plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
EnricoGiordano1992/LMI-Matlab-master
rounder.m
.m
LMI-Matlab-master/yalmip/modules/global/rounder.m
5,889
utf_8
88ad60f43086ef44b94f4f9d1011a82a
function [upper,x_min] = rounder(p,relaxedsolution,prelaxed) % Extremely simple heuristic for finding integer % solutions. % % Rounds up and down, fixes etc. % This was the relaxed solution x = relaxedsolution.Primal; % Assume we fail upper = inf; x_min = x; % These should be integer intvars = [p.integer_variables(:);p.binary_variables(:)]; if ismember('shifted ceil',p.options.bnb.rounding) % Round, update nonlinear terms, and compute feasibility for tt = logspace(0,-4,4) f = x(intvars)-floor(x(intvars)); xtemp = x;xtemp(intvars) = round(xtemp(intvars)); xtemp(intvars(f > tt)) = ceil(x(intvars(f > tt))); xtemp(p.binary_variables(:)) = min(1,xtemp(p.binary_variables(:))); xtemp(p.binary_variables(:)) = max(0,xtemp(p.binary_variables(:))); xtemp = fix_semivar(p,xtemp); xtemp = setnonlinearvariables(p,xtemp); if isfield(p.options,'plottruss') if p.options.plottruss plottruss(4,'Shifted ceil',p,xtemp); end end upperhere = computecost(p.f,p.corig,p.Q,xtemp,p); if upperhere < upper & checkfeasiblefast(p,xtemp,p.options.bnb.feastol)%res>-p.options.bnb.feastol x_min = xtemp; upper =upperhere; end end end if ismember('shifted round',p.options.bnb.rounding) % Round, update nonlinear terms, and compute feasibility for tt = 0:0.05:0.45 xtemp = x;xtemp(intvars) = round(xtemp(intvars)+tt); xtemp(p.binary_variables(:)) = min(1,xtemp(p.binary_variables(:))); xtemp(p.binary_variables(:)) = max(0,xtemp(p.binary_variables(:))); xtemp = fix_semivar(p,xtemp); xtemp = setnonlinearvariables(p,xtemp); if isfield(p.options,'plottruss') if p.options.plottruss plottruss(2,'Shifted round',p,xtemp); end end upperhere = computecost(p.f,p.corig,p.Q,xtemp,p); if upperhere < upper & checkfeasiblefast(p,xtemp,p.options.bnb.feastol)%res>-p.options.bnb.feastol x_min = xtemp; upper =upperhere;%p.f+x_min'*p.Q*x_min + p.corig'*x_min; return end end end if length(prelaxed.sosgroups)>0 xtemp = x; for i = 1:length(prelaxed.sosgroups) xi = x(prelaxed.sosgroups{1}); [j,loc] = max(xi); xtemp(prelaxed.sosgroups{i}) = 0; xtemp(prelaxed.sosgroups{i}(loc)) = 1; end xtemp = setnonlinearvariables(p,xtemp); upperhere = computecost(p.f,p.corig,p.Q,xtemp,p); if upperhere < upper & checkfeasiblefast(p,xtemp,p.options.bnb.feastol) x_min = xtemp; upper =upperhere; return end end if upper<inf return end if ismember('round',p.options.bnb.rounding) % Round, update nonlinear terms, and compute feasibility xtemp = x;xtemp(intvars) = round(xtemp(intvars)); xtemp(p.binary_variables(:)) = min(1,xtemp(p.binary_variables(:))); xtemp(p.binary_variables(:)) = max(0,xtemp(p.binary_variables(:))); xtemp = fix_semivar(p,xtemp); xtemp = setnonlinearvariables(p,xtemp); if isfield(p.options,'plottruss') if p.options.plottruss subplot(2,2,2); cla title('Rounded node') pic(p.options.truss,xtemp); drawnow end end if checkfeasiblefast(p,xtemp,p.options.bnb.feastol)%res>-p.options.bnb.feastol x_min = xtemp; upper = computecost(p.f,p.corig,p.Q,x_min,p);%p.f+x_min'*p.Q*x_min + p.corig'*x_min; return end end if ismember('fix',p.options.bnb.rounding) % Do same using fix instead xtemp = x;xtemp(intvars) = fix(xtemp(intvars)); xtemp(p.binary_variables(:)) = min(1,xtemp(p.binary_variables(:))); xtemp(p.binary_variables(:)) = max(0,xtemp(p.binary_variables(:))); xtemp = fix_semivar(p,xtemp); xtemp = setnonlinearvariables(p,xtemp); if checkfeasiblefast(p,xtemp,p.options.bnb.feastol)%if res>-p.options.bnb.feastol x_min = xtemp; upper = computecost(p.f,p.corig,p.Q,x_min,p);%upper = p.f+x_min'*p.Q*x_min + p.corig'*x_min; return end end if ismember('ceil',p.options.bnb.rounding) % ...or ceil xtemp = x;xtemp(intvars) = ceil(xtemp(intvars)); xtemp(p.binary_variables(:)) = min(1,xtemp(p.binary_variables(:))); xtemp(p.binary_variables(:)) = max(0,xtemp(p.binary_variables(:))); xtemp = fix_semivar(p,xtemp); xtemp = setnonlinearvariables(p,xtemp); if checkfeasiblefast(p,xtemp,p.options.bnb.feastol)%if res>-p.options.bnb.feastol x_min = xtemp; upper = computecost(p.f,p.corig,p.Q,x_min,p);%upper = p.f+x_min'*p.Q*x_min + p.corig'*x_min; return end end if ismember('floor',p.options.bnb.rounding) % or floor xtemp = x;xtemp(intvars) = floor(xtemp(intvars)); xtemp(p.binary_variables(:)) = min(1,xtemp(p.binary_variables(:))); xtemp(p.binary_variables(:)) = max(0,xtemp(p.binary_variables(:))); xtemp = fix_semivar(p,xtemp); xtemp = setnonlinearvariables(p,xtemp); if checkfeasiblefast(p,xtemp,p.options.bnb.feastol)%if res>-p.options.bnb.feastol x_min = xtemp; upper = computecost(p.f,p.corig,p.Q,x_min,p);%upper = p.f+x_min'*p.Q*x_min + p.corig'*x_min; return end end function x = fix_semivar(p,x); for i = 1:length(p.semicont_variables) j = p.semicont_variables(i); if x(j)>= p.semibounds.lb(i) & x(j)<= p.semibounds.ub(i) % OK elseif x(j)==0 % OK else s = [abs(x(j)-0); abs(x(j)-p.semibounds.lb(i));abs(x(j)-p.semibounds.ub(i))]; [dummy,index] = min(s); switch index case 1 x(j) = 0; case 2 x(j) = p.semibounds.lb(i); case 3 x(j) = p.semibounds.lb(i); end end end
github
EnricoGiordano1992/LMI-Matlab-master
initializesolution.m
.m
LMI-Matlab-master/yalmip/modules/global/initializesolution.m
2,998
utf_8
792f46b6b802380d0b130505eeda93a4
function [p,x_min,upper] = initializesolution(p); x_min = zeros(length(p.c),1); upper = inf; if p.options.usex0 x = p.x0; z = evaluate_nonlinear(p,x); residual = constraint_residuals(p,z); relaxed_feasible = all(residual(1:p.K.f)>=-p.options.bmibnb.eqtol) & all(residual(1+p.K.f:end)>=p.options.bmibnb.pdtol); if relaxed_feasible upper = p.f+p.c'*z+z'*p.Q*z; x_min = z; end else x0 = p.x0; p.x0 = zeros(length(p.c),1); % Avoid silly warnings if ~isempty(p.evalMap) for i = 1:length(p.evalMap) if (isequal(p.evalMap{i}.fcn,'log') | isequal(p.evalMap{i}.fcn,'log2') | isequal(p.evalMap{i}.fcn,'log10')) p.x0(p.evalMap{i}.variableIndex) = (p.lb(p.evalMap{i}.variableIndex) + p.ub(p.evalMap{i}.variableIndex))/2; end end end x = p.x0; z = evaluate_nonlinear(p,x); z = propagateAuxilliary(p,z); residual = constraint_residuals(p,z); relaxed_feasible = all(residual(1:p.K.f)>=-p.options.bmibnb.eqtol) & all(residual(1+p.K.f:end)>=p.options.bmibnb.pdtol); if relaxed_feasible infs = isinf(z); if isempty(infs) upper = p.f+p.c'*z+z'*p.Q*z; x_min = z; x0 = x_min; else % Allow inf solutions if variables aren't used in objective if all(p.c(infs)==0) & nnz(p.Q(infs,:))==0 ztemp = z;ztemp(infs)=0; upper = p.f+p.c'*ztemp+ztemp'*p.Q*ztemp; x_min = z; x0 = x_min; end end end p.x0 = (p.lb + p.ub)/2; if ~isempty(p.integer_variables) p.x0(p.integer_variables) = round(p.x0(p.integer_variables)); end if ~isempty(p.binary_variables) p.x0(p.binary_variables) = round(p.x0(p.binary_variables)); end x = p.x0; x(isinf(x))=eps; x(isnan(x))=eps; z = evaluate_nonlinear(p,x); z = propagateAuxilliary(p,z); residual = constraint_residuals(p,z); relaxed_feasible = all(residual(1:p.K.f)>=-p.options.bmibnb.eqtol) & all(residual(1+p.K.f:end)>=p.options.bmibnb.pdtol); if relaxed_feasible & ( p.f+p.c'*z+z'*p.Q*z < upper) upper = p.f+p.c'*z+z'*p.Q*z; x_min = z; x0 = x_min; end p.x0 = x0; end function z = propagateAuxilliary(p,z) try % New feature. If we introduce new variables xx = f(x) to be used % in a nonlinear operator, we can derive its value when x is chosen if ~isempty(p.aux_variables) if p.K.f > 1 A = p.F_struc(1:p.K.f,2:end); b = p.F_struc(1:p.K.f,1); for i = 1:length(p.aux_variables) j = find(A(:,p.aux_variables(i))); if length(j)==1 if A(j,p.aux_variables(i))==1 z(p.aux_variables(i)) = -b(j)-A(j,:)*z; end end end z = evaluate_nonlinear(p,z); end end catch end
github
EnricoGiordano1992/LMI-Matlab-master
mpt_solvenode.m
.m
LMI-Matlab-master/yalmip/modules/parametric/mpt_solvenode.m
4,757
utf_8
5ba2e2ea43c2ecbf8cfb0336f50e41a9
function model = mpt_solvenode(Matrices,lower,upper,OriginalModel,model,options) % This is the core code. Lot of pre-processing to get rid of strange stuff % arising from odd problems, big-M etc etc Matrices.lb = lower; Matrices.ub = upper; % Remove equality constraints and trivial stuff from big-M [equalities,redundant] = mpt_detect_fixed_rows(Matrices); if ~isempty(equalities) % Constraint of the type Ex == W, i.e. lower-dimensional % parametric space if any(sum(abs(Matrices.G(equalities,:)),2)==0) return end end Matrices = mpt_collect_equalities(Matrices,equalities); go_on_reducing = size(Matrices.Aeq,1)>0; Matrices = mpt_remove_equalities(Matrices,redundant); [Matrices,infeasible] = mpt_project_on_equality(Matrices); % We are not interested in explicit solutions over numerically empty regions parametric_empty = any(abs(Matrices.lb(end-Matrices.nx+1:end)-Matrices.ub(end-Matrices.nx+1:end)) < 1e-6); % Were the equality constraints found to be infeasible? if infeasible | parametric_empty return end % For some models with a lot of big-M stuff etc, the amount of implicit % equalities are typically large, making the LP solvers unstable if they % are not removed. To avoid problems, we iteratively detect fixed variables % and strenghten the bounds. fixed = find(Matrices.lb == Matrices.ub); infeasible = 0; while 0%~infeasible & options.mp.presolve [Matrices,infeasible] = mpt_derive_bounds(Matrices,options); if isequal(find(Matrices.lb == Matrices.ub),fixed) break end fixed = find(Matrices.lb == Matrices.ub); end % We are not interested in explicit solutions over numerically empty regions parametric_empty = any(abs(Matrices.lb(end-Matrices.nx+1:end)-Matrices.ub(end-Matrices.nx+1:end)) < 1e-6); if ~infeasible & ~parametric_empty while go_on_reducing & ~infeasible & options.mp.presolve [equalities,redundant] = mpt_detect_fixed_rows(Matrices); if ~isempty(equalities) % Constraint of the type Ex == W, i.e. lower-dimensional % parametric space if any(sum(abs(Matrices.G(equalities,:)),2)==0) return end end Matrices = mpt_collect_equalities(Matrices,equalities); go_on_reducing = size(Matrices.Aeq,1)>0; Matrices = mpt_remove_equalities(Matrices,redundant); [Matrices,infeasible] = mpt_project_on_equality(Matrices); M = Matrices; if go_on_reducing & ~infeasible [Matrices,infeasible] = mpt_derive_bounds(Matrices,options); end if infeasible % Numerical problems most likely because this infeasibility % should have been caught above. We have only cleaned the model Matrices = M; end end if ~infeasible if Matrices.qp e = eig(full(Matrices.H)); if min(e) == 0 disp('Lack of strict convexity may lead to troubles in the mpQP solver') elseif min(e) < -1e-8 disp('Problem is not positive semidefinite! Your mpQP solution may be completely wrong') elseif min(e) < 1e-5 disp('QP is close to being (negative) semidefinite, may lead to troubles in mpQP solver') end %Matrices.H = Matrices.H + eye(length(Matrices.H))*1e-4; [Pn,Fi,Gi,ac,Pfinal,details] = mpt_mpqp(Matrices,options.mpt); else [Pn,Fi,Gi,ac,Pfinal,details] = mpt_mplp(Matrices,options.mpt); end [Fi,Gi,details] = mpt_project_back_equality(Matrices,Fi,Gi,details,OriginalModel); [Fi,Gi] = mpt_select_rows(Fi,Gi,Matrices.requested_variables); [Fi,Gi] = mpt_clean_optmizer(Fi,Gi); model = mpt_appendmodel(model,Pfinal,Pn,Fi,Gi,details); % model = mpt_reduceOverlaps_orderfaces(model);if ~isa(model,'cell');model = {model};end end else end function [Pn,Fi,Gi,ac,Pfinal,details] = mpt_mpqp_mplcp(Matrices,options) if Matrices.qp lcpData = lcp_mpqp(Matrices); BB = mplcp(lcpData) [Pn,Fi,Gi] = soln_to_mpt(lcpData,BB); else lcpData = lcp_mplp(Matrices); BB = mplcp(lcpData) [Pn,Fi,Gi] = soln_to_mpt(lcpData,BB); end Pfinal = union(Pn); if Matrices.qp for i=1:length(Fi) details.Ai{i} = 0.5*Fi{i}'*Matrices.H*Fi{i} + 0.5*(Matrices.F*Fi{i}+Fi{i}'*Matrices.F') + Matrices.Y; details.Bi{i} = Matrices.Cf*Fi{i}+Gi{i}'*Matrices.F' + Gi{i}'*Matrices.H*Fi{i} + Matrices.Cx; details.Ci{i} = Matrices.Cf*Gi{i}+0.5*Gi{i}'*Matrices.H*Gi{i} + Matrices.Cc; end else for i=1:length(Fi) details.Ai{i} = []; details.Bi{i} = Matrices.H*Fi{i}; details.Ci{i} = Matrices.H*Gi{i}; end end ac = [];
github
EnricoGiordano1992/LMI-Matlab-master
mpt_parbb.m
.m
LMI-Matlab-master/yalmip/modules/parametric/mpt_parbb.m
5,172
utf_8
9ed244f3afde3125092cc9cd08a5feb0
function model = mpt_parbb(Matrices,options) % For simple development, the code is currently implemented in high-level % YALMIP and MPT code. Hence, a substantial part of the computation time is % stupid over-head. [Matrices.lb,Matrices.ub] = mpt_detect_and_improve_bounds(Matrices,Matrices.lb,Matrices.ub,Matrices.binary_var_index,options); U = sdpvar(Matrices.nu,1); x = sdpvar(Matrices.nx,1); F = (Matrices.G*U <= Matrices.W + Matrices.E*x); F = F + (Matrices.lb <= [U;x] <= Matrices.ub); F = F + (binary(U(Matrices.binary_var_index))); F = F + (Matrices.Aeq*U + Matrices.Beq*x == Matrices.beq); h = Matrices.H*U + Matrices.F*x; Universe = polytope((Matrices.lb(end-Matrices.nx+1:end) <= x <= Matrices.ub(end-Matrices.nx+1:end))); model = parametric_bb(F,h,options,x,Universe); function sol = parametric_bb(F,obj,ops,x,Universe) % F : All constraints % obj : Objective % x : parametric variables % y : all binary variables if isempty(ops) ops = sdpsettings; end ops.mp.algorithm = 1; ops.cachesolvers = 0; ops.mp.presolve=1; ops.solver = ''; % Expand nonlinear operators only once F = expandmodel(F,obj); ops.expand = 0; % Gather all binary variables y = unique([depends(F) depends(obj)]); n = length(y)-length(x); y = intersect(y,[yalmip('binvariables') depends(F(find(is(F,'binary'))))]); y = recover(y); % Make sure binary relaxations satisfy 0-1 constraints F = F + (0 <= y <= 1); % recursive, starting in maximum universe sol = sub_bb(F,obj,ops,x,y,Universe); % Nice, however, we have introduced variables along the process, so the % parametric solutions contain variables we don't care about for i = 1:length(sol) for j = 1:length(sol{i}.Fi) sol{i}.Fi{j} = sol{i}.Fi{j}(1:n,:); sol{i}.Gi{j} = sol{i}.Gi{j}(1:n,:); end end function sol = sub_bb(F,obj,ops,x,y,Universe) sol = {}; % Find a feasible point in this region. Note that it may be the case that a % point is feasible, but the feasible space is flat. This will cause the % mplp solver to return an empty solution, and we have to pick a new % binary solution. localsol = {[]}; intsol.problem = 0; if 1%while intsol.problem == 0 localsol = {[]}; while isempty(localsol{1}) & (intsol.problem == 0) ops.verbose = ops.verbose-1; intsol = solvesdp(F,obj,sdpsettings(ops,'solver','glpk')); ops.verbose = ops.verbose+1; if intsol.problem == 0 y_feasible = round(double(y)); ops.relax = 1; localsol = solvemp(F+(y == y_feasible),obj,ops,x); ops.relax = 0; if isempty(localsol{1}) F = F + not_equal(y,y_feasible); end F = F + not_equal(y,y_feasible); end end if ~isempty(localsol{1}) % YALMIP syntax... if isa(localsol,'cell') localsol = localsol{1}; end % Now we want to find solutions with other binary combinations, in % order to find the best one. Cut away the current bionary using % overloaded not equal F = F + not_equal(y,y_feasible); % Could be that the binary was feasible, but the feasible space in the % other variables is empty/lower-dimensional if ~isempty(localsol) % Dig into this solution. Try to find another feasible binary % combination, with a better cost, in each of the regions for i = 1:length(localsol.Pn) G = F; % Better cost G = G + (obj <= localsol.Bi{i}*x + localsol.Ci{i}); % In this region [H,K] = double(localsol.Pn(i)); G = G + (H*x <= K); % Recurse diggsol{i} = sub_bb(G,obj,ops,x,y,localsol.Pn(i)); end % Create all neighbour regions, and compute solutions in them too flipped = regiondiff(union(Universe),union(localsol.Pn)); flipsol={}; for i = 1:length(flipped) [H,K] = double(flipped(i)); flipsol{i} = sub_bb(F+ (H*x <= K),obj,ops,x,y,flipped(i)); end % Just place all solutions in one big cell. We should do some % intersect and compare already here, but I am lazy now. sol = appendlists(sol,localsol,diggsol,flipsol); end end end function sol = appendlists(sol,localsol,diggsol,flipsol) sol{end+1} = localsol; for i = 1:length(diggsol) if ~isempty(diggsol{i}) if isa(diggsol{i},'cell') for j = 1:length(diggsol{i}) sol{end+1} = diggsol{i}{j}; end else sol{end+1} = diggsol{i}; end end end for i = 1:length(flipsol) if ~isempty(flipsol{i}) if isa(flipsol{i},'cell') for j = 1:length(flipsol{i}) sol{end+1} = flipsol{i}{j}; end else sol{end+1} = flipsol{i}; end end end function F = not_equal(X,Y) zv = find((Y == 0)); ov = find((Y == 1)); lhs = 0; if ~isempty(zv) lhs = lhs + sum(extsubsref(X,zv)); end if ~isempty(ov) lhs = lhs + sum(1-extsubsref(X,ov)); end F = (lhs >=1);
github
EnricoGiordano1992/LMI-Matlab-master
mpt_appendmodel.m
.m
LMI-Matlab-master/yalmip/modules/parametric/mpt_appendmodel.m
9,545
utf_8
1d7ce75903476d3b64c70bdd45442498
function model = savemptmodel(model,Pfinal,Pn,Fi,Gi,details); if length(Fi)>0 if length(model) == 0 model{1} = fakemptmodel(Pfinal, Pn, Fi, Gi, details.Ai, details.Bi, details.Ci); [H,K] = double(Pfinal); model{1}.epicost = []; model{1}.convex = 1; else anyqp = nnz([details.Ai{:}])>0; for i = 1:length(model) anyqp = anyqp | nnz([model{i}.Ai{:}])>0; if anyqp break end end if anyqp model = savemptmodelqp(model,Pfinal,Pn,Fi,Gi,details); return else newmodel = fakemptmodel(Pfinal, Pn, Fi, Gi, details.Ai, details.Bi, details.Ci); newmodel.epicost = []; newmodel.convex = 1; replace = zeros(length(model),1); discard = 0; for i = 1:length(model) Y = model{i}.Pfinal; % quickeq( Pfinal, Y) % if (Pfinal == Y) ~= quickeq( Pfinal, Y) % 1 % end if Pfinal == Y if isempty(newmodel.epicost) B = reshape([details.Bi{:}]',size(details.Bi{1},2),[])'; c = reshape([details.Ci{:}]',[],1); [H,K] = double(Pfinal); newmodel.epicost = generate_epicost(H,K,B,c); end if isempty(model{i}.epicost) B = reshape([model{i}.Bi{:}]',size(model{i}.Bi{1},2),[])'; c = reshape([model{i}.Ci{:}]',[],1); [H,K] = double(model{i}.Pfinal); model{i}.epicost = generate_epicost(H,K,B,c); end if newmodel.epicost <= model{i}.epicost discard = 1; break end if newmodel.epicost >= model{i}.epicost replace(i,1) = 1; end elseif Pfinal >= model{i}.Pfinal if isempty(newmodel.epicost) B = reshape([details.Bi{:}]',size(details.Bi{1},2),[])'; c = reshape([details.Ci{:}]',[],1); [H,K] = double(Pfinal); newmodel.epicost = generate_epicost(H,K,B,c); end if isempty(model{i}.epicost) B = reshape([model{i}.Bi{:}]',size(model{i}.Bi{1},2),[])'; c = reshape([model{i}.Ci{:}]',[],1); [H,K] = double(model{i}.Pfinal); model{i}.epicost = generate_epicost(H,K,B,c); end if newmodel.epicost >= model{i}.epicost replace(i,1) = 1; end elseif Pfinal <= model{i}.Pfinal if isempty(newmodel.epicost) B = reshape([details.Bi{:}]',size(details.Bi{1},2),[])'; c = reshape([details.Ci{:}]',[],1); [H,K] = double(Pfinal); newmodel.epicost = generate_epicost(H,K,B,c); end if isempty(model{i}.epicost) B = reshape([model{i}.Bi{:}]',size(model{i}.Bi{1},2),[])'; c = reshape([model{i}.Ci{:}]',[],1); [H,K] = double(model{i}.Pfinal); model{i}.epicost = generate_epicost(H,K,B,c); end if newmodel.epicost <= model{i}.epicost discard = 1; break end end end if ~discard model = {model{find(~replace)},newmodel}; end end end end function model = savemptmodelqp(model,Pfinal,Pn,Fi,Gi,details); newmodel = fakemptmodel(Pfinal, Pn, Fi, Gi, details.Ai, details.Bi, details.Ci); newmodel.epicost = []; newmodel.convex = 1; replace = zeros(length(model),1); discard = 0; for i = 1:length(model) % Trivial pruning, why not... if quadraticLarger(details,model{i}) if Pfinal == model{i}.Pfinal discard = 1; break; elseif Pfinal <= model{i}.Pfinal discard = 1; break; end end if Pfinal==model{i}.Pfinal elseif Pfinal >= model{i}.Pfinal doreplace = 1; for k = 1:length(details.Ai) Qnew = [details.Ai{k} 0.5*details.Bi{k}' ;0.5*details.Bi{k} details.Ci{k}]; for j = 1:length(model{i}.Pfinal) Qold = [model{i}.Ai{j} 0.5*model{i}.Bi{j}';0.5*model{i}.Bi{j} model{i}.Ci{j}]; if ~all(real(eig(full(Qold-Qnew)))>=-1e-12) doreplace = 0; end end end if doreplace replace(i,1) = 1; end elseif Pfinal <= model{i}.Pfinal % if relaxationLarger(details,model{i},Pn,model{i}.Pn) % discard = 1; % break % end % if length(Pn)==1 discard = 1; Qnew = [details.Ai{1} 0.5*details.Bi{1}' ;0.5*details.Bi{1} details.Ci{1}]; for j = 1:length(model{i}.Pfinal) Qold = [model{i}.Ai{j} 0.5*model{i}.Bi{j}';0.5*model{i}.Bi{j} model{i}.Ci{j}]; if ~all(real(eig(full(Qnew-Qold)))>=-1e-12) discard = 0; end end if discard break end end % % if length(Pn)==1 % discard = 1; % Qnew = [details.Ai{1} 0.5*details.Bi{1}' ;0.5*details.Bi{1} details.Ci{1}]; % for j = 1:length(model{i}.Pn) % Qold = [model{i}.Ai{j} 0.5*model{i}.Bi{j}';0.5*model{i}.Bi{j} model{i}.Ci{j}]; % Pis = intersect(model{i}.Pn(j),newmodel.Pfinal); % if isfulldim(Pis) % [H,K] = double(Pis); % if ~quadraticLarger2(Qnew,Qold,H,K) % discard = 0; % end % end % end % if discard % break % end % end % end end if ~discard model = {model{find(~replace)},newmodel}; end function XbiggerY = relaxationLarger(X,Y,P1,P2) XbiggerY = 1; x = sdpvar(length(X.Ai{1}),1); for k = 1:length(X.Ai) Xq = [X.Ai{k} 0.5*X.Bi{k}' ;0.5*X.Bi{k} X.Ci{k}]; p1 = [x;1]'*Xq*[x;1]; for j = 1:length(Y.Ai) Yq = [Y.Ai{j} 0.5*Y.Bi{j}' ;0.5*Y.Bi{j} Y.Ci{j}]; if all(real(eig(full(Xq-Yq)))>0) else isc = intersect(P1(k),P2(j)); if isfulldim(isc) p2 = [x;1]'*Yq*[x;1]; [H,K] = double(isc); [xx,cc,vv]= solvemoment((H*x <= K),p1-p2) end end % if ~all(real(eig(Xq-Yq))>=-1e-12) % XbiggerY = 0; % return % end end end function XbiggerY = quadraticLarger2(Q1,Q2,H,K) x = sdpvar(size(H,2),1); obj = [x;1]'*Q1*[x;1]-[x;1]'*Q2*[x;1]; %sol = solvemoment((H*x <= K),obj,[],2); sol = solvesdp((H*x <= K),obj,sdpsettings('solver','kktqp')); %if relaxdouble(obj) > -1e-5 if double(obj) > -1e-5 XbiggerY = 1; else XbiggerY = 0; end function XbiggerY = quadraticLarger(X,Y) XbiggerY = 1; for k = 1:length(X.Ai) Xq = [X.Ai{k} 0.5*X.Bi{k}' ;0.5*X.Bi{k} X.Ci{k}]; for j = 1:length(Y.Ai) Yq = [Y.Ai{j} 0.5*Y.Bi{j}' ;0.5*Y.Bi{j} Y.Ci{j}]; if ~all(real(eig(full(Xq-Yq)))>=-1e-12) XbiggerY = 0; return end end end function epicost = generate_epicost(H,K,B,c) epicost = polytope([B -ones(size(B,1),1);H zeros(size(H,1),1)],[-c;K]); function C = fakemptmodel(Pfinal, Pn, Fi, Gi, Ai, Bi, Ci) dummystruct.dummyfield = []; C.sysStruct = dummystruct; C.probStruct = dummystruct; C.details.origSysStruct = dummystruct; C.details.origProbStruct = dummystruct; nr = length(Pn); C.Pfinal = Pfinal; C.Pn = Pn; C.Fi = Fi; C.Gi = Gi; if isempty(Ai), Ai = cell(1, nr); end C.Ai = Ai; C.Bi = Bi; C.Ci = Ci; C.dynamics = repmat(0, 1, nr); C.overlaps = 0; function status = quickeq(P,Q) status = 1; Q = struct(Q); P = struct(P); [ncP,nxP]=size(P.H); [ncQ,nxQ]=size(Q.H); if ncP ~=ncQ status = 0; return end Pbbox = P.bbox; Qbbox = Q.bbox; if ~isempty(Pbbox) & ~isempty(Qbbox), bbox_tol = 1e-4; if any(abs(Pbbox(:,1) - Qbbox(:,1)) > bbox_tol) | any(abs(Pbbox(:,2) - Qbbox(:,2)) > bbox_tol), % bounding boxes differ by more than abs_tol => polytopes cannot be equal status = 0; return end % we cannot reach any conclusion based solely on the fact that bounding % boxes are identical, therefore we continue... end status=1; PAB=[P.H P.K]; QAB=[Q.H Q.K]; for ii=1:ncP %if all(sum(abs(QAB-repmat(PAB(ii,:),ncQ,1)),2)>abs_tol) %if all(sum(abs(QAB-PAB(ones(ncQ,1)*ii,:)),2)>abs_tol) Z = sum(abs(QAB-PAB(ones(ncQ,1)*ii,:)),2); if all(Z>1e-8) status=0; return; end end for ii=1:ncQ %if all(sum(abs(PAB-repmat(QAB(ii,:),ncP,1)),2)>abs_tol) %if all(sum(abs(PAB-QAB(ones(ncP,1)*ii,:)),2)>abs_tol) Z = sum(abs(PAB-QAB(ones(ncP,1)*ii,:)),2); if all(Z>1e-8) status=0; return; end end
github
EnricoGiordano1992/LMI-Matlab-master
dualize.m
.m
LMI-Matlab-master/yalmip/extras/dualize.m
24,839
utf_8
95f053810de0314bbbbff10c9d8c9125
function [Fdual,objdual,X,t,err,complexInfo] = dualize(F,obj,auto,extlp,extend,options) % DUALIZE Create the dual of an SDP given in primal form % % [Fd,objd,X,t,err] = dualize(F,obj,auto) % % Input % F : Primal constraint in form AX=b+dt, X>0, t free. % obj : Primal cost CX+ct % auto : If set to 0, YALMIP will not automatically handle variables % and update variable values when the dual problem is solved. % extlp: If set to 0, YALMIP will not try to perform variables changes in % order to convert simple translated LP cones (as in x>1) to % standard unit cone constraints (x>0) % % Output % Fd : Dual constraints in form C-A'y>0, c-dy==0 % obj : Dual cost b'y (to be MAXIMIZED!) % X : The detected primal cone variables % t : The detected primal free variables % err : Error status (returns 0 if no problems) % % Example % See the HTML help. % % See also DUAL, SOLVESDP, PRIMALIZE % Check for unsupported problems if isempty(F) F = ([]); end complexInfo = []; LogDetTerm = 0; if nargin < 2 obj = []; elseif isa(obj,'logdet') Plogdet = getP(obj); gainlogdet = getgain(obj); if ~all(gainlogdet <= 0) error('There are nonconvex logdet terms in the objective') end if ~all(gainlogdet == -1) error('DUALIZE does currently not support coefficients before LOGDET terms') end obj = getcx(obj); if ~isempty(obj) if ~is(obj,'linear') error('DUALIZE does not support nonlinear terms in objective (except logdet terms)') end end LogDetTerm = 1; Ftemp = ([]); for i = 1:length(Plogdet) Ftemp = Ftemp + [(Plogdet{i} >= 0) : 'LOGDET']; end F = Ftemp + F; end err = 0; p1 = ~isreal(obj);%~(isreal(F) & isreal(obj)); p2 = ~(islinear(F) & islinear(obj)); p3 = any(is(F,'integer')) | any(is(F,'binary')); if p1 | p2 | p3 if nargout == 5 Fdual = ([]);objdual = [];y = []; X = []; t = []; err = 1; else problems = {'Cannot dualize complex-valued problems','Cannot dualize nonlinear problems','Cannot dualize discrete problems'}; error(problems{min(find([p1 p2 p3]))}); end end if nargin<5 || isempty(extend) extend = 1; end if extend if nargin < 6 || isempty(options) options = sdpsettings; end options.dualize = 1; options.allowmilp = 0; options.solver = ''; [F,failure,cause] = expandmodel(F,obj,options); if failure error('Failed during convexity propagation. Avoid nonlinear operators when applying dualization.'); end end if nargin<3 || isempty(auto) auto = 1; end if nargin<4 || isempty(extlp) extlp = 1; end % Cones and equalities F_AXb = ([]); % Shiftmatrix is a bit messy at the moment. % We want to be able to allow cones X>shift % by using a new variable X-shift = Z shiftMatrix = {}; X={}; % First, get variables in initial SDP cones % We need this to avoid adding the same variable twice % when we add simple LP constraints (as in P>0, P(1,3)>0) varSDP = []; SDPset = zeros(length(F),1); ComplexSDPset = zeros(length(F),1); isSDP = is(F,'sdp'); for i = 1:length(F) if isSDP(i); Fi = sdpvar(F(i)); if is(Fi,'shiftsdpcone') vars = getvariables(Fi); if isempty(findrows(varSDP,[vars(1) vars(end)])) SDPset(i) = 1; varSDP = [varSDP;vars(1) vars(end)]; shiftMatrix{end+1} = getbasematrix(Fi,0); X{end+1}=Fi; if is(Fi,'complex') ComplexSDPset(i) = 1; end end end end end F_SDP = F(find(SDPset)); F = F(find(~SDPset)); % Same thing for second order cones % However, we must not add any SOC cones % that we already defined as SDP cones varSOC = []; SOCset = zeros(length(F),1); isSOCP = is(F,'socp'); for i = 1:length(F) if isSOCP(i);%is(F(i),'socp') Fi = sdpvar(F(i)); if is(Fi,'socone') vars = getvariables(Fi); % Make sure these variables are not SDP cone variables % This can actually only happen for (X>0) + (Xcone((2:end,1),X(1))) if ~isempty(varSDP) inSDP = any(varSDP(:,1)<=vars(1)& vars(1) <=varSDP(:,2)) | any(varSDP(:,1)<=vars(end)& vars(end) <=varSDP(:,2)); else inSDP = 0; end if ~inSDP SOCset(i) = 1; vars = getvariables(Fi); varSOC = [varSOC;vars(1) vars(end)]; shiftMatrix{end+1} = getbasematrix(Fi,0); X{end+1}=Fi; end end end end F_SOC = F(find(SOCset)); F = F(find(~SOCset)); % Merge SDP and SOC data varCONE = [varSDP;varSOC]; F_CONE = F_SDP + F_SOC; % Detect primal-variables from SDP diagonals (not tested substantially...) implicit_positive = detect_diagonal_terms(F); % Find all LP constraints, add slacks and extract simple cones % to speed up things, we treat LP cone somewhat different % compared to the conceptually similiar SOCP/SDP cones % This code is pretty messy, since there are a lot off odd % cases to take care of (x>0 and x>1 etc etc) elementwise = is(F,'element-wise'); elementwise_index = find(elementwise); if ~isempty(elementwise_index) % Find element-wise inequalities Flp = F(elementwise_index); % Add constraint originating from diagonals in dual-type LMIs if ~isempty(implicit_positive) implicit_positive = setdiff(implicit_positive,getvariables(F_CONE)); if ~isempty(implicit_positive) Flp = Flp + (recover(implicit_positive) >= 0); end end F = F(find(~elementwise)); % remove these LPs % Find LP cones lpconstraint = []; for i = 1:length(Flp) temp = sdpvar(Flp(i)); if min(size(temp))>1 temp = temp(:); end lpconstraint = [lpconstraint reshape(temp,1,length(temp))]; end % Find all constraints of type a_i+x_i >0 and extract the unique and % most constraining inequalities (i.e. remove redundant lower bounds) base = getbase(lpconstraint); temp = sum(base(:,2:end)~=0,2)==1; candidates = find(temp); if length(candidates)>0 % The other ones... alwayskeep = find(sum(base(:,2:end)~=0,2)~=1); w1 = lpconstraint(alwayskeep); if all(temp) w2 = lpconstraint; else w2 = lpconstraint(candidates); end % Find unique rows base = getbase(w2); [i,uniquerows,k] = unique(base(:,2:end)*randn(size(base,2)-1,1)); aUniqueRow=k(:)'; keep = []; rhsLP = base(:,1); rr = histc(k,[1:max(k)]); if all(rr==1) lpconstraint = [w1 w2]; else for i=1:length(k) sameRow=find(k==k(i)); if length(sameRow)==1 keep = [keep sameRow]; else rhs=base(sameRow,1); [val,pos]=min(rhsLP(sameRow)); keep = [keep sameRow(pos)]; end end lpconstraint = [w1 w2(unique(keep))]; end end % LP cone will be saved in a vector for speed x = []; % Pure cones of the type x>0 base = getbase(lpconstraint); purelpcones = (base(:,1)==0) & (sum(abs(base(:,2:end)),2)==1) & (sum(base(:,2:end)==1,2)==1); if ~isempty(purelpcones) if all(purelpcones) x = [x lpconstraint]; else x = [x lpconstraint(purelpcones)]; end lpconstraint = lpconstraint(find(~purelpcones)); end % Translated cones x>k, k positive % User does not want to make variable changes based on k % But if k>=0, we can at-least mark x as a simple LP cone variable and % thus avoid a free variable. if ~extlp & ~isempty(lpconstraint) base = getbase(lpconstraint); lpcones = (base(:,1)<0) & (sum(abs(base(:,2:end)),2)==1) & (sum(base(:,2:end)==1,2)==1); if ~isempty(find(lpcones)) s = recover(getvariables(lpconstraint(find(lpcones)))); x = [x reshape(s,1,length(s))]; end end % Translated cones x>k % Extract these and perform the associated variable change y=x-k if ~isempty(lpconstraint)%Avoid warning in 5.3.1 base = getbase(lpconstraint); lpcones = (sum(abs(base(:,2:end)),2)==1) & (sum(base(:,2:end)==1,2)==1); if ~isempty(lpcones) & extlp x = [x lpconstraint(find(lpcones))]; nlp = lpconstraint(find(~lpcones)); if ~isempty(nlp) s = sdpvar(1,length(nlp)); F_AXb = F_AXb + (nlp-s==0); x = [x s]; end elseif length(lpconstraint) > 0 s = sdpvar(1,length(lpconstraint)); x = [x s]; % New LP cones F_AXb = F_AXb + (lpconstraint-s==0); end end % Sort asccording to variable index % (Code below assumes x is sorted in increasing variables indicies) base = getbase(x);base = base(:,2:end);[i,j,k] = find(base); if ~isequal(i,(1:length(x))') x = x(i); end xv = getvariables(x); % For mixed LP/SDP problems, we must ensure that LP cone variables are % not actually an element in a SDP cone variable if ~isempty(varCONE) keep = zeros(length(x),1); for i = 1:length(xv) if any(varCONE(:,1)<=xv(i) & xv(i) <=varCONE(:,2)) else keep(i) = 1; end end if ~all(keep) % We need to add some explicit constraints on some elements and % remove the x variables since they are already in a cone % variable xcone = x(find(~keep)); s = sdpvar(1,length(xcone)); F_AXb = F_AXb + (xcone-s==0); x = x(find(keep)); x = [x s]; end end else x = []; end % Check for mixed cones, ie terms C-A'y > 0. keep = ones(length(F),1); isSDP = is(F,'sdp'); isSOCP = is(F,'socp'); isVecSOCP = is(F,'vecsocp'); % Pre-allocate all SDP slacks in one call % This is a lot faster if nnz(isSDP) > 0 SDPindicies = find(isSDP)'; for i = 1:length(SDPindicies)%find(isSDP)' Fi = sdpvar(F(SDPindicies(i))); ns(i) = size(Fi,1); ms(i) = ns(i); isc(i) = is(Fi,'complex'); end if any(isc) for i = 1:length(ns) if isc(i) Slacks{i} = sdpvar(ns(i),ns(i),'hermitian','complex'); else Slacks{i} = sdpvar(ns(i),ns(i)); end end else Slacks = sdpvar(ns,ms); end if ~isa(Slacks,'cell') Slacks = {Slacks}; end end prei = 1; for i = 1:length(F) if isSDP(i) % Semidefinite dual-form cone Fi = sdpvar(F(i)); n = size(Fi,1); % S = sdpvar(n,n); S = Slacks{prei};prei = prei + 1; slack = Fi-S; ind = find(triu(reshape(1:n^2,n,n))); if is(slack,'complex') F_AXb = F_AXb + (real(slack(ind))==0) + (imag(slack(ind))==0); else F_AXb = F_AXb + (slack(ind)==0); end F_CONE = F_CONE + lmi(S,[],[],[],1); shiftMatrix{end+1} = spalloc(n,n,0); X{end+1}=S; keep(i)=0; elseif isSOCP(i) % SOC dual-form cone Fi = sdpvar(F(i)); n = size(Fi,1); S = sdpvar(n,1); % S = Slacks{i}; slack = Fi-S; if is(slack,'complex') F_AXb = F_AXb + (real(slack)==0) + (imag(slack)==0); else F_AXb = F_AXb + (slack==0); end F_CONE = F_CONE + (cone(S(2:end),S(1))); shiftMatrix{end+1} = spalloc(n,1,0); X{end+1}=S; keep(i)=0; elseif isVecSOCP(i) % Vectorized SOC dual-form cone Fi = sdpvar(F(i)); [n,m] = size(Fi); S = sdpvar(n,m,'full'); slack = Fi-S; if is(slack,'complex') F_AXb = F_AXb + (real(slack)==0) + (imag(slack)==0); else F_AXb = F_AXb + (slack==0); end F_CONE = F_CONE + (cone(S)); shiftMatrix{end+1} = spalloc(n,m,0); X{end+1}=S; keep(i)=0; end end % Now, remove all mixed cones... F = F(find(keep)); % Get the equalities AXbset = is(F,'equality'); if any(AXbset) % Get the constraints F_AXb = F_AXb + F(find(AXbset)); F = F(find(~AXbset)); end % Is there something we missed in our tests? if length(F)>0 error('DUALIZE can only treat standard SDPs (and LPs) at the moment.') end % If complex SDP cone, we reformulate and call again on a real-valued % problem. This leads to twice the amount of work, but it is a quick fix % for the moment if any(is(F_CONE,'complexsdpcone')) F_NEWCONES = []; top = 1; for i = 1:length(X) if is(X{i},'complexsdpcone') Xreplace{top} = X{i}; n = length(X{i}); Xnew{top} = sdpvar(2*n); rQ = real(Xreplace{top}); iQ = imag( Xreplace{top}); L1 = Xnew{top}(1:n,1:n); L3 = Xnew{top}(n+1:end,n+1:end); L2 = Xnew{top}(1:n,n + 1:end); s0r = getvariables(rQ); s1r = getvariables(L1); s2r = getvariables(L3); r0 = recover(s0r); r1 = recover(s1r); r2 = recover(s2r); s0i = getvariables(iQ); s1i = getvariables(triu(L2,1))'; s2i = getvectorvariables(L2(find(tril(ones(length(L2)),-1)))); i0 = recover(s0i); i1 = recover(s1i); i2 = recover(s2i); replacement = [r1+r2;i1-i2]; if ~isempty(F_AXb) F_AXb = remap(F_AXb,[s0r s0i],replacement); end if ~isempty(obj) obj = remap(obj,[s0r s0i],replacement); end X{i} = Xnew{top}; top = top + 1; end if is(X{i},'hermitian') F_NEWCONES = [F_NEWCONES, X{i} >= 0]; else F_NEWCONES = [F_NEWCONES, cone(X{i})]; end end F_reformulated = [F_NEWCONES, F_AXb, x>=0]; complexInfo.replaced = Xreplace; complexInfo.new = Xnew; [Fdual,objdual,X,t,err] = dualize(F_reformulated,obj,auto,extlp,extend); return end % Sort the SDP cone variables X according to YALMIP % This is just to simplify some indexing later ns = []; first_var = []; for i = 1:length(F_CONE) ns = [ns length(X{i})]; first_var = [first_var min(getvariables(X{i}))]; end [sorted,index] = sort(first_var); X={X{index}}; shiftMatrix={shiftMatrix{index}}; shift = []; for i = 1:length(F_CONE) ns(i) = length(X{i}); if size(X{i},2)==1 | (size(X{i},1) ~= size(X{i},2)) % SOCP shift = [shift;shiftMatrix{i}(:)]; else % SDP ind = find(tril(reshape(1:ns(i)^2,ns(i),ns(i)))); shift = [shift;shiftMatrix{i}(ind)]; end end % Free variables (here called t) is everything except the cone variables X_variables = getvariables(F_CONE); x_variables = getvariables(x); Xx_variables = [X_variables x_variables]; other_variables = [getvariables(obj) getvariables(F_AXb)]; % For quadratic case %other_variables = [depends(obj) getvariables(F_AXb)]; all_variables = uniquestripped([other_variables Xx_variables]); % Avoid set-diff if isequal(all_variables,Xx_variables) t_variables = []; t_in_all = []; t = []; else t_variables = setdiff(all_variables,Xx_variables); ind = ismembcYALMIP(all_variables,t_variables); t_in_all = find(ind); t = recover(t_variables); end ind = ismembcYALMIP(all_variables,x_variables); x_in_all = find(ind); ind = ismembcYALMIP(all_variables,X_variables); X_in_all = find(ind); vecF1 = []; nvars = length(all_variables); for i = 1:length(F_AXb) AXb = sdpvar(F_AXb(i)); mapper = find(ismembcYALMIP(all_variables,getvariables(AXb))); [n,m] = size(AXb); data = getbase(AXb); [iF,jF,sF] = find(data); if 1 % New smapper = [1 1+mapper(:)']; F_structemp = sparse(iF,smapper(jF),sF,n*m,1+nvars); else F_structemp = spalloc(n*m,1+nvars,nnz(data)); F_structemp(:,[1 1+mapper(:)'])= data; end vecF1 = [vecF1;F_structemp]; end %Remove trivially redundant constraints h = 1+rand(size(vecF1,2),1); h = vecF1*h; % INTVAL possibility %[dummy,uniquerows] = uniquesafe(h); [dummy,uniquerows] = uniquesafe(mid(h)); if length(uniquerows) < length(h) % Sort to ensure run-to-run consistency vecF1 = vecF1((sort(uniquerows)),:); end if isempty(obj) vecF1(end+1,1) = 0; else if is(obj,'linear') mapper = find(ismembcYALMIP(all_variables,getvariables(obj))); [n,m] = size(obj); data = getbase(obj); [iF,jF,sF] = find(data); if 1 smapper = [1 1+mapper(:)']; F_structemp = sparse(iF,smapper(jF),sF,n*m,1+nvars); else F_structemp = spalloc(n*m,1+nvars,nnz(data)); F_structemp(:,[1 1+mapper(:)'])= data; end vecF1 = [vecF1;F_structemp]; else % FIX: Generalize to QP duality % min c'x+0.5x'Qx, Ax==b, x>=0 % max b'y-0.5x'Qx, c-A'y+Qx >=0 [Q,c,xreally,info] = quaddecomp(obj,recover(all_variables)) mapper = find(ismembcYALMIP(all_variables,getvariables(c'*xreally))); [n,m] = size(c'*xreally); data = getbase(c'*xreally); F_structemp = spalloc(n*m,1+nvars,nnz(data)); F_structemp(:,[1 1+mapper(:)'])= data; vecF1 = [vecF1;F_structemp] end end vecF1(end+1,1) = 0; Fbase = vecF1; %Fbase = unique(Fbase','rows')'; b = Fbase(1:end-2,1); Fbase = -Fbase(1:end-1,2:end); vecA = []; Fbase_t = Fbase(:,t_in_all); Fbase_x = Fbase(:,x_in_all); Fbase_X = Fbase; %Fbase_X(:,unionstripped(t_in_all,x_in_all)) = []; if 1 removethese = unique([t_in_all x_in_all]); if length(removethese) > 0.5*size(Fbase_X,2) Fbase_X = Fbase_X(:,setdiff(1:size(Fbase_X,2),removethese)); else Fbase_X(:,[t_in_all x_in_all]) = []; end else removecols = uniquestripped([t_in_all x_in_all]); if ~isempty(removecols) [i,j,k] = find(Fbase_X); keep = find(~ismember(j,removecols)); i = i(keep); k = k(keep); j = j(keep); map = find(1:length(unique(j)),j); end end % Shift due to translated dual cones X = Z+shift if length(shift > 0) b = b + Fbase_X(1:end-1,:)*shift; end if length(x)>0 % Arrgh base = getbase(x); constant = base(:,1); base = base(:,2:end);[i,j,k] = find(base); b = b + Fbase_x(1:end-1,:)*constant(i); end start = 0; n_cones = length(ns); % All LPs in one cone if length(x)>0 n_lp = 1; else n_lp = 0; end n_free = length(t_variables); % SDP cones for j = 1:1:n_cones if size(X{j},1)==size(X{j},2) % SDP cone ind = reshape(1:ns(j)^2,ns(j),ns(j)); ind = find(tril(ind)); % Get non-symmetric constraint AiX=b Fi = Fbase_X(1:length(b),start+(1:length(ind)))'/2; if 1 [iF,jF,sF] = find(Fi); iA = ind(iF); jA = jF; sA = sF; the_col = 1+floor((iA-1)/ns(j)); the_row = iA-(the_col-1)*ns(j); these_must_be_transposed = find(the_row > the_col); if ~isempty(these_must_be_transposed) new_rowcols = the_col(these_must_be_transposed) + (the_row(these_must_be_transposed)-1)*ns(j); iA = [iA;new_rowcols]; jA = [jA;jA(these_must_be_transposed)]; sA = [sA;sA(these_must_be_transposed)]; end % Fix diagonal term diags = find(diag(1:ns(j))); id = find(ismembcYALMIP(iA,diags)); sA(id) = 2*sA(id); Ai = sparse(iA,jA,sA,ns(j)^2,length(b)); else % Old slooooooow version Ai = spalloc(ns(j)^2,length(b),nnz(Fi)); Ai(ind,:) = Fi; % Symmetrize [rowcols,varindicies,vals]=find(Ai); the_col = 1+floor((rowcols-1)/ns(j)); the_row = rowcols-(the_col-1)*ns(j); these_must_be_transposed = find(the_row > the_col); if ~isempty(these_must_be_transposed) new_rowcols = the_col(these_must_be_transposed) + (the_row(these_must_be_transposed)-1)*ns(j); Ai(sub2ind(size(Ai),new_rowcols,varindicies(these_must_be_transposed))) = vals(these_must_be_transposed); end % Fix diagonal term diags = find(diag(1:ns(j))); Ai(diags,:) = 2*Ai(diags,:); end % if norm(Ai-Ai2,inf)>1e-12 % error % end vecA{j} = Ai; start = start + length(ind); else % Second order cone ind = 1:prod(size(X{j})); %ind = 1:ns(j); % Get constraint AiX=b Fi = Fbase_X(1:length(b),start+(1:length(ind)))'; %Ai = spalloc(ns(j),length(b),nnz(Fi)); Ai = spalloc(prod(size(X{j})),length(b),nnz(Fi)); Ai(ind,:) = Fi; vecA{j} = Ai; start = start + length(ind); end end % LP Cone if n_lp>0 Alp=Fbase_x(1:length(b),:)'; end % FREE VARIABLES start = 0; if n_free>0 Afree=Fbase_t(1:length(b),:)'; end % COST MATRIX % SDP CONE start = 0; for j = 1:1:n_cones if size(X{j},1)==size(X{j},2) %ind = reshape(1:ns(j)^2,ns(j),ns(j)); %ind = find(tril(ind)); %C{j} = spalloc(ns(j),ns(j),0); %C{j}(ind) = -Fbase_X(end,start+(1:length(ind))); %C{j} = (C{j}+ C{j}')/2; %start = start + length(ind); ind = reshape(1:ns(j)^2,ns(j),ns(j)); [indi,indj] = find(tril(ind)); C{j} = sparse(indi,indj,-Fbase_X(end,start+(1:length(indi))),ns(j),ns(j)); C{j} = (C{j}+ C{j}')/2; start = start + length(indi); else %ind = 1:ns(j); ind = 1:prod(size(X{j})); C{j} = spalloc(ns(j),1,0); C{j}(ind) = -Fbase_X(end,start+(1:length(ind))); start = start + length(ind); end end % LP CONE for j = 1:1:n_lp Clp = -Fbase_x(end,:)'; end % FREE CONE if n_free>0 Cfree = -Fbase_t(end,1:end)'; end % Create dual if length(b) == 0 error('Dual program is somehow trivial (0 variables in dual)'); end y = sdpvar(length(b),1); yvars = getvariables(y); cf = []; Af = []; Fdual = ([]); for j = 1:n_cones if size(X{j},1)==size(X{j},2) % Yep, this is optimized... S = sdpvar(ns(j),ns(j),[],yvars,[C{j}(:) -vecA{j}]); % Fast call avoids symmetry check Fdual = Fdual + lmi(S,[],[],[],1); else Ay = reshape(vecA{j}*y,[],1); %Ay = reshape(vecA{j}*y,ns(j),1); S = C{j}-Ay; S = reshape(S,size(X{j},1),[]); %Fdual = Fdual + lmi(cone(S(2:end),S(1))); Fdual = Fdual + lmi(cone(S)); end end if n_lp > 0 keep = any(Alp,2); if ~all(keep) % Fix for unused primal cones preset=find(~keep); xfix = x(preset); assign(xfix(:),Clp(preset(:))); end keep = find(keep); if ~isempty(keep) z = Clp(keep)-Alp(keep,:)*y; if isa(z,'double') assign(x(:),z(:)); else Fdual = Fdual + lmi(z); if ~isequal(keep,(1:length(x))') x = x(keep); end X{end+1} = x(:); % We have worked with a row for performance reasons end end end if n_free > 0 CfreeAfreey = Cfree-Afree*y; if isa(CfreeAfreey,'double') if nnz(CfreeAfreey)>0 error('Trivially unbounded!'); end else Fdual = Fdual + (0 == CfreeAfreey); end end objdual = b'*y; if auto for i = 1:length(X) yalmip('associatedual',getlmiid(Fdual(i)),X{i}); end if n_free>0 yalmip('associatedual',getlmiid(Fdual(end)),t); end end if LogDetTerm for i = 1:length(Plogdet) objdual = objdual + logdet(sdpvar(Fdual(i))) + length(sdpvar(Fdual(1))); end Fdual = Fdual - Fdual(1:length(Plogdet)); end Fdual = setdualize(Fdual,1); function implicit_positive = detect_diagonal_terms(F) F = F(find(is(F,'sdp'))); implicit_positive = []; for i = 1:length(F) Fi = sdpvar(F(i)); B = getbase(Fi); n = sqrt(size(B,1)); d = 1:(n+1):n^2; B = B(d,:); candidates = find((B(:,1) == 0) & (sum(B | B,2) == 1) & (sum(B,2) == 1)); if ~isempty(candidates) vars = getvariables(Fi); [ii,jj,kk] = find(B(candidates,2:end)'); ii = ii(:)'; implicit_positive = [implicit_positive vars(ii)]; end end
github
EnricoGiordano1992/LMI-Matlab-master
polyprint.m
.m
LMI-Matlab-master/yalmip/extras/polyprint.m
2,602
utf_8
98455d0a41ce36cf7c72c346fa924f64
function symb_pvec = polyprint(pvec) %POLYPRINT Pretty print polynomial expression % % POLYPRINT is obsolete. Use SDISPLAY instead. for pi = 1:size(pvec,1) for pj = 1:size(pvec,2) p = pvec(pi,pj); if isa(p,'double') symb_p = num2str(p); else LinearVariables = depends(p); x = recover(LinearVariables); exponent_p = full(exponents(p,x)); names = cell(length(x),1); W = evalin('caller','whos'); for i = 1:size(W,1) if strcmp(W(i).class,'sdpvar')% | strcmp(W(i).class,'lmi') thevars = evalin('caller',W(i).name) ; if is(thevars,'scalar') & is(thevars,'linear') & length(getvariables(thevars))==1 index_in_p = find(ismember(LinearVariables,getvariables(thevars))); if ~isempty(index_in_p) names{index_in_p}=W(i).name; end end end end symb_p = ''; if all(exponent_p(1,:)==0) symb_p = num2str(full(getbasematrix(p,0))); exponent_p = exponent_p(2:end,:); end for i = 1:size(exponent_p,1) coeff = full(getbasematrixwithoutcheck(p,i)); switch coeff case 1 coeff='+'; case -1 coeff = '-'; otherwise if isreal(coeff) if coeff >0 coeff = ['+' num2str2(coeff)]; else coeff=[num2str2(coeff)]; end else coeff = ['+' '(' num2str2(coeff) ')' ]; end end symb_p = [symb_p coeff symbmonom(names,exponent_p(i,:))]; end if symb_p(1)=='+' symb_p = symb_p(2:end); end end symb_pvec{pi,pj} = symb_p; end end function s = symbmonom(names,monom) s = ''; for j = 1:length(monom) if abs( monom(j))>0 s = [s names{j}]; if monom(j)~=1 s = [s '^' num2str(monom(j))]; end end end function s = num2str2(x) s = num2str(full(x)); if isequal(s,'1') s = ''; end if isequal(s,'-1') s = '-'; end
github
EnricoGiordano1992/LMI-Matlab-master
sdd.m
.m
LMI-Matlab-master/yalmip/extras/sdd.m
478
utf_8
1e88bdde340f1e917f70ca6ea28f36f3
function Constraint = sdd(X) if issymmetric(X) Constraint = []; n = size(X,1); M = 0; for ii = 1:n for jj = [1:1:ii-1 ii+1:1:n] Mij = sdpvar(2); Constraint = Constraint + sdp2socp(Mij); M = M + sparse([ii jj ii jj],[ii ii jj jj],Mij(:),n,n); end end Constraint = Constraint + [M == X]; else error('sdd requires a symmetric argument.'); end function F = sdp2socp(M) F=rcone(M(1,2),.5*M(1,1),M(2,2));
github
EnricoGiordano1992/LMI-Matlab-master
variable_replace.m
.m
LMI-Matlab-master/yalmip/extras/variable_replace.m
2,976
utf_8
24789bb29ef27f6c6f2e20d6ea39217f
function Z = variable_replace(X,Y,W) % Check so that Y is a simple unit variable Ybase = getbase(Y); Yvariables = getvariablesSORTED(Y); Xbase = getbase(X); Xvariables = getvariables(X); [i,j,k] = find(Ybase); if ~isequal(sort(i),1:length(i)) end if ~isequal(sort(j),2:(length(i)+1)) end if ~all(k == 1) end [mt,variabletype] = yalmip('monomtable'); % Linear, or at least linear in Y if all(variabletype(Xvariables) == 0) %| all(sum(mt(any(mt(getvariables(X),getvariables(Y)),2),:),2)==1) % Simple linear replacement v = 1; v1 = []; v2 = []; i1 = []; i2 = []; for i = 1:length(Xvariables) XisinY = find(Xvariables(i) == Yvariables); if ~isempty(XisinY) % v = [v;W(XisinY)]; v1 = [v1 XisinY]; i1 = [i1 i]; else % v = [v;recover(Xvariables(i))]; v2 = [v2 Xvariables(i)]; i2 = [i2 i]; end end v = sparse(i1,ones(length(i1),1),W(v1),length(Xvariables),1); v = v + sparse(i2,ones(length(i2),1),recover(v2),length(Xvariables),1); Z = Xbase*[1;v]; %Z = Xbase*[v]; Z = reshape(Z,size(X,1),size(X,2)); else if nnz(mt(getvariables(X),getvariables(Y)))==0 Z = X; else Z = nonlinearreplace(X,Y,W); end return % error('Nonlinear replacement not supported yet') end % This has not been tested (copied from variable_replace) so it is placed % in a catch to be safe. try Xvariables = getvariables(Z); extvar = yalmip('extvariables'); Xext = find(ismember(Xvariables,extvar)); if ~isempty(Xext) %We must dig down in extended operators to see if they use the replaced %set of variables for i = 1:length(Xext) extstruct = yalmip('extstruct',Xvariables(Xext(i))); anychanged = 0; for j = 1:length(extstruct.arg) if isa(extstruct.arg{j},'sdpvar') XinY = find(ismembc(getvariables(extstruct.arg{j}),Yvariables)); if ~isempty(XinY) anychanged = 1; extstruct.arg{j} = replace(extstruct.arg{j},Y,W); else end end end if anychanged Zi = yalmip('define',extstruct.fcn,extstruct.arg{:}); Xvariables(Xext(i)) = getvariables(Zi); end end % And now recover this sucker Z = struct(Z); Z.lmi_variables = Xvariables; % Messed up order (lmi_variables should be sorted) if any(diff(Z.lmi_variables)<0) [i,j]=sort(Z.lmi_variables); Z.basis = [Z.basis(:,1) Z.basis(:,j+1)]; Z.lmi_variables = Z.lmi_variables(j); end Z = sdpvar(Z.dim(1),Z.dim(2),[],Z.lmi_variables,Z.basis); end catch end function Yvariables = getvariablesSORTED(Y); Y = Y(:); for i = 1:length(Y) Yvariables(i) = getvariables(Y(i)); end
github
EnricoGiordano1992/LMI-Matlab-master
separable.m
.m
LMI-Matlab-master/yalmip/extras/separable.m
1,525
utf_8
10bbf0c3ce778c85f88b4dde2c05da0b
function exponent_m = separable(exponent_m,exponent_p,options); %SEPARABLE Internal function, not used % %exponent_m(sum((exponent_m>0),2)>2,:)=[]; % % card = max(sum((exponent_p>0),2)); % % n_less = exponent_m(sum((exponent_m>0),2)<card,:); % n_equ = exponent_m(sum((exponent_m>0),2)==card,:); % n_larg = exponent_m(sum((exponent_m>0),2)>card,:); % % A = minksum(n_less,n_less); % B = minksum(n_less,n_equ); % C = minksum(n_less,n_larg); % D = minksum(n_equ,n_equ); % E = minksum(n_equ,n_larg); % F = minksum(n_larg,n_larg); disconnected = []; for i = 1:size(exponent_p,2) for j = i+1:size(exponent_p,2) if ~any(exponent_p(:,i) & exponent_p(:,j)) disconnected = [disconnected;i j]; end end end for i = 1:size(disconnected,1) j = disconnected(i,1); k = disconnected(i,2); n0 = find(~exponent_m(:,j) & ~exponent_m(:,k)); nx = find(exponent_m(:,j) & ~exponent_m(:,k)); nz = find(~exponent_m(:,j) & exponent_m(:,k)); nxz = find(exponent_m(:,j) & exponent_m(:,k)); % m0 = exponent_m(n0,:); % mx = exponent_m(nx,:); % mz = exponent_m(nz,:); % mxz = exponent_m(nxz,:); % % from_E = minksum(mx,mz); % from_B = minksum([m0;mx;mz],mxz); % from_C = minksum(mxz,mxz); % m_e = exponent_m(union(nx,nz),:) % m_cb = exponent_m(union(nx,nz),:) exponent_m = exponent_m([n0;nx;nz],:); end function msum = minksum(a,b); msum = []; for i = 1:size(a,1) for j = i:size(b,1) msum = [msum;a(i,:)+b(j,:)]; end end
github
EnricoGiordano1992/LMI-Matlab-master
convert_polynomial_to_sdpfun.m
.m
LMI-Matlab-master/yalmip/extras/convert_polynomial_to_sdpfun.m
5,293
utf_8
1282b1c3b7f96c19912ea8bbbc911873
function [model,changed] = convert_polynomial_to_sdpfun(model) % Assume we don't do anything changed = 0; found_and_converted = []; if any(model.variabletype > 2) % Bugger... changed = 1; % Find a higher order term sigmonials = find(model.variabletype == 3); model = update_monomial_bounds(model); monosig = sigmonials(find(sum(model.monomtable(sigmonials,:) | model.monomtable(sigmonials,:),2)==1)); if ~isempty(monosig) % These are just monomial terms such as x^0.4 etc for i = 1:length(monosig) variable = find(model.monomtable(monosig(i),:)); power = model.monomtable(monosig(i),variable); model = add_sigmonial_eval(model,monosig(i),variable,power) found_and_converted = [found_and_converted;variable power monosig(i)]; end end end if any(model.variabletype > 2) % Bugger...we have mixed terms such as x/y etc % Find a higher order term sigmonials = find(model.variabletype == 3); for i = 1:length(sigmonials) n_old_monoms = size(model.monomtable,1); monoms = model.monomtable(sigmonials(i),:); sigs = find((monoms ~= fix(monoms)) | monoms<0); powers = monoms(sigs); if ~isempty(found_and_converted) for j = 1:length(sigs) old_index = findrows(found_and_converted(:,1:2),[sigs(j) powers(j)]); if ~isempty(old_index) corresponding_variable = found_and_converted(old_index,3); model.monomtable(sigmonials(i),sigs(j)) = 0; model.monomtable(sigmonials(i),corresponding_variable) = 1; sigs(j)=nan; end end end powers(isnan(sigs)) = []; sigs(isnan(sigs)) = []; if length(sigs) > 0 % Terms left that haven't been modeled model.monomtable(sigmonials(i),sigs) = 0; model.monomtable = blkdiag(model.monomtable,speye(length(sigs))); model.monomtable(sigmonials(i),n_old_monoms+1:n_old_monoms+length(sigs)) = 1; model.variabletype(sigmonials(i)) = 3; model.variabletype(end+1:end+length(sigs)) = 0; model.c(end+1:end+length(sigs)) = 0; model.Q = blkdiag(model.Q,zeros(length(sigs))); model.F_struc = [model.F_struc zeros(size(model.F_struc,1),length(sigs))]; model.lb = [model.lb;-inf(length(sigs),1)]; model.ub = [model.ub;inf(length(sigs),1)]; model.x0 = [model.x0;model.x0(sigs).^powers(:)]; for j = 1:length(sigs) model.evalVariables = [model.evalVariables n_old_monoms+j]; model.evalMap{end+1}.fcn = 'power_internal2'; model.evalMap{end}.arg{1} = recover(n_old_monoms+j); model.evalMap{end}.arg{2} = powers(j); model.evalMap{end}.arg{3} = []; model.evalMap{end}.variableIndex = sigs(j); model.evalMap{end}.properties.bounds = @power_bound; model.evalMap{end}.properties.convexhull = @power_convexhull; end end if sum(model.monomtable(sigmonials(i),:))<=2 if nnz(model.monomtable(sigmonials(i),:))==1 model.variabletype(sigmonials(i)) = 2; else model.variabletype(sigmonials(i)) = 1; end end end model = update_eval_bounds(model); end function model = add_sigmonial_eval(model,monosig,variable,power) model.evalVariables = [model.evalVariables monosig]; model.evalMap{end+1}.fcn = 'power_internal2'; model.evalMap{end}.arg{1} = recover(variable); model.evalMap{end}.arg{2} = power; model.evalMap{end}.arg{3} = []; model.evalMap{end}.variableIndex = find(model.monomtable(monosig,:)); model.evalMap{end}.properties.bounds = @power_bound; model.evalMap{end}.properties.convexhull = @power_convexhull; model.monomtable(monosig,variable) = 0; model.monomtable(monosig,monosig) = 1; model.variabletype(monosig) = 0; % This should not be hidden here.... function [L,U] = power_bound(xL,xU,power) if xL >= 0 % This is the easy case if power > 0 L = xL^power; U = xU^power; else L = xU^power; U = xL^power; end else if power < 0 & xU > 0 % Nasty crossing around zero U = inf; L = -inf; else if even(power) L = 0; U = max([xL^power xU^power]); elseif even(power+1) L = xL^power; U = xU^power; else disp('Not implemented yet') error end end end function [Ax, Ay, b] = power_convexhull(xL,xU,power) x2 = (xL + xU)/4; x1 = (3*xL + xU)/4; x3 = (xL + 3*xU)/4; fL = xL^power; f1 = x1^power; f2 = x2^power; f3 = x3^power; fU = xU^power; dfL = power*xL^(power-1); df1 = power*x1^(power-1); df2 = power*x2^(power-1); df3 = power*x3^(power-1); dfU = power*xU^(power-1); if power > 1 | power < 0 [Ax,Ay,b] = convexhullConvex(xL,x1,x2,x3,xU,fL,f1,f2,f3,fU,dfL,df1,df2,df3,dfU); else [Ax,Ay,b] = convexhullConcave(xL,xU,fL,fU,dfL,dfU); end if ~isempty(Ax) if isinf(Ax(1)) Ay(1) = 0; Ax(1) = -1; B(1) = 0; end end
github
EnricoGiordano1992/LMI-Matlab-master
apply_recursive_evaluation.m
.m
LMI-Matlab-master/yalmip/extras/apply_recursive_evaluation.m
3,378
utf_8
a9d54e9a0c8d81d0b492136a014b6007
function xevaled = apply_recursive_evaluation(p,xevaled) xevaled = xevaled(:)'; for i = 1:length(p.evaluation_scheme) switch p.evaluation_scheme{i}.group case 'eval' xevaled = process_evals(p,xevaled,p.evaluation_scheme{i}.variables); case 'monom' xevaled = process_monomials(p,xevaled,p.evaluation_scheme{i}.variables); xevaled = real(xevaled); otherwise end end xevaled = xevaled(:); function x = process_monomials(p,x,indicies); indicies = p.monomials(indicies); try % Do bilinears and quadratics directly if max(p.variabletype(indicies))==2 BilinearIndex = p.variabletype(indicies)==1; if any(BilinearIndex) Bilinears = indicies(BilinearIndex); x(Bilinears) = x(p.BilinearsList(Bilinears,1)).*x(p.BilinearsList(Bilinears,2)); end QuadraticIndex = p.variabletype(indicies)==2; if any(QuadraticIndex) Quadratics = indicies(QuadraticIndex); x(Quadratics) = x(p.QuadraticsList(Quadratics,1)).^2; end else % Mixed stuff. At least do bilinear and quadratics efficiently BilinearIndex = p.variabletype(indicies)==1; if any(BilinearIndex) Bilinears = indicies(BilinearIndex); x(Bilinears) = x(p.BilinearsList(Bilinears,1)).*x(p.BilinearsList(Bilinears,2)); indicies(BilinearIndex) = []; end QuadraticIndex = p.variabletype(indicies)==2; if any(QuadraticIndex) Quadratics = indicies(QuadraticIndex); x(Quadratics) = x(p.QuadraticsList(Quadratics,1)).^2; indicies(QuadraticIndex)=[]; end V = p.monomtable(indicies,:); r = find(any(V,1)); V = V(:,r); x(indicies) = prod(repmat(x(r),length(indicies),1).^V,2); end catch for i = indicies(:)' x(i) = prod(x.^p.monomtable(i,:),2); end end function x = process_evals(p,x,indicies) if isfield(p.evalMap{1},'prearg') for i = indicies arguments = p.evalMap{i}.prearg; arguments{1+p.evalMap{i}.argumentIndex} = x(p.evalMap{i}.variableIndex); if isequal(arguments{1},'log') & (arguments{1+p.evalMap{i}.argumentIndex}<=0) x(p.evalVariables(i)) = -1e4; else x(p.evalMap{i}.computes(:)) = feval(arguments{:}); end end else for i = indicies %arguments = {p.evalMap{i}.fcn,x(p.evalMap{i}.variableIndex)}; %arguments = {arguments{:},p.evalMap{i}.arg{2:end-1}}; % Append argument with function name, and remove trailing % artificial argument arguments = {p.evalMap{i}.fcn,p.evalMap{i}.arg{1:end-1}}; arguments{1+p.evalMap{i}.argumentIndex} = x(p.evalMap{i}.variableIndex); if isequal(arguments{1},'log') & (arguments{1+p.evalMap{i}.argumentIndex}<=0) x(p.evalVariables(i)) = -1e4; %FIXME DOES NOT WORK if length(arguments{2})>1 disp('Report bug in apply_recursive_evaluation') end else if isfield(p.evalMap{i},'computes') x(p.evalMap{i}.computes) = feval(arguments{:}); else x(p.evalVariables(i)) = feval(arguments{:}); end end end end
github
EnricoGiordano1992/LMI-Matlab-master
sdpt3struct2sdpt3block.m
.m
LMI-Matlab-master/yalmip/extras/sdpt3struct2sdpt3block.m
1,867
utf_8
dc8d29d2e8699f12a49253ce3dc1c69d
function [C,A,b,blk] = sdpt3struct2sdpt3block(F_struc,c,K) %SDPT3STRUCT2SDPT3BLOCK Internal function to convert data to SDPT3 format nvars = size(F_struc,2)-1; block = 1; top = 1; block = 1; blksz = 100; if K.l>0 blk{block,1} = 'l'; blk{block,2} = K.l; C{block,1} = sparse(F_struc(top:top+K.l-1,1)); for var_index = 1:nvars A{block,var_index} = -sparse(F_struc(top:top+K.l-1,var_index+1)); end block = block+1; top = top+sum(K.l); end if K.q>0 blk{block,1} = 'q'; blk{block,2} = K.q; C{block,1} = sparse(F_struc(top:top+sum(K.q)-1,1)); for var_index = 1:nvars A{block,var_index} = -sparse(F_struc(top:top+sum(K.q)-1,var_index+1)); end block = block+1; top = top+sum(K.q); end if K.s>0 constraints = 1; while constraints<=length(K.s) n = K.s(constraints); Cvec = F_struc(top:top+n^2-1,1); C{block,1} = reshape(Cvec,n,n); for var_index = 1:nvars Avec = -F_struc(top:top+n^2-1,var_index+1); A{block,var_index} = reshape(Avec,n,n); end blk{block,1} = 's'; blk{block,2} = n; top = top+n^2; constraints = constraints+1; sum_n = n; while (sum_n<blksz) & (constraints<=length(K.s)) n = K.s(constraints); Cvec = F_struc(top:top+n^2-1,1); C{block,1} = blkdiag(C{block,1},reshape(Cvec,n,n)); [n1,m1] = size(A{block,var_index}); [n2,m2] = size(reshape(-F_struc(top:top+n^2-1,1+1),n,n)); Z = spalloc(n1,m2,0); for var_index = 1:nvars Avec = -F_struc(top:top+n^2-1,var_index+1); A{block,var_index} = [A{block,var_index} Z;Z' reshape(Avec,n,n)]; end blk{block,2} = [blk{block,2} n]; top = top+n^2; sum_n = sum_n+n; constraints = constraints+1; end block = block+1; end end % And we solve dual... b = -c(:); % blkdiag with 2 sparse blocks function y = blkdiag(x1,x2) [n1,m1] = size(x1); [n2,m2] = size(x2); Z = spalloc(n1,m2,0); y = [x1 Z;Z' x2];
github
EnricoGiordano1992/LMI-Matlab-master
coefficients.m
.m
LMI-Matlab-master/yalmip/extras/coefficients.m
6,992
utf_8
071772bad3d379ac9c6bdfa2a59483c8
function [base,v] = coefficients(p,x,vin) %COEFFICIENTS Extract coefficients and monomials from polynomials % % [c,v] = COEFFICIENTS(p,x) extracts the coefficents % of a scalar polynomial p(x) = c'*v(x) % % c = COEFFICIENTS(p,x) extracts the all coefficents % of a matrix polynomial. % % INPUT % p : SDPVAR object % x : SDPVAR object % % OUTPUT % c : SDPVAR object % v : SDPVAR object % % EXAMPLE % sdpvar x y s t % p = x^2+x*y*(s+t)+s^2+t^2; % define p(x,y), parameterized with s and t % [c,v] = coefficients(p,[x y]); % sdisplay([c v]) % % See also SDPVAR if isa(p,'double') base = p(:); v = 1; return end if isa(p,'ncvar') if isa(x,'ncvar') error('Coefficients not applicable when x is non-commuting'); end [base,v] = ncvar_coefficients(p,x); return end if nargout>1 & (max(size(p))>1) error('For matrix inputs, only the coefficients can be returned. Request feature if you need this...'); end if nargin==1 allvar = depends(p); xvar = allvar; x = recover(xvar); else xvar = intersect(depends(x),depends(p)); end % Try to debug this! p = p(:); base = []; for i = 1:length(p) allvar = depends(p(i)); t = setdiff(allvar,xvar); if isa(p(i),'double') base = [base;p(i)]; v = 1; elseif isa(p(i),'sdpvar') [exponent_p,p_base] = getexponentbase(p(i),recover(depends(p(i)))); ParametricIndicies = find(ismember(allvar,t)); % FIX : don't define it here, wait until sparser below. Speed!! tempbase = parameterizedbase(p(i),[],recover(t),ParametricIndicies,exponent_p,p_base,allvar); [i,j,k] = unique(full(exponent_p(:,find(~ismember(allvar,t)))),'rows'); V = sparse(1:length(k),k,1,length(tempbase),max(k))'; base = [base;V*tempbase]; if nargout == 2 keepthese = j(1:max(k)); v = recovermonoms(exponent_p(keepthese,find(~ismember(allvar,t))),recover(xvar)); end elseif isa(p,'ncvar') [exponent_p,ordered_list] = exponents(p,recover(depends(p(i)))); ParametricIndicies = find(ismember(allvar,t)); NotParametricIndicies = find(~ismember(allvar,t)); pars = recover(allvar(ParametricIndicies))'; nonpar = recover(allvar(NotParametricIndicies))'; NonParMonoms = exponent_p(:,NotParametricIndicies); used = zeros(size(exponent_p,1),1); for j = 1:size(exponent_p,1) if ~used(j) thisMonom = NonParMonoms(j); thisMonom = 1; for k = 1:max(find(ordered_list(j,:))) thisMonom = thisMonom*recover(ordered_list(j,k)); end thisBase = prod(ordered_list(j,nonpar)); end end for j = 1:length(ParametricIndicies) a = find(ordered_list(:,1) == ParametricIndicies(j)) b = []; for k = 1:length(a) b = [b ordered_list(a(k),2:end)] end b = b(find(b)); basetemp = []; for k = 1:length(b) basetemp = [basetemp ncvar(struct(recover(t((k)))))]; end base = [base;sum(basetemp)]; end end end if nargout <= 1 v = []; vin=v; else if nargin<3 vin=v; end end if isequal(v,vin) return else for i = 1:length(v) if isa(v(i),'double') si(i) = 0; else si(i) = getvariables(v(i)); end end for i = 1:length(vin) if isa(vin(i),'double') vi(i) = 0; else vi(i) = getvariables(vin(i)); end end newcvals = []; if all(ismember(si,vi)) for i = 1:length(vin) where = find(vi(i) == si); if isempty(where) newcvals = [newcvals;0]; %newc(i,1) = 0; else %newc(i,1) = base(where); newcvals = [newcvals;base(where)]; end end newc = sparse(1:length(vin),ones(length(vin),1),newcvals); else error('The supplied basis is not sufficient'); end base = newc(:); v = vin(:); end function p_base_parametric = parameterizedbase(p,z, params,ParametricIndicies,exponent_p,p_base,allvar) % Check for linear parameterization parametric_basis = exponent_p(:,ParametricIndicies); %if all(sum(parametric_basis,2)==0) if all(all(parametric_basis==0)) p_base_parametric = full(p_base(:)); return end if all(ismember(parametric_basis,[0 1])) & all(sum(parametric_basis,2)<=1)%all(sum(parametric_basis,2)<=1) p_base_parametric = full(p_base(:)); n = length(p_base_parametric); ii = []; vars = []; js = sum(parametric_basis,1); for i = 1:size(parametric_basis,2) if js(i) j = find(parametric_basis(:,i)); ii = [ii j(:)']; vars = [vars repmat(i,1,js(i))]; end end k = setdiff1D(1:n,ii); if isempty(k) p_base_parametric = p_base_parametric.*sparse(ii,repmat(1,1,n),params(vars)); else pp = params(vars); % Must do this, bug in ML 6.1 (x=sparse(1);x([1 1]) gives different result in 6.1 and 7.0!) p_base_parametric = p_base_parametric.*sparse([ii k(:)'],repmat(1,1,n),[pp(:)' ones(1,1,length(k))]); end else % Bummer, nonlinear parameterization sucks... [mt,variabletype,hashedmonoms,hashkey] = yalmip('monomtable'); exponent_p_ParametricIndicies = exponent_p(:,ParametricIndicies); LocalHash = exponent_p_ParametricIndicies*hashkey(allvar(ParametricIndicies)); [yn,loc] = ismember(LocalHash,hashedmonoms); something = any(exponent_p_ParametricIndicies,2); dummy = sdpvar(1); for i = 1:length(p_base) %j = find(exponent_p(i,ParametricIndicies)); % j = find(exponent_p_ParametricIndicies(i,:)); if something(i)%~isempty(j) % temp = 1;%p_base(i); % quickfind = findhashsorted(hashedmonoms, hashkey(ParametricIndicies(j))'*exponent_p(i,ParametricIndicies(j))'); quickfind = loc(i); if (quickfind) %temp = recover(quickfind); temp = quickrecover(dummy,quickfind,p_base(i)); else temp = p_base(i); j = find(exponent_p_ParametricIndicies(i,:)); for k = 1:length(j) if exponent_p(i,ParametricIndicies(j(k)))==1 temp = temp*params(j(k)); else temp = temp*params(j(k))^exponent_p(i,ParametricIndicies(j(k))); end end end xx{i} = temp; else xx{i} = p_base(i); end end p_base_parametric = stackcell(sdpvar(1,1),xx)'; end
