.m
LMI-Matlab-master/yalmip/modules/global/bnb.m
43,995
utf_8
03312500b49d6a12f8d2d4a75db4c1cc
function output = bnb(p) %BNB General branch-and-bound scheme for conic programs % % BNB applies a branch-and-bound scheme to solve mixed integer % conic programs (LP, QP, SOCP, SDP) and mixed integer geometric programs. % % BNB is never called by the user directly, but is called by % YALMIP from SOLVESDP, by choosing the solver tag 'bnb' in sdpsettings. % % BNB is used if no other mixed integer solver is found, and % is only useful for very small problems, due to its simple % and naive implementation. % % The behaviour of BNB can be altered using the fields % in the field 'bnb' in SDPSETTINGS % % bnb.branchrule Deceides on what variable to branch % 'max' : Variable furthest away from being integer % 'min' : Variable closest to be being integer % 'first' : First variable (lowest variable index in YALMIP) % 'last' : Last variable (highest variable index in YALMIP) % 'weight' : See manual % % bnb.method Branching strategy % 'depth' : Depth first % 'breadth' : Breadth first % 'best' : Expand branch with lowest lower bound % 'depthX' : Depth until integer solution found, then X (e.g 'depthbest') % % solver Solver for the relaxed problems (standard solver tag, see SDPSETTINGS) % % maxiter Maximum number of nodes explored % % inttol Tolerance for declaring a variable as integer % % feastol Tolerance for declaring constraints as feasible % % gaptol Exit when (upper bound-lower bound)/(1e-3+abs(lower bound)) < gaptol % % round Round variables smaller than bnb.inttol % % % See also SOLVESDP, BINVAR, INTVAR, BINARY, INTEGER % ******************************** %% INITIALIZE DIAGNOSTICS IN YALMIP % ******************************** bnbsolvertime = clock; showprogress('Branch and bound started',p.options.showprogress); % ******************************** %% We might have a GP : pre-calc % ******************************** p.nonlinear = find(~(sum(p.monomtable~=0,2)==1 & sum(p.monomtable,2)==1)); p.nonlinear = union(p.nonlinear,p.evalVariables); % ******************************** % This field is only used in bmibnb, which uses the same sub-functions as % bnb % ******************************** p.high_monom_model = []; % ******************************** %% Define infinite bounds % ******************************** if isempty(p.ub) p.ub = repmat(inf,length(p.c),1); end if isempty(p.lb) p.lb = repmat(-inf,length(p.c),1); end % ******************************** %% Extract bounds from model % ******************************** if ~isempty(p.F_struc) [lb,ub,used_rows_eq,used_rows_lp] = findulb(p.F_struc,p.K); if ~isempty(used_rows_lp) used_rows_lp = used_rows_lp(~any(full(p.F_struc(p.K.f + used_rows_lp,1+p.nonlinear)),2)); if ~isempty(used_rows_lp) lower_defined = find(~isinf(lb)); if ~isempty(lower_defined) p.lb(lower_defined) = max(p.lb(lower_defined),lb(lower_defined)); end upper_defined = find(~isinf(ub)); if ~isempty(upper_defined) p.ub(upper_defined) = min(p.ub(upper_defined),ub(upper_defined)); end p.F_struc(p.K.f + used_rows_lp,:)=[]; p.K.l = p.K.l - length(used_rows_lp); end end if ~isempty(used_rows_eq) used_rows_eq = used_rows_eq(~any(full(p.F_struc(used_rows_eq,1+p.nonlinear)),2)); if ~isempty(used_rows_eq) lower_defined = find(~isinf(lb)); if ~isempty(lower_defined) p.lb(lower_defined) = max(p.lb(lower_defined),lb(lower_defined)); end upper_defined = find(~isinf(ub)); if ~isempty(upper_defined) p.ub(upper_defined) = min(p.ub(upper_defined),ub(upper_defined)); end p.F_struc(used_rows_eq,:)=[]; p.K.f = p.K.f - length(used_rows_eq); end end end % ******************************** %% ADD CONSTRAINTS 0<x<1 FOR BINARY % ******************************** if ~isempty(p.binary_variables) p.ub(p.binary_variables) = min(p.ub(p.binary_variables),1); p.lb(p.binary_variables) = max(p.lb(p.binary_variables),0); % godown = find(p.ub(p.binary_variables) < 1); % goup = find(p.lb(p.binary_variables) > 0); % p.ub(p.binary_variables(godown)) = 0; % p.lb(p.binary_variables(goup)) = 1; end %p.lb(p.integer_variables) = ceil(p.lb(p.integer_variables)); %p.ub(p.integer_variables) = floor(p.ub(p.integer_variables)); p = update_integer_bounds(p); if ~isempty(p.semicont_variables) redundant = find(p.lb<=0 & p.ub>=0); p.semicont_variables = setdiff(p.semicont_variables,redundant); % Now relax the model and generate hull including 0 p.semibounds.lb = p.lb(p.semicont_variables); p.semibounds.ub = p.ub(p.semicont_variables); p.lb(p.semicont_variables) = min(p.lb(p.semicont_variables),0); p.ub(p.semicont_variables) = max(p.ub(p.semicont_variables),0); end % Could be some nonlinear terms (although these problems are recommended to % be solved using BMIBNB p = compile_nonlinear_table(p); p = updatemonomialbounds(p); % ******************************* %% PRE-SOLVE (nothing fancy coded) % ******************************* pss=[]; p = propagate_bounds_from_equalities(p); if p.K.f > 0 pp = p; r = find(p.lb == p.ub); pp.F_struc(:,1) = pp.F_struc(:,1) + pp.F_struc(:,r+1)*p.lb(r); pp.F_struc(:,r+1)=[]; pp.lb(r)=[]; pp.ub(r)=[]; pp.variabletype(r)=[]; % FIXME: This is lazy, should update new list pp.binary_variables = []; pp.integer_variables = []; pp = propagate_bounds_from_equalities(pp); other = setdiff(1:length(p.lb),r); p.lb(other) = pp.lb; p.ub(other) = pp.ub; p = update_integer_bounds(p); redundant = find(~any(pp.F_struc(1:p.K.f,2:end),2)); if any(p.F_struc(redundant,1)<0) p.feasible = 0; else p.F_struc(redundant,:)=[]; p.K.f = p.K.f - length(redundant); end end if isempty(p.nonlinear) if p.K.f>0 Aeq = -p.F_struc(1:p.K.f,2:end); beq = p.F_struc(1:p.K.f,1); A = [Aeq;-Aeq]; b = [beq;-beq]; [p.lb,p.ub,redundant,pss] = tightenbounds(A,b,p.lb,p.ub,p.integer_variables,p.binary_variables,ones(length(p.lb),1)); end pss=[]; if p.K.l>0 A = -p.F_struc(1+p.K.f:p.K.f+p.K.l,2:end); b = p.F_struc(1+p.K.f:p.K.f+p.K.l,1); [p.lb,p.ub,redundant,pss] = tightenbounds(A,b,p.lb,p.ub,p.integer_variables,p.binary_variables,ones(length(p.lb),1)); if length(redundant)>0 pss.AL0A(redundant,:)=[]; pss.AG0A(redundant,:)=[]; p.F_struc(p.K.f+redundant,:)=[]; p.K.l = p.K.l - length(redundant); end end end % Silly redundancy p = updatemonomialbounds(p); p = propagate_bounds_from_equalities(p); if p.K.l > 0 b = p.F_struc(1+p.K.f:p.K.l+p.K.f,1); A = -p.F_struc(1+p.K.f:p.K.l+p.K.f,2:end); redundant = find(((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <= 0)); if ~isempty(redundant) p.F_struc(p.K.f + redundant,:) = []; p.K.l = p.K.l - length(redundant); end end % ******************************* %% PERTURBATION OF LINEAR COST % ******************************* p.corig = p.c; if nnz(p.Q)==0 & isequal(p.K.m,0) % g = randn('seed'); % randn('state',1253); %For my testing, I keep this the same... % % This perturbation has to be better. Crucial for many real LP problems % p.c = (p.c).*(1+randn(length(p.c),1)*1e-4); % randn('seed',g); end % ******************************* %% Display logics % 0 : Silent % 1 : Display branching % 2 : Display node solver prints % ******************************* switch max(min(p.options.verbose,3),0) case 0 p.options.bnb.verbose = 0; case 1 p.options.bnb.verbose = 1; p.options.verbose = 0; case 2 p.options.bnb.verbose = 2; p.options.verbose = 0; case 3 p.options.bnb.verbose = 2; p.options.verbose = 1; otherwise p.options.bnb.verbose = 0; p.options.verbose = 0; end % ******************************* %% Figure out the weights if any % ******************************* try % Probably buggy first version... if ~isempty(p.options.bnb.weight) weightvar = p.options.bnb.weight; if isa(weightvar,'sdpvar') if (prod(size(weightvar)) == 1) weight = ones(length(p.c),1); for i = 1:length(p.c) weight(i,1) = full(getbasematrix(weightvar,p.used_variables(i))); end p.weight = weight; else error('Weight should be an SDPVAR scalar'); end else error('Weight should be an SDPVAR scalar'); end else p.weight = ones(length(p.c),1); end catch disp('Something wrong with weights. Please report bug'); p.weight = ones(length(p.c),1); end % ******************************* %% START BRANCHING % ******************************* setuptime = etime(clock,bnbsolvertime); bnbsolvertime = clock; [x_min,solved_nodes,lower,upper,profile,diagnostics] = branch_and_bound(p,pss); bnbsolvertime = etime(clock,bnbsolvertime); output.solvertime = setuptime + bnbsolvertime; % ********************************** %% CREATE SOLUTION % ********************************** if diagnostics == -4 output.problem = -4; else output.problem = 0; if isinf(upper) output.problem = 1; end if isinf(-lower) output.problem = 2; end if solved_nodes == p.options.bnb.maxiter output.problem = 3; end end output.solved_nodes = solved_nodes; output.Primal = x_min; output.Dual = []; output.Slack = []; if output.problem == -4 output.infostr = yalmiperror(output.problem,[p.solver.lower.tag '-' p.solver.lower.version]); else output.infostr = yalmiperror(output.problem,'BNB'); end output.solverinput = 0; if p.options.savesolveroutput output.solveroutput.setuptime = setuptime; output.solveroutput.localsolvertime = profile.local_solver_time; output.solveroutput.branchingtime = bnbsolvertime; output.solveroutput.solved_nodes = solved_nodes; output.solveroutput.lower = lower; output.solveroutput.upper = upper; else output.solveroutput =[]; end %% -- function [x_min,solved_nodes,lower,upper,profile,diagnostics] = branch_and_bound(p,pss) % ******************************* % We don't need this % ******************************* p.options.savesolveroutput = 0; p.options.saveduals = 0; p.options.dimacs = 0; diagnostics = 0; % ******************************* % Tracking performance etc % ******************************* profile.local_solver_time = 0; % ************************************************************************* % We save this to re-use some stuff in fmincon % ************************************************************************* p.options.savesolverinput = 1; % ******************************* %% SET-UP ROOT PROBLEM % ******************************* p.depth = 0; p.lower = NaN; % Does the user want to create his own initial guess if p.options.usex0 [x_min,upper] = initializesolution(p); if isinf(upper) % Try to initialize to lowerbound+ upperbound. fmincon really % doesn't like zero initial guess, despite having bounds available x_min = zeros(length(p.c),1); violates_finite_bounds = ((x_min < p.lb) | (x_min < p.ub)); violates_finite_bounds = find(violates_finite_bounds & ~isinf(p.lb) & ~isinf(p.ub)); x_min(violates_finite_bounds) = (p.lb(violates_finite_bounds) + p.ub(violates_finite_bounds))/2; x_min = setnonlinearvariables(p,x_min); end p.x0 = x_min; else upper = inf; x_min = zeros(length(p.c),1); violates_finite_bounds = ((x_min < p.lb) | (x_min < p.ub)); violates_finite_bounds = find(violates_finite_bounds & ~isinf(p.lb) & ~isinf(p.ub)); x_min(violates_finite_bounds) = (p.lb(violates_finite_bounds) + p.ub(violates_finite_bounds))/2; x_min = setnonlinearvariables(p,x_min); p.x0 = x_min; end % ******************************* %% Global stuff % ******************************* lower = NaN; stack = []; % ******************************* %% Create function handle to solver % ******************************* lowersolver = p.solver.lower.call; uppersolver = p.options.bnb.uppersolver; % ******************************* %% INVARIANT PROBLEM DATA % ******************************* c = p.corig; Q = p.Q; f = p.f; integer_variables = p.integer_variables; solved_nodes = 0; semicont_variables = p.semicont_variables; gap = inf; node = 1; if p.options.bnb.presolve savec = p.c; saveQ = p.Q; p.Q = p.Q*0; n = length(p.c); saveBinary = p.binary_variables; saveInteger = p.integer_variables; p.binary_variables = []; p.integer_variables = [];; for i = 1:length(c) p.c = eyev(n,i); output = feval(lowersolver,p); if output.problem == 0 p.lb(i) = max(p.lb(i),output.Primal(i)); end p.c = -eyev(n,i); output = feval(lowersolver,p); if output.problem == 0 p.ub(i) = min(p.ub(i),output.Primal(i)); end p.lb(saveBinary) = ceil(p.lb(saveBinary)-1e-3); p.ub(saveBinary) = floor(p.ub(saveBinary)+1e-3); end p.binary_variables = saveBinary; p.integer_variables = saveInteger; p.Q = saveQ; p.c = savec; end % ************************************************ % Some hacks to speed up solver calls % Only track solver-time if user wants profile % ************************************************ p.getsolvertime = p.options.bnb.profile; % ******************************* %% DISPLAY HEADER % ******************************* originalDiscrete = [p.integer_variables(:);p.binary_variables(:)]; originalBinary = p.binary_variables(:); if nnz(Q)==0 & (nnz(p.c-fix(p.c))==0) & isequal(p.K.m,0) can_use_ceil_lower = all(ismember(find(p.c),originalDiscrete)); else can_use_ceil_lower = 0; end if p.options.bnb.verbose pc = p.problemclass; non_convex_obj = pc.objective.quadratic.nonconvex | pc.objective.polynomial; non_convex_constraint = pc.constraint.equalities.quadratic | pc.constraint.inequalities.elementwise.quadratic.nonconvex; non_convex_constraint = non_convex_constraint | pc.constraint.equalities.polynomial | pc.constraint.inequalities.elementwise.polynomial; possiblynonconvex = non_convex_obj | non_convex_constraint; if ~isequal(p.solver.lower.version,'') p.solver.lower.tag = [p.solver.lower.tag '-' p.solver.lower.version]; end disp('* Starting YALMIP integer branch & bound.'); disp(['* Lower solver : ' p.solver.lower.tag]); disp(['* Upper solver : ' p.options.bnb.uppersolver]); disp(['* Max iterations : ' num2str(p.options.bnb.maxiter)]); if possiblynonconvex & p.options.warning disp(' '); disp('Warning : The continuous relaxation may be nonconvex. This means '); disp('that the branching process is not guaranteed to find a'); disp('globally optimal solution, since the lower bound can be'); disp('invalid. Hence, do not trust the bound or the gap...') end end if p.options.bnb.verbose; disp(' Node Upper Gap(%) Lower Open');end; if nnz(Q)==0 & nnz(c)==1 & isequal(p.K.m,0) p.simplecost = 1; else p.simplecost = 0; end poriginal = p; p.cuts = []; %% MAIN LOOP % p.options.rounding = [1 1 1 1]; if p.options.bnb.nodefix & (p.K.s(1)>0) top=1+p.K.f+p.K.l+sum(p.K.q); for i=1:length(p.K.s) n=p.K.s(i); for j=1:size(p.F_struc,2)-1; X=full(reshape(p.F_struc(top:top+n^2-1,j+1),p.K.s(i),p.K.s(i))); X=(X+X')/2; v=real(eig(X+sqrt(eps)*eye(length(X)))); if all(v>=0) sdpmonotinicity(i,j)=-1; elseif all(v<=0) sdpmonotinicity(i,j)=1; else sdpmonotinicity(i,j)=nan; end end top=top+n^2; end else sdpmonotinicity=[]; end % Try to find sum(d_i) = 1 sosgroups = {}; sosvariables = []; if p.K.f > 0 & ~isempty(p.binary_variables) nbin = length(p.binary_variables); Aeq = -p.F_struc(1:p.K.f,2:end); beq = p.F_struc(1:p.K.f,1); notbinary_var_index = setdiff(1:length(p.lb),p.binary_variables); only_binary = ~any(Aeq(:,notbinary_var_index),2); Aeq_bin = Aeq(find(only_binary),p.binary_variables); beq_bin = beq(find(only_binary),:); % Detect groups with constraints sum(d_i) == 1 sosgroups = {}; for i = 1:size(Aeq_bin,1) if beq_bin(i) == 1 [ix,jx,sx] = find(Aeq_bin(i,:)); if all(sx == 1) sosgroups{end+1} = p.binary_variables(jx); sosvariables = [sosvariables p.binary_variables(jx)]; end end end end pid = 0; lowerhist = []; upperhist = []; p.fixedvariable = []; p.fixdir = ''; p.sosgroups = sosgroups; p.sosvariables = sosvariables; while ~isempty(node) & (solved_nodes < p.options.bnb.maxiter) & (isinf(lower) | gap>p.options.bnb.gaptol) % ******************************************** % Adjust variable bound based on upper bound % ******************************************** % This code typically never runs but can be turned on % using options.bnb.nodetight and bnb.nodefix. if ~isinf(upper) & ~isnan(lower) [p,poriginal,stack] = pruneglobally(p,poriginal,upper,lower,stack,x); [p,poriginal,stack] = fixvariables(p,poriginal,upper,lower,stack,x_min,sdpmonotinicity); stack = prunecardinality(p,poriginal,stack,lower,upper); end % ******************************************** % BINARY VARIABLES ARE FIXED ALONG THE PROCESS % ******************************************** binary_variables = p.binary_variables; % ******************************************** % SO ARE SEMI VARIABLES % ******************************************** semicont_variables = p.semicont_variables; % ******************************************** % ASSUME THAT WE WON'T FATHOME % ******************************************** keep_digging = 1; message = ''; % ************************************* % SOLVE NODE PROBLEM % ************************************* if any(p.ub<p.lb - 1e-12) x = zeros(length(p.c),1); output.Primal = x; output.problem=1; else p.x_min = x_min; relaxed_p = p; relaxed_p.integer_variables = []; relaxed_p.binary_variables = []; relaxed_p.semicont_variables = []; relaxed_p.ub(p.ub<p.lb) = relaxed_p.lb(p.ub<p.lb); if upper<inf & length(poriginal.binary_variables)==length(poriginal.c) & p.K.f == 0 % Cut away current best % FIXME: Generalize positive = find(x_min==1); zero = find(x_min==0); % Add cut c'*x < c*xmin, cc = poriginal.c; cc(positive) = ceil(cc(positive)); cc(zero) = floor(cc(zero)); relaxed_p.K.l = relaxed_p.K.l+1; relaxed_p.F_struc = [-1+sum(cc(positive)) -cc';relaxed_p.F_struc]; end output = bnb_solvelower(lowersolver,relaxed_p,upper+abs(upper)*1e-2+1e-4,lower); if p.options.bnb.profile profile.local_solver_time = profile.local_solver_time + output.solvertime; end % A bit crappy code to exploit computations that were done in the % call to fmincon... if isfield(output,'solverinput') if isfield(output.solverinput,'model') if isfield(output.solverinput.model,'fastdiff') p.fastdiff = output.solverinput.model.fastdiff; end end end if output.problem == -4 diagnostics = -4; x = nan+zeros(length(p.lb),1); else if isempty(output.Primal) output.Primal = zeros(length(p.c),1); end try x = setnonlinearvariables(p,output.Primal); catch 1 end if(p.K.l>0) & any(p.F_struc(p.K.f+1:p.K.f+p.K.l,:)*[1;x]<-1e-5) output.problem = 1; elseif output.problem == 5 & ~checkfeasiblefast(p,x,p.options.bnb.feastol) output.problem = 1; end end end solved_nodes = solved_nodes+1; % ************************************** % THIS WILL BE INTIAL GUESS FOR CHILDREN % ************************************** p.x0 = x; % ************************************* % ANY INTEGERS? ROUND? % ************************************* non_integer_binary = abs(x(binary_variables)-round(x(binary_variables)))>p.options.bnb.inttol; non_integer_integer = abs(x(integer_variables)-round(x(integer_variables)))>p.options.bnb.inttol; if p.options.bnb.round x(binary_variables(~non_integer_binary)) = round(x(binary_variables(~non_integer_binary))); x(integer_variables(~non_integer_integer)) = round(x(integer_variables(~non_integer_integer))); end non_integer_binary = find(non_integer_binary); non_integer_integer = find(non_integer_integer); if isempty(p.semicont_variables) non_semivar_semivar=[]; else non_semivar_semivar = find(~(abs(x(p.semicont_variables))<p.options.bnb.inttol | (x(p.semicont_variables)>p.semibounds.lb & x(p.semicont_variables)<=p.semibounds.ub))); end try x = setnonlinearvariables(p,x); catch end TotalIntegerInfeas = sum(abs(round(x(non_integer_integer))-x(non_integer_integer))); TotalBinaryInfeas = sum(abs(round(x(non_integer_binary))-x(non_integer_binary))); % ************************************* % NODE HEURISTICS (NOTHING CODED) % ************************************* should_be_tight = find([p.lb == p.ub]); if ~isempty(should_be_tight) % FIX for problems that only report numerical problems but violate % binary if max(abs(p.lb(should_be_tight)-x(should_be_tight)))>p.options.bnb.inttol output.problem = 1; end end if output.problem==0 | output.problem==3 | output.problem==4 cost = computecost(f,c,Q,x,p); if output.problem~=1 if isnan(lower) lower = cost; end if isfield(p.options,'plottruss') if p.options.plottruss plottruss(1,'Relaxed node',poriginal,x); end end if cost <= upper & ~(isempty(non_integer_binary) & isempty(non_integer_integer) & isempty(non_semivar_semivar)) poriginal.upper = upper; poriginal.lower = lower; [upper1,x_min1] = feval(uppersolver,poriginal,output,p); if upper1 < upper if isfield(p.options,'plottruss') if p.options.plottruss plottruss(3,'Best binary solution',poriginal,x_min1); end end x_min = x_min1; upper = upper1; [stack,stacklower] = prune(stack,upper,p.options,solved_nodes,p); lower = min(lower,stacklower); [p,poriginal,stack] = pruneglobally(p,poriginal,upper,lower,stack,x_min); [p,poriginal,stack] = fixvariables(p,poriginal,upper,lower,stack,x_min,sdpmonotinicity); end end end end p = adaptivestrategy(p,upper,solved_nodes); % ************************************* % CHECK FATHOMING POSSIBILITIES % ************************************* feasible = 1; switch output.problem case 0 if can_use_ceil_lower lower = ceil(lower-1e-8); end case {1,12,-4} keep_digging = 0; cost = inf; feasible = 0; case 2 cost = -inf; otherwise % This part has to be much more robust cost = f+c'*x+x'*Q*x; end % ************************************** % YAHOO! INTEGER SOLUTION FOUND % ************************************** if isempty(non_integer_binary) & isempty(non_integer_integer) & isempty(non_semivar_semivar) if (cost<upper) & feasible x_min = x; upper = cost; [stack,lower] = prune(stack,upper,p.options,solved_nodes,p); if isfield(p.options,'plottruss') if p.options.plottruss plottruss(3,'Best binary solution',poriginal,x_min); end end end p = adaptivestrategy(p,upper,solved_nodes); keep_digging = 0; end % ************************************** % Stop digging if it won't give sufficient improvement anyway % ************************************** if cost>upper*(1-1e-6) keep_digging = 0; end % ********************************** % CONTINUE SPLITTING? % ********************************** if keep_digging & (cost<upper) if solved_nodes == 1 RootNodeInfeas = TotalIntegerInfeas+TotalBinaryInfeas; RootNodeCost = cost; end % ********************************** % BRANCH VARIABLE % ********************************** [index,whatsplit,globalindex] = branchvariable(x,integer_variables,binary_variables,p.options,x_min,[],p); % ********************************** % CREATE NEW PROBLEMS % ********************************** p0_feasible = 1; p1_feasible = 1; switch whatsplit case 'binary' [p0,p1,index] = binarysplit(p,x,index,cost,[],sosgroups,sosvariables); case 'integer' [p0,p1] = integersplit(p,x,index,cost,x_min); case 'semi' [p0,p1] = semisplit(p,x,index,cost,x_min); case 'sos1' [p0,p1] = sos1split(p,x,index,cost,x_min); otherwise end node1.lb = p1.lb; node1.ub = p1.ub; node1.depth = p1.depth; node1.lower = p1.lower; node1.fixedvariable = globalindex; node1.fixdir = 'up'; node1.TotalIntegerInfeas = TotalIntegerInfeas; node1.TotalBinaryInfeas = TotalBinaryInfeas; node1.IntInfeas = 1-(x(globalindex)-floor(x(globalindex))); node1.x0 = p1.x0; node1.binary_variables = p1.binary_variables; node1.semicont_variables = p1.semicont_variables; node1.semibounds = p1.semibounds; node1.pid = pid;pid = pid + 1; node1.sosgroups = p1.sosgroups; node1.sosvariables = p1.sosvariables; node0.lb = p0.lb; node0.ub = p0.ub; node0.depth = p0.depth; node0.lower = p0.lower; node0.fixedvariable = index; node0.fixdir = 'down'; node0.TotalIntegerInfeas = TotalIntegerInfeas; node0.TotalBinaryInfeas = TotalBinaryInfeas; node0.IntInfeas = x(globalindex)-floor(x(globalindex)); node0.x0 = p0.x0; node0.binary_variables = p0.binary_variables; node0.semicont_variables = p0.semicont_variables; node0.semibounds = p0.semibounds; node0.pid = pid;pid = pid + 1; node0.sosgroups = p0.sosgroups; node0.sosvariables = p0.sosvariables; if p0_feasible stack = push(stack,node0); end if p1_feasible stack = push(stack,node1); end end % Lowest cost in any open node if ~isempty(stack) lower = min([stack.lower]); if can_use_ceil_lower lower = ceil(lower); end end % ********************************** % Get a new node to solve % ********************************** [node,stack] = pull(stack,p.options.bnb.method,x_min,upper); if ~isempty(node) p.lb = node.lb; p.ub = node.ub; p.depth = node.depth; p.lower = node.lower; p.fixedvariable = node.fixedvariable; p.fixdir = node.fixdir; p.TotalIntegerInfeas = node.TotalIntegerInfeas; p.TotalBinaryInfeas = node.TotalBinaryInfeas; p.IntInfeas = node.IntInfeas; p.x0 = node.x0; p.binary_variables = node.binary_variables; p.semicont_variables = node.semicont_variables; p.semibounds = node.semibounds; % p.Musts = node.Musts; p.pid = node.pid; p.sosgroups = node.sosgroups; p.sosvariables = node.sosvariables; end gap = abs((upper-lower)/(1e-3+abs(upper)+abs(lower))); if isnan(gap) gap = inf; end if p.options.bnb.plotbounds lowerhist = [lowerhist lower]; upperhist = [upperhist upper]; hold off plot([lowerhist' upperhist']); drawnow end %DEBUG if p.options.bnb.verbose;fprintf(' %4.0f : %12.3E %7.2f %12.3E %2.0f %2.0f %2.0f %2.0f %2.0f\n',solved_nodes,upper,100*gap,lower,length(stack)+length(node),sedd);end if p.options.bnb.verbose;fprintf(' %4.0f : %12.3E %7.2f %12.3E %2.0f %s\n',solved_nodes,upper,100*gap,lower,length(stack)+length(node),yalmiperror(output.problem));end