github
EnricoGiordano1992/LMI-Matlab-master
shadowjacobian.m
.m
LMI-Matlab-master/yalmip/extras/shadowjacobian.m
2,364
utf_8
f46a1b7f9bb3d8e236fea4f759ca7036
function dfdx = shadowjacobian(f,x) % See SDPVAR/jacobian if isa(f,'double') dfdx = zeros(size(f,1),length(x)); return end if ~isempty(intersect(deepdepends(f),depends(x))) % Under development end if nargin==1 if isa(f,'sdpvar') x = recover(depends(f)); else x = 0; end else if length(getvariables(x))<length(x) error('x should be a vector of scalar independant variables'); end end [n,m]=size(f); if m>1 error('Jacobian only defined for column vectors.') end if n*m==1 dfdx = scalar_jacobian(f,x); % Argh, fix this (sorts inside scalar_jacobian for i = 1:length(x) var(i,1)=getvariables(x(i)); end [i,j]=sort(var); dfdx = dfdx(1,j); return else dfdx = []; AllVars = recover(unique([depends(f) getvariables(x)])); for i = 1:length(f) dfdx = [dfdx;scalar_jacobian(f(i),x,AllVars)]; end % Argh, fix this (sorts inside scalar_jacobian for i = 1:length(x) var(i,1)=getvariables(x(i)); end [i,j]=sort(var); dfdx = dfdx(:,j); end function [dfdx,dummy] = scalar_jacobian(f,x,AllVars) if isa(f,'double') dfdx = zeros(1,length(x)); return end if nargin==2 AllVars = recover(uniquestripped([depends(f) getvariables(x)])); %AllVars = recover(uniquestripped([deepdepends(f) depends(f) getvariables(x)])); end exponent_p = exponents(f,AllVars); coefficients = getbase(f); coefficients = coefficients(2:end); coefficients = coefficients(:); if nnz(exponent_p(1,:))==0 exponent_p=exponent_p(2:end,:); end x_variables = getvariables(x); AllVars_variables = getvariables(AllVars); %AllDeriv = []; AllDeriv2 = []; for k = 1:length(x) wrt = find(ismembc(AllVars_variables,x_variables(k))); deriv = exponent_p; deriv(:,wrt) = deriv(:,wrt)-1; keep{k} = find(deriv(:,wrt)~=-1); AllDeriv2 = [AllDeriv2;deriv(keep{k},:)]; end if size(AllDeriv2,1)==0 dummy = 1; else dummy = recovermonoms(AllDeriv2,AllVars); end top = 1; dfdx=[]; for k = 1:length(x) wrt = find(ismembc(AllVars_variables,x_variables(k))); m = length(keep{k}); if m>0 poly = sum((coefficients(keep{k}(:)).*exponent_p(keep{k}(:),wrt)).*dummy(top:top+m-1),1); top = top + m; else poly = 0; end dfdx = [dfdx ; poly]; end dfdx = dfdx';
github
EnricoGiordano1992/LMI-Matlab-master
convert_sigmonial_to_sdpfun.m
.m
LMI-Matlab-master/yalmip/extras/convert_sigmonial_to_sdpfun.m
9,191
utf_8
56fb4a0deca7cfa0652142e2078fbb28
function [model,changed] = convert_sigmonial_to_sdpfun(model) % Always add this dummy struct model.high_monom_model = []; % Assume we don't do anything changed = 0; found_and_converted = []; if any(model.variabletype > 3) % Bugger... changed = 1; % Find a higher order term sigmonials = find(model.variabletype == 4); model = update_monomial_bounds(model); monosig = sigmonials(find(sum(model.monomtable(sigmonials,:) | model.monomtable(sigmonials,:),2)==1)); if ~isempty(monosig) % These are just monomial terms such as x^0.4 etc for i = 1:length(monosig) variable = find(model.monomtable(monosig(i),:)); power = model.monomtable(monosig(i),variable); model = add_sigmonial_eval(model,monosig(i),variable,power); found_and_converted = [found_and_converted;variable power monosig(i)]; end end end if any(model.variabletype > 3) % Bugger...we have mixed terms such as x/y etc % Find a higher order term sigmonials = find(model.variabletype == 4); for i = 1:length(sigmonials) n_old_monoms = size(model.monomtable,1); monoms = model.monomtable(sigmonials(i),:); % Which variables have fractional or negative powers sigs = find((monoms ~= fix(monoms)) | monoms<0); powers = monoms(sigs); if ~isempty(found_and_converted) % Maybe some of the terms have already been defined as new % variables for j = 1:length(sigs) old_index = findrows(found_and_converted(:,1:2),[sigs(j) powers(j)]); if ~isempty(old_index) corresponding_variable = found_and_converted(old_index,3); model.monomtable(sigmonials(i),sigs(j)) = 0; model.monomtable(sigmonials(i),corresponding_variable) = 1; sigs(j)=nan; end end end powers(isnan(sigs)) = []; sigs(isnan(sigs)) = []; if length(sigs) > 0 % Terms left that haven't been modeled model.monomtable(sigmonials(i),sigs) = 0; model.monomtable = blkdiag(model.monomtable,speye(length(sigs))); model.monomtable(sigmonials(i),n_old_monoms+1:n_old_monoms+length(sigs)) = 1; model.variabletype(sigmonials(i)) = 3; model.variabletype(end+1:end+length(sigs)) = 0; model.c(end+1:end+length(sigs)) = 0; model.Q = blkdiag(model.Q,zeros(length(sigs))); model.F_struc = [model.F_struc zeros(size(model.F_struc,1),length(sigs))]; model.lb = [model.lb;-inf(length(sigs),1)]; model.ub = [model.ub;inf(length(sigs),1)]; if ~isempty(model.x0) model.x0 = [model.x0;model.x0(sigs).^powers(:)]; end for j = 1:length(sigs) model.evalVariables = [model.evalVariables n_old_monoms+j]; model.isevalVariable(model.evalVariables)=1; if powers(j)==-1 model.evalMap{end+1} = inverse_internal2_operator(model,sigs(j),n_old_monoms+j); else model.evalMap{end+1} = power_internal2_operator(model,sigs(j),powers(j)); end model.evalMap{end}.properties.domain = [-inf inf]; model.evalMap{end}.variableIndex = sigs(j); model.evalMap{end}.argumentIndex = 1; model.evalMap{end}.computes = n_old_monoms+j; found_and_converted = [found_and_converted;sigs(j) powers(j) n_old_monoms+j]; end end if sum(model.monomtable(sigmonials(i),:))<=2 if nnz(model.monomtable(sigmonials(i),:))==1 model.variabletype(sigmonials(i)) = 2; else model.variabletype(sigmonials(i)) = 1; end end end model = update_eval_bounds(model); for i = 1:length(model.evalMap) if isequal(model.evalMap{i}.fcn,'power_internal2') if isequal(model.evalMap{i}.arg{2},-1) if model.lb(model.evalMap{i}.variableIndex) > 0 model.evalMap{i}.properties.convexity = 'convex'; model.evalMap{i}.properties.monotonicity='decreasing'; model.evalMap{i}.properties.inverse=@(x)1./x; elseif model.ub(model.evalMap{i}.variableIndex) < 0 model.evalMap{i}.properties.convexity = 'concave'; model.evalMap{i}.properties.monotonicity='increasing'; model.evalMap{i}.properties.inverse=@(x)1./x; end end end end end function model = add_sigmonial_eval(model,monosig,variable,power) model.evalVariables = [model.evalVariables monosig]; model.isevalVariable(model.evalVariables)=1; if power == -1 model.evalMap{end+1} = inverse_internal2_operator(model,variable,variable); else model.evalMap{end+1} = power_internal2_operator(model,variable,power); end model.evalMap{end}.variableIndex = find(model.monomtable(monosig,:)); model.evalMap{end}.argumentIndex = 1; model.evalMap{end}.computes = monosig; model.monomtable(monosig,variable) = 0; model.monomtable(monosig,monosig) = 1; model.variabletype(monosig) = 0; % This should not be hidden here.... function [L,U] = power_bound(xL,xU,power) if xL >= 0 % This is the easy case % we use abs since 0 sometimes actually is -0 but still passes the test % above if power > 0 L = abs(xL)^power; U = abs(xU)^power; else L = abs(xU)^power; U = abs(xL)^power; end else if power < 0 & xU > 0 % Nasty crossing around zero U = inf; L = -inf; elseif xU < 0 L = xU^power; U = xL^power; else disp('Not implemented yet') error end end function [L,U] = inverse_bound(xL,xU) if xL >= 0 % This is the easy case. We use abs since 0 sometimes actually is -0 % but still passes the test above L = abs(xU)^-1; U = abs(xL)^-1; else if xU > 0 % Nasty crossing around zero U = inf; L = -inf; elseif xU < 0 L = xU^-1; U = xL^-1; else disp('Not implemented yet') error end end function [Ax, Ay, b] = power_convexhull(xL,xU,power) fL = xL^power; fU = xU^power; dfL = power*xL^(power-1); dfU = power*xU^(power-1); if xL<0 & xU>0 % Nasty crossing Ax = []; Ay = []; b = []; return end average_derivative = (fU-fL)/(xU-xL); xM = (average_derivative/power).^(1/(power-1)); if xU < 0 xM = -xM; end fM = xM^power; dfM = power*xM^(power-1); if ((power > 1 | power < 0) & (xL >=0)) | ((power < 1 & power > 0) & (xU <=0)) [Ax,Ay,b] = convexhullConvex(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); else [Ax,Ay,b] = convexhullConcave(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); end if ~isempty(Ax) if isinf(Ax(1)) Ay(1) = 0; Ax(1) = -1; B(1) = 0; end end function [Ax, Ay, b] = inverse_convexhull(xL,xU) fL = xL^-1; fU = xU^-1; dfL = -1*xL^(-2); dfU = -1*xU^(-2); if xL<0 & xU>0 % Nasty crossing Ax = []; Ay = []; b = []; return end average_derivative = (fU-fL)/(xU-xL); xM = (average_derivative/(-1)).^(1/(-1-1)); if xU < 0 xM = -xM; end fM = xM^(-1); dfM = (-1)*xM^(-2); if xL >= 0 [Ax,Ay,b] = convexhullConvex(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); else [Ax,Ay,b] = convexhullConcave(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); end if ~isempty(Ax) if isinf(Ax(1)) Ay(1) = 0; Ax(1) = -1; B(1) = 0; end end function df = power_derivative(x,power) fL = xL^power; fU = xU^power; dfL = power*xL^(power-1); dfU = power*xU^(power-1); if xL<0 & xU>0 % Nasty crossing Ax = []; Ay = []; b = []; return end if power > 1 | power < 0 [Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU); else [Ax,Ay,b] = convexhullConcave(xL,xU,fL,fU,dfL,dfU); end if ~isempty(Ax) if isinf(Ax(1)) Ay(1) = 0; Ax(1) = -1; B(1) = 0; end end function f = inverse_internal2_operator(model,variable,in); f.fcn = 'inverse_internal2'; f.arg{1} = recover(in); f.arg{2} = []; f.properties.bounds = @inverse_bound; f.properties.convexhull = @inverse_convexhull; f.properties.derivative = @(x) -1./(x.^2); if model.lb(variable)>0 | model.ub(variable) < 0 f.properties.monotonicity = 'decreasing'; f.properties.inverse = @(x)(1./x); end if model.lb(variable) >= 0 f.properties.convexity = 'convex'; elseif model.ub(variable) <= 0 f.properties.convexity = 'concave'; end function f = power_internal2_operator(model,variable,power); f.fcn = 'power_internal2'; f.arg{1} = recover(variable); f.arg{2} = power; f.arg{3} = []; f.properties.bounds = @power_bound; f.properties.convexhull = @power_convexhull; f.properties.derivative = eval(['@(x) ' num2str(power) '*x.^(' num2str(power) '-1);']); if even(power) f.properties.range = [0 inf]; else f.properties.range = [-inf inf]; end
github
EnricoGiordano1992/LMI-Matlab-master
expandmodel.m
.m
LMI-Matlab-master/yalmip/extras/expandmodel.m
14,898
utf_8
d969c77d2766c9985e6935c762569593
function [F,failure,cause,ALREADY_MODELLED] = expandmodel(F,h,options,w) % FIX : Current code experimental, complex, conservative, has issues with % nonlinearities and is slow... % % If it wasn't for polynomials and sigmonials, it would be trivial, but the % code is extremely messy since we want to have this functionality too global LUbounds global ALREADY_MODELLED global MARKER_VARIABLES global DUDE_ITS_A_GP global ALREADY_MODELLED global ALREADY_MODELLED_INDEX global REMOVE_THESE_IN_THE_END global OPERATOR_IN_POLYNOM global CONSTRAINTCUTSTATE % All extended variables in the problem. It is expensive to extract this % one so we will keep it and pass it along in the recursion extendedvariables = yalmip('extvariables'); % We keep track of all auxilliary variables introduced by YALMIP nInitial = yalmip('nvars'); boundsAlreadySet = 0; % Meta constraints are expanded first (iff, implies, alldifferent etc) if ~isempty(F) meta = find(is(F,'meta')); if ~isempty(meta) LUbounds=setupBounds(F,options,extendedvariables); boundsAlreadySet = 1; F = expandmeta(F); end end if isa(F,'constraint') F = lmi(F); end if nargin < 3 options = sdpsettings; end if isempty(options) options = sdpsettings; end if isfield(options,'reusemodel') else ALREADY_MODELLED = []; % Temporary hack to deal with a bug in CPLEX. For the implies operator (and % some more) YALMIP creates a dummy variable x with (x==1). Cplex fails % to solve problem with these stupid variables kept, hence we need to % remove these variables and constraints... MARKER_VARIABLES = []; % Temporary hack to deal with geometric programs. GPs are messy here, % becasue we can by mistake claim nonconvexity, since we may have no % sigmonial terms but indefinite quadratic term, but the whole problem is % meant to be solved using a GP solver. YES, globals suck, but this is % only temporary...hrm. DUDE_ITS_A_GP = 0; % Keep track of expressions that already have been modelled. Note that if a % graph-model already has been constructed but we now require a milp, for % numerical reasons, we should remove the old graph descriptions (important % for MPT models in particular) % FIX: Pre-parse the whole problem etc (solves the issues with GP also) ALREADY_MODELLED = {}; ALREADY_MODELLED_INDEX = []; REMOVE_THESE_IN_THE_END = []; % Nonlinear operator variables are not allowed to be used in polynomial % expressions, except if they are exactly modelled, i.e. modelled using % MILP models. We will expand the model and collect variables that are in % polynomials, and check in the end if they are exaclty modelled OPERATOR_IN_POLYNOM = []; end % Assume success failure = 0; cause = ''; % Early bail out if isempty(extendedvariables) return end if nargin < 4 w = []; end if isempty(F) & isempty(h) return end % Check if it already has ben expanded in robustify or similar F_alreadyexpanded = []; if ~isempty(F) F_alreadyexpanded = []; already_expanded = expanded(F); if all(already_expanded) if isempty(setdiff(getvariables(h),expanded(h))) return end elseif any(already_expanded) F_alreadyexpanded = F(find(already_expanded)); F = F(find(~already_expanded)); end end if ~isempty(F) % Extract all simple bounds from the model, and update the internal bounds % in YALMIP. This is done in order to get tighter big-M models if boundsAlreadySet == 0; LUbounds = setupBounds(F,options,extendedvariables); end % Expand equalities first, since these might generate nonconvex models, % thus making it unnecessaryu to generate epigraphs etc equalities = is(F,'equality'); if any(equalities) F = [F(find(equalities));F(find(~equalities))]; end end % All variable indicies used in the problem v1 = getvariables(F); v2 = depends(F); v3 = getvariables(h); v4 = depends(h); % HACK: Performance for LARGE-scale dualizations if isequal(v3,v4) & isequal(v1,v2) variables = uniquestripped([v1 v3]); else variables = uniquestripped([v1 v2 v3 v4]); end % Index to variables modeling operators extended = find(ismembcYALMIP(variables,extendedvariables)); if nargin < 3 options = sdpsettings; end % This is a tweak to allow epxansion of bilinear terms in robust problems, % is expression such as abs(x*w) < 1 for all -1 < w < 1 % This field is set to 1 in robustify and tells YALMIP to skip checking for % polynomial nonconvexity in the propagation if ~isfield(options,'expandbilinear') options.expandbilinear = 0; end % Monomial information. Expensive to retrieve, so we pass this along [monomtable,variabletype] = yalmip('monomtable'); % Is this trivially a GP, or meant to be at least? if strcmpi(options.solver,'gpposy') | strcmpi(options.solver,'fmincon-geometric') | strcmpi(options.solver,'mosek-geometric') DUDE_ITS_A_GP = 1; else if ~isequal(options.solver,'fmincon') & ~isequal(options.solver,'snopt') & ~isequal(options.solver,'ipopt') & ~isequal(options.solver,'') & ~isequal(options.solver,'mosek') % User has specified some other solver, which does not % support GPs, hence it cannot be intended to be a GP DUDE_ITS_A_GP = 0; else % Check to see if there are any sigmonial terms on top-level DUDE_ITS_A_GP = ~isempty(find(variabletype(variables) == 4)); end end % Constraints generated during recursive process to model operators F_expand = ([]); if isempty(F) F = ([]); end % First, check the objective variables = uniquestripped([depends(h) getvariables(h)]); monomtable = monomtable(:,extendedvariables); % However, some of the variables are already expanded (expand can be called % sequentially from solvemp and solverobust) variables = setdiff1D(variables,expanded(h)); % Determine if we should aim for MILP/EXACT model directly if options.allowmilp == 2 method = 'exact'; else method = 'graph'; end if DUDE_ITS_A_GP == 1 options.allowmilp = 0; method = 'graph'; end % Test for very common special case with only norm expression ExtendedMap = yalmip('extendedmap'); fail = 0; if 0%length(ExtendedMap) > 0 && all(strcmp('norm',{ExtendedMap.fcn})) for i = 1:length(ExtendedMap) if ~isequal(ExtendedMap(i).arg{2},2) fail = 1; break; end if ~isreal(ExtendedMap(i).arg{1}) fail = 1; break; end if any(ismembcYALMIP(getvariables(ExtendedMap(i).arg{1}),extendedvariables)) fail = 1; break; end end for i = 1:length(ExtendedMap) F_expand = [F_expand, cone(ExtendedMap(i).arg{1},ExtendedMap(i).var)]; end F = F + lifted(F_expand,1); return end % ************************************************************************* % OK, looks good. Apply recursive expansion on the objective % ************************************************************************* index_in_extended = find(ismembcYALMIP(variables,extendedvariables)); allExtStructs = yalmip('extstruct'); if ~isempty(index_in_extended) [F_expand,failure,cause] = expand(index_in_extended,variables,h,F_expand,extendedvariables,monomtable,variabletype,'objective',0,options,method,[],allExtStructs,w); end % ************************************************************************* % Continue with constraints % ************************************************************************* constraint = 1; all_extstruct = yalmip('extstruct'); while constraint <=length(F) & ~failure if ~already_expanded(constraint) Fconstraint = F(constraint); variables = uniquestripped([depends(Fconstraint) getvariables(Fconstraint)]); % If constraint is a cut, all generated constraints must be marked % as cuts too CONSTRAINTCUTSTATE = getcutflag(Fconstraint); [ix,jx,kx] = find(monomtable(variables,:)); if ~isempty(jx) % Bug in 6.1 if any(kx>1) OPERATOR_IN_POLYNOM = [OPERATOR_IN_POLYNOM extendedvariables(jx(find(kx>1)))]; end end index_in_extended = find(ismembcYALMIP(variables,extendedvariables)); if ~isempty(index_in_extended) if is(Fconstraint,'equality') if options.allowmilp | options.allownonconvex [F_expand,failure,cause] = expand(index_in_extended,variables,-sdpvar(Fconstraint),F_expand,extendedvariables,monomtable,variabletype,['constraint #' num2str(constraint)],0,options,'exact',[],allExtStructs,w); else failure = 1; cause = ['integer model required for equality in constraint #' num2str(constraint)]; end else [F_expand,failure,cause] = expand(index_in_extended,variables,-sdpvar(Fconstraint),F_expand,extendedvariables,monomtable,variabletype,['constraint #' num2str(constraint)],0,options,method,[],allExtStructs,w); end end end constraint = constraint+1; end CONSTRAINTCUTSTATE = 0; % ************************************************************************* % Temporary hack to fix the implies operator (cplex has some problem on % these trivial models where a variable only is used in x==1 % FIX: Automatically support this type of nonlinear operators % ************************************************************************* if ~isempty(MARKER_VARIABLES) MARKER_VARIABLES = sort(MARKER_VARIABLES); equalities = find(is(F,'equality')); equalities = equalities(:)'; remove = []; for j = equalities v = getvariables(F(j)); if length(v)==1 if ismembcYALMIP(v,MARKER_VARIABLES) remove = [remove j]; end end end if ~isempty(remove) F(remove) = []; end end nNow = yalmip('nvars'); if nNow > nInitial % YALMIP has introduced auxilliary variables % We mark these as auxilliary yalmip('addauxvariables',nInitial+1:nNow); end F_expand = lifted(F_expand,1); % ************************************************************************* % We are done. We might have generated some stuff more than once, but % luckily we keep track of these mistakes and remove them in the end (this % happens if we have constraints like (max(x)<1) + (max(x)>0) where % the first constraint would genrate a graph-model but the second set % creates a integer model. % ************************************************************************* if ~failure F = F + F_expand; if length(REMOVE_THESE_IN_THE_END) > 0 F = F(find(~ismember(getlmiid(F),REMOVE_THESE_IN_THE_END))); end end % ************************************************************************* % Normally, operators are not allowed in polynomial expressions. We do % however allow this if the variable has been modelled with an exact MILP % model. % ************************************************************************* if ~failure dummy = unique(OPERATOR_IN_POLYNOM); if ~isempty(dummy) for i = 1:length(dummy) aux(i,1) = find(ALREADY_MODELLED_INDEX == dummy(i)); end % Final_model = {ALREADY_MODELLED{unique(OPERATOR_IN_POLYNOM)}}; Final_model = {ALREADY_MODELLED{aux}}; for i = 1:length(Final_model) if ~(strcmp(Final_model{i}.method,'integer') | strcmp(Final_model{i}.method,'exact') | options.allownonconvex) failure = 1; cause = 'Nonlinear operator in polynomial expression.'; return end end end end % Append the previously appended F = F + F_alreadyexpanded; % Declare this model as expanded F = expanded(F,1); function [F_expand,failure,cause] = expand(index_in_extended,variables,expression,F_expand,extendedvariables,monomtable,variabletype,where,level,options,method,extstruct,allExtStruct,w) global DUDE_ITS_A_GP ALREADY_MODELLED ALREADY_MODELLED_INDEX REMOVE_THESE_IN_THE_END OPERATOR_IN_POLYNOM % ************************************************************************* % Go through all parts of expression to check for convexity/concavity % First, a small gateway function before calling the recursive stuff % ************************************************************************* if ~DUDE_ITS_A_GP [ix,jx,kx] = find(monomtable(variables,:)); if ~isempty(jx) % Bug in 6.1 if any(kx>1) OPERATOR_IN_POLYNOM = [OPERATOR_IN_POLYNOM extendedvariables(jx(find(kx>1)))]; end end end failure = 0; j = 1; try % Optimized for 6.5 and higher (location in ismember). If user has % older version, it will crash and go to code below expression_basis = getbase(expression); expression_vars = getvariables(expression); [yesno,location] = ismember(variables(index_in_extended),expression_vars); ztemp = recover(variables(index_in_extended)); while j<=length(index_in_extended) & ~failure % i = index_in_extended(j); % zi = recover(variables(i)); zi = ztemp(j);%recover(variables(i)); basis = expression_basis(:,1 + location(j)); if all(basis == 0) % The nonlinear term is inside a monomial if options.allownonconvex [F_expand,failure,cause] = expandrecursive(zi,F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,'exact',[],'exact',allExtStruct,w); else failure = 1; cause = 'Possible nonconvexity due to operator in monomial'; end %[F_expand,failure,cause] = expandrecursive(zi,F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,method,[],'exact',allExtStruct,w); elseif all(basis >= 0) [F_expand,failure,cause] = expandrecursive(zi,F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,method,[],'convex',allExtStruct,w); else [F_expand,failure,cause] = expandrecursive(zi,F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,method,[],'concave',allExtStruct,w); end j=j+1; end catch while j<=length(index_in_extended) & ~failure i = index_in_extended(j); basis = getbasematrix(expression,variables(i)); if all(basis >= 0) [F_expand,failure,cause] = expandrecursive(recover(variables(i)),F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,method,[],'convex',allExtStruct,w); else [F_expand,failure,cause] = expandrecursive(recover(variables(i)),F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,method,[],'concave',allExtStruct,w); end j=j+1; end end
github
EnricoGiordano1992/LMI-Matlab-master
loadsedumidata.m
.m
LMI-Matlab-master/yalmip/extras/loadsedumidata.m
2,549
utf_8
bd6523935b1fd7c5c70b5bf8db27e0a7
function [F,h] = loadsedumidata(varargin) %LOADSEDUMIDATA Loads a problem definition in the SeDuMi format % % [F,h] = loadsedumidata('filename') Loads the problem min(h(x)), F(x)>0 from file 'filename' % [F,h] = loadsedumidata An "Open" - box will be opened filename = varargin{1}; % Does the file exist if ~exist(filename) filename = [filename '.mat']; if ~exist(filename) error(['No such file.']); end end load(filename) try if ~exist('At') At = A; end if ~exist('b') b = zeros(size(At,1),1); else b = b(:); end if ~exist('c') if exist('C') c = C(:); else c = zeros(size(At,2),1); end else c = c(:); end K = K; catch error('The file should contain the data At, b, c and K'); end nvars = length(b); x = sdpvar(nvars,1); % No reason to try to do factor tracking here x = flush(x); if size(At,2)~=length(b) At = At'; end F = ([]); top = 1; if isvalidfield(K,'f') X = c(top:top+K.f-1)-At(top:top+K.f-1,:)*x; F = F + (X(:) == 0); top = top + K.f; end if isvalidfield(K,'l') X = c(top:top+K.l-1)-At(top:top+K.l-1,:)*x; F = F + (X(:)>=0); top = top + K.l; end if isvalidfield(K,'q') for i = 1:length(K.q) X = c(top:top+K.q(i)-1)-At(top:top+K.q(i)-1,:)*x; F = F + (cone(X(2:end),X(1))); top = top + K.q(i); end end if isvalidfield(K,'r') for i = 1:length(K.r) X = c(top:top+K.r(i)-1)-At(top:top+K.r(i)-1,:)*x; F = F + (rcone(X(3:end),X(2),X(1))); top = top + K.r(i); end end if isvalidfield(K,'s') for i = 1:length(K.s) [ix,iy,iv] = find([c(top:top+K.s(i)^2-1) At(top:top+K.s(i)^2-1,:)]); off = (ix-1)/(K.s(i)+1); if all(off == round(off)) X = c(top:top+K.s(i)^2-1)-At(top:top+K.s(i)^2-1,:)*x; if isa(X,'sdpvar') F = F + (diag(reshape(X,K.s(i),K.s(i))) >= 0); else X i 'silly data!' end top = top + K.s(i)^2; else X = c(top:top+K.s(i)^2-1)-At(top:top+K.s(i)^2-1,:)*x; X = reshape(X,K.s(i),K.s(i)); X = (X+X')/2; F = F + (X >= 0); top = top + K.s(i)^2; end end end h = -b'*x; function ok = isvalidfield(K,fld) ok = 0; if isfield(K,fld) s = getfield(K,fld); if prod(size(s))>0 if s(1)>0 ok = 1; end end end
github
EnricoGiordano1992/LMI-Matlab-master
convert_polynomial_to_quadratic.m
.m
LMI-Matlab-master/yalmip/extras/convert_polynomial_to_quadratic.m
6,093
utf_8
e42036044ee1903d0c693160c460a838
function [model,changed] = convert_polynomial_to_quadratic(model) % Assume we don't do anything changed = 0; % Are there really any non-quadratic terms? already_done = 0; while any(model.variabletype > 2) % Bugger... changed = 1; % Find a higher order term polynomials = find(model.variabletype >= 3); model = update_monomial_bounds(model,(already_done+1):size(model.monomtable,1)); already_done = size(model.monomtable,1); % Start with the highest order monomial (the bilinearization is not % unique, but by starting here, we get a reasonable small % bilineared model [i,j] = max(sum(abs(model.monomtable(polynomials,:)),2)); polynomials = polynomials(j); powers = model.monomtable(polynomials,:); if any(powers < 0) model = eliminate_sigmonial(model,polynomials,powers); elseif nnz(powers) == 1 model = bilinearize_recursive(model,polynomials,powers); else model = bilinearize_recursive(model,polynomials,powers); end end function model = eliminate_sigmonial(model,polynomial,powers); % Silly bug if isempty(model.F_struc) model.F_struc = zeros(0,length(model.c) + 1); end % x^(-p1)*w^(p2) powers_pos = powers; powers_neg = powers; powers_pos(powers_pos<0) = 0; powers_neg(powers_neg>0) = 0; [model,index_neg] = findoraddlinearmonomial(model,-powers_neg); if any(powers_pos) [model,index_pos] = findoraddlinearmonomial(model,powers_pos); else index_pos = []; end % Now create a new variable y, used to model x^(-p1)*w^(p2) % We will also add the constraint y*x^p1 = w^p2 model.monomtable(polynomial,:) = 0; model.monomtable(polynomial,polynomial) = 1; model.variabletype(polynomial) = 0; model.high_monom_model = blockthem(model.high_monom_model,[polynomial powers_neg]);; if ~isempty(model.x0); model.x0(polynomial) = prod(model.x0(find(powers_neg))'.^powers_neg); end powers = -powers_neg; powers(polynomial) = 1; [model,index_xy] = findoraddmonomial(model,powers); model.lb(index_xy) = 1; model.ub(index_xy) = 1; model = convert_polynomial_to_quadratic(model); function model = bilinearize_recursive(model,polynomial,powers); % Silly bug if isempty(model.F_struc) model.F_struc = zeros(0,length(model.c) + 1); end % variable^power if nnz(powers) == 1 univariate = 1; variable = find(powers); p1 = floor(powers(variable)/2); p2 = ceil(powers(variable)/2); powers_1 = powers;powers_1(variable) = p1; powers_2 = powers;powers_2(variable) = p2; else univariate = 0; variables = find(powers); mid = floor(length(variables)/2); variables_1 = variables(1:mid); variables_2 = variables(mid+1:end); powers_1 = powers; powers_2 = powers; powers_1(variables_2) = 0; powers_2(variables_1) = 0; end [model,index1] = findoraddlinearmonomial(model,powers_1); [model,index2] = findoraddlinearmonomial(model,powers_2); model.monomtable(polynomial,:) = 0; model.monomtable(polynomial,index1) = model.monomtable(polynomial,index1) + 1; model.monomtable(polynomial,index2) = model.monomtable(polynomial,index2) + 1; if index1 == index2 model.variabletype(polynomial) = 2; else model.variabletype(polynomial) = 1; end %model = convert_polynomial_to_quadratic(model); function [model,index] = findoraddmonomial(model,powers); if length(powers) < size(model.monomtable,2) powers(size(model.monomtable,1)) = 0; end index = findrows(model.monomtable,powers); if isempty(index) model.monomtable = [model.monomtable;powers]; model.monomtable(end,end+1) = 0; index = size(model.monomtable,1); model.c(end+1) = 0; model.Q(end+1,end+1) = 0; if size(model.F_struc,1)>0 model.F_struc(1,end+1) = 0; else model.F_struc = zeros(0, size(model.F_struc,2)+1); end bound = powerbound(model.lb,model.ub,powers); model.lb(end+1) = bound(1); model.ub(end+1) = bound(2); if ~isempty(model.x0) model.x0(end+1) = 0; end switch sum(powers) case 1 model.variabletype(end+1) = 0; case 2 if nnz(powers)==1 model.variabletype(end+1) = 2; else model.variabletype(end+1) = 1; end otherwise model.variabletype(end+1) = 3; end end function [model,index] = findoraddlinearmonomial(model,powers); if sum(powers) == 1 if length(powers)<size(model.monomtable,2) powers(size(model.monomtable,2)) = 0; end index = findrows(model.monomtable,powers); return end % We want to see if the monomial x^powers already is modelled by a linear % variable. If not, we create the linear variable and add the associated % constraint y == x^powers index = []; if ~isempty(model.high_monom_model) if length(powers)>size(model.high_monom_model,2)+1 model.high_monom_model(1,end+1) = 0; end Z = model.high_monom_model(:,2:end); index = findrows(Z,powers); if ~isempty(index) index = model.high_monom_model(index,1); return end end % OK, we could not find a linear model of this monomial. We thus create a % linear variable, and add the constraint. Note that it is assumed that the % nonlinear monomial x^power does exist [model,index_nonlinear] = findoraddmonomial(model,powers); model.monomtable(end+1,end+1) = 1; model.variabletype(end+1) = 0; model.F_struc = [zeros(1,size(model.F_struc,2));model.F_struc]; model.K.f = model.K.f + 1; model.F_struc(1,end+1) = 1; model.F_struc(1,1+index_nonlinear) = -1; model.c(end+1) = 0; model.Q(end+1,end+1) = 0; model.high_monom_model = blockthem(model.high_monom_model,[length(model.c) powers]);; if ~isempty(model.x0); model.x0(end+1) = model.x0(index_nonlinear); end model.lb(end+1) = model.lb(index_nonlinear); model.ub(end+1) = model.ub(index_nonlinear); index = length(model.c); function z = initial(x0,powers) z = 1; vars = find(powers); for k = 1:length(vars) z = z * x0(vars(k))^powers(vars(k)); end function A = blockthem(A,B) n = size(A,2); m = size(B,2); A = [A zeros(size(A,1),max([0 m-n]));B zeros(size(B,1),max([0 n-m]))];
github
EnricoGiordano1992/LMI-Matlab-master
convert_perspective_log.m
.m
LMI-Matlab-master/yalmip/extras/convert_perspective_log.m
4,688
utf_8
d0b63460b38dcdea37d6dcb4721c262c
function p = convert_perspective_log(p) p.kept = 1:length(p.c); if isempty(p.evalMap) return end if ~any(p.variabletype == 4) return end variableIndex = []; for i=1:length(p.evalMap) variableIndex = [variableIndex p.evalMap{i}.variableIndex]; end removable = []; for i = 1:length(p.evalMap) if strcmp(p.evalMap{i}.fcn,'log') argument = p.evalMap{i}.variableIndex; if length(argument) == 1 if p.variabletype(argument)==4 monoms = p.monomtable(argument,:); if nnz(monoms) == 2 k = find(monoms); p1 = monoms(k(1)); p2 = monoms(k(2)); if isequal(sort([p1 p2]) , [-1 1]) if p2>p1 x = k(2); y = k(1); else x = k(1); y = k(2); end % Ok, so we have log(x/y) % is this multiplied by x somewhere logxy = p.evalMap{i}.computes; enters_in = find(p.monomtable(:,logxy)); other = setdiff(enters_in,p.evalMap{i}.computes); if length(nnz(other)) == 1 monomsxlog = p.monomtable(other,:); if nnz(monomsxlog) == 2 & (monomsxlog(x) == 1) % Hey, x*log(x/y)! % we change this monomial variable to a % callback variable p.evalMap{i}.fcn = 'perspective_log'; p.evalMap{i}.arg{1} = recover([x;y]); p.evalMap{i}.arg{2} = []; p.evalMap{i}.variableIndex = [x y]; p.evalMap{i}.computes = other; p.evalMap{i}.properties.bounds = @plog_bounds; p.evalMap{i}.properties.convexhull = @plog_convexhull; p.evalMap{i}.properties.derivative = @plog_derivative; p.evalMap{i}.properties.inverse = []; p.variabletype(other) = 0; p.monomtable(other,:) = 0; p.monomtable(other,other) = 1; p.evalVariables(i) = other; % Figure out if x/y can be removed % This is possible if the x/y term never is % used besides inside the log term if nnz(p.F_struc(:,1+argument)) == 1 & p.c(argument) == 0 & nnz(argument == variableIndex) == 1 removable = [removable argument]; end end end end end end end end end kept = 1:length(p.c); kept = setdiff(kept,removable); aux_used = zeros(1,length(p.c)); aux_used(p.aux_variables) = 1; aux_used(removable)=[]; p.aux_variables = find(aux_used); if length(removable) > 0 kept = 1:length(p.c); kept = setdiff(kept,removable); [ii,jj,kk] = find(p.F_struc(:,1+removable)); p.F_struc(:,1+removable) = []; p.F_struc(ii,:) = []; p.K.l = p.K.l - length(removable); p.c(removable) = []; p.Q(removable,:) = []; p.Q(:,removable) = []; p.variabletype(removable) = []; p.monomtable(:,removable) = []; p.monomtable(removable,:) = []; for i = 1:length(p.evalVariables) p.evalVariables(i) = find(p.evalVariables(i) == kept); for j = 1:length(p.evalMap{i}.variableIndex) p.evalMap{i}.variableIndex(j) = find(p.evalMap{i}.variableIndex(j) == kept); end for j = 1:length(p.evalMap{i}.computes) p.evalMap{i}.computes(j) = find(p.evalMap{i}.computes(j) == kept); end end p.lb(removable) = []; p.ub(removable) = []; p.used_variables(removable) = []; end function dp = plog_derivative(x) dp = [log(x(1)/x(2)) + 1;-x(1)/x(2)]; function [L,U] = plog_bounds(xL,xU) xU(isinf(xU)) = 1e12; x1 = xL(1)*log(xL(1)/xL(2)); x2 = xU(1)*log(xU(1)/xL(2)); x3 = xL(1)*log(xL(1)/xU(2)); x4 = xU(1)*log(xU(1)/xU(2)); U = max([x1 x2 x3 x4]); if (exp(-1)*xU(2) > xL(1)) & (exp(-1)*xU(2) < xU(1)) L = -exp(-1)*xU(2); else L = min([x1 x2 x3 x4]); end function [Ax,Ay,b] = plog_convexhull(L,U); Ax = []; Ay = []; b = []; return
github
EnricoGiordano1992/LMI-Matlab-master
yalmiptable.m
.m
LMI-Matlab-master/yalmip/extras/yalmiptable.m
1,761
utf_8
9d3d69d9a7db32cbea823623e730f309
function yalmiptable(superheader,header,data,formats) %TABLE Internal function to display tables [nheadersy,nheadersx] = size(header); [ndatay,ndatax] = size(data); datasizes = zeros(ndatay,ndatax); for i = 1:ndatay for j = 1:ndatax if isa(data{i,j},'double') data{i,j} = num2str(data{i,j}); end datasizes(i,j) = length(data{i,j}); end end headersizes = zeros(1,nheadersx); for j = 1:nheadersx if isa(header{j},'double') header{j} = num2str(header{j}); end headersizes(1,j) = length(header{j}); end if nargin<4 for i = 1:ndatax formats{i}.header.just = 'right'; formats{i}.data.just = 'right'; end end datawidth = sum(datasizes,2); MaxWidth = max([headersizes;datasizes]); HeaderLine = ['|']; for i = 1:nheadersx HeaderLine = [HeaderLine ' ' strjust(fillstringRight(header{i},MaxWidth(i)+2),formats{i}.header.just) '|']; end HeaderLine = [HeaderLine '']; for j = 1:ndatay DataLine{j} = ['|']; for i = 1:ndatax DataLine{j} = [DataLine{j} ' ' strjust(fillstringRight(data{j,i},MaxWidth(i)+2),formats{i}.data.just) '|']; end end if ~isempty(superheader) disp(char(repmat(double('+'),1,length(HeaderLine)))) disp(['|' strjust(fillstringLeft(superheader{1},length(HeaderLine)-2),'center') '|']) end disp(char(repmat(double('+'),1,length(HeaderLine)))) disp(HeaderLine) disp(char(repmat(double('+'),1,length(HeaderLine)))) for i = 1:length(DataLine) disp(DataLine{i}); end disp(char(repmat(double('+'),1,length(HeaderLine)))) function x= truncstring(x,n) if length(x) > n x = [x(1:n-3) '...']; end function x = fillstringLeft(x,n) x = [x blanks(n-length(x))]; function x = fillstringRight(x,n) x = [blanks(n-length(x)) x];
github
EnricoGiordano1992/LMI-Matlab-master
sdisplay2.m
.m
LMI-Matlab-master/yalmip/extras/sdisplay2.m
7,460
utf_8
1580149b36a2d9dad048527aa6633013
function symb_pvec = sdisplay2(p,names) % TODO: sdpvar a b % x = (a+b)^0.3 -- writes "mpower_internal" % % TODO: sdpvar h x k % sdisplay2(h*x - k) -- misses the minus in front of "k" if nargin < 2 LinearVariables = 1:yalmip('nvars'); x = recover(LinearVariables); names = cell(length(x),1); W = evalin('caller','whos'); for i = 1:size(W,1) if strcmp(W(i).class,'sdpvar') | strcmp(W(i).class,'ncvar') % Get the SDPVAR variable thevars = evalin('caller',W(i).name); % Distinguish 4 cases % 1: Sclalar varible x % 2: Vector variable x(i) % 3: Matrix variable x(i,j) % 4: Variable not really defined if is(thevars,'scalar') & is(thevars,'linear') & length(getvariables(thevars))==1 & isequal(getbase(thevars),[0 1]) index_in_p = find(ismember(LinearVariables,getvariables(thevars))); if ~isempty(index_in_p) already = ~isempty(names{index_in_p}); if already already = ~strfind(names{index_in_p},'internal'); if isempty(already) already = 0; end end else already = 0; end if ~isempty(index_in_p) & ~already % Case 1 names{index_in_p}=W(i).name; end elseif is(thevars,'lpcone') if size(thevars,1)==size(thevars,2) % Case 2 vars = getvariables(thevars); indicies = find(ismember(vars,LinearVariables)); for ii = indicies index_in_p = find(ismember(LinearVariables,vars(ii))); if ~isempty(index_in_p) already = ~isempty(names{index_in_p}); if already already = ~strfind(names{index_in_p},'internal'); if isempty(already) already = 0; end end else already = 0; end if ~isempty(index_in_p) & ~already B = reshape(getbasematrix(thevars,vars(ii)),size(thevars,1),size(thevars,2)); [ix,jx,kx] = find(B); ix=ix(1); jx=jx(1); names{index_in_p}=[W(i).name '(' num2str(ix) ',' num2str(jx) ')']; end end else % Case 3 vars = getvariables(thevars); indicies = find(ismember(vars,LinearVariables)); for ii = indicies index_in_p = find(ismember(LinearVariables,vars(ii))); if ~isempty(index_in_p) already = ~isempty(names{index_in_p}); if already already = ~strfind(names{index_in_p},'internal'); if isempty(already) already = 0; end end else already = 0; end if ~isempty(index_in_p) & ~already names{index_in_p}=[W(i).name '(' num2str(ii) ')']; end end end elseif is(thevars,'sdpcone') % Case 3 vars = getvariables(thevars); indicies = find(ismember(vars,LinearVariables)); for ii = indicies index_in_p = find(ismember(LinearVariables,vars(ii))); if ~isempty(index_in_p) already = ~isempty(names{index_in_p}); if already already = ~strfind(names{index_in_p},'internal'); end else already = 0; end if ~isempty(index_in_p) & ~already B = reshape(getbasematrix(thevars,vars(ii)),size(thevars,1),size(thevars,2)); [ix,jx,kx] = find(B); ix=ix(1); jx=jx(1); names{index_in_p}=[W(i).name '(' num2str(ix) ',' num2str(jx) ')']; end end else % Case 4 vars = getvariables(thevars); indicies = find(ismember(vars,LinearVariables)); for i = indicies index_in_p = find(ismember(LinearVariables,vars(i))); if ~isempty(index_in_p) & isempty(names{index_in_p}) names{index_in_p}=['internal(' num2str(vars(i)) ')']; end end end end end end [mt,vt] = yalmip('monomtable'); ev = yalmip('extvariables'); for i = 1:size(p, 1) for j = 1:size(p, 2) symb_pvec{i, j} = symbolicdisplay(p(i, j), names, vt, ev, mt); end end %------------------------------------------------------------------------ function expression = symbolicdisplay(p,names,vt,ev,mt) sp = size(p); if any(sp > 1) out = '['; else out = ''; end p_orig = p; for i1 = 1:sp(1) for i2 = 1:sp(2) p = p_orig(i1, i2); basis = getbase(p); if basis(1)~=0 expression = [num2str(basis(1)) '+']; else expression = ['']; end [dummy, variables, coeffs] = find(basis(2:end)); variables = getvariables(p); for i = 1:length(coeffs) if coeffs(i)==1 expression = [expression symbolicmonomial(variables(i), ... names,vt,ev,mt) '+']; else expression = [expression num2str(coeffs(i)) '*' ... symbolicmonomial(variables(i),names,vt,ev,mt) '+']; end end expression(end) = []; out = [out expression ',']; end out(end) = ';'; end out(end) = []; if any(sp > 1) out = [out ']']; end expression = out; %------------------------------------------------------------------------ function s = symbolicmonomial(variable,names,vt,ev,mt) terms = find(mt(variable,:)); if ismember(variable,ev) q = yalmip('extstruct',variable); s = [q.fcn '(' symbolicdisplay(q.arg{1},names,vt,ev,mt)]; for i = 2:length(q.arg)-1 s = [s ',' symbolicdisplay(q.arg{i}, names, vt, ev, mt)]; end s = [s ')']; elseif ~vt(variable) % Linear expression s = names{variable}; else % Fancy display of a monomial s = ['']; for i = 1:length(terms) if mt(variable,terms(i)) == 1 exponent = ''; else exponent = ['^' num2str(mt(variable,terms(i)))]; end s = [s symbolicmonomial(terms(i),names,vt,ev,mt) exponent '*']; end s(end)=[]; end % s = strrep(s,'^1+','+'); % s = strrep(s,'^1*','*');
github
EnricoGiordano1992/LMI-Matlab-master
dissect.m
.m
LMI-Matlab-master/yalmip/extras/dissect.m
2,898
utf_8
287c87ea98e36a7d4b0f42fb58700649
function varargout = dissect(X); % DISSECT Dissect SDP constraint % % G = unblkdiag(F) Converts SDP to several smaller SDPs with more variables % % See also UNBLKDIAG if isa(X,'constraint') X = lmi(X); end switch class(X) case 'sdpvar' % Get sparsity pattern Z=spy(X); % Partition as % [A1 0 C1 % 0 A2 C2 % C1' C2' E] % Find a dissection try sep = metismex('NodeBisect',Z); catch error('You have to install the MATLAB interface to METIS, http://www.cerfacs.fr/algor/Softs/MESHPART/'); end % Indicies for elements in Ai s = setdiff(1:length(Z),sep); % re-order Ais to get diagonal blocks Z = Z(s,s); AB = X(s,s); CD = X(s,sep); [v,dummy,r,dummy2]=dmperm(Z); for i = 1:length(r)-1 A{i} = AB(v(r(i):r(i+1)-1),v(r(i):r(i+1)-1)); C{i}= CD(v(r(i):r(i+1)-1),:); end E = X(sep,sep); varargout{1} = A; varargout{2} = C; varargout{3} = E; case 'lmi' Fnew=([]); % decompose trivial block diagonal stuff X = unblkdiag(X); for i = 1:length(X) if is(X(i),'sdp') & length(sdpvar(X(i))) if 0 [A,B,C,D,E]=dissect(sdpvar(X(i))); if ~isempty(B) S=sdpvar(size(E,1)); S = S.*inversesparsity(E,D,B); Fnew=Fnew+([A C;C' S]>=0)+([E-S D';D B]>=0); else Fnew = Fnew + X(i); end else [A,C,E]=dissect(sdpvar(X(i))); if length(A)>1 allS = 0; for i = 1:length(A)-1 S{i}=sdpvar(size(E,1)); S{i} = S{i}.*inversesparsity(E,C{i},A{i}); allS = allS + S{i}; Fnew=Fnew+([A{i} C{i};C{i}' S{i}]>=0); end i = i + 1; S{i}=E-allS; S{i} = S{i}.*inversesparsity(E,C{i},A{i}); Fnew=Fnew+([A{i} C{i};C{i}' S{i}]>=0); else Fnew = Fnew + X(i); end end else Fnew=Fnew+X(i); end end varargout{1} = Fnew; end function S = inversesparsity(E,D,B) if isa(E,'sdpvar') E = spy(E).*randn(size(E)); else E = E.*randn(size(E)); end if isa(D,'sdpvar') D = spy(D).*randn(size(D)); else D = D.*randn(size(D)); end if isa(B,'sdpvar') B = spy(B).*randn(size(B)); else B = B.*randn(size(B)); end S = E-D'*inv(B)*D; S = S | S';
github
EnricoGiordano1992/LMI-Matlab-master
fmincon_con.m
.m
LMI-Matlab-master/yalmip/extras/fmincon_con.m
3,980
utf_8
bb638cd9a153556cf293b5b1615934b5
function [g,geq,dg,dgeq,xevaled] = fmincon_con(x,model,xevaled) global latest_xevaled global latest_x_xevaled % Early bail for linear problems g = []; geq = []; dg = []; dgeq = []; if model.linearconstraints xevaled = []; return end if nargin<3 if isequal(x,latest_x_xevaled) xevaled = latest_xevaled; else xevaled = zeros(1,length(model.c)); xevaled(model.linearindicies) = x; xevaled = apply_recursive_evaluation(model,xevaled); latest_x_xevaled = x; latest_xevaled = xevaled; end end if model.nonlinearinequalities g = full(model.Anonlinineq*xevaled(:)-model.bnonlinineq); end if nnz(model.K.q) > 0 top = 1; for i = 1:length(model.K.q) z = model.F_struc(top:top+model.K.q(i)-1,:)*[1;xevaled]; g = [g;-(z(1)^2 - z(2:end)'*z(2:end))]; top = top + model.K.q(i); end end if model.nonlinearequalities geq = full(model.Anonlineq*xevaled(:)-model.bnonlineq); end dgAll_test = []; if nargout == 2 || ~model.derivative_available return elseif ~isempty(dgAll_test) & isempty(model.evalMap) dgAll = dgAll_test; elseif isempty(model.evalMap) & (model.nonlinearinequalities==0) & (model.nonlinearequalities==0) & (model.nonlinearcones==0) & any(model.K.q) dg = computeConeDeriv(model,xevaled); elseif isempty(model.evalMap) & (model.nonlinearinequalities | model.nonlinearequalities | model.nonlinearcones) n = length(model.c); linearindicies = model.linearindicies; % xevaled = zeros(1,n); % xevaled(linearindicies) = x; % FIXME: This should be vectorized news = model.fastdiff.news; allDerivemt = model.fastdiff.allDerivemt; c = model.fastdiff.c; if model.fastdiff.univariateDifferentiates zzz = c.*(x(model.fastdiff.univariateDiffMonom).^model.fastdiff.univariateDiffPower); else % X = repmat(x(:)',length(c),1); O = ones(length(c),length(x)); nz = find(allDerivemt); % O(nz) = X(nz).^allDerivemt(nz); O(nz) = x(ceil(nz/length(c))).^allDerivemt(nz); zzz = c.*prod(O,2); end newdxx = model.fastdiff.newdxx; newdxx(model.fastdiff.linear_in_newdxx) = zzz; %newdxx = newdxx'; if ~isempty(model.Anonlineq) dgeq = model.Anonlineq*newdxx; end if ~isempty(model.Anonlinineq) dg = model.Anonlinineq*newdxx; end if nnz(model.K.q)>0 dg = [dg;computeConeDeriv(model,xevaled,newdxx);]; end else requested = model.fastdiff.requested; dx = apply_recursive_differentiation(model,xevaled,requested,model.Crecursivederivativeprecompute); conederiv = computeConeDeriv(model,xevaled,dx); if ~isempty(model.Anonlineq) dgeq = [model.Anonlineq*dx]; end if ~isempty(model.Anonlinineq) dg = [model.Anonlinineq*dx]; end if ~isempty(conederiv) dg = [dg;conederiv]; end end if model.nonlinearequalities dgeq = dgeq'; end if model.nonlinearinequalities | any(model.K.q) dg = dg'; end function conederiv = computeConeDeriv(model,z,dzdx) conederiv = []; z = z(:); if any(model.K.q) top = 1 + model.K.f + model.K.l; for i = 1:length(model.K.q) d = model.F_struc(top,1); c = model.F_struc(top,2:end)'; b = model.F_struc(top+1:top+model.K.q(i)-1,1); A = model.F_struc(top+1:top+model.K.q(i)-1,2:end); if nargin == 2 % No inner derivative conederiv = [conederiv;(2*A(:,model.linearindicies)'*(A(:,model.linearindicies)*z(model.linearindicies)+b)-2*c(model.linearindicies)*(c(model.linearindicies)'*z(model.linearindicies)+d))']; else % inner derivative aux = 2*z'*(A'*A-c*c')*dzdx+2*(b'*A-d*c')*dzdx; conederiv = [conederiv;aux]; end top = top + model.K.q(i); end end
github
EnricoGiordano1992/LMI-Matlab-master
sedumi2sdpt3.m
.m
LMI-Matlab-master/yalmip/extras/sedumi2sdpt3.m
4,093
utf_8
8f142cc073201468ac59c3aab8d61e4b
%SEDUMI2SDPT3 Internal function, obsolete %%******************************************************************* %% Converts from SeDuMi format. %% %% [blk,A,C,b] = sedumi2sdpt3(c,A,b,K) %% %% Input: fname.mat = name of the file containing SDP data in %% SeDuMi format. %% %% Important note: Sedumi's notation for free variables "K.f" %% is coded in SDPT3 as blk{p,1} = 'u', where %% "u" is used for unrestricted variables. %% %% Ripped from: %% SDPT3: version 3.0 %% Copyright (c) 2000 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last modified: 2 Feb 01 %%****************************************************************** function [blk,Avec,C,b,oldKs] = sedumi2sdpt3(c,A,b,K,smallblkdim) if (size(c,1) == 1), c = c'; end; if (size(b,1) == 1), b = b'; end; if (norm(A,'fro') > 0) & (size(A,2) == length(b)); At = A; end if (norm(At,'fro')==0), At = A'; end; [nn,mm] = size(At); if (max(size(c)) == 1); c = c*ones(nn,1); end; if ~isfield(K,'f'); K.f = 0; end if ~isfield(K,'l'); K.l = 0; end if ~isfield(K,'q'); K.q = 0; end if ~isfield(K,'s'); K.s = 0; end if (K.f == 0) | isempty(K.f); K.f = 0; end; if (K.l == 0) | isempty(K.l); K.l = 0; end; if (sum(K.q) == 0) | isempty(K.q); K.q = 0; end if (sum(K.s) == 0) | isempty(K.s); K.s = 0; end %% %% %% m = length(b); rowidx = 0; idxblk = 0; if ~(K.f == 0) len = K.f; idxblk = idxblk + 1; blk{idxblk,1} = 'u'; blk{idxblk,2} = K.f; Avec{idxblk,1} = At(rowidx+[1:len],:); C{idxblk,1} = c(rowidx+[1:len]); rowidx = rowidx + len; end if ~(K.l == 0) len = K.l; idxblk = idxblk + 1; blk{idxblk,1} = 'l'; blk{idxblk,2} = K.l; Avec{idxblk,1} = At(rowidx+[1:len],:); C{idxblk,1} = c(rowidx+[1:len]); rowidx = rowidx + len; end if ~(K.q == 0) len = sum(K.q); idxblk = idxblk + 1; blk{idxblk,1} = 'q'; blk{idxblk,2} = K.q; Avec{idxblk,1} = At(rowidx+[1:len],:); C{idxblk,1} = c(rowidx+[1:len]); rowidx = rowidx + len; end oldKs = []; if ~(K.s == 0) % Avoid extracting rows! At = At'; smblkdim = smallblkdim; blksize = K.s; if size(blksize,2) == 1; blksize = blksize'; end blknnz = [0 cumsum(blksize.*blksize)]; deblkidx = find(blksize > smblkdim); if ~isempty(deblkidx) for p = 1:length(deblkidx) idxblk = idxblk + 1; n = blksize(deblkidx(p)); oldKs = [oldKs deblkidx(p)]; pblk{1,1} = 's'; pblk{1,2} = n; blk(idxblk,:) = pblk; Atmp = At(:,rowidx+blknnz(deblkidx(p))+[1:n*n])'; Avec{idxblk,1} = sparse(n*(n+1)/2,m); warning_yes = 1; if 1 Avec{idxblk,1} = yalmipsvec(Atmp,n); else for k = 1:m Ak = mexmat(pblk,Atmp(:,k),1); Avec{idxblk,1}(:,k) = svec(pblk,Ak,1); end end Ctmp = c(rowidx+blknnz(deblkidx(p))+[1:n*n]); Ctmp = mexmat(pblk,Ctmp,1); C{idxblk,1} = 0.5*(Ctmp+Ctmp'); end end spblkidx = find(blksize <= smblkdim); if ~isempty(spblkidx) pos = []; len = 0; for p = 1:length(spblkidx) n = blksize(spblkidx(p)); oldKs = [oldKs spblkidx(p)]; len = len + n*(n+1)/2; pos = [pos, rowidx+blknnz(spblkidx(p))+[1:n*n]]; end idxblk = idxblk + 1; blk{idxblk,1} = 's'; blk{idxblk,2} = blksize(spblkidx); Avec{idxblk,1} = sparse(len,m); Atmp = At(:,pos)'; warning_yes = 1; for k = 1:m Ak = mexmat(blk(idxblk,:),sparse(full(Atmp(:,k))),1); Avec{idxblk,1}(:,k) = svec(blk(idxblk,:),Ak,1); end Ctmp = c(pos); Ctmp = mexmat(blk(idxblk,:),Ctmp,1); C{idxblk,1} = 0.5*(Ctmp+Ctmp'); end end function x = yalmipsvec(X,n) Y = reshape(1:n^2,n,n)'; d = diag(Y); Y = tril(Y); Y = (Y+Y')-diag(sparse(diag(Y))); [uu,oo,pp] = unique(Y(:)); X = X*sqrt(2); X(d,:)=X(d,:)/sqrt(2); x = X(uu,:);
github
EnricoGiordano1992/LMI-Matlab-master
compress_evaluation_scheme.m
.m
LMI-Matlab-master/yalmip/extras/compress_evaluation_scheme.m
2,228
utf_8
ccf30e513f35e6ac7a6dc02416d6fae8
function model = compress_evaluation_scheme(model); scalars = {'erf','exp','log','sin','cos','log2','log10','slog','power_internal2','inverse_internal2','sqrtm_internal'}; for i = 1:length(model.evaluation_scheme) if strcmp(model.evaluation_scheme{i}.group,'eval') clear fun for k = 1:length(scalars) for j = 1:length(model.evaluation_scheme{i}.variables) fun{k}(j) = strcmp(model.evalMap{model.evaluation_scheme{i}.variables(j)}.fcn,scalars{k}); end end for k = 1:length(scalars) fun_i = find(fun{k}); if length(fun_i) > 1 all_outputs = []; all_inputs = []; for j = fun_i all_outputs = [all_outputs model.evalMap{model.evaluation_scheme{i}.variables(j)}.computes]; all_inputs = [all_inputs model.evalMap{model.evaluation_scheme{i}.variables(j)}.variableIndex]; end model.evalMap{model.evaluation_scheme{i}.variables(fun_i(1))}.computes = all_outputs; model.evalMap{model.evaluation_scheme{i}.variables(fun_i(1))}.variableIndex = all_inputs; model.evaluation_scheme{i}.variables(fun_i(2:end)) = nan; end end model.evaluation_scheme{i}.variables(isnan(model.evaluation_scheme{i}.variables)) = []; try variables = removeDuplicates(model,model.evaluation_scheme{i}.variables); model.evaluation_scheme{i}.variables = variables; catch end end end function variables = removeDuplicates(model,variables) % optimizer_ evaluation objects leads to multiple copies of similiar % evaluations which can be performed in one shot remove = zeros(1,length(variables)); for i = 1:length(variables) for j = i+1:length(variables) if ~remove(j) if isequal(model.evalMap{variables(i)}.computes,model.evalMap{variables(j)}.computes) if isequal(model.evalMap{variables(i)}.variableIndex,model.evalMap{variables(j)}.variableIndex) remove(j) = 1; end end end end end variables = variables(find(~remove));
github
EnricoGiordano1992/LMI-Matlab-master
sdpvar2str.m
.m
LMI-Matlab-master/yalmip/extras/sdpvar2str.m
2,503
utf_8
dcd7bff7503ead1c19e49a6497f6e84b
function symb_pvec = sdpvar2str(pvec) %SDPVAR2STR Converts an SDPVAR object to MATLAB string representation % % S = SDPVAR2STR(P) % % S : String % P : SDPVAR object for pi = 1:size(pvec,1) for pj = 1:size(pvec,2) p = pvec(pi,pj); if isa(p,'double') symb_p = num2str(p); else LinearVariables = depends(p); x = recover(LinearVariables); exponent_p = full(exponents(p,x)); names = cell(length(LinearVariables),1); for i = 1:length(LinearVariables) names{i}=['x(' num2str(LinearVariables(i)) ')']; end symb_p = ''; if all(exponent_p(1,:)==0) symb_p = num2str(getbasematrix(p,0)); exponent_p = exponent_p(2:end,:); end for i = 1:size(exponent_p,1) coeff = getbasematrixwithoutcheck(p,i); switch full(coeff) case 1 coeff='+'; case -1 coeff = '-'; otherwise if coeff >0 coeff = ['+' num2str2(coeff)]; else coeff=[num2str2(coeff)]; end end if strcmp(symb_p,'') & (strcmp(coeff,'+') | strcmp(coeff,'-')) symb_p = [symb_p coeff symbmonom(names,exponent_p(i,:))]; else symb_p = [symb_p coeff '*' symbmonom(names,exponent_p(i,:))]; end end if symb_p(1)=='+' symb_p = symb_p(2:end); end end symb_p = strrep(symb_p,'*^0',''); symb_p = strrep(symb_p,'^0',''); symb_p = strrep(symb_p,'+*','+'); symb_p = strrep(symb_p,'-*','-'); symb_pvec{pi,pj} = symb_p; end end function s = symbmonom(names,monom) s = ''; for j = 1:length(monom) if monom(j)~=0 if strcmp(s,'') s = [s names{j}]; else s = [s '*' names{j}]; end end if monom(j)~=1 s = [s '^' num2str(monom(j))]; end % if monom(j)>1 % s = [s '^' num2str(monom(j))]; % end end function s = num2str2(x) s = num2str(x); if isequal(s,'1') s = ''; end if isequal(s,'-1') s = '-'; end
github
EnricoGiordano1992/LMI-Matlab-master
compileinterfacedata.m
.m
LMI-Matlab-master/yalmip/extras/compileinterfacedata.m
50,239
utf_8
430b4ae42ad938e379c3ece8cde7b5bb
function [interfacedata,recoverdata,solver,diagnostic,F,Fremoved,ForiginalQuadratics] = compileinterfacedata(F,aux_obsolete,logdetStruct,h,options,findallsolvers,parametric) persistent CACHED_SOLVERS persistent allsolvers persistent EXISTTIME persistent NCHECKS %% Initilize default empty outputs diagnostic = []; interfacedata = []; recoverdata = []; solver = []; Fremoved = []; ForiginalQuadratics = []; %% Did we make the call from SOLVEMP if nargin<7 parametric = 0; end %% Clean objective to default empty if isa(h,'double') h = []; end % ************************************************************************* %% Exit if LOGDET objective is nonlinear % ************************************************************************* if ~isempty(logdetStruct) for i = 1:length(logdetStruct.P) if ~is(logdetStruct.P{i},'linear') diagnostic.solvertime = 0; diagnostic.problem = -2; diagnostic.info = yalmiperror(diagnostic.problem,''); return end end end % ************************************************************************* %% EXTRACT LOW-RANK DESCRIPTION % ************************************************************************* lowrankdetails = getlrdata(F); if ~isempty(lowrankdetails) F = F(~is(F,'lowrank')); end % ************************************************************************* %% PERTURB STRICT INEQULAITIES % ************************************************************************* if isa(options.shift,'sdpvar') | (options.shift~=0) F = shift(F,options.shift); end % ************************************************************************* %% ADD RADIUS CONSTRAINT % ************************************************************************* if isa(options.radius,'sdpvar') | ~isinf(options.radius) x = recover(unique(union(depends(h),depends(F)))); if length(x)>1 F = F + (cone(x,options.radius)); else F = F + (-options.radius <= x <= options.radius); end F = flatten(F); end % ************************************************************************* %% CONVERT LOGIC CONSTRAINTS % ************************************************************************* [F,changed] = convertlogics(F); if changed F = flatten(F); options.saveduals = 0; % Don't calculate duals since we changed the problem end % ************************************************************************* %% Take care of the nonlinear operators by converting expressions such as % t = max(x,y) to standard conic models and mixed integer models % This part also adds parts from logical expressions and mpower terms % ************************************************************************* if options.expand % Experimental hack due to support for the PWQ function used for % quadratic dynamic programming with MPT. % FIX: Clean up and generalize try h1v = depends(h); h2v = getvariables(h); if ~isequal(h1v,h2v) variables = uniquestripped([h1v h2v]); else variables = h1v; end extendedvariables = yalmip('extvariables'); index_in_extended = find(ismembcYALMIP(variables,extendedvariables)); if ~isempty(index_in_extended) extstruct = yalmip('extstruct',variables(index_in_extended)); if ~isa(extstruct,'cell') extstruct = {extstruct}; end for i = 1:length(extstruct) if isequal(extstruct{i}.fcn ,'pwq_yalmip') [properties,Fz,arguments]=model(extstruct{i}.var,'integer',options,extstruct{i}); if iscell(properties) properties = properties{1}; end gain = getbasematrix(h,getvariables(extstruct{i}.var)); h = replace(h,extstruct{i}.var,0); h = h + gain*properties.replacer; F = F + Fz; end end end catch end [F,failure,cause,operators] = expandmodel(F,h,options); F = flatten(F); if failure % Convexity propgation failed interfacedata = []; recoverdata = []; solver = ''; diagnostic.solvertime = 0; diagnostic.problem = 14; diagnostic.info = yalmiperror(14,cause); return end evalVariables = unique(determineEvaluationBased(operators)); if isempty(evalVariables) evaluation_based = 0; exponential_cone = 0; else used = [depends(h) depends(F)]; usedevalvariables = intersect(used,evalVariables); evaluation_based = ~isempty(usedevalvariables); exponential_cone = isempty(setdiff(usedevalvariables,yalmip('expvariables'))); end else evalVariables = []; evaluation_based = 0; exponential_cone = 0; end % ************************************************************************* %% LOOK FOR AVAILABLE SOLVERS % Finding solvers can be very slow on some systems. To alleviate this % problem, YALMIP can cache the list of available solvers. % ************************************************************************* if (options.cachesolvers==0) | isempty(CACHED_SOLVERS) getsolvertime = clock; [solvers,kept,allsolvers] = getavailablesolvers(findallsolvers,options); getsolvertime = etime(clock,getsolvertime); % CODE TO INFORM USERS ABOUT SLOW NETWORKS! if isempty(EXISTTIME) EXISTTIME = getsolvertime; NCHECKS = 1; else EXISTTIME = [EXISTTIME getsolvertime]; NCHECKS = NCHECKS + 1; end if (options.cachesolvers==0) if ((NCHECKS >= 3 & (sum(EXISTTIME)/NCHECKS > 1)) | EXISTTIME(end)>2) if warningon info = 'Warning: YALMIP has detected that your drive or network is unusually slow.\nThis causes a severe delay in SOLVESDP when I try to find available solvers.\nTo avoid this, use the options CACHESOLVERS in SDPSETTINGS.\nSee the FAQ for more information.\n'; fprintf(info); end end end if length(EXISTTIME) > 5 EXISTTIME = EXISTTIME(end-4:end); NCHECKS = 5; end CACHED_SOLVERS = solvers; else solvers = CACHED_SOLVERS; end % ************************************************************************* %% NO SOLVER AVAILABLE % ************************************************************************* if isempty(solvers) diagnostic.solvertime = 0; if isempty(options.solver) diagnostic.info = yalmiperror(-2,'YALMIP'); diagnostic.problem = -2; else diagnostic.info = yalmiperror(-3,'YALMIP'); diagnostic.problem = -3; end if warningon & options.warning & isempty(findstr(diagnostic.info,'No problems detected')) disp(['Warning: ' diagnostic.info]); end return end % ************************************************************************* %% CONVERT CONVEX QUADRATIC CONSTRAINTS % We do not convert quadratic constraints to SOCPs if we have have % sigmonial terms (thus indicating a GP problem), if we have relaxed % nonlinear expressions, or if we have specified a nonlinear solver. % Why do we convert them already here? Don't remember, should be cleaned up % ************************************************************************* [monomtable,variabletype] = yalmip('monomtable'); F_vars = getvariables(F); do_not_convert = any(variabletype(F_vars)==4); %do_not_convert = do_not_convert | ~solverCapable(solvers,options.solver,'constraint.inequalities.secondordercone'); do_not_convert = do_not_convert | strcmpi(options.solver,'bmibnb'); do_not_convert = do_not_convert | strcmpi(options.solver,'scip'); do_not_convert = do_not_convert | strcmpi(options.solver,'snopt'); do_not_convert = do_not_convert | strcmpi(options.solver,'knitro'); do_not_convert = do_not_convert | strcmpi(options.solver,'snopt-geometric'); do_not_convert = do_not_convert | strcmpi(options.solver,'snopt-standard'); do_not_convert = do_not_convert | strcmpi(options.solver,'ipopt'); do_not_convert = do_not_convert | strcmpi(options.solver,'bonmin'); do_not_convert = do_not_convert | strcmpi(options.solver,'nomad'); do_not_convert = do_not_convert | strcmpi(options.solver,'ipopt-geometric'); do_not_convert = do_not_convert | strcmpi(options.solver,'ipopt-standard'); do_not_convert = do_not_convert | strcmpi(options.solver,'filtersd'); do_not_convert = do_not_convert | strcmpi(options.solver,'filtersd-dense'); do_not_convert = do_not_convert | strcmpi(options.solver,'filtersd-sparse'); do_not_convert = do_not_convert | strcmpi(options.solver,'pennon'); do_not_convert = do_not_convert | strcmpi(options.solver,'pennon-geometric'); do_not_convert = do_not_convert | strcmpi(options.solver,'pennon-standard'); do_not_convert = do_not_convert | strcmpi(options.solver,'pennlp'); do_not_convert = do_not_convert | strcmpi(options.solver,'penbmi'); do_not_convert = do_not_convert | strcmpi(options.solver,'fmincon'); do_not_convert = do_not_convert | strcmpi(options.solver,'lindo'); do_not_convert = do_not_convert | strcmpi(options.solver,'sqplab'); do_not_convert = do_not_convert | strcmpi(options.solver,'fmincon-geometric'); do_not_convert = do_not_convert | strcmpi(options.solver,'fmincon-standard'); do_not_convert = do_not_convert | strcmpi(options.solver,'bmibnb'); do_not_convert = do_not_convert | strcmpi(options.solver,'moment'); do_not_convert = do_not_convert | strcmpi(options.solver,'sparsepop'); do_not_convert = do_not_convert | strcmpi(options.solver,'baron'); do_not_convert = do_not_convert | (options.convertconvexquad == 0); do_not_convert = do_not_convert | (options.relax == 1); if ~do_not_convert & any(variabletype(F_vars)) [F,socp_changed,infeasible,ForiginalQuadratics] = convertquadratics(F); if infeasible diagnostic.solvertime = 0; diagnostic.problem = 1; diagnostic.info = yalmiperror(diagnostic.problem,'YALMIP'); return end if socp_changed % changed holds the number of QC -> SOCC conversions options.saveduals = 0; % We cannot calculate duals since we changed the problem F_vars = []; % We have changed model so we cannot use this in categorizemodel end else socp_changed = 0; end % CHEAT FOR QC if socp_changed>0 & length(find(is(F,'socc')))==socp_changed socp_are_really_qc = 1; else socp_are_really_qc = 0; end % ************************************************************************* %% WHAT KIND OF PROBLEM DO WE HAVE NOW? % ************************************************************************* [ProblemClass,integer_variables,binary_variables,parametric_variables,uncertain_variables,semicont_variables,quad_info] = categorizeproblem(F,logdetStruct,h,options.relax,parametric,evaluation_based,F_vars,exponential_cone); % Ugly fix to short-cut any decision on GP. min -x-y cannot be cast as GP, % while min -x can, as we can invert the objective ProblemClass.gppossible = 1; if ~isempty(h) c = getbase(h);c = c(2:end); if nnz(c)>1 if any(c<0) ProblemClass.gppossible = 0; end end end % ************************************************************************* %% SELECT SUITABLE SOLVER % ************************************************************************* [solver,problem] = selectsolver(options,ProblemClass,solvers,socp_are_really_qc,allsolvers); if isempty(solver) diagnostic.solvertime = 0; if problem == -4 || problem == -3 || problem == -9 diagnostic.info = yalmiperror(problem,options.solver); else diagnostic.info = yalmiperror(problem,'YALMIP'); end diagnostic.problem = problem; if warningon & options.warning disp(['Warning: ' diagnostic.info]); end return end if length(solver.version)>0 solver.tag = [solver.tag '-' solver.version]; end if ProblemClass.constraint.complementarity.variable | ProblemClass.constraint.complementarity.linear | ProblemClass.constraint.complementarity.nonlinear if ~(solver.constraint.complementarity.variable | solver.constraint.complementarity.linear | solver.constraint.complementarity.nonlinear) % Extract the terms in the complementarity constraints x^Ty==0, % x>=0, y>=0, since these involves bounds that should be appended % to the list of constraints from which we do bound propagation Fc = F(find(is(F,'complementarity'))); Ftemp = F; for i = 1:length(Fc) [Cx,Cy] = getComplementarityTerms(Fc(i)); Ftemp = [Ftemp, Cx>=0, Cy >=0]; end % FIXME: SYNC with expandmodel setupBounds(Ftemp,options,extendedvariables); [F] = modelComplementarityConstraints(F,solver,ProblemClass); % FIXME Reclassify should be possible to do manually! oldProblemClass = ProblemClass; [ProblemClass,integer_variables,binary_variables,parametric_variables,uncertain_variables,semicont_variables,quad_info] = categorizeproblem(F,logdetStruct,h,options.relax,parametric,evaluation_based,F_vars,exponential_cone); ProblemClass.gppossible = oldProblemClass.gppossible; elseif solver.constraint.complementarity.variable % Solver supports x(i)*x(j)==0 Fok = []; Freform = []; Fc = F(find(is(F,'complementarity'))); for i = 1:length(Fc) [Cx,Cy] = getComplementarityTerms(Fc(i)); if (islinear(Cx) & islinear(Cy) & is(Cx,'lpcone') & is(Cy,'lpcone')) Fok = [Fok, Fc(i)]; else s1 = sdpvar(length(Cx),1); s2 = sdpvar(length(Cy),1); Freform = [Freform,complements(s1>=0,s2>=0),s1 == Cx, s2 == Cy]; end end F = F-Fc; F = F + Fok + Freform; end end % ************************************************************************* %% DID WE SELECT THE INTERNAL BNB SOLVER % IN THAT CASE, SELECT LOCAL SOLVER % (UNLESS ALREADY SPECIFIED IN OPTIONS.BNB) % ************************************************************************* localsolver.qc = 0; localsolver = solver; if strcmpi(solver.tag,'bnb') [solver,diagnostic] = setupBNB(solver,ProblemClass,options,solvers,socp_are_really_qc,F,h,logdetStruct,parametric,evaluation_based,F_vars,exponential_cone,allsolvers); if ~isempty(diagnostic) return end end if findstr(lower(solver.tag),'sparsecolo') temp_options = options; temp_options.solver = options.sparsecolo.SDPsolver; tempProblemClass = ProblemClass; localsolver = selectsolver(temp_options,tempProblemClass,solvers,socp_are_really_qc,allsolvers); if isempty(localsolver) | strcmpi(localsolver.tag,'sparsecolo') diagnostic.solvertime = 0; diagnostic.info = yalmiperror(-2,'YALMIP'); diagnostic.problem = -2; return end solver.sdpsolver = localsolver; end if findstr(lower(solver.tag),'frlib') temp_options = options; temp_options.solver = options.frlib.solver; tempProblemClass = ProblemClass; localsolver = selectsolver(temp_options,tempProblemClass,solvers,socp_are_really_qc,allsolvers); if isempty(localsolver) | strcmpi(localsolver.tag,'frlib') diagnostic.solvertime = 0; diagnostic.info = yalmiperror(-2,'YALMIP'); diagnostic.problem = -2; return end solver.solver = localsolver; end % ************************************************************************* %% DID WE SELECT THE MPCVX SOLVER % IN THAT CASE, SELECT SOLVER TO SOLVE BOUND COMPUTATIONS % ************************************************************************* localsolver.qc = 0; localsolver = solver; if strcmpi(solver.tag,'mpcvx') temp_options = options; temp_options.solver = options.mpcvx.solver; tempProblemClass = ProblemClass; tempProblemClass.objective.quadratic.convex = tempProblemClass.objective.quadratic.convex | tempProblemClass.objective.quadratic.nonconvex; tempProblemClass.objective.quadratic.nonconvex = 0; tempProblemClass.parametric = 0; localsolver = selectsolver(temp_options,tempProblemClass,solvers,socp_are_really_qc,allsolvers); if isempty(localsolver) | strcmpi(localsolver.tag,'bnb') | strcmpi(localsolver.tag,'kktqp') diagnostic.solvertime = 0; diagnostic.info = yalmiperror(-2,'YALMIP'); diagnostic.problem = -2; return end solver.lower = localsolver; end % ************************************************************************* %% DID WE SELECT THE INTERNAL EXPERIMENTAL KKT SOLVER % IN THAT CASE, SELECT SOLVER TO SOLVE THE MILP PROBLEM % ************************************************************************* localsolver.qc = 0; localsolver = solver; if strcmpi(solver.tag,'kktqp') temp_options = options; temp_options.solver = ''; tempProblemClass = ProblemClass; tempProblemClass.constraint.binary = 1; tempProblemClass.objective.quadratic.convex = 0; tempProblemClass.objective.quadratic.nonconvex = 0; localsolver = selectsolver(temp_options,tempProblemClass,solvers,socp_are_really_qc,allsolvers); if isempty(localsolver) | strcmpi(localsolver.tag,'bnb') | strcmpi(localsolver.tag,'kktqp') diagnostic.solvertime = 0; diagnostic.info = yalmiperror(-2,'YALMIP'); diagnostic.problem = -2; return end solver.lower = localsolver; end % ************************************************************************* %% DID WE SELECT THE LMIRANK? % FIND SDP SOLVER FOR INITIAL SOLUTION % ************************************************************************* if strcmpi(solver.tag,'lmirank') temp_options = options; temp_options.solver = options.lmirank.solver; tempProblemClass = ProblemClass; tempProblemClass.constraint.inequalities.rank = 0; tempProblemClass.constraint.inequalities.semidefinite.linear = 1; tempProblemClass.objective.linear = 1; initialsolver = selectsolver(temp_options,tempProblemClass,solvers,socp_are_really_qc,allsolvers); if isempty(initialsolver) | strcmpi(initialsolver.tag,'lmirank') diagnostic.solvertime = 0; diagnostic.info = yalmiperror(-2,'YALMIP'); diagnostic.problem = -2; return end solver.initialsolver = initialsolver; end % ************************************************************************* %% DID WE SELECT THE VSDP SOLVER? Define a solver for VSDP to use % ************************************************************************* if findstr(solver.tag,'VSDP') temp_options = options; temp_options.solver = options.vsdp.solver; tempProblemClass = ProblemClass; tempProblemClass.interval = 0; tempProblemClass.constraint.inequalities.semidefinite.linear = tempProblemClass.constraint.inequalities.semidefinite.linear | tempProblemClass.objective.quadratic.convex; tempProblemClass.constraint.inequalities.semidefinite.linear = tempProblemClass.constraint.inequalities.semidefinite.linear | tempProblemClass.constraint.inequalities.secondordercone; tempProblemClass.constraint.inequalities.secondordercone = 0; tempProblemClass.objective.quadratic.convex = 0; initialsolver = selectsolver(temp_options,tempProblemClass,solvers,socp_are_really_qc,allsolvers); if isempty(initialsolver) | strcmpi(initialsolver.tag,'vsdp') diagnostic.solvertime = 0; diagnostic.info = yalmiperror(-2,'YALMIP'); diagnostic.problem = -2; return end solver.solver = initialsolver; end % ************************************************************************* %% DID WE SELECT THE INTERNAL BMIBNB SOLVER? SELECT UPPER/LOWER SOLVERs % (UNLESS ALREADY SPECIFIED IN OPTIONS) % ************************************************************************* if strcmpi(solver.tag,'bmibnb') [solver,diagnostic] = setupBMIBNB(solver,ProblemClass,options,solvers,socp_are_really_qc,F,h,logdetStruct,parametric,evaluation_based,F_vars,exponential_cone,allsolvers); if ~isempty(diagnostic) return end end % ************************************************************************* %% DID WE SELECT THE INTERNAL SDPMILP SOLVER % This solver solves MISDP problems by solving MILP problems and adding SDP % cuts based on the infasible MILP solution. % ************************************************************************* if strcmpi(solver.tag,'cutsdp') % Relax problem for lower solver tempProblemClass = ProblemClass; tempProblemClass.constraint.inequalities.elementwise.linear = tempProblemClass.constraint.inequalities.elementwise.linear | tempProblemClass.constraint.inequalities.semidefinite.linear | tempProblemClass.constraint.inequalities.secondordercone.linear; tempProblemClass.constraint.inequalities.semidefinite.linear = 0; tempProblemClass.constraint.inequalities.secondordercone.linear = 0; tempProblemClass.objective.quadratic.convex = 0; temp_options = options; temp_options.solver = options.cutsdp.solver; if strcmp(options.cutsdp.solver,'bnb') error('BNB can not be used in CUTSDP. Please install and use a better MILP solver'); end [lowersolver,problem] = selectsolver(temp_options,tempProblemClass,solvers,socp_are_really_qc,allsolvers); if ~isempty(lowersolver) & strcmpi(lowersolver.tag,'bnb') error('BNB can not be used in CUTSDP. Please install and use a better MILP solver'); end if isempty(lowersolver) | strcmpi(lowersolver.tag,'cutsdp') |strcmpi(lowersolver.tag,'bmibnb') | strcmpi(lowersolver.tag,'bnb') diagnostic.solvertime = 0; diagnostic.info = yalmiperror(-2,'YALMIP'); diagnostic.problem = -2; return end solver.lower = lowersolver; end showprogress(['Solver chosen : ' solver.tag],options.showprogress); % ************************************************************************* %% CONVERT SOS2 to binary constraints for solver not supporting sos2 % ************************************************************************* if ProblemClass.constraint.sos2 & ~solver.constraint.sos2 [F,binary_variables] = expandsos2(F,binary_variables); end % ************************************************************************* %% CONVERT MAXDET TO SDP USING GEOMEAN? % ************************************************************************* % MAXDET using geometric mean construction if ~isempty(logdetStruct) if isequal(solver.tag,'BNB') can_solve_maxdet = solver.lower.objective.maxdet.convex; can_solve_expcone = solver.lower.exponentialcone; else can_solve_maxdet = solver.objective.maxdet.convex; can_solve_expcone = solver.exponentialcone; end if ~can_solve_maxdet if isempty(h) h = 0; end if can_solve_expcone for i = 1:length(logdetStruct.P) [vi,Modeli] = eigv(logdetStruct.P{i}); F = [F, Modeli, logdetStruct.P{i} >= 0]; log_vi = log(vi); h = h + logdetStruct.gain(i)*sum(log_vi); evalVariables = union(evalVariables,getvariables( log_vi)); end else t = sdpvar(1,1); Ptemp = []; for i = 1:length(logdetStruct.P) Ptemp = blkdiag(Ptemp,logdetStruct.P{i}); end P = {Ptemp}; if length(F)>0 if isequal(P,sdpvar(F(end))) F = F(1:end-1); end end F = F + detset(t,P{1}); if isempty(h) h = -t; if length(logdetStruct.P) > 1 && options.verbose>0 && options.warning>0 disp(' ') disp('Objective -sum logdet(P_i) has been changed to -sum det(P_i)^(1/(2^ceil(log2(length(P_i))))).') disp('This is not an equivalent transformation. You should use SDPT3 which supports MAXDET terms') disp('See the MAXDET section in the manual for details.') disp(' ') end else h = h-t; % Warn about logdet -> det^1/m if options.verbose>0 & options.warning>0 disp(' ') disp('Objective c''x-sum logdet(P_i) has been changed to c''x-sum det(P_i)^(1/(2^ceil(log2(length(P_i))))).') disp('This is not an equivalent transformation. You should use SDPT3 which supports MAXDET terms') disp('See the MAXDET section in the manual for details.') disp(' ') end end end P = []; logdetStruct = []; end end % ************************************************************************* %% Change binary variables to integer? % ************************************************************************* old_binary_variables = binary_variables; if ~isempty(binary_variables) & (solver.constraint.binary==0) x_bin = recover(binary_variables(ismember(binary_variables,unique([getvariables(h) getvariables(F)])))); F = F + (x_bin<=1)+(x_bin>=0); integer_variables = union(binary_variables,integer_variables); binary_variables = []; end % ************************************************************************* %% Model quadratics using SOCP? % Should not be done when using PENNLP or BMIBNB or FMINCON, or if we have relaxed the % monmial terms or...Ouch, need to clean up all special cases, this sucks. % ************************************************************************* convertQuadraticObjective = ~strcmpi(solver.tag,'pennlp-standard'); convertQuadraticObjective = convertQuadraticObjective & ~strcmpi(solver.tag,'bmibnb'); relaxed = (options.relax==1 | options.relax==3); %| (~isempty(quad_info) & strcmp(solver.tag,'bnb') & localsolver.objective.quadratic.convex==0) convertQuadraticObjective = convertQuadraticObjective & (~relaxed & (~isempty(quad_info) & solver.objective.quadratic.convex==0)); %convertQuadraticObjective = convertQuadraticObjective; % | strcmpi(solver.tag,'cutsdp'); if any(strcmpi(solver.tag,{'bnb','cutsdp'})) & ~isempty(quad_info) if solver.lower.objective.quadratic.convex==0 convertQuadraticObjective = 1; end end if convertQuadraticObjective t = sdpvar(1,1); x = quad_info.x; R = quad_info.R; if ~isempty(R) c = quad_info.c; f = quad_info.f; F = F + lmi(cone([2*R*x;1-(t-c'*x-f)],1+t-c'*x-f)); h = t; end quad_info = []; end if solver.constraint.inequalities.rotatedsecondordercone == 0 [F,changed] = convertlorentz(F); if changed options.saveduals = 0; % We cannot calculate duals since we change the problem end end % Whoa, horrible tests to find out when to convert SOCP to SDP % This should not be done if : % 1. Problem is actually a QCQP and solver supports this % 2. Problem is integer, local solver supports SOCC % 3. Solver supports SOCC if ~((solver.constraint.inequalities.elementwise.quadratic.convex == 1) & socp_are_really_qc) if ~(strcmp(solver.tag,'bnb') & socp_are_really_qc & localsolver.constraint.inequalities.elementwise.quadratic.convex==1 ) if ((solver.constraint.inequalities.secondordercone.linear == 0) | (strcmpi(solver.tag,'bnb') & localsolver.constraint.inequalities.secondordercone.linear==0)) if solver.constraint.inequalities.semidefinite.linear [F,changed] = convertsocp(F); else [F,changed] = convertsocp2NONLINEAR(F); end if changed options.saveduals = 0; % We cannot calculate duals since we change the problem end end end end % ************************************************************************* %% Add logaritmic barrier cost/constraint for MAXDET and SDPT3-4. Note we % have to add it her in order for a complex valued matrix to be converted. % ************************************************************************* if ~isempty(logdetStruct) & solver.objective.maxdet.convex==1 & solver.constraint.inequalities.semidefinite.linear for i = 1:length(logdetStruct.P) F = F + (logdetStruct.P{i} >= 0); if ~isreal(logdetStruct.P{i}) logdetStruct.gain(i) = logdetStruct.gain(i)/2; ProblemClass.complex = 1; end end end if ((solver.complex==0) & ProblemClass.complex) | ((strcmp(solver.tag,'bnb') & localsolver.complex==0) & ProblemClass.complex) showprogress('Converting to real constraints',options.showprogress) F = imag2reallmi(F); if ~isempty(logdetStruct) for i = 1:length(logdetStruct.P) P{i} = sdpvar(F(end-length(logdetStruct.P)+i)); end end options.saveduals = 0; % We cannot calculate duals since we change the problem %else % complex_logdet = zeros(length(P),1); end % ************************************************************************* %% CREATE OBJECTIVE FUNCTION c'*x+x'*Q*x % ************************************************************************* showprogress('Processing objective function',options.showprogress); try % If these solvers, the Q term is placed in c, hence quadratic terms % are treated as any other nonlinear term geometric = strcmpi(solver.tag,'fmincon-geometric')| strcmpi(solver.tag,'gpposy') | strcmpi(solver.tag,'mosek-geometric') | strcmpi(solver.tag,'snopt-geometric') | strcmpi(solver.tag,'ipopt-geometric') | strcmpi(solver.tag,'pennon-geometric'); if strcmpi(solver.tag,'bnb') lowersolver = lower([solver.lower.tag '-' solver.lower.version]); if strcmpi(lowersolver,'fmincon-geometric')| strcmpi(lowersolver,'gpposy-') | strcmpi(lowersolver,'mosek-geometric') geometric = 1; end end if strcmpi(solver.tag,'bmibnb') | strcmpi(solver.tag,'sparsepop') | strcmpi(solver.tag,'pennlp-standard') | geometric | evaluation_based ; tempoptions = options; tempoptions.relax = 1; [c,Q,f]=createobjective(h,logdetStruct,tempoptions,quad_info); else [c,Q,f]=createobjective(h,logdetStruct,options,quad_info); end catch error(lasterr) end % ************************************************************************* %% Convert {F(x),G(x)} to a numerical SeDuMi-like format % ************************************************************************* showprogress('Processing constraints',options.showprogress); F = lmi(F); [F_struc,K,KCut,schur_funs,schur_data,schur_variables] = lmi2sedumistruct(F); % We add a field to remember the dimension of the logarithmic cost. % Actually, the actually value is not interesting, we know that the % logarithmic cost corresponds to the last LP or SDP constraint anyway if isempty(logdetStruct) K.m = 0; else for i = 1:length(logdetStruct.P) K.m(i) = length(logdetStruct.P{i}); end K.maxdetgain = logdetStruct.gain; end if ~isempty(schur_funs) if length(schur_funs)<length(K.s) schur_funs{length(K.s)}=[]; schur_data{length(K.s)}=[]; schur_variables{length(K.s)}=[]; end end K.schur_funs = schur_funs; K.schur_data = schur_data; K.schur_variables = schur_variables; % ************************************************************************* %% SOME HORRIBLE CODE TO DETERMINE USED VARIABLES % ************************************************************************* % Which sdpvar variables are actually in the problem used_variables_LMI = find(any(F_struc(:,2:end),1)); used_variables_obj = find(any(c',1) | any(Q)); if isequal(used_variables_LMI,used_variables_obj) used_variables = used_variables_LMI; else used_variables = uniquestripped([used_variables_LMI used_variables_obj]); end if ~isempty(K.sos) for i = 1:length(K.sos.type) used_variables = uniquestripped([used_variables K.sos.variables{i}(:)']); end end % The problem is that linear terms might be missing in problems with only % nonlinear expressions [monomtable,variabletype] = yalmip('monomtable'); if (options.relax==1)|(options.relax==3) monomtable = []; nonlinearvariables = []; linearvariables = used_variables; else nonlinearvariables = find(variabletype); linearvariables = used_variables(find(variabletype(used_variables)==0)); end needednonlinear = nonlinearvariables(ismembcYALMIP(nonlinearvariables,used_variables)); linearinnonlinear = find(sum(abs(monomtable(needednonlinear,:)),1)); missinglinear = setdiff(linearinnonlinear(:),linearvariables); used_variables = uniquestripped([used_variables(:);missinglinear(:)]); % ************************************************************************* %% So are we done now? No... What about variables hiding inside so called % evaluation variables. We detect these, and at the same time set up the % structures needed to support general functions such as exp, log, etc % NOTE : This is experimental code % FIX : Clean up... % ************************************************************************* [evalMap,evalVariables,used_variables,nonlinearvariables,linearvariables] = detectHiddenNonlinear(used_variables,options,nonlinearvariables,linearvariables,evalVariables); % Attach information on the evaluation based variables that was generated % when the model was expanded if ~isempty(evalMap) for i = 1:length(operators) index = find(operators{i}.properties.models(1) == used_variables(evalVariables)); if ~isempty(index) evalMap{index}.properties = operators{i}.properties; end end for i = 1:length(evalMap) for j = 1:length(evalMap{i}.computes) evalMap{i}.computes(j) = find(evalMap{i}.computes(j) == used_variables); end end % Add information about which argument is the variable for i = 1:length(evalMap) for j = 1:length(evalMap{i}.arg)-1 if isa(evalMap{i}.arg{j},'sdpvar') evalMap{i}.argumentIndex = j; break end end end end % ************************************************************************* %% REMOVE UNNECESSARY VARIABLES FROM PROBLEM % ************************************************************************* if length(used_variables)<yalmip('nvars') c = c(used_variables); if 0 % very slow in some extreme cases Q = Q(:,used_variables);Q = Q(used_variables,:); else [i,j,s] = find(Q); keep = ismembcYALMIP(i,used_variables) & ismembcYALMIP(j,used_variables); i = i(keep); j = j(keep); s = s(keep); [ii,jj] = ismember(1:length(Q),used_variables); i = jj(i); j = jj(j); Q = sparse(i,j,s,length(used_variables),length(used_variables)); end if ~isempty(F_struc) F_struc = sparse(F_struc(:,[1 1+used_variables])); end end % ************************************************************************* %% Map variables and constraints in low-rank definition to local stuff % ************************************************************************* if ~isempty(lowrankdetails) % Identifiers of the SDP constraints lmiid = getlmiid(F); for i = 1:length(lowrankdetails) lowrankdetails{i}.id = find(ismember(lmiid,lowrankdetails{i}.id)); if ~isempty(lowrankdetails{i}.variables) index = ismember(used_variables,lowrankdetails{i}.variables); lowrankdetails{i}.variables = find(index); end end end % ************************************************************************* %% SPECIAL VARIABLES % Relax = 1 : relax both integers and nonlinear stuff % Relax = 2 : relax integers % Relax = 3 : relax nonlinear stuff % ************************************************************************* if (options.relax==1) | (options.relax==3) nonlins = []; end if (options.relax == 1) | (options.relax==2) integer_variables = []; binary_variables = []; semicont_variables = []; old_binary_variables = find(ismember(used_variables,old_binary_variables)); else integer_variables = find(ismember(used_variables,integer_variables)); binary_variables = find(ismember(used_variables,binary_variables)); semicont_variables = find(ismember(used_variables,semicont_variables)); old_binary_variables = find(ismember(used_variables,old_binary_variables)); end parametric_variables = find(ismember(used_variables,parametric_variables)); extended_variables = find(ismember(used_variables,yalmip('extvariables'))); aux_variables = find(ismember(used_variables,yalmip('auxvariables'))); if ~isempty(K.sos) for i = 1:length(K.sos.type) K.sos.variables{i} = find(ismember(used_variables,K.sos.variables{i})); K.sos.variables{i} = K.sos.variables{i}(:); end end % if ~isempty(semicont_variables) && ~solver.constraint.semivar % [F_struc,K,binary_variables] = expandsemivar(F_struc,K,semicont_variables); % end % ************************************************************************* %% Equality constraints not supported or supposed to be removed % ************************************************************************* % We may save some data in order to reconstruct % dual variables related to equality constraints that % have been removed. oldF_struc = []; oldQ = []; oldc = []; oldK = K; Fremoved = []; if (K.f>0) if (isequal(solver.tag,'BNB') && ~solver.lower.constraint.equalities.linear) || (isequal(solver.tag,'BMIBNB') && ~solver.lowersolver.constraint.equalities.linear) badLower = 1; else badLower = 0; end % reduce if user explicitely says remove, or user says nothing but % solverdefinitions does, and there are no nonlinear variables if ~badLower && ((options.removeequalities==1 | options.removeequalities==2) & isempty(intersect(used_variables,nonlinearvariables))) | ((options.removeequalities==0) & (solver.constraint.equalities.linear==-1)) showprogress('Solving equalities',options.showprogress); [x_equ,H,A_equ,b_equ,factors] = solveequalities(F_struc,K,options.removeequalities==1); % Exit if no consistent solution exist if (norm(A_equ*x_equ-b_equ,'inf')>1e-5)%sqrt(eps)*size(A_equ,2)) diagnostic.solvertime = 0; diagnostic.info = yalmiperror(1,'YALMIP'); diagnostic.problem = 1; solution = diagnostic; solution.variables = used_variables(:); solution.optvar = x_equ; % And we are done! Save the result % sdpvar('setSolution',solution); return end % We dont need the rows for equalities anymore oldF_struc = F_struc; oldc = c; oldQ = Q; oldK = K; F_struc = F_struc(K.f+1:end,:); K.f = 0; Fold = F; [nlmi neq]=sizeOLD(F); iseq = is(Fold(1:(nlmi+neq)),'equality'); F = Fold(find(~iseq)); Fremoved = Fold(find(iseq)); % No variables left. Problem solved! if size(H,2)==0 diagnostic.solvertime = 0; diagnostic.info = yalmiperror(0,'YALMIP'); diagnostic.problem = 0; solution = diagnostic; solution.variables = used_variables(:); solution.optvar = x_equ; % And we are done! Save the result % Note, no dual is saved yalmip('setSolution',solution); p = checkset(F); if any(p<1e-5) diagnostic.info = yalmiperror(1,'YALMIP'); diagnostic.problem = 1; end return end showprogress('Converting problem to new basis',options.showprogress) % objective in new basis f = f + x_equ'*Q*x_equ; c = H'*c + 2*H'*Q*x_equ; Q = H'*Q*H;Q=((Q+Q')/2); % LMI in new basis F_struc = [F_struc*[1;x_equ] F_struc(:,2:end)*H]; else % Solver does not support equality constraints and user specifies % double-sided inequalitis to remove them, or solver is used from % lmilab or similiar solver if (solver.constraint.equalities.linear==0 | options.removeequalities==-1 | badLower) % Add equalities F_struc = [-F_struc(1:1:K.f,:);F_struc]; K.l = K.l+K.f*2; % Keep this in mind... K.fold = K.f; K.f = 0; end % For simpliciy we introduce a dummy coordinate change x_equ = 0; H = 1; factors = []; end else x_equ = 0; H = 1; factors = []; end % ************************************************************************* %% Setup the initial solution % ************************************************************************* x0 = []; if options.usex0 if solver.supportsinitial == 0 error('You have specified an initial point, but the selected solver does not support warm-starts through YALMIP'); end if options.relax x0_used = relaxdouble(recover(used_variables)); else %FIX : Do directly using yalmip('solution') %solution = yalmip('getsolution'); x0_used = double(recover(used_variables)); end x0 = zeros(sdpvar('nvars'),1); x0(used_variables) = x0_used(:); if ~solver.supportsinitialNAN x0(isnan(x0))=0; end end if ~isempty(x0) % Get a coordinate in the reduced space x0 = H\(x0(used_variables)-x_equ); end % Monomial table for nonlinear variables % FIX : Why here!!! mt handled above also [mt,variabletype] = yalmip('monomtable'); if size(mt,1)>size(mt,2) mt(size(mt,1),size(mt,1)) = 0; end % In local variables mt = mt(used_variables,used_variables); variabletype = variabletype(used_variables); if (options.relax == 1)|(options.relax==3) mt = speye(length(used_variables)); variabletype = variabletype*0; end % FIX : Make sure these things work... lub = yalmip('getbounds',used_variables); lb = lub(:,1)-inf; ub = lub(:,2)+inf; lb(old_binary_variables) = max(lb(old_binary_variables),0); ub(old_binary_variables) = min(ub(old_binary_variables),1); % This does not work if we have used removeequalities, so we clear them for % safety. note that bounds are not guaranteed to be used according to the % manual, so this is allowed, although it might be a bit inconsistent to % some users. if ~isempty(oldc) lb = []; ub = []; end % Sanity check if ~isempty(c) if any(isnan(c) ) error('You have NaNs in your objective!. Read more: http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Extra.NANInModel') end end if ~isempty(Q) if any(any(isnan(Q))) error('You have NaNs in your quadratic objective!. Read more: http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Extra.NANInModel') end end if ~isempty(lb) if any(isnan(lb)) error('You have NaNs in a lower bound!. Read more: http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Extra.NANInModel') end end if ~isempty(ub) if any(isnan(ub)) error('You have NaNs in an upper bound!.Read more: http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Extra.NANInModel') end end if ~isempty(F_struc) if any(any(isnan(F_struc))) error('You have NaNs in your constraints!. Read more: http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Extra.NANInModel') end end % ************************************************************************* %% GENERAL DATA EXCHANGE WITH SOLVER % ************************************************************************* interfacedata.F_struc = F_struc; interfacedata.c = c; interfacedata.Q = Q; interfacedata.f = f; interfacedata.K = K; interfacedata.lb = lb; interfacedata.ub = ub; interfacedata.x0 = x0; interfacedata.options = options; interfacedata.solver = solver; interfacedata.monomtable = mt; interfacedata.variabletype = variabletype; interfacedata.integer_variables = integer_variables; interfacedata.binary_variables = binary_variables; interfacedata.semicont_variables = semicont_variables; interfacedata.semibounds = []; interfacedata.uncertain_variables = []; interfacedata.parametric_variables= parametric_variables; interfacedata.extended_variables = extended_variables; interfacedata.aux_variables = aux_variables; interfacedata.used_variables = used_variables; interfacedata.lowrankdetails = lowrankdetails; interfacedata.problemclass = ProblemClass; interfacedata.KCut = KCut; interfacedata.getsolvertime = 1; % Data to be able to recover duals when model is reduced interfacedata.oldF_struc = oldF_struc; interfacedata.oldc = oldc; interfacedata.oldK = oldK; interfacedata.factors = factors; interfacedata.Fremoved = Fremoved; interfacedata.evalMap = evalMap; interfacedata.evalVariables = evalVariables; interfacedata.evaluation_scheme = []; if strcmpi(solver.tag,'bmibnb') interfacedata.equalitypresolved = 0; interfacedata.presolveequalities = 1; else interfacedata.equalitypresolved = 1; interfacedata.presolveequalities = 1; end interfacedata.ProblemClass = ProblemClass; interfacedata.dualized = is(F,'dualized'); % ************************************************************************* %% GENERAL DATA EXCANGE TO RECOVER SOLUTION AND UPDATE YALMIP VARIABLES % ************************************************************************* recoverdata.H = H; recoverdata.x_equ = x_equ; recoverdata.used_variables = used_variables; %% function yesno = warningon s = warning; if isa(s,'char') yesno = isequal(s,'on'); else yesno = isequal(s(1).state,'on'); end %% function [evalMap,evalVariables,used_variables,nonlinearvariables,linearvariables] = detectHiddenNonlinear(used_variables,options,nonlinearvariables,linearvariables,eIN) %evalVariables = yalmip('evalVariables'); evalVariables = eIN; old_used_variables = used_variables; goon = 1; if ~isempty(evalVariables) while goon % Which used_variables are representing general functions % evalVariables = yalmip('evalVariables'); evalVariables = eIN; usedEvalVariables = find(ismember(used_variables,evalVariables)); evalMap = yalmip('extstruct',used_variables(usedEvalVariables)); if ~isa(evalMap,'cell') evalMap = {evalMap}; end % Find all variables used in the arguments of these functions hidden = []; for i = 1:length(evalMap) % Find main main argument (typically first argument, but this % could be different in a user-specified sdpfun object) for aux = 1:length(evalMap{i}.arg)-1 if isa(evalMap{i}.arg{aux},'sdpvar') X = evalMap{i}.arg{aux}; break end end n = length(X); if isequal(getbase(X),[spalloc(n,1,0) speye(n)])% & is(evalMap{i}.arg{1},'linear') for j = 1:length(evalMap{i}.arg)-1 % The last argument is the help variable z in the % transformation from f(ax+b) to f(z),z==ax+b. We should not % use this transformation if the argument already is unitary hidden = [hidden getvariables(evalMap{i}.arg{j})]; end else for j = 1:length(evalMap{i}.arg) % The last argument is the help variable z in the % transformation from f(ax+b) to f(z),z==ax+b. We should not % use this transformation if the argument already is unitary hidden = [hidden getvariables(evalMap{i}.arg{j})]; end end end used_variables = union(used_variables,hidden); % The problem is that linear terms might be missing in problems with only % nonlinear expressions [monomtable,variabletype] = yalmip('monomtable'); if (options.relax==1)|(options.relax==3) monomtable = []; nonlinearvariables = []; linearvariables = used_variables; else nonlinearvariables = find(variabletype); linearvariables = used_variables(find(variabletype(used_variables)==0)); end needednonlinear = nonlinearvariables(ismembcYALMIP(nonlinearvariables,used_variables)); linearinnonlinear = find(sum(abs(monomtable(needednonlinear,:)),1)); missinglinear = setdiff(linearinnonlinear(:),linearvariables); used_variables = uniquestripped([used_variables(:);missinglinear(:)]); usedEvalVariables = find(ismember(used_variables,evalVariables)); evalMap = yalmip('extstruct',used_variables(usedEvalVariables)); if ~isa(evalMap,'cell') evalMap = {evalMap}; end evalVariables = usedEvalVariables; for i = 1:length(evalMap) for aux = 1:length(evalMap{i}.arg)-1 if isa(evalMap{i}.arg{aux},'sdpvar') X = evalMap{i}.arg{aux}; break end end n = length(X); if isequal(getbase(X),[spalloc(n,1,0) speye(n)]) index = ismember(used_variables,getvariables(X)); evalMap{i}.variableIndex = find(index); else index = ismember(used_variables,getvariables(evalMap{i}.arg{end})); evalMap{i}.variableIndex = find(index); end end goon = ~isequal(used_variables,old_used_variables); old_used_variables = used_variables; end else evalMap = []; end function evalVariables = determineEvaluationBased(operators) evalVariables = []; for i = 1:length(operators) if strcmpi(operators{i}.properties.model,'callback') evalVariables = [evalVariables operators{i}.properties.models]; end end function [Fnew,changed] = convertsocp2NONLINEAR(F); changed = 0; socps = find(is(F,'socp')); Fsocp = F(socps); Fnew = F; if length(socps) > 0 changed = 1; Fnew(socps) = []; for i = 1:length(Fsocp) z = sdpvar(Fsocp(i)); Fnew = [Fnew, z(1)>=0, z(1)^2 >= z(2:end)'*z(2:end)]; end end
github
EnricoGiordano1992/LMI-Matlab-master
selectsolver.m
.m
LMI-Matlab-master/yalmip/extras/selectsolver.m
23,046
utf_8
1cf76f327e2fcc2f98d45d6024ced027
function [solver,problem,forced_choice] = selectsolver(options,ProblemClass,solvers,socp_are_really_qc,allsolvers); %SELECTSOLVER Internal function to select solver based on problem category problem = 0; % UNDOCUMENTED force_solver = yalmip('solver'); if length(force_solver)>0 options.solver = force_solver; end % YALMIP has discovered in an previous call that the model isn't a GP, and % now searches for a non-GP solver if options.thisisnotagp ProblemClass.gppossible = 0; end % *************************************************** % Maybe the user is stubborn and wants to pick solver % *************************************************** forced_choice = 0; if length(options.solver)>0 & isempty(findstr(options.solver,'*')) if strfind(options.solver,'+') forced_choice = 1; options.solver = strrep(options.solver,'+',''); end % Create tags with version also temp = expandSolverName(solvers); opsolver = lower(options.solver); splits = findstr(opsolver,','); if isempty(splits) names{1} = opsolver; else start = 1; for i = 1:length(splits) names{i} = opsolver(start:splits(i)-1); start = splits(i)+1; end names{end+1} = opsolver(start:end); end index1 = []; index2 = []; for i = 1:length(names) index1 = [index1 find(strcmpi({solvers.tag},names{i}))]; index2 = [index1 find(strcmpi({temp.tag},names{i}))]; end if isempty(index1) & isempty(index2) % Specified solver not found among available solvers % Is it even a supported solver temp = expandSolverName(allsolvers); for i = 1:length(names) index1 = [index1 find(strcmp(lower({allsolvers.tag}),names{i}))]; index2 = [index1 find(strcmp(lower({temp.tag}),names{i}))]; end if isempty(index1) & isempty(index2) problem = -9; else problem = -3; end solver = []; return; else solvers = solvers(union(index1,index2)); end end % if forced_choice % solver = solvers(end); % problem = 0; % return % end % ************************************************ % Prune based on objective % ************************************************ if ProblemClass.objective.sigmonial & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).objective.sigmonial; end solvers = solvers(find(keep)); end if ProblemClass.objective.polynomial & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.equalities.quadratic | solvers(i).constraint.inequalities.elementwise.quadratic.nonconvex | solvers(i).objective.polynomial | solvers(i).objective.sigmonial; end solvers = solvers(find(keep)); end if ProblemClass.objective.quadratic.nonconvex & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).objective.polynomial | solvers(i).objective.sigmonial | solvers(i).objective.quadratic.nonconvex; end solvers = solvers(find(keep)); end if ProblemClass.objective.quadratic.convex & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) direct = solvers(i).objective.polynomial | solvers(i).objective.sigmonial | solvers(i).objective.quadratic.nonconvex | solvers(i).objective.quadratic.convex; indirect = solvers(i).constraint.inequalities.semidefinite.linear | solvers(i).constraint.inequalities.secondordercone.linear; if direct | indirect keep(i)=1; else keep(i)=0; end end solvers = solvers(find(keep)); end if ProblemClass.objective.linear & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).objective.polynomial | solvers(i).objective.sigmonial | solvers(i).objective.quadratic.nonconvex | solvers(i).objective.quadratic.convex | solvers(i).objective.linear; end solvers = solvers(find(keep)); end if ProblemClass.objective.maxdet.convex & ~ProblemClass.objective.linear & ~ProblemClass.objective.quadratic.convex & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).objective.maxdet.convex | solvers(i).constraint.inequalities.semidefinite.linear; end solvers = solvers(find(keep)); end if ProblemClass.objective.maxdet.convex & (ProblemClass.objective.linear | ProblemClass.objective.quadratic.convex) & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).objective.maxdet.convex; end solvers = solvers(find(keep)); end if ProblemClass.objective.maxdet.nonconvex & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).objective.maxdet.nonconvex; end solvers = solvers(find(keep)); end % ****************************************************** % Prune based on rank constraints % ****************************************************** if ProblemClass.constraint.inequalities.rank & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.rank; end solvers = solvers(find(keep)); end % ****************************************************** % Prune based on semidefinite constraints % ****************************************************** if ProblemClass.constraint.inequalities.semidefinite.sigmonial & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.semidefinite.sigmonial; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.semidefinite.polynomial & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.semidefinite.sigmonial | solvers(i).constraint.inequalities.semidefinite.polynomial; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.semidefinite.quadratic & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.semidefinite.sigmonial | solvers(i).constraint.inequalities.semidefinite.polynomial | solvers(i).constraint.inequalities.semidefinite.quadratic; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.semidefinite.linear & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.semidefinite.sigmonial | solvers(i).constraint.inequalities.semidefinite.polynomial | solvers(i).constraint.inequalities.semidefinite.quadratic | solvers(i).constraint.inequalities.semidefinite.linear; end solvers = solvers(find(keep)); end % If user has specified a, e.g., LP solver for an SDP when using OPTIMIZER, % we must bail out, as there is no chance this model instantiates as an LP. if forced_choice & (ProblemClass.constraint.inequalities.semidefinite.linear | ProblemClass.constraint.inequalities.semidefinite.quadratic | ProblemClass.constraint.inequalities.semidefinite.polynomial | ProblemClass.constraint.inequalities.semidefinite.sigmonial) keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.semidefinite.sigmonial | solvers(i).constraint.inequalities.semidefinite.polynomial | solvers(i).constraint.inequalities.semidefinite.quadratic | solvers(i).constraint.inequalities.semidefinite.linear; end solvers = solvers(find(keep)); end % Similarily, we have a SOCP by definition. We must support that if forced_choice & ~socp_are_really_qc & (ProblemClass.constraint.inequalities.secondordercone.linear | ProblemClass.constraint.inequalities.secondordercone.nonlinear) keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.secondordercone.linear; end solvers = solvers(find(keep)); end % ****************************************************** % Prune based on cone constraints % ****************************************************** if ProblemClass.constraint.inequalities.secondordercone.linear & ~socp_are_really_qc & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.secondordercone.linear | solvers(i).constraint.inequalities.semidefinite.linear | solvers(i).constraint.inequalities.elementwise.quadratic.nonconvex; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.secondordercone.nonlinear & ~socp_are_really_qc & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.secondordercone.nonlinear | solvers(i).constraint.inequalities.elementwise.quadratic.nonconvex; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.rotatedsecondordercone & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.rotatedsecondordercone | solvers(i).constraint.inequalities.secondordercone.linear | solvers(i).constraint.inequalities.semidefinite.linear; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.powercone & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.powercone; end solvers = solvers(find(keep)); end % ****************************************************** % Prune based on element-wise inequality constraints % ****************************************************** if ProblemClass.constraint.inequalities.elementwise.sigmonial & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.elementwise.sigmonial; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.elementwise.polynomial & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.elementwise.quadratic.nonconvex | solvers(i).constraint.inequalities.elementwise.sigmonial | solvers(i).constraint.inequalities.elementwise.polynomial; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.elementwise.quadratic.nonconvex & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.elementwise.sigmonial | solvers(i).constraint.inequalities.elementwise.polynomial | solvers(i).constraint.inequalities.elementwise.quadratic.nonconvex; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.elementwise.quadratic.convex | (ProblemClass.constraint.inequalities.secondordercone.linear & socp_are_really_qc) & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.elementwise.sigmonial | solvers(i).constraint.inequalities.elementwise.polynomial | solvers(i).constraint.inequalities.elementwise.quadratic.nonconvex | solvers(i).constraint.inequalities.elementwise.quadratic.convex | solvers(i).constraint.inequalities.secondordercone.linear | solvers(i).constraint.inequalities.semidefinite.linear; end solvers = solvers(find(keep)); end if ProblemClass.constraint.inequalities.elementwise.linear & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.elementwise.sigmonial | solvers(i).constraint.inequalities.elementwise.polynomial | solvers(i).constraint.inequalities.semidefinite.quadratic | solvers(i).constraint.inequalities.elementwise.linear; end solvers = solvers(find(keep)); end % ****************************************************** % Prune based on element-wise constraints % ****************************************************** if ProblemClass.constraint.equalities.sigmonial & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.inequalities.elementwise.sigmonial | solvers(i).constraint.equalities.sigmonial; end solvers = solvers(find(keep)); end if ProblemClass.constraint.equalities.polynomial & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) indirect = solvers(i).constraint.inequalities.elementwise.quadratic.nonconvex | solvers(i).constraint.inequalities.elementwise.sigmonial | solvers(i).constraint.inequalities.elementwise.polynomial; indirect = indirect | solvers(i).constraint.inequalities.elementwise.sigmonial | solvers(i).constraint.inequalities.elementwise.polynomial; direct = solvers(i).constraint.equalities.sigmonial | solvers(i).constraint.equalities.polynomial; keep(i) = direct | indirect; end solvers = solvers(find(keep)); end if ProblemClass.constraint.equalities.quadratic & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) indirect = solvers(i).constraint.inequalities.elementwise.sigmonial | solvers(i).constraint.inequalities.elementwise.polynomial | solvers(i).constraint.inequalities.elementwise.quadratic.nonconvex; direct = solvers(i).constraint.equalities.sigmonial | solvers(i).constraint.equalities.polynomial | solvers(i).constraint.equalities.quadratic; keep(i) = direct | indirect; end solvers = solvers(find(keep)); end if ProblemClass.constraint.equalities.linear & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) indirect = solvers(i).constraint.inequalities.elementwise.linear | solvers(i).constraint.inequalities.elementwise.sigmonial | solvers(i).constraint.inequalities.elementwise.polynomial; direct = solvers(i).constraint.equalities.linear | solvers(i).constraint.equalities.sigmonial | solvers(i).constraint.equalities.polynomial; keep(i) = direct | indirect; end solvers = solvers(find(keep)); end % ****************************************************** % Discrete data % ****************************************************** if ProblemClass.constraint.integer & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.integer; end solvers = solvers(find(keep)); end if ProblemClass.constraint.binary & ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.integer | solvers(i).constraint.binary; end solvers = solvers(find(keep)); end if ProblemClass.constraint.sos1 keep = ones(length(solvers),1); for i = 1:length(solvers) %keep(i) = solvers(i).constraint.integer | solvers(i).constraint.binary | solvers(i).constraint.sos2; keep(i) = solvers(i).constraint.sos2; end solvers = solvers(find(keep)); end if ProblemClass.constraint.sos2 keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.integer | solvers(i).constraint.binary | solvers(i).constraint.sos2; end solvers = solvers(find(keep)); end if ProblemClass.constraint.semicont keep = ones(length(solvers),1); for i = 1:length(solvers) %keep(i) = solvers(i).constraint.integer | solvers(i).constraint.binary | solvers(i).constraint.sos2; keep(i) = solvers(i).constraint.semivar; end solvers = solvers(find(keep)); end % ****************************************************** % Equalities with multiple monomoials (rule out GP) % ****************************************************** if ProblemClass.constraint.equalities.multiterm keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.equalities.multiterm; end solvers = solvers(find(keep)); end % FIXME % No support for multiterm is YALMIPs current way of saying "GP solver". We % use this flag to prune GPs based on objective too if ~ProblemClass.gppossible keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.equalities.multiterm; end solvers = solvers(find(keep)); end % ****************************************************** % Complementarity constraints % ****************************************************** if ProblemClass.constraint.complementarity.linear keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).constraint.complementarity.linear | solvers(i).constraint.integer | solvers(i).constraint.binary | solvers(i).constraint.equalities.polynomial | solvers(i).constraint.equalities.quadratic; end solvers = solvers(find(keep)); end % ****************************************************** % Interval data % ****************************************************** if ProblemClass.interval keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = solvers(i).interval; end solvers = solvers(find(keep)); end % ****************************************************** % Parametric problem % ****************************************************** if ~forced_choice keep = ones(length(solvers),1); for i = 1:length(solvers) keep(i) = (ProblemClass.parametric == solvers(i).parametric); end solvers = solvers(find(keep)); end % ****************************************************** % Exponential cone representable (exp, log,...) % ****************************************************** keep = ones(length(solvers),1); if ~forced_choice for i = 1:length(solvers) keep(i) = (ProblemClass.exponentialcone <= solvers(i).exponentialcone) || (ProblemClass.exponentialcone <= solvers(i).evaluation); end solvers = solvers(find(keep)); end % ****************************************************** % General functions (sin, cos,...) % ****************************************************** keep = ones(length(solvers),1); if ~forced_choice for i = 1:length(solvers) keep(i) = (ProblemClass.evaluation <= solvers(i).evaluation) || (ProblemClass.exponentialcone && solvers(i).exponentialcone); end solvers = solvers(find(keep)); end % FIX : UUUUUUGLY if isempty(solvers) solver = []; else if length(options.solver)>0 solver = []; % FIX : Re-use from above opsolver = lower(options.solver); splits = findstr(opsolver,','); if isempty(splits) names{1} = opsolver; else names = {}; start = 1; for i = 1:length(splits) names{i} = opsolver(start:splits(i)-1); start = splits(i)+1; end names{end+1} = opsolver(start:end); end temp = solvers; for i = 1:length(temp) if length(temp(i).version)>0 temp(i).tag = lower([temp(i).tag '-' temp(i).version]); end end for i = 1:length(names) if isequal(names{i},'*') solver = solvers(1); break else j = find(strcmpi(lower({solvers.tag}),names{i})); if ~isempty(j) solver = solvers(j(1)); break end j = find(strcmpi(lower({temp.tag}),names{i})); if ~isempty(j) solver = solvers(j(1)); break end end end else solver = solvers(1); end end if isempty(solver) if length(options.solver)>0 % User selected available solver, but it is not applicable problem = -4; else problem = -2; end end % FIX : Hack when chosing the wrong fmincon thingy if ~isempty(solver) c1 = (length(options.solver)==0 | isequal(lower(options.solver),'fmincon')) & isequal(lower(solver.tag),'fmincon') & isequal(solver.version,'geometric'); c2 = (length(options.solver)==0 | isequal(lower(options.solver),'snopt')) & isequal(lower(solver.tag),'snopt') & isequal(solver.version,'geometric'); if c1 | c2 if ~(ProblemClass.objective.sigmonial | ProblemClass.constraint.inequalities.elementwise.sigmonial) solver.version = 'standard'; solver.call = strrep(solver.call,'gp',''); solver.objective.linear = 1; solver.objective.quadratic.convex = 1; solver.objective.quadratic.nonconvex = 1; solver.objective.polynomial = 1; solver.objective.sigmonial = 1; solver.constraint.equalities.elementwise.linear = 1; solver.constraint.equalities.elementwise.quadratic.convex = 1; solver.constraint.equalities.elementwise.quadratic.nonconvex = 1; solver.constraint.equalities.elementwise.polynomial = 1; solver.constraint.equalities.elementwise.sigmonial = 1; solver.constraint.inequalities.elementwise.linear = 1; solver.constraint.inequalities.elementwise.quadratic.convex = 1; solver.constraint.inequalities.elementwise.quadratic.nonconvex = 1; solver.constraint.inequalities.elementwise.polynomial = 1; solver.constraint.inequalities.elementwise.sigmonial = 1; solver.constraint.inequalities.semidefinite.linear = 1; solver.constraint.inequalities.semidefinite.quadratic = 1; solver.constraint.inequalities.semidefinite.polynomial = 1; solver.dual = 1; solver.evaluation = 1; end end end function temp = expandSolverName(temp) for i = 1:length(temp) if length(temp(i).version)>0 temp(i).tag = lower([temp(i).tag '-' temp(i).version]); end end
github
EnricoGiordano1992/LMI-Matlab-master
build_recursive_scheme.m
.m
LMI-Matlab-master/yalmip/extras/build_recursive_scheme.m
4,784
utf_8
3552dcf000e115ccb8eebfa81ab0dc22
function model = build_recursive_scheme(model); model.evaluation_scheme = []; model.deppattern = model.monomtable | model.monomtable; % Figure out arguments in all polynomials & sigmonials. This info is % used on several places, so we might just as well save it model.monomials = find(model.variabletype); model.monomialMap = cell(length(model.monomials),1); model.evaluation_scheme = []; %M = model.monomtable(model.monomials,:); MM= model.monomtable(model.monomials,:)'; for i = 1:length(model.monomials) % model.monomialMap{i}.variableIndex = find(model.monomtable(model.monomials(i),:)); % model.monomialMap{i}.variableIndex = find(M(i,:)); model.monomialMap{i}.variableIndex = find(MM(:,i)); end if ~isempty(model.evalMap) remainingEvals = ones(1,length(model.evalVariables)); remainingMonoms = ones(1,length(model.monomials)); model = recursive_call(model,remainingEvals,remainingMonoms); % Define a dependency structure % (used to speed up Jacobian computations etc) model.isevalVariable = zeros(1,size(model.monomtable,1)); model.isevalVariable(model.evalVariables) = 1; compute_depenedency = 1:size(model.monomtable,1); % remove purely linear variables, dependency is already computed compute_depenedency = setdiff(compute_depenedency,setdiff(find(model.variabletype==0),model.evalVariables)); if isequal(model.evaluation_scheme{1}.group,'monom') % This first level of monomials are simply defined by the monomial % table, hence dependency is already computed compute_depenedency = setdiff(compute_depenedency,model.monomials(model.evaluation_scheme{1}.variables)); end for i = compute_depenedency k = depends_on(model,i); model.deppattern(i,k) = 1; end else % Only monomials model.evaluation_scheme{1}.group = 'monom'; model.evaluation_scheme{1}.variables = 1:nnz(model.variabletype); end function r = depends_on(model,k) if model.variabletype(k) vars = find(model.monomtable(k,:)); r=[]; for i = 1:length(vars) r = [r depends_on(model,vars(i))]; end elseif model.isevalVariable(k)%ismember(k,model.evalVariables) j = find(k == model.evalVariables); r = []; for i = 1:length(model.evalMap{j}.variableIndex) argument = model.evalMap{j}.variableIndex(i); r = [r argument depends_on(model,argument)]; end else r = k; end function model = recursive_call(model,remainingEvals,remainingMonoms) if ~any(remainingEvals) & ~any(remainingMonoms) return end stillE = find(remainingEvals); stillM = find(remainingMonoms); % Extract arguments in first layer if any(remainingEvals) for i = 1:length(model.evalMap) composite_eval_expression(i) = any(ismembcYALMIP(model.evalMap{i}.variableIndex,model.evalVariables(stillE))); composite_eval_expression(i) = composite_eval_expression(i) | any(ismembcYALMIP(model.evalMap{i}.variableIndex,model.monomials(stillM))); end end if any(remainingMonoms) if issorted(model.evalVariables(stillE)) for i = 1:length(model.monomials) % composite_monom_expression(i) = any(ismember(model.monomialMap{i}.variableIndex,model.monomials(stillM))); % composite_monom_expression(i) = composite_monom_expression(i) | any(ismember(model.monomialMap{i}.variableIndex,model.evalVariables(stillE))); composite_monom_expression(i) = any(ismembcYALMIP(model.monomialMap{i}.variableIndex,model.evalVariables(stillE))); end else for i = 1:length(model.monomials) % composite_monom_expression(i) = any(ismember(model.monomialMap{i}.variableIndex,model.monomials(stillM))); % composite_monom_expression(i) = composite_monom_expression(i) | any(ismember(model.monomialMap{i}.variableIndex,model.evalVariables(stillE))); composite_monom_expression(i) = any(ismember(model.monomialMap{i}.variableIndex,model.evalVariables(stillE))); end end end % Bottom layer if ~isempty(model.monomials) & any(remainingMonoms) if ~isempty(find(~composite_monom_expression & remainingMonoms)) model.evaluation_scheme{end+1}.group = 'monom'; model.evaluation_scheme{end}.variables = find(~composite_monom_expression & remainingMonoms); end remainingMonoms = composite_monom_expression & remainingMonoms; end % Bottom layer if ~isempty(model.evalMap) & any(remainingEvals) if ~isempty(find(~composite_eval_expression & remainingEvals)); model.evaluation_scheme{end+1}.group = 'eval'; model.evaluation_scheme{end}.variables = find(~composite_eval_expression & remainingEvals); end remainingEvals = composite_eval_expression & remainingEvals; end model = recursive_call(model,remainingEvals,remainingMonoms);
github
EnricoGiordano1992/LMI-Matlab-master
dual2cell.m
.m
LMI-Matlab-master/yalmip/extras/dual2cell.m
546
utf_8
18deb951cf9dacb4b2e3d2faf4166ccd
function X = dual2cell(dual_vec,K) %DUAL2CELL Internal function for organizing dual data row = 1; X.f = dual_vec(row:row+K.f-1); row = row + K.f; X.l = dual_vec(row:row+K.l-1); row = row + K.l; for k = 1:length(K.q) X.q{k} = dual_vec(row:row+K.q(k)-1); row = row + K.q(k); end for k = 1:length(K.r) X.r{k} = dual_vec(row:row+K.r(k)-1); row = row + K.r(k); end for k = 1:length(K.s) X.s{k} = mat(dual_vec(row:row+K.s(k)^2-1)); row = row + K.s(k)^2; end function Y = mat(X) n = sqrt(length(X)); Y = reshape(X,n,n);
github
EnricoGiordano1992/LMI-Matlab-master
amplexpr.m
.m
LMI-Matlab-master/yalmip/extras/amplexpr.m
2,162
utf_8
0a47dd2e95c44a17fd78af99ed8950d6
function symb_pvec = amplexpr(pvec) %AMPLEXPR Converts SDPVAR variable to AMPL string for pi = 1:size(pvec,1) for pj = 1:size(pvec,2) p = pvec(pi,pj); if isa(p,'double') symb_p = num2str(p); else LinearVariables = depends(p); x = recover(LinearVariables); exponent_p = full(exponents(p,x)); names = cell(length(LinearVariables),1); for i = 1:length(LinearVariables) names{i}=['x[' num2str(LinearVariables(i)) ']']; end symb_p = ''; if all(exponent_p(1,:)==0) symb_p = num2str(getbasematrix(p,0)); exponent_p = exponent_p(2:end,:); end for i = 1:size(exponent_p,1) coeff = getbasematrixwithoutcheck(p,i); switch full(coeff) case 1 coeff='+'; case -1 coeff = '-'; otherwise if coeff >0 coeff = ['+' num2str2(coeff)]; else coeff=num2str2(coeff); end end if strcmp(symb_p,'') & (strcmp(coeff,'+') | strcmp(coeff,'-')) symb_p = [symb_p coeff symbmonom(names,exponent_p(i,:))]; else symb_p = [symb_p coeff '*' symbmonom(names,exponent_p(i,:))]; end end if symb_p(1)=='+' symb_p = symb_p(2:end); end end symb_p = strrep(symb_p,'+*','+'); symb_p = strrep(symb_p,'-*','-'); symb_pvec{pi,pj} = symb_p; end end function s = symbmonom(names,monom) s = ''; for j = 1:length(monom) if monom(j)>0 if strcmp(s,'') s = [s names{j}]; else s = [s '*' names{j}]; end end if monom(j)>1 s = [s '^' num2str(monom(j))]; end end function s = num2str2(x) s = num2str(x); if isequal(s,'1') s = ''; end if isequal(s,'-1') s = '-'; end
github
EnricoGiordano1992/LMI-Matlab-master
saveampl.m
.m
LMI-Matlab-master/yalmip/extras/saveampl.m
7,486
utf_8
0b44bf1f619d5b35fc97f2c1e9b865f5
function solution = saveampl(varargin) %SAVEAMPL Saves a problem definition in AMPL format % % SAVEAMPL(F,h,'filename') Saves the problem min(h(x)), F(x)>0 to the file filename % SAVEAMPL(F,h) A "Save As"- box will be opened % % YALMIP is currently able to save problems with linear and non-linear % element-wise inequality and equality constraints. Integer and binary % variables are also supported. % % Note that YALMIP changes the variable names. Continuous variables % are called x, binary are called y while z denotes integer variables. F = varargin{1}; h = varargin{2}; % Expand nonlinear operators options = sdpsettings; [F2,failure,cause] = expandmodel(F,h,options); if failure % Convexity propgation failed interfacedata = []; recoverdata = []; solver = ''; diagnostic.solvertime = 0; diagnostic.problem = 14; diagnostic.info = yalmiperror(14,cause); return end %% FIXME: SYNC with expandmodel etc. Same in compileinterfacedata setupBounds(F,options,yalmip('extvariables')); solver.constraint.equalities.polynomial=0; solver.constraint.binary=1; solver.constraint.integer=0; [F] = modelComplementarityConstraints(F,solver,[]); %% nvars = yalmip('nvars'); vars = depends(F); vars = unique([vars depends(h)]); binvars = yalmip('binvariables'); integervars = yalmip('intvariables'); for i = 1:length(F) if is(F(i),'binary') binvars = [binvars depends(F(i))]; elseif is(F(i),'integer') integervars = [integervars depends(F(i))]; end end binvars = intersect(binvars,vars); integervars = intersect(integervars,vars); vars = setdiff(vars,union(integervars,binvars)); integervars = setdiff(integervars,binvars); obj = amplexpr(h,vars,binvars,integervars); constraints = {}; if ~isempty(F) for i = 1:length(F) if is(F(i),'element-wise') C = sdpvar(F(i));C=C(:); dummy = amplexpr(C,vars,binvars,integervars); for j = 1:length(C) if ~isempty(dummy{j}) constraints{end+1} = ['0 <= ' dummy{j}]; end end elseif is(F(i),'socp') C = sdpvar(F(i));C=C(:); dummy = amplexpr(C(1)^2-C(2:end)'*C(2:end),vars,binvars,integervars); constraints{end+1} = ['0 <= ' dummy{1}]; dummy = amplexpr(C(1),vars,binvars,integervars); constraints{end+1} = ['0 <= ' dummy{1}]; elseif is(F(i),'equality') C = sdpvar(F(i));C=C(:); dummy = amplexpr(C,vars,binvars,integervars); for j = 1:length(C) constraints{end+1} = ['0 == ' dummy{j}]; end end end end % Is a filename supplied if nargin<3 [filename, pathname] = uiputfile('*.mod', 'Save AMPL format file'); if isa(filename,'double') return % User cancelled else % Did the user change the extension if isempty(findstr(filename,'.')) filename = [pathname filename '.mod']; else filename = [pathname filename]; end end else filename = varargin{3}; end fid = fopen(filename,'w'); try % fprintf(fid,['option randseed 0;\r\n']); if length(vars)>0 fprintf(fid,['var x {1..%i};\r\n'],length(vars)); end if length(binvars)>0 fprintf(fid,['var y {1..%i} binary ;\r\n'],length(binvars)); end if length(integervars)>0 fprintf(fid,['var z {1..%i} integer ;\r\n'],length(integervars)); end fprintf(fid,['minimize obj: ' obj{1} ';'],max(vars)); fprintf(fid,'\r\n'); if length(constraints)>0 for i = 1:length(constraints) constraints{i} = strrep(constraints{i},'mpower_internal',''); fprintf(fid,['subject to constr%i: ' constraints{i} ';'],i); fprintf(fid,'\r\n'); end end fprintf(fid,'solve;\r\n'); if length(vars)>0 fprintf(fid,'display x;\r\n'); end if length(binvars)>0 fprintf(fid,'display y;\r\n'); end if length(integervars)>0 fprintf(fid,'display z;\r\n'); end fprintf(fid,'display obj;\r\n'); catch fclose(fid); end fclose(fid); function symb_pvec = amplexpr(pvec,vars,binvars,integervars) extVariables = yalmip('extvariables'); for pi = 1:size(pvec,1) for pj = 1:size(pvec,2) p = pvec(pi,pj); if isa(p,'double') symb_p = num2str(p,12); elseif isinf(getbasematrix(p,0)) symb_p = []; else LinearVariables = depends(p); x = recover(LinearVariables); exponent_p = full(exponents(p,x)); names = cell(length(LinearVariables),1); for i = 1:length(LinearVariables) v1 = find(vars==LinearVariables(i)); if ~isempty(v1) names{i}=['x[' num2str(find(vars==LinearVariables(i))) ']']; else v1 = find(binvars==LinearVariables(i)); if ~isempty(v1) names{i}=['y[' num2str(find(binvars==LinearVariables(i))) ']']; else names{i}=['z[' num2str(find(integervars==LinearVariables(i))) ']']; end end end for i = 1:length(LinearVariables) v1 = find(extVariables==LinearVariables(i)); if ~isempty(v1) e = yalmip('extstruct',extVariables(v1)); inner = amplexpr(e.arg{1},depends(e.arg{1}),binvars,integervars); names{i} = [e.fcn '(' inner{1} ')']; names{i} = strrep(names{i},'mpower_internal',''); end end symb_p = ''; if all(exponent_p(1,:)==0) symb_p = num2str(full(getbasematrix(p,0)),12); exponent_p = exponent_p(2:end,:); end for i = 1:size(exponent_p,1) coeff = getbasematrixwithoutcheck(p,i); switch full(coeff) case 1 coeff='+'; case -1 coeff = '-'; otherwise if coeff >0 coeff = ['+' num2str2(coeff)]; else coeff=[num2str2(coeff)]; end end if strcmp(symb_p,'') & (strcmp(coeff,'+') | strcmp(coeff,'-')) symb_p = [symb_p coeff symbmonom(names,exponent_p(i,:))]; else symb_p = [symb_p coeff '*' symbmonom(names,exponent_p(i,:))]; end end if symb_p(1)=='+' symb_p = symb_p(2:end); end end if ~isempty(symb_p) symb_p = strrep(symb_p,'+*','+'); symb_p = strrep(symb_p,'-*','-'); end symb_pvec{pi,pj} = symb_p; end end function s = symbmonom(names,monom) s = ''; for j = 1:length(monom) if monom(j) if strcmp(s,'') s = [s names{j}]; else s = [s '*' names{j}]; end if monom(j)~=1 s = [s '^' num2str(monom(j))]; end end end function s = num2str2(x) s = num2str(full(x),12); if isequal(s,'1') s = ''; end if isequal(s,'-1') s = '-'; end
github
EnricoGiordano1992/LMI-Matlab-master
monolist.m
.m
LMI-Matlab-master/yalmip/extras/monolist.m
7,193
utf_8
dfe7495e41d589eb47d0d0df0acc3890
function new_x = monolist(x,dmax,dmin) % MONOLIST Generate monomials % % y = MONOLIST(x,dmax,dmin) % % Returns the monomials [1 x(1) x(1)^2 ... x(1)^dmax(1) x(2) x(1)x(2) etc...] % % >>sdpvar x y z % >>sdisplay(monolist([x y z],4)) % % Input % x : Vector with SDPVAR variables % dmax : Integers > 0 % % See also POLYNOMIAL, DEGREE % Flatten x = reshape(x,1,length(x)); x_orig = x; if nargin == 3 if length(dmin)>1 || any(dmin > dmax) || ~isequal(dmin,fix(dmin)) error('dmin has to be an integer scalar larger than dmax'); end elseif nargin == 2 dmin = 0; end if (length(dmax)==1 | all(dmax(1)==dmax)) & islinear(x) & ~isa(x,'ncvar') dmax = dmax(1); % Powers in monomials powers = monpowers(length(x),dmax); powers = powers(find(sum(powers,2)>=dmin),:); % Use fast method for x^alpha if isequal(getbase(x),[zeros(length(x),1) eye(length(x))]) new_x = recovermonoms(powers,x); return end % Monolist on dense vectors is currently extremely slow, but also % needed in some applications (stability analysis using SOS) For % performance issue, the code below is hard-coded for special cases % FIX : Urgent, find underlying indexing... % Vectorize quadratic and quadrtic case if dmax==2 & length(x)>1 V=x.'*[1 x]; ind=funkyindicies(length(x)); new_x = [1 V(ind(:)).'].'; return elseif (length(x)==4 & dmax==6) ind =[ 1 2 3 4 5 6 7 8, 9 10 11 12 13 14 15 16, 17 18 19 20 21 22 23 24, 25 26 27 28 29 30 31 32, 33 34 49 50 51 52 86 53, 54 55 89 56 57 91 58 92, 126 59 60 61 95 62 63 97, 64 98 132 65 66 100 67 101, 135 68 102 136 170 185 186 187, 188 222 256 189 190 191 225 259, 192 193 227 261 194 228 262 296, 330 364 195 196 197 231 265 198, 199 233 267 200 234 268 302 336, 370 201 202 236 270 203 237 271, 305 339 373 204 238 272 306 340, 374 408 442 476 510 525 526 527, 528 562 596 630 529 530 531 565, 599 633 532 533 567 601 635 534, 568 602 636 670 704 738 772 806, 840 535 536 537 571 605 639 538, 539 573 607 641 540 574 608 642, 676 710 744 778 812 846 541 542, 576 610 644 543 577 611 645 679, 713 747 781 815 849 544 578 612, 646 680 714 748 782 816 850 884, 918 952 986 1020 1054 1088 1122 1156, 1190 0 0 0 0 0 0 0]; ind = ind'; ind = ind(find(ind)); v=monolist(x,3); V=v(2:end)*v.'; new_x = [1;V(ind(:))]; return elseif dmax==4 & (1<=length(x)) & length(x)<=4 %& length(x)>1 v=monolist(x,2); V=v(2:end)*v.'; % Cone to generate indicies %p = sdpvar(n,1); %v = monolist(p,2); %V = v(2:end)*v';V=V(:); %m = monolist(p,4) %ind = []; %for i = 2:length(m) % ind = [ind min(find(~any(V-m(i))))]; %end switch length(x) case 1 new_x = [1; V([1 2 4 6]')]; return case 2 new_x = [1;V([1 2 3 4 5 8 9 10 15 18 19 20 25 30]')]; return; case 3 new_x=[1;V([1 2 3 4 5 6 7 8 9 13 14 15 24 16 17 26 18 27 36 40 41 42 51 60 43 44 53 62 45 54 63 72 81 90]')]; return case 4 new_x=[1;V([ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 20 21 35 22 23 37 24 38 52 25 26 40 27 41 55 28 42 56 70 75 76 77 91 105 78 79 93 107 80 94 108 122 136 150 81 82 96 110 83 97 111 125 139 153 84 98 112 126 140 154 168 182 196 210]')]; return otherwise end end % Na, we have things like (c'x)^alpha % precalc x^p for i = 1:length(x) temp = x(i); precalc{i,1} = temp; for j = 2:1:dmax temp = temp*x(i); precalc{i,j} = temp; end end new_x = []; for i = 1:size(powers,1) % All monomials temp = 1; for j = 1:size(powers,2) % All variables if powers(i,j)>0 temp = temp*precalc{j,powers(i,j)}; end end new_x = [new_x temp]; end else dmax = dmax(:)*ones(1,length(x_orig)); x = [1 x]; % Lame loop to generate all combinations new_x = 1; for j = 1:1:max(dmax) temp = []; for i = 1:length(x) temp = [temp x(i)*new_x]; end new_x = temp; new_x = fliplr(unique(new_x)); new_degrees = degree(new_x,x(2:end)); remv = []; for i = 1:length(dmax); if new_degrees(i)>=dmax(i) x = recover(setdiff(getvariables(x),getvariables(x_orig(i)))); x = [1;x(:)]; remv = [remv i]; end end dmax = dmax(setdiff(1:length(dmax),remv)); end end new_x = reshape(new_x(:),length(new_x),1); if dmin > 0 for i = 1:length(new_x) if degree(new_x(i)) < dmin keep(i) = 0; else keep(i) = 1; end end if any(keep==0) new_x = new_x(find(keep)); end end function ind = funkyindicies(n) M=reshape(1:n*(n+1),n,n+1); ind = M(:,1)'; for i = 1:n ind = [ind M(i,2:i+1)]; end
github
EnricoGiordano1992/LMI-Matlab-master
eliminatevariables.m
.m
LMI-Matlab-master/yalmip/extras/eliminatevariables.m
11,708
utf_8
cb8bbf991713a6188ea388790a03a949
function [model,keptvariables,infeasible] = eliminatevariables(model,varindex,value) keptvariables = 1:length(model.c); rmvmonoms = model.rmvmonoms; newmonomtable = model.newmonomtable; % Assign evaluation-based values if length(model.evalParameters > 0) alls = union(varindex,model.evalParameters); [dummy,loc] = ismember(varindex,alls); remappedvalue = zeros(length(alls),1); remappedvalue(loc) = value; for i = 1:length(model.evalMap) j = find(model.evalMap{i}.variableIndex == varindex); if ~isempty(j) p = value(j); [dummy,loc] = ismember(model.evalMap{i}.computes,alls); remappedvalue(loc) = feval(model.evalMap{i}.fcn,p); end end value = remappedvalue; % We only eliminate in models where the operators dissapear after % parameters are fixed model.evalMap = []; model.evalVariables = []; end % Evaluate fixed monomial terms aux = model.precalc.aux; if ~isempty(model.precalc.jj1) z = value(model.precalc.jj1).^rmvmonoms(model.precalc.index1); aux(model.precalc.index1) = z; end % Assign simple linear terms if ~isempty(model.precalc.jj2) aux(model.precalc.index2) = value(model.precalc.jj2); end monomvalue = prod(aux,2); removethese = model.removethese; keepingthese = model.keepingthese; value = monomvalue(removethese); monomgain = monomvalue(keepingthese); if ~isempty(model.F_struc) model.F_struc(:,1) = model.F_struc(:,1)+model.F_struc(:,1+removethese)*value; model.F_struc(:,1+removethese) = []; model.F_struc = model.F_struc*diag(sparse([1;monomgain])); end infeasible = 0; if model.K.f > 0 candidates = find(~any(model.F_struc(1:model.K.f,2:end),2)); %candidates = find(sum(abs(model.F_struc(1:model.K.f,2:end)),2) == 0); if ~isempty(candidates) % infeasibles = find(model.F_struc(candidates,1)~=0); if find(model.F_struc(candidates,1)~=0,1)%;~isempty(infeasibles) infeasible = 1; return else model.F_struc(candidates,:) = []; model.K.f = model.K.f - length(candidates); end end end if model.K.l > 0 candidates = find(~any(model.F_struc(model.K.f + (1:model.K.l),2:end),2)); %candidates = find(sum(abs(model.F_struc(model.K.f + (1:model.K.l),2:end)),2) == 0); if ~isempty(candidates) %if find(model.F_struc(model.K.f + candidates,1)<0,1) if any(model.F_struc(model.K.f + candidates,1)<-1e-14) infeasible = 1; return else model.F_struc(model.K.f + candidates,:) = []; model.K.l = model.K.l - length(candidates); end end end if model.K.q(1) > 0 removeqs = []; removeRows = []; top = model.K.f + model.K.l + 1; F_struc = model.F_struc(top:top+sum(model.K.q)-1,:); top = 1; if all(any(F_struc(:,2:end),2)) % There is still something on every row in all SOCPs, we don't have % to search for silly SOCPS ||0|| <= constant else for i = 1:length(model.K.q) rows = top:top+model.K.q(i)-1; v = F_struc(rows,:); if nnz(v(:,2:end))==0 if norm(v(2:end,1)) > v(1,1) infeasible = 1; return else removeqs = [removeqs;i]; removeRows = [removeRows;model.K.f+model.K.l+rows]; end end top = top + model.K.q(i); end model.K.q(removeqs)=[]; model.F_struc(removeRows,:)=[]; if isempty(model.K.q) model.K.q = 0; end end end if model.K.s(1) > 0 % Nonlinear semidefinite program with parameter top = model.K.f + model.K.l + sum(model.K.q) + 1; removeqs = []; removeRows = []; for i = 1:length(model.K.s) n = model.K.s(i); rows = top:top+n^2-1; v = model.F_struc(rows,:); if nnz(v)==0 removeqs = [removeqs;i]; removeRows = [removeRows;rows]; elseif nnz(v(:,2:end))==0 Q = reshape(v(:,1),n,n); used = find(any(Q));Qred=Q(:,used);Qred = Qred(used,:); [~,p] = chol(Qred); if p infeasible = 1; return else removeqs = [removeqs;i]; removeRows = [removeRows;rows]; end end top = top + n^2; end model.K.s(removeqs)=[]; model.F_struc(removeRows,:)=[]; if isempty(model.K.s) model.K.s = 0; end end model.f = model.f + model.c(removethese)'*value; model.c(removethese)=[]; if nnz(model.Q)>0 model.c = model.c + 2*model.Q(keepingthese,removethese)*value; end if nnz(model.Q)==0 model.Q = spalloc(length(model.c),length(model.c),0); else model.Q(removethese,:) = []; model.Q(:,removethese) = []; end model.c = model.c.*monomgain; keptvariables(removethese) = []; model.lb(removethese)=[]; model.ub(removethese)=[]; newmonomtable(:,removethese) = []; newmonomtable(removethese,:) = []; if ~isequal(newmonomtable,model.precalc.newmonomtable)%~isempty(removethese) skipped = []; alreadyAdded = zeros(1,size(newmonomtable,1)); %[ii,jj,kk] = unique(newmonomtable*gen_rand_hash(0,size(newmonomtable,2),1),'rows','stable'); [ii,jj,kk,skipped] = stableunique(newmonomtable*gen_rand_hash(0,size(newmonomtable,2),1)); S = sparse(kk,1:length(kk),1); % skipped = setdiff(1:length(kk),jj); model.precalc.S = S; model.precalc.skipped = skipped; model.precalc.newmonomtable = newmonomtable; model.precalc.blkOneS = blkdiag(1,S'); else S = model.precalc.S; skipped = model.precalc.skipped; end model.c = S*model.c; %model.F_struc2 = [model.F_struc(:,1) (S*model.F_struc(:,2:end)')']; if ~isempty(model.F_struc) model.F_struc = model.F_struc*model.precalc.blkOneS;%blkdiag(1,S'); end %norm(model.F_struc-model.F_struc2) model.lb(skipped) = []; model.ub(skipped) = []; newmonomtable(skipped,:) = []; newmonomtable(:,skipped) = []; if nnz(model.Q)==0 model.Q = spalloc(length(model.c),length(model.c),0); else model.Q(:,skipped)=[]; model.Q(skipped,:)=[]; end keptvariables(skipped) = []; model.monomtable = newmonomtable; model = compressModel(model); x0wasempty = isempty(model.x0); model.x0 = zeros(length(model.c),1); % Try to reduce to QP [model,keptvariables,newmonomtable] = setupQuadratics(model,keptvariables,newmonomtable); if nnz(model.Q) > 0 if model.solver.objective.quadratic.convex == 0 & model.solver.objective.quadratic.nonconvex == 0 error('The objective instantiates as a quadratic after fixing parameters, but this is not directly supported by the solver. YALMIP will not reformulate models if they structurally change in call to optimizer. A typical trick to circumvent this is to define a new set of variable e, use the quadratic function e''e, and add an equality constraint e = something. The SOCP formulation can then be done a-priori by YALMIP.'); end end if x0wasempty model.x0 = []; end % Remap indicies if ~isempty(model.integer_variables) temp=ismember(keptvariables,model.integer_variables); model.integer_variables = find(temp); end if ~isempty(model.binary_variables) temp=ismember(keptvariables,model.binary_variables); model.binary_variables = find(temp); end if ~isempty(model.semicont_variables) temp=ismember(keptvariables,model.semicont_variables); model.semicont_variables = find(temp); end % Check if there are remaining strange terms. This occurs in #152 % FIXME: Use code above recursively instead... if ~model.solver.objective.sigmonial & any(model.variabletype == 4) % Bugger. There are signomial terms left, despite elimination, and the % solver does not handle this. YALMIP has introduced an intermediate % variable which is a nasty function of the parameter. signomials = find(model.variabletype == 4); involved = []; for i = 1:length(signomials) m = model.monomtable(signomials(i),:); involved = [involved;find(m ~= fix(m) | m < 0)]; end involved = unique(involved); [lb,ub] = findulb(model.F_struc,model.K,model.lb,model.ub); if all(lb(involved) == ub(involved)) % Now add equality constraints to enforce for i = signomials m = model.monomtable(i,:); involved = find(m ~= fix(m) | m < 0); gain = lb(involved).^m(involved); s = zeros(1,size(model.F_struc,2)); multiplies = setdiff(find(m),involved); s(i+1) = 1; s(multiplies+1) = -gain; model.F_struc = [s;model.F_struc]; model.K.f = model.K.f + 1; end else error('Did not manage to instatiate model. Complicating terms remaining'); end end function model = compressModel(model) model.variabletype = zeros(size(model.monomtable,1),1)'; nonlinear = sum(model.monomtable,2)~=1 | sum(model.monomtable~=0,2)~=1; if ~isempty(nonlinear) model.variabletype(nonlinear) = 3; quadratic = sum(model.monomtable,2)==2; model.variabletype(quadratic) = 2; bilinear = max(model.monomtable,[],2)<=1; model.variabletype(bilinear & quadratic) = 1; sigmonial = any(0>model.monomtable,2) | any(model.monomtable-fix(model.monomtable),2); model.variabletype(sigmonial) = 4; end function [model,keptvariables,newmonomtable] = setupQuadratics(model,keptvariables,newmonomtable); if any(model.variabletype) & all(model.variabletype <= 2) monomials = find(model.variabletype); if nnz(model.F_struc(:,1+monomials))==0 if all(isinf(model.lb(monomials))) if all(isinf(model.ub(monomials))) % OK, the quadratic/bilinear terms only enter in objective, % so let us try to construct Q if isempty(model.precalc.Qmap) ii = []; jj = []; kk = []; for k = monomials(:)' i = find(model.monomtable(k,:)); if model.variabletype(k)==1 model.Q(i(1),i(2)) = model.Q(i(1),i(2)) + model.c(k)/2; model.Q(i(2),i(1)) = model.Q(i(1),i(2)); ii = [ii;i(1)]; jj = [jj;i(2)]; kk = [kk;k]; else model.Q(i,i) = model.Q(i,i) + model.c(k); ii = [ii;i]; jj = [jj;i]; kk = [kk;k]; end end model.precalc.Qmap.M = sparse(sub2ind(size(model.Q),ii,jj),kk,1,prod(size(model.Q)),length(model.c)); model.precalc.Qmap.monomials = monomials; model.precalc.Qmap.monomtable = model.monomtable; else m = model.precalc.Qmap.M*sparse(model.c); m = reshape(m,sqrt(length(m)),[]); model.Q = (m+m')/2; end model.c(monomials)=[]; model.F_struc(:,1+monomials) = []; model.lb(monomials) = []; model.ub(monomials) = []; newmonomtable(monomials,:) = []; newmonomtable(:,monomials) = []; model.monomtable = newmonomtable; model.Q(:,monomials) = []; model.Q(monomials,:) = []; model.x0(monomials) = []; model.variabletype(monomials)=[]; keptvariables(monomials) = []; end end end end
github
EnricoGiordano1992/LMI-Matlab-master
savecplexlp.m
.m
LMI-Matlab-master/yalmip/extras/savecplexlp.m
3,862
utf_8
d62ee5da3ba7f3c01ad267cdafef9bf6
function filename = savecplexlp(varargin) %SAVCPLEXLP Saves a problem definition in CPLEX-LP format % % SAVCPLEXLP(F,h,'filename') Saves the problem min(h(x)), F(x)>0 to the file filename % SAVCPLEXLP(F,h) A "Save As"- box will be opened % F = varargin{1}; h = varargin{2}; [aux1,aux2,aux3,model] = export(F,h); % Check so that it really is an LP % if any(any(model.Q)) | any(model.variabletype) % Only check the variabletype if any(model.variabletype) error('This is not an LP or QP'); end c = model.c; Q = 2*full(model.Q); b = model.F_struc(:,1); A = -model.F_struc(:,2:end); if model.K.f>0 Aeq = A(1:model.K.f,:); beq = b(1:model.K.f,:); A(1:model.K.f,:) = []; b(1:model.K.f) = []; else Aeq = []; beq = []; end lb = model.lb; ub = model.ub; [lb,ub,A,b] = remove_bounds_from_Ab(A,b,lb,ub); [lb,ub,Aeq,beq] = remove_bounds_from_Aeqbeq(Aeq,beq,lb,ub); % Is a filename supplied if nargin<3 [filename, pathname] = uiputfile('*.lp', 'Save LP format file'); if isa(filename,'double') return % User cancelled else % Did the user change the extension if isempty(findstr(filename,'.')) filename = [pathname filename '.lp']; else filename = [pathname filename]; end end else filename = varargin{3}; end fid = fopen(filename,'w'); obj = strrep(lptext(c(:)'),'+ -','-'); fprintf(fid,['Minimize\r\n obj: ' obj(1:end-2) '']); if any(any(Q)) obj = qptext(Q); fprintf(fid,[' + [' obj(1:end-2) '] / 2']); end fprintf(fid,'\r\n'); fprintf(fid,['\r\n']); fprintf(fid,['Subject To\r\n']); for i = 1:length(b) rowtext = lptext(-A(i,:)); rhs = sprintf('%0.20g',full(-b(i))); rowtext = [rowtext(1:end-2) ' >= ' rhs]; fprintf(fid,[' c%i: ' strrep(rowtext,'+ -','-') ''],i); fprintf(fid,'\r\n'); end for i = 1:length(beq) rowtext = lptext(-Aeq(i,:)); rowtext = [rowtext(1:end-2) '== ' sprintf('%0.20g',full(-beq(i)))]; fprintf(fid,[' eq%i: ' strrep(rowtext,'+ -','-') ''],i); fprintf(fid,'\r\n'); end if length(c)>length(model.binary_variables) fprintf(fid,['\r\nBounds\r\n']); for i = 1:length(c) % if ~ismember(i,model.binary_variables) if isinf(lb(i)) & isinf(ub(i)) fprintf(fid,[' x%i free\n\r'],i); elseif lb(i)==0 & isinf(ub(i)) % Standard non-negative variable elseif isinf(ub(i)) s = strrep(sprintf(['%0.20g <= x%i \r\n'],[lb(i) i ]),'Inf','inf'); fprintf(fid,s); else s = strrep(sprintf(['%0.20g <= x%i <= %0.20g \r\n'],[lb(i) i ub(i)]),'Inf','inf'); fprintf(fid,s); end % end end end if length(model.binary_variables)>0 fprintf(fid,['\r\n']); fprintf(fid,['Binary\r\n']); for i = 1:length(model.binary_variables) fprintf(fid,[' x%i\r\n'],model.binary_variables(i)); end end if length(model.integer_variables)>0 fprintf(fid,['\r\n']); fprintf(fid,['Integer\r\n']); for i = 1:length(model.integer_variables) fprintf(fid,[' x%i\r\n'],model.integer_variables(i)); end end fprintf(fid,['\r\nEnd']); fclose(fid); function rowtext = lptext(a) [aux,poss,vals] = find(a); rowtext = sprintf('%0.20g x%d + ',reshape([vals(:) poss(:)]',[],1)); %rowtext = strrep(rowtext,'+ -','- '); %rowtext(isspace(rowtext))=[]; %rowtext = strrep(rowtext,'+-','-'); %rowtext = strrep(rowtext,'-1x','-x'); %rowtext = strrep(rowtext,'+1x','+x'); function rowtext = qptext(Q) n=size(Q,2); q = diag(Q); if any(q) i = find(q); rowtext = sprintf('%0.20g x%d ^2 + ',reshape([q(i) i]',[],1)); end for i=1:n for j=i+1:n if ~(Q(i,j)+Q(j,i)==0) rowtext = [rowtext sprintf('%0.20g x%d * x%d + ',Q(i,j)+Q(j,i),i,j)]; end end end rowtext = strrep(rowtext,'+ -','- ');
github
EnricoGiordano1992/LMI-Matlab-master
solvesdp_multiple.m
.m
LMI-Matlab-master/yalmip/extras/solvesdp_multiple.m
5,574
utf_8
c5412bd27722e2bcb8fe758c99a95fb7
function diagnostic = solvesdp_multiple(varargin); yalmiptime = clock; h = varargin{2}; varargin{2} = sum(recover(depends(h))); if ~is(h,'linear') error('Parts of your matrix objective is not linear (multiple solutions can currently only be obtained for linear objectives)'); end if is(h,'complex') error('Parts of your matrix objective is complex-valued (which makes no sense since complex numbers have no natural ordering'); end if nargin<3 ops = sdpsettings('saveyalmipmodel',1); varargin{3} = ops; else ops = varargin{3}; varargin{3}.saveyalmipmodel = 1; end varargin{3}.pureexport = 1; yalmiptime = clock; model = solvesdp(varargin{:}); diagnostic.yalmiptime = etime(clock,yalmiptime); yalmiptime = clock; h_variables = getvariables(h); h_base = getbase(h); for i = 1:length(h) model.f = h_base(i,1); model.c = mapObjective(h_variables,model.used_variables,h_base(i,2:end)); % ************************************************************************* % TRY TO SOLVE PROBLEM % ************************************************************************* if ops.debug eval(['output = ' model.solver.call '(model);']); else try eval(['output = ' model.solver.call '(model);']); catch output.Primal = zeros(length(model.c),1)+NaN; output.Dual = []; output.Slack = []; output.solvertime = nan; output.solverinput = []; output.solveroutput = []; output.problem = 9; output.infostr = yalmiperror(output.problem,lasterr); end end if ops.dimacs try b = -model.c; c = model.F_struc(:,1); A = -model.F_struc(:,2:end)'; x = output.Dual; y = output.Primal; % FIX this nonlinear crap (return variable type in % compilemodel) if options.relax == 0 & any(full(sum(model.monomtable,2)~=0)) if ~isempty(find(sum(model.monomtable | model.monomtable,2)>1)) z=real(exp(model.monomtable*log(y+eps))); y = z; end end if isfield(output,'Slack') s = output.Slack; else s = []; end dimacs = computedimacs(b,c,A,x,y,s,model.K); catch dimacs = [nan nan nan nan nan nan]; end else dimacs = [nan nan nan nan nan nan]; end % ******************************** % ORIGINAL COORDINATES % ******************************** if isempty(output.Primal) output.Primal = zeros(size(model.recoverdata.H,2),1); end output.Primal(:,i) = model.recoverdata.x_equ+model.recoverdata.H*output.Primal; % ******************************** % OUTPUT % ******************************** diagnostic.yalmiptime = diagnostic.yalmiptime + etime(clock,yalmiptime)-output.solvertime; diagnostic.solvertime(:,i) = output.solvertime; try diagnostic.info = output.infostr; catch diagnostic.info = yalmiperror(output.problem,model.solver.tag); end diagnostic.problem(:,i) = output.problem; diagnostic.dimacs(:,i) = dimacs; % Some more info is saved internally solution_internal = diagnostic; solution_internal.variables = model.recoverdata.used_variables(:); solution_internal.optvar = output.Primal(:,i); if ~isempty(model.parametric_variables) diagnostic.mpsol = output.solveroutput; options.savesolveroutput = actually_save_output; end; if model.options.savesolveroutput diagnostic.solveroutput = output.solveroutput; end if model.options.savesolverinput diagnostic.solverinput = output.solverinput; end if model.options.saveyalmipmodel diagnostic.yalmipmodel = model; end if ops.warning && warningon && isempty(findstr(output.infostr,'No problems detected')) disp(['Warning: ' output.infostr]); end if ismember(output.problem,ops.beeponproblem) try beep; % does not exist on all ML versions catch end end % And we are done! Save the result if ~isempty(output.Primal) yalmip('setsolution',solution_internal,i); end if model.options.saveduals & model.solver.dual if isempty(model.Fremoved) | (nnz(model.Q)>0) try setduals(F,output.Dual,model.K); catch end else try % Duals related to equality constraints/free variables % have to be recovered b-A*x-Ht == 0 b = -model.oldc; A = -model.oldF_struc(1+model.oldK.f:end,2:end)'; H = -model.oldF_struc(1:model.oldK.f,2:end)'; x = output.Dual; b_equ = b-A*x; newdual = H\b_equ; setduals(model.Fremoved + F,[newdual;output.Dual],model.oldK); catch % this is a new feature... disp('Dual recovery failed. Please report this issue.'); end end end end function newbase = mapObjective(local_vars,global_vars,base) newbase = spalloc(length(global_vars),1,nnz(base)); for i = 1:length(local_vars) j = find(local_vars(i)==global_vars); newbase(j) = base(i); end function yesno = warningon s = warning; yesno = isequal(s,'on');
github
EnricoGiordano1992/LMI-Matlab-master
computedimacs.m
.m
LMI-Matlab-master/yalmip/extras/computedimacs.m
2,052
utf_8
87d06eb1f6270fd74593f205c3343f1d
function dimacs = computedimacs(b,c,A,xin,y,s,K); % COMPUTEDIMACS % % min <C,X> s.t AX = b, X > 0 % max b'y s.t S-C+A'y =0, S > 0 % If no primal exist, fake till later if isempty(xin) x = c*0; else x = xin; end if isempty(s) s = c-A'*y; end xres = inf; sres = inf; % Not officially defined in DIMACS if K.f>0 sres = -min(norm(s(1:K.f),inf)); end % Errors in linear cone if K.l>0 xres = min(x(1+K.f:K.f+K.l)); sres = min(s(1+K.f:K.f+K.l)); end % Errors in quadratic cone if K.q(1)>0 top = K.f+K.l; for i = 1:length(K.q) X = x(1+top:top+K.q(i)); S = s(1+top:top+K.q(i)); xres = min(xres,X(1)-norm(X(2:end))); sres = min(sres,S(1)-norm(S(2:end))); top = top + K.q(i); end end % Errors in semidefinite cone if K.s(1)>0 top = K.f+K.l+K.q+K.r; for i = 1:length(K.s) X = reshape(x(1+top:top+K.s(i)^2),K.s(i),K.s(i)); S = reshape(s(1+top:top+K.s(i)^2),K.s(i),K.s(i)); xres = min(xres,min(eig(full(X)))); sres = min(sres,min(eig(full(S)))); top = top + K.s(i)^2; end end err1 = norm(b-A*x)/(1 + norm(b,inf)); err2 = max(0,-xres)/(1 + norm(b,inf)); err3 = conenorm(s-(c-A'*y),K)/(1+norm(c,inf)); %err3 = norm(s-(c-A'*y))/(1+norm(c,inf)); % Used by some solvers err4 = max(0,-sres)/(1+max(abs(c))); err5 = (c'*x-b'*y)/(1+abs(c'*x)+abs(b'*y)); err6 = x'*(c-A'*y)/(1+abs(c'*x)+abs(b'*y)); % No primal was computed if isempty(xin) err1 = nan; err2 = nan; err5 = nan; err6 = nan; end dimacs = [err1 err2 err3 err4 err5 err6]; function t = conenorm(s,K) % Implementation of the norm described on % http://plato.asu.edu/dimacs/node3.html t = 0; if K.f + K.l>0 t = t + norm(s(1:K.f+K.l)); end top = 1+K.f+K.l; if K.q(1)>0 for i = 1:length(K.q) t = t + norm(s(top:top+K.q(i)-1)); top = top + K.q(i); end end if K.s(1)>0 for i = 1:length(K.s) S = reshape(s(top:top+K.s(i)^2-1),K.s(i),K.s(i)); t = t + norm(S,'fro'); top = top + K.s(i)^2; end end
github
EnricoGiordano1992/LMI-Matlab-master
binmodel.m
.m
LMI-Matlab-master/yalmip/extras/binmodel.m
9,313
utf_8
0128e2f618a9bc78ea94707dd7fa1499
function varargout = binmodel(varargin) %BINMODEL Converts nonlinear mixed binary expression to linear model % % Applied to individual terms p defined on domain D % [plinear1,..,plinearN,Cuts] = BINMODEL(p1,...,pN,D) % % Alternative on complete set of constraint % F = BINMODEL(F) % % binmodel is used to convert nonlinear expressions involving a mixture of % continuous and binary variables to the correponding linear model, using % auxilliary variables and constraints to model nonlinearities. % % The input arguments are polynomial SDPVAR objects, or constraints % involving such terms. If all involved variables are binary (defined using % BINVAR), arbitrary polynomials can be linearized. % % If an input contains continuous variables, the continuous variables % may only enter linearly in products with the binary variables (i.e. % degree w.r.t continuous variables should be at most 1). More over, all % continuous variables must be explicitly bounded. When submitting only the % terms, the domain must be explicitly sent as the last argument. When the % argument is a set of constraints, it is assumed that the domain is % included and can be extracted. % % Example % binvar a b % sdpvar x y % [plinear1,plinear2,Cuts] = binmodel(a^3+b,a*b); % [plinear1,plinear2,Cuts] = binmodel(a^3*x+b*y,a*b*x, -2 <=[x y] <=2); % % F = binmodel([a^3*x+b*y + a*b*x >= 3, -2 <=[x y] <=2]); % % See also BINARY, BINVAR, SOLVESDP if isa(varargin{1},'lmi') || isa(varargin{1},'constraint') varargout{1} = binmodel_constraint(varargin{:}); return end all_linear = 1; p = []; n_var = 0; Foriginal = []; for i = 1:nargin switch class(varargin{i}) case {'sdpvar','ndsdpvar'} dims{i} = size(varargin{i}); p = [p;varargin{i}(:)]; if degree(varargin{i}(:)) > 1 all_linear = 0; end n_var = n_var + 1; case {'lmi','constraint'} Foriginal = Foriginal + varargin{i}; otherwise error('Arguments should be SDPVAR or SET objects') end end if length(Foriginal)>0 nv = yalmip('nvars'); yalmip('setbounds',1:nv,repmat(-inf,nv,1),repmat(inf,nv,1)); LU = getbounds(Foriginal); extstruct = yalmip('extstruct'); extendedvariables = yalmip('extvariables'); for i = 1:length(extstruct) switch extstruct(i).fcn case 'abs' LU = extract_bounds_from_abs_operator(LU,extstruct,extendedvariables,i); case 'norm' LU = extract_bounds_from_norm_operator(LU,extstruct,extendedvariables,i); case 'min_internal' LU = extract_bounds_from_min_operator(LU,extstruct,extendedvariables,i); case 'max_internal' LU = extract_bounds_from_max_operator(LU,extstruct,extendedvariables,i); otherwise end end yalmip('setbounds',1:nv,LU(:,1),LU(:,2)); end if all_linear varargout = varargin; return end plinear = p; F = Foriginal; % Get stuff vars = getvariables(p); basis = getbase(p); [mt,vt] = yalmip('monomtable'); allbinary = yalmip('binvariables'); allinteger = yalmip('intvariables'); % Fix data (monom table not guaranteed to be square) if size(mt,1) > size(mt,2) mt(end,size(mt,1)) = 0; end non_binary = setdiff(1:size(mt,2),allbinary); if any(sum(mt(vars,non_binary),2) > 1) error('Expression has to be linear in the continuous variables') violatingmonoms = find(sum(mt(vars,non_binary),2) > 1); cuts = []; replacelinear = []; for i = 1:length(violatingmonoms) [~,idx,pwr] = find(mt(vars(violatingmonoms(i)),non_binary)); % [~,idxb,pwrb] = find(mt(vars(violatingmonoms),allbinary)); if isequal(pwr,2) [~,idxb,pwrb] = find(mt(vars(violatingmonoms(i)),allbinary)); if isequal(pwrb,1) w = sdpvar(1); replacelinear = [replacelinear;getvariables(w)]; cuts = [cuts, recover(non_binary(idx))*recover(allbinary(idxb)) == w]; cuts = [cuts, LU(non_binary(idx),1) <= w <= LU(non_binary(idx),2)]; else error('Expression has to be linear in the continuous variables') end else error('Expression has to be linear in the continuous variables') end end b = getbase(p); v = getvariables(p); v(violatingmonoms) = replacelinear; p = b*[1;recover(v)]; varargin{1} = p; varargin{end} = [varargin{end},cuts]; [varargout{1:nargout}] = binmodel(varargin{:}); return end % These are the original monomials vecvar = recover(vars); linear = find(vt(vars) == 0); quadratic = find(vt(vars) == 2); bilinear = find(vt(vars) == 1); polynomial = find(vt(vars) == 3); % replace x^2 with x (can only be binary expression, since we check for % continuous nonlinearities above) if ~isempty(quadratic) [ii,jj] = find(mt(vars(quadratic),:)); z_quadratic = recover(jj); else quadratic = []; z_quadratic = []; end % replace x*y with z, x>z, x>z, 1+z>x+y if ~isempty(bilinear) [jj,ii] = find(mt(vars(bilinear),:)'); xi = jj(1:2:end); yi = jj(2:2:end); x = recover(xi); y = recover(yi); if all(ismember(xi,allbinary)) & all(ismember(yi,allbinary)) % fast case for binary*binary z_bilinear = binvar(length(bilinear),1); F = [F, binary(z_bilinear), x >= z_bilinear, y >= z_bilinear, 1+z_bilinear >= x + y, 0 <= z_bilinear <= 1]; else z_bilinear = sdpvar(length(bilinear),1); theseAreBinaries = find(ismember(xi,allbinary) & ismember(yi,allbinary)); z_bilinear(theseAreBinaries) = binvar(length(theseAreBinaries),1); for i = 1:length(bilinear) if ismember(xi(i),allbinary) & ismember(yi(i),allbinary) F = [F, x(i) >= z_bilinear(i), y(i) >= z_bilinear(i), 1+z_bilinear(i) >= x(i) + y(i), 0 <= z_bilinear(i) <= 1]; elseif ismember(xi(i),allbinary) F = [F, binary_times_cont(x(i),y(i), z_bilinear(i))]; else F = [F, binary_times_cont(y(i),x(i), z_bilinear(i))]; end end end else bilinear = []; z_bilinear = []; end %general case a bit slower if ~isempty(polynomial) z_polynomial = sdpvar(length(polynomial),1); xvar = []; yvar = []; for i = 1:length(z_polynomial) % Get the monomial powers, clear out the the_monom = mt(vars(polynomial(i)),:); if any(the_monom(non_binary)) % Tricky case, x*polynomial(binary) % Start by first modeling the binary part the_binary_monom = the_monom;the_binary_monom(non_binary) = 0; [ii,jj] = find(the_binary_monom); x = recover(jj); F = [F, x >= z_polynomial(i), length(x)-1+z_polynomial(i) >= sum(x), 0 <= z_polynomial(i) <= 1]; % Now define the actual variable temp = z_polynomial(i);z_polynomial(i) = sdpvar(1,1); the_real_monom = the_monom;the_real_monom(allbinary)=0; [ii,jj] = find(the_real_monom); x = recover(jj); F = F + binary_times_cont(temp,x,z_polynomial(i)); else % simple case, just binary terms [ii,jj] = find(the_monom); x = recover(jj); F = [F, x >= z_polynomial(i), length(x)-1+z_polynomial(i) >= sum(x), 0 <= z_polynomial(i) <= 1]; end end else z_polynomial = []; polynomial = []; end ii = [linear quadratic bilinear polynomial]; jj = ones(length(ii),1); kk = [recover(vars(linear));z_quadratic;z_bilinear;z_polynomial]; vecvar = sparse(ii(:),jj(:),kk(:)); % Recover the whole thing plinear = basis*[1;vecvar]; % And now get the original sizes top = 1; for i = 1:n_var varargout{i} = reshape(plinear(top:top+prod(dims{i})-1),dims{i}); top = top + prod(dims{i}); end varargout{end+1} = F; function F = binary_times_cont(d,y, z) [M,m,infbound] = derivebounds(y); if infbound error('Some of your continuous variables are not explicitly bounded.') end F = [(1-d)*M >= y - z >= m*(1-d), d*m <= z <= d*M, min(0,m) <= z <= max(0,M)]; function Fnew = binmodel_constraint(F); F = lmi(F); old_x = []; for i = 1:length(F) xi = sdpvar(F(i)); old_x = [old_x;xi(:)]; end [new_x,Cut] = binmodel(old_x,F); Fnew = []; top = 1; for i = 1:length(F) m = prod(size(sdpvar(F(i)))); xi = new_x(top:top + m-1); xo = old_x(top:top + m-1); top = top + m; if ~isequal(xi,xo) switch settype(F(i)) case 'elementwise' Fnew = [Fnew, xi >= 0]; case 'equality' Fnew = [Fnew, xi == 0]; case 'socc' Fnew = [Fnew, cone(xi)]; case 'sdp' Fnew = [Fnew, reshape(xi,sqrt(m),sqrt(m)) >= 0]; otherwise error('Type of constraint not supported in binmodel'); end else Fnew = [Fnew, subsref(F,struct('type','()','subs',{{i}}))]; end end % The internal function merges the original constraints into Cut % remove them completely, and then add the original noncomplicating again Cut = Cut - F; Fnew = [Fnew,Cut];
github
EnricoGiordano1992/LMI-Matlab-master
derivedualBoundsParameterFree.m
.m
LMI-Matlab-master/yalmip/extras/derivedualBoundsParameterFree.m
2,514
utf_8
56f518715fc81d312aae626a72ea92bb
function [dualUpper,L,U] = derivedualBoundsParameterFree(H,c,A,b,E,f,ops,parametricDomain) if isempty(A) dualUpper = []; L = []; U = []; return end n = length(c); m = length(b); me = length(f); x = sdpvar(n,1); Lambda = sdpvar(m,1); mu = sdpvar(me,1); % Homogenization alpha = sdpvar(1); F = []; % Start by computing primal lower bounds if nargin < 7 ops = sdpsettings('verbose',0); end ops2 = ops; ops2.verbose = max(0,ops.verbose-1);; all_bounded = 1; if ops.verbose disp(['*Computing ' num2str(length(x)) ' primal bounds (required for dual bounds)']); end z = recover(unique([depends(c);depends(b)])); xz = [x;z]; nz = length(z); nTOT = n + length(z); rhs = 0; if ~isempty(b) rhs = rhs + A'*Lambda; end if ~isempty(f) rhs = rhs + E'*mu; end [c0,C] = deParameterize(c,z); [b0,B] = deParameterize(b,z); delta = binvar(length(b),1); UpperBound = .1; parametricDomainH = homogenize(sdpvar(parametricDomain),alpha) >= 0; w1 = binvar(length(Lambda),1); w2 = binvar(length(Lambda),1); eta1 = sdpvar(length(Lambda),1); eta2 = sdpvar(length(Lambda),1); v = sdpvar(size(A,2),1); Model = [parametricDomainH,H*x + alpha*c0 + C*z + rhs==0, delta >= Lambda >= 0, 1-delta >= b0*alpha+B*z-A*x>=0, sum(Lambda) >= alpha*UpperBound, % sum(delta)<=1, ]; Model = [Model, Lambda + A*v + eta2-eta1 == 0, 0 <= eta1 <= w1, 0 <= delta - Lambda <= 1-w1, 0 <= eta2 <= w2, 0 <= Lambda <= 1-w2]; solvesdp(Model,-alpha) while double(alpha) >= 1e-5 UpperBound = UpperBound*1.1; Model = [parametricDomainH,H*x + alpha*c0 + C*z + rhs==0, delta >= Lambda >= 0, 1-delta >= b0*alpha+B*z-A*x>=0, sum(Lambda) >= alpha*UpperBound]; Model = [Model, Lambda + A*v + eta2-eta1 == 0, 0 <= eta1 <= w1, 0 <= delta - Lambda <= 1-w1, 0 <= eta2 <= w2, 0 <= Lambda <= 1-w2]; solvesdp(Model,-alpha); end dualUpper = min(U,UpperBound); function [c0,C] = deParameterize(c,z); n = length(c); c0C = full(getbase(c)); c0 = c0C(:,1); C = c0C(:,2:end); if nnz(C)==0 C = spalloc(n,length(z),0); else if length(z)>0 & size(C,2) < length(z) C = []; for i = 1:length(z) C = [C getbasematrix(c,getvariables(z(i)))]; end end end if isempty(C) C = zeros(length(C),length(z)); end
github
EnricoGiordano1992/LMI-Matlab-master
derandomize.m
.m
LMI-Matlab-master/yalmip/extras/derandomize.m
3,645
utf_8
14a3a6bc4823e6b81182566b82f8e393
function Fderandomized = derandomize(F) chanceDeclarations = find(is(F,'chance')); randomDeclarations = find(is(F,'random')); if isempty(randomDeclarations) error('Cannot derandomize, cannot find declaration of random variables'); end keep = ones(length(F),1); keep(randomDeclarations)=0; keep(chanceDeclarations)=0; randomVariables = extractRandomDefinitions(F(randomDeclarations)); groupedChanceConstraints = groupchanceconstraints(F); Fderandomized = deriveChanceModel(groupedChanceConstraints,randomVariables) Fderandomized = Fderandomized + F(find(keep)); function Fderandomized = deriveChanceModel(groupedChanceConstraints,randomVariables); Fderandomized = []; for ic = 1:length(groupedChanceConstraints) if length(groupedChanceConstraints{ic})>1 error('Joint chance still not supported'); end if ~is(groupedChanceConstraints{ic},'elementwise') error('Only elementwise chance constraints supported') end X = sdpvar(groupedChanceConstraints{ic}); if length(X)>1 error('Only single elementwise chance constraints supported') end % OK, simple linear inequality allVars = depends(X); wVars = [];for j = 1:length(randomVariables);wVars = [wVars getvariables(randomVariables{j}.variables)];end xVars = setdiff(allVars,wVars); x = recover(xVars); w = recover(wVars); b = []; A = []; % Some pre-calc xw = [x;w]; xind = find(ismembc(getvariables(xw),getvariables(x))); wind = find(ismembc(getvariables(xw),getvariables(w))); [Qs,cs,fs,dummy,nonquadratic] = vecquaddecomp(X,xw); c_wTbase = []; AAA = []; ccc = []; for i = 1:length(X) Q = Qs{i}; c = cs{i}; f = fs{i}; if nonquadratic error('Constraints can be at most quadratic, with the linear term uncertain'); end Q_ww = Q(wind,wind); Q_xw = Q(xind,wind); Q_xx = Q(xind,xind); c_x = c(xind); c_w = c(wind); %b = [b;f + c_w'*w]; %A = [A;-c_x'-w'*2*Q_xw']; % A = [A -c_x-2*Q_xw*w]; AAA = [AAA;sparse(-2*Q_xw)]; ccc = [ccc;-sparse(c_x)]; b = [b;f]; c_wTbase = [c_wTbase;c_w']; end % b = b + c_wTbase*w; % A = reshape(ccc + AAA*w,size(c_x,1),[]); j = 1; confidencelevel = struct(groupedChanceConstraints{ic}).clauses{1}.confidencelevel; theMean = randomVariables{j}.distribution.parameters{1}; covariance = randomVariables{j}.distribution.parameters{2}; gamma = icdf('normal',confidencelevel,0,1); switch randomVariables{j}.distribution.name case 'normal' theMean = randomVariables{j}.distribution.parameters{1}; covariance = randomVariables{j}.distribution.parameters{2}; gamma = icdf('normal',confidencelevel,0,1); if isa(covariance,'sdpvar') error('Covariance cannot be an SDPVAR in normal distribution. Maybe you meant to use factorized covariance in ''normalf'''); end Fderandomized = [Fderandomized, b + c_wTbase*theMean - (ccc + AAA*theMean)'*x >= gamma*norm(chol(covariance)*(AAA'*x+c_wTbase'))]; case 'normalf' theMean = randomVariables{j}.distribution.parameters{1}; covariance = randomVariables{j}.distribution.parameters{2}; gamma = icdf('normal',confidencelevel,0,1); Fderandomized = [Fderandomized, b + c_wTbase*theMean - (ccc + AAA*theMean)'*x >= gamma*norm(covariance*(AAA'*x+c_wTbase'))]; otherwise error('Distribution not supported'); end end
github
EnricoGiordano1992/LMI-Matlab-master
sdisplay.m
.m
LMI-Matlab-master/yalmip/extras/sdisplay.m
10,497
utf_8
f90455026b9451c20d71013181d0348a
function symb_pvec = sdisplay(pvec,symbolicname) %SDISPLAY Symbolic display of SDPVAR expression % % Note that the symbolic display only work if all % involved variables are explicitely defined as % scalar variables. % % Variables that not are defined as scalars % will be given the name ryv(i). ryv means % recovered YALMIP variables, i indicates the % index in YALMIP (i.e. the result from getvariables) % % If you want to change the generic name ryv, just % pass a second string argument % % EXAMPLES % sdpvar x y % sdisplay(x^2+y^2) % ans = % 'x^2+y^2' % % t = sdpvar(2,1); % sdisplay(x^2+y^2+t'*t) % ans = % 'x^2+y^2+ryv(5)^2+ryv(6)^2' r1=1:size(pvec,1); r2=1:size(pvec,2); for pi = 1:size(pvec,1) for pj = 1:size(pvec,2) p = pvec(pi,pj); if isa(p,'double') symb_p = num2str(p,10); else LinearVariables = depends(p); x = recover(LinearVariables); [exponent_p,ordered_list] = exponents(p,x); exponent_p = full(exponent_p); names = cell(length(x),1); % First, some boooring stuff. we need to % figure out the symbolic names and connect % these names to YALMIPs variable indicies W = evalin('caller','whos'); for i = 1:size(W,1) if strcmp(W(i).class,'sdpvar') || strcmp(W(i).class,'ncvar') % Get the SDPVAR variable thevars = evalin('caller',W(i).name); % Distinguish 4 cases % 1: Sclalar varible x % 2: Vector variable x(i) % 3: Matrix variable x(i,j) % 4: Variable not really defined if is(thevars,'scalar') && is(thevars,'linear') && length(getvariables(thevars))==1 & isequal(getbase(thevars),[0 1]) index_in_p = find(ismember(LinearVariables,getvariables(thevars))); if ~isempty(index_in_p) already = ~isempty(names{index_in_p}); if already already = ~strfind(names{index_in_p},'internal'); if isempty(already) already = 0; end end else already = 0; end if ~isempty(index_in_p) & ~already % Case 1 names{index_in_p}=W(i).name; end elseif is(thevars,'lpcone') if size(thevars,1)==size(thevars,2) % Case 2 vars = getvariables(thevars); indicies = find(ismember(vars,LinearVariables)); for ii = indicies index_in_p = find(ismember(LinearVariables,vars(ii))); if ~isempty(index_in_p) already = ~isempty(names{index_in_p}); if already already = ~strfind(names{index_in_p},'internal'); if isempty(already) already = 0; end end else already = 0; end if ~isempty(index_in_p) & ~already B = reshape(getbasematrix(thevars,vars(ii)),size(thevars,1),size(thevars,2)); [ix,jx,kx] = find(B); ix=ix(1); jx=jx(1); names{index_in_p}=[W(i).name '(' num2str(ix) ',' num2str(jx) ')']; end end else % Case 3 vars = getvariables(thevars); indicies = find(ismember(vars,LinearVariables)); for ii = indicies index_in_p = find(ismember(LinearVariables,vars(ii))); if ~isempty(index_in_p) already = ~isempty(names{index_in_p}); if already already = ~strfind(names{index_in_p},'internal'); if isempty(already) already = 0; end end else already = 0; end if ~isempty(index_in_p) & ~already names{index_in_p}=[W(i).name '(' num2str(ii) ')']; end end end elseif is(thevars,'sdpcone') % Case 3 vars = getvariables(thevars); indicies = find(ismember(vars,LinearVariables)); for ii = indicies index_in_p = find(ismember(LinearVariables,vars(ii))); if ~isempty(index_in_p) already = ~isempty(names{index_in_p}); if already already = ~strfind(names{index_in_p},'internal'); end else already = 0; end if ~isempty(index_in_p) & ~already B = reshape(getbasematrix(thevars,vars(ii)),size(thevars,1),size(thevars,2)); [ix,jx,kx] = find(B); ix=ix(1); jx=jx(1); names{index_in_p}=[W(i).name '(' num2str(ix) ',' num2str(jx) ')']; end end else % Case 4 vars = getvariables(thevars); indicies = find(ismember(vars,LinearVariables)); for i = indicies index_in_p = find(ismember(LinearVariables,vars(i))); if ~isempty(index_in_p) & isempty(names{index_in_p}) names{index_in_p}=['internal(' num2str(vars(i)) ')']; end end end end end % Okay, now got all the symbolic names compiled. % Time to construct the expression % The code below is also a bit fucked up at the moment, due to % the experimental code with noncommuting stuff % Remove 0 constant symb_p = ''; if size(ordered_list,1)>0 nummonoms = size(ordered_list,1); if full(getbasematrix(p,0)) ~= 0 symb_p = num2str(full(getbasematrix(p,0))); end elseif all(exponent_p(1,:)==0) symb_p = num2str(full(getbasematrix(p,0)),10); exponent_p = exponent_p(2:end,:); nummonoms = size(exponent_p,1); else nummonoms = size(exponent_p,1); end % Loop through all monomial terms for i = 1:nummonoms coeff = full(getbasematrixwithoutcheck(p,i)); switch coeff case 1 coeff='+'; case -1 coeff = '-'; otherwise if isreal(coeff) if coeff >0 coeff = ['+' num2str2(coeff)]; else coeff=[num2str2(coeff)]; end else coeff = ['+' '(' num2str2(coeff) ')' ]; end end if isempty(ordered_list) symb_p = [symb_p coeff symbmonom(names,exponent_p(i,:))]; else symb_p = [symb_p coeff symbmonom_noncommuting(names,ordered_list(i,:))]; end end % Clean up some left overs, lazy coding... symb_p = strrep(symb_p,'+*','+'); symb_p = strrep(symb_p,'-*','-'); if symb_p(1)=='+' symb_p = symb_p(2:end); end if symb_p(1)=='*' symb_p = symb_p(2:end); end end symb_pvec{pi,pj} = symb_p; end end if prod(size(symb_pvec))==1 & nargout==0 display(symb_pvec{1,1}); clear symb_pvec end function s = symbmonom(names,monom) s = ''; for j = 1:length(monom) if abs( monom(j))>0 if isempty(names{j}) names{j} = ['internal(' num2str(j) ')']; end s = [s '*' names{j}]; if monom(j)~=1 s = [s '^' num2str(monom(j))]; end end end function s = symbmonom_noncommuting(names,monom) s = ''; j = 1; while j <= length(monom) if abs( monom(j))>0 if isempty(names{monom(j)}) names{monom(j)} = ['internal(' num2str(j) ')']; end s = [s '*' names{monom(j)}]; power = 1; k = j; while j<length(monom) & monom(j) == monom(j+1) power = power + 1; j = j + 1; %if j == (length(monom)-1) % j = 5; %end end if power~=1 s = [s '^' num2str(power)]; end end j = j + 1; end function s = num2str2(x) s = evalc('disp(x)'); s(s==10)=[]; s(s==32)=[]; %disp(full(x)) %s = num2str(full(x),10); if isequal(s,'1') s = ''; end if isequal(s,'-1') s = '-'; end
github
EnricoGiordano1992/LMI-Matlab-master
yalmip.m
.m
LMI-Matlab-master/yalmip/extras/yalmip.m
55,094
utf_8
5973f49d728e3b655ac45234688eea26
function varargout = yalmip(varargin) %YALMIP Returns various information about YALMIP % % YALMIP can be used to check version numbers and % find the SDPVAR and SET objects available in workspace % % EXAMPLES % V = YALMIP('version') % Returns version % YALMIP('nvars') % Returns total number of declared variables % YALMIP('info') % Display basic info. % YALMIP('solver','tag') % Sets the solver 'solvertag' (see sdpsettings) as default solver % % % If you want information on how to use YALMIP, you are advised to check out % http://users.isy.liu.se/johanl/yalmip/ % % See also YALMIPTEST, YALMIPDEMO persistent prefered_solver internal_sdpvarstate internal_setstate if nargin==0 help yalmip return end if isempty(internal_sdpvarstate) if exist('OCTAVE_VERSION', 'builtin') more off end internal_sdpvarstate.monomtable = spalloc(0,0,0); % Polynomial powers table internal_sdpvarstate.hashedmonomtable = []; % Hashed polynomial powers table internal_sdpvarstate.hash = []; internal_sdpvarstate.boundlist = []; internal_sdpvarstate.variabletype = spalloc(0,0,0); % Pre-calc linear/quadratic/polynomial/sigmonial internal_sdpvarstate.intVariables = []; % ID of integer variables internal_sdpvarstate.binVariables = []; % ID of binary variables internal_sdpvarstate.semicontVariables = []; internal_sdpvarstate.uncVariables = []; % ID of uncertain variables (not used) internal_sdpvarstate.parVariables = []; % ID of parametric variables (not used) internal_sdpvarstate.extVariables = []; % ID of extended variables (for max,min,norm,sin, etc) internal_sdpvarstate.auxVariables = []; % ID of auxilliary variables (introduced when modelling extended variables) internal_sdpvarstate.auxVariablesW = []; % ID of uncertain auxilliary variables (introduced when modelling uncertain extended variables) internal_sdpvarstate.logicVariables = []; % ID of extended logic variables (for or, nnz, alldifferent etc) internal_sdpvarstate.complexpair = []; internal_sdpvarstate.internalconstraints = []; internal_sdpvarstate.ExtendedMap = []; internal_sdpvarstate.ExtendedMapHashes = []; internal_sdpvarstate.DependencyMap = sparse(0); internal_sdpvarstate.DependencyMapUser = sparse(0); internal_sdpvarstate.sosid = 0; internal_sdpvarstate.sos_index = []; internal_sdpvarstate.sos_data = []; internal_sdpvarstate.sos_ParV = []; internal_sdpvarstate.sos_Q = []; internal_sdpvarstate.sos_v = []; internal_sdpvarstate.optSolution{1}.info = 'Initialized by YALMIP'; internal_sdpvarstate.optSolution{1}.variables = []; internal_sdpvarstate.optSolution{1}.optvar =[]; internal_sdpvarstate.optSolution{1}.values =[]; internal_sdpvarstate.activeSolution = 1; internal_sdpvarstate.nonCommutingTable = []; internal_sdpvarstate.nonHermitiannonCommutingTable = []; try warning off Octave:possible-matlab-short-circuit-operator catch end end if isempty(internal_setstate) internal_setstate.LMIid = 0; internal_setstate.duals_index = []; internal_setstate.duals_data = []; internal_setstate.duals_associated_index = []; internal_setstate.duals_associated_data = []; end switch varargin{1} case 'clearsolution' internal_sdpvarstate.optSolution{1}.variables = []; internal_sdpvarstate.optSolution{1}.optvar =[]; internal_sdpvarstate.optSolution{1}.values =[]; internal_sdpvarstate.activeSolution = 1; case 'monomtable' varargout{1} = internal_sdpvarstate.monomtable; n = size(internal_sdpvarstate.monomtable,1); if size(internal_sdpvarstate.monomtable,2) < n % Normalize the monomtalbe. Some external functions presume the % table is square varargout{1}(n,n) = 0; internal_sdpvarstate.monomtable = varargout{1}; need_new = size(internal_sdpvarstate.monomtable,1) - length(internal_sdpvarstate.hash); internal_sdpvarstate.hash = [internal_sdpvarstate.hash ; 3*gen_rand_hash(size(internal_sdpvarstate.monomtable,1),need_new,1)]; internal_sdpvarstate.hashedmonomtable = internal_sdpvarstate.monomtable*internal_sdpvarstate.hash; end if nargout == 2 varargout{2} = internal_sdpvarstate.variabletype; elseif nargout == 4 varargout{2} = internal_sdpvarstate.variabletype; varargout{3} = internal_sdpvarstate.hashedmonomtable; varargout{4} = internal_sdpvarstate.hash; end case 'setmonomtable' % New monom table internal_sdpvarstate.monomtable = varargin{2}; if nargin>=4 % User has up-dated the hash tables him self. internal_sdpvarstate.hashedmonomtable=varargin{4}; internal_sdpvarstate.hash = varargin{5}; end if size(internal_sdpvarstate.monomtable,2)>length(internal_sdpvarstate.hash) need_new = size(internal_sdpvarstate.monomtable,1) - length(internal_sdpvarstate.hash); internal_sdpvarstate.hash = [internal_sdpvarstate.hash ; 3*gen_rand_hash(size(internal_sdpvarstate.monomtable,1),need_new,1)]; end if size(internal_sdpvarstate.monomtable,1)>size(internal_sdpvarstate.hashedmonomtable,1) % Need to add some hash values need_new = size(internal_sdpvarstate.monomtable,1) - size(internal_sdpvarstate.hashedmonomtable,1); temp = internal_sdpvarstate.monomtable(end-need_new+1:end,:); internal_sdpvarstate.hashedmonomtable = [internal_sdpvarstate.hashedmonomtable;temp*internal_sdpvarstate.hash]; end if nargin >= 3 && ~isempty(varargin{3}) internal_sdpvarstate.variabletype = varargin{3}; if length(internal_sdpvarstate.variabletype) ~=size(internal_sdpvarstate.monomtable,1) error('ASSERT') end else internal_sdpvarstate.variabletype = zeros(size(internal_sdpvarstate.monomtable,1),1)'; nonlinear = ~(sum(internal_sdpvarstate.monomtable,2)==1 & sum(internal_sdpvarstate.monomtable~=0,2)==1); if ~isempty(nonlinear) %mt = internal_sdpvarstate.monomtable; internal_sdpvarstate.variabletype(nonlinear) = 3; quadratic = sum(internal_sdpvarstate.monomtable,2)==2; internal_sdpvarstate.variabletype(quadratic) = 2; bilinear = max(internal_sdpvarstate.monomtable,[],2)<=1; internal_sdpvarstate.variabletype(bilinear & quadratic) = 1; sigmonial = any(0>internal_sdpvarstate.monomtable,2) | any(internal_sdpvarstate.monomtable-fix(internal_sdpvarstate.monomtable),2); internal_sdpvarstate.variabletype(sigmonial) = 4; end end case 'variabletype' varargout{1} = internal_sdpvarstate.variabletype; case {'addextendedvariable','addEvalVariable'} varargin{2} disp('Obsolete use of the terms addextendedvariable and addEvalVariable'); error('Obsolete use of the terms addextendedvariable and addEvalVariable'); case 'defineVectorizedUnitary' varargin{2} = strrep(varargin{2},'sdpvar/',''); % Clean due to different behaviour of the function mfilename in ML 5,6 and 7 % Is this operator variable already defined correct_operator = []; if ~isempty(internal_sdpvarstate.ExtendedMap) OperatorName = varargin{2}; Arguments = {varargin{3:end}}; this_hash = create_trivial_hash(firstSDPVAR(Arguments)); correct_operator = find([internal_sdpvarstate.ExtendedMapHashes == this_hash]); if ~isempty(correct_operator) correct_operator = correct_operator(strcmp(OperatorName,{internal_sdpvarstate.ExtendedMap(correct_operator).fcn})); end for i = correct_operator if this_hash == internal_sdpvarstate.ExtendedMap(i).Hash if isequalwithequalnans(Arguments, {internal_sdpvarstate.ExtendedMap(i).arg{1:end-1}}); if length(internal_sdpvarstate.ExtendedMap(i).computes)>1 varargout{1} = recover(internal_sdpvarstate.ExtendedMap(i).computes); else varargout{1} = internal_sdpvarstate.ExtendedMap(i).var; end varargout{1} = setoperatorname(varargout{1},varargin{2}); return end end end else this_hash = create_trivial_hash(firstSDPVAR({varargin{3:end}})); end X = varargin{3:end}; if is(X,'unitary') allXunitary = 1; else allXunitary = 0; end y = sdpvar(numel(X),1); allNewExtended = []; allNewExtendedIndex = []; allPreviouslyDefinedExtendedToIndex = []; allPreviouslyDefinedExtendedFromIndex = []; if ~isempty(internal_sdpvarstate.ExtendedMap) correct_operator = find(strcmp(varargin{2},{internal_sdpvarstate.ExtendedMap(:).fcn})); end z = sdpvar(numel(X),1); % Standard format y=f(z),z==arg internal_sdpvarstate.auxVariables = [ internal_sdpvarstate.auxVariables getvariables(z)]; internal_sdpvarstate.auxVariables = [ internal_sdpvarstate.auxVariables getvariables(y)]; vec_hashes = create_trivial_vechash(X); vec_isdoubles = create_vecisdouble(X); if isempty(correct_operator) availableHashes = []; else availableHashes = [internal_sdpvarstate.ExtendedMap(correct_operator).Hash]; end if isempty(availableHashes) && length(vec_hashes)>1 && all(diff(sort(vec_hashes))>0) simpleAllDifferentNew = 1; else simpleAllDifferentNew = 0; end for i = 1:numel(X) % we have to search through all scalar operators % to find this single element found = 0; Xi = []; if ~simpleAllDifferentNew if vec_isdoubles(i) found = 1; y(i) = X(i); else if ~isempty(correct_operator) this_hash = vec_hashes(i); correct_hash = correct_operator(find(this_hash == availableHashes)); if ~isempty(correct_hash) Xi = X(i); end for j = correct_hash(:)' if isequal(Xi,internal_sdpvarstate.ExtendedMap(j).arg{1},1) allPreviouslyDefinedExtendedToIndex = [allPreviouslyDefinedExtendedToIndex i]; allPreviouslyDefinedExtendedFromIndex = [allPreviouslyDefinedExtendedFromIndex j]; found = 1; break end end end end end if ~found yi = y(i); if isempty(Xi) Xi = X(i); end internal_sdpvarstate.ExtendedMap(end+1).fcn = varargin{2}; if allXunitary internal_sdpvarstate.ExtendedMap(end).arg = {Xi,[]}; else if is(Xi,'unitary') internal_sdpvarstate.ExtendedMap(end).arg = {Xi,[]}; else internal_sdpvarstate.ExtendedMap(end).arg = {Xi,z(i)}; end end internal_sdpvarstate.ExtendedMap(end).var = yi; internal_sdpvarstate.ExtendedMap(end).computes = getvariables(yi); new_hash = create_trivial_hash(Xi); internal_sdpvarstate.ExtendedMap(end).Hash = new_hash; internal_sdpvarstate.ExtendedMapHashes = [internal_sdpvarstate.ExtendedMapHashes new_hash]; allNewExtendedIndex = [allNewExtendedIndex i]; availableHashes = [availableHashes new_hash]; correct_operator = [correct_operator length( internal_sdpvarstate.ExtendedMap)]; end end y(allPreviouslyDefinedExtendedToIndex) = [internal_sdpvarstate.ExtendedMap(allPreviouslyDefinedExtendedFromIndex).var]; allNewExtended = y(allNewExtendedIndex); y_vars = getvariables(allNewExtended); internal_sdpvarstate.extVariables = [internal_sdpvarstate.extVariables y_vars]; y = reshape(y,size(X,1),size(X,2)); y = setoperatorname(y,varargin{2}); varargout{1} = y; yV = getvariables(y); yB = getbase(y);yB = yB(:,2:end); xV = getvariables(X); xB = getbase(X);xB = xB(:,2:end); internal_sdpvarstate.DependencyMap(max(yV),max(xV))=sparse(0); for i = 1:length(yV) internal_sdpvarstate.DependencyMap(yV(find(yB(i,:))),xV(find(xB(i,:))))=1; end %yalmip('setdependence',getvariables(y),getvariables(X)); return case {'define','definemulti'} if strcmpi(varargin{1},'define') multioutput = 0; nout = [1 1]; else multioutput = 1; nout = varargin{end}; varargin = {varargin{1:end-1}}; end varargin{2} = strrep(varargin{2},'sdpvar/',''); % Clean due to different behaviour of the function mfilename in ML 5,6 and 7 % Is this operator variable already defined correct_operator = []; if ~isempty(internal_sdpvarstate.ExtendedMap) OperatorName = varargin{2}; Arguments = {varargin{3:end}}; this_hash = create_trivial_hash(firstSDPVAR(Arguments)); correct_operator = find([internal_sdpvarstate.ExtendedMapHashes == this_hash]); if ~isempty(correct_operator) correct_operator = correct_operator(strcmp(OperatorName,{internal_sdpvarstate.ExtendedMap(correct_operator).fcn})); end