end if p.options.bnb.verbose;showprogress([num2str2(solved_nodes,3) ' Finishing. Cost: ' num2str(upper) ],p.options.bnb.verbose);end function stack = push(stackin,p) if ~isempty(stackin) stack = [p;stackin]; else stack(1)=p; end %% function [p,stack] = pull(stack,method,x_min,upper); if ~isempty(stack) switch method case {'depth','depthfirst','depthbreadth','depthproject','depthbest'} [i,j]=max([stack.depth]); p=stack(j); stack = stack([1:1:j-1 j+1:1:end]); case 'project' [i,j]=min([stack.projection]); p=stack(j); stack = stack([1:1:j-1 j+1:1:end]); case 'breadth' [i,j]=min([stack.depth]); p=stack(j); stack = stack([1:1:j-1 j+1:1:end]); case 'best' [i,j]=min([stack.lower]); % candidates = find([stack.lower] == stack(j).lower); % [i,j] = min([stack(candidates).IntInfeas]); % j = candidates(j); p=stack(j); stack = stack([1:1:j-1 j+1:1:end]); otherwise end else p = []; end % ********************************** %% BRANCH VARIABLE % ********************************** function [index,whatsplit,globalindex] = branchvariable(x,integer_variables,binary_variables,options,x_min,Weight,p) all_variables = [integer_variables(:);binary_variables(:)]; if isempty(setdiff(all_variables,p.sosvariables)) & strcmp(options.bnb.branchrule,'sos') % All variables are in SOS1 constraints for i = 1:length(p.sosgroups) dist(i) = (sum(x(p.sosgroups{i}))-max(x(p.sosgroups{i})))/length(p.sosgroups{i}); end % Which SOS to branch on [val,index] = max(dist); whatsplit = 'sos1'; globalindex = index; return end switch options.bnb.branchrule case 'weight' interror = abs(x(all_variables)-round(x(all_variables))); [val,index] = max(abs(p.weight(all_variables)).*interror); case 'first' index = min(find(abs(x(all_variables)-round(x(all_variables)))>options.bnb.inttol)); case 'last' index = max(find(abs(x(all_variables)-round(x(all_variables)))>options.bnb.inttol)); case 'min' nint = find(abs(x(all_variables)-round(x(all_variables)))>options.bnb.inttol); [val,index] = min(abs(x(nint))); index = nint(index); case 'max' [val,index] = max((abs(x(all_variables)-round(x(all_variables))))); %[val,index] = max(abs(p.c(all_variables)).^2.*(abs(x(all_variables)-round(x(all_variables))))); otherwise error('Branch-rule not supported') end if index<=length(integer_variables) whatsplit = 'integer'; globalindex = integer_variables(index); else index = index-length(integer_variables); whatsplit = 'binary'; globalindex = binary_variables(index); end if isempty(index) | ~isempty(p.semicont_variables) for i = 1:length(p.semicont_variables) j = p.semicont_variables(i); if x(j)>= p.semibounds.lb(i) & x(j)<= p.semibounds.ub(i) s(i) = 0; elseif x(j)==0 s(i) = 0; else s(i) = min([abs(x(j)-0); abs(x(j)-p.semibounds.lb(i));abs(x(j)-p.semibounds.ub(i))]); end end [val2,index2] = max(s); if isempty(val) whatsplit = 'semi'; index = index2; elseif val2>val % index = p.semicont_variables(index); whatsplit = 'semi'; index = index2; end end % ********************************** % SPLIT PROBLEM % ********************************** function [p0,p1,variable] = binarysplit(p,x,index,lower,options,sosgroups,sosvariables) p0 = p; p1 = p; variable = p.binary_variables(index); tf = ~(ismembcYALMIP(p0.binary_variables,variable)); new_binary = p0.binary_variables(tf); friends = []; if ~isempty(sosvariables) if ismember(variable,sosvariables) i = 1; while i<=length(sosgroups) if ismember(variable,sosgroups{i}) friends = setdiff(sosgroups{i},variable); break else i = i + 1; end end end end p0.ub(variable)=0; p0.lb(variable)=0; if length(friends) == 1 p0.ub(friends) = 1; p0.lb(friends) = 1; end p0.lower = lower; p0.depth = p.depth+1; p0.binary_variables = new_binary;%setdiff1D(p0.binary_variables,variable); %p0.binary_variables = setdiff(p0.binary_variables,friends); p1.ub(variable)=1; p1.lb(variable)=1; if length(friends) > 1 p1.ub(friends)=0; p1.lb(friends)=0; end p1.binary_variables = new_binary;%p0.binary_variables;%setdiff1D(p1.binary_variables,variable); %p1.binary_variables = setdiff(p1.binary_variables,friends); p1.lower = lower; p1.depth = p.depth+1; % % ***************************** % % PROCESS MOST PROMISING FIRST % % (p0 in top of stack) % % ***************************** if x(variable)>0.5 pt=p1; p1=p0; p0=pt; end function [p0,p1] = integersplit(p,x,index,lower,options,x_min) variable = p.integer_variables(index); current = x(p.integer_variables(index)); lb = floor(current)+1; ub = floor(current); % xi<ub p0 = p; p0.lower = lower; p0.depth = p.depth+1; p0.x0(variable) = ub; p0.ub(variable)=min(p0.ub(variable),ub); % xi>lb p1 = p; p1.lower = lower; p1.depth = p.depth+1; p1.x0(variable) = lb; p1.lb(variable)=max(p1.lb(variable),lb); % ***************************** % PROCESS MOST PROMISING FIRST % ***************************** if lb-current<0.5 pt=p1; p1=p0; p0=pt; end function [p0,p1] = sos1split(p,x,index,lower,options,x_min) v = p.sosgroups{index}; n = ceil(length(v)/2); v1 = v(randperm(length(v),n)); v2 = setdiff(v,v1); %v1 = v(1:n); %v2 = v(n+1:end); % In first node, set v2 to 0 and v1 to sosgroup p0 = p;p0.lower = lower; p0.sosgroups{index} = v1; p0.ub(v2) = 0; % In second node, set v1 to 0 and v1 to sosgroup p1 = p;p1.lower = lower; p1.sosgroups{index} = v2; p1.ub(v1) = 0; function [p0,p1] = semisplit(p,x,index,lower,options,x_min) variable = p.semicont_variables(index); current = x(p.semicont_variables(index)); p0 = p; p0.lower = lower; p0.depth = p.depth+1; p0.x0(variable) = 0; p0.lb(variable)=0; p0.ub(variable)=0; p1 = p; p1.lower = lower; p1.depth = p.depth+1; p1.x0(variable) = p.semibounds.lb(index); p1.lb(variable) = p.semibounds.lb(index); p1.ub(variable) = p.semibounds.ub(index); p0.semicont_variables = setdiff(p.semicont_variables,variable); p1.semicont_variables = setdiff(p.semicont_variables,variable); p0.semibounds.lb(index)=[]; p0.semibounds.ub(index)=[]; p1.semibounds.lb(index)=[]; p1.semibounds.ub(index)=[]; function s = num2str2(x,d,c); if nargin==3 s = num2str(x,c); else s = num2str(x); end s = [repmat(' ',1,d-length(s)) s]; function [stack,lower] = prune(stack,upper,options,solved_nodes,p) % ********************************* % PRUNE STACK W.R.T NEW UPPER BOUND % ********************************* if ~isempty(stack) % toolarge = find([stack.lower]>upper*(1-1e-4)); toolarge = find([stack.lower]>upper*(1-options.bnb.prunetol)); if ~isempty(toolarge) stack(toolarge)=[]; end end if ~isempty(stack) lower = min([stack.lower]); else lower = upper; end function p = adaptivestrategy(p,upper,solved_nodes) % **********************************' % SWITCH NODE SELECTION STRATEGY? % **********************************' if strcmp(p.options.bnb.method,'depthproject') & (upper<inf) p.options.bnb.method = 'project'; end if strcmp(p.options.bnb.method,'depthbest') & (upper<inf) p.options.bnb.method = 'best'; end if strcmp(p.options.bnb.method,'depthprojection') & (upper<inf) p.options.bnb.method = 'projection'; end if strcmp(p.options.bnb.method,'depthbreadth') & (upper<inf) p.options.bnb.method = 'breadth'; end if strcmp(p.options.bnb.method,'depthest') & (upper<inf) p.options.bnb.method = 'est'; end function res = resids(p,x) res= []; if p.K.f>0 res = -abs(p.F_struc(1:p.K.f,:)*[1;x]); end if p.K.l>0 res = [res;p.F_struc(p.K.f+1:p.K.f+p.K.l,:)*[1;x]]; end if (length(p.K.s)>1) | p.K.s>0 top = 1+p.K.f+p.K.l; for i = 1:length(p.K.s) n = p.K.s(i); X = p.F_struc(top:top+n^2-1,:)*[1;x];top = top+n^2; X = reshape(X,n,n); res = [res;min(eig(X))]; end end res = [res;min([p.ub-x;x-p.lb])]; function p = Updatecostbound(p,upper,lower); if p.simplecost if ~isinf(upper) ind = find(p.c); if p.c(ind)>0 p.ub(ind) = min(p.ub(ind),(upper-p.f)/p.c(ind)); else p.lb(ind) = max(p.lb(ind),(p.f-upper)/abs(p.c(ind))); end end end function [x_min,upper] = initializesolution(p); x_min = zeros(length(p.c),1); upper = inf; if p.options.usex0 z = p.x0; residual = resids(p,z); relaxed_feasible = all(residual(1:p.K.f)>=-1e-12) & all(residual(1+p.K.f:end)>=-1e-6); if relaxed_feasible & all(z(p.integer_variables)==fix(z(p.integer_variables))) & all(z(p.binary_variables)==fix(z(p.binary_variables))) upper = computecost(p.f,p.corig,p.Q,z,p);%upper = p.f+p.c'*z+z'*p.Q*z; x_min = z; end else p.x0 = zeros(length(p.c),1); x = p.x0; z = evaluate_nonlinear(p,x); residual = resids(p,z); relaxed_feasible = all(residual(1:p.K.f)>=-p.options.bmibnb.eqtol) & all(residual(1+p.K.f:end)>=p.options.bmibnb.pdtol); if relaxed_feasible upper = computecost(p.f,p.corig,p.Q,z,p);%upper = p.f+p.c'*z+z'*p.Q*z; x_min = x; end end function [p,poriginal,stack] = pruneglobally(p,poriginal,upper,lower,stack,x); if isempty(p.nonlinear) & (nnz(p.Q)==0) & p.options.bnb.nodetight pp = poriginal; if p.K.l > 0 A = -pp.F_struc(1+pp.K.f:pp.K.f+pp.K.l,2:end); b = pp.F_struc(1+p.K.f:p.K.f+p.K.l,1); else A = []; b = []; end if (nnz(p.Q)==0) & ~isinf(upper) A = [pp.c';-pp.c';A]; b = [upper;-(lower-0.0001);b]; else % c = p.c; % Q = p.Q; % A = [c'+2*x'*Q;A]; % b = [2*x'*Q*x+c'*x;b]; end [lb,ub,redundant,pss] = milppresolve(A,b,pp.lb,pp.ub,pp.integer_variables,pp.binary_variables,ones(length(pp.lb),1)); if ~isempty(redundant) if (nnz(p.Q)==0) & ~isinf(upper) redundant = redundant(redundant>2)-2; else % redundant = redundant(redundant>1)-1; end if length(redundant)>0 poriginal.K.l=poriginal.K.l-length(redundant); poriginal.F_struc(poriginal.K.f+redundant,:)=[]; p.K.l=p.K.l-length(redundant); p.F_struc(p.K.f+redundant,:)=[]; end end if ~isempty(stack) keep = ones(length(stack),1); for i = 1:length(stack) stack(i).lb = max([stack(i).lb lb]')'; stack(i).ub = min([stack(i).ub ub]')'; if any(stack(i).lb>stack(i).ub) keep(i) = 0; end end stack = stack(find(keep)); end poriginal.lb = max([poriginal.lb lb]')'; poriginal.ub = min([poriginal.ub ub]')'; p.lb = max([p.lb lb]')'; p.ub = min([p.ub ub]')'; end function [p,poriginal,stack] = fixvariables(p,poriginal,upper,lower,stack,x_min,monotinicity) % Fix variables if p.options.bnb.nodefix & (p.K.f == 0) & (nnz(p.Q)==0) & isempty(p.nonlinear) A = -poriginal.F_struc(poriginal.K.f + (1:poriginal.K.l),2:end); b = poriginal.F_struc(poriginal.K.f + (1:poriginal.K.l),1); c = poriginal.c; [fix_up,fix_down] = presolve_fixvariables(A,b,c,poriginal.lb,poriginal.ub,monotinicity); % poriginal.lb(fix_up) = 1; p.lb(fix_up) = 1; % not_in_obj = find(p.c==0); % constrained_blow = all(poriginal.F_struc(1:poriginal.K.l,1+not_in_obj)>=0,1); % sdp_positive = sdpmonotinicity(not_in_obj) == -1; % can_fix = not_in_obj(find(constrained_blow & sdp_positive)); % % still_on = find(p.lb==0 & p.ub==1); % p.lb(intersect(can_fix,still_on)) = 1; % still_on = find(poriginal.lb==0 & poriginal.ub==1); % poriginal.lb(intersect(can_fix,still_on)) = 1; if ~isempty(stack) & ~(isempty(fix_up) & isempty(fix_down)) keep = ones(length(stack),1); for i = 1:length(stack) stack(i).lb = max([stack(i).lb poriginal.lb]')'; stack(i).ub = min([stack(i).ub poriginal.ub]')'; if any(stack(i).lb>stack(i).ub) keep(i) = 0; end end stack = stack(find(keep)); end end function [feasible,p] = checkmusts(p) feasible = 1; if ~isempty(p.Musts) % for i = 1:size(p.Musts,1) % if all(p.ub(find(p.Musts(i,:)))==0) % 1 % end % end % % TurnedOff = find(p.ub == 0); % if ~isempty(TurnedOff) % p.Musts(:,TurnedOff) = 0; % Failure = find(sum(p.Musts,2)==0); % if ~isempty(Failure) % 1;%feasible = 0; % return % end % TurnedOn = find(sum(p.Musts,2)==1); % if ~isempty(TurnedOn) % % p.lb(TurnedOn) = 1; % end % end end function stack = prunecardinality(p,poriginal,stack,lower,upper) % if length(poriginal.binary_variables)==length(poriginal.c) & nnz(poriginal.Q)==0 & all(poriginal.c)>0 % card_max_low = lower/max(p.c); % card_max_high = upper/min(p.c); % [card_max_low card_max_high] % keep = ones(1,length(stack)); % for i = 1:length(stack) % fixed_zero = nnz(stack(i).ub==0); % fixed_one = nnz(stack(i).lb==1); % if fixed_one>= card_max_high % 1 % end % end % end
github
EnricoGiordano1992/LMI-Matlab-master
update_monomial_bounds.m
.m
LMI-Matlab-master/yalmip/modules/global/update_monomial_bounds.m
2,544
utf_8
d5ad776f01d587f1e7c5b70478d633e6
function model = update_monomial_bounds(model,these) if nargin == 1 & all(model.variabletype<=2) & any(model.variabletype) % Fast code for purely quadratic case x = model.bilinears(:,2); y = model.bilinears(:,3); z = model.bilinears(:,1); corners = [model.lb(x).*model.lb(y) model.ub(x).*model.lb(y) model.lb(x).*model.ub(y) model.ub(x).*model.ub(y)]; maxz = max(corners,[],2); minz = min(corners,[],2); model.lb(z) = max(model.lb(z),minz); model.ub(z) = min(model.ub(z),maxz); return end if nargin == 1 polynomials = find((model.variabletype ~= 0)); else polynomials = find((model.variabletype ~= 0)); polynomials = polynomials(find(ismember(polynomials,these))); end for i = 1:length(polynomials) j = polynomials(i); if j<=length(model.lb) monomials = model.monomtable(j,:); bound = powerbound(model.lb,model.ub,monomials); model.lb(j) = max(model.lb(j),bound(1)); model.ub(j) = min(model.ub(j),bound(2)); [inversebound,var] = inversepowerbound(model.lb,model.ub,monomials, polynomials(i)); if ~isempty(var) model.lb(var) = max(model.lb(var),inversebound(1)); model.ub(var) = min(model.ub(var),inversebound(2)); end end end function [inversebound,var] = inversepowerbound(lb,ub,monomials,polynomial); inversebound = []; var = []; [i,var,val] = find(monomials); if all(val == fix(val)) & all(val >= 0) if length(var) == 1 if even(val) if val > 2 inversebound = [-inf inf]; aux = inf; if ~isinf(lb(polynomial)) if lb(polynomial) >= 0 aux = lb(polynomial)^(1/val); end end if ~isinf(ub(polynomial)) if ub(polynomial) >= 0 aux = max(aux,ub(polynomial)^(1/val)); end else aux = inf; end inversebound = [-aux aux]; else var = []; end elseif val >= 3 inversebound = [-inf inf]; if ~isinf(lb(polynomial)) inversebound(1,1) = sign(lb(polynomial))*abs(lb(polynomial))^(1/val); end if ~isinf(ub(polynomial)) inversebound(1,2) = sign(ub(polynomial))*abs(ub(polynomial))^(1/val); end end else var = []; end else var = []; end
github
EnricoGiordano1992/LMI-Matlab-master
updatebounds_recursive_evaluation.m
.m
LMI-Matlab-master/yalmip/modules/global/updatebounds_recursive_evaluation.m
1,128
utf_8
ea7474325c03f63f6c8e286a9ab08de8
function p = updatebounds_recursive_evaluation(p) if p.changedbounds if isempty(p.evalMap) & all(p.variabletype <= 2) % Bilinear/quadratic case can be done much faster p = updatemonomialbounds(p); else for i = 1:length(p.evaluation_scheme) switch p.evaluation_scheme{i}.group case 'eval' for j = 1:length(p.evaluation_scheme{i}.variables) p = update_one_eval_bound(p,j); p = update_one_inverseeval_bound(p,j); end case 'monom' for j = 1:length(p.evaluation_scheme{i}.variables) p = update_one_monomial_bound(p,j); end otherwise end end end % This flag is turned on if a bound tightening funtion manages to % tighten the bounds p.changedbounds = 0; end function p = update_one_monomial_bound(p,indicies); j = p.monomials(indicies); bound = powerbound(p.lb,p.ub,p.monomtable(j,:)); p.lb(j) = max(p.lb(j),bound(1)); p.ub(j) = min(p.ub(j),bound(2));