for i = correct_operator % if this_hash == internal_sdpvarstate.ExtendedMap(i).Hash if isequalwithequalnans(Arguments, {internal_sdpvarstate.ExtendedMap(i).arg{1:end-1}}); if length(internal_sdpvarstate.ExtendedMap(i).computes)>1 varargout{1} = recover(internal_sdpvarstate.ExtendedMap(i).computes); else varargout{1} = internal_sdpvarstate.ExtendedMap(i).var; end varargout{1} = setoperatorname(varargout{1},varargin{2}); return end % end end else this_hash = create_trivial_hash(firstSDPVAR({varargin{3:end}})); end switch varargin{2} case {'max_internal'} % MAX is a bit special since we need one % new variable for each column... % (can be implemented standard way, but this is better % for performance, and since MAX is so common... X = varargin{3:end}; [n,m] = size(X); if min([n m]) == 1 y = sdpvar(1,1); internal_sdpvarstate.ExtendedMap(end+1).fcn = varargin{2}; internal_sdpvarstate.ExtendedMap(end).arg = {varargin{3:end},[]}; internal_sdpvarstate.ExtendedMap(end).var = y; internal_sdpvarstate.ExtendedMap(end).computes = getvariables(y); internal_sdpvarstate.extVariables = [internal_sdpvarstate.extVariables getvariables(y)]; internal_sdpvarstate.ExtendedMap(end).Hash = this_hash; internal_sdpvarstate.ExtendedMapHashes = [internal_sdpvarstate.ExtendedMapHashes this_hash]; else y = sdpvar(1,m); for i = 1:m internal_sdpvarstate.ExtendedMap(end+1).fcn = varargin{2}; internal_sdpvarstate.ExtendedMap(end).arg = {X(:,i),[]}; internal_sdpvarstate.ExtendedMap(end).var = y(i); internal_sdpvarstate.ExtendedMap(end).computes = getvariables(y(i)); new_hash = create_trivial_hash(X(:,i)); internal_sdpvarstate.ExtendedMap(end).Hash = new_hash; internal_sdpvarstate.ExtendedMapHashes = [internal_sdpvarstate.ExtendedMapHashes new_hash]; end internal_sdpvarstate.extVariables = [internal_sdpvarstate.extVariables getvariables(y)]; end y = setoperatorname(y,varargin{2}); case {'abs'} % ABS is a bit special since we need one % new variable for each element... X = varargin{3:end}; y = sdpvar(numel(X),1); allNewExtended = []; allNewExtendedIndex = []; allPreviouslyDefinedExtendedToIndex = []; allPreviouslyDefinedExtendedFromIndex = []; if ~isempty(internal_sdpvarstate.ExtendedMap) correct_operator = find(strcmp(varargin{2},{internal_sdpvarstate.ExtendedMap(:).fcn})); end if numel(X)==1 found = 0; if ~isempty(correct_operator) this_hash = create_trivial_hash(X); for j = correct_operator;% find(correct_operator) if this_hash == internal_sdpvarstate.ExtendedMap(j).Hash if isequal(X,internal_sdpvarstate.ExtendedMap(j).arg{1},1) % y = internal_sdpvarstate.ExtendedMap(j).var; allPreviouslyDefinedExtendedToIndex = [1]; allPreviouslyDefinedExtendedFromIndex = [j]; found = 1; break end end end end if ~found internal_sdpvarstate.ExtendedMap(end+1).fcn = varargin{2}; internal_sdpvarstate.ExtendedMap(end).arg = {X,binvar(1),[]}; internal_sdpvarstate.ExtendedMap(end).var = y; internal_sdpvarstate.ExtendedMap(end).computes = getvariables(y); new_hash = create_trivial_hash(X); internal_sdpvarstate.ExtendedMap(end).Hash = new_hash; internal_sdpvarstate.ExtendedMapHashes = [internal_sdpvarstate.ExtendedMapHashes new_hash]; allNewExtended = y; allNewExtendedIndex = 1; end else aux_bin = binvar(numel(X),1); vec_hashes = create_trivial_vechash(X); vec_isdoubles = create_vecisdouble(X); for i = 1:numel(X) % This is a bummer. If we scalarize the abs-operator, % we have to search through all scalar abs-operators % to find this single element found = 0; Xi = X(i); if vec_isdoubles(i)%isa(Xi,'double') found = 1; y(i) = abs(X(i)); else if ~isempty(correct_operator) this_hash = vec_hashes(i); for j = correct_operator if this_hash == internal_sdpvarstate.ExtendedMap(j).Hash if isequal(Xi,internal_sdpvarstate.ExtendedMap(j).arg{1},1) allPreviouslyDefinedExtendedToIndex = [allPreviouslyDefinedExtendedToIndex i]; allPreviouslyDefinedExtendedFromIndex = [allPreviouslyDefinedExtendedFromIndex j]; found = 1; break end end end end end if ~found yi = y(i); internal_sdpvarstate.ExtendedMap(end+1).fcn = varargin{2}; internal_sdpvarstate.ExtendedMap(end).arg = {Xi,aux_bin(i),[]}; internal_sdpvarstate.ExtendedMap(end).var = yi; internal_sdpvarstate.ExtendedMap(end).computes = getvariables(yi); new_hash = create_trivial_hash(Xi); internal_sdpvarstate.ExtendedMap(end).Hash = new_hash; internal_sdpvarstate.ExtendedMapHashes = [internal_sdpvarstate.ExtendedMapHashes new_hash]; allNewExtendedIndex = [allNewExtendedIndex i]; % Add this to the list of possible matches. % Required for repeated elements in argument % (such as a symmetric matrix) correct_operator = [correct_operator length(internal_sdpvarstate.ExtendedMap)]; end end end y(allPreviouslyDefinedExtendedToIndex) = [internal_sdpvarstate.ExtendedMap(allPreviouslyDefinedExtendedFromIndex).var]; allNewExtended = y(allNewExtendedIndex); y_vars = getvariables(allNewExtended); internal_sdpvarstate.extVariables = [internal_sdpvarstate.extVariables y_vars]; y = reshape(y,size(X,1),size(X,2)); y = setoperatorname(y,varargin{2}); otherwise % This is the standard operators. INPUTS -> 1 scalar output if isequal(varargin{2},'or') || isequal(varargin{2},'xor') || isequal(varargin{2},'and') y = binvar(1,1); else y = sdpvar(nout(1),nout(2)); end if ~strcmpi({'sort'},varargin{2}) % Oh fuck is this ugly. Sort assumes ordering on some % variables, and thus assumes no z in between. This % will be generalized when R^n -> R^m is supported for % real % Actually, we can skip these normalizing variables for % everything which isn't based on callbacks. This saves % a lot of setup time on huge models if ~(strcmp(varargin{2},'norm') || strcmp(varargin{2},'abs')) z = sdpvar(size(varargin{3},1),size(varargin{3},2),'full'); % Standard format y=f(z),z==arg internal_sdpvarstate.auxVariables = [ internal_sdpvarstate.auxVariables getvariables(z)]; else z = []; end internal_sdpvarstate.auxVariables = [ internal_sdpvarstate.auxVariables getvariables(y)]; else z = []; end for i = 1:nout % Avoid subsref to save time if nout == 1 yi = y; else yi = y(i); end internal_sdpvarstate.ExtendedMap(end+1).fcn = varargin{2}; internal_sdpvarstate.ExtendedMap(end).arg = {varargin{3:end},z}; internal_sdpvarstate.ExtendedMap(end).var = yi; internal_sdpvarstate.ExtendedMap(end).computes = getvariables(y); internal_sdpvarstate.ExtendedMap(end).Hash = this_hash; internal_sdpvarstate.ExtendedMapHashes = [internal_sdpvarstate.ExtendedMapHashes this_hash]; internal_sdpvarstate.extVariables = [internal_sdpvarstate.extVariables getvariables(yi)]; end y = setoperatorname(y,varargin{2}); end for i = 3:length(varargin) if isa(varargin{i},'sdpvar') yalmip('setdependence',getvariables(y),getvariables(varargin{i})); end end varargout{1} = flush(clearconic(y)); return case 'setdependence' if ~isempty(varargin{2}) && ~isempty(varargin{3}) if isa(varargin{2},'sdpvar') varargin{2} = getvariables(varargin{2}); end if isa(varargin{3},'sdpvar') varargin{3} = getvariables(varargin{3}); end % This dies not work since the arguments have different % ordering. Try for instance x=sdpvar(2),[x>=0,abs(x)>=0] % nx = max(size(internal_sdpvarstate.DependencyMap,1),max(varargin{2})); % ny = max(size(internal_sdpvarstate.DependencyMap,2),max(varargin{3})); % index = sub2ind([nx ny], varargin{2},varargin{3}); % if size(internal_sdpvarstate.DependencyMap,1) < nx || size(internal_sdpvarstate.DependencyMap,2) < ny % internal_sdpvarstate.DependencyMap(nx,ny) = 0; % end % internal_sdpvarstate.DependencyMap(index) = 1; internal_sdpvarstate.DependencyMap(varargin{2},varargin{3}) = 1; n = size(internal_sdpvarstate.monomtable,1); if size(internal_sdpvarstate.DependencyMap,1) < n internal_sdpvarstate.DependencyMap(n,1)=0; end if size(internal_sdpvarstate.DependencyMap,2) < n internal_sdpvarstate.DependencyMap(end,n)=0; end end case 'setdependenceUser' if ~isempty(varargin{2}) && ~isempty(varargin{3}) if isa(varargin{2},'sdpvar') varargin{2} = getvariables(varargin{2}); end if isa(varargin{3},'sdpvar') varargin{3} = getvariables(varargin{3}); end internal_sdpvarstate.DependencyMapUser(varargin{2},varargin{3}) = 1; n = size(internal_sdpvarstate.monomtable,1); if size(internal_sdpvarstate.DependencyMapUser,1) < n internal_sdpvarstate.DependencyMapUser(n,1)=0; end if size(internal_sdpvarstate.DependencyMapUser,2) < n internal_sdpvarstate.DependencyMapUser(end,n)=0; end end case 'getdependence' varargout{1} = internal_sdpvarstate.DependencyMap; n = size(internal_sdpvarstate.monomtable,1); if size(varargout{1},1) < n || size(varargout{1},2)<n varargout{1}(n,n) = 0; end case 'getdependenceUser' varargout{1} = internal_sdpvarstate.DependencyMapUser; n = size(internal_sdpvarstate.monomtable,1); if size(varargout{1},1) < n || size(varargout{1},2)<n varargout{1}(n,n) = 0; end case 'getarguments' varargout{1} = yalmip('extstruct',getvariables(varargin{2})); case 'auxvariables' varargout{1} = internal_sdpvarstate.auxVariables; case 'auxvariablesW' varargout{1} = internal_sdpvarstate.auxVariablesW; case 'extvariables' varargout{1} = internal_sdpvarstate.extVariables; case 'extstruct' if nargin == 1 varargout{1} = internal_sdpvarstate.ExtendedMap; elseif length(varargin{2})==1 found = 0; varargout{1} = []; i = 1; while ~found && i <=length(internal_sdpvarstate.ExtendedMap) if varargin{2} == getvariables(internal_sdpvarstate.ExtendedMap(i).var) found = 1; varargout{1} = internal_sdpvarstate.ExtendedMap(i); end i = i + 1; end else % If requests several extended variables, returns as cell found = zeros(1,length(varargin{2})); varargout{1} = cell(0,length(varargin{2})); i = 1; while ~all(found) && i <=length(internal_sdpvarstate.ExtendedMap) j = find(varargin{2} == getvariables(internal_sdpvarstate.ExtendedMap(i).var)); if ~isempty(j) found(j) = 1; varargout{1}{j} = internal_sdpvarstate.ExtendedMap(i); end i = i + 1; end end case 'expvariables' expvariables = []; for i = 1:length(internal_sdpvarstate.ExtendedMap) if any(strcmpi(internal_sdpvarstate.ExtendedMap(i).fcn,{'exp','pexp','log','slog','plog','logsumexp','kullbackleibler','entropy'})) expvariables = [ expvariables internal_sdpvarstate.ExtendedMap(i).computes]; end end varargout{1} = expvariables; case 'rankvariables' i = 1; rankvariables = []; dualrankvariables = []; for i = 1:length(internal_sdpvarstate.ExtendedMap) if strcmpi('rank',internal_sdpvarstate.ExtendedMap(i).fcn) rankvariables = [rankvariables getvariables(internal_sdpvarstate.ExtendedMap(i).var)]; end if strcmpi('dualrank',internal_sdpvarstate.ExtendedMap(i).fcn) dualrankvariables = [dualrankvariables getvariables(internal_sdpvarstate.ExtendedMap(i).var)]; end end varargout{1} = rankvariables; varargout{2} = dualrankvariables; case {'lmiid','ConstraintID'} if not(isempty(internal_setstate.LMIid)) internal_setstate.LMIid = internal_setstate.LMIid+1; varargout{1}=internal_setstate.LMIid; else internal_setstate.LMIid=1; varargout{1}=internal_setstate.LMIid; end case 'setnonlinearvariables' error('Internal error (ref. setnonlinearvariables). Report please.') case {'clear'} W = evalin('caller','whos'); for i = 1:size(W,1) if strcmp(W(i).class,'sdpvar') || strcmp(W(i).class,'lmi') evalin('caller', ['clear ' W(i).name ';']); end end internal_setstate.LMIid = 0; internal_setstate.duals_index = []; internal_setstate.duals_data = []; internal_setstate.duals_associated_index = []; internal_setstate.duals_associated_data = []; internal_sdpvarstate.sosid = 0; internal_sdpvarstate.sos_index = []; internal_sdpvarstate.sos_data = []; internal_sdpvarstate.sos_ParV = []; internal_sdpvarstate.sos_Q = []; internal_sdpvarstate.sos_v = []; internal_sdpvarstate.monomtable = spalloc(0,0,0); internal_sdpvarstate.hashedmonomtable = []; internal_sdpvarstate.hash = []; internal_sdpvarstate.boundlist = []; internal_sdpvarstate.variabletype = spalloc(0,0,0); internal_sdpvarstate.intVariables = []; internal_sdpvarstate.binVariables = []; internal_sdpvarstate.semicontVariables = []; internal_sdpvarstate.uncVariables = []; internal_sdpvarstate.parVariables = []; internal_sdpvarstate.extVariables = []; internal_sdpvarstate.auxVariables = []; internal_sdpvarstate.auxVariablesW = []; internal_sdpvarstate.logicVariables = []; ;internal_sdpvarstate.complexpair = []; internal_sdpvarstate.internalconstraints = []; internal_sdpvarstate.ExtendedMap = []; internal_sdpvarstate.ExtendedMapHashes = []; internal_sdpvarstate.DependencyMap = sparse(0); internal_sdpvarstate.DependencyMapUser = sparse(0); internal_sdpvarstate.optSolution{1}.info = 'Initialized by YALMIP'; internal_sdpvarstate.optSolution{1}.variables = []; internal_sdpvarstate.optSolution{1}.optvar = []; internal_sdpvarstate.optSolution{1}.values = []; internal_sdpvarstate.activeSolution = 1; internal_sdpvarstate.nonCommutingTable = []; case 'cleardual' if nargin==1 internal_setstate.duals_index = []; internal_setstate.duals_data = []; internal_setstate.duals_associated_index = []; internal_setstate.duals_associated_data = []; else if ~isempty(internal_setstate.duals_index) internal_setstate.lmiid = varargin{2}; for i = 1:length(varargin{2}) j = find(internal_setstate.duals_index==internal_setstate.lmiid(i)); if ~isempty(j) internal_setstate.duals_index = internal_setstate.duals_index([1:1:j-1 j+1:1:length(internal_setstate.duals_index)]); internal_setstate.duals_data = {internal_setstate.duals_data{[1:1:j-1 j+1:1:length(internal_setstate.duals_data)]}}; end end end end case 'associatedual' internal_setstate.duals_associated_index = [internal_setstate.duals_associated_index varargin{2}]; internal_setstate.duals_associated_data{end+1} = varargin{3}; case 'addcomplexpair' internal_sdpvarstate.complexpair = [internal_sdpvarstate.complexpair;varargin{2}]; case 'getcomplexpair' error('Please report this error!') varargout{1} = internal_sdpvarstate.complexpair; return case 'setallsolution' internal_sdpvarstate.optSolution{internal_sdpvarstate.activeSolution}.optvar = varargin{2}.optvar; internal_sdpvarstate.optSolution{internal_sdpvarstate.activeSolution}.variables = varargin{2}.variables; internal_sdpvarstate.optSolution{internal_sdpvarstate.activeSolution}.values = []; return case 'setvalues' internal_sdpvarstate.optSolution{internal_sdpvarstate.activeSolution}.values = varargin{2}; case 'numbersolutions' varargout{1} = length(internal_sdpvarstate.optSolution); case 'selectsolution' if length(internal_sdpvarstate.optSolution)>=varargin{2} internal_sdpvarstate.activeSolution = varargin{2}; else error('Solution not available'); end case 'setsolution' if nargin < 3 solutionIndex = 1; else solutionIndex = varargin{3}; end internal_sdpvarstate.activeSolution = 1; % Clear trailing solutions if solutionIndex < length(internal_sdpvarstate.optSolution) internal_sdpvarstate.optSolution = {internal_sdpvarstate.optSolution{1:solutionIndex}}; elseif solutionIndex > length(internal_sdpvarstate.optSolution)+1 for j = length(internal_sdpvarstate.optSolution)+1:solutionIndex internal_sdpvarstate.optSolution{j}.optvar=[]; internal_sdpvarstate.optSolution{j}.variables=[]; internal_sdpvarstate.optSolution{j}.values=[]; end elseif solutionIndex == length(internal_sdpvarstate.optSolution)+1 internal_sdpvarstate.optSolution{solutionIndex}.optvar=[]; internal_sdpvarstate.optSolution{solutionIndex}.variables=[]; internal_sdpvarstate.optSolution{solutionIndex}.values=[]; end if isempty(internal_sdpvarstate.optSolution{solutionIndex}.variables) internal_sdpvarstate.optSolution{solutionIndex} = varargin{2}; else % Just save some stuff first newSolution = varargin{2}; oldSolution = internal_sdpvarstate.optSolution{solutionIndex}; optSolution = varargin{2}; keep_these = find(~ismember(oldSolution.variables,newSolution.variables)); internal_sdpvarstate.optSolution{solutionIndex}.optvar = [oldSolution.optvar(keep_these);newSolution.optvar(:)]; internal_sdpvarstate.optSolution{solutionIndex}.variables = [oldSolution.variables(keep_these);newSolution.variables(:)]; end % clear evaluated values (only used cache-wise) internal_sdpvarstate.optSolution{solutionIndex}.values = []; return % case 'setsolution' % % if isempty(internal_sdpvarstate.optSolution.variables) % internal_sdpvarstate.optSolution = varargin{2}; % else % % Just save some stuff first % newSolution = varargin{2}; % oldSolution = internal_sdpvarstate.optSolution; % optSolution = varargin{2}; % keep_these = find(~ismember(oldSolution.variables,newSolution.variables)); % internal_sdpvarstate.optSolution.optvar = [oldSolution.optvar(keep_these);newSolution.optvar(:)]; % internal_sdpvarstate.optSolution.variables = [oldSolution.variables(keep_these);newSolution.variables(:)]; % end % % clear evaluated values (only used cache-wise) % internal_sdpvarstate.optSolution.values = []; % return case 'addauxvariables' internal_sdpvarstate.auxVariables = [internal_sdpvarstate.auxVariables varargin{2}(:)']; case 'addauxvariablesW' internal_sdpvarstate.auxVariablesW = [internal_sdpvarstate.auxVariablesW varargin{2}(:)']; case 'getsolution' varargout{1} = internal_sdpvarstate.optSolution{internal_sdpvarstate.activeSolution}; return case 'setdual' internal_setstate.duals_index = varargin{2}; internal_setstate.duals_data = varargin{3}; if ~isempty(internal_setstate.duals_associated_index) if ~isempty(intersect(internal_setstate.duals_index,internal_setstate.duals_associated_index)) for i = 1:length(internal_setstate.duals_index) itshere = find(internal_setstate.duals_associated_index==internal_setstate.duals_index(i)); if ~isempty(itshere) assign(internal_setstate.duals_associated_data{itshere},internal_setstate.duals_data{i}); end end end end case 'dual' if isempty(internal_setstate.duals_index) varargout{1}=[]; else LMIid = varargin{2}; index_to_dual = find(LMIid==internal_setstate.duals_index); if isempty(index_to_dual) varargout{1}=[]; else varargout{1} = internal_setstate.duals_data{index_to_dual}; end end case 'clearsos' if nargin==1 internal_sdpvarstate.sos_index = []; internal_sdpvarstate.sos_data = []; internal_sdpvarstate.sos_ParV = []; internal_sdpvarstate.sos_Q = []; internal_sdpvarstate.sos_v = []; end case 'setsos' if ~isempty(internal_sdpvarstate.sos_index) where = find(internal_sdpvarstate.sos_index==varargin{2}); if ~isempty(where) internal_sdpvarstate.sos_index(where) = varargin{2}; internal_sdpvarstate.sos_data{where} = varargin{3}; internal_sdpvarstate.sos_ParV{where} = varargin{4}; internal_sdpvarstate.sos_Q{where} = varargin{5}; internal_sdpvarstate.sos_v{where} = varargin{6}; else internal_sdpvarstate.sos_index(end+1) = varargin{2}; internal_sdpvarstate.sos_data{end+1} = varargin{3}; internal_sdpvarstate.sos_ParV{end+1} = varargin{4}; internal_sdpvarstate.sos_Q{end+1} = varargin{5}; internal_sdpvarstate.sos_v{end+1} = varargin{6}; end else internal_sdpvarstate.sos_index(end+1) = varargin{2}; internal_sdpvarstate.sos_data{end+1} = varargin{3}; internal_sdpvarstate.sos_ParV{end+1} = varargin{4}; internal_sdpvarstate.sos_Q{end+1} = varargin{5}; internal_sdpvarstate.sos_v{end+1} = varargin{6}; end case 'sosid' if not(isempty(internal_sdpvarstate.sosid)) internal_sdpvarstate.sosid = internal_sdpvarstate.sosid+1; varargout{1}=internal_sdpvarstate.sosid; else internal_sdpvarstate.sosid=1; varargout{1}=internal_sdpvarstate.sosid; end case 'getsos' if isempty(internal_sdpvarstate.sos_index) varargout{1}=[]; varargout{2}=[]; varargout{3}=[]; varargout{4}=[]; else SOSid = varargin{2}; index_to_sos = find(SOSid==internal_sdpvarstate.sos_index); if isempty(index_to_sos) varargout{1}=[]; varargout{2}=[]; varargout{3}=[]; varargout{4}=[]; else varargout{1} = internal_sdpvarstate.sos_data{index_to_sos}; varargout{2} = internal_sdpvarstate.sos_ParV{index_to_sos}; varargout{3} = internal_sdpvarstate.sos_Q{index_to_sos}; varargout{4} = internal_sdpvarstate.sos_v{index_to_sos}; % FIX end end case 'getinternalsetstate' varargout{1} = internal_setstate; % Get internal state, called from saveobj case 'setinternalsetstate' internal_setstate = varargin{2}; % Set internal state, called from loadobj case 'getinternalsdpvarstate' varargout{1} = internal_sdpvarstate; % Get internal state, called from saveobj case 'setinternalsdpvarstate' internal_sdpvarstate = varargin{2}; % Set internal state, called from loadobj % Back-wards compability.... if ~isfield(internal_sdpvarstate,'extVariables') internal_sdpvarstate.extVariables = []; end if ~isfield(internal_sdpvarstate,'ExtendedMap') internal_sdpvarstate.ExtendedMap = []; end if ~isfield(internal_sdpvarstate,'ExtendedMapHashes') internal_sdpvarstate.ExtendedMapHashes = []; end if ~isfield(internal_sdpvarstate,'variabletype') internal_sdpvarstate.variabletype = ~(sum(internal_sdpvarstate.monomtable,2)==1 & sum(internal_sdpvarstate.monomtable~=0,2)==1); end if ~isfield(internal_sdpvarstate,'hash') internal_sdpvarstate.hash=[]; internal_sdpvarstate.hashedmonomtable=[]; end % Re-compute some stuff for safety internal_sdpvarstate.variabletype = internal_sdpvarstate.variabletype(:)'; internal_sdpvarstate.variabletype = spalloc(size(internal_sdpvarstate.monomtable,1),1,0)'; nonlinear = ~(sum(internal_sdpvarstate.monomtable,2)==1 & sum(internal_sdpvarstate.monomtable~=0,2)==1); if ~isempty(nonlinear) mt = internal_sdpvarstate.monomtable; internal_sdpvarstate.variabletype(nonlinear) = 3; quadratic = sum(internal_sdpvarstate.monomtable,2)==2; internal_sdpvarstate.variabletype(quadratic) = 2; bilinear = max(internal_sdpvarstate.monomtable,[],2)<=1; internal_sdpvarstate.variabletype(bilinear & quadratic) = 1; sigmonial = any(0>internal_sdpvarstate.monomtable,2) | any(internal_sdpvarstate.monomtable-fix(internal_sdpvarstate.monomtable),2); internal_sdpvarstate.variabletype(sigmonial) = 4; end [n,m] = size(internal_sdpvarstate.monomtable); if n>m internal_sdpvarstate.monomtable(n,n) = 0; end if size(internal_sdpvarstate.monomtable,2)>length(internal_sdpvarstate.hash) % Need new hash-keys internal_sdpvarstate.hash = [internal_sdpvarstate.hash ; 3*gen_rand_hash(size(internal_sdpvarstate.monomtable,1),need_new,1)]; end if size(internal_sdpvarstate.monomtable,1)>size(internal_sdpvarstate.hashedmonomtable,1) % Need to add some hash values need_new = size(internal_sdpvarstate.monomtable,1) - size(internal_sdpvarstate.hashedmonomtable,1); internal_sdpvarstate.hashedmonomtable = [internal_sdpvarstate.hashedmonomtable;internal_sdpvarstate.monomtable(end-need_new+1:end,:)*internal_sdpvarstate.hash]; end case {'version','ver'} varargout{1} = '20150919'; case 'setintvariables' internal_sdpvarstate.intVariables = varargin{2}; case 'intvariables' varargout{1} = internal_sdpvarstate.intVariables; case 'setbinvariables' internal_sdpvarstate.binVariables = varargin{2}; case 'binvariables' varargout{1} = internal_sdpvarstate.binVariables; case 'quantvariables' varargout{1} = [internal_sdpvarstate.binVariables internal_sdpvarstate.intVariables]; case 'setsemicontvariables' internal_sdpvarstate.semicontVariables = varargin{2}; case 'semicontvariables' varargout{1} = internal_sdpvarstate.semicontVariables; case 'setuncvariables' internal_sdpvarstate.uncVariables = varargin{2}; case 'uncvariables' varargout{1} = internal_sdpvarstate.uncVariables; case 'setparvariables' internal_sdpvarstate.parVariables = varargin{2}; case 'parvariables' varargout{1} = internal_sdpvarstate.parVariables; case 'nonCommutingVariables' if isempty(internal_sdpvarstate.nonCommutingTable) varargout{1} = []; else varargout{1} = find(isnan(internal_sdpvarstate.nonCommutingTable(:,1))); end case 'nonCommutingTable' if nargin == 2 internal_sdpvarstate.nonCommutingTable = varargin{2}; else varargout{1} = internal_sdpvarstate.nonCommutingTable; end case 'nonlinearvariables' error('Internal error (ref. nonlinear variables). Report!') varargout{1} = internal_sdpvarstate.nonlinearvariables; if nargout==2 varargout{2} = internal_sdpvarstate.nonlinearvariablesCompressed; end % case {'addinternal'} internal_sdpvarstate.internalconstraints{end+1} = varargin{1}; % case {'setnvars'} % sdpvar('setnvars',varargin{2}); case {'nvars'} varargout{1} = size(internal_sdpvarstate.monomtable,1); % varargout{1} = sdpvar('nvars'); case {'info'} [version,release] = yalmip('version'); currentversion = num2str(version(1)); i = 1; while i<length(version) i = i+1; currentversion = [currentversion '.' num2str(version(i))]; end info_str = ['- - - - YALMIP ' currentversion ' ' num2str(release) ' - - - -']; disp(' '); disp(char(repmat(double('*'),1,length(info_str)))); disp(info_str) disp(char(repmat(double('*'),1,length(info_str)))); disp(' '); disp(['Variable Size']) spaces = [' ']; ws = evalin('caller','whos'); n = 0; for i = 1:size(ws,1) if strcmp(ws(i).class,'sdpvar') n = n+1; wsname = ws(i).name; wssize = [num2str(ws(i).size(1)) 'x' num2str(ws(i).size(2))]; disp([wsname spaces(1:13-length(wsname)) wssize]); end end if n == 0 disp('No SDPVAR objects found'); end disp(' '); disp(['LMI']); n = 0; for i = 1:size(ws,1) if strcmp(ws(i).class,'lmi') n = n+1; wsname = ws(i).name; disp([wsname]); end end if n == 0 disp('No SET objects found'); end case 'getbounds' if ~isfield(internal_sdpvarstate,'boundlist') internal_sdpvarstate.boundlist = inf*repmat([-1 1],size(internal_sdpvarstate.monomtable,1),1); elseif isempty(internal_sdpvarstate.boundlist) internal_sdpvarstate.boundlist = inf*repmat([-1 1],size(internal_sdpvarstate.monomtable,1),1); end indicies = varargin{2}; if max(indicies)>size(internal_sdpvarstate.boundlist,1) need_new = max(indicies)-size(internal_sdpvarstate.boundlist,1); internal_sdpvarstate.boundlist = [internal_sdpvarstate.boundlist;inf*repmat([-1 1],size(internal_sdpvarstate.monomtable,1),1)]; end varargout{1} = internal_sdpvarstate.boundlist(indicies,:); varargout{2} = internal_sdpvarstate.boundlist(indicies,:); case 'setbounds' if ~isfield(internal_sdpvarstate,'boundlist') internal_sdpvarstate.boundlist = inf*repmat([-1 1],size(internal_sdpvarstate.monomtable,1),1); elseif isempty(internal_sdpvarstate.boundlist) internal_sdpvarstate.boundlist = inf*repmat([-1 1],size(internal_sdpvarstate.monomtable,1),1); end indicies = varargin{2}; if size(internal_sdpvarstate.boundlist,1)<min(indicies) internal_sdpvarstate.boundlist = [internal_sdpvarstate.boundlist;repmat([-inf inf],max(indicies)-size(internal_sdpvarstate.boundlist,1),1)]; end internal_sdpvarstate.boundlist(indicies,1) = -inf ; internal_sdpvarstate.boundlist(indicies,2) = inf; internal_sdpvarstate.boundlist(indicies(:),1) = varargin{3}; internal_sdpvarstate.boundlist(indicies(:),2) = varargin{4}; varargout{1}=0; case 'extendedmap' varargout{1} = internal_sdpvarstate.ExtendedMap; case 'logicextvariables' logicextvariables = []; for i = 1:length(internal_sdpvarstate.ExtendedMap) % if ismember(internal_sdpvarstate.ExtendedMap(i).fcn,{'or','and'}) if isequal(internal_sdpvarstate.ExtendedMap(i).fcn,'or') || isequal(internal_sdpvarstate.ExtendedMap(i).fcn,'and') logicextvariables = [logicextvariables internal_sdpvarstate.extVariables(i)]; end end varargout{1} = logicextvariables; case 'logicVariables' varargout{1} = internal_sdpvarstate.logicVariables; case 'addlogicvariable' % This code essentially the same as the addextended code. The only % difference is that we keep track of logic variables in order to % know when we have to collect bounds for the big-M relaxations. varargin{2} = strrep(varargin{2},'sdpvar/',''); % Is this operator variable already defined if ~isempty(internal_sdpvarstate.ExtendedMap) i = 1; while i<=length(internal_sdpvarstate.ExtendedMap) if isequal(varargin{2},internal_sdpvarstate.ExtendedMap(i).fcn) && isequal({varargin{3:end}}, {internal_sdpvarstate.ExtendedMap(i).arg{1:end-1}}) varargout{1} = internal_sdpvarstate.ExtendedMap(i).var; return end i = i + 1; end end % This is the standard operators. INPUTS -> 1 scalar output y = sdpvar(1,1); internal_sdpvarstate.ExtendedMap(end+1).fcn = varargin{2}; internal_sdpvarstate.ExtendedMap(end).arg = {varargin{3:end}}; internal_sdpvarstate.ExtendedMap(end).var = y; internal_sdpvarstate.extVariables = [internal_sdpvarstate.extVariables getvariables(y)]; internal_sdpvarstate.logicVariables = [internal_sdpvarstate.logicVariables getvariables(y)]; varargout{1} = y; return case 'setNonHermitianNonCommuting' internal_sdpvarstate.nonHermitiannonCommutingTable(varargin{2}) = 1; case 'solver' if (nargin==2) if isa(varargin{2},'char') solver = varargin{2}; prefered_solver = solver; else error('Second argument should be a string with solver name'); end else if isempty(prefered_solver) varargout{1}=''; else varargout{1} = prefered_solver; end end otherwise if isa(varargin{1},'char') disp(['The command ''' varargin{1} ''' is not valid in YALMIP.m']); else disp('The first argument should be a string'); end end function h = create_vecisdouble(x) B = getbase(x); h = ~any(B(:,2:end),2); function h = create_trivial_hash(x) try h = sum(getvariables(x)) + sum(sum(getbase(x))); catch h = 0; end function h = create_trivial_vechash(x) try B = getbase(x); h = sum(B')'+(B | B)*[0;getvariables(x)']; catch h = 0; end function X = firstSDPVAR(List) X = []; for i = 1:length(List) if isa(List{i},'sdpvar') X = List{i}; break end end
github
EnricoGiordano1992/LMI-Matlab-master
gams2yalmip.m
.m
LMI-Matlab-master/yalmip/extras/gams2yalmip.m
13,976
utf_8
4e1639693ca899bd14a7436ffb74839c
function varargout = gams2yalmip(fileName,filenameOut); % GAMS2YALMIP Converts GAMS model to YALMIP % % [F,h] = GAMS2YALMIP(gamsfile,yalmipfile) converts the GAMS model in % the file 'gamsfile' to a YALMIP mpodel % % Input % GAMSFILE : Char with filename for GAMS model % YALMIPFILE : Char with filename for YALMIP model (optional) % % Output % F : LMI object with constraints (optional) % h : SDPVAR object with objective (optional) % Author Based on original implementation by M. Kojima (readGMS.m) writetofile = (nargout == 0) | (nargin>1); fileName = [fileName '.gms']; fileName = strrep(fileName,'.gms.gms','.gms'); % Reading the GAMs file "fileName" fileIDX = fopen(fileName,'r'); if fileIDX==-1 error('File not found') end if writetofile if nargin == 2 filenameOut = [filenameOut '.m']; filenameOut = strrep(filenameOut,'.m.m','.m'); else filenameOut = strrep(fileName,'.gms','.m'); end fileOUT = fopen(filenameOut,'wb'); if fileOUT==-1 error('Could not create output-file') end end statusSW = 1; noOfEquations = 0; pp = 1; posVarNames = []; negVarNames = []; lastline = ''; while statusSW == 1 [statusSW,oneLine] = getOneLine(fileIDX); if statusSW == 1 lastline = oneLine; [keyword,oneLine] = strtok(oneLine); if strcmp('Variables',keyword) varNames = []; p = 0; [varNames,p,moreSW] = getListOfNames(oneLine,varNames,p); while moreSW == 1 [statusSW,oneLine] = getOneLine(fileIDX); [varNames,p,moreSW] = getListOfNames(oneLine,varNames,p); end noOfVariables = size(varNames,2); lbd = -inf* ones(1,noOfVariables); ubd = inf* ones(1,noOfVariables); fixed = lbd; elseif strcmp('Positive',keyword) [keyword,oneLine] = strtok(oneLine); if strcmp('Variables',keyword) p = 0; [posVarNames,p,moreSW] = getListOfNames(oneLine,posVarNames,p); while moreSW == 1 [statusSW,oneLine] = getOneLine(fileIDX); [posVarNames,p,moreSW] = getListOfNames(oneLine,posVarNames,p); end end elseif strcmp('Negative',keyword) [keyword,oneLine] = strtok(oneLine); if strcmp('Variables',keyword) p = 0; [negVarNames,p,moreSW] = getListOfNames(oneLine,negVarNames,p); while moreSW == 1 [statusSW,oneLine] = getOneLine(fileIDX); [negVarNames,p,moreSW] = getListOfNames(oneLine,negVarNames,p); end end elseif strcmp('Equations',keyword) equationNames = []; p = 0; [equationNames,p,moreSW] = getListOfNames(oneLine,equationNames,p); while moreSW == 1 [statusSW,oneLine] = getOneLine(fileIDX); [equationNames,p,moreSW] = getListOfNames(oneLine,equationNames,p); end noOfEquations = size(equationNames,2); listOfEquations = []; elseif pp <= noOfEquations if strcmp(strcat(equationNames{pp},'..'),keyword) oneLinetmp = oneLine; % to remove blank around * while ~isempty(strfind(oneLinetmp,' *')) | ~isempty(strfind(oneLinetmp,'* ')) if ~isempty(strfind(oneLinetmp, ' *')) loca = strfind(oneLinetmp,' *'); loca = loca -1; oneLinetmp=strcat(oneLinetmp(1:loca),oneLinetmp(loca+2:size(oneLinetmp,2))); elseif ~isempty(strfind(oneLinetmp, '* ')) loca = strfind(oneLinetmp,'* '); oneLinetmp=strcat(oneLinetmp(1:loca),oneLinetmp(loca+2:size(oneLinetmp,2))); end end oneLine = oneLinetmp; listOfEquations{pp} = oneLine; pp = pp+1; end elseif (0 < noOfEquations) & (noOfEquations < pp) goon = 1; while goon [oneVarName,bound] = strtok(keyword,'. '); for i=1:noOfVariables if strcmp(oneVarName,varNames{i}) asciiVal = strtok(oneLine,' =;'); if strcmp(bound,'.lo') %| strcmp(bound,'.l') lbd(1,i) = str2num(asciiVal); elseif strcmp(bound,'.up') %| strcmp(bound,'.u') ubd(1,i) = str2num(asciiVal); elseif strcmp(bound,'.fx') fixed(1,i) = str2num(asciiVal); end end end if strfind(oneLine,';') oneLine = oneLine(min(strfind(oneLine,';'))+1:end); [keyword,oneLine] = strtok(oneLine); goon = ~isequal('',keyword); else goon = 0; end end end end end % Figure out objective from last line minimize = 1; dirstart = strfind(lastline,'minimizing '); obj = '[]'; if ~isempty(dirstart) [aux,obj] = strtok(lastline(dirstart:end)); else dirstart = strfind(lastline,'maximizing '); if ~isempty(dirstart) [aux,obj] = strtok(lastline(dirstart:end)); minimize = -1; else minimize = 0; end end obj = strrep(strrep(obj,';',''),' ',''); objective_in_equations = 0; for i = 1:length(listOfEquations) % If the objective variable is found in several equations, we define it % as a variable, and add all constraints, instead of assigninging it % from the typical objvar + f(x) =E= 0 expression if ~isempty(strfind(listOfEquations{i},obj)) objective_in_equations = objective_in_equations +1; end end if objective_in_equations>1 treat_obj_as_var = 1; else treat_obj_as_var = 0; end if writetofile fprintf(fileOUT,['%% Model generated from ' fileName '\n']); [d] = yalmip('ver'); fprintf(fileOUT,['%% Created ' datestr(now) ' using YALMIP R' d '\n\n']); fprintf(fileOUT,'%% Setup a clean YALMIP environment \n'); fprintf(fileOUT,'yalmip(''clear'') \n\n'); %fprintf(fileOUT,'%% Define non-standard operators \n'); %fprintf(fileOUT,'sqr = @(x) x.*x;\n\n'); % Define all variables, except objvar fprintf(fileOUT,'%% Define all variables \n'); end for i = 1:length(varNames) eval([varNames{i} ' = sdpvar(1);']); if writetofile & (~isequal(varNames{i},obj) | treat_obj_as_var) fprintf(fileOUT,[varNames{i} ' = sdpvar(1);\n']); end end if writetofile fprintf(fileOUT,'\n'); end if minimize if ~treat_obj_as_var if writetofile & objective_in_equations<=1 fprintf(fileOUT,'%% Define objective function \n'); end % find objvar + ... == 0 for i = 1:length(listOfEquations) if strfind(listOfEquations{i},obj) %objeq = strrep(listOfEquations{i},'=E=','=='); objeqL = listOfEquations{i}(1:strfind( listOfEquations{i},'=E=')-1); objeqR = listOfEquations{i}(strfind( listOfEquations{i},'=E=')+3:end); objeqR = strrep(objeqR,';',''); % put objective on left side if strfind(objeqR,obj) temp = objeqL; objeqL = objeqR; objeqR = objeqL; end k = strfind(objeqL,obj); prevplus = strfind(objeqL(1:k-1),'+'); prevminus = strfind(objeqL(1:k-1),'-'); if isempty(prevplus) & isempty(prevminus) thesign = 1; else prevsign = objeqL(max([prevplus prevminus])); if isequal(prevsign,'+') thesign = 1; else thesign = -1; end end thesign = thesign*minimize; obj = [strrep(objeqL,obj,'0') '-( ' objeqR ')']; obj = strrep(obj,'**','^'); obj = strrep(obj,'sqrt(','sqrtm('); obj = strrep(obj,'errorf(','erf('); % obj = strrep(strrep(strrep(obj,'( 0)','0'),'0 -0','0'),'+ 0 ',''); % obj = strrep(strrep(strrep(obj,'( 0)','0'),'0 -0','0'),'+ 0)',''); obj = strrep(obj,' + ','+'); obj = strrep(obj,'+0)',')'); obj = strrep(obj,'POWER','power'); obj(obj==' ') = ''; if writetofile if thesign == -1 fprintf(fileOUT,['objective = ' obj ';\n']); else obj = ['-(' obj ')']; obj = strrep(obj,'+0)',')'); obj = strrep(obj,'- ','-'); fprintf(fileOUT,['objective = ' obj ';\n']); end end objsdp = (-thesign)*eval(obj); listOfEquations = {listOfEquations{1:i-1},listOfEquations{i+1:end}}; break end end if writetofile fprintf(fileOUT,'\n'); end end end % Convert to YALMIP syntax for i = 1:length(listOfEquations) listOfEquations{i} = strrep(listOfEquations{i},'=E=','=='); listOfEquations{i} = strrep(listOfEquations{i},'=L=','<='); listOfEquations{i} = strrep(listOfEquations{i},'=G=','>='); end % Add variable bounds for i = 1:length(varNames) if any(strcmp(varNames{i},posVarNames)) lbd(i) = 0; end if any(strcmp(varNames{i},negVarNames)) ubd(i) = 0; end if ~isequal(varNames{i},obj) | treat_obj_as_var string = ''; if ~isinf(fixed(i)) string = [string num2str(fixed(i)) ' == ' varNames{i}]; elseif ~isinf(lbd(i)) string = [string num2str(lbd(i)) ' <= ' varNames{i}]; if ~isinf(ubd(i)) string = [string ' <= ' num2str(ubd(i))]; end elseif ~isinf(ubd(i)) string = [string varNames{i} ' <= ' num2str(ubd(i)) ]; end if ~isequal(string,'') listOfEquations{end+1} = string; end end end if length(listOfEquations)>0 if writetofile fprintf(fileOUT,'%% Define constraints \n'); end F = ([]); if writetofile fprintf(fileOUT,['F = ([]);' '\n']); end for i = 1:length(listOfEquations) listOfEquations{i} = strrep(listOfEquations{i},';',''); % string = ['F = F + (' listOfEquations{i} ',' '''' listOfEquations{i} '''' ');']; string = ['F = [F, ' strtrim(listOfEquations{i}) '];']; string = strrep(string,'**','^'); string = strrep(string,'sqrt(','sqrtm('); string = strrep(string,'errorf(','erf('); string = strrep(string,'+',' + '); string = strrep(string,' ',''); string = strrep(string,' ',''); string = strrep(string,' - ','-'); string = strrep(string,'POWER','power'); string = strtrim(string); string(string==' ') = ''; eval(string); if writetofile fprintf(fileOUT,[string '\n']); end end if writetofile fprintf(fileOUT,'\n'); end else F = ([]); if writetofile fprintf(fileOUT,'%% Define constraints \n'); end if writetofile fprintf(fileOUT,['F = ([]);' '\n']); end end if writetofile fprintf(fileOUT,'%% Solve problem\n'); if treat_obj_as_var fprintf(fileOUT,'sol = solvesdp(F,objvar,sdpsettings(''solver'',''bmibnb'',''allownonconvex'',1));\n'); else fprintf(fileOUT,'sol = solvesdp(F,objective,sdpsettings(''solver'',''bmibnb'',''allownonconvex'',1));\n'); end fprintf(fileOUT,'mbg_assertfalse(sol.problem)\n'); fprintf(fileOUT,'mbg_asserttolequal(double(objective), , 1e-2);'); fclose(fileOUT); end if nargout > 0 varargout{1} = F; if nargout > 1 varargout{2} = objsdp; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [statusSW,oneLine] = getOneLine(dataFID); flowCTRL = 0; oneLine = ''; while (feof(dataFID)==0) & (flowCTRL== 0) inputLine = fgetl(dataFID); % inputLine len = length(inputLine); if (len > 0) & (inputLine(1)~='*') p=1; while (p<=len) & (inputLine(p)==' ') p = p+1; end if (p<=len) % & (inputLine(p) ~= '*') % oneLine % inputLine % Kojima 11/06/04; to meet MATLAB 5.2 if isempty(oneLine) oneLine = inputLine(p:len); else oneLine = strcat(oneLine,inputLine(p:len)); end % Kojima 11/06/04; to meet MATLAB 5.2 % temp = strfind(inputLine,';'); temp = findstr(inputLine,';'); if isempty(temp) == 0 flowCTRL=1; end end end end if flowCTRL==0 oneLine = ''; statusSW = -1; else statusSW = 1; end return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [varNames,p,moreSW] = getListOfNames(oneLine,varNames,p); while (length(oneLine) > 0) [oneName,remLine] = strtok(oneLine,' ,'); if length(oneName) > 0 p = p+1; varNames{p} = oneName; end oneLine = remLine; end lenLastVar = length(varNames{p}); if varNames{p}(lenLastVar) == ';' moreSW = 0; if lenLastVar == 1 p = p-1; else varNames{p} = varNames{p}(1:lenLastVar-1); end else moreSW = 1; end return
github
EnricoGiordano1992/LMI-Matlab-master
sdpsettings.m
.m
LMI-Matlab-master/yalmip/extras/sdpsettings.m
30,773
utf_8
f22c426933af16967501a65e37de3fd2
function options = sdpsettings(varargin) %SDPSETTINGS Create/alter solver options structure. % % OPTIONS = SDPSETTINGS with no input arguments returns % setting structure with default values % % OPTIONS = SDPSETTINGS('NAME1',VALUE1,'NAME2',VALUE2,...) creates a % solution options structure OPTIONS in which the named properties have % the specified values. Any unspecified properties have default values. % It is sufficient to type only the leading characters that uniquely % identify the property. Case is ignored for property names. % % OPTIONS = SDPSETTINGS(OLDOPTS,'NAME1',VALUE1,...) alters an existing options % structure OLDOPTS. % % The OPTIONS structure is a simple struct and can thus easily be % manipulated after its creation % OPTIONS = sdpsettings;OPTIONS.verbose = 0; % % % SDPSETTINGS PROPERTIES % % GENERAL % % solver - Specify solver [''|sdpt3|sedumi|sdpa|pensdp|penbmi|csdp|dsdp|maxdet|lmilab|cdd|cplex|xpress|mosek|nag|quadprog|linprog|bnb|bmibnb|kypd|mpt|none ('')] % verbose - Display-level [0|1|2|...(0)] (0-silent, 1-normal, >1-loud) % usex0 - Use the current values obtained from double as initial iterate if solver supports that [0|1 (0)] % % showprogress - Show progress of YALMIP (suitable for large problems) [0|1 (0)] % cachesolvers - Check for available solvers only first time solvesdp is called [0|1 (0)] % warning - Shows a warning if a problems occurs when solving a problem (infeasibility, numerical problem etc.) [0|1 (1)] % beeponproblem - Beeps when certain warning/error occurs [ integers -2|-1|1|2|3|4|5|6|7|8|9|10|11] % saveduals - Dual variables are saved in YALMIP [0|1 (1)] % saveyalmipmodel - Keep all data sent to solver interface [0|1 (0)] % savesolverinput - Keep all data sent to solver [0|1 (0)] % savesolveroutput - Keep all data returned from solver [0|1 (0)] % removeequalities - Let YALMIP remove equality constraints [-1|0|1 (0)] (-1:with double inequalities, 0:don't, 1:by QR decomposition, 2:basis from constraints) % convertconvexquad - Convert convex quadratic constraints to second order cones [0|1 (1)] % radius - Add radius constraint on all pimal variables ||x||<radius [double >=0 (inf)] % shift - Add small perturbation to (try to) enforce strict feasibility [double >=0 (0)] % relax - Disregard integrality constraint and/or relax nonlinear terms [0 | 1 (both) 2 (relax integrality) 3 (relax nonlinear terms) (0)] % allowmilp - Allow introduction of binary variables to model nonlinear operators [0 | 1 (0)] % expand - Expand nonlinear operators [0|1 (1)]. Should always be true except in rare debugging cases. % plot - Options when plotting sets % % SUM-OF-SQUARES % % sos, see help solvesos % % BRANCH AND BOUND for mixed integer programs % % options.bnb, see help bnb % % BRANCH AND BOUND for polynomial programs % % options.bmibnb, see help bmibnb % % EXTERNAL SOLVERS % % See solver manuals. % Print out possible values of properties. if (nargin == 0) && (nargout == 0) help sdpsettings return; end if (nargin>0) && isstruct(varargin{1}) options = varargin{1}; Names = recursivefieldnames(options); paramstart = 2; else Names = {}; paramstart = 1; options = setup_core_options; Names = appendOptionNames(Names,options); % Internal solver frameworks options.bilevel = setup_bilevel_options; Names = appendOptionNames(Names,options.bilevel,'bilevel'); options.bmibnb = setup_bmibnb_options; Names = appendOptionNames(Names,options.bmibnb,'bmibnb'); options.bnb = setup_bnb_options; Names = appendOptionNames(Names,options.bnb,'bnb'); options.cutsdp = setup_cutsdp_options; Names = appendOptionNames(Names,options.cutsdp,'cutsdp'); options.kkt = setup_kkt_options; Names = appendOptionNames(Names,options.kkt,'kkt'); options.moment = setup_moment_options; Names = appendOptionNames(Names,options.moment,'moment'); options.mp = setup_mp_options; Names = appendOptionNames(Names,options.mp,'mp'); options.mpcvx = setup_mpcvx_options; Names = appendOptionNames(Names,options.mpcvx,'mpcvx'); options.plot = setup_plot_options; Names = appendOptionNames(Names,options.plot,'plot'); options.robust = setup_robust_options; Names = appendOptionNames(Names,options.robust,'robust'); options.sos = setup_sos_options; Names = appendOptionNames(Names,options.sos,'sos'); % External solvers options.baron = setup_baron_options; Names = appendOptionNames(Names,options.baron,'baron'); options.bintprog = setup_bintprog_options; Names = appendOptionNames(Names,options.bintprog,'bintprog'); options.bonmin = setup_bonmin_options; Names = appendOptionNames(Names,options.bonmin,'bonmin'); options.cdd = setup_cdd_options; Names = appendOptionNames(Names,options.cdd,'cdd'); options.cbc = setup_cbc_options; Names = appendOptionNames(Names,options.cbc,'cbc'); options.clp = setup_clp_options; Names = appendOptionNames(Names,options.clp,'clp'); options.cplex = setup_cplex_options; Names = appendOptionNames(Names,options.cplex,'cplex'); options.csdp = setup_csdp_options; Names = appendOptionNames(Names,options.csdp,'csdp'); options.dsdp = setup_dsdp_options; Names = appendOptionNames(Names,options.dsdp,'dsdp'); options.ecos = setup_ecos_options; Names = appendOptionNames(Names,options.ecos,'ecos'); options.filtersd = setup_filtersd_options; Names = appendOptionNames(Names,options.filtersd,'filtersd'); options.fmincon = setup_fmincon_options; Names = appendOptionNames(Names,options.fmincon,'fmincon'); options.fminsearch = setup_fminsearch_options; Names = appendOptionNames(Names,options.fminsearch,'fminsearch'); options.frlib = setup_frlib_options; Names = appendOptionNames(Names,options.frlib,'frlib'); options.glpk = setup_glpk_options; Names = appendOptionNames(Names,options.glpk,'glpk'); options.gurobi = setup_gurobi_options; Names = appendOptionNames(Names,options.gurobi,'gurobi'); options.ipopt = setup_ipopt_options; Names = appendOptionNames(Names,options.ipopt,'ipopt'); options.intlinprog = setup_intlinprog_options; Names = appendOptionNames(Names,options.intlinprog,'intlinprog'); options.knitro = setup_knitro_options; Names = appendOptionNames(Names,options.knitro,'knitro'); options.linprog = setup_linprog_options; Names = appendOptionNames(Names,options.linprog,'linprog'); options.lmilab = setup_lmilab_options; Names = appendOptionNames(Names,options.lmilab,'lmilab'); options.lmirank = setup_lmirank_options; Names = appendOptionNames(Names,options.lmirank,'lmirank'); options.logdetppa = setup_logdetppa_options; Names = appendOptionNames(Names,options.logdetppa,'logdetppa'); options.lpsolve = setup_lpsolve_options; Names = appendOptionNames(Names,options.lpsolve,'lpsolve'); options.lsqnonneg = setup_lsqnonneg_options; Names = appendOptionNames(Names,options.lsqnonneg,'lsqnonneg'); options.lsqlin = setup_lsqlin_options; Names = appendOptionNames(Names,options.lsqlin,'lsqlin'); options.kypd = setup_kypd_options; Names = appendOptionNames(Names,options.kypd,'kypd'); options.nag = setup_nag_options; Names = appendOptionNames(Names,options.nag,'nag'); options.mosek = setup_mosek_options; Names = appendOptionNames(Names,options.mosek,'mosek'); options.nomad = setup_nomad_options; Names = appendOptionNames(Names,options.nomad,'nomad'); options.ooqp = setup_ooqp_options; Names = appendOptionNames(Names,options.ooqp,'ooqp'); options.penbmi = setup_penbmi_options; Names = appendOptionNames(Names,options.penbmi,'penbmi'); options.penlab = setup_penlab_options; Names = appendOptionNames(Names,options.penlab,'penlab'); options.pensdp = setup_pensdp_options; Names = appendOptionNames(Names,options.pensdp,'pensdp'); options.qpoases = setup_qpoases_options; Names = appendOptionNames(Names,options.qpoases,'qpoases'); options.qsopt = setup_qsopt_options; Names = appendOptionNames(Names,options.qsopt,'qsopt'); options.quadprog = setup_quadprog_options; Names = appendOptionNames(Names,options.quadprog,'quadprog'); options.quadprogbb = setup_quadprogbb_options; Names = appendOptionNames(Names,options.quadprogbb,'quadprogbb'); options.scip = setup_scip_options; Names = appendOptionNames(Names,options.scip,'scip'); options.scs = setup_scs_options; Names = appendOptionNames(Names,options.scs,'scs'); options.sdpa = setup_sdpa_options; Names = appendOptionNames(Names,options.sdpa,'sdpa'); options.sdplr = setup_sdplr_options; Names = appendOptionNames(Names,options.sdplr,'sdplr'); options.sdpt3 = setup_sdpt3_options; Names = appendOptionNames(Names,options.sdpt3,'sdpt3'); options.sdpnal = setup_sdpnal_options; Names = appendOptionNames(Names,options.sdpnal,'sdpnal'); options.sedumi = setup_sedumi_options; Names = appendOptionNames(Names,options.sedumi,'sedumi'); options.sparsepop = setup_sparsepop_options; Names = appendOptionNames(Names,options.sparsepop,'sparsepop'); options.sparsecolo = setup_sparsecolo_options; Names = appendOptionNames(Names,options.sparsecolo,'sparsecolo'); options.vsdp = setup_vsdp_options; Names = appendOptionNames(Names,options.vsdp,'vsdp'); options.xpress = setup_xpress_options; Names = appendOptionNames(Names,options.xpress,'xpress'); end names = lower(Names); i = paramstart; % A finite state machine to parse name-value pairs. if rem(nargin-i+1,2) ~= 0 error('Arguments must occur in name-value pairs.'); end expectval = 0; % start expecting a name, not a value while i <= nargin arg = varargin{i}; if ~expectval if ~ischar(arg) error(sprintf('Expected argument %d to be a string property name.', i)); end lowArg = lower(arg); j = strmatch(lowArg,names); if isempty(j) % if no matches error(sprintf('Unrecognized property name ''%s''.', arg)); elseif length(j) > 1 % if more than one match % Check for any exact matches (in case any names are subsets of others) k = strmatch(lowArg,names,'exact'); if (length(k) == 1) j = k; else msg = sprintf('Ambiguous property name ''%s'' ', arg); msg = [msg '(' deblank(Names{j(1)})]; for k = j(2:length(j))' msg = [msg ', ' deblank(Names{k})]; end msg = sprintf('%s).', msg); error(msg); end end expectval = 1; % we expect a value next else eval(['options.' Names{j} '= arg;']); expectval = 0; end i = i + 1; end if expectval error(sprintf('Expected value for property ''%s''.', arg)); end function [solverops] = trytoset(solver) try try evalc(['solverops = ' solver '(''defaults'');']); catch solverops = optimset(solver); end catch solverops = optimset; end % if isequal(solver, 'quadprog') && isfield(solverops, 'Algorithm') && ~isempty(solverops.Algorithm) % solverops.Algorithm = 'active-set'; % end % % if any(strcmp(solvernames,'LargeScale')) % if isequal(solver, 'quadprog') % solverops.LargeScale = 'off'; % end % else % solvernames{end+1} = 'LargeScale'; % solverops.LargeScale = 'off'; % end function cNames = recursivefieldnames(options,append); if nargin == 1 append = ''; end cNames = fieldnames(options); for i = 1:length(cNames) eval(['temporaryOptions = options.' cNames{i} ';']); if isa(temporaryOptions,'struct') cNames = [cNames;recursivefieldnames(temporaryOptions,[cNames{i}])]; end end for i = 1:length(cNames) if nargin==1 else cNames{i} = [append '.' cNames{i}]; end end function Names = appendOptionNames(Names,options,solver) if ~isempty(options) if ~isa(options,'struct') % Hide warning evalc(['options = struct(options);']); end cNames = recursivefieldnames(options); if nargin == 3 prefix = [solver '.']; else prefix = ''; end for i = 1:length(cNames) Names{end+1} = [prefix cNames{i}]; end end function options = setup_core_options options.solver = ''; options.verbose = 1; options.debug = 0; options.usex0 = 0; options.warning = 1; options.cachesolvers = 0; options.showprogress = 0; options.saveduals = 1; options.removeequalities = 0; options.savesolveroutput = 0; options.savesolverinput = 0; options.saveyalmipmodel = 0; options.convertconvexquad = 1; options.assertgpnonnegativity = 1; options.thisisnotagp = 0; options.radius = inf; options.relax = 0; options.dualize = 0; options.usex0 = 0; options.savedebug = 0; options.debug = 0; options.expand = 1; options.allowmilp = 1; options.allownonconvex = 1; options.shift = 0; options.dimacs = 0; options.beeponproblem = [-5 -4 -3 -2 -1]; function bilevel = setup_bilevel_options bilevel.algorithm = 'internal'; bilevel.maxiter = 1e4; bilevel.outersolver = ''; bilevel.innersolver = ''; bilevel.rootcuts = 0; bilevel.solvefrp = 0; bilevel.relgaptol = 1e-3; bilevel.feastol = 1e-6; bilevel.compslacktol = 1e-8; function bmibnb = setup_bmibnb_options bmibnb.branchmethod = 'best'; bmibnb.branchrule = 'omega'; bmibnb.cut.multipliedequality = 0; bmibnb.cut.convexity = 0; bmibnb.cut.evalvariable = 1; bmibnb.cut.bilinear = 1; bmibnb.cut.monomial = 1; bmibnb.cut.complementarity = 1; bmibnb.sdpcuts = 0; bmibnb.lpreduce = 1; bmibnb.lowrank = 0; bmibnb.diagonalize = 1; bmibnb.lowersolver = ''; bmibnb.uppersolver = ''; bmibnb.lpsolver = ''; bmibnb.target = -inf; bmibnb.lowertarget = inf; bmibnb.vartol = 1e-3; bmibnb.relgaptol = 1e-2; bmibnb.absgaptol = 1e-2; bmibnb.pdtol = -1e-6; bmibnb.eqtol = 1e-6; bmibnb.maxiter = 100; bmibnb.maxtime = 3600; bmibnb.roottight = 1; bmibnb.numglobal = inf; bmibnb.localstart = 'relaxed'; bmibnb.presolvescheme = []; bmibnb.strengthscheme = [1 2 1 3 1 4 1 6 1 5 1 4 1 6 1 4 1]; function bnb = setup_bnb_options bnb.branchrule = 'max'; bnb.method = 'depthbest'; bnb.verbose = 1; bnb.solver = ''; bnb.uppersolver = 'rounder'; bnb.presolve = 0; bnb.inttol = 1e-4; bnb.feastol = 1e-7; bnb.gaptol = 1e-4; bnb.weight = []; bnb.nodetight = 0; bnb.nodefix = 0; bnb.ineq2eq = 0; bnb.plotbounds = 0; bnb.rounding = {'ceil','floor','round','shifted round','fix'}; bnb.round = 1; bnb.maxiter = 300; bnb.prunetol = 1e-4; bnb.multiple = 0; bnb.profile = 0; function cutsdp = setup_cutsdp_options cutsdp.solver = ''; cutsdp.maxiter = 100; cutsdp.cutlimit = inf; cutsdp.feastol = -1e-8; cutsdp.recoverdual = 0; cutsdp.variablebound = inf; cutsdp.nodefix = 0; cutsdp.nodetight = 0; cutsdp.activationcut = 1; cutsdp.maxprojections = 3; cutsdp.projectionthreshold = .1; cutsdp.switchtosparse = 1000; cutsdp.resolver = []; function frlib = setup_frlib_options frlib.approximation = 'd'; frlib.reduce = 'auto'; frlib.solver = ''; frlib.solverPreProcess = ''; frlib.useQR = 0; frlib.removeDualEq = 1; function kkt = setup_kkt_options kkt.dualbounds = 1; kkt.dualpresolve.passes = 1; kkt.dualpresolve.lplift = 1; kkt.minnormdual = 0; kkt.licqcut = 0; function moment = setup_moment_options moment.order = []; moment.blockdiag = 0; moment.solver = ''; moment.refine = 0; moment.extractrank = 0; moment.rceftol = -1; function mpcvx = setup_mpcvx_options mpcvx.solver = ''; mpcvx.absgaptol = 0.25; mpcvx.relgaptol = 0.01; mpcvx.plot = 0; mpcvx.rays = 'n*20'; function mp = setup_mp_options mp.algorithm = 1; mp.simplify = 0; mp.presolve = 0; mp.unbounded = 0; function plot = setup_plot_options plot.edgecolor = 'k'; plot.wirestyle = '-'; plot.wirecolor = 'k'; plot.linewidth = 0.5; plot.shade = 1; plot.waitbar = 1; function robust = setup_robust_options robust.lplp = 'enumeration'; robust.coniconic.tau_degree = 2; robust.coniconic.gamma_degree = 0; robust.coniconic.Z_degree = 2; robust.auxreduce = 'none'; robust.reducedual = 0; robust.reducesemiexplicit = 0; robust.polya = nan; function sos = setup_sos_options sos.model = 0; sos.newton = 1; sos.congruence = 2; sos.scale = 1; sos.numblkdg = 0; sos.postprocess = 0; sos.csp = 0; sos.extlp = 1; sos.impsparse = 0; sos.sparsetol = 1e-5; sos.inconsistent = 0; sos.clean = eps; sos.savedecomposition = 1; sos.traceobj = 0; sos.reuse = 1; function bpmpd = setup_bpmpd_options try bpmpd.opts = bpopt; catch bpmpd.opts =[]; end function cbc = setup_cbc_options try cbc = cbcset; catch cbc.tolint = 1e-4; cbc.maxiter = 10000; cbc.maxnodes = 100000; end function cdd = setup_cdd_options cdd.method = 'criss-cross'; function clp = setup_clp_options try clp = clpset; catch clp.solver = 1; clp.maxnumiterations = 99999999; clp.maxnumseconds = 3600; clp.primaltolerance = 1e-7; clp.dualtolerance = 1e-7; clp.primalpivot = 1; clp.dualpivot = 1; end function cplex = setup_cplex_options try cplex = cplexoptimset('cplex'); cplex.output.clonelog = 0; catch cplex.presol = 1; cplex.niter = 1; cplex.epgap = 1e-4; cplex.epagap = 1e-6; cplex.relobjdif = 0.0; cplex.objdif = 0.0; cplex.tilim = 1e75; cplex.logfile = 0; cplex.param.double = []; cplex.param.int = []; end function ecos = setup_ecos_options try ecos = ecosoptimset; ecos.mi_maxiter = 1000; ecos.mi_abs_eps = 1e-6; ecos.mi_rel_eps = 1e-3; catch ecos = []; end function filtersd = setup_filtersd_options filtersd.maxiter = 1500; filtersd.maxtime = 1000; filtersd.maxfeval = 10000; function glpk = setup_glpk_options glpk.lpsolver = 1; glpk.scale = 1; glpk.dual = 0; glpk.price = 1; glpk.relax = 0.07; glpk.tolbnd = 1e-7; glpk.toldj = 1e-7; glpk.tolpiv = 1e-9; glpk.round = 0; glpk.objll = -1e12; glpk.objul = 1e12; glpk.itlim = 1e4; glpk.tmlim = -1; glpk.branch = 2; glpk.btrack = 2; glpk.tolint = 1e-6; glpk.tolobj = 1e-7; glpk.presol = 1; glpk.save = 0; function gurobi = setup_gurobi_options gurobi.BarIterLimit = inf; gurobi.Cutoff = inf; gurobi.IterationLimit = inf; gurobi.NodeLimit = inf; gurobi.SolutionLimit = inf; gurobi.TimeLimit = inf; gurobi.BarConvTol = 1e-8; gurobi.BarQCPConvTol = 1e-6; gurobi.FeasibilityTol = 1e-6; gurobi.IntFeasTol = 1e-6; gurobi.MarkowitzTol = 0.0078125; gurobi.MIPGap = 1e-4; gurobi.MIPGapAbs = 1e-10; gurobi.OptimalityTol = 1e-6; gurobi.PSDTol = 1e-6; gurobi.InfUnbdInfo = 0; gurobi.NormAdjust = -1; gurobi.ObjScale = 0; gurobi.PerturbValue = 0.0002; gurobi.Quad = -1; gurobi.ScaleFlag = 1; gurobi.Sifting = -1; gurobi.SiftMethod = -1; gurobi.SimplexPricing = -1; gurobi.BarCorrectors = -1; gurobi.BarHomogeneous = -1; gurobi.BarOrder = -1; gurobi.Crossover = -1; gurobi.CrossoverBasis = 0; gurobi.QCPDual = 0; gurobi.BranchDir = 0; gurobi.ConcurrentMIP = 1; gurobi.Heuristics = 0.05; gurobi.ImproveStartGap = 0; gurobi.ImproveStartNodes = inf; gurobi.ImproveStartTime = inf; gurobi.MinRelNodes = 0; gurobi.MIPFocus = 0; gurobi.MIQCPMethod = -1; gurobi.NodefileDir = '.'; gurobi.NodefileStart = inf; gurobi.NodeMethod = 1; gurobi.PumpPasses = 0; gurobi.RINS = -1; gurobi.SolutionNumber = 0; gurobi.SubMIPNodes = 500; gurobi.Symmetry = -1; gurobi.VarBranch = -1; gurobi.ZeroObjNodes = 0; gurobi.TuneOutput = 2; gurobi.TuneResults = -1; gurobi.TuneTimeLimit = -1; gurobi.TuneTrials = 2; gurobi.Cuts = -1; gurobi.CliqueCuts = -1; gurobi.CoverCuts = -1; gurobi.FlowCoverCuts = -1; gurobi.FlowPathCuts = -1; gurobi.GUBCoverCuts = -1; gurobi.ImpliedCuts = -1; gurobi.MIPSepCuts = -1; gurobi.MIRCuts = -1; gurobi.ModKCuts = -1; gurobi.NetworkCuts = -1; gurobi.SubMIPCuts = -1; gurobi.ZeroHalfCuts = -1; gurobi.CutAggPasses = -1; gurobi.CutPasses = -1; gurobi.GomoryPasses = -1; gurobi.AggFill = 10; gurobi.Aggregate = 1; gurobi.DisplayInterval = 5; gurobi.DualReductions = 1; gurobi.FeasRelaxBigM = 1e6; gurobi.IISMethod = -1; gurobi.LogFile = ''; gurobi.Method = -1; gurobi.NumericFocus = 0; gurobi.PreCrush = 0; gurobi.PreDepRow = -1; gurobi.PreDual = -1; gurobi.PreMIQPMethod = -1; gurobi.PreQLinearize = -1; gurobi.PrePasses = -1; gurobi.Presolve = -1; gurobi.PreSparsify = 0; gurobi.ResultFile = ''; gurobi.Threads = 0; function intlinprog = setup_intlinprog_options try intlinprog = optimoptions('intlinprog'); % if ~isa(intlinprog,'struct'); % evalc(['intlinprog = struct(intlinprog);']); % end catch intlinprog = []; end function kypd = setup_kypd_options kypd.solver = ''; kypd.lyapunovsolver = 'schur'; kypd.reduce = 0; kypd.transform = 0; kypd.rho = 1; kypd.tol = 1e-8; kypd.lowrank = 0; function lmilab = setup_lmilab_options lmilab.reltol = 1e-3; lmilab.maxiter = 100; lmilab.feasradius = 1e9; lmilab.L = 10; function lmirank = setup_lmirank_options lmirank.solver = ''; lmirank.maxiter = 100; lmirank.maxiter = 1000; lmirank.eps = 1e-9; lmirank.itermod = 1; function logdetppa = setup_logdetppa_options logdetppa.tol = 1e-6; logdetppa.sig = 10; logdetppa.maxiter = 100; logdetppa.maxitersub = 30; logdetppa.precond = 1; logdetppa.maxitpsqmr = 100; logdetppa.stagnate_check_psqmr = 0; logdetppa.scale_data = 2; logdetppa.plotyes = 0; logdetppa.use_proximal = 1; logdetppa.switch_alt_newton_tol = 1e-2; function lpsolve = setup_lpsolve_options lpsolve.scalemode = 0; function nag = setup_nag_options nag.featol = sqrt(eps); nag.itmax = 500; nag.bigbnd = 1e10; nag.orthog = 0; function penbmi = setup_penbmi_options penbmi.DEF = 1; penbmi.PBM_MAX_ITER = 50; penbmi.UM_MAX_ITER = 100; penbmi.OUTPUT = 1; penbmi.DENSE = 1; %!0 penbmi.LS = 0; penbmi.XOUT = 0; penbmi.UOUT = 0; penbmi.NWT_SYS_MODE = 0; penbmi.PREC_TYPE = 0; penbmi.DIMACS = 0; penbmi.TR_MODE = 0; penbmi.U0 = 1; penbmi.MU = 0.7; penbmi.MU2 = 0.5; %!0.1 penbmi.PRECISION = 1e-6; %!1e-7 penbmi.P_EPS = 1e-4; %!1e-6 penbmi.UMIN = 1e-14; penbmi.ALPHA = 1e-2; penbmi.P0 = 0.1; %!0.01 penbmi.PEN_UP = 0.5; %!0 penbmi.ALPHA_UP = 1.0; penbmi.PRECISION_2 = 1e-6; %!1e-7 penbmi.CG_TOL_DIR = 5e-2; function ops = setup_penlab_options try ops = penlab.defopts(1); catch ops = []; end function pennlp = setup_pennlp_options pennlp.maxit = 100; pennlp.nwtiters = 100; pennlp.hessianmode = 0; pennlp.autoscale = 1; pennlp.convex = 0; pennlp.eqltymode = 1; pennlp.ignoreinit = 0; pennlp.ncmode = 0; pennlp.nwtstopcrit = 2; pennlp.penalty = 0; pennlp.nwtmode = 0; pennlp.prec = 0; pennlp.cmaxnzs =-1; pennlp.autoini = 1; pennlp.ipenup = 1; pennlp.precision = 1e-7; pennlp.uinit = 1; pennlp.pinit = 1; pennlp.alpha = 0.01; pennlp.mu = 0.5; pennlp.dpenup = 0.1; pennlp.peps = 1e-8; pennlp.umin = 1e-12; pennlp.preckkt = 1e-1; pennlp.cgtolmin = 5e-2; pennlp.cgtolup = 1; pennlp.uinitbox = 1; pennlp.uinitnc = 1; function pensdp = setup_pensdp_options pensdp.DEF = 1; pensdp.PBM_MAX_ITER = 50; pensdp.UM_MAX_ITER = 100; pensdp.OUTPUT = 1; pensdp.DENSE = 0; pensdp.LS = 0; pensdp.XOUT = 0; pensdp.UOUT = 0; pensdp.U0 = 1; pensdp.MU = 0.7; pensdp.MU2 = 0.1; pensdp.PBM_EPS = 1e-7; pensdp.P_EPS = 1e-6; pensdp.UMIN = 1e-14; pensdp.ALPHA = 1e-2; pensdp.P0 = 0.9; function sparsecolo = setup_sparsecolo_options sparsecolo.SDPsolver = ''; sparsecolo.domain = 2; sparsecolo.range = 1; sparsecolo.EQorLMI = 2; function sparsepop = setup_sparsepop_options sparsepop.relaxOrder = 1; sparsepop.sparseSW = 1; sparsepop.multiCliquesFactor = 1; sparsepop.scalingSW = 1; sparsepop.boundSW = 2; sparsepop.eqTolerance = 0; sparsepop.perturbation = 0; sparsepop.reduceMomentMatSW = 1; sparsepop.complementaritySW = 0; sparsepop.reduceAMatSW = 1; sparsepop.SDPsolver = 'sedumi'; sparsepop.SDPsolverSW = 1; sparsepop.SDPsolverEpsilon = 1.0000e-009; sparsepop.SDPsolverOutFile = 0; sparsepop.sdpaDataFile = ''; sparsepop.matFile = ''; sparsepop.POPsolver = ''; sparsepop.detailedInfFile = ''; sparsepop.printFileName = 1; sparsepop.errorBdIdx = ''; sparsepop.fValueUbd = ''; sparsepop.symbolicMath = 1; sparsepop.mex = 0; function sdpnal = setup_sdpnal_options sdpnal.tol = 1e-6; sdpnal.sigma = 10; sdpnal.maxiter = 100; sdpnal.maxitersub = 20; sdpnal.AAtsolve = 2; sdpnal.precond = 1; sdpnal.maxitpsqmr = 100; sdpnal.stagnate_check_psqmr = 0; sdpnal.scale_data = 2; sdpnal.plotyes = 0; sdpnal.proximal = 1; function sedumi = setup_sedumi_options sedumi.alg = 2; sedumi.beta = 0.5; sedumi.theta = 0.25; sedumi.free = 1; sedumi.sdp = 0; sedumi.stepdif= 0; sedumi.w = [1 1]; sedumi.mu = 1.0; sedumi.eps = 1e-9; sedumi.bigeps = 1e-3; sedumi.maxiter= 150; sedumi.vplot = 0; sedumi.stopat = -1; sedumi.denq = 0.75; sedumi.denf = 10; sedumi.numtol = 5e-7; sedumi.bignumtol = 0.9; sedumi.numlvlv = 0; sedumi.chol.skip = 1; sedumi.chol.canceltol = 1e-12; sedumi.chol.maxu = 5e5; sedumi.chol.abstol = 1e-20; sedumi.chol.maxuden= 5e2; sedumi.cg.maxiter = 25; sedumi.cg.restol = 5e-3; sedumi.cg.refine = 1; sedumi.cg.stagtol = 5e-14; sedumi.cg.qprec = 0; sedumi.maxradius = inf; function sdpt3 = setup_sdpt3_options sdpt3.vers = 1; sdpt3.gam = 0; sdpt3.predcorr = 1; sdpt3.expon = 1; sdpt3.gaptol = 1e-7; sdpt3.inftol = 1e-7; sdpt3.steptol = 1e-6; sdpt3.maxit = 50; sdpt3.stoplevel= 1; sdpt3.sw2PC_tol = inf; sdpt3.use_corrprim = 0; sdpt3.printyes = 1; sdpt3.scale_data = 0; sdpt3.schurfun = []; sdpt3.schurfun_parms = []; sdpt3.randnstate = 0; sdpt3.spdensity = 0.5; sdpt3.rmdepconstr = 0; sdpt3.CACHE_SIZE = 256; sdpt3.LOOP_LEVEL = 8; sdpt3.cachesize = 256; sdpt3.linsys_options = 'raugmatsys'; sdpt3.smallblkdim = 30; function quadprogbb = setup_quadprogbb_options quadprogbb.max_time = 86400; quadprogbb.fathom_tol = 1e-6; quadprogbb.tol = 1e-8; quadprogbb.use_quadprog = 1; quadprogbb.use_single_processor = 0; quadprogbb.max_time = inf; function qpip = setup_qpip_options qpip.mu = 0.0; qpip.method = 1; function qsopt = setup_qsopt_options try qsopt = optiset('solver','qsopt'); catch qsopt.dual = 0; qsopt.primalprice = 1; qsopt.dualprice = 6; qsopt.scale = 1; qsopt.maxiter = 300000; qsopt.maxtime = 10000.0; end function sdpa = setup_sdpa_options sdpa.maxIteration = 100 ; sdpa.epsilonStar = 1.0E-7; sdpa.lambdaStar = 1.0E2 ; sdpa.omegaStar = 2.0 ; sdpa.lowerBound = -1.0E5 ; sdpa.upperBound = 1.0E5 ; sdpa.betaStar = 0.1 ; sdpa.betaBar = 0.2 ; sdpa.gammaStar = 0.9 ; sdpa.epsilonDash = 1.0E-7 ; sdpa.isSymmetric = 0 ; function sdplr = setup_sdplr_options sdplr.feastol = 1e-5; sdplr.centol = 1e-1; sdplr.dir = 1; sdplr.penfac = 2; sdplr.reduce = 0; sdplr.limit = 3600; sdplr.soln_factored = 0; sdplr.maxrank = 0; function vsdp = setup_vsdp_options vsdp.solver = ''; vsdp.verifiedupper = 0; vsdp.verifiedlower = 1; vsdp.prove_D_infeasible = 0; vsdp.prove_P_infeasible = 0; function ipopt = setup_ipopt_options try ipopt = ipoptset; ipopt.hessian_approximation = 'limited-memory'; ipopt.max_iter = 1500; ipopt.max_cpu_time = 1000; ipopt.tol = 1e-7; catch ipopt.mu_strategy = 'adaptive'; ipopt.tol = 1e-7; ipopt.hessian_approximation = 'limited-memory'; end function bonmin = setup_bonmin_options try bonmin = bonminset([],'noIpopt'); bonmin = rmfield(bonmin,'var_lin'); bonmin = rmfield(bonmin,'cons_lin'); catch bonmin =[]; end function nomad = setup_nomad_options try nomad = nomadset; catch nomad =[]; end function ooqp = setup_ooqp_options try ooqp = ooqpset; catch ooqp = []; end function xpress = setup_xpress_options try xpress = xprsoptimset; cNames = recursivefieldnames(xpress); for i = 1:length(cNames) xpress = setfield(xpress,cNames{i},[]); end catch xpress =[]; end function qpoases = setup_qpoases_options try qpoases = qpOASES_options; catch qpoases =[]; end function baron = setup_baron_options try baron = baronset; catch baron = []; end function knitro = setup_knitro_options try knitro = optimset; knitro.optionsfile = ''; catch knitro.optionsfile = ''; end function csdp = setup_csdp_options try % OPTI Toolbox interface csdp = csdpset(); catch csdp.axtol = 1e-8; csdp.atytol = 1e-8; csdp.objtol = 1e-8; csdp.pinftol = 1e8; csdp.dinftol = 1e8; csdp.maxiter = 100; csdp.minstepfrac = 0.90; csdp.maxstepfrac = 0.97; csdp.minstepp = 1e-8; csdp.minstepd = 1e-8; csdp.usexzgap = 1; csdp.tweakgap = 0; end function scip = setup_scip_options try scip = optiset; catch scip = []; end function scs = setup_scs_options scs.alpha = 1.5; scs.rho_x = 1e-3; scs.max_iters = 2500; scs.eps = 1e-3; scs.normalize = 1; scs.scale = 5; scs.cg_rate = 2; scs.eliminateequalities = 0; function dsdp = setup_dsdp_options try % OPTI Toolbox interface dsdp = dsdpset(); catch % Options for DSDP 5.6 classical interface dsdp.r0 = -1; dsdp.zbar = 0; dsdp.penalty = 1e8; dsdp.boundy = 1e6; dsdp.gaptol = 1e-7; dsdp.maxit = 500; dsdp.steptol=5e-2; dsdp.inftol=1e-8; dsdp.dual_bound = 1e20; dsdp.rho = 3; dsdp.dynamicrho = 1; dsdp.bigM = 0; dsdp.mu0 = -1; dsdp.reuse = 4; dsdp.lp_barrier = 1; end function mosek = setup_mosek_options try evalc('[r,res]=mosekopt(''param'');'); mosek = res.param; catch mosek.param = []; end function quadprog = setup_quadprog_options try quadprog = trytoset('quadprog'); catch quadprog.param = []; end function linprog = setup_linprog_options try linprog = trytoset('linprog'); catch linprog.param = []; end function bintprog = setup_bintprog_options try bintprog = trytoset('bintprog'); catch bintprog.param = []; end function fmincon = setup_fmincon_options try fmincon = trytoset('fmincon'); catch fmincon.param = []; end function fminsearch = setup_fminsearch_options try fminsearch = trytoset('fminsearch'); catch fminfminsearch.param = []; end function lsqnonneg = setup_lsqnonneg_options try lsqnonneg = trytoset('lsqnonneg'); catch lsqnonneg.param = []; end function lsqlin = setup_lsqlin_options try lsqlin = trytoset('lsqlin'); catch lsqlin.param = []; end
github
EnricoGiordano1992/LMI-Matlab-master
findulb.m
.m
LMI-Matlab-master/yalmip/extras/findulb.m
1,661
utf_8
01608ade93f5720dd1ed28fbb581df02
function [lb,ub,cand_rows_eq,cand_rows_lp] = findulb(F_struc,K,lb,ub) %FINDULB Internal function to extract upper and lower variable bounds n = size(F_struc,2)-1; if nargin < 3 lb = -inf*ones(n,1); ub = inf*ones(n,1); end cand_rows_eq = []; cand_rows_lp = []; ub2 = ub; lb2 = lb; if (K.f ~=0) A = -F_struc(1:K.f,2:end); b = F_struc(1:K.f,1); n = size(F_struc,2)-1; cand_rows_eq = find(sum(A~=0,2)==1); for i = 1:length(cand_rows_eq) j = find(A(cand_rows_eq(i),:)); ub(j)=min(ub(j),b(cand_rows_eq(i))/A(cand_rows_eq(i),j)); lb(j)=max(lb(j),b(cand_rows_eq(i))/A(cand_rows_eq(i),j)); end end if (K.l ~=0) A = -F_struc(K.f+1:K.f+K.l,2:end); b = F_struc(K.f+1:K.f+K.l,1); [lb,ub,cand_rows_lp] = localBoundsFromInequality(A,b,lb,ub); end if isfield(K,'q') && nnz(K.q) > 0 % Pick out the c'x+d termn in cone(Ax+b,cx+d) top = cumsum([1 K.q(1:end-1)]); A = -F_struc(K.f+K.l+top,2:end); b = F_struc(K.f+K.l+top,1); [lb,ub] = localBoundsFromInequality(A,b,lb,ub); end function [lb,ub,cand_rows_lp] = localBoundsFromInequality(A,b,lb,ub); n = size(A,2); cand_rows_lp = find(sum(A~=0,2)==1); if ~isempty(cand_rows_lp) [ii,jj,kk] = find(A(cand_rows_lp,:)); s_pos = find(kk>0); s_neg = find(kk<=0); if ~isempty(s_pos) for s = 1:length(s_pos) ub(jj(s_pos(s)),1) = full(min(ub(jj(s_pos(s))),b(cand_rows_lp(ii(s_pos(s))))./kk(s_pos(s)))); end end if ~isempty(s_neg) for s = 1:length(s_neg) lb(jj(s_neg(s)),1) = full(max(lb(jj(s_neg(s))),b(cand_rows_lp(ii(s_neg(s))))./kk(s_neg(s)))); end end end
github
EnricoGiordano1992/LMI-Matlab-master
optimizer.m
.m
LMI-Matlab-master/yalmip/extras/@optimizer/optimizer.m
13,039
utf_8
6c454ee18c6c1138dc70087dd5296087
function sys = optimizer(Constraints,Objective,options,x,u) %OPTIMIZER Container for optimization problem % % OPT = OPTIMIZER(Constraints,Objective,options,x,u) exports an object that % contains precompiled numerical data to be solved for varying arguments % x, returning the optimal value of the expression u. % % OPTIMIZER typically only works efficiently if the varying data x enters % the optmization problem affinely. If not, the precompiled problems will % be nonconvex, despite the problem being simple for a fixed value of the % parameter (see Wiki for beta support of a much more general optimizer) % % In principle, if an optimization problem has a parameter x, and we % repeatedly want to solve the problem for varying x to compute a % variable u, we can, instead of repeatedly constructing optimization % problems for fixed values of x, introduce a symbolic x, and then % simply add an equality % solvesdp([Constraints,x == value],Objective); % uopt = double(u) % There will still be overhead from the SOLVESDP call, so we can % precompile the whole structure, and let YALMIP handle the addition of % the equality constraint for the fixed value, and automatically extract % the solution variables we are interested in % OPT = optimizer(Constraints,Objective,options,x,u) % uopt1 = OPT{value1} % uopt2 = OPT{value2} % uopt3 = OPT{value3} % % By default, display is turned off (since optimizer is used in % situations where many problems are solved repeatedly. To turn on % display, set the verbose option in sdpsetting to 2. % % Example % % The following problem creates an LP with varying upper and lower % bounds on the decision variable. % % The optimizing argument is obtained by indexing (with {}) the optimizer % object with the point of interest. The argument should be a column % vector (if the argument has a width larger than 1, YALMIP assumes that % the optimal solution should be computed in several points) % % A = randn(10,3); % b = rand(10,1)*19; % c = randn(3,1); % % z = sdpvar(3,1); % sdpvar UB LB % % Constraints = [A*z <= b, LB <= z <= UB]; % Objective = c'*z % % We want the optimal z as a function of [LB;UB] % optZ = optimizer(Constraints,Objective,[],[LB; UB],z); % % % Compute the optimal z when LB=1, UB = 3; % zopt = optZ{[1; 3]} % % % Compute two solutions, one for (LB,UB) [1;3] and one for (LB,UB) [2;6] % zopt = optZ{[[1; 3], [2;6]]} % % % A second output argument can be used to catch infeasibility % [zopt,infeasible] = optZ{[1; 3]} % % % To avoid the need to vectorize in order to handle multiple % parameters, a cell-based format can be used, both for inputs and % outputs. Note that the optimizer object now is called with a cell % and returns a cell % % optZ = optimizer(Constraints,Objective,[],{LB,UB},{z,sum(z)}) % [zopt,infeasible] = optZ{{1,3}}; % zopt{1} % zopt{2} if nargin < 5 error('OPTIMIZER requires 5 inputs'); end % With the new optional cell-based format, the internal format is always a % vector with all information stacked, both in and out. Hence, we need to % save original sizes before stacking things up if isa(x,'cell') xvec = []; for i = 1:length(x) if ~(isa(x{i},'sdpvar') | isa(x{i},'ndsdpvar')) error(['The parameters must be SDPVAR objects. Parameter #' num2str(i) ' is a ' upper(class(x{i}))]); end if is(x{i},'complex') x{i} = [real(x{i});imag(x{i})]; complexInput(i) = 1; else complexInput(i) = 0; end sizeOrigIn{i} = size(x{i}); z = x{i}(:); mask{i} = uniqueRows(z); xvec = [xvec;z(mask{i})]; end x = xvec; else if ~isreal(x)%,'complex') complexInput(1) = 1; x = [real(x);imag(x)]; else complexInput(1) = 0; end sizeOrigIn{1} = size(x); x = x(:); mask{1} = uniqueRows(x); x = x(mask{1}); end nIn = length(x); mIn = 1; if isa(u,'cell') uvec = []; for i = 1:length(u) if is(u{i},'complex') complexOutput(i) = 1; u{i} = [real(u{i});imag(u{i})]; else complexOutput(i) = 0; end sizeOrigOut{i} = size(u{i}); uvec = [uvec;u{i}(:)]; end u = uvec; else if is(u,'complex') complexOutput(1) = 1; u = [real(u);imag(u)]; else complexOutput(1) = 0; end sizeOrigOut{1} = size(u); u = u(:); end nOut = length(u); mOut = 1; if isempty(options) options = sdpsettings; end if ~isa(options,'struct') error('Third argument in OPTIMIZER should be an options structure.'); end % Silent by default. If we want displays, set to 2 options.verbose = max(options.verbose-1,0); % Since code is based on a fake equality, we must avoid bound propagation % based on equalities options.avoidequalitybounds=1; % Normalize... if isa(Constraints,'constraint') Constraints = lmi(Constraints); end if ~isempty(Constraints) if ~isa(Constraints,'constraint') & ~isa(Constraints,'lmi') error('The first argument in OPTIMIZER should be a set of constraints'); end end if ~isempty(Constraints) if any(is(Constraints,'sos')) tempOps = options; tempOps.sos.model = 2; tempOps.verbose = max(0,tempOps.verbose-1); parameter_sos = [x;u;recover(depends(Objective))]; parameter_sos = depends(parameter_sos); for i = 1:length(Constraints) if ~is(Constraints,'sos') parameter_sos = [parameter_sos depends(Constraints(i))]; end end parameter_sos = recover(parameter_sos); [Constraints,Objective] = compilesos(Constraints,Objective,tempOps,parameter_sos); end end if ~isequal(options.solver,'') % User has specified solver. Let us impose this solver forcefully to % the compilation code, in order to handle nonlinear parameterizations if ~strcmp(options.solver(1),'+') options.solver = ['+' options.solver]; end end if options.removeequalities error('''removeequalities'' in optimizer objects not allowed.'); end if ~isempty(Constraints) & any(is(Constraints,'uncertain')) [Constraints,Objective,failure] = robustify(Constraints,Objective,options); [aux1,aux2,aux3,model] = export((x == repmat(pi,nIn*mIn,1))+Constraints,Objective,options,[],[],0); else [aux1,aux2,aux3,model] = export((x == repmat(pi,nIn*mIn,1))+Constraints,Objective,options,[],[],0); end if ~isempty(aux3) if isstruct(aux3) if ismember(aux3.problem, [-9 -5 -4 -3 -2 -1 14]) error(['Failed exporting the model: ' aux3.info]) end end end if norm(model.F_struc(1:nIn*mIn,1)-repmat(pi,length(x),1),inf) > 1e-10 error('Failed exporting the model (try to specify another solver)') end % Try to set up an optimal way to compute the output base = getbase(u); if is(u,'linear') & all(sum(base | base,2) == 1) & all(sum(base,2)==1) & all(base(:,1)==0) % This is just a vecotr of variables z = []; map = []; uvec = u(:); for i = 1:length(uvec) var = getvariables(uvec(i)); mapIndex = find(var == model.used_variables); if ~isempty(mapIndex) map = [map;mapIndex]; else map = [map;0]; end end else % Some expression which we will use assign and double to evaluate vars = depends(u); z = recover(vars); map = []; for i = 1:length(z) var = vars(i); mapIndex = find(var == model.used_variables); if ~isempty(mapIndex) map = [map;mapIndex]; else map = [map;0]; end end end if isempty(map) | min(size(map))==0 error('The requested decision variable (argument 4) is not in model'); end model.getsolvertime = 0; model.solver.callhandle = str2func(model.solver.call); sys.recover = aux2; sys.model = model; sys.dimin = [nIn mIn]; sys.dimout = [nOut mOut]; sys.diminOrig = sizeOrigIn; sys.dimoutOrig = sizeOrigOut; sys.complexInput = complexInput; sys.complexOutput = complexOutput; sys.mask = mask; sys.map = map; sys.input.expression = x; sys.output.expression = u; sys.output.z = z; sys.lastsolution = []; % This is not guaranteed to give the index in the order the variables where % given (tested in test_optimizer2 % [a,b,c] = find(sys.model.F_struc(1:prod(sys.dimin),2:end)); % Could be done using [b,a,c] = find(sys.model.F_struc(1:prod(sys.dimin),2:end)'); % but let us be safe %b = []; %for i = 1:prod(sys.dimin) % b = [b;find(sys.model.F_struc(i,2:end))]; %end sys.parameters = b; used_in = find(any(sys.model.monomtable(:,b),2)); Q = sys.model.Q; Qa = Q;Qa(:,b)=[];Qa(b,:)=[]; Qb = Q(:,b);Qb(b,:)=[]; if nnz(Q)>0 zeroRow = find(~any(Q,1)); Qtest = Q;Q(zeroRow,:)=[];Q(:,zeroRow)=[]; problematicQP = nonconvexQuadratic(Qtest);%min(eig(full(Qtest)))<-1e-14; else problematicQP = 0; end if any(sum(sys.model.monomtable(used_in,:),2)>1) | any(sum(sys.model.monomtable(used_in,:) | sys.model.monomtable(used_in,:),2) > 1) | problematicQP | ~isempty(sys.model.evalMap) | any(any(sys.model.monomtable<0)) sys.nonlinear = 1; else sys.nonlinear = 0; end sys.F = Constraints; sys.h = Objective; sys.ops = options; sys.complicatedEvalMap = 0; % Are all nonlinear operators acting on simple parameters? Elimination % strategy will only be applied on simple problems such as x<=exp(par) for i = 1:length(sys.model.evalMap) if ~all(ismember(sys.model.evalMap{i}.variableIndex,sys.parameters)) sys.complicatedEvalMap = 1; end if length(sys.model.evalMap{i}.arg)>2 sys.complicatedEvalMap = 1; end end if sys.nonlinear & ~sys.complicatedEvalMap % These artificial equalities are removed if we will use eliminate variables sys.model.F_struc(1:length(sys.parameters),:) = []; sys.model.K.f = sys.model.K.f - length(sys.parameters); % Which variables are simple nonlinear operators acting on parameters evalParameters = []; for i = 1:length(sys.model.evalMap) if all(ismember(sys.model.evalMap{i}.variableIndex,sys.parameters)) evalParameters = [evalParameters;sys.model.evalMap{i}.computes(:)]; end end sys.model.evalParameters = evalParameters; end % This data is used in eliminatevariables (nonlinear parameterizations) % A lot of performance is gained by precomputing them % This will work as long as there a no zeros in the parameters, which might % cause variables to dissapear (as in x*parameter >=0, parameter = 0) % (or similiar effects happen) sys.model.precalc.newmonomtable = sys.model.monomtable; sys.model.precalc.rmvmonoms = sys.model.precalc.newmonomtable(:,sys.parameters); sys.model.precalc.newmonomtable(:,sys.parameters) = 0; sys.model.precalc.Qmap = []; % R2012b... try [ii,jj,kk] = stableunique(sys.model.precalc.newmonomtable*gen_rand_hash(0,size(sys.model.precalc.newmonomtable,2),1)); sys.model.precalc.S = sparse(kk,1:length(kk),1); sys.model.precalc.skipped = setdiff(1:length(kk),jj); sys.model.precalc.blkOneS = blkdiag(1,sys.model.precalc.S'); catch end if sys.nonlinear & ~sys.complicatedEvalMap % Precompute some structures newmonomtable = sys.model.monomtable; rmvmonoms = newmonomtable(:,[sys.parameters;evalParameters]); % Linear indexation to fixed monomial terms which have to be computed % [ii1,jj1] = find((rmvmonoms ~= 0) & (rmvmonoms ~= 1)); [ii1,jj1] = find( rmvmonoms < 0 | rmvmonoms > 1 | fix(rmvmonoms) ~= rmvmonoms); sys.model.precalc.index1 = sub2ind(size(rmvmonoms),ii1,jj1); sys.model.precalc.jj1 = jj1; % Linear indexation to linear terms linterms = rmvmonoms == 1; if ~isempty(jj1) | any(sum(linterms,2)>1) [ii2,jj2] = find(linterms); sys.model.precalc.index2 = sub2ind(size(rmvmonoms),ii2,jj2); sys.model.precalc.jj2 = jj2; sys.model.precalc.aux = rmvmonoms*0+1; else [ii2,jj2] = find(linterms); sys.model.precalc.index2 = ii2; sys.model.precalc.jj2 = jj2; sys.model.precalc.aux = ones(size(rmvmonoms,1),1); end sys.model.newmonomtable = model.monomtable; sys.model.rmvmonoms = sys.model.newmonomtable(:,[sys.parameters;evalParameters]); sys.model.newmonomtable(:,union(sys.parameters,evalParameters)) = 0; sys.model.removethese = find(~any(sys.model.newmonomtable,2)); sys.model.keepingthese = find(any(sys.model.newmonomtable,2)); end sys = class(sys,'optimizer'); function i = uniqueRows(x); B = getbase(x); % Quick check for trivially unique rows, typical 99% case [n,m] = size(B); if n == m-1 && nnz(B)==n if isequal(B,[spalloc(n,1,0) speye(n)]) i = 1:n; return end end if length(unique(B*randn(size(B,2),1))) == n i = 1:n; return end [temp,i,j] = unique(B,'rows'); i = i(:);
github
EnricoGiordano1992/LMI-Matlab-master
or.m
.m
LMI-Matlab-master/yalmip/extras/@constraint/or.m
2,653
utf_8
27825fd7ad2b8d86ce557d3e68f65448
function varargout = or(varargin) %OR (overloaded) % Prune empty clauses varargin = {varargin{find(~cellfun('isempty',varargin))}}; % Models OR using a nonlinear operator definition switch class(varargin{1}) case 'char' z = varargin{2}; X = varargin{3}; Y = varargin{4}; F = ([]); switch class(X) case 'sdpvar' x = X; xvars = getvariables(x); allextvars = yalmip('extvariables'); if (length(xvars)==1) & ismembcYALMIP(xvars,allextvars) [x,F] = expandor(x,allextvars,F); end case 'constraint' x = binvar(1,1); F = F + (implies_internal(x,X)); otherwise end switch class(Y) case 'sdpvar' y = Y; yvars = getvariables(y); allextvars = yalmip('extvariables'); if (length(yvars)==1) & ismembcYALMIP(yvars,allextvars) [y,F] = expandor(y,allextvars,F); end case {'constraint','lmi'} y = binvar(1,1); F = F + (implies_internal(y,Y)); otherwise end xy = [x y]; [M,m] = derivebounds(z); if m>=1 varargout{1} = F + (sum(xy) >= 1); else varargout{1} = F + (sum(xy) >= z) + (z >= xy) +(binary(z)); end varargout{2} = struct('convexity','none','monotonicity','exact','definiteness','none','model','integer'); varargout{3} = xy; case {'sdpvar','constraint'} varargout{1} = yalmip('define','or',varargin{:}); otherwise end function [x,F] = expandor(x,allextvars,F) xmodel = yalmip('extstruct',getvariables(x)); if isequal(xmodel.fcn,'or') X1 = xmodel.arg{1}; X2 = xmodel.arg{2}; switch class(X1) case 'sdpvar' x1 = X1; xvars = getvariables(x1); if ismembcYALMIP(xvars,allextvars) [x1,F] = expandor(x1,allextvars,F); end case 'constraint' x1 = binvar(1,1); F = F + (iff_internal(X1,x1)); otherwise end switch class(X2) case 'sdpvar' x2 = X2; yvars = getvariables(x2); if ismembcYALMIP(yvars,allextvars) [x2,F] = expandor(x2,allextvars,F); end case 'constraint' x2 = binvar(1,1); F = F + (iff_internal(X2,x2)); otherwise end x = [x1 x2]; end
github
EnricoGiordano1992/LMI-Matlab-master
groupchanceconstraints.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/groupchanceconstraints.m
710
utf_8
11836c904991112de5ae44d3a433fe11
function S = groupchanceconstraints(F) G = {}; S = {}; F = flatten(F); for i = 1:length(F.clauses) if ~isempty(F.clauses{i}.confidencelevel) G = addgroup(G,F.clauses{i}.jointprobabilistic); end end for i = 1:length(G) S{i} = []; end for i = 1:length(F.clauses) for j = 1:length(G) if isequal(F.clauses{i}.jointprobabilistic,G{j}); S{j} = [S{j} i]; end end end for i = 1:length(S) s.type = '()'; s.subs{1} = S{i}; S{i} = subsref(F,s); end function G = addgroup(G,g) if length(G)==0 G = {g}; else i = 1; while i<=length(G) if isequal(G{i},g) return end i = i+1; end G{end+1} = g; end
github
EnricoGiordano1992/LMI-Matlab-master
display.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/display.m
4,251
utf_8
faa1a9761a6adc79bf84740db5d5d064
function sys = display(X) %display Displays a SET object. X = flatten(X); nlmi = length(X.LMIid); if (nlmi == 0) disp('empty SET') return end lmiinfo{1} = 'Matrix inequality'; lmiinfo{2} = 'Element-wise inequality'; lmiinfo{3} = 'Equality constraint'; lmiinfo{4} = 'Second order cone constraint'; lmiinfo{5} = 'Rotated Lorentz constraint'; lmiinfo{7} = 'Integrality constraint'; lmiinfo{8} = 'Binary constraint'; lmiinfo{9} = 'KYP constraint'; lmiinfo{10}= 'Eigenvalue constraint'; lmiinfo{11}= 'Sum-of-square constraint'; lmiinfo{12}= 'Logic constraint'; lmiinfo{13}= 'Parametric declaration'; lmiinfo{14}= 'Low-rank data declaration'; lmiinfo{15}= 'Uncertainty declaration'; lmiinfo{16}= 'Distribution declaration'; lmiinfo{20}= 'Power cone constraint'; lmiinfo{30}= 'User defined compilation'; lmiinfo{40}= 'Generalized KYP constraint'; lmiinfo{50}= 'Special ordered set of type 2'; lmiinfo{51}= 'Special ordered set of type 1'; lmiinfo{52}= 'Semi-continuous variable'; lmiinfo{53}= 'Semi-integer variable'; lmiinfo{54} = 'Vectorized second-order cone constraints'; lmiinfo{55}= 'Complementarity constraint'; lmiinfo{56}= 'Meta constraint'; lmiinfo{57}= 'Stacked SDP constraints'; headers = {'ID','Constraint','Tag'}; rankVariables = yalmip('rankvariables'); extVariables = yalmip('extvariables'); if nlmi>0 for i = 1:nlmi data{i,1} = ['#' num2str(i)]; data{i,2} = lmiinfo{X.clauses{i}.type}; data{i,3} = ''; if length(getvariables(X.clauses{i}.data)) == 1 if any(ismember(getvariables(X.clauses{i}.data),rankVariables)) data{i,3} = 'Rank constraint'; end end if X.clauses{i}.type == 14 elseif X.clauses{i}.type == 56 data{i,2} = [data{i,3} ' (' X.clauses{i}.data{1} ')']; data{i,3} = X.clauses{i}.handle; else classification = ''; members = ismembcYALMIP(getvariables(X.clauses{i}.data),yalmip('intvariables')); if any(members) classification = [classification ',integer']; end if size(X.clauses{i},2)>1 classification = [classification ',logic']; end if ~isempty(X.clauses{i}.confidencelevel) classification = [classification ',chance']; end linearbilinearquadraticsigmonial = is(X.clauses{i}.data,'LBQS'); if ~linearbilinearquadraticsigmonial(1) if linearbilinearquadraticsigmonial(4) classification = [classification ',sigmonial']; elseif linearbilinearquadraticsigmonial(2) classification = [classification ',bilinear']; elseif linearbilinearquadraticsigmonial(3) classification = [classification ',quadratic']; else classification = [classification ',polynomial']; end end data{i,3} = X.clauses{i}.handle; if ~isreal(X.clauses{i}.data) classification = [classification ',complex']; end members = ismembcYALMIP(getvariables(X.clauses{i}.data),extVariables); if any(members) classification = [classification ',derived']; end if length(classification)==0 else data{i,2} = [data{i,2} ' (' classification(2:end) ')']; end if ismember(X.clauses{i}.type,[1 2 3 4 5 9]); data{i,2} = [data{i,2} ' ' num2str(size(X.clauses{i}.data,1)) 'x' num2str(size(X.clauses{i}.data,2))]; end end end end % If no tags, don't show... if length([data{:,3}])==0 headers = {headers{:,1:2}}; data = reshape({data{:,1:2}},length({data{:,1:2}})/2,2); end yalmiptable('',headers,data) function x= truncstring(x,n) if length(x) > n x = [x(1:n-3) '...']; end function x = fillstring(x,n) x = [x blanks(n-length(x))];
github
EnricoGiordano1992/LMI-Matlab-master
plot.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/plot.m
10,083
utf_8
090afe5b9fc145b26c6455b0a5dadfef
function varargout = plot(varargin) %PLOT Plots the feasible region of a set of constraints % % p = plot(C,x,c,n,options) % % Note that only convex sets are allowed, or union of convex sets % represented using binary variables (either defined explictly or % introduced by YALMIP when modelling, e.g., mixed integer linear % programming representable operators) % % C: Constraint object % x: Plot variables [At most three variables] % c: color [double] ([r g b] format) or char from 'rymcgbk' % n: #vertices [double ] (default 100 in 2D and 300 otherwise) % options: options structure from sdpsettings % Get the onstraints if nargin<1 return end F = varargin{1}; if length(F)==0 return; end if nargin < 5 opts = sdpsettings('verbose',0); else opts = varargin{5}; if isempty(opts) opts = sdpsettings('verbose',0); end end opts.verbose = max(opts.verbose-1,0); if any(is(F,'uncertain')) F = robustify(F,[],opts); end if nargin < 3 color=['rymcgbk']'; else color = varargin{3}; if isa(color,'sdpvar') error('The variables should be specified in the second argument.'); end color = color(:)'; if isempty(color) color=['rymcgbk']'; end end % Plot onto this projection (at most in 3D) if nargin < 2 x = []; else x = varargin{2}; if ~isempty(x) if ~isa(x,'sdpvar') error('Second argument should be empty or an SDPVAR'); end x = x(:); x = x(1:min(3,length(x))); end end if isempty(F) return end if any(is(F,'sos')) % Use image representation, feels safer (I'm not sure about the logic % in the code at the moment. Can the dualization mess up something % otherwise...) if ~(opts.sos.model == 1) opts.sos.model = 2; end % Assume the variables we are plotting are the parametric F = compilesos(F,[],opts,x); end % Create a model in YALMIPs low level format % All we change later is the cost vector %sol = solvesdp(F,sum(x),opts); [model,recoverdata,diagnostic,internalmodel] = export(F,[],opts,[],[],0); if isempty(internalmodel) | (~isempty(diagnostic) && diagnostic.problem) error('Could not create model. Can you actually solve problems with this model?') end internalmodel.options.saveduals = 0; internalmodel.getsolvertime = 0; internalmodel.options.dimacs = 0; % Try to find a suitable set to plot if isempty(x) if isempty(internalmodel.extended_variables) & isempty(internalmodel.aux_variables) x = depends(F); x = x(1:min(3,length(x))); localindex = 1; localindex = find(ismember(recoverdata.used_variables,x)); else % not extended variables candidates = setdiff(1:length(internalmodel.c),[ internalmodel.aux_variables(:)' internalmodel.extended_variables(:)']); % Not nonlinear variables candidates = candidates(find(internalmodel.variabletype(candidates)==0)); % Settle with this guess localindex = candidates(1:min(3,length(candidates))); x = localindex; end else localindex = []; for i = 1:length(x) localindex = [localindex find(ismember(recoverdata.used_variables,getvariables(x(i))))]; end end if nargin < 4 if length(x)==3 n = 300; else n = 100; end else n = varargin{4}; if isempty(n) if length(x)==3 n = 300; else n = 100; end end if ~isa(n,'double') error('4th argument should be an integer>0'); end end if ~isempty(internalmodel.integer_variables) error('PLOT can currently not display sets involving integer variables'); end if isempty(internalmodel.binary_variables) [x_opt{1},errorstatus] = generateBoundary(internalmodel,x,n,localindex); else if strcmp(internalmodel.solver.tag,'BNB') internalmodel.solver = internalmodel.solver.lower; end nBin = length(internalmodel.binary_variables); p = extractLP(internalmodel); p = extractOnly(p,internalmodel.binary_variables); internalmodel.F_struc = [zeros(nBin,size(internalmodel.F_struc,2));internalmodel.F_struc]; I = eye(nBin); internalmodel.F_struc(1:nBin,1+internalmodel.binary_variables) = I; internalmodel.K.f = internalmodel.K.f + length(internalmodel.binary_variables); errorstatus = 1; x_opt = {}; errorstatus = zeros(1,2^nBin); for i = 0:2^nBin-1; comb = dec2decbin(i,nBin); if checkfeasiblefast(p,comb(:),1e-6) internalmodel.F_struc(1:nBin,1) = -comb(:); [x_temp,wrong] = generateBoundary(internalmodel,x,n,localindex); if ~wrong errorstatus(i+1) = 0; x_opt{end+1} = x_temp; end else errorstatus(i+1)=0; end end end if all(errorstatus) if nargout==0 plot(0); end elseif nargout == 0 for i = 1:length(x_opt) try plotSet(x_opt{i},color(1+rem(i-1,size(color,1)),:),opts); catch end end end if nargout > 0 varargout{1} = x_opt; end function [xout,errorstatus] = solvefordirection(c,internalmodel,uv) internalmodel.c = 0*internalmodel.c; internalmodel.c(uv) = c; sol = feval(internalmodel.solver.call,internalmodel); xout = sol.Primal; xout = xout(uv(:)); errorstatus = sol.problem; function p = plotSet(x_opt,color,options) if size(x_opt,1)==1 p = line(x_opt,[0 0],'color',color); set(p,'LineStyle',options.plot.wirestyle); set(p,'LineStyle',options.plot.wirestyle); set(p,'LineWidth',options.plot.linewidth); set(p,'EdgeColor',options.plot.edgecolor); set(p,'Facealpha',options.plot.shade); elseif size(x_opt,1)==2 p = patch(x_opt(1,:),x_opt(2,:),color); set(p,'LineStyle',options.plot.wirestyle); set(p,'LineWidth',options.plot.linewidth); set(p,'EdgeColor',options.plot.edgecolor); set(p,'Facealpha',options.plot.shade); else try K = convhulln(x_opt'); p = patch('Vertices', x_opt','Faces',K,'FaceColor', color); catch p = fill3(x_opt(1,:),x_opt(2,:),x_opt(3,:),1); end set(p,'LineStyle',options.plot.wirestyle); set(p,'LineWidth',options.plot.linewidth); set(p,'EdgeColor',options.plot.edgecolor); set(p,'Facealpha',options.plot.shade); lighting gouraud; view(3); camlight('headlight','infinite'); camlight('headlight','infinite'); camlight('right','local'); camlight('left','local'); end function [x_opt,errorstatus] = generateBoundary(internalmodel,x,n,localindex); x_opt = []; phi = []; errorstatus = 0; waitbar_created = 0; t0 = clock; waitbar_starts_at = 2; lastdraw = clock; try % Try to ensure that we close h if length(x)==2 mu = 0.5; else mu=1; end n_ = n; n = ceil(mu*n); % h = waitbar(0,['Please wait, solving ' num2str(n_) ' problems using ' internalmodel.solver.tag]); angles = (0:(n))*2*pi/n; if length(x)==2 c = [cos(angles);sin(angles)]; elseif length(x) == 1 c = [-1 1];n = 2; else c = randn(3,n); end i=1; while i<=n & errorstatus ~=1 [xi,errorstatus] = solvefordirection(c(:,i),internalmodel,localindex(:)); if errorstatus == 2 disp('Discovered unbounded direction. You should add bounds on variables') elseif errorstatus == 12 [xi,errorstatus] = solvefordirection(0*c(:,i),internalmodel,localindex(:)); if errorstatus == 0 errorstatus = 2; disp('Discovered unbounded direction. You should add bounds on variables') end end x_opt = [x_opt xi]; if ~waitbar_created if etime(clock,t0)>waitbar_starts_at; h = waitbar(0,['Please wait, solving ' num2str(n_) ' problems using ' internalmodel.solver.tag]); waitbar_created = 1; end end if waitbar_created & etime(clock,lastdraw)>1/10 waitbar(i/n_,h) lastdraw = clock; end i=i+1; end if errorstatus==0 & length(x)==2 % Close the set x_opt = [x_opt x_opt(:,1)]; % Add points adaptively pick = 1; n = floor((1-mu)*n_); for i = 1:1:n for j= 1:(size(x_opt,2)-1) d = x_opt(:,j)-x_opt(:,j+1); distance(j,1) = d'*d; end [dist,pos]=sort(-distance); % Select insertion point phii=(angles(pos(pick))+angles(pos(pick)+1))/2; xi = solvefordirection([cos(phii);sin(phii)],internalmodel,localindex); d1=xi-x_opt(:,pos(pick)); d2=xi-x_opt(:,pos(pick)+1); if d1'*d1<1e-3 | d2'*d2<1e-3 pick = pick+1; else angles = [angles(1:pos(pick)) phii angles((pos(pick))+1:end)]; x_opt = [x_opt(:,1:pos(pick)) xi x_opt(:,(pos(pick))+1:end)]; end if ~waitbar_created if etime(clock,t0)>waitbar_starts_at; h = waitbar(0,['Please wait, solving ' num2str(n_) ' problems using ' internalmodel.solver.tag]); waitbar_created = 1; end end if waitbar_created waitbar((ceil(n_*mu)+i)/n_,h); end end end if waitbar_created close(h); end catch if waitbar_created close(h); end end function pLP = extractLP(p); pLP = p; pLP.F_struc = pLP.F_struc(1:p.K.f+p.K.l,:); pLP.K.q = 0; pLP.K.s = 0; function pRed = extractOnly(p,these); pRed = p; p.F_struc(:,1+these) = 0; removeEQ = find(any(p.F_struc(1:pRed.K.f,2:end),2)); removeLP = find(any(p.F_struc(1+pRed.K.f:end,2:end),2)); pRed.F_struc(pRed.K.f+removeLP,:)=[]; pRed.F_struc(removeEQ,:)=[]; pRed.K.f = pRed.K.f - length(removeEQ); pRed.K.l = pRed.K.l - length(removeLP); pRed.F_struc = pRed.F_struc(:,[1 1+these]); pRed.lb = pRed.lb(these); pRed.ub = pRed.ub(these);
github
EnricoGiordano1992/LMI-Matlab-master
check.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/check.m
7,498
utf_8
f38af4ea7112e1679d548c202f244cd4
function [pres,dres] = check(F) % CHECK(F) Displays/calculates constraint residuals on constraint F % % [pres,dres] = check(F) % % pres : Primal constraint residuals % dres : Dual constraint residuals % % If no output argument is supplied, tabulated results are displayed % % Primal constraint residuals are calculated as: % % Semidefinite constraint F(x)>=0 : min(eig(F)) % Element-wise constraint F(x)>=0 : min(min(F)) % Equality constraint F==0 : -max(max(abs(F))) % Second order cone t>=||x|| : t-||x|| % Integrality constraint on x : max(abs(x-round(x))) % Sum-of-square constraint : Minus value of largest (absolute value) coefficient % in the polynomial p-v'*v % % Dual constraints are evaluated similarily. % % See also SOLVESDP, SOLVESOS, SOSD, DUAL % Check if solution avaliable currsol = evalin('caller','yalmip(''getsolution'')'); if isempty(currsol) disp('No solution available.') return end F = flatten(F); nlmi = length(F.LMIid); spaces = [' ']; if (nlmi == 0) if nargout == 0 disp('empty LMI') else pres = []; dres = []; end return end lmiinfo{1} = 'Matrix inequality'; lmiinfo{2} = 'Elementwise inequality'; lmiinfo{3} = 'Equality constraint'; lmiinfo{4} = 'Second order cone constraint'; lmiinfo{5} = 'Rotated Lorentz constraint'; lmiinfo{7} = 'Integer constraint'; lmiinfo{8} = 'Binary constraint'; lmiinfo{9} = 'KYP constraint'; lmiinfo{10} = 'Eigenvalue constraint'; lmiinfo{11} = 'SOS constraint'; lmiinfo{15} = 'Uncertainty declaration'; lmiinfo{54} = 'Vectorized second order cone constraints'; lmiinfo{55} = 'Complementarity constraint'; lmiinfo{56} = 'Logic constraint'; header = {'ID','Constraint','Primal residual','Dual residual','Tag'}; if nargout==0 disp(' '); end % Checkset is very slow for multiple SOS % The reason is that REPLACE has to be called % for every SOS. Instead, precalc on one vector p=[]; ParVar=[]; soscount=1; for j = 1:nlmi if F.clauses{j}.type==11 pi = F.clauses{j}.data; [v,ParVari] = sosd(pi); if isempty(v) p=[p;0]; else p=[p;pi]; ParVar=unique([ParVar(:);ParVari(:)]); end end end if ~isempty(ParVar) ParVar = recover(ParVar); p = replace(p,ParVar,double(ParVar)); end for j = 1:nlmi constraint_type = F.clauses{j}.type; if constraint_type~=11 && constraint_type~=56 F0 = double(F.clauses{j}.data); end if ~((constraint_type == 56) || (constraint_type==11)) && any(isnan(F0(:))) res(j,1) = NaN; else switch F.clauses{j}.type case {1,9} if isa(F0,'intval') res(j,1) = full(min(inf_(veigsym(F0)))); else res(j,1) = full(min(real(eig(F0)))); end case 2 if isa(F0,'intval') res(j,1) = full(min(min(inf_(F0)))); else res(j,1) = full(min(min(F0))); end case 3 res(j,1) = -full(max(max(abs(F0)))); case 4 res(j,1) = full(F0(1)-norm(F0(2:end))); case 5 res(j,1) = full(2*F0(1)*F0(2)-norm(F0(3:end))^2); case 7 res(j,1) = -full(max(max(abs(F0-round(F0))))); case 8 res(j,1) = -full(max(max(abs(F0-round(F0))))); res(j,1) = min(res(j,1),-(any(F0>1) | any(F0<0))); case 54 res(j,1) = inf; for k = 1:size(F0,2) res(j,1) = min(res(j,1),full(F0(1,k)-norm(F0(2:end,k)))); end case 11 if 0 p = F.clauses{j}.data; [v,ParVar] = sosd(p); if ~isempty(ParVar) ParVar = recover(ParVar); p = replace(p,ParVar,double(ParVar)); end if isempty(v) res(j,1)=nan; else h = p-v'*v; res(j,1) = full(max(max(abs(getbase(h))))); end else %p = F.clauses{j}.data; [v,ParVar] = sosd(F.clauses{j}.data); if isempty(v) res(j,1)=nan; else h = p(soscount)-v'*v; res(j,1) = full(max(max(abs(getbase(h))))); end soscount=soscount+1; end case 56 res(j,1) = logicSatisfaction(F.clauses{j}.data); otherwise res(j,1) = nan; end end % Get the internal index LMIid = F.LMIid(j); dual = yalmip('dual',LMIid); if isempty(dual) | any(isnan(dual)) resdual(j,1) = NaN; else switch F.clauses{j}.type case {1,9} resdual(j,1) = min(eig(dual)); case 2 resdual(j,1) = min(min(dual)); case 3 resdual(j,1) = -max(max(abs(dual))); case 4 resdual(j,1) = dual(1)-norm(dual(2:end)); case 5 resdual(j,1) = 2*dual(1)*dual(2)-norm(dual(3:end))^2; case 7 resdual(j,1) = nan; case 54 resdual(j,1) = inf; for k = 1:size(dual,2) resdual(j,1) = min(resdual(j,1),full(dual(1,k)-norm(dual(2:end,k)))); end otherwise gap = nan; end end if nargout==0 data{j,1} = ['#' num2str(j)]; data{j,2} = lmiinfo{F.clauses{j}.type}; data{j,3} = res(j,1); data{j,4} = resdual(j,1); data{j,5} = F.clauses{j}.handle; if ~islinear(F.clauses{j}.data) if is(F.clauses{j}.data,'sigmonial') classification = 'sigmonial'; elseif is(F.clauses{j}.data,'bilinear') classification = 'bilinear'; elseif is(F.clauses{j}.data,'quadratic') classification = 'quadratic'; else classification = 'polynomial'; end data{j,2} = [data{j,2} ' (' classification ')']; end end end if nargout>0 pres = res; dres = resdual; else keep = ones(1,5); if length([data{:,5}])==0 keep(5) = 0; end if all(isnan(resdual)) keep(4) = 0; end header = {header{:,find(keep)}}; temp = {data{:,find(keep)}}; data = reshape(temp,length(temp)/nnz(keep),nnz(keep)); yalmiptable('',header,data) disp(' '); end function res = logicSatisfaction(clause); a = clause{2}; b = clause{3}; if isa(a,'sdpvar') aval = double(a); if is(a,'binary') atruth = aval == 1; else atruth = aval>=0; end elseif isa(a,'lmi') | isa(a,'constraint') aval = check(lmi(a)); atruth = aval >= 0; end if isa(b,'sdpvar') bval = double(b); elseif isa(b,'lmi') | isa(b,'constraint') bval = check(lmi(b)); btruth = bval >= 0; end switch clause{1} case 'implies' if all(btruth >= atruth) res = 1; else res = -1; end case 'iff' if all(btruth == atruth); res = 1; else res = -1; end otherwise res = nan; end
github
EnricoGiordano1992/LMI-Matlab-master
kkt.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/kkt.m
7,518
utf_8
fb7d8e6e638dcea5721ade8b986ddf2e
function [KKTConstraints, details] = kkt(F,h,parametricVariables,ops); %KKT Create KKT system % % [KKTConstraints, details] = kkt(Constraints,Objective,parameters,options) if ~isempty(F) if any(is(F,'sos2')) error('SOS2 structures not allowed in KKT'); end end [aux1,aux2,aux3,model] = export(F,h,sdpsettings('solver','quadprog','relax',2)); if isempty(model) error('KKT system can only be derived for LPs or QPs'); end model.problemclass.constraint.binary = 0; model.problemclass.constraint.integer = 0; model.problemclass.constraint.semicont = 0; model.problemclass.constraint.sos1 = 0; model.problemclass.constraint.sos2 = 0; if ~ismember(problemclass(model), {'LP', 'Convex QP', 'Nonconvex QP'}) error('KKT system can only be derived for LPs or QPs'); end if ~isempty(model.binary_variables) | ~isempty(model.integer_variables) | ~isempty(model.semicont_variables) comb = [model.used_variables(model.binary_variables) model.used_variables(model.integer_variables) model.used_variables(model.semicont_variables) ]; if ~isempty(intersect(comb,getvariables(decisionvariables))) error('KKT system cannot be derived due to binary or integer decision variables'); end end if nargin < 3 x = recover(model.used_variables); parameters = []; else % Make sure they are sorted parameters = getvariables(parametricVariables); x = recover(setdiff(model.used_variables,parameters)); notparameters = find(ismember(model.used_variables,getvariables(x)));%parameters); parameters = setdiff(1:length(model.used_variables),notparameters); if ~isempty(parameters) y = recover(model.used_variables(parameters)); end end if nargin < 4 ops = sdpsettings; end if isempty(ops) ops = sdpsettings; end % Ex==f E = model.F_struc(1:model.K.f,2:end); f = -model.F_struc(1:model.K.f,1); % Ax <= b A = -model.F_struc(model.K.f+1:model.K.f+model.K.l,2:end); b = model.F_struc(model.K.f+1:model.K.f+model.K.l,1); c = model.c; Q = model.Q; % Are there equalities hidden in the in equalities moved = zeros(length(b),1); hash = randn(size(A,2),1); Ahash = A*hash; removed = zeros(length(b),1); for i = 1:length(b) if ~removed(i) same = setdiff(find(Ahash == Ahash(i)),i); k = find(b(i) == b(same)); if ~isempty(k) removed(same(k)) = 1; end k = find(b(i) < b(same)); if ~isempty(k) removed(same(k)) = 1; end end end if any(removed) if ops.verbose disp(['Removed ' num2str(nnz(removed)) ' duplicated or redundant inequalities']); end A(find(removed),:) = []; b(find(removed)) = []; Ahash = A*hash; end for i = 1:length(b) if ~moved(i) same = setdiff(find(Ahash == -Ahash(i)),i); k = find(b(i) == -b(same)); if ~isempty(k) E = [E;A(i,:)]; f = [f;b(i)]; moved(i) = 1; moved(same(k)) = 1; end end end if any(moved) if ops.verbose disp(['Transfered ' num2str(nnz(moved)) ' inequalities to equalities']); end A(find(moved),:) = []; b(find(moved)) = []; Ahash = A*hash; end if ~isempty(b) infBounds = find(b>0 & isinf(b)); if ~isempty(infBounds) b(infBounds) = []; A(infBounds,:) = []; end end [dummy,rr] = unique([A b],'rows'); if length(rr)~=size(A,1) A = A(rr,:); b = b(rr); end if ~isempty(parameters) b = b-A(:,parameters)*y; f = f-E(:,parameters)*y; A(:,parameters) = []; E(:,parameters) = []; c(parameters) = []; Q2 = model.Q(notparameters,parameters); c = c + 2*Q2*y; Q = Q(notparameters,notparameters); end used = find(any(A,2)); if isempty(setdiff(1:size(A,1),used)) parametricDomain = []; else r = setdiff(1:size(A,1),used); parametricDomain = b(r)>=0; A(r,:)=[]; b(r)=[]; end if isempty(E) E = []; f = []; end Lambda = sdpvar(size(A,1),1); % Ax <=b mu = sdpvar(size(E,1),1); % Ex+f==0 if ops.kkt.dualbounds if ops.verbose disp('Starting derivation of dual bounds (can be turned off using option kkt.dualbounds)'); end [U,pL] = derivedualBounds(2*Q,c,A,b,E,f,ops,parametricDomain); %[U,pL] = derivedualBoundsParameterFree(2*Q,c,A,b,E,f,ops,parametricDomain); else U = []; end KKTConstraints = []; s = 2*Q*x + c; if ~isempty(A) %KKTConstraints = [KKTConstraints, complements(b-A*x, Lambda >= 0):'Compl. slackness and primal-dual inequalities']; KKTConstraints = [KKTConstraints, complements(Lambda >= 0,b-A*x):'Compl. slackness and primal-dual inequalities']; s = s + A'*Lambda; end if ~isempty(E) KKTConstraints = [KKTConstraints, (E*x == f):'Primal feasible']; s = s + E'*mu; end if ~isempty(U) finU = find(~isinf(U)); if ~isempty(finU) KKTConstraints = [KKTConstraints, (Lambda(finU) <= U(finU)):'Upper bound on duals']; end end KKTConstraints = [KKTConstraints, (s == 0):'Stationarity']; s_ = indicators(KKTConstraints(1)); if ops.kkt.licqcut if ops.verbose disp('Generating LICQ cuts'); end [Alicq,blicq] = createLICQCut(A); KKTConstraints = [KKTConstraints, Alicq*s_ <= blicq]; end if ops.kkt.minnormdual; MinNorm = [0 <= Lambda <= 10000*s_,s == 0]; ops.kkt.minnormdual = ops.kkt.minnormdual-1; parametricInMinNorm = recover(setdiff(depends(MinNorm),depends(Lambda))); [kkt2,info2] = kkt(MinNorm,Lambda'*Lambda,parametricInMinNorm,ops); kkt2 = [kkt2, [indicators(kkt2(1)) <= 1-[s_;s_]]]; kkt2 = [kkt2, info2.dual <= 10000]; KKTConstraints = [KKTConstraints, kkt2]; details.info2 = info2; end if nnz(Q)>0 details.info = 'min x''Qx+c''x'; else details.info = 'min c''x'; end if isempty(E) details.info = [details.info ' s.t. Ax<=b']; else details.info = [details.info ' s.t. Ax<b, Ex=f']; end details.c = c; details.Q = Q; details.A = A; details.b = b; details.E = E; details.f = f; details.dual = Lambda; details.dualeq = mu; details.primal = x; if length(b)>0 details.inequalities = A*x <= b; else details.inequalities = []; end if length(f)>0 details.equalities = E*x == f; else details.equalities = []; end if isempty(U) U = repmat(inf,length(b),1); end details.dualbounds = U; function [Alicq,blicq] = createLICQCut(A); Alicq = ones(1,size(A,1)); blicq = size(A,2); Atemp = A; [ii,jj] = sort(sum(A | A,1)); Atemp = Atemp(:,jj); [ii,jj] = sort(sum(A | A,2)); Atemp = Atemp(jj,:); for ii = 1:size(Atemp,1) rr(ii) = min(find(Atemp(ii,:))); end [ii,kk] = sort(rr); kk = fliplr(kk); Atemp = Atemp(kk,:); nel = sum(Atemp|Atemp,2); top = 1; while top <= length(nel) same = nel == nel(top); used_in_first = find(Atemp(top,:)); oldtop = top; while top <= length(nel)-1 && all(ismember(find(Atemp(top+1,:)),used_in_first)) top = top + 1; end if length(used_in_first)<size(A,2) blicq = [blicq;nnz(used_in_first)]; e = spalloc(1,size(A,1),0); e(jj(kk(oldtop:top)))=1; Alicq = [Alicq;e]; end if nnz(any(full(Atemp(1:top,:)),1)) < size(A,2) blicq = [blicq; nnz(any(full(Atemp(1:top,:)),1))]; e = spalloc(1,size(A,1),0); e(jj(kk(1:top))) = 1; Alicq = [Alicq;e]; end rr=oldtop:top; ss = find(nel(rr)==1); if ~isempty(ss) blicq = [blicq;1]; e = spalloc(1,size(A,1),0); e(jj(kk(rr(ss)))) = 1; Alicq = [Alicq;e]; end top = top + 1; end
github
EnricoGiordano1992/LMI-Matlab-master
getvariables.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/getvariables.m
905
utf_8
ef689619cd74e765cfe444b697d69eb0
function used = getvariables(F) F = flatten(F); if length(F.clauses) == 0 used = []; return end if isa(F.clauses{1},'cell') F = flatten(F); end used = recursivegetvariables(F,1,length(F.clauses)); function used = recursivegetvariables(F,startindex,endindex) if endindex-startindex>50 newstart = startindex; mid = ceil((startindex + endindex)/2); newend = endindex; used1 = recursivegetvariables(F,newstart,mid); used2 = recursivegetvariables(F,mid+1,newend); used = uniquestripped([used1 used2]); else used = []; if startindex <= length(F.clauses) used = getvariables(F.clauses{startindex}.data); for i = startindex+1:endindex Fivars = getvariables(F.clauses{i}.data); if ~isequal(used,Fivars(:)') used = [used Fivars(:)']; end end used = uniquestripped(used); end end
github
EnricoGiordano1992/LMI-Matlab-master
depends.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/depends.m
826
utf_8
9d357105527d2957bed1f995761d9b8f
function LinearVariables = depends(F) F = flatten(F); % Get all used variables in this LMI object used = recursivedepends(F.clauses); % Now, determine the involved linear variables [mt,variabletype] = yalmip('monomtable'); if any(variabletype)%1%~isempty(nlv) & any(ismembc(used,nlv(1,:))) LinearVariables = find(any(mt(used,:),1)); LinearVariables = LinearVariables(:)'; else LinearVariables = used; end function used = recursivedepends(clauses) if length(clauses) > 2 mid = floor(length(clauses)/2); used1 = recursivedepends({clauses{1:mid}}); used2 = recursivedepends({clauses{mid+1:end}}); used = uniquestripped([used1 used2]); else used = []; for i = 1:length(clauses) Fivar = getvariables(clauses{i}.data); used = uniquestripped([used Fivar(:)']); end end
github
EnricoGiordano1992/LMI-Matlab-master
polytope.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/polytope.m
2,367
utf_8
936949134726945ac12d1cf313b998c3
function [P,x] = polytope(X,options) % polytope Converts constraints to polytope object % % P = polytope(F) % [P,x] = polytope(F) % % P : polytope object (Requires the Multi-parametric Toolbox) % x : sdpvar object defining the variables in the polytope P.H*x<=P.K % F : Constraint object with linear inequalities if nargin < 2 options = sdpsettings; elseif isempty(options) options = sdpsettings; end [p,recoverdata,solver,diagnostic,F] = compileinterfacedata(X,[],[],[],options,0); if p.K.q(1) > 0 | p.K.s(1) > 0 | any(p.variabletype) error('Polytope can only be applied to MILP-representable constraints.') end if p.K.f > 0 try [P,x] = polyhedron(X,options); return catch disp('MPT does not support polytopes with empty interior') disp('Note that these equality constraints might have been generated internally by YALMIP') error('Functionality not yet supported') end end if isempty(p.binary_variables) & isempty(p.integer_variables) P = polytope(-p.F_struc(:,2:end),p.F_struc(:,1)); x = recover(p.used_variables); else nBin = length(p.binary_variables); [pBinary,removeEQ,removeLP] = extractOnly(p,p.binary_variables); p.F_struc = [p.F_struc(removeEQ,:);p.F_struc(p.K.f+removeLP,:)]; p.K.f = length(removeEQ); p.K.l = length(removeLP); p.used_variables(p.binary_variables)=[]; x = recover(p.used_variables); P = []; for i = 0:2^nBin-1; comb = dec2decbin(i,nBin); if checkfeasiblefast(pBinary,comb(:),1e-6) pi = p; H = -p.F_struc(:,2:end);% Hx < K K = p.F_struc(:,1); K = K-H(:,p.binary_variables)*comb(:); H(:,p.binary_variables)=[]; P = [P polytope(H,K)]; end end end function pLP = extractLP(p); pLP = p; pLP.F_struc = pLP.F_struc(1:p.K.f+p.K.l,:); pLP.K.q = 0; pLP.K.s = 0; function [pRed,removeEQ,removeLP] = extractOnly(p,these); pRed = p; p.F_struc(:,1+these) = 0; removeEQ = find(any(p.F_struc(1:pRed.K.f,2:end),2)); removeLP = find(any(p.F_struc(1+pRed.K.f:end,2:end),2)); pRed.F_struc(pRed.K.f+removeLP,:)=[]; pRed.F_struc(removeEQ,:)=[]; pRed.K.f = pRed.K.f - length(removeEQ); pRed.K.l = pRed.K.l - length(removeLP); pRed.F_struc = pRed.F_struc(:,[1 1+these]); pRed.lb = pRed.lb(these); pRed.ub = pRed.ub(these);
github
EnricoGiordano1992/LMI-Matlab-master
pwamodel.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/pwamodel.m
1,084
utf_8
b0d6a88e6f4c02018d6c85b072b057de
function [A,b] = pwamodel(F,x) [dummy,aux,s,model] = export(F,[]); A = -model.F_struc(:,2:end); b = model.F_struc(:,1); keep_these = find(ismember(aux.used_variables,getvariables(x))); A = [A(:,keep_these) A(:,setdiff(1:size(A,2),keep_these))]; [A,b] = fourier_motzkin(A,b,length(keep_these)); function [A,b] = fourier_motzkin(A,b,m) while size(A,2)>m [A,b] = fourier_motzkin_1(A,b,m); [aux,i] = unique([A b],'rows'); A = A(i,:); b = b(i); end function [Aout,bout] = fourier_motzkin_1(A,b,m) for i = m+1:size(A,2) less = find(A(:,i)>0); larger = find(A(:,i)<0); t(i-m) =length(less)*length(larger); end [minn,remove] = min(t); remove = remove+m; keep = setdiff(1:size(A,2),remove); less = find(A(:,remove)>0); larger = find(A(:,remove)<0); notinvolved = find(A(:,remove)==0); Aout = A(notinvolved,keep); bout = b(notinvolved); for i = 1:length(less) for j = 1:length(larger) Aout = [Aout;A(less(i),keep)/abs(A(less(i),remove)) + A(larger(j),keep)/abs(A(larger(j),remove))]; bout = [bout;b(less(i))+b(larger(j))]; end end
github
EnricoGiordano1992/LMI-Matlab-master
categorizeproblem.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/categorizeproblem.m
19,268
utf_8
62d7b9118d98a76df49c59aabb69bc3a
function [problem,integer_variables,binary_variables,parametric_variables,uncertain_variables,semicont_variables,quad_info] = categorizeproblem(F,P,h,relax,parametric,evaluation,F_vars,exponential_cone) %categorizeproblem Internal function: tries to determine the type of optimization problem F = flatten(F); Counter = length(F.LMIid); Ftype = zeros(Counter,1); real_data = 1; int_data = 0; interval_data = 0; bin_data = 0; par_data = 0; scn_data = 0; poly_constraint = 0; bilin_constraint = 0; sigm_constraint = 0; rank_constraint = 0; rank_objective = 0; exp_cone = 0; parametric_variables = []; kyp_prob = 0; gkyp_prob = 0; % *********************************************** % Setup an empty problem definition % *********************************************** problem.objective.linear = 0; problem.objective.quadratic.convex = 0; problem.objective.quadratic.nonconvex = 0; problem.objective.quadratic.nonnegative = 0; problem.objective.polynomial = 0; problem.objective.maxdet.convex = 0; problem.objective.maxdet.nonconvex = 0; problem.objective.sigmonial = 0; problem.constraint.equalities.linear = 0; problem.constraint.equalities.quadratic = 0; problem.constraint.equalities.polynomial = 0; problem.constraint.equalities.sigmonial = 0; problem.constraint.inequalities.elementwise.linear = 0; problem.constraint.inequalities.elementwise.quadratic.convex = 0; problem.constraint.inequalities.elementwise.quadratic.nonconvex = 0; problem.constraint.inequalities.elementwise.sigmonial = 0; problem.constraint.inequalities.elementwise.polynomial = 0; problem.constraint.inequalities.semidefinite.linear = 0; problem.constraint.inequalities.semidefinite.quadratic = 0; problem.constraint.inequalities.semidefinite.polynomial = 0; problem.constraint.inequalities.semidefinite.sigmonial = 0; problem.constraint.inequalities.rank = 0; problem.constraint.inequalities.secondordercone.linear = 0; problem.constraint.inequalities.secondordercone.nonlinear = 0; problem.constraint.inequalities.rotatedsecondordercone = 0; problem.constraint.inequalities.powercone = 0; problem.constraint.complementarity.variable = 0; problem.constraint.complementarity.linear = 0; problem.constraint.complementarity.nonlinear = 0; problem.constraint.integer = 0; problem.constraint.binary = 0; problem.constraint.semicont = 0; problem.constraint.sos1 = 0; problem.constraint.sos2 = 0; problem.complex = 0; problem.parametric = parametric; problem.interval = 0; problem.evaluation = evaluation; problem.exponentialcone = exponential_cone; % ******************************************************** % Make a list of all globally available discrete variables % ******************************************************** integer_variables = yalmip('intvariables'); binary_variables = yalmip('binvariables'); semicont_variables = yalmip('semicontvariables'); uncertain_variables = yalmip('uncvariables'); for i = 1:Counter switch F.clauses{i}.type case 7 integer_variables = union(integer_variables,getvariables(F.clauses{i}.data)); case 8 binary_variables = union(binary_variables,getvariables(F.clauses{i}.data)); case 13 parametric_variables = union(parametric_variables,getvariables(F.clauses{i}.data)); case 52 semicont_variables = union(semicont_variables,getvariables(F.clauses{i}.data)); otherwise end end % ******************************************************** % Logarithmic objective? % ******************************************************** if ~isempty(P) problem.objective.maxdet.convex = 1; problem.objective.maxdet.nonconvex = 1; problem.objective.maxdet.convex = all(P.gain<=0); problem.objective.maxdet.nonconvex = any(P.gain>0); end %problem.objective.maxdet = ~isempty(P); % ******************************************************** % Rank variables % ******************************************************** rank_variables = yalmip('rankvariables'); any_rank_variables = ~isempty(rank_variables); % ******************************************************** % Make a list of all globally available nonlinear variables % ******************************************************** [monomtable,variabletype] = yalmip('monomtable'); linear_variables = find(variabletype==0); nonlinear_variables = find(variabletype~=0); sigmonial_variables = find(variabletype==4); if isempty(F_vars) allvars = getvariables(F); else allvars = F_vars; end members = ismembcYALMIP(nonlinear_variables,allvars); any_nonlinear_variables =~isempty(find(members)); any_discrete_variables = ~isempty(integer_variables) | ~isempty(binary_variables) | ~isempty(semicont_variables); interval_data = isinterval(h); problem.constraint.equalities.multiterm = 0; for i = 1:Counter Fi = F.clauses{i}; % Only real-valued data? real_data = real_data & isreal(Fi.data); interval_data = interval_data | isinterval(Fi.data); % Any discrete variables used if any_discrete_variables Fvar = getvariables(Fi.data); int_data = int_data | any(ismembcYALMIP(Fvar,integer_variables)); bin_data = bin_data | any(ismembcYALMIP(Fvar,binary_variables)); par_data = par_data | any(ismembcYALMIP(Fvar,parametric_variables)); scn_data = scn_data | any(ismembcYALMIP(Fvar,semicont_variables)); end if any_rank_variables rank_constraint = rank_constraint | any(ismember(getvariables(Fi.data),rank_variables)); end % Check for equalities violating GP definition if problem.constraint.equalities.multiterm == 0 if Fi.type==3 if isempty(strfind(Fi.handle,'Expansion of')) if multipletermsInEquality(Fi) problem.constraint.equalities.multiterm = 1; end end end end if ~any_nonlinear_variables % No nonlinearly parameterized constraints switch Fi.type case {1,9,40} problem.constraint.inequalities.semidefinite.linear = 1; case 2 problem.constraint.inequalities.elementwise.linear = 1; case 3 problem.constraint.equalities.linear = 1; case {4,54} problem.constraint.inequalities.secondordercone.linear = 1; case 5 problem.constraint.inequalities.rotatedsecondordercone = 1; case 20 problem.constraint.inequalities.powercone = 1; case 50 problem.constraint.sos2 = 1; case 51 problem.constraint.sos1 = 1; case 55 problem.constraint.complementarity.linear = 1; otherwise end else % Can be nonlinear stuff vars = getvariables(Fi.data); usednonlins = find(ismembcYALMIP(nonlinear_variables,vars)); if ~isempty(usednonlins) usedsigmonials = find(ismember(sigmonial_variables,vars)); if ~isempty(usedsigmonials) switch Fi.type case 1 problem.constraint.inequalities.semidefinite.sigmonial = 1; case 2 problem.constraint.inequalities.elementwise.sigmonial = 1; case 3 problem.constraint.equalities.sigmonial = 1; case {4,54} problem.constraint.inequalities.secondordercone.nonlinear = 1; case 5 error('Sigmonial RSOCP not supported'); otherwise error('Report bug in problem classification (sigmonial constraint)'); end else %deg = degree(Fi.data); types = variabletype(getvariables(Fi.data)); if ~any(types) deg = 1; elseif any(types==1) || any(types==2) deg = 2; else deg = NaN; end switch deg case 1 switch Fi.type case 1 problem.constraint.inequalities.semidefinite.linear = 1; case 2 problem.constraint.inequalities.elementwise.linear = 1; case 3 problem.constraint.equalities.linear = 1; case {4,54} problem.constraint.inequalities.secondordercone.linear = 1; case 5 problem.constraint.inequalities.rotatedsecondordercone = 1; case 20 problem.constraint.inequalities.powercone = 1; otherwise error('Report bug in problem classification (linear constraint)'); end case 2 switch Fi.type case 1 problem.constraint.inequalities.semidefinite.quadratic = 1; case 2 % FIX : This should be re-used from % convertconvexquad convex = 1; f = Fi.data;f = f(:); ii = 1; while convex & ii<=length(f) [Q,caux,faux,xaux,info] = quaddecomp(f(ii)); if info | any(eig(full(Q)) > 0) convex = 0; end ii= ii + 1; end if convex problem.constraint.inequalities.elementwise.quadratic.convex = 1; else problem.constraint.inequalities.elementwise.quadratic.nonconvex = 1; end case 3 problem.constraint.equalities.quadratic = 1; case {4,54} problem.constraint.inequalities.secondordercone.nonlinear = 1; case 5 error case 55 problem.constraint.complementarity.nonlinear = 1; otherwise error('Report bug in problem classification (quadratic constraint)'); end otherwise switch Fi.type case 1 problem.constraint.inequalities.semidefinite.polynomial = 1; case 2 problem.constraint.inequalities.elementwise.polynomial = 1; case 3 problem.constraint.equalities.polynomial = 1; case {4,54} problem.constraint.inequalities.secondordercone.nonlinear = 1; case 5 % problem.constraint.inequalities.rotatedsecondordercone = 1; case 55 problem.constraint.complementarity.nonlinear = 1; otherwise error('Report bug in problem classification (polynomial constraint)'); end end end else switch Fi.type case 1 problem.constraint.inequalities.semidefinite.linear = 1; case 2 problem.constraint.inequalities.elementwise.linear = 1; case 3 problem.constraint.equalities.linear = 1; case {4,54} problem.constraint.inequalities.secondordercone.linear = 1; case 5 problem.constraint.inequalities.rotatedsecondordercone = 1; case 20 problem.constraint.inequalities.powercone = 1; case 7 problem.constraint.integer = 1; case 8 problem.constraint.binary = 1; case 50 problem.constraint.sos2 = 1; case 51 problem.constraint.sos1 = 1; case 52 problem.constraint.semicont = 1; case 55 problem.constraint.complementarity.linear = 1; otherwise error('Report bug in problem classification (linear constraint)'); end end end end if int_data problem.constraint.integer = 1; end if bin_data problem.constraint.binary = 1; end if scn_data problem.constraint.semicont = 1; end if ~real_data problem.complex = 1; end if interval_data problem.interval = 1; end if rank_constraint problem.constraint.inequalities.rank = 1; end if ~isempty(uncertain_variables) problem.uncertain = 1; end if (relax==1) | (relax==3) problem.constraint.equalities.linear = problem.constraint.equalities.linear | problem.constraint.equalities.quadratic | problem.constraint.equalities.polynomial | problem.constraint.equalities.sigmonial; problem.constraint.equalities.quadratic = 0; problem.constraint.equalities.polynomial = 0; problem.constraint.equalities.sigmonial = 0; problem.constraint.inequalities.elementwise.linear = problem.constraint.inequalities.elementwise.linear | problem.constraint.inequalities.elementwise.quadratic.convex | problem.constraint.inequalities.elementwise.quadratic.nonconvex | problem.constraint.inequalities.elementwise.sigmonial | problem.constraint.inequalities.elementwise.polynomial; problem.constraint.inequalities.elementwise.quadratic.convex = 0; problem.constraint.inequalities.elementwise.quadratic.nonconvex = 0; problem.constraint.inequalities.elementwise.sigmonial = 0; problem.constraint.inequalities.elementwise.polynomial = 0; problem.constraint.inequalities.semidefinite.linear = problem.constraint.inequalities.semidefinite.linear | problem.constraint.inequalities.semidefinite.quadratic | problem.constraint.inequalities.semidefinite.polynomial | problem.constraint.inequalities.semidefinite.sigmonial; problem.constraint.inequalities.semidefinite.quadratic = 0; problem.constraint.inequalities.semidefinite.polynomial = 0; problem.constraint.inequalities.semidefinite.sigmonial = 0; problem.constraint.inequalities.elementwise.secondordercone.linear = problem.constraint.inequalities.secondordercone.linear | problem.constraint.inequalities.secondordercone.nonlinear ; problem.constraint.inequalities.elementwise.secondordercone.nonlinear = 0; poly_constraint = 0; bilin_constraint = 0; sigm_constraint = 0; problem.evaluation = 0; problem.exponentialcone = 0; end % Analyse the objective function quad_info = []; if isa(h,'sdpvar') h_is_linear = is(h,'linear'); else h_is_linear = 0; end if (~isempty(h)) & ~h_is_linear &~(relax==1) &~(relax==3) if ~(isempty(binary_variables) & isempty(integer_variables)) h_var = depends(h); if any(ismember(h_var,binary_variables)) problem.constraint.binary = 1; end if any(ismember(h_var,integer_variables)) problem.constraint.integer = 1; end end if any(ismember(getvariables(h),sigmonial_variables)) problem.objective.sigmonial = 1; else [Q,c,f,x,info] = quaddecomp(h); if ~isreal(Q) % Numerical noise common on imaginary parts Qr = real(Q); Qi = imag(Q); Qr(abs(Qr)<1e-10) = 0; Qi(abs(Qi)<1e-10) = 0; cr = real(c); ci = imag(c); cr(abs(cr)<1e-10) = 0; ci(abs(ci)<1e-10) = 0; Q = Qr + sqrt(-1)*Qi; c = cr + sqrt(-1)*ci; end if info==0 % OK, we have some kind of quadratic expression % Find involved variables if all(nonzeros(Q)>=0) problem.objective.quadratic.nonnegative = 1; else problem.objective.quadratic.nonnegative = 0; end index = find(any(Q,2)); if length(index) < length(Q) Qsub = Q(index,index); [Rsub,p]=chol(Qsub); if p % Maybe just some silly numerics [Rsub,p]=chol(Qsub+1e-12*eye(length(Qsub))); end if p==0 [i,j,k] = find(Rsub); R = sparse((i),index(j),k,length(Qsub),length(Q)); % R = Q*0; % R(index,index) = Rsub; else R = []; end else [R,p]=chol(Q); end if p~=0 if any(~diag(Q) & any(triu(Q,1),2)) % Diagonal zero but non-zero outside, cannot be convex else Q = full(Q); if min(eig(Q))>=-1e-10 p=0; try [U,S,V]=svd(Q); catch [U,S,V]=svd(full(Q)); end i = find(diag(S)>1e-10); R = sqrt(S(1:max(i),1:max(i)))*V(:,1:max(i))'; end end end if p==0 problem.objective.quadratic.convex = 1; else problem.objective.quadratic.nonconvex = 1; end quad_info.Q = Q; quad_info.c = c; quad_info.f = f; quad_info.x = x; quad_info.R = R; quad_info.p = p; else problem.objective.polynomial = 1; end end else problem.objective.linear = ~isempty(h); end if (relax==1) | (relax==2) problem.constraint.integer = 0; problem.constraint.binary = 0; problem.constraint.sos2 = 0; problem.constraint.semicont = 0; int_data = 0; bin_data = 0; scn_data = 0; end function p = multipletermsInEquality(Fi); p = 0; Fi = sdpvar(Fi.data); if length(getvariables(Fi))>1 B = getbase(Fi); if ~isreal(B) B = [real(B);imag(B)]; end p = any(sum(B | B,2)-(B(:,1) == 0) > 1); end
github
EnricoGiordano1992/LMI-Matlab-master
Polyhedron.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/Polyhedron.m
2,402
utf_8
30f5cf13a964070f9b800e10d49a372f
function [P,x] = polyhedron(X,options) % polyhedron Converts constraint to MPT polyhedron object % % P = polyhedron(F) % [P,x] = polyhedron(F) % % P : polyhedron object (Requires the Multi-parametric Toolbox) % x : sdpvar object defining the variables in the polyhedron % F : Constraint object with linear inequalities if nargin < 2 options = sdpsettings; elseif isempty(options) options = sdpsettings; end [p,recoverdata,solver,diagnostic,F] = compileinterfacedata(X,[],[],[],options,0); if p.K.q(1) > 0 | p.K.s(1) > 0 | any(p.variabletype) error('Polyhedron can only be applied to MILP-representable constraints.') end if isempty(p.binary_variables) & isempty(p.integer_variables) Aeq = -p.F_struc(1:p.K.f,2:end); beq = p.F_struc(1:p.K.f,1); A = -p.F_struc(p.K.f+1:end,2:end); b = p.F_struc(p.K.f+1:end,1); P = Polyhedron('A',A,'b',b,'Ae',Aeq,'be',beq); x = recover(p.used_variables); else nBin = length(p.binary_variables); [pBinary,removeEQ,removeLP] = extractOnly(p,p.binary_variables); p.F_struc = [p.F_struc(removeEQ,:);p.F_struc(p.K.f+removeLP,:)]; p.K.f = length(removeEQ); p.K.l = length(removeLP); p.used_variables(p.binary_variables)=[]; x = recover(p.used_variables); P = []; for i = 0:2^nBin-1; comb = dec2decbin(i,nBin); if checkfeasiblefast(pBinary,comb(:),1e-6) pi = p; H = -p.F_struc(:,2:end); K = p.F_struc(:,1); K = K-H(:,p.binary_variables)*comb(:); H(:,p.binary_variables)=[]; Aeq = H(1:p.K.f,:); beq = H(1:p.K.f); A = H(p.K.f+1:end,:); b = K(p.K.f+1:end); Pi = Polyhedron('A',A,'b',b,'Ae',Aeq,'be',beq); P = [P Pi]; end end end function pLP = extractLP(p); pLP = p; pLP.F_struc = pLP.F_struc(1:p.K.f+p.K.l,:); pLP.K.q = 0; pLP.K.s = 0; function [pRed,removeEQ,removeLP] = extractOnly(p,these); pRed = p; p.F_struc(:,1+these) = 0; removeEQ = find(any(p.F_struc(1:pRed.K.f,2:end),2)); removeLP = find(any(p.F_struc(1+pRed.K.f:end,2:end),2)); pRed.F_struc(pRed.K.f+removeLP,:)=[]; pRed.F_struc(removeEQ,:)=[]; pRed.K.f = pRed.K.f - length(removeEQ); pRed.K.l = pRed.K.l - length(removeLP); pRed.F_struc = pRed.F_struc(:,[1 1+these]); pRed.lb = pRed.lb(these); pRed.ub = pRed.ub(these);
github
EnricoGiordano1992/LMI-Matlab-master
lmi2sedumistruct.m
.m
LMI-Matlab-master/yalmip/extras/@lmi/lmi2sedumistruct.m
20,660
utf_8
29d3ff75fe3b58db06487e773878882b
function [F_struc,K,KCut,schur_funs,schur_data,schur_variables] = lmi2sedumistruct(F) %lmi2sedumistruct Internal function: Converts LMI to format needed in SeDuMi nvars = yalmip('nvars'); %Needed lot'sa times... % We first browse to see what we have got and the % dimension of F_struc (massive speed improvement) F = flatten(F); type_of_constraint = zeros(length(F.LMIid),1);%zeros(size(F.clauses,2),1); any_cuts = 0; for i = 1:length(F.LMIid)%size(F.clauses,2) type_of_constraint(i) = F.clauses{i}.type; if F.clauses{i}.cut any_cuts = 1; end end F_struc = []; schur_data = []; schur_funs = []; schur_variables = []; sdp_con = find(type_of_constraint == 1 | type_of_constraint == 9 | type_of_constraint == 40); sdpstack_con = find(type_of_constraint == 57); lin_con = find(type_of_constraint == 2 | type_of_constraint == 12); equ_con = find(type_of_constraint == 3); qdr_con = find(type_of_constraint == 4); mqdr_con = find(type_of_constraint == 54); rlo_con = find(type_of_constraint == 5); pow_con = find(type_of_constraint == 20); sos2_con = find(type_of_constraint == 50); sos1_con = find(type_of_constraint == 51); cmp_con = find(type_of_constraint == 55); % SeDuMi struct K.f = 0; % Linear equality K.l = 0; % Linear inequality K.c = 0; % Complementarity constraints K.q = 0; % SOCP K.r = 0; % Rotated SOCP (obsolete) K.p = 0; % Power cone K.s = 0; % SDP cone K.rank = []; K.dualrank = []; K.scomplex = []; K.xcomplex = []; KCut.f = []; KCut.l = []; KCut.c = []; KCut.q = []; KCut.r = []; KCut.p = []; KCut.s = []; top = 1; localtop = 1; % In the first part of the code, we will work with a transposed version of % the vectorized constraints, i.e. constraints are added by adding columns, % wheras the final output will be transposed % Linear equality constraints alljx = []; allix = []; allsx = []; block = 0; for i = 1:length(equ_con) constraints = equ_con(i); data = getbase(F.clauses{constraints}.data); % [n,m] = size(F.clauses{constraints}.data); % Which variables are needed in this constraint lmi_variables = getvariables(F.clauses{constraints}.data); if isreal(data) ntimesm = size(data,1); %ntimesm = n*m; %Just as well pre-calc else % Complex constraint, Expand to real and Imag ntimesm = 2*size(data,1); %ntimesm = 2*n*m; %Just as well pre-calc data = [real(data);imag(data)]; end mapX = [1 1+lmi_variables]; [ix,jx,sx] = find(data); %F_structemp = sparse(mapX(jx),ix,sx,1+nvars,ntimesm); %F_struc = [F_struc F_structemp]; alljx = [alljx mapX(jx)]; allix = [allix ix(:)'+block];block = block + ntimesm; allsx = [allsx sx(:)']; if F.clauses{constraints}.cut KCut.f = [KCut.f localtop:localtop+ntimesm-1]; end localtop = localtop+ntimesm; top = top+ntimesm; K.f = K.f+ntimesm; end F_struc = sparse(alljx,allix,allsx,1+nvars,block); % Linear inequality constraints localtop = 1; % Cuts are not dealt with correctly in the recurisve code. Use slower % version. Test with bmibnb_qcqp5 if any_cuts for i = 1:length(lin_con) constraints = lin_con(i); data = getbase(F.clauses{constraints}.data); [n,m] = size(F.clauses{constraints}.data); % Which variables are needed in this constraint lmi_variables = getvariables(F.clauses{constraints}.data); % Convert to real problem if isreal(data) ntimesm = n*m; %Just as well pre-calc else % Complex constraint, Expand to real and Imag ntimesm = 2*n*m; %Just as well pre-calc data = [real(data);imag(data)]; end % Add numerical data to complete problem setup mapX = [1 1+lmi_variables]; [ix,jx,sx] = find(data); F_structemp = sparse(mapX(jx),ix,sx,1+nvars,ntimesm); F_struc = [F_struc F_structemp]; if F.clauses{constraints}.cut KCut.l = [KCut.l localtop:localtop+ntimesm-1]; end localtop = localtop+ntimesm; top = top+ntimesm; K.l = K.l+ntimesm; end else if length(lin_con)>0 [F_struc,K,KCut] = recursive_lp_fix(F,F_struc,K,KCut,lin_con,nvars,4,1); end end for i = 1:length(cmp_con) constraints = cmp_con(i); [n,m] = size(F.clauses{constraints}.data); ntimesm = n*m; %Just as well pre-calc % Which variables are needed in this constraint lmi_variables = getvariables(F.clauses{constraints}.data); % We allocate the structure blockwise... F_structemp = spalloc(1+nvars,ntimesm,0); % Add these rows only F_structemp([1 1+lmi_variables(:)'],:)= getbase(F.clauses{constraints}.data).'; % ...and add them together (efficient for large structures) F_struc = [F_struc F_structemp]; top = top+ntimesm; K.c(i) = n; end qdr_con = union(qdr_con,mqdr_con); if length(qdr_con) > 0 [F_struc,K,KCut] = recursive_socp_fix(F,F_struc,K,KCut,qdr_con,nvars,8,1); end % % % if length(mqdr_con) > 0 % [F_struc,K,KCut] = recursive_msocp_fix(F,F_struc,K,KCut,mqdr_con,nvars,inf,1); % end % Rotated Lorentz cone constraints for i = 1:length(rlo_con) constraints = rlo_con(i); [n,m] = size(F.clauses{constraints}.data); ntimesm = n*m; %Just as well pre-calc % Which variables are needed in this constraint lmi_variables = getvariables(F.clauses{constraints}.data); % We allocate the structure blockwise... F_structemp = spalloc(1+nvars,ntimesm,0); % Add these rows only F_structemp([1 1+lmi_variables(:)'],:)= getbase(F.clauses{constraints}.data).'; % ...and add them together (efficient for large structures) F_struc = [F_struc F_structemp]; top = top+ntimesm; K.r(i) = n; end % Power cone constraints for i = 1:length(pow_con) constraints = pow_con(i); [n,m] = size(F.clauses{constraints}.data); ntimesm = n*m; %Just as well pre-calc % Should always have size 4 if n~=4 error('Power cone constraint has strange dimension') end % Which variables are needed in this constraint lmi_variables = getvariables(F.clauses{constraints}.data); % We allocate the structure blockwise... F_structemp = spalloc(1+nvars,ntimesm,0); % Add these rows only F_structemp([1 1+lmi_variables(:)'],:)= getbase(F.clauses{constraints}.data).'; alpha = F_structemp(1,end); F_structemp(:,end)=[]; % ...and add them together (efficient for large structures) F_struc = [F_struc F_structemp]; top = top+ntimesm; K.p(i) = alpha; end % Semidefinite constraints % We append the recursively in order to speed up construction % of problems with a lot of medium size SDPs any_schur = 0; for j = sdp_con(:)' if ~isempty(F.clauses{j}.schurfun) any_schur = 1; break end end if any_schur [F_struc,K,KCut,schur_funs,schur_data,schur_variables] = recursive_sdp_fix(F,F_struc,K,KCut,schur_funs,schur_data,schur_variables,sdp_con,nvars,inf,1); else [F_struc,K,KCut,schur_funs,schur_data,schur_variables] = recursive_sdp_fix(F,F_struc,K,KCut,schur_funs,schur_data,schur_variables,sdp_con,nvars,8,1); end % Now go back to YALMIP default orientation constraints x variables F_struc = F_struc.'; % Now fix things for the rank constraint % This is currently a hack... % Should not be in this file [rank_variables,dual_rank_variables] = yalmip('rankvariables'); if ~isempty(rank_variables) used_in = find(sum(abs(F_struc(:,1+rank_variables)),2)); if ~isempty(used_in) if used_in >=1+K.f & used_in < 1+K.l+K.f for i = 1:length(used_in) [ii,jj,kk] = find(F_struc(used_in(i),:)); if length(ii)==2 & kk(2)<1 r = floor(kk(1)); var = jj(2)-1; extstruct = yalmip('extstruct',var); X = extstruct.arg{1}; if issymmetric(X) F_structemp = sedumize(X,nvars); else error('Only symmetric matrices can be rank constrained.') end F_struc = [F_struc;F_structemp]; if isequal(K.s,0) K.s(1,1) = size(extstruct.arg{1},1); else K.s(1,end+1) = size(extstruct.arg{1},1); end K.rank(1,end+1) = min(r,K.s(end)); else error('This rank constraint is not supported (only supports rank(X) < r)') end end % Remove the nonlinear operator constraints F_struc(used_in,:) = []; K.l = K.l - length(used_in); else error('You have added a rank constraint on an equality constraint, or a scalar expression?!') end end end if ~isempty(sos2_con) | ~isempty(sos1_con) K.sos.type = []; K.sos.variables = {}; K.sos.weight = {}; for i = sos2_con(:)' K.sos.type = [K.sos.type '2']; K.sos.variables{end+1} = getvariables(F.clauses{i}.data); K.sos.variables{end} = K.sos.variables{end}(:); temp = struct(F.clauses{i}.data); K.sos.weight{end+1} = temp.extra.sosweights; end for i = sos1_con(:)' K.sos.type = [K.sos.type '1']; K.sos.variables{end+1} = getvariables(F.clauses{i}.data); K.sos.variables{end} = K.sos.variables{end}(:); temp = struct(F.clauses{i}.data); K.sos.weight{end+1} = temp.extra.sosweights; end else K.sos.type = []; K.sos.variables = []; K.sos.weight = []; end if ~isempty(dual_rank_variables) used_in = find(sum(abs(F_struc(:,1+dual_rank_variables)),2)); if ~isempty(used_in) if used_in >=1+K.f & used_in < 1+K.l+K.f for i = 1:length(used_in) [ii,jj,kk] = find(F_struc(used_in(i),:)); if length(ii)==2 & kk(2)<1 r = floor(kk(1)); var = jj(2)-1; extstruct = yalmip('extstruct',var); X = extstruct.arg{1}; id = getlmiid(X); inlist=getlmiid(F); index=find(id==inlist); if ~isempty(index) K.rank(1,index) = min(r,K.s(index)); end else error('This rank constraint is not supported (only supports rank(X) < r)') end end % Remove the nonlinear operator constraints F_struc(used_in,:) = []; K.l = K.l - length(used_in); else error('You have added a rank constraint on an equality constraint, or a scalar expression?!') end end end function F_structemp = sedumize(Fi,nvars) Fibase = getbase(Fi); [n,m] = size(Fi); ntimesm = n*m; lmi_variables = getvariables(Fi); [ix,jx,sx] = find(Fibase); mapX = [1 1+lmi_variables]; F_structemp = sparse(ix,mapX(jx),sx,ntimesm,1+nvars); function [F_struc,K,KCut] = recursive_lp_fix(F,F_struc,K,KCut,lp_con,nvars,maxnlp,startindex) % Check if we should recurse if length(lp_con)>=2*maxnlp % recursing costs, so do 4 in one step ind = 1+ceil(length(lp_con)*(0:0.25:1)); [F_struc1,K,KCut] = recursive_lp_fix(F,[],K,KCut,lp_con(ind(1):ind(2)-1),nvars,maxnlp,startindex+ind(1)-1); [F_struc2,K,KCut] = recursive_lp_fix(F,[],K,KCut,lp_con(ind(2):ind(3)-1),nvars,maxnlp,startindex+ind(2)-1); [F_struc3,K,KCut] = recursive_lp_fix(F,[],K,KCut,lp_con(ind(3):ind(4)-1),nvars,maxnlp,startindex+ind(3)-1); [F_struc4,K,KCut] = recursive_lp_fix(F,[],K,KCut,lp_con(ind(4):ind(5)-1),nvars,maxnlp,startindex+ind(4)-1); F_struc = [F_struc F_struc1 F_struc2 F_struc3 F_struc4]; return elseif length(lp_con)>=maxnlp mid = ceil(length(lp_con)/2); [F_struc1,K,KCut] = recursive_lp_fix(F,[],K,KCut,lp_con(1:mid),nvars,maxnlp,startindex); [F_struc2,K,KCut] = recursive_lp_fix(F,[],K,KCut,lp_con(mid+1:end),nvars,maxnlp,startindex+mid); F_struc = [F_struc F_struc1 F_struc2]; return end oldF_struc = F_struc; F_struc = []; for i = 1:length(lp_con) constraints = lp_con(i); Fi = F.clauses{constraints}.data; Fibase = getbase(Fi); % [n,m] = size(Fi); % Convert to real problem if isreal(Fibase) ntimesm = size(Fibase,1); %ntimesm = n*m; %Just as well pre-calc else % Complex constraint, Expand to real and Imag ntimesm = 2*size(Fibase,1); %ntimesm = 2*n*m; %Just as well pre-calc Fibase = [real(Fibase);imag(Fibase)]; end % Which variables are needed in this constraint lmi_variables = getvariables(Fi); mapX = [1 1+lmi_variables]; % simpleMap = all(mapX==1:length(mapX)); simpleMap = 0;%all(diff(lmi_variables)==1); % highly optimized concatenation... if size(Fibase) == [ntimesm 1+nvars] & simpleMap F_struc = [F_struc Fibase']; elseif simpleMap vStart = lmi_variables(1); vEnd = lmi_variables(end); if vStart == 1 F_struc = [F_struc [Fibase spalloc(n,nvars-vEnd,0)]']; else F_struc = [F_struc [Fibase(:,1) spalloc(n,vStart-1,0) Fibase(:,2:end) spalloc(n,nvars-vEnd,0)]']; end else [ix,jx,sx] = find(Fibase); F_structemp = sparse(mapX(jx),ix,sx,1+nvars,ntimesm); F_struc = [F_struc F_structemp]; end if F.clauses{constraints}.cut KCut.l = [KCut.l i+startindex-1:i+startindex-1+n]; end K.l(i+startindex-1) = ntimesm; end K.l = sum(K.l); F_struc = [oldF_struc F_struc]; function [F_struc,K,KCut,schur_funs,schur_data,schur_variables] = recursive_sdp_fix(F,F_struc,K,KCut,schur_funs,schur_data,schur_variables,sdp_con,nvars,maxnsdp,startindex) if isempty(sdp_con) return % Check if we should recurse elseif length(sdp_con)>2*maxnsdp % recursing costs, so do 4 in one step ind = 1+ceil(length(sdp_con)*(0:0.25:1)); [F_struc1,K,KCut,schur_funs,schur_data,schur_variables] = recursive_sdp_fix(F,[],K,KCut,schur_funs,schur_data,schur_variables,sdp_con(ind(1):ind(2)-1),nvars,maxnsdp,startindex+ind(1)-1); [F_struc2,K,KCut,schur_funs,schur_data,schur_variables] = recursive_sdp_fix(F,[],K,KCut,schur_funs,schur_data,schur_variables,sdp_con(ind(2):ind(3)-1),nvars,maxnsdp,startindex+ind(2)-1); [F_struc3,K,KCut,schur_funs,schur_data,schur_variables] = recursive_sdp_fix(F,[],K,KCut,schur_funs,schur_data,schur_variables,sdp_con(ind(3):ind(4)-1),nvars,maxnsdp,startindex+ind(3)-1); [F_struc4,K,KCut,schur_funs,schur_data,schur_variables] = recursive_sdp_fix(F,[],K,KCut,schur_funs,schur_data,schur_variables,sdp_con(ind(4):ind(5)-1),nvars,maxnsdp,startindex+ind(4)-1); F_struc = [F_struc F_struc1 F_struc2 F_struc3 F_struc4]; return elseif length(sdp_con)>maxnsdp mid = ceil(length(sdp_con)/2); [F_struc1,K,KCut,schur_funs,schur_data,schur_variables] = recursive_sdp_fix(F,[],K,KCut,schur_funs,schur_data,schur_variables,sdp_con(1:mid),nvars,maxnsdp,startindex); [F_struc2,K,KCut,schur_funs,schur_data,schur_variables] = recursive_sdp_fix(F,[],K,KCut,schur_funs,schur_data,schur_variables,sdp_con(mid+1:end),nvars,maxnsdp,startindex+mid); F_struc = [F_struc F_struc1 F_struc2]; return end oldF_struc = F_struc; F_struc = []; for i = 1:length(sdp_con) constraints = sdp_con(i); % Simple data Fi = F.clauses{constraints}; X = Fi.data; lmi_variables = getvariables(X); [n,m] = size(X); ntimesm = n*m; %Just as well pre-calc if is(X,'gkyp') ss = struct(X); nn = size(F.clauses{1}.data,1); bb = getbase(ss.extra.M); Mbase = []; for ib = 1:size(bb,2)-1 Mbase{ib} = (reshape(bb(:,ib+1),nn,nn)); end for ip = 1:length(ss.extra.P) Pvars{ip} = getvariables(ss.extra.P{ip}); end schur_data{i,1} = {ss.extra.K, ss.extra.Phi,Mbase, ss.extra.negated, getvariables(ss.extra.M),Pvars}; schur_funs{i,1} = 'HKM_schur_GKYP'; schur_variables{i,1} = lmi_variables; elseif ~isempty(Fi.schurfun) schur_data{i,1} = Fi.schurdata; schur_funs{i,1} = Fi.schurfun; schur_variables{i,1} = lmi_variables; end % get numerics Fibase = getbase(X); % now delete old data to save memory % F.clauses{constraints}.data=[]; % Which variables are needed in this constraint %lmi_variables = getvariables(Fi); if length(lmi_variables) == nvars % No remap needed F_structemp = Fibase'; else mapX = [1 1+lmi_variables]; [ix,jx,sx] = find(Fibase); clear Fibase; % Seems to be faster to transpose generation F_structemp = sparse(ix,mapX(jx),sx,ntimesm,1+nvars)'; clear jx ix sx end F_struc = [F_struc F_structemp]; if Fi.cut KCut.s = [KCut.s i+startindex-1]; end K.s(i+startindex-1) = n; K.rank(i+startindex-1) = n; K.dualrank(i+startindex-1) = n; % Check for a complex structure if ~isreal(F_structemp) K.scomplex = [K.scomplex i+startindex-1]; end clear F_structemp end F_struc = [oldF_struc F_struc]; function [F_struc,K,KCut] = recursive_socp_fix(F,F_struc,K,KCut,qdr_con,nvars,maxnsocp,startindex); % Check if we should recurse if length(qdr_con)>2*maxnsocp % recursing costs, so do 4 in one step ind = 1+ceil(length(qdr_con)*(0:0.25:1)); [F_struc1,K1,KCut] = recursive_socp_fix(F,[],K,KCut,qdr_con(ind(1):ind(2)-1),nvars,maxnsocp,startindex+ind(1)-1); [F_struc2,K2,KCut] = recursive_socp_fix(F,[],K,KCut,qdr_con(ind(2):ind(3)-1),nvars,maxnsocp,startindex+ind(2)-1); [F_struc3,K3,KCut] = recursive_socp_fix(F,[],K,KCut,qdr_con(ind(3):ind(4)-1),nvars,maxnsocp,startindex+ind(3)-1); [F_struc4,K4,KCut] = recursive_socp_fix(F,[],K,KCut,qdr_con(ind(4):ind(5)-1),nvars,maxnsocp,startindex+ind(4)-1); F_struc = [F_struc F_struc1 F_struc2 F_struc3 F_struc4]; K.q = [K1.q K2.q K3.q K4.q]; K.q(K.q==0)=[]; return elseif length(qdr_con)>maxnsocp mid = ceil(length(qdr_con)/2); [F_struc1,K1,KCut] = recursive_socp_fix(F,[],K,KCut,qdr_con(1:mid),nvars,maxnsocp,startindex); [F_struc2,K2,KCut] = recursive_socp_fix(F,[],K,KCut,qdr_con(mid+1:end),nvars,maxnsocp,startindex+mid); F_struc = [F_struc F_struc1 F_struc2]; K.q = [K1.q K2.q]; K.q(K.q==0)=[]; return end % second order cone constraints for i = 1:length(qdr_con) constraints = qdr_con(i); [n,m] = size(F.clauses{constraints}.data); ntimesm = n*m; %Just as well pre-calc % Which variables are needed in this constraint lmi_variables = getvariables(F.clauses{constraints}.data); data = getbase(F.clauses{constraints}.data); if isreal(data) mapX = [1 1+lmi_variables]; [ix,jx,sx] = find(data); F_structemp = sparse(mapX(jx),ix,sx,1+nvars,ntimesm); else n = n+(n-1); ntimesm = n*m; F_structemp = spalloc(ntimesm,1+nvars,0); data = [data(1,:);real(data(2:end,:));imag(data(2:end,:))]; F_structemp(:,[1 1+lmi_variables(:)'])= data; F_structemp = F_structemp'; end % ...and add them together (efficient for large structures) F_struc = [F_struc F_structemp]; % K.q(i+startindex-1) = n; K.q = [K.q ones(1,m)*n]; end K.q(K.q==0)=[]; function [F_struc,K,KCut] = recursive_msocp_fix(F,F_struc,K,KCut,qdr_con,nvars,maxnsocp,startindex); if isequal(K.q,0) K.q = []; end % second order cone constraints for i = 1:length(qdr_con) constraints = qdr_con(i); [n,m] = size(F.clauses{constraints}.data); ntimesm = n*m; %Just as well pre-calc % Which variables are needed in this constraint lmi_variables = getvariables(F.clauses{constraints}.data); data = getbase(F.clauses{constraints}.data); if isreal(data) mapX = [1 1+lmi_variables]; [ix,jx,sx] = find(data); F_structemp = sparse(mapX(jx),ix,sx,1+nvars,ntimesm); else n = n+(n-1); ntimesm = n*m; F_structemp = spalloc(ntimesm,1+nvars,0); data = [data(1,:);real(data(2:end,:));imag(data(2:end,:))]; F_structemp(:,[1 1+lmi_variables(:)'])= data; F_structemp = F_structemp'; end % ...and add them together (efficient for large structures) F_struc = [F_struc F_structemp]; K.q = [K.q ones(1,m)*n]; end
github
EnricoGiordano1992/LMI-Matlab-master
plot.m
.m
LMI-Matlab-master/yalmip/extras/@ncvar/plot.m
3,229
utf_8
dfbeaac5398f6b4128ffe8d0b28117f3
function Y=plot(varargin) %PLOT (overloaded) % Fast version for plotting simple PWA objects if nargin == 1 X = varargin{1}; if isa(varargin{1},'sdpvar') if length(X) == 1 if isequal(full(getbase(X)),[0 1]) extstruct = yalmip('extstruct',getvariables(X)); if ~isempty(extstruct) if isequal(extstruct.fcn,'pwa_yalmip') | isequal(extstruct.fcn,'pwq_yalmip')%#ok switch extstruct.arg{3} case '' otherwise Pn = polytope; Bi = {}; Ci = {}; index = extstruct.arg{5}; for i = 1:length(extstruct.arg{1}) % Pick out row for j = 1:length(extstruct.arg{1}{i}.Bi) extstruct.arg{1}{i}.Bi{j} = extstruct.arg{1}{i}.Bi{j}(index,:); extstruct.arg{1}{i}.Ci{j} = extstruct.arg{1}{i}.Ci{j}(index,:); end if isempty(extstruct.arg{1}{i}.Ai{1}) Pn = [Pn extstruct.arg{1}{i}.Pn]; Bi = cat(2, Bi, extstruct.arg{1}{i}.Bi); Ci = cat(2, Ci, extstruct.arg{1}{i}.Ci); else if nnz([extstruct.arg{1}{i}.Ai{:}]) == 0 Pn = [Pn extstruct.arg{1}{i}.Pn]; Bi = cat(2, Bi, extstruct.arg{1}{i}.Bi); Ci = cat(2, Ci, extstruct.arg{1}{i}.Ci); else hold on mpt_plotPWQ(extstruct.arg{1}{i}.Pn, ... extstruct.arg{1}{i}.Ai, ... extstruct.arg{1}{i}.Bi, ... extstruct.arg{1}{i}.Ci, []); hold off end end end if ~isempty(Bi), mpt_plotPWA(Pn, Bi, Ci); end drawnow return end end end end end end end % More complex expression. Get epi-graph model % project to our variables, and extract defining facets if nargin == 1 [p,Bi,Ci,Pn,Pfinal] = pwa(varargin{1});%#ok elseif isa(varargin{2},'lmi') [p,Bi,Ci,Pn,Pfinal] = pwa(varargin{1},varargin{2});%#ok else error('Second argument should be a domain defining SET object.'); end if nargout>0 Y = mpt_plotPWA(Pn,Bi,Ci); else mpt_plotPWA(Pn,Bi,Ci); end function S = extractrow(S,index) for i = 1:length(S) S{i} = S{i}(index,:); end
github
EnricoGiordano1992/LMI-Matlab-master
subsasgn.m
.m
LMI-Matlab-master/yalmip/extras/@ncvar/subsasgn.m
7,395
utf_8
0dc57809e264cdd2678ba09ef96ecf94
function y = subsasgn(X,I,Y) %SUBASGN (overloaded) try if strcmp('()',I.type) X_is_spdvar = isa(X,'sdpvar'); Y_is_spdvar = isa(Y,'sdpvar'); if any(I.subs{1} <=0) error('Index into matrix is negative or zero.'); end switch 2*X_is_spdvar+Y_is_spdvar case 1 % This code does not work properly % Only work if b is undefined!!?!! % generally ugly code... y = Y; [n_y,m_y] = size(Y); y_lmi_variables = y.lmi_variables; try X0 = sparse(subsasgn(full(X),I,full(reshape(Y.basis(:,1),n_y,m_y)))); [n_x,m_x] = size(X0); y.basis = reshape(X0,n_x*m_x,1); X = full(X)*0; for i = 1:length(y_lmi_variables) X0 = full(sparse(subsasgn(X,I,full(reshape(Y.basis(:,i+1),n_y,m_y))))); y.basis(:,i+1) = reshape(X0,n_x*m_x,1); end y.dim(1) = n_x; y.dim(2) = m_x; % Reset info about conic terms y.conicinfo = [0 0]; catch error(lasterr) end case 2 if ~isempty(Y) Y = sparse(Y); end y = X; % Special code for speed % elements in vector replaced with constants if min(X.dim(1),X.dim(2))==1 & (length(I.subs)==1) y = X; y.basis(I.subs{1},1) = Y; y.basis(I.subs{1},2:end) = 0; y = clean(y); % Reset info about conic terms if isa(y,'sdpvar') y.conicinfo = [0 0]; end return; end x_lmi_variables = X.lmi_variables; lmi_variables = []; % y.basis = []; n = y.dim(1); m = y.dim(2); subX = sparse(subsasgn(full(reshape(X.basis(:,1),n,m)),I,Y)); y.basis = subX(:); j = 1; Z = 0*Y; for i = 1:length(x_lmi_variables) subX = sparse(subsasgn(full(reshape(X.basis(:,i+1),n,m)),I,Z)); if (norm(subX,inf)>0) y.basis(:,j+1) = subX(:); lmi_variables = [lmi_variables x_lmi_variables(i)]; j = j+1; end end y.dim(1) = size(subX,1); y.dim(2) = size(subX,2); if isempty(lmi_variables) % Convert back to double!! y=full(reshape(y.basis(:,1),y.dim(1),y.dim(2))); return else %Nope, still a sdpvar y.lmi_variables = lmi_variables; % Reset info about conic terms y.conicinfo = [0 0]; end case 3 z = X; x_lmi_variables = X.lmi_variables; y_lmi_variables = Y.lmi_variables; % In a first run, we fix the constant term and null terms in the X basis lmi_variables = []; nx = X.dim(1); mx = X.dim(2); ny = Y.dim(1); my = Y.dim(2); if (mx==1) & (my == 1) & isempty(setdiff(y_lmi_variables,x_lmi_variables)) & (max(I.subs{1}) < nx); % Fast specialized code for Didier y = specialcode(X,Y,I); return end % subX = sparse(subsasgn(full(reshape(X.basis(:,1),nx,mx)),I,reshape(Y.basis(:,1),ny,my))); subX = subsasgn(reshape(X.basis(:,1),nx,mx),I,reshape(Y.basis(:,1),ny,my)); z.basis = subX(:); j = 1; yz = 0*reshape(Y.basis(:,1),ny,my); for i = 1:length(x_lmi_variables) % subX = sparse(subsasgn(full(reshape(X.basis(:,i+1),nx,mx)),I,yz)); subX = subsasgn(reshape(X.basis(:,i+1),nx,mx),I,yz); if (norm(subX,inf)>0) z.basis(:,j+1) = subX(:); lmi_variables = [lmi_variables x_lmi_variables(i)]; j = j+1; end end z.lmi_variables=lmi_variables; all_lmi_variables = union(lmi_variables,y_lmi_variables); in_z = ismembc(all_lmi_variables,lmi_variables); in_y = ismembc(all_lmi_variables,y_lmi_variables); z_ind = 2; y_ind = 2; basis=z.basis(:,1); nz = size(subX,1); mz = size(subX,2); for i = 1:length(all_lmi_variables) switch 2*in_y(i)+in_z(i) case 1 basis(:,i+1) = z.basis(:,z_ind);z_ind = z_ind+1; case 2 temp = sparse(subsasgn(full(0*reshape(X.basis(:,1),nx,mx)),I,full(reshape(Y.basis(:,y_ind),ny,my)))); basis(:,i+1) = temp(:); y_ind = y_ind+1; case 3 Z1 = z.basis(:,z_ind); Z4 = Y.basis(:,y_ind); Z3 = reshape(Z4,ny,my); Z2 = sparse(subsasgn(0*reshape(full(X.basis(:,1)),nx,mx),I,Z3)); temp = reshape(Z1,nz,mz)+Z2; % temp = reshape(z.basis(:,z_ind),nz,mz)+sparse(subsasgn(0*reshape(full(X.basis(:,1)),nx,mx),I,reshape(Y.basis(:,y_ind),ny,my))); basis(:,i+1) = temp(:); z_ind = z_ind+1; y_ind = y_ind+1; otherwise end end; z.dim(1) = nz; z.dim(2) = mz; z.basis = basis; z.lmi_variables = all_lmi_variables; y = z; % Reset info about conic terms y.conicinfo = [0 0]; otherwise end else error('Reference type not supported'); end catch error(lasterr) end function y = specialcode(X,Y,I) y = X; X_basis = X.basis; Y_basis = Y.basis; ind = I.subs{1};ind = ind(:); yvar_in_xvar = zeros(length(Y.lmi_variables),1); for i = 1:length(Y.lmi_variables); yvar_in_xvar(i) = find(X.lmi_variables==Y.lmi_variables(i)); end y.basis(ind,:) = 0; mapper = [1 1+yvar_in_xvar(:)'];mapper = mapper(:); [i,j,k] = find(y.basis); [ib,jb,kb] = find(Y_basis); i = [i(:);ind(ib(:))]; j = [j(:);mapper(jb(:))]; k = [k(:);kb(:)]; y.basis = sparse(i,j,k,size(y.basis,1),size(y.basis,2)); y = clean(y);
github
EnricoGiordano1992/LMI-Matlab-master
sym.m
.m
LMI-Matlab-master/yalmip/extras/@ncvar/sym.m
3,154
utf_8
07ae0f26ffe548a4af2b632bd01c0bdf
function symb_pvec = sdisplay(pvec,symbolicname) %SDISPLAY Symbolic display of SDPVAR expression % % Note that the symbolic display only work if all % involved variables are explicitely defined as % scalar variables. % % Variables that not are defined as scalars % will be given the name ryv(i). ryv means % recovered YALMIP variables, i indicates the % index in YALMIP (i.e. the result from getvariables) % % If you want to change the generic name ryv, just % pass a second string argument % % EXAMPLES % sdpvar x y % sdisplay(x^2+y^2) % ans = % 'x^2+y^2' % % t = sdpvar(2,1); % sdisplay(x^2+y^2+t'*t) % ans = % 'x^2+y^2+ryv(5)^2+ryv(6)^2' allnames = {}; for pi = 1:size(pvec,1) for pj = 1:size(pvec,2) Y.type = '()'; Y.subs = [{pi} {pj}]; p = subsref(pvec,Y); % p = pvec(pi,pj); if isa(p,'double') symb_p = num2str(p); else LinearVariables = depends(p); x = recover(LinearVariables); exponent_p = full(exponents(p,x)); names = cell(length(x),1); for i = 1:length(names) names{i} = ['x' num2str(LinearVariables(i))]; allnames{end+1} = names{i}; end symb_p = ''; if all(exponent_p(1,:)==0) symb_p = num2str(full(getbasematrix(p,0))); exponent_p = exponent_p(2:end,:); end for i = 1:size(exponent_p,1) coeff = full(getbasematrixwithoutcheck(p,i)); switch coeff case 1 coeff='+'; case -1 coeff = '-'; otherwise if isreal(coeff) if coeff >0 coeff = ['+' num2str2(coeff)]; else coeff=[num2str2(coeff)]; end else coeff = ['+' '(' num2str2(coeff) ')' ]; end end symb_p = [symb_p coeff symbmonom(names,exponent_p(i,:))]; end if symb_p(1)=='+' symb_p = symb_p(2:end); end end symb_pvec{pi,pj} = symb_p; end end allnames = unique(allnames); for i = 1:length(allnames) evalin('caller',['syms ' allnames{i}]); end S = ''; for pi = 1:size(pvec,1) ss = ''; for pj = 1:size(pvec,2) ss = [ss ' ' symb_pvec{pi,pj} ',']; end S = [S ss ';']; end S = ['[' S ']'] ; symb_pvec = evalin('caller',S); function s = symbmonom(names,monom) s = ''; for j = 1:length(monom) if abs( monom(j))>0 s = [s names{j}]; if monom(j)~=1 s = [s '^' num2str(monom(j))]; end s =[s '*']; end end if isequal(s(end),'*') s = s(1:end-1); end function s = num2str2(x) s = num2str(full(x)); if isequal(s,'1') s = ''; end if isequal(s,'-1') s = '-'; end
github
EnricoGiordano1992/LMI-Matlab-master
or.m
.m
LMI-Matlab-master/yalmip/extras/@ncvar/or.m
2,236
utf_8
68a1641f6a288ec6b04d2e6630a99bd9
function varargout = or(varargin) %OR (overloaded) % % z = or(x,y) % z = x | y % % The OR operator is implemented using the concept of nonlinear operators % in YALMIP. X|Y defines a new so called derived variable that can be % treated as any other variable in YALMIP. When SOLVESDP is issued, % constraints are added to the problem to model the OR operator. The new % constraints add constraints to ensure that z,x and y satisfy the % truth-table for OR. % % The model for OR is (z>x) + (z>y) + (z<x+y) + (binary(z)) % % It is assumed that x and y are binary variables (either explicitely % declared using BINVAR, or constrained using BINARY.) % % See also SDPVAR/AND, BINVAR, BINARY % Models OR using a nonlinear operator definition switch class(varargin{1}) case 'char' z = varargin{2}; x = varargin{3}; y = varargin{4}; % ******************************************************* % For *some* efficiency,we merge expressions like A|B|C|D xvars = getvariables(x); yvars = getvariables(y); allextvars = yalmip('extvariables'); if (length(xvars)==1) & ismembc(xvars,allextvars) x = expandor(x,allextvars); end if (length(yvars)==1) & ismembc(yvars,allextvars) y = expandor(y,allextvars); end % ******************************************************* xy=[x y]; varargout{1} = (sum(xy) > z) + (z > xy) +(binary(z)) ; varargout{2} = struct('convexity','milp','monotonicity','milp','definiteness','milp'); varargout{3} = xy; case 'sdpvar' x = varargin{1}; y = varargin{2}; varargout{1} = yalmip('addextendedvariable','or',varargin{:}); otherwise end function x = expandor(x,allextvars) xmodel = yalmip('extstruct',getvariables(x)); if isequal(xmodel.fcn,'or') x1 = xmodel.arg{1}; x2 = xmodel.arg{2}; if ismembc(getvariables(xmodel.arg{1}),allextvars) x1 = expandor(xmodel.arg{1},allextvars); end if ismembc(getvariables(xmodel.arg{2}),allextvars) x2 = expandor(xmodel.arg{2},allextvars); end x = [x1 x2]; end
github
EnricoGiordano1992/LMI-Matlab-master
repmat.m
.m
LMI-Matlab-master/yalmip/extras/@ncvar/repmat.m
2,094
utf_8
695991712637a5274ff19d51a5fa40d2
function Y=repmat(varargin) %REPMAT (overloaded) try X = varargin{1}; Y = X; Y.basis = []; n = Y.dim(1); m = Y.dim(2); for i = 1:length(Y.lmi_variables)+1 temp = repmatfixed(reshape(X.basis(:,i),n,m),varargin{2:end}); Y.basis(:,i) = temp(:); end Y.dim(1) = size(temp,1); Y.dim(2) = size(temp,2); % Reset info about conic terms Y.conicinfo = [0 0]; catch error(lasterr) end function B = repmatfixed(A,M,N) if nargin < 2 error('MATLAB:repmat:NotEnoughInputs', 'Requires at least 2 inputs.') end if nargin == 2 if isscalar(M) siz = [M M]; else siz = M; end else siz = [M N]; end if isscalar(A) nelems = prod(siz); if nelems>0 % Since B doesn't exist, the first statement creates a B with % the right size and type. Then use scalar expansion to % fill the array. Finally reshape to the specified size. B = spalloc(nelems,1,nnz(A)); B(nelems) = A; if ~isequal(B(1), B(nelems)) | ~(isnumeric(A) | islogical(A)) % if B(1) is the same as B(nelems), then the default value filled in for % B(1:end-1) is already A, so we don't need to waste time redoing % this operation. (This optimizes the case that A is a scalar zero of % some class.) B(:) = A; end B = reshape(B,siz); else B = A(ones(siz)); end elseif ndims(A) == 2 & numel(siz) == 2 [m,n] = size(A); if (m == 1 & siz(2) == 1) B = A(ones(siz(1), 1), :); elseif (n == 1 & siz(1) == 1) B = A(:, ones(siz(2), 1)); else mind = (1:m)'; nind = (1:n)'; mind = mind(:,ones(1,siz(1))); nind = nind(:,ones(1,siz(2))); B = A(mind,nind); end else Asiz = size(A); Asiz = [Asiz ones(1,length(siz)-length(Asiz))]; siz = [siz ones(1,length(Asiz)-length(siz))]; for i=length(Asiz):-1:1 ind = (1:Asiz(i))'; subs{i} = ind(:,ones(1,siz(i))); end B = A(subs{:}); end function a = isscalar(b) [n,m] = size(b); a = (n*m == 1);
github
EnricoGiordano1992/LMI-Matlab-master
subsref.m
.m
LMI-Matlab-master/yalmip/extras/@ncvar/subsref.m
4,658
utf_8
844eb9433dfa4b2c8de950579397cde2
function varargout = subsref(varargin) %SUBSREF (overloaded) % Stupid first slice call (supported by MATLAB) if length(varargin{2}.subs) > 2 i = 3; ok = 1; while ok & (i <= length(varargin{2}.subs)) ok = ok & (isequal(varargin{2}.subs{i},1) | isequal(varargin{2}.subs{i},':')); i = i + 1; end if ok varargin{2}.subs = {varargin{2}.subs{1:2}}; else error('??? Index exceeds matrix dimensions.'); end end if (isa(varargin{2}.subs{1},'sdpvar')) | (length(varargin{2}.subs)==2 & isa(varargin{2}.subs{2},'sdpvar')) % ***************************************** % Experimental code for varaiable indicies % ***************************************** varargout{1} = milpsubsref(varargin{:}); return else X = varargin{1}; Y = varargin{2}; end try switch Y.type case '()' % Check for simple cases to speed things up (yes, ugly but we all want speed don't we!) switch size(Y.subs,2) case 1 if isa(Y.subs{1},'sdpvar') varargout{1} = yalmip('addextendedvariable',mfilename,varargin{:}); return else y = subsref1d(X,Y.subs{1}); end case 2 y = subsref2d(X,Y.subs{1},Y.subs{2}); otherwise error('Indexation error.'); end otherwise error(['Indexation with ''' Y.type ''' not supported']) ; end catch error(lasterr) end if isempty(y.lmi_variables) y = full(reshape(y.basis(:,1),y.dim(1),y.dim(2))); else % Reset info about conic terms y.conicinfo = [0 0]; end varargout{1} = y; function X = subsref1d(X,ind1) % Get old and new size n = X.dim(1); m = X.dim(2); % Convert to linear indecicies if islogical(ind1) ind1 = double(find(ind1)); end % Ugly hack handle detect X(:) %pickall = 0; if ischar(ind1) X.dim(1) = n*m; X.dim(2) = 1; return; end % What would the size be for a double dummy = reshape(X.basis(:,1),n,m); dummy = dummy(ind1); nnew = size(dummy,1); mnew = size(dummy,2); [nx,mx] = size(X.basis); % Sparse row-based subsref can be EEEEEEEXTREMELY SLOW IN SOME CASES % FIX : Smarter approach? % % try % [ix,jx,sx] = find(X.basis); % [keep ,loc] = ismember(ix,ind1);keep = find(keep); % ix = loc(keep);%ix = loc(ix); % jx = jx(keep); % sx = sx(keep); % Z = sparse(ix,jx,sx,length(ind1),mx); % catch % 9 % end if length(ind1) > 1 Z = X.basis.'; Z = Z(:,ind1); Z = Z.'; else Z = X.basis(ind1,:); end % if ~isequal(Z,Z2) % error % end % Find non-zero basematrices nzZ = find(any(Z(:,2:end),1)); if ~isempty(nzZ) X.dim(1) = nnew; X.dim(2) = mnew; X.lmi_variables = X.lmi_variables(nzZ); X.basis = Z(:,[1 1+nzZ]); else bas = reshape(X.basis(:,1),n,m); X.dim(1) = nnew; X.dim(2) = mnew; X.lmi_variables = []; X.basis = reshape(bas(ind1),nnew*mnew,1); end %nzZ = find(any(Z,1)); % % A bit messy code to speed up things % if isempty(nzZ) % bas = reshape(X.basis(:,1),n,m); % X.dim(1) = nnew; % X.dim(2) = mnew; % X.lmi_variables = []; % X.basis = reshape(bas(ind1),nnew*mnew,1); % else % if nzZ(1) == 1 % % else % end % end function X = subsref2d(X,ind1,ind2) if ischar(ind1) ind1 = 1:X.dim(1); end if ischar(ind2) ind2 = 1:X.dim(2); end % Convert to linear indecicies if islogical(ind1) ind1 = double(find(ind1)); end % Convert to linear indecicies if islogical(ind2) ind2 = double(find(ind2)); end n = X.dim(1); m = X.dim(2); lind2 = length(ind2); lind1 = length(ind1); if lind2 == 1 ind1_ext = ind1(:); else ind1_ext = kron(repmat(1,lind2,1),ind1(:)); end if lind1 == 1 ind2_ext = ind2(:); else ind2_ext = kron(ind2(:),repmat(1,lind1,1)); end if prod(size(ind1_ext))==0 | prod(size(ind2_ext))==0 linear_index = []; else % Speed-up for some bizarre code with loads of indexing of vector if m==1 & ind2_ext==1 linear_index = ind1_ext; else linear_index = sub2ind([n m],ind1_ext,ind2_ext); end end nnew = length(ind1); mnew = length(ind2); % Put all matrices in vectors and extract sub matrix Z = X.basis(linear_index,:); % Find non-zero basematrices nzZ = find(any(Z(:,2:end),1)); if ~isempty(nzZ) X.dim(1) = nnew; X.dim(2) = mnew; X.lmi_variables = X.lmi_variables(nzZ); X.basis = Z(:,[1 1+nzZ]); else bas = reshape(X.basis(:,1),n,m); X.dim(1) = nnew; X.dim(2) = mnew; X.lmi_variables = []; X.basis = reshape(bas(linear_index),nnew*mnew,1); end
github
EnricoGiordano1992/LMI-Matlab-master
pwa.m
.m
LMI-Matlab-master/yalmip/extras/@ncvar/pwa.m
4,373
utf_8
22c949c81c11c00407c9edb6dab6066e
function [p,Bi,Ci,Pn,Pfinal] = PWA(h,Xdomain) % PWA Tries to create a PWA description % % [p,Bi,Ci,Pn,Pfinal] = PWA(h,X) % % Input % h : scalar SDPVAR object % X : Constraint object % % Output % % p : scalar SDPVAR object representing the PWA function % Bi,Ci,Pn,Pfinal : Data in MPT format % % The command tries to expand the nonlinear operators % (min,max,abs,...) used in the variable h, in order % to generate an epi-graph model. Given this epigraph model, % it is projected to the variables of interest and the % defining facets of the PWA function is extracted. The second % argument can be used to limit the domain of the PWA function. % If no second argument is supplied, the PWA function is created % over the domain -100 to 100. % % A new sdpvar object p is created, representing the same % function as h, but in a slightly different internal format. % Additionally, the PWA description in MPT format is created. % % The function is mainly inteded to be used for easy % plotting of convex PWA functions t = sdpvar(1,1); [F,failure,cause] = expandmodel(lmi(h<=t),[],sdpsettings('allowmilp',0)); if failure error(['Could not expand model (' cause ')']); return end % Figure out what the actual original variables are % note, by construction, they all_initial = getvariables(h); all_extended = yalmip('extvariables'); all_variables = getvariables(F); gen_here = getvariables(t); non_ext_in = setdiff(all_initial,all_extended); lifted = all_variables(all_variables>gen_here); vars = union(setdiff(setdiff(setdiff(all_variables,all_extended),gen_here),lifted),non_ext_in); nx = length(vars); X = recover(vars); if nargin == 1 Xdomain = (-100 <= X <= 100); else Xdomain = (-10000 <= X <= 10000)+Xdomain; end [Ai,Bi,Ci,Pn] = generate_pwa(F,t,X,Xdomain,nx); Pfinal = union(Pn); sol.Pn = Pn; sol.Bi = Bi; sol.Ci = Ci; sol.Ai = Ai; sol.Pfinal = Pfinal; p = pwf(sol,X,'convex'); % % binarys = recover(all_variables(find(ismember(all_variables,yalmip('binvariables'))))) % if length(binarys) > 0 % % Binary_Equalities = []; % Binary_Inequalities = []; % Mixed_Equalities = []; % top = 1; % for i = 1:length(F) % Fi = sdpvar(F(i)); % if is(F(i),'equality') % if all(ismember(getvariables(Fi),yalmip('binvariables'))) % Binary_Equalities = [Binary_Equalities;(top:top-1+prod(size(Fi)))']; % Mixed_Equalities = [Mixed_Equalities;(top:top-1+prod(size(Fi)))']; % end % else % if all(ismember(getvariables(Fi),yalmip('binvariables'))) % Binary_Inequalities = [Binary_Inequalities;(top:top-1+prod(size(Fi)))']; % end % end % top = top+prod(size(Fi))'; % end % P = sdpvar(F); % P_ineq = extsubsref(P,setdiff(1:length(P),[Binary_Equalities; Binary_Inequalities])) % P_binary_eq = extsubsref(P,Binary_Equalities);HK1 = getbase(P_binary_eq); % P_binary_ineq = extsubsref(P,Binary_Inequalities);HK2 = getbase(P_binary_ineq); % nbin = length(binarys); % enums = dec2decbin(0:2^nbin-1,nbin)' % if isempty(HK2) % HK2 = HK1*0; % end % for i = 1:size(enums,2) % if all(HK1*[1;enums(:,i)]==0) % if all(HK2*[1;enums(:,i)]>=0) % Pi = replace(P_ineq,binarys,enums(:,i)) % end % end % end % % else % [Ai,Bi,Ci,Pn] = generate_pwa(F,t,X,Xdomain,nx); % end % function [Ai,Bi,Ci,Pn] = generate_pwa(F,t,X,Xdomain,nx) % Project, but remember that we already expanded the constraints P = polytope(projection(F+(t<=10000)+Xdomain,[X;t],[],1));Xdomain = polytope(Xdomain); [H,K] = double(P); facets = find(H(:,end)<0); region = find(~H(:,end) & any(H(:,1:nx),2) ); Hr = H(region,1:nx); Kr = K(region,:); H = H(facets,:); K = K(facets); K = K./H(:,end); H = H./repmat(H(:,end),1,size(H,2)); nx = length(X); Pn = []; cib = [H(:,1:nx) K]; Ai = {}; Bi = cell(0); Ci = cell(0); if length(Kr > 0) Xdomain = intersect(Xdomain,polytope(Hr,Kr)); end [Hr,Kr] = double(Xdomain); for i = 1:length(K) j = setdiff(1:length(K),i); HiKi = repmat(cib(i,:),length(K)-1,1)-cib(j,:); Pi = polytope([HiKi(:,1:nx);Hr],[HiKi(:,end);Kr]); if isfulldim(Pi) Pn = [Pn Pi]; Bi{end+1} = -cib(i,1:end-1); Ci{end+1} = cib(i,end); Ai{end+1} = []; end end
github
EnricoGiordano1992/LMI-Matlab-master
mtimes.m
.m
LMI-Matlab-master/yalmip/extras/@ncvar/mtimes.m
5,659
utf_8
70cfba01103b6fc708e8b37cbf17df2e
function Z = mtimes(X,Y) %MTIMES (overloaded) % Brute-force implementation of multiplication of noncommuting variables % (with possible commuting variables involved) % Check classes X_is_spdvar = isa(X,'sdpvar'); Y_is_spdvar = isa(Y,'sdpvar'); X_is_ncvar = isa(X,'ncvar'); Y_is_ncvar = isa(Y,'ncvar'); % Get all the tables, and expand them so that they correspond to the same % number of variables globally (nonCommutingTable is not up to date after a % new commuting variables has been defined, to save flops) nonCommutingTable = yalmip('nonCommutingTable'); [monomtable,variabletype] = yalmip('monomtable'); if size(monomtable,1)>size(nonCommutingTable,1) nonCommutingTable((1+size(nonCommutingTable,1)):(size(monomtable,1)),1) = (1+size(nonCommutingTable,1)):(size(monomtable,1)); end % Cast commutative variables as nc temporarily by adding them to the table commuting = find(~any(nonCommutingTable,2)); nonCommutingTable(commuting,1) = commuting; x_variables = getvariables(X);Xbase = getbase(X); y_variables = getvariables(Y);Ybase = getbase(Y); temp_monom_table = []; temp_nc_table = []; temp_c_table = []; new_base = []; for i = 0:length(x_variables) if i>0 x_monom = nonCommutingTable(x_variables(i),:); else x_monom = nan; end x_base = Xbase(:,i+1); for j = 0:length(y_variables) if j>0 y_monom = nonCommutingTable(y_variables(j),:); else y_monom = nan; end y_base = Ybase(:,j+1); xy_base = reshape(x_base,size(X))*reshape(y_base,size(Y)); if (i == 0) & (j== 0) new_base = xy_base(:); elseif nnz(xy_base)>0 xy_monom = [x_monom(2:end) y_monom(2:end)]; xy_monom = xy_monom(find(xy_monom)); temp_nc_table(end+1,1:length(xy_monom)) = xy_monom; temp_c_table(end+1,1:2) = [x_monom(1) y_monom(1)]; new_base = [new_base xy_base(:)]; end end end % It could have happended that new commuting monomials where generated % during the multiplication. Check and create these for i = 1:size(temp_c_table,1) aux = spalloc(1,size(monomtable,2),2); if ~isnan(temp_c_table(i,1)) aux = monomtable(temp_c_table(i,1),:) + aux; end if ~isnan(temp_c_table(i,2)) aux = monomtable(temp_c_table(i,2),:) + aux; end if nnz(aux)>0 candidates = findrows(monomtable,aux); if ~isempty(candidates) temp_c_table(i,1) = candidates; else monomtable = [monomtable;aux]; nonCommutingTable(end+1,1) = nan; temp_c_table(i,1) = size(monomtable,1); switch sum(aux) case 1 variabletype(end+1) = 0; case 2 if nnz(aux) == 1 variabletype(end+1) = 2; else variabletype(end+1) = 1; end otherwise variabletype(end+1) = 3; end end end end temp_nc_table = [temp_c_table(:,1) temp_nc_table]; % Okay, now we have the monomials. Now we have to match them to % possible earlier monomials if size(nonCommutingTable,2) < size(temp_nc_table,2) nonCommutingTable(1,size(temp_nc_table,2)) = 0; elseif size(temp_nc_table,2) < size(nonCommutingTable,2) temp_nc_table(1,size(nonCommutingTable,2)) = 0; end for i = 1:size(temp_nc_table,1) candidates = findrows_nan(nonCommutingTable,temp_nc_table(i,:)); if isempty(candidates) nonCommutingTable = [nonCommutingTable;temp_nc_table(i,:)]; monomtable(end+1,end+1) = 0; involved = temp_nc_table(i,1+find(temp_nc_table(i,2:end))); switch length(involved) case 1 if isnan(temp_nc_table(i,1)) variabletype(end+1) = 0; else if variabletype(temp_nc_table(i,1)) == 0 variabletype(end+1) = 1; else variabletype(end+1) = 3; end end case 2 if isnan(temp_nc_table(i,1)) if involved(1) == involved(2) variabletype(end+1) = 2; else variabletype(end+1) = 1; end else variabletype(end+1) = 3; end otherwise variabletype(end+1) = 3; end lmivariables(i) = size(nonCommutingTable,1); else lmivariables(i) = candidates; end end % Create an output variable quickly if X_is_ncvar Z = X; else Z = Y; end Z.basis = new_base; Z.lmi_variables = lmivariables; % Fucked up order (lmi_variables should be sorted and unique) if any(diff(Z.lmi_variables)<0) [i,j]=sort(Z.lmi_variables); Z.basis = [Z.basis(:,1) Z.basis(:,j+1)]; Z.lmi_variables = Z.lmi_variables(j); end [un_Z_vars2] = uniquestripped(Z.lmi_variables); if length(un_Z_vars2) < length(Z.lmi_variables) [un_Z_vars,hh,jj] = unique(Z.lmi_variables); if length(Z.lmi_variables) ~=length(un_Z_vars) Z.basis = Z.basis*sparse([1 1+jj],[1 1+(1:length(jj))],ones(1,1+length(jj)))'; Z.lmi_variables = un_Z_vars; end end Z.dim = size(xy_base); Z = clean(Z); if size(monomtable,2) < size(monomtable,1) monomtable(size(monomtable,1),size(monomtable,1)) = 0; end yalmip('nonCommutingTable',nonCommutingTable); yalmip('setmonomtable',monomtable,variabletype); function c = findrows_nan(a,b) a(isnan(a)) = 0; b(isnan(b)) = 0; c=findrows(a,b);
github
EnricoGiordano1992/LMI-Matlab-master
and.m
.m
LMI-Matlab-master/yalmip/extras/@ncvar/and.m
2,197
utf_8
e574e35b982582324eb3c78d9d965cab
function varargout = and(varargin) %AND (overloaded) % % z = and(x,y) % z = x & y % % The AND operator is implemented using the concept of nonlinear operators % in YALMIP. X|Y defines a new so called derived variable that can be % treated as any other variable in YALMIP. When SOLVESDP is issued, % constraints are added to the problem to model the AND operator. The new % constraints add constraints to ensure that z, x and y satisfy the % truth-table for AND. % % The model for AND is (z<=x)+(z<=y)+(1+z>=x+y)+(binary(z)) % % It is assumed that x and y are binary variables (either explicitely % declared using BINVAR, or constrained using BINARY.) % % See also SDPVAR/AND, BINVAR, BINARY switch class(varargin{1}) case 'char' z = varargin{2}; x = varargin{3}; y = varargin{4}; % ******************************************************* % For *some* efficiency,we merge expressions like A&B&C&D xvars = getvariables(x); yvars = getvariables(y); allextvars = yalmip('extvariables'); if (length(xvars)==1) & ismembc(xvars,allextvars) x = expandand(x,allextvars); end if (length(yvars)==1) & ismembc(yvars,allextvars) y = expandand(y,allextvars); end % ******************************************************* varargout{1} = (x >= z) + (y >= z) + (length(x)+length(y)-1+z >= sum(x)+sum(y)) + (binary(z)); varargout{2} = struct('convexity','milp','monotoncity','milp','definiteness','milp'); varargout{3} = []; case 'sdpvar' x = varargin{1}; y = varargin{2}; varargout{1} = yalmip('addextendedvariable','and',varargin{:}); otherwise end function x = expandand(x,allextvars) xmodel = yalmip('extstruct',getvariables(x)); if isequal(xmodel.fcn,'and') x1 = xmodel.arg{1}; x2 = xmodel.arg{2}; if ismembc(getvariables(xmodel.arg{1}),allextvars) x1 = expandand(xmodel.arg{1},allextvars); end if ismembc(getvariables(xmodel.arg{2}),allextvars) x2 = expandand(xmodel.arg{2},allextvars); end x = [x1 x2]; end
github
EnricoGiordano1992/LMI-Matlab-master
addfactors.m
.m
LMI-Matlab-master/yalmip/@sdpvar/addfactors.m
2,579
utf_8
1a0e68ae8acfbe591015380fb18a28ad
function Z = addfactors(Z,X,Y) if isa(X,'double') || isa(X,'logical') if length(Y.midfactors)==0 return end % Y = refactor(Y); Z.midfactors = Y.midfactors; Z.leftfactors = Y.leftfactors; Z.rightfactors = Y.rightfactors; Z.midfactors{end+1} = X; if length(X)>1 Z.leftfactors{end+1} = speye(size(X,1)); Z.rightfactors{end+1} = speye(size(X,2)); else Z.leftfactors{end+1} = 1; Z.rightfactors{end+1} = 1; end elseif isa(Y,'double') || isa(Y,'logical') if length(X.midfactors)==0 return end % X = refactor(X); Z.midfactors = X.midfactors; Z.leftfactors = X.leftfactors; Z.rightfactors = X.rightfactors; Z.midfactors{end+1} = Y; if length(Y)>1 Z.leftfactors{end+1} = speye(size(Y,1)); Z.rightfactors{end+1} = speye(size(Y,2)); else Z.leftfactors{end+1} = 1; Z.rightfactors{end+1} = 1; end else if length(X.midfactors)==0 || length(Y.midfactors)==0 Z.midfactors = []; Z.leftfactors = []; Z.rightfactors = []; return end % X = refactor(X); % Y = refactor(Y); if prod(X.dim)>0 && prod(Y.dim)==1 for i = 1:length(Y.midfactors) Y.leftfactors{i} = repmat(Y.leftfactors{i},X.dim(1),1); Y.rightfactors{i} = repmat(Y.rightfactors{i},1,X.dim(2)); end end if prod(Y.dim)>0 && prod(X.dim)==1 for i = 1:length(X.midfactors) X.leftfactors{i} = repmat(X.leftfactors{i},Y.dim(1),1); X.rightfactors{i} = repmat(X.rightfactors{i},1,Y.dim(2)); end end Z.leftfactors = {X.leftfactors{:},Y.leftfactors{:}}; Z.midfactors = {X.midfactors{:},Y.midfactors{:}}; Z.rightfactors = {X.rightfactors{:},Y.rightfactors{:}}; end n = Z.dim(1); m = Z.dim(2); for i = 1:length(Z.midfactors) % isdouble(i) = isa(Z.midfactors{i},'double'); if size(Z.leftfactors{i},1)~=n if prod(size(Z.midfactors{i}))==1 Z.leftfactors{i} = ones(n,1); else error('Inconsistent factors. Please report bug'); end end if size(Z.rightfactors{i},2)~=m if prod(size(Z.midfactors{i}))==1 Z.rightfactors{i} = ones(1,m); else error('Inconsistent factors. Please report bug'); end end end Z = cleandoublefactors(Z); try Z = flushmidfactors(Z); catch 1 end function Z = refactor(Z) if isempty(Z.midfactors) Z.leftfactors{1} = 1; Z.midfactors{1} = Z; Z.rightfactors{1} = 1; end
github
EnricoGiordano1992/LMI-Matlab-master
asec.m
.m
LMI-Matlab-master/yalmip/@sdpvar/asec.m
881
utf_8
210ec08cb20380016ffc9ab743ade4e9
function varargout = asec(varargin) %ASEC (overloaded) switch class(varargin{1}) case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','none','definiteness','none','model','callback'); operator.convexhull = []; operator.bounds = @bounds; operator.derivative = @(x)(1./(x.*(x.^2-1).^0.5)); varargout{1} = [varargin{3}.^2 >= 1]; % Disconnected domain varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ASEC called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xU <= -1 || xL >= 1 L = asec(xL); U = asec(xU); elseif xL < 0 & xU > 0 L = 0; U = pi; elseif xU < 0 || xL > 0 L = real(asec(xL)); U = real(asec(xU)); else L = 0; U = pi; end
github
EnricoGiordano1992/LMI-Matlab-master
norm.m
.m
LMI-Matlab-master/yalmip/@sdpvar/norm.m
12,678
utf_8
833cfcffac8a86284f26c75e3bec8bc9
function varargout = norm(varargin) %NORM (overloaded) % % t = NORM(x,P) % % The variable t can only be used in convexity preserving % operations such as t<=1, max(t,y)<=1, minimize t etc. % % For matrices... % NORM(X) models the largest singular value of X, max(svd(X)). % NORM(X,2) is the same as NORM(X). % NORM(X,1) models the 1-norm of X, the largest column sum, max(sum(abs(X))). % NORM(X,inf) models the infinity norm of X, the largest row sum, max(sum(abs(X'))). % NORM(X,'inf') same as above % NORM(X,'fro') models the Frobenius norm, sqrt(sum(diag(X'*X))). % NORM(X,'nuc') models the Nuclear norm, sum of singular values. % NORM(X,'*') same as above % NORM(X,'tv') models the (isotropic) total variation semi-norm % For vectors... % NORM(V) = norm(V,2) = standard Euclidean norm. % NORM(V,inf) = max(abs(V)). % NORM(V,1) = sum(abs(V)) % % SEE ALSO SUMK, SUMABSK %% *************************************************** % This file defines a nonlinear operator for YALMIP % % It can take three different inputs % For DOUBLE inputs, it returns standard double values % For SDPVAR inputs, it generates an internal variable % % When first input is 'model' it returns the graph % in the first output and structure describing some % properties of the operator. %% *************************************************** switch class(varargin{1}) case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them. if nargin == 1 varargout{1} = yalmip('define',mfilename,varargin{1},2); else switch varargin{2} case {1,2,inf,'inf','fro'} varargout{1} = yalmip('define',mfilename,varargin{:}); case 'tv' if ~isreal(varargin{1}) error('Total variation norm not yet implemented for complex arguments'); end if min(varargin{1}.dim)==1 varargout{1} = norm(diff(varargin{1}),1); return end varargout{1} = yalmip('define','norm_tv',varargin{:}); case {'nuclear','*'} if min(size(varargin{1}))==1 varargout{1} = norm(varargin{1},1); else varargout{1} = yalmip('define','norm_nuclear',varargin{:}); end otherwise if isreal(varargin{1}) & min(size(varargin{1}))==1 & isa(varargin{2},'double') varargout{1} = pnorm(varargin{:}); else error('norm(x,P) only supported for P = 1, 2, inf, ''fro'' and ''nuclear'''); end end end case 'char' % YALMIP sends 'model' when it wants the epigraph or hypograph switch varargin{1} case 'graph' t = varargin{2}; X = varargin{3}; p = varargin{4}; % Code below complicated by two things % 1: Absolute value for complex data -> cone constraints on % elements % 2: SUBSREF does not call SDPVAR subsref -> use extsubsref.m switch p case 1 if issymmetric(X) Z = sdpvar(size(X,1),size(X,2)); else Z = sdpvar(size(X,1),size(X,2),'full'); end if min(size(X))>1 if isreal(X) z = reshape(Z,[],1); x = reshape(X,[],1); F = (-z <= x <= z); else F = ([]); zvec = reshape(Z,1,[]); xrevec=reshape(real(X),1,[]); ximvec=reshape(imag(X),1,[]); F = [F,cone([zvec;xrevec;ximvec])]; end F = F + (sum(Z,1) <= t); else if isreal(X) % Standard definition % F = (-t <= X <= t); X = reshape(X,[],1); Z = reshape(Z,[],1); Xbase = getbase(X); Constant = find(~any(Xbase(:,2:end),2)); if ~isempty(Constant) % Exploit elements without any % decision variables r1 = ones(length(Z),1); r2 = zeros(length(Z),1); r1(Constant) = 0; r2(Constant) = abs(Xbase(Constant,1)); Z = Z.*r1 + r2; end F = (-Z <= X <= Z) + (sum(Z) <= t); else F = (cone([reshape(Z,1,[]);real(reshape(X,1,[]));imag(reshape(X,1,[]))])); F = F + (sum(Z) <= t); end end case 2 if min(size(X))>1 F = ([t*eye(size(X,1)) X;X' t*eye(size(X,2))])>=0; else F = cone(X(:),t); end case {inf,'inf'} if min(size(X))>1 Z = sdpvar(size(X,1),size(X,2),'full'); if isreal(X) F = (-Z <= X <= Z); else F = ([]); for i = 1:size(X,1) for j = 1:size(X,2) xi = extsubsref(X,i,j); zi = extsubsref(Z,i,j); F = F + (cone([real(xi);imag(xi)],zi)); end end end F = F + (sum(Z,2) <= t); else if isreal(X) F = (-t <= X <= t); [M,m,infbound] = derivebounds(X); if ~infbound F = F + (0 <= t <= max(max(abs([m M])))); end else F = ([]); for i = 1:length(X) xi = extsubsref(X,i); F = F + (cone([real(xi);imag(xi)],t)); end end end case 'fro' X.dim(1)=X.dim(1)*X.dim(2); X.dim(2)=1; F = (cone(X,t)); case 'nuclear' U = sdpvar(X.dim(2)); V = sdpvar(X.dim(1)); F = [trace(U)+trace(V) <= 2*t, [U X';X V]>=0]; case 'tv' Dx = [diff(X,1,1);zeros(1,X.dim(2))]; Dy = [diff(X,1,2) zeros(X.dim(1),1)]; T = sdpvar(X.dim(1),X.dim(2),'full'); F = cone([reshape(T,1,[]);reshape(Dx,1,[]);reshape(Dy,1,[])]); F = [F, sum(sum(T)) <= t]; otherwise end varargout{1} = F; varargout{2} = struct('convexity','convex','monotonicity','none','definiteness','positive','model','graph'); varargout{3} = X; case 'exact' t = varargin{2}; X = varargin{3}; p = varargin{4}; if ~isreal(X) | isequal(p,2) | isequal(p,'fro') | min(size(X))>1 % Complex valued data, matrices and 2-norm not supported varargout{1} = []; varargout{2} = []; varargout{3} = []; else if p==1 X = reshape(X,length(X),1); absX = sdpvar(length(X),1); d = binvar(length(X),1); [M,m] = derivebounds(X); if all(abs(sign(m)-sign(M))<=1) % Silly convex case. Some coding to care of the % case sign(0)=0... d = ones(length(X),1); d(m<0)=-1; F = (t - sum(absX) == 0) + (absX == d.*X); else F = ([]); % Some fixes to remove trivial constraints % which caused problems in a user m positive = find(m >= 0); negative = find(M <= 0); fixed = find(m==M); if ~isempty(fixed) positive = setdiff(positive,fixed); negative = setdiff(negative,fixed); end if ~isempty(positive) d = subsasgn(d,struct('type','()','subs',{{positive}}),1); end if ~isempty(negative) d = subsasgn(d,struct('type','()','subs',{{negative}}),0); end if ~isempty(fixed) notfixed = setdiff(1:length(m),fixed); addsum = sum(abs(m(fixed))); m = m(notfixed); M = M(notfixed); X = extsubsref(X,notfixed); absX = extsubsref(absX,notfixed); d = extsubsref(d,notfixed); else addsum = 0; end maxABSX = max([abs(m) abs(M)],[],2); % d==0 ---> X<0 and absX = -X F = F + (X <= M.*d) + (0 <= absX+X <= 2*maxABSX.*d); % d==1 ---> X>0 and absX = X F = F + (X >= m.*(1-d)) + (0 <= absX-X <= 2*maxABSX.*(1-d)); F = F + (t - sum(absX)-addsum == 0); end else F = max_integer_model([X;-X],t); end varargout{1} = F; varargout{2} = struct('convexity','convex','monotonicity','milp','definiteness','positive','model','integer'); varargout{3} = X; end otherwise error('SDPVAR/NORM called with CHAR argument?'); end otherwise error('Strange type on first argument in SDPVAR/NORM'); end function F = findmax(F,M,m,X,t) n = length(X); d = binvar(n,1); F = F + (sum(d)==1); F = F + (-(max(M)-min(m))*(1-d) <= t-X <= (max(M)-min(m))*(1-d)); kk = []; ii = []; for i = 1:n k = [1:1:i-1 i+1:1:n]'; ii = [ii;repmat(i,n-1,1)]; kk = [kk;k]; Mm = M(k)-m(i); end xii = extsubsref(X,ii); dii = extsubsref(d,ii); xkk = extsubsref(X,kk); F = F + (xkk <= xii+(M(kk)-m(ii)).*(1-dii));
github
EnricoGiordano1992/LMI-Matlab-master
pow10.m
.m
LMI-Matlab-master/yalmip/@sdpvar/pow10.m
979
utf_8
3c67d739166aa630ae6b9939611ab49c
function varargout = pow10(varargin) %POW10 (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/POW10 CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','convex','monotonicity','increasing','definiteness','positive','model','callback'); operator.convexhull = @convexhull; operator.bounds = @bounds; operator.derivative = @derivative; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/POW10 called with CHAR argument?'); end function df = derivative(x) df = log(10)*pow10(x); function [L,U] = bounds(xL,xU) L = pow10(xL); U = pow10(xU); function [Ax, Ay, b] = convexhull(xL,xU) fL = pow10(xL); fU = pow10(xU); dfL = log(10)*fL; dfU = log(10)*fU; [Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU);
github
EnricoGiordano1992/LMI-Matlab-master
tan.m
.m
LMI-Matlab-master/yalmip/@sdpvar/tan.m
841
utf_8
af58a56ca9dea8449e2c6fef9202be16
function varargout = tan (varargin) %TAN (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/TAN CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','none','definiteness','none','model','callback'); operator.convexhull = []; operator.bounds = @bounds; operator.derivative = @(x)(sec(x).^2); varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/TAN called with CHAR argument?'); end function [L,U] = bounds(xL,xU) n1 = fix((xL+pi/2)/(pi)); n2 = fix((xU+pi/2)/(pi)); if n1==n2 L = tan(xL); U = tan(xU); else L = -inf; U = inf; end
github
EnricoGiordano1992/LMI-Matlab-master
asinh.m
.m
LMI-Matlab-master/yalmip/@sdpvar/asinh.m
677
utf_8
e3f8453d9133b82d52664494918be4c5
function varargout = asinh(varargin) %ASINH (overloaded) switch class(varargin{1}) case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','increasing','definiteness','none','model','callback'); operator.convexhull = []; operator.bounds = @bounds; operator.derivative = @(x)((1 + x.^2).^-0.5); varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ASINH called with CHAR argument?'); end function [L,U] = bounds(xL,xU) L = asinh(xL); U = asinh(xU);
github
EnricoGiordano1992/LMI-Matlab-master
plot.m
.m
LMI-Matlab-master/yalmip/@sdpvar/plot.m
4,864
utf_8
0e3843abf5f44e3a2a5e011a093f9bc3
function Y=plot(varargin) %PLOT (overloaded) % Fast version for plotting simple PWA objects if nargin == 1 X = varargin{1}; if isa(varargin{1},'sdpvar') if length(X) == 1 if isequal(full(getbase(X)),[zeros(length(X),1) eye(length(X))]) extstruct = yalmip('extstruct',getvariables(X)); if ~isempty(extstruct) if isequal(extstruct.fcn,'pwa_yalmip') | isequal(extstruct.fcn,'pwq_yalmip')%#ok % Maybe some reduction has been performed so we % actually can plot it xarg = extstruct.arg{2}; switch extstruct.arg{3} case '' otherwise Pn = polytope; Bi = {}; Ci = {}; index = extstruct.arg{5}; for i = 1:length(extstruct.arg{1}) % Pick out row for j = 1:length(extstruct.arg{1}{i}.Bi) extstruct.arg{1}{i}.Bi{j} = extstruct.arg{1}{i}.Bi{j}(index,:); extstruct.arg{1}{i}.Ci{j} = extstruct.arg{1}{i}.Ci{j}(index,:); end if isempty(extstruct.arg{1}{i}.Ai{1}) Pn = [Pn extstruct.arg{1}{i}.Pn]; Bi = cat(2, Bi, extstruct.arg{1}{i}.Bi); Ci = cat(2, Ci, extstruct.arg{1}{i}.Ci); else if nnz([extstruct.arg{1}{i}.Ai{:}]) == 0 Pn = [Pn extstruct.arg{1}{i}.Pn]; Bi = cat(2, Bi, extstruct.arg{1}{i}.Bi); Ci = cat(2, Ci, extstruct.arg{1}{i}.Ci); else hold on [extstruct.arg{1}{i}.Pn,extstruct.arg{1}{i}.Bi,extstruct.arg{1}{i}.Ci,extstruct.arg{1}{i}.Ai] = reduce_basis(extstruct.arg{1}{i}.Pn,extstruct.arg{1}{i}.Bi,extstruct.arg{1}{i}.Ci,extstruct.arg{1}{i}.Ai,xarg); Y = mpt_plotPWQ(extstruct.arg{1}{i}.Pn, extstruct.arg{1}{i}.Ai,extstruct.arg{1}{i}.Bi,extstruct.arg{1}{i}.Ci); hold off end end end if ~isempty(Bi), hold on [Pn,Bi,Ci] = reduce_basis(Pn,Bi,Ci,[],xarg); if size(Bi{1},2) > 2 error('Cannot plot high-dimensional PWA functions') end mpt_plotPWA(Pn, Bi, Ci); hold off end drawnow return end end end end else for j = 1:length(X) plot(extsubsref(X,j)); end return end end end % More complex expression. Get epi-graph model % project to our variables, and extract defining facets if nargin == 1 [p,Bi,Ci,Pn,Pfinal] = pwa(varargin{1});%#ok elseif isa(varargin{2},'lmi') [p,Bi,Ci,Pn,Pfinal] = pwa(varargin{1},varargin{2});%#ok else error('Second argument should be a domain defining SET object.'); end if nargout>0 Y = mpt_plotPWA(Pn,Bi,Ci); else mpt_plotPWA(Pn,Bi,Ci); end function S = extractrow(S,index) for i = 1:length(S) S{i} = S{i}(index,:); end function [Pnnew,Binew,Cinew,Ainew] = reduce_basis(Pn,Bi,Ci,Ai,xarg); % if ~isequal(getbase(xarg),[zeros(length(xarg),1) eye(length(xarg))]) base = getbase(xarg); c = base(:,1); D = base(:,2:end); Pnnew = []; Ainew = []; Binew = []; Cinew = []; for i = 1:length(Pn) [H,K] = double(Pn(i)); Phere = polytope(H*D,K-H*c); if isfulldim(Phere) Pnnew = [Pnnew Phere]; if ~isempty(Ai) Cinew{end+1} = Ci{i} + Bi{i}*c + c'*Ai{i}*c; Binew{end+1} = Bi{i}*D + 2*c'*Ai{i}*D; Ainew{end+1} = D'*Ai{i}*Ai{i}; else Cinew{end+1} = Ci{i} + Bi{i}*c; Binew{end+1} = Bi{i}*D; end end end else Pnnew = Pn; Ainew = Ai; Binew = Bi; Cinew = Ci; end
github
EnricoGiordano1992/LMI-Matlab-master
ismember_internal.m
.m
LMI-Matlab-master/yalmip/@sdpvar/ismember_internal.m
3,293
utf_8
5c70c86d0d39f66f8b69c3e2f83b0508
function YESNO = ismember_internal(x,p) %ISMEMBER_INTERNAL Helper for ISMEMBER if isa(x,'sdpvar') & (isa(p,'polytope') | isa(p,'Polyhedron')) if length(p) == 1 [H,K,Ae,be] = poly2data(p); if min(size(x))>1 error('first argument should be a vector'); end if length(x) == size(H,2) x = reshape(x,length(x),1); YESNO = [H*x <= K,Ae*x == be]; return else disp('The polytope in the ismember condition has wrong dimension') error('Dimension mismatch.'); end else d = binvar(length(p),1); YESNO = (sum(d)==1); [L,U] = safe_bounding_box(p(1)); for i = 1:length(p) [Li,Ui] = safe_bounding_box(p(i)); L = min([L Li],[],2); U = max([U Ui],[],2); end for i = 1:length(p) [H,K,Ae,be] = poly2data(p(i)); % Merge equalities into inequalities H = [H;Ae;-Ae]; K = [K;be;-be]; if min(size(x))>1 error('first argument should be a vector'); end if length(x) == size([H],2) x = reshape(x,length(x),1); lhs = H*x-K; % Derive bounds based on YALMIPs knowledge on bounds on % involved variables [M,m] = derivebounds(lhs); % Strengthen by using MPTs bounding box %[temp,L,U] = bounding_box(p(i)); Hpos = (H>0); Hneg = (H<0); M = min([M (H.*Hpos*U+H.*Hneg*L-K)],[],2); YESNO = YESNO + (H*x-K <= M.*(1-extsubsref(d,i))); else error('Dimension mismatch.'); end end end return end if isa(x,'sdpvar') & isa(p,'double') x = reshape(x,prod(x.dim),1); if numel(p)==1 F = (x == p); else if size(p,1)==length(x) & size(p,2)>1 Delta = binvar(size(p,2),1); F = [sum(Delta) == 1, x == p*Delta]; if all(all(p == fix(p))) % Check if x implicitly is constrained to be integer B = getbase(x); if all(all(B == fix(B))) if all(sum(B | B,2)<= 1) F = [F, integer(x)]; end end end else p = p(:); Delta = binvar(length(x),length(p),'full'); F = [sum(Delta,2) == 1, x == Delta*p]; if all(all(p == fix(p))) % Check if x implicitly is constrained to be integer B = getbase(x); if all(all(B == fix(B))) if all(sum(B | B,2)<= 1) F = [F, integer(x)]; end end end end end YESNO = F; return end function [H,K,Ae,be] = poly2data(p); if isa(p,'polytope') [H,K] = double(p); Ae = []; be = []; else p = p.minHRep(); H = p.A; K = p.b; Ae = p.Ae; be = p.be; end function [L,U] = safe_bounding_box(P) if isa(P,'polytope') [temp,L,U] = bounding_box(P); else S = outerApprox(P); L = S.Internal.lb; U = S.Internal.ub; end
github
EnricoGiordano1992/LMI-Matlab-master
sqrtm_internal.m
.m
LMI-Matlab-master/yalmip/@sdpvar/sqrtm_internal.m
1,323
utf_8
b33f0b07880e3a33d7952c5da2aaf17b
function varargout = sqrtm_internal(varargin) %SQRTM (overloaded) switch class(varargin{1}) case 'double' varargout{1} = sqrt(varargin{1}); case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' X = varargin{3}; F = (X >= eps); varargout{1} = F; varargout{2} = struct('convexity','concave','monotonicity','increasing','definiteness','positive','convexhull',@convexhull,'bounds',@bounds,'model','callback','derivative',@(x) 1./(eps + 2*abs(x).^0.5),'inverse',@(x)x.^2); varargout{3} = X; otherwise error('SDPVAR/SQRTM called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xL < 0 % The variable is not bounded enough yet L = 0; else L = sqrt(xL); end if xU < 0 % This is an infeasible problem L = inf; U = -inf; else U = sqrt(xU); end function [Ax, Ay, b] = convexhull(xL,xU) if xL < 0 | xU == 0 Ax = [] Ay = []; b = []; else fL = sqrt(xL); fU = sqrt(xU); dfL = 1/(2*sqrt(xL)); dfU = 1/(2*sqrt(xU)); [Ax,Ay,b] = convexhullConcave(xL,xU,fL,fU,dfL,dfU); remove = isinf(b) | isinf(Ax) | isnan(b); if any(remove) remove = find(remove); Ax(remove)=[]; b(remove)=[]; Ay(remove)=[]; end end
github
EnricoGiordano1992/LMI-Matlab-master
invsathub.m
.m
LMI-Matlab-master/yalmip/@sdpvar/invsathub.m
3,871
utf_8
36f5bf3e2525f27b871df12fa5223c98
function varargout = invsathub (varargin) %INVSATHUB (overloaded) switch class(varargin{1}) case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','none','definiteness','positive','model','callback'); operator.bounds = @bounds; operator.convexhull = @convexhull; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/INVSATHUB called with CHAR argument?'); end function [L,U] = bounds(xL,xU,lambda) fL = invsathub(xL,lambda); fU = invsathub(xU,lambda); U = max(fL,fU); L = min(fL,fU); if xL<0 & xU>0 L = 0; end function [Ax, Ay, b, K] = convexhull(xL,xU,lambda) K.l = 0; K.f = 0; fL = invsathub(xL,lambda); fU = invsathub(xU,lambda); if xU < -3*lambda % 1 Ax = 0;Ay = 1;b = 3*lambda;K.f = 1; elseif xL>=-lambda & xU <= 0 % 2 Ax = 1;Ay = 1; b = 0;K.f = 1; elseif xL>=0 & xU <= lambda % 3 Ax = 1;Ay = -1; b = 0;K.f = 1; elseif xU<=0 | xL>=0 %4 dfL = derivative(xL,lambda); dfU = derivative(xU,lambda); [Ax,Ay,b,K] = convexhullConcave(xL,xU,fL,fU,dfL,dfU); elseif xL<0 & xL>=-lambda & xU>0 & xU<= lambda % 5 [Ax,Ay,b,K] = convexhullConvex(xL,xU,fL,fU,-lambda,lambda); elseif 0%xL<=-lambda & xL>=-3*lambda z = [xL 0 xU]; fz = [fL 0 fU]; k1 = max((fz(2:end)-fz(1))./(z(2:end)-xL))+1e-12; k2 = min((fz(2:end)-fz(1))./(z(2:end)-xL))-1e-12; k3 = min((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))+1e-12; k4 = max((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))-1e-12; Ax = [-k1;k2;-k3;k4]; Ay = [1;-1;1;-1]; b = [k1*(-z(1)) + fz(1);-(k2*(-z(1)) + fz(1));k3*(-z(end)) + fz(end);-(k4*(-z(end)) + fz(end))]; K.l = length(b); elseif xL<-3*lambda & xU>3*lambda z = [xL 0 xU]; fz = [fL 0 fU]; k1 = max((fz(2:end)-fz(1))./(z(2:end)-xL))+1e-12; k2 = min((fz(2:end)-fz(1))./(z(2:end)-xL))-1e-12; k3 = min((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))+1e-12; k4 = max((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))-1e-12; Ax = [-k1;k2;-k3;k4]; Ay = [1;-1;1;-1]; b = [k1*(-z(1)) + fz(1);-(k2*(-z(1)) + fz(1));k3*(-z(end)) + fz(end);-(k4*(-z(end)) + fz(end))]; K.l = length(b); % clf % x = linspace(xL,xU,1000); % plot(polytope([Ax Ay],b)); hold on % plot(x,invsathub(x,lambda)) % 1 else z = [linspace(xL,xU,100)]; fz = [invsathub(z,lambda)]; if xU>0 & xL<0 z = [0 z]; fz = [0 fz]; end [minval,minpos] = min(fz); [maxval,maxpos] = max(fz); xtestmin = linspace(z(max([1 minpos-5])),z(min([100 minpos+5])),100); xtestmax = linspace(z(max([1 maxpos-5])),z(min([100 maxpos+5])),100); fz1 = invsathub(xtestmin,lambda); fz2 = invsathub(xtestmax,lambda); z = [z(:);xtestmin(:);xtestmax(:)]; fz = [fz(:);fz1(:);fz2(:)]; [z,sorter] = sort(z); fz = fz(sorter); [z,ii,jj]=unique(z); fz = fz(ii); k1 = max((fz(2:end)-fz(1))./(z(2:end)-xL))+1e-12; k2 = min((fz(2:end)-fz(1))./(z(2:end)-xL))-1e-12; k3 = min((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))+1e-12; k4 = max((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))-1e-12; Ax = [-k1;k2;-k3;k4]; Ay = [1;-1;1;-1]; b = [k1*(-z(1)) + fz(1);-(k2*(-z(1)) + fz(1));k3*(-z(end)) + fz(end);-(k4*(-z(end)) + fz(end))]; K.l = length(b); end % % clf % x = linspace(xL,xU,1000); % plot(polytope([Ax Ay],b)); hold on % plot(x,invsathub(x,lambda)) % 1 function df=derivative(x,lambda) if nargin==1 lambda=0.5; end df = 0; if (-3*lambda < x) & (x < -lambda) df = -0.25*(2*x+6*lambda); elseif (-lambda < x) & (x < 0) df = -lambda; elseif (x>0) & (x<lambda) df = lambda; elseif (x>lambda) & (x<3*lambda) df = -0.25*(2*x-6*lambda); end
github
EnricoGiordano1992/LMI-Matlab-master
tanh.m
.m
LMI-Matlab-master/yalmip/@sdpvar/tanh.m
783
utf_8
30538db981e451f6b520b7c7895a8e3d
function varargout = tanh(varargin) %TANH (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/TANH CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','increasing','definiteness','none','model','callback'); operator.convexhull = []; operator.bounds = @bounds; operator.derivative = @(x)(1-tanh(x).^2); operator.range = [-1 1]; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/TANH called with CHAR argument?'); end function [L,U] = bounds(xL,xU) L = cosh(xL); U = cosh(xU);
github
EnricoGiordano1992/LMI-Matlab-master
acot.m
.m
LMI-Matlab-master/yalmip/@sdpvar/acot.m
807
utf_8
8bec7762540393b0aae6b6b9ebc2864a
function varargout = acot(varargin) %ACOT (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/ACOT CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','none','definiteness','none','model','callback'); operator.convexhull = []; operator.bounds = @bounds; operator.derivative = @(x)(-(1 + x.^2).^-1); varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ACOT called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xL<=0 & xU >=0 L = -inf; U = inf; else L = acot(xU); U = acot(xL); end
github
EnricoGiordano1992/LMI-Matlab-master
subsasgn.m
.m
LMI-Matlab-master/yalmip/@sdpvar/subsasgn.m
10,156
utf_8
0a2475237bd1aeaaf6ae5439d0435c39
function y = subsasgn(X,I,Y) %SUBASGN (overloaded) try if strcmp('()',I.type) X_is_spdvar = isa(X,'sdpvar') | isa(X,'ndsdpvar'); Y_is_spdvar = isa(Y,'sdpvar') | isa(Y,'ndsdpvar'); if islogical(I.subs{1}) I.subs{1} = double(find(I.subs{1})); end if any(I.subs{1} <=0) error('Index into matrix is negative or zero.'); end switch 2*X_is_spdvar+Y_is_spdvar case 1 % This code does not work properly % Only work if b is undefined!!?!! % generally ugly code... y = Y; [n_y,m_y] = size(Y); y_lmi_variables = y.lmi_variables; try X0 = subsasgn(full(X),I,full(reshape(Y.basis(:,1),n_y,m_y))); dim = size(X0); y.basis = reshape(X0,prod(dim),1); X = full(X)*0; for i = 1:length(y_lmi_variables) X0 = subsasgn(X,I,full(reshape(Y.basis(:,i+1),n_y,m_y))); y.basis(:,i+1) = reshape(X0,prod(dim),1); end y.dim = dim; % Reset info about conic terms y.conicinfo = [0 0]; y.basis = sparse(y.basis); if length(dim)>2 y = ndsdpvar(y); end y = flush(y); catch error(lasterr) end case 2 if ~isempty(Y) Y = sparse(double(Y)); end y = X; % Special code for speed % elements in vector replaced with constants if min(X.dim(1),X.dim(2))==1 & (length(I.subs)==1) y = X; if isempty(Y) y.basis(I.subs{1},:) = []; if X.dim(1) == 1 y.dim(2) = y.dim(2) - length(unique(I.subs{1})); else y.dim(1) = y.dim(1) - length(unique(I.subs{1})); end else y.basis(I.subs{1},1) = Y; y.basis(I.subs{1},2:end) = 0; end if prod(y.dim)~=size(y.basis,1) % Ah bugger, the dimension of the object was changed) aux = X.basis(:,1); aux = reshape(aux,X.dim); aux(I.subs{1})=Y; y.dim = size(aux); end y = clean(y); % Reset info about conic terms if isa(y,'sdpvar') y.conicinfo = [0 0]; y = flush(y); end return; end x_lmi_variables = X.lmi_variables; lmi_variables = []; n = y.dim(1); m = y.dim(2); subX = sparse(subsasgn(full(reshape(X.basis(:,1),n,m)),I,Y)); y.basis = subX(:); if isa(I.subs{1},'char') I.subs{1} = 1:n; end if length(I.subs)>1 if isa(I.subs{2},'char') I.subs{2} = 1:m; end end if length(I.subs)>1 if length(I.subs{1})==1 & length(I.subs{2})~=1 I.subs{1} = repmat(I.subs{1},size(I.subs{2},1),size(I.subs{2},2)); elseif length(I.subs{2})==1 & length(I.subs{1})~=1 I.subs{2} = repmat(I.subs{2},size(I.subs{1},1),size(I.subs{1},2)); end end if length(I.subs)>1 ii = kron(I.subs{1}(:),ones(length(I.subs{2}),1)); jj = kron(ones(length(I.subs{1}),1),I.subs{2}(:)); LinearIndex = sub2ind([n m],ii,jj); else LinearIndex = I.subs{1}; end if isempty(Y) X.basis = X.basis(:,2:end); X.basis(LinearIndex,:) = []; y.basis = [y.basis(:,1) X.basis]; else X.basis(LinearIndex,2:end)=sparse(0); y.basis = [y.basis(:,1) X.basis(:,2:end)]; end y.dim(1) = size(subX,1); y.dim(2) = size(subX,2); y = clean(y); if isa(y,'sdpvar') % Reset info about conic terms y.conicinfo = [0 0]; y = flush(y); end case 3 z = X; x_lmi_variables = X.lmi_variables; y_lmi_variables = Y.lmi_variables; % In a first run, we fix the constant term and null terms in the X basis lmi_variables = []; nx = X.dim(1); mx = X.dim(2); ny = Y.dim(1); my = Y.dim(2); if (mx==1) & (my == 1) & isempty(setdiff(y_lmi_variables,x_lmi_variables)) & (max(I.subs{1}) < nx) & length(I.subs)==1 & length(unique(I.subs{1}))==length(I.subs{1}) ; % Fast specialized code for Didier y = specialcode(X,Y,I); return end subX = subsasgn(reshape(X.basis(:,1),nx,mx),I,reshape(Y.basis(:,1),ny,my)); [newnx, newmx] = size(subX); j = 1; yz = reshape(1:ny*my,ny,my); subX2 = subsasgn(reshape(zeros(nx*mx,1),nx,mx),I,yz); subX2 = subX2(:); [ix,jx,sx] = find(subX2); yz = 0*reshape(Y.basis(:,1),ny,my); lmi_variables = zeros(1,length(x_lmi_variables)); A = reshape(1:nx*mx,nx,mx); B = reshape(1:newnx*newmx,newnx,newmx); rm = B(1:nx,1:mx);rm = rm(:); [iix,jjx,ssx] = find(X.basis(:,2:end)); z.basis = [subX(:) sparse(rm(iix),jjx,ssx,newnx*newmx,size(X.basis,2)-1)]; z.basis(ix,2:end) = 0; keep = find(any(z.basis(:,2:end),1)); z.basis = z.basis(:,[1 1+keep]); lmi_variables2 = x_lmi_variables(keep); z.lmi_variables = lmi_variables2; lmi_variables = lmi_variables2; all_lmi_variables = union(lmi_variables,y_lmi_variables); in_z = ismembcYALMIP(all_lmi_variables,lmi_variables); in_y = ismembcYALMIP(all_lmi_variables,y_lmi_variables); z_ind = 2; y_ind = 2; basis = spalloc(size(z.basis,1),1+length(all_lmi_variables),0); basis(:,1) = z.basis(:,1); nz = size(subX,1); mz = size(subX,2); template = full(0*reshape(X.basis(:,1),nx,mx)); in_yin_z = 2*in_y + in_z; if all(in_yin_z<3) case1 = find(in_yin_z==1); if ~isempty(case1) basis(:,case1+1) = z.basis(:,2:1+length(case1)); in_yin_z(case1) = 0; end end for i = 1:length(all_lmi_variables) switch in_yin_z(i) case 1 basis(:,i+1) = z.basis(:,z_ind);z_ind = z_ind+1; case 2 temp = sparse(subsasgn(template,I,full(reshape(Y.basis(:,y_ind),ny,my)))); basis(:,i+1) = temp(:); y_ind = y_ind+1; case 3 Z1 = z.basis(:,z_ind); Z4 = Y.basis(:,y_ind); Z3 = reshape(Z4,ny,my); Z2 = sparse(subsasgn(0*reshape(full(X.basis(:,1)),nx,mx),I,Z3)); temp = reshape(Z1,nz,mz)+Z2; basis(:,i+1) = temp(:); z_ind = z_ind+1; y_ind = y_ind+1; otherwise end end; z.dim(1) = nz; z.dim(2) = mz; z.basis = basis; z.lmi_variables = all_lmi_variables(:)'; y = z; % Reset info about conic terms y.conicinfo = [0 0]; y = flush(y); otherwise end else error('Reference type not supported'); end catch error(lasterr) end function y = specialcode(X,Y,I) y = X; X_basis = X.basis; Y_basis = Y.basis; ind = I.subs{1};ind = ind(:); yvar_in_xvar = zeros(length(Y.lmi_variables),1); for i = 1:length(Y.lmi_variables); yvar_in_xvar(i) = find(X.lmi_variables==Y.lmi_variables(i)); end y.basis(ind,:) = 0; mapper = [1 1+yvar_in_xvar(:)'];mapper = mapper(:); [i,j,k] = find(y.basis); [ib,jb,kb] = find(Y_basis); i = [i(:);ind(ib(:))]; j = [j(:);mapper(jb(:))]; k = [k(:);kb(:)]; y.basis = sparse(i,j,k,size(y.basis,1),size(y.basis,2)); y = clean(y);
github
EnricoGiordano1992/LMI-Matlab-master
atan.m
.m
LMI-Matlab-master/yalmip/@sdpvar/atan.m
1,152
utf_8
071999f9ece4ebf3e24f7eb58e385149
function varargout = atan(varargin) %ATAN (overloaded) switch class(varargin{1}) case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','increasing','definiteness','none','model','callback'); operator.convexhull = @convexhull; operator.bounds = @bounds; operator.derivative = @(x)((1+x.^2).^-1); operator.inverse = @(x)(tan(x)); operator.range = [-pi/2 pi/2]; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ATAN called with CHAR argument?'); end function [L,U] = bounds(xL,xU) L = atan(xL); U = atan(xU); function [Ax, Ay, b] = convexhull(xL,xU) fL = atan(xL); fU = atan(xU); dfL = 1/(1+xL^2); dfU = 1/(1+xU^2); if xL >= 0 % Concave region [Ax,Ay,b] = convexhullConcave(xL,xU,fL,fU,dfL,dfU); elseif xU <= 0 % Convex region [Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU); else % Changes convexity. We're lazy and let YALMIP sample instead Ax = []; Ay = []; b = []; end
github
EnricoGiordano1992/LMI-Matlab-master
sqrt.m
.m
LMI-Matlab-master/yalmip/@sdpvar/sqrt.m
3,036
utf_8
dbdc41fb98e355d38f7827f44c1095b5
function varargout = sqrt(varargin) %SQRT (overloaded) % % t = sqrt(x) % % The variable t can only be used in concavity preserving % operations such as t>=1, max t etc. % % When SQRT is used in a problem, the domain constraint % (x>=0) is automatically added to the problem. % % In nonconvex cases, use sqrtm instead. % % See also CPOWER switch class(varargin{1}) case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them. X = varargin{1}; [n,m] = size(X); if is(varargin{1},'real') %& (n*m==1) varargout{1} = InstantiateElementWise(mfilename,varargin{:}); else error('SQRT can only be applied to real scalars'); end case 'char' % YALMIP send 'model' when it wants the epigraph or hypograph switch varargin{1} case 'graph' t = varargin{2}; % Second arg is the extended operator variable X = varargin{3}; % Third arg and above are the args user used when defining t. if is(X,'linear') varargout{1} = (cone([(X-1)/2;t],(X+1)/2)); varargout{2} = struct('convexity','concave','monotonicity','increasing','definiteness','positive'); varargout{3} = X; elseif is(X,'quadratic') [F,x] = check_for_special_cases(X,t); if isempty(F) varargout{1} = []; varargout{2} = []; varargout{3} = []; else varargout{1} = F; varargout{2} = struct('convexity','convex','monotonicity','none','definiteness','positive'); varargout{3} = x; end else varargout{1} = []; varargout{2} = []; varargout{3} = []; end otherwise varargout{1} = []; varargout{2} = []; varargout{3} = []; end otherwise end function [F,x] = check_for_special_cases(q,t) % Check if user is constructing sqrt(quadratic). If that is the case, % return norm(linear) F = []; x = []; if length(q)>1 return end [Q,c,f,x,info] = quaddecomp(q); if info==0 & nnz(Q)>0 index = find(any(Q,2)); if length(index) < length(Q) Qsub = Q(index,index); [Rsub,p]=chol(Qsub); if p==0 [i,j,k] = find(Rsub); R = sparse((i),index(j),k,length(Qsub),length(Q)); else R = []; end else [R,p]=chol(Q); if p & min(eig(full(Q)))>=-1e-12 [U,S,V] = svd(full(Q)); r = max(find(diag(S))); R = sqrtm(S(1:r,1:r))*V(:,1:r)'; p = 0; end end d = 0.5*(R'\c); if p==0 & f-d'*d>-1e-12 F = cone([R*x+d;sqrt(f-d'*d)],t); end end
github
EnricoGiordano1992/LMI-Matlab-master
exp.m
.m
LMI-Matlab-master/yalmip/@sdpvar/exp.m
1,481
utf_8
955d4798dee16d92e6cae7aa58a9527a
function varargout = exp(varargin) %EXP (overloaded) switch class(varargin{1}) case 'sdpvar' x = varargin{1}; d = size(x); x = x(:); y = []; for i = 1:prod(d) xi = extsubsref(x,i); if isreal(xi) y = [y;InstantiateElementWise(mfilename,xi)]; else y = [y;cos(xi) + sqrt(-1)*sin(xi)]; end end varargout{1} = reshape(y,d); case 'char' varargout{1} = []; varargout{2} = createOperator; varargout{3} = varargin{3}; otherwise error('SDPVAR/EXP called with CHAR argument?'); end function operator = createOperator operator = struct('convexity','convex','monotonicity','increasing','definiteness','positive','model','callback'); operator.convexhull = @convexhull; operator.bounds = @bounds; operator.derivative = @(x)exp(x); operator.inverse = @(x)log(x); operator.range = [0 inf]; % Bounding functions for the branch&bound solver function [L,U] = bounds(xL,xU) L = exp(xL); U = exp(xU); function [Ax, Ay, b, K] = convexhull(xL,xU) fL = exp(xL); fU = exp(xU); if fL == fU Ax = []; Ay = []; b = []; else dfL = exp(xL); dfU = exp(xU); % A cut with tangent parallell to upper bound is very efficient xM = log((fU-fL)/(xU-xL)); fM = exp(xM); dfM = exp(xM); [Ax,Ay,b] = convexhullConvex(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); end K = [];
github
EnricoGiordano1992/LMI-Matlab-master
times.m
.m
LMI-Matlab-master/yalmip/@sdpvar/times.m
11,578
utf_8
446a9d604ec704ba3af6d3c341e133f8
function y = times(X,Y) %TIMES (overloaded) % Check dimensions [n,m]=size(X); if ~((prod(size(X))==1) || (prod(size(Y))==1)) if ~((n==size(Y,1) && (m ==size(Y,2)))) error('Matrix dimensions must agree.') end end; % Convert block objects if isa(X,'blkvar') X = sdpvar(X); end if isa(Y,'blkvar') Y = sdpvar(Y); end if isa(X,'double') if any(isnan(X)) error('Multiplying NaN with an SDPVAR makes no sense.'); end end if isa(Y,'double') if any(isnan(Y)) error('Multiplying NaN with an SDPVAR makes no sense.'); end end if isempty(X) YY = full(reshape(Y.basis(:,1),Y.dim(1),Y.dim(2))); y = X.*YY; return elseif isempty(Y) XX = full(reshape(X.basis(:,1),X.dim(1),X.dim(2))); y = XX.*Y; return end if (isa(X,'sdpvar') && isa(Y,'sdpvar')) X = flush(X); Y = flush(Y); if (X.typeflag==5) && (Y.typeflag==5) error('Product of norms not allowed'); end try y = check_for_special_case(Y,X); if ~isempty(y) return end % Check for the case x.*y where x and y are unit variables [mt,variable_type,hashedMT,hash] = yalmip('monomtable'); if length(X.lmi_variables)==numel(X) if length(Y.lmi_variables) == numel(Y) if numel(X)==numel(Y) % This looks promising. write as (x0+X)*(y0+Y) X0 = reshape(X.basis(:,1),X.dim); Y0 = reshape(Y.basis(:,1),Y.dim); Xsave = X; Ysave = Y; X.basis(:,1)=0; Y.basis(:,1)=0; if nnz(X.basis)==numel(X) if nnz(Y.basis)==numel(Y) D = [spalloc(numel(Y),1,0) speye(numel(Y))]; if isequal(X.basis,D) if isequal(Y.basis,D) % Pew. Z = X; generated_monoms = mt(X.lmi_variables,:) + mt(Y.lmi_variables,:); generated_hash = generated_monoms*hash; keep = zeros(1,numel(X)); if all(generated_hash) && all(diff(sort([generated_hash;hashedMT]))) Z.lmi_variables = size(mt,1)+(1:numel(X)); keep = keep + 1; else for i = 1:numel(X) if generated_hash(i) before = find(abs(hashedMT-generated_hash(i))<eps); if isempty(before) % mt = [mt;generated_monoms(i,:)]; keep(i) = 1; Z.lmi_variables(i) = size(mt,1)+nnz(keep); else Z.lmi_variables(i) = before; end else Z.lmi_variables(i) = 0; end end end if any(keep) keep = find(keep); mt = [mt;generated_monoms(keep,:)]; yalmip('setmonomtable',mt,[],[hashedMT;generated_hash(keep)],hash); end if any(diff(Z.lmi_variables)<0) [i,j]=sort(Z.lmi_variables); Z.lmi_variables = Z.lmi_variables(j); Z.basis(:,2:end) = Z.basis(:,j+1); end if Z.lmi_variables(1)==0 i = find(Z.lmi_variables == 0); Z.basis(:,1) = sum(Z.basis(:,1+i),2); Z.basis(:,1+i)=[]; end Z.conicinfo = [0 0]; Z.extra.opname=''; Z = Z + X0.*Y0 + X0.*Y + X.*Y0; Z = flush(Z); y = clean(Z); return end end end end end X = Xsave; Y = Ysave; end end x_isscalar = (X.dim(1)*X.dim(2)==1); y_isscalar = (Y.dim(1)*Y.dim(2)==1); all_lmi_variables = uniquestripped([X.lmi_variables Y.lmi_variables]); Z = X;Z.dim(1) = 1;Z.dim(2) = 1;Z.lmi_variables = all_lmi_variables;Z.basis = []; % Awkward code due to bug in ML6.5 Xbase = reshape(X.basis(:,1),X.dim(1),X.dim(2)); Ybase = reshape(Y.basis(:,1),Y.dim(1),Y.dim(2)); if x_isscalar Xbase = sparse(full(Xbase)); end if y_isscalar Ybase = sparse(full(Ybase)); end index_Y = zeros(length(all_lmi_variables),1); index_X = zeros(length(all_lmi_variables),1); for j = 1:length(all_lmi_variables) indexy = find(all_lmi_variables(j)==Y.lmi_variables); indexx = find(all_lmi_variables(j)==X.lmi_variables); if ~isempty(indexy) index_Y(j) = indexy; end if ~isempty(indexx) index_X(j) = indexx; end end ny = Y.dim(1); my = Y.dim(2); nx = X.dim(1); mx = X.dim(2); % Linear terms base = Xbase.*Ybase; Z.basis = base(:); x_base_not_zero = nnz(Xbase)>0; y_base_not_zero = nnz(Ybase)>0; for i = 1:length(all_lmi_variables) base = 0; if index_Y(i) && x_base_not_zero base = Xbase.*getbasematrixwithoutcheck(Y,index_Y(i)); end if index_X(i) && y_base_not_zero base = base + getbasematrixwithoutcheck(X,index_X(i)).*Ybase; end Z.basis(:,i+1) = base(:); end % Nonlinear terms i = i+1; ix=1; new_mt = []; %mt = yalmip('monomtable'); nvar = length(all_lmi_variables); local_mt = mt(all_lmi_variables,:); theyvars = find(index_Y); thexvars = find(index_X); hash = randn(size(mt,2),1); mt_hash = mt*hash; for ix = thexvars(:)' % if mx==1 Xibase = X.basis(:,1+index_X(ix)); % else % Xibase = reshape(X.basis(:,1+index_X(ix)),nx,mx); % end mt_x = local_mt(ix,:); y_basis = Y.basis(:,1+index_Y(theyvars)); x_basis = repmat(Xibase,1,length(theyvars(:)')); if y_isscalar && ~x_isscalar y_basis = repmat(y_basis,nx*mx,1); elseif x_isscalar && ~y_isscalar x_basis = repmat(x_basis,ny*my,1); end allBase = x_basis.*y_basis; jjj = 1; usedatall = find(any(allBase,1)); % for iy = theyvars(:)' for iy = theyvars(usedatall(:))' % ff=Y.basis(:,1+index_Y(iy)); % Yibase = reshape(ff,ny,my); % prodbase = Xibase.*Yibase; prodbase = allBase(:,usedatall(jjj));jjj = jjj+1; % prodbase = reshape(prodbase,ny,my); if (norm(prodbase,inf)>1e-12) mt_y = local_mt(iy,:); % Idiot-hash the lists new_hash = (mt_x+mt_y)*hash; if abs(new_hash)<eps%if nnz(mt_x+mt_y)==0 Z.basis(:,1) = Z.basis(:,1) + prodbase(:); else before = find(abs(mt_hash-(mt_x+mt_y)*hash)<eps); if isempty(before) mt = [mt;mt_x+mt_y]; mt_hash = [mt_hash;(mt_x+mt_y)*hash]; Z.lmi_variables = [Z.lmi_variables size(mt,1)]; else Z.lmi_variables = [Z.lmi_variables before]; end Z.basis(:,i+1) = prodbase(:);i = i+1; end end end end % Fucked up order if any(diff(Z.lmi_variables)<0) [i,j]=sort(Z.lmi_variables); Z.lmi_variables = Z.lmi_variables(j); Z.basis(:,2:end) = Z.basis(:,j+1); end % FIX : Speed up if length(Z.lmi_variables) ~=length(unique(Z.lmi_variables)) un_Z_vars = unique(Z.lmi_variables); newZbase = Z.basis(:,1); for i = 1:length(un_Z_vars) newZbase = [newZbase sum(Z.basis(:,find(un_Z_vars(i)==Z.lmi_variables)+1),2)]; end Z.basis = newZbase; Z.lmi_variables = un_Z_vars; end yalmip('setmonomtable',mt); if ~(x_isscalar || y_isscalar) Z.dim(1) = X.dim(1); Z.dim(2) = Y.dim(2); else Z.dim(1) = max(X.dim(1),Y.dim(1)); Z.dim(2) = max(X.dim(2),Y.dim(2)); end catch error(lasterr) end % Reset info about conic terms Z.conicinfo = [0 0]; Z.extra.opname=''; Z = flush(Z); y = clean(Z); return end if isa(X,'sdpvar') Z = X; X = Y; Y = Z; end y = Y; if prod(Y.dim)==1 y.basis = X(:)*(y.basis); y.dim = size(X); else y.basis = [(Y.basis.')*diag(sparse(X(:)))].'; end % Reset info about conic terms y.conicinfo = [0 0]; Z.extra.opname=''; y = flush(y); y = clean(y); function y = check_for_special_case(Y,X); y = []; if (min(size(X))>1) || (min(size(Y))>1) return end if ~all(size(Y)==size(X)) return end entropies = zeros(length(Y),1); if is(X,'linear') argst = yalmip('getarguments',Y); if length(argst)~=length(X) return end if length(argst) == 1 args{1} = argst; else args = argst; end for i = 1:length(args) if isempty(args{i}) return end if isequal(args{i}.fcn,'log') S(1).subs={i}; S(1).type='()'; Z = subsref(X,S); if isequal(Z.basis,args{i}.arg{1}.basis) if isequal(Z.lmi_variables,args{i}.arg{1}.lmi_variables) entropies(i) = 1; end end end end end if all(entropies) y = -ventropy(X); end
github
EnricoGiordano1992/LMI-Matlab-master
erf.m
.m
LMI-Matlab-master/yalmip/@sdpvar/erf.m
2,291
utf_8
34e3cf2135d769bd1d33bc39a72655bd
function varargout = erf(varargin) %ERF (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/ERF CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','increasing','definiteness','none','model','callback'); operator.bounds = @bounds; operator.range = [-1 1]; operator.derivative =@(x)exp(-x.^2)*2/sqrt(pi); operator.inverse = @(x)(erfinv(x)); operator.convexhull = @convexhull; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ERF called with CHAR argument?'); end function [L,U] = bounds(xL,xU) L = erf(xL); U = erf(xU); function [Ax, Ay, b, K] = convexhull(xL,xU) K = []; if xU <= 0 xM = (xL+xU)/2; fL = erf(xL); fM = erf(xM); fU = erf(xU); dfL = exp(-xL.^2)*2/sqrt(pi); dfM = exp(-xM.^2)*2/sqrt(pi); dfU = exp(-xU.^2)*2/sqrt(pi); [Ax,Ay,b] = convexhullConvex(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); elseif xL >= 0 xM = (xL+xU)/2; fL = erf(xL); fM = erf(xM); fU = erf(xU); dfL = exp(-xL.^2)*2/sqrt(pi); dfM = exp(-xM.^2)*2/sqrt(pi); dfU = exp(-xU.^2)*2/sqrt(pi); [Ax,Ay,b] = convexhullConcave(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); else z = linspace(xL,xU,1000); fz = erf(z); [minval,minpos] = min(fz); [maxval,maxpos] = max(fz); xtestmin = linspace(z(max([1 minpos-5])),z(min([100 minpos+5])),100); xtestmax = linspace(z(max([1 maxpos-5])),z(min([100 maxpos+5])),100); fz1 = erf(xtestmin); fz2 = erf(xtestmax); z = [z(:);xtestmin(:);xtestmax(:)]; fz = [fz(:);fz1(:);fz2(:)]; [z,sorter] = sort(z); fz = fz(sorter); [z,ii,jj]=unique(z); fz = fz(ii); k1 = max((fz(2:end)-fz(1))./(z(2:end)-xL))+1e-12; k2 = min((fz(2:end)-fz(1))./(z(2:end)-xL))-1e-12; k3 = min((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))+1e-12; k4 = max((fz(1:end-1)-fz(end))./(z(1:end-1)-xU))-1e-12; Ax = [-k1;k2;-k3;k4]; Ay = [1;-1;1;-1]; b = [k1*(-z(1)) + fz(1);-(k2*(-z(1)) + fz(1));k3*(-z(end)) + fz(end);-(k4*(-z(end)) + fz(end))]; end
github
EnricoGiordano1992/LMI-Matlab-master
erfc.m
.m
LMI-Matlab-master/yalmip/@sdpvar/erfc.m
756
utf_8
d1523f1dce8b03ea7377827749ac68ef
function varargout = erfc(varargin) %ERFC (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/ERFC CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','decreasing','definiteness','positive','model','callback'); operator.bounds = @bounds; operator.range = [-1 1]; operator.derivative =@(x)-exp(-x.^2)*2/sqrt(pi); varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ERF called with CHAR argument?'); end function [L,U] = bounds(xL,xU) L = erfc(xL); U = erfc(xU);
github
EnricoGiordano1992/LMI-Matlab-master
power.m
.m
LMI-Matlab-master/yalmip/@sdpvar/power.m
3,973
utf_8
840a5282a2173feba3ea38f581a42286
function y = power(x,d) %POWER (overloaded) % Vectorize x if d is vector if numel(x)==1 & (numel(d)>1) x = x.*ones(size(d)); end % Vectorize if x is a vector if numel(d)==1 & (numel(x)>1) d = d.*ones(size(x)); end if ~isequal(size(d),size(x)) error('Dimension mismatch in power'); end if isa(x,'sdpvar') x = flush(x); end % Reuse code if numel(x)==1 && numel(d)==1 y = mpower(x,d); return end if isa(d,'sdpvar') % Call helper which vectorizes the elements y = powerinternalhelper(d,x); return end % Sanity Check if prod(size(d))>1 if any(size(d)~=size(x)) error('Matrix dimensions must agree.'); end else d = ones(x.dim(1),x.dim(2))*d; end % Trivial cases if isa(d,'double') if all(all(d==0)) if x.dim(1)~=x.dim(2) error('Matrix must be square.') end y = eye(x.dim(1),x.dim(2)).^0; return end if all(all(d==1)) y = x; return end end % Fractional, negative or different powers are % treated less efficiently using simple code. fractional = any(any((ceil(d)-d>0))); negative = any(any(d<0)); different = ~all(all(d==d(1))); if fractional | negative | different if x.dim(1)>1 | x.dim(2)>1 if isequal(x.basis,[spalloc(prod(x.dim),1,0) speye(prod(x.dim))]) & all(d==d(1)) % Simple case x.^d y = vectorizedUnitPower(x,d); return end [n,m] = size(x); y = []; for i = 1:n % FIX : Vectorize! if m == 1 temp = extsubsref(x,i,1).^d(i,1); else temp = []; for j = 1:m temp = [temp extsubsref(x,i,j).^d(i,j)]; end end y = [y;temp]; end return else base = getbase(x); if isequal(base,[0 1]) mt = yalmip('monomtable'); var = getvariables(x); previous_var = find((mt(:,var)==d) & (sum(mt~=0,2)==1)); if isempty(previous_var) mt(end+1,:) = mt(getvariables(x),:)*d; yalmip('setmonomtable',mt); y = recover(size(mt,1)); else y = recover(previous_var); end elseif (size(base,2) == 2) & base(1)==0 % Something like a*t^-d y = base(2)^d*recover(getvariables(x))^d; else error('Only unit scalars can have negative or non-integer powers.'); end end return end if isequal(x.basis,[spalloc(prod(x.dim),1,0) speye(prod(x.dim))]) & all(d==d(1)) % Simple case x.^d y = vectorizedUnitPower(x,d); return end % Back to scalar power... d = d(1,1); if x.dim(1)>1 | x.dim(2)>1 switch d case 0 y = 1; case 1 y = x; otherwise y = x.*power(x,d-1); end else error('This should not appen. Report bug (power does not use mpower)') end function y = vectorizedUnitPower(x,d) d = d(1); [mt,variabletype,hashM,hash] = yalmip('monomtable'); var = getvariables(x); usedmt = mt(var,:); newmt = usedmt*d; hashV = newmt*hash; if ~any(ismember(hashV,hashM)) variabletype = [variabletype newvariabletypegen(newmt)]; y = size(mt,1) + (1:length(var)); mt = [mt;newmt]; else y = []; allnewmt = []; newvariables = 0; keep = zeros(size(usedmt,1),1); for i = 1:length(hashV) previous_var = find(abs(hashM - hashV(i)) < 1e-20); if isempty(previous_var) newmt = usedmt(i,:)*d; variabletype = [variabletype newvariabletypegen(newmt)]; newvariables = newvariables + 1; keep(i) = 1; y = [y size(mt,1)+newvariables]; else y = [y previous_var]; end end mt = [mt;usedmt(find(keep),:)*d]; end yalmip('setmonomtable',mt,variabletype); y = reshape(recover(y),x.dim);
github
EnricoGiordano1992/LMI-Matlab-master
asin.m
.m
LMI-Matlab-master/yalmip/@sdpvar/asin.m
733
utf_8
3100afdb50eaff864a0e7f6331e7452b
function varargout = asin(varargin) %ASIN (overloaded) switch class(varargin{1}) case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','increasing','definiteness','none','model','callback'); operator.convexhull = []; operator.bounds = @bounds; operator.derivative = @(x)((1 - x.^2).^-0.5); operator.range = [-pi/2 pi/2]; operator.domain = [-1 1]; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/ASIN called with CHAR argument?'); end function [L,U] = bounds(xL,xU) L = asin(xL); U = asin(xU);
github
EnricoGiordano1992/LMI-Matlab-master
lmior.m
.m
LMI-Matlab-master/yalmip/@sdpvar/lmior.m
1,467
utf_8
cc3cd29a91a762b089e33a55547aac55
function varargout = lmior(varargin) %OR (overloaded) % Models OR using a nonlinear operator definition switch class(varargin{1}) case 'char' z = varargin{2}; allextvars = yalmip('extvariables'); X = {}; for i = 3:nargin Xtemp = expandor(varargin{i},allextvars); for j = 1:length(Xtemp) X{end + 1} = Xtemp{j}; end end F = ([]); x = binvar(length(X),1); for i = 1:length(X) F = F + (implies_internal(extsubsref(x,i),X{i})); end varargout{1} = F + (sum(x) >= 1); varargout{2} = struct('convexity','none','monotonicity','none','definiteness','none','extra','marker','model','integer'); varargout{3} = recover(depends(F)); case {'lmi'} x = varargin{1}; y = varargin{2}; varargout{1} = (yalmip('define','lmior',varargin{:}) == 1); otherwise end function x = expandor(x,allextvars) if length(getvariables(x))>1 x = {x}; return; end xmodel = yalmip('extstruct',getvariables(x)); if ~isempty(xmodel) & isequal(xmodel.fcn,'lmior') x1 = xmodel.arg{1}; x2 = xmodel.arg{2}; if ismembc(getvariables(x1),allextvars) x1 = expandor(x1,allextvars); else x1 = {x1}; end if ismembc(getvariables(x2),allextvars) x2 = expandor(x2,allextvars); else x2 = {x2}; end x = {x1{:},x2{:}}; else x = {x}; end
github
EnricoGiordano1992/LMI-Matlab-master
ismember.m
.m
LMI-Matlab-master/yalmip/@sdpvar/ismember.m
3,414
utf_8
fb8583f41aa5b455ee06f14d295c8b5f
function varargout = ismember(varargin) %ISMEMBER Define membership constraint on SDPVAR object % % F = ISMEMBER(x,P) % % Input % x : SDPVAR object % P : MPT polytope object, double, or CONSTRAINT object % Output % F : Constraints % % Depending on the second argument P, different classes of constraint are % generated. % % If P is a single polytope, the linear constraints [H,K] = double(P); % F=[H*x <= K] will be created. % % If P is a polytope array, then length(P) binary variables will be % introduced and the constraint will model that x is inside at least one of % the polytopes. % % If P is a vector of DOUBLE, a constraint constraining the elements of x % to take one of the values in P is created. This will introduce % numel(P)*numel(x) binary variables % % If P is matrix of DOUBLE, a constraint constraining the vector x to equal % one of the columns of P is created. This will introduce size(P,2) binary % variables % % Since the two last constructions are based on big-M formulations, all % involved variable should have explicit variable bounds. x = varargin{1}; p = varargin{2}; % Backwards compatibility (this should really be done in another command) % This code is probably only used in solvemoment if isa(x,'double') varargout{1} = any(full(p.basis(:,1))); return end if isa(x,'sdpvar') & isa(p,'sdpvar') x_base = x.basis; x_vars = x.lmi_variables; p_base = x.basis; p_vars = x.lmi_variables; % Member at all varargout{1} = ismember(x.lmi_variables,p.lmi_variables); if varargout{1} index_in_x_vars = find(x.lmi_variables == p.lmi_variables); varargout{1} = full(any(p.basis(:,1+index_in_x_vars),2)); if min(p.dim(1),p.dim(2))~=1 varargout{1} = reshape(YESNO,p.dim(1),p.dim(2)); end end return end % Here is the real overloaded ismember switch class(varargin{1}) case 'sdpvar' if isa(varargin{1},'sdpvar') & (isa(varargin{2},'polytope') | isa(varargin{2},'Polyhedron')) if ~isequal(length(varargin{1}),safe_dimension(varargin{2})) disp('The polytope in the ismember condition has wrong dimension') error('Dimension mismatch.'); end end if isa(varargin{2},'polytope') & length(varargin{2})==1 [H,K] = double(varargin{2}); varargout{1} = [H*x <= K]; elseif isa(varargin{2},'Polyhedron') & length(varargin{2})==1 %P = convexHull(varargin{2}); P = minHRep(varargin{2}); varargout{1} = [P.A*x <= P.b, P.Ae*x == P.be]; else varargout{1} = (yalmip('define',mfilename,varargin{:}) == 1); varargout{1} = setupMeta(lmi([]), mfilename,varargin{:}); if isa(varargin{2},'double') if size(varargin{1},1) == size(varargin{2},1) % v in [v1 v2 v3] varargout{1} = [ varargout{1}, min(varargin{2},[],2) <= varargin{1} <= max(varargin{2},[],2)]; else varargout{1} = [ varargout{1}, min(min(varargin{2})) <= varargin{1}(:) <= max(max(varargin{2}))]; end end end case 'char' varargout{1} = ismember_internal(varargin{3},varargin{4}); end function d = safe_dimension(P) if isa(P,'polytope') d = dimension(P); elseif isa(P,'Polyhedron') d = P.Dim; end
github
EnricoGiordano1992/LMI-Matlab-master
lmixor.m
.m
LMI-Matlab-master/yalmip/@sdpvar/lmixor.m
1,474
utf_8
08dbdab504839a1207e532b611ea5c1f
function varargout = lmixor(varargin) %XOR (overloaded) % Models XOR using a nonlinear operator definition switch class(varargin{1}) case 'char' z = varargin{2}; allextvars = yalmip('extvariables'); X = {}; for i = 3:nargin Xtemp = expandxor(varargin{i},allextvars); for j = 1:length(Xtemp) X{end + 1} = Xtemp{j}; end end F = ([]); x = binvar(length(X),1); for i = 1:length(X) F = F + (implies_internal(extsubsref(x,i),X{i})); end varargout{1} = F + (sum(x) == 1); varargout{2} = struct('convexity','none','monotonicity','none','definiteness','none','extra','marker','model','integer'); varargout{3} = recover(depends(F)); case {'lmi'} x = varargin{1}; y = varargin{2}; varargout{1} = (yalmip('define','lmior',varargin{:}) == 1); otherwise end function x = expandxor(x,allextvars) if length(getvariables(x))>1 x = {x}; return; end xmodel = yalmip('extstruct',getvariables(x)); if ~isempty(xmodel) & isequal(xmodel.fcn,'lmior') x1 = xmodel.arg{1}; x2 = xmodel.arg{2}; if ismembc(getvariables(x1),allextvars) x1 = expandxor(x1,allextvars); else x1 = {x1}; end if ismembc(getvariables(x2),allextvars) x2 = expandxor(x2,allextvars); else x2 = {x2}; end x = {x1{:},x2{:}}; else x = {x}; end
github
EnricoGiordano1992/LMI-Matlab-master
model.m
.m
LMI-Matlab-master/yalmip/@sdpvar/model.m
4,132
utf_8
875ed9e5691dfe8921448baee0c20edf
function [properties,F,arguments,fcn]=model(X,method,options,extstruct,w) %MODEL Internal function to extracts nonlinear operator models % % [properties,F] = model(x) % % MODEL returns the constraints needed to model a variable related to an % extended operator such as min, max, abs, norm, geomean, ... % % Examples : % % sdpvar x y; % t = min(x,y); % [properties,F] = model(t) % Gives F = [t<=x, t<=y] extvar = getvariables(X); arguments = cell(1,length(extvar)); properties = cell(1,length(extvar)); if nargin<2 method = 'graph'; end if nargin < 3 options = []; end if nargin < 5 % Not used w = []; end if nargin<4 extstruct = yalmip('extstruct',extvar); elseif isempty(extstruct) extstruct = yalmip('extstruct',extvar); end if isempty(extstruct) error('This is not a nonlinear operator variable'); end fcn = extstruct.fcn; try n = yalmip('nvars'); [F,properties,arguments] = feval(fcn,method,extstruct.var,extstruct.arg{1:end-1}); if isa(F,'constraint') F = lmi(F); end newAux = n+1:yalmip('nvars'); involved = getvariables(extstruct.arg{1}); for i = 2:length(extstruct.arg)-1 vars = getvariables(extstruct.arg{i}); if ~isempty(vars) involved = union(involved,vars); end end if ~isempty(options) if ~(strcmp(options.robust.auxreduce,'none')) % This info is only needed when we do advanced Robust optimization yalmip('setdependence',[getvariables(extstruct.var) newAux],involved); yalmip('setdependence',[getvariables(extstruct.var)],newAux); end end catch error(['Failed when trying to create a model for the "' extstruct.fcn '" operator']); end % Make sure all operators have these properties if ~isempty(properties) if ~iscell(properties) properties = {properties}; end for i = 1:length(properties) properties{i}.name = fcn; properties{i} = assertProperty(properties{i},'definiteness','none'); properties{i} = assertProperty(properties{i},'convexity','none'); properties{i} = assertProperty(properties{i},'monotonicity','none'); properties{i} = assertProperty(properties{i},'derivative',[]); properties{i} = assertProperty(properties{i},'inverse',[]); properties{i} = assertProperty(properties{i},'models',getvariables(extstruct.var)); properties{i} = assertProperty(properties{i},'convexhull',[]); properties{i} = assertProperty(properties{i},'bounds',[]); properties{i} = assertProperty(properties{i},'domain',[-inf inf]); switch properties{i}.definiteness case 'positive' properties{i} = assertProperty(properties{i},'range',[0 inf]); case 'negative' properties{i} = assertProperty(properties{i},'range',[-inf 0]); otherwise properties{i} = assertProperty(properties{i},'range',[-inf inf]); end properties{i} = assertProperty(properties{i},'model','unspecified'); end end % Normalize the callback expression and check for some obsoleted stuff if ~isempty(properties) if isequal(properties{1}.model,'callback') F_normalizing = NormalizeCallback(method,extstruct.var,extstruct.arg{:}); F = F + F_normalizing; end if length(extstruct.computes)>1 for i = 1:length(properties) properties{i}.models = extstruct.computes; end end for i = 1:length(properties) if ~any(strcmpi(properties{i}.convexity,{'convex','concave','none'})) disp('More cleaning, strange convextiy returned...Report bug in model.m') error('More cleaning, strange convextiy returned...Report bug in model.m') end end end % This is useful in MPT if ~isempty(F) F = tag(F,['Expansion of ' extstruct.fcn]); end if ~isempty(properties) % properties = properties{1}; end function properties = assertProperty(properties,checkfor,default); if ~isfield(properties,checkfor) properties = setfield(properties,checkfor,default); end
github
EnricoGiordano1992/LMI-Matlab-master
log.m
.m
LMI-Matlab-master/yalmip/@sdpvar/log.m
2,585
utf_8
39c91997bea9e861421411a1caa9ff54
function varargout = log(varargin) %LOG (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/LOG CALLED WITH DOUBLE. Report error') case 'sdpvar' % Try to detect logsumexp construction etc varargout{1} = check_for_special_cases(varargin{:}); % Nope, then just define this logarithm if isempty(varargout{1}) varargout{1} = InstantiateElementWise(mfilename,varargin{:}); end case 'char' X = varargin{3}; F = (X >= 1e-8); operator = struct('convexity','concave','monotonicity','increasing','definiteness','none','model','callback'); operator.convexhull = @convexhull; operator.bounds = @bounds; operator.domain = [0 inf]; operator.derivative = @(x)(1./(abs(x)+eps)); operator.inverse = @(x)(exp(x)); varargout{1} = F; varargout{2} = operator; varargout{3} = X; otherwise error('SDPVAR/LOG called with CHAR argument?'); end function [L,U] = bounds(xL,xU) if xL <= 0 % The variable is not bounded enough yet L = -inf; else L = log(xL); end if xU < 0 % This is an infeasible problem L = inf; U = -inf; else U = log(xU); end function [Ax, Ay, b, K] = convexhull(xL,xU) K = []; if xL <= 0 fL = inf; else fL = log(xL); end fU = log(xU); dfL = 1/(xL); dfU = 1/(xU); %xM = (xU - xL)/(fU-fL); xM = (xL + xU)/2; fM = log(xM); dfM = 1/xM; [Ax,Ay,b] = convexhullConcave(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU); remove = isinf(b) | isinf(Ax) | isnan(b); if any(remove) remove = find(remove); Ax(remove)=[]; b(remove)=[]; Ay(remove)=[]; end function f = check_for_special_cases(x) f = []; % Check for log(1+x) base = getbase(x); if all(base(:,1)==1) f = slog(x-1); return; end % Check if user is constructing log(sum(exp(x))) if base(1)~=0 return end if ~all(base(2:end)==1) return end modelst = yalmip('extstruct',getvariables(x)); if isempty(modelst) return; end if length(modelst)==1 models{1} = modelst; else models = modelst; end % LOG(DET(X)) if length(models)==1 if strcmp(models{1}.fcn,'det_internal') n = length(models{1}.arg{1}); try f = logdet(reshape(models{1}.arg{1},sqrt(n),sqrt(n))); catch end return end end % LOG(EXP(x1)+...+EXP(xn)) for i = 1:length(models) if ~strcmp(models{i}.fcn,'exp') return end end p = []; for i = 1:length(models) p = [p;models{i}.arg{1}]; end f = logsumexp(p);
github
EnricoGiordano1992/LMI-Matlab-master
subsref.m
.m
LMI-Matlab-master/yalmip/@sdpvar/subsref.m
9,032
utf_8
2f2b19b258a84e0cc39f6afdf6d64c31
function varargout = subsref(varargin) %SUBSREF (overloaded) % Stupid first slice call (supported by MATLAB) % x = sdpvar(2);x(1,:,:) Y = varargin{2}; if length(Y)==1 if length(Y.subs) > 2 && isequal(Y.type,'()') i = 3; ok = 1; while ok && (i <= length(Y.subs)) ok = ok && (isequal(Y.subs{i},1) || isequal(Y.subs{i},':')); i = i + 1; end if ok Y.subs = {Y.subs{1:2}}; else error('??? Index exceeds matrix dimensions.'); end end end X = varargin{1}; if ~isempty(X.midfactors) X = flush(X); end try switch Y(1).type case '()' if isa(Y(1).subs{1},'constraint') error('Conditional indexing not supported.'); end % Check for simple cases to speed things up (yes, ugly but we all want speed don't we!) switch size(Y(1).subs,2) case 1 y = subsref1d(X,Y(1).subs{1},Y); case 2 y = subsref2d(X,Y.subs{1},Y(1).subs{2},Y); otherwise if all( [Y(1).subs{3:end}]==1) y = subsref2d(X,Y.subs{1},Y(1).subs{2},Y); else error('Indexation error.'); end end case '{}' varargout{nargout} = []; % it could be the case that we have an extended variable % This is a bit tricky, so we do the best we can; assume that % we want to replace the internal argument wih the new % expression OldArgument = recover(depends(X)); vars = getvariables(X); mpt_solution = 1; if all(ismembc(vars,yalmip('extvariables'))) for i = 1:length(X) nonlinearModel = yalmip('extstruct',vars); if isequal(nonlinearModel{1}.fcn,'pwa_yalmip') | isequal(nonlinearModel{1}.fcn,'pwq_yalmip') else mpt_solution = 0; end end if mpt_solution assign(nonlinearModel{1}.arg{2},Y(1).subs{:}); XX = double(X); varargout{1} = double(X); return end end vars = getvariables(X); if (length(vars) == 1) & ismembc(vars,yalmip('extvariables')) nonlinearModel = yalmip('extstruct',vars); OldArgument = []; for i = 1:length(nonlinearModel.arg) if isa(nonlinearModel.arg{i},'sdpvar') OldArgument = [OldArgument; nonlinearModel.arg{i}]; end end if isa([Y.subs{:}],'double') assign(reshape(OldArgument,[],1),reshape([Y(1).subs{:}],[],1)); varargout{1} = double(X); return end end y = replace(X,OldArgument,[Y(1).subs{:}]); if isa(y,'double') varargout{1} = y; return end case '.' switch Y(1).subs case {'minimize','maximize'} options = []; constraints = []; objective = varargin{1}; opsargs = {}; if length(Y)==2 if isequal(Y(2).type,'()') for i = 1:length(Y(2).subs) switch class(Y(2).subs{i}) case {'lmi','constraint'} constraints = [constraints, Y(2).subs{i}]; case 'struct' options = Y(2).subs{i}; case {'double','char'} opsargs{end+1} = Y(2).subs{i}; otherwise error('Argument to minimize should be constraints or options'); end end else error(['What do you mean with ' Y(2).type '?']); end end if length(opsargs)>0 if isempty(options) options = sdpsettings(opsargs{:}); else options = sdpsettings(options,opsargs{:}); end end if isequal(Y(1).subs,'minimize') sol = solvesdp(constraints,objective,options); else sol = solvesdp(constraints,-objective,options); end varargout{1} = varargin{1}; varargout{2} = sol; return case 'derivative' try m = model(varargin{1}); varargout{1} = m{1}.derivative; catch varargout{1} = 1; end return otherwise error(['Indexation ''' Y.type Y.subs ''' not supported']) ; end otherwise error(['Indexation with ''' Y.type ''' not supported']) ; end catch error(lasterr) end if isempty(y.lmi_variables) y = full(reshape(y.basis(:,1),y.dim(1),y.dim(2))); else % Reset info about conic terms y.conicinfo = [0 0]; end varargout{1} = y; function X = subsref1d(X,ind1,Y) % Get old and new size n = X.dim(1); m = X.dim(2); % Convert to linear indecicies if islogical(ind1) ind1 = double(find(ind1)); elseif ischar(ind1) X.dim(1) = n*m; X.dim(2) = 1; return; elseif ~isnumeric(ind1) X = milpsubsref(X,Y); return end % Detect X(scalar) if length(ind1) == 1 & ind1 <= n*m Z = X.basis.'; Z = Z(:,ind1); Z = Z.'; nnew = 1; mnew = 1; else % What would the size be for a double dummy = reshape(X.basis(:,1),n,m); dummy = dummy(ind1); nnew = size(dummy,1); mnew = size(dummy,2); [nx,mx] = size(X.basis); if length(ind1) > 1 try Z = X.basis.'; Z = Z(:,ind1); Z = Z.'; catch Z = X.basis(ind1,:); end else Z = X.basis(ind1,:); end end % Find non-zero basematrices nzZ = find(any(Z(:,2:end),1)); if ~isempty(nzZ) X.dim(1) = nnew; X.dim(2) = mnew; X.lmi_variables = X.lmi_variables(nzZ); X.basis = Z(:,[1 1+nzZ]); else bas = reshape(X.basis(:,1),n,m); X.dim(1) = nnew; X.dim(2) = mnew; X.lmi_variables = []; X.basis = reshape(bas(ind1),nnew*mnew,1); end function X = subsref2d(X,ind1,ind2,Y) if isnumeric(ind1) elseif ischar(ind1) ind1 = 1:X.dim(1); elseif islogical(ind1) ind1 = double(find(ind1)); elseif ~isnumeric(ind1) X = milpsubsref(X,Y); return end if isnumeric(ind2) elseif ischar(ind2) ind2 = 1:X.dim(2); elseif islogical(ind2) ind2 = double(find(ind2)); elseif ~isnumeric(ind2) X = milpsubsref(X,Y); return end n = X.dim(1); m = X.dim(2); lind2 = length(ind2); lind1 = length(ind1); if lind2 == 1 ind1_ext = ind1(:); else ind1_ext = kron(ones(lind2,1),ind1(:)); end if lind1 == 1 ind2_ext = ind2(:); else ind2_ext = kron(ind2(:),ones(lind1,1)); end if any(ind1 > n) || any(ind2 > m) error('Index exceeds matrix dimensions.'); end if lind1==1 && lind2==1 if isequal(X.conicinfo,[-1 0]) X.basis = [0 1]; X.lmi_variables = X.lmi_variables(1)+ind1+(ind2-1)*n-1; X.dim = [1 1]; X.conicinfo = [0 0]; return end end if prod(size(ind1_ext))==0 | prod(size(ind2_ext))==0 linear_index = []; else % Speed-up for some bizarre code with loads of indexing of vector if m==1 & ind2_ext==1 linear_index = ind1_ext; elseif length(ind2_ext)==1 && length(ind1_ext)==1 linear_index = ind1_ext + (ind2_ext-1)*n; else linear_index = sub2ind([n m],ind1_ext,ind2_ext); end end nnew = length(ind1); mnew = length(ind2); % Put all matrices in vectors and extract sub matrix Z = X.basis(linear_index,:); % Find non-zero basematrices %nzZ = find(any(Z(:,2:end),1)); nzZ = find(any(Z,1))-1; if numel(nzZ)>0 if nzZ(1)==0 nzZ = nzZ(2:end); end end if ~isempty(nzZ) X.dim(1) = nnew; X.dim(2) = mnew; X.lmi_variables = X.lmi_variables(nzZ); X.basis = Z(:,[1 1+nzZ]); else bas = reshape(X.basis(:,1),n,m); X.dim(1) = nnew; X.dim(2) = mnew; X.lmi_variables = []; X.basis = reshape(bas(linear_index),nnew*mnew,1); end
github
EnricoGiordano1992/LMI-Matlab-master
sinh.m
.m
LMI-Matlab-master/yalmip/@sdpvar/sinh.m
738
utf_8
167ff99de55c2333af9b1e2479b71a75
function varargout = sinh(varargin) %SINH (overloaded) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/ACOT CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','none','monotonicity','none','definiteness','none','model','callback'); operator.convexhull = []; operator.bounds = @bounds; operator.derivative = @(x)(cosh(x)); varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/SINH called with CHAR argument?'); end function [L,U] = bounds(xL,xU) L = sinh(xL); U = sinh(xU);
github
EnricoGiordano1992/LMI-Matlab-master
pwa.m
.m
LMI-Matlab-master/yalmip/@sdpvar/pwa.m
4,366
utf_8
47c565d662055a330df89467ca9366bd
function [p,Bi,Ci,Pn,Pfinal] = PWA(h,Xdomain) % PWA Tries to create a PWA description % % [p,Bi,Ci,Pn,Pfinal] = PWA(h,X) % % Input % h : scalar SDPVAR object % X : SET object % % Output % % p : scalar SDPVAR object representing the PWA function % Bi,Ci,Pn,Pfinal : Data in MPT format % % The command tries to expand the nonlinear operators % (min,max,abs,...) used in the variable h, in order % to generate an epi-graph model. Given this epigraph model, % it is projected to the variables of interest and the % defining facets of the PWA function is extracted. The second % argument can be used to limit the domain of the PWA function. % If no second argument is supplied, the PWA function is created % over the domain -100 to 100. % % A new sdpvar object p is created, representing the same % function as h, but in a slightly different internal format. % Additionally, the PWA description in MPT format is created. % % The function is mainly inteded to be used for easy % plotting of convex PWA functions t = sdpvar(1,1); [F,failure,cause] = expandmodel(lmi(h<=t),[],sdpsettings('allowmilp',0)); if failure error(['Could not expand model (' cause ')']); return end % Figure out what the actual original variables are % note, by construction, they all_initial = getvariables(h); all_extended = yalmip('extvariables'); all_variables = getvariables(F); gen_here = getvariables(t); non_ext_in = setdiff(all_initial,all_extended); lifted = all_variables(all_variables>gen_here); vars = union(setdiff(setdiff(setdiff(all_variables,all_extended),gen_here),lifted),non_ext_in); nx = length(vars); X = recover(vars); if nargin == 1 Xdomain = (-100 <= X <= 100); else Xdomain = (-10000 <= X <= 10000)+Xdomain; end [Ai,Bi,Ci,Pn] = generate_pwa(F,t,X,Xdomain,nx); Pfinal = union(Pn); sol.Pn = Pn; sol.Bi = Bi; sol.Ci = Ci; sol.Ai = Ai; sol.Pfinal = Pfinal; p = pwf(sol,X,'convex'); % % binarys = recover(all_variables(find(ismember(all_variables,yalmip('binvariables'))))) % if length(binarys) > 0 % % Binary_Equalities = []; % Binary_Inequalities = []; % Mixed_Equalities = []; % top = 1; % for i = 1:length(F) % Fi = sdpvar(F(i)); % if is(F(i),'equality') % if all(ismember(getvariables(Fi),yalmip('binvariables'))) % Binary_Equalities = [Binary_Equalities;(top:top-1+prod(size(Fi)))']; % Mixed_Equalities = [Mixed_Equalities;(top:top-1+prod(size(Fi)))']; % end % else % if all(ismember(getvariables(Fi),yalmip('binvariables'))) % Binary_Inequalities = [Binary_Inequalities;(top:top-1+prod(size(Fi)))']; % end % end % top = top+prod(size(Fi))'; % end % P = sdpvar(F); % P_ineq = extsubsref(P,setdiff(1:length(P),[Binary_Equalities; Binary_Inequalities])) % P_binary_eq = extsubsref(P,Binary_Equalities);HK1 = getbase(P_binary_eq); % P_binary_ineq = extsubsref(P,Binary_Inequalities);HK2 = getbase(P_binary_ineq); % nbin = length(binarys); % enums = dec2decbin(0:2^nbin-1,nbin)' % if isempty(HK2) % HK2 = HK1*0; % end % for i = 1:size(enums,2) % if all(HK1*[1;enums(:,i)]==0) % if all(HK2*[1;enums(:,i)]>=0) % Pi = replace(P_ineq,binarys,enums(:,i)) % end % end % end % % else % [Ai,Bi,Ci,Pn] = generate_pwa(F,t,X,Xdomain,nx); % end % function [Ai,Bi,Ci,Pn] = generate_pwa(F,t,X,Xdomain,nx) % Project, but remember that we already expanded the constraints P = polytope(projection(F+(t<=10000)+Xdomain,[X;t],[],1));Xdomain = polytope(Xdomain); [H,K] = double(P); facets = find(H(:,end)<0); region = find(~H(:,end) & any(H(:,1:nx),2) ); Hr = H(region,1:nx); Kr = K(region,:); H = H(facets,:); K = K(facets); K = K./H(:,end); H = H./repmat(H(:,end),1,size(H,2)); nx = length(X); Pn = []; cib = [H(:,1:nx) K]; Ai = {}; Bi = cell(0); Ci = cell(0); if length(Kr > 0) Xdomain = intersect(Xdomain,polytope(Hr,Kr)); end [Hr,Kr] = double(Xdomain); for i = 1:length(K) j = setdiff(1:length(K),i); HiKi = repmat(cib(i,:),length(K)-1,1)-cib(j,:); Pi = polytope([HiKi(:,1:nx);Hr],[HiKi(:,end);Kr]); if isfulldim(Pi) Pn = [Pn Pi]; Bi{end+1} = -cib(i,1:end-1); Ci{end+1} = cib(i,end); Ai{end+1} = []; end end
github
EnricoGiordano1992/LMI-Matlab-master
max.m
.m
LMI-Matlab-master/yalmip/@sdpvar/max.m
4,345
utf_8
513e8918b0e1fb1684e2ddcd491cbeb8
function y = max(varargin) %MAX (overloaded) % % t = max(X) % t = max(X,Y) % t = max(X,[],DIM) % % Creates an internal structure relating the variable t with convex % operator max(X). % % The variable t is primarily meant to be used in convexity preserving % operations such as t<=..., minimize t etc. % % If the variable is used in a non-convexity preserving operation, such as % t>=0, a mixed integer model will be derived. % % See built-in MAX for syntax. % To simplify code flow, code for different #inputs switch nargin case 1 % Three cases: % 1. One scalar input, return same as output % 2. A vector input should give scalar output % 3. Matrix input returns vector output X = varargin{1}; if max(size(X))==1 y = X; return elseif min(size(X))==1 X = removeInf(X); if isa(X,'double') y = max(X); elseif length(X) == 1 y = X; else y = yalmip('define','max_internal',X); % Some special code to ensure max(x) when x is a simple % binary vector yields a binary graph variable. This will % simplify some models reDeclareForBinaryMax(y,X); end return else % This is just short-hand for general command y = max(X,[],1); end case 2 X = varargin{1}; Y = varargin{2}; [nx,mx] = size(X); [ny,my] = size(Y); if ~((nx*mx==1) | (ny*my==1)) % No scalar, so they have to match if ~((nx==ny) & (mx==my)) error('Array dimensions must match.'); end end % Convert to compatible matrices if nx*mx==1 X = X*ones(ny,my); nx = ny; mx = my; elseif ny*my == 1 Y = Y*ones(nx,mx); ny = nx; my = mx; end % Ok, done with error checks etc. Z = [reshape(X,1,[]);reshape(Y,1,[])]; y = yalmip('define','max_internal',Z); reDeclareForBinaryMax(y,Z); y = reshape(y,nx,mx); case 3 X = varargin{1}; Y = varargin{2}; DIM = varargin{3}; if ~(isa(X,'sdpvar') & isempty(Y)) error('MAX with two matrices to compare and a working dimension is not supported.'); end if ~isa(DIM,'double') error('Dimension argument must be 1 or 2.'); end if ~(length(DIM)==1) error('Dimension argument must be 1 or 2.'); end if ~(DIM==1 | DIM==2) error('Dimension argument must be 1 or 2.'); end if DIM==1 % Create one extended variable per column y = []; for i = 1:size(X,2) inparg = extsubsref(X,1:size(X,1),i); if isa(inparg,'sdpvar') inparg = removeInf(inparg); if isa(inparg,'double') y = [y max(inparg)]; elseif length(inparg) == 1 y = [y max(inparg)]; else z = yalmip('define','max_internal',inparg); y = [y z]; % Some special code to ensure max(x) when x is a simple % binary vector yields a binary graph variable. This will % improve some models reDeclareForBinaryMax(z,inparg); end else y = [y max(inparg)]; end end else % Re-use code recursively y = max(X',[],1)'; end otherwise error('Too many input arguments.'); end function X = removeInf(X) Xbase = getbase(X); infs = find( isinf(Xbase(:,1)) & (Xbase(:,1)<0)); if ~isempty(infs) X.basis(infs,:) = []; if X.dim(1)>X.dim(2) X.dim(1) = X.dim(1) - length(infs); else X.dim(2) = X.dim(2) - length(infs); end end infs = find(isinf(Xbase(:,1)) & (Xbase(:,1)>0)); if ~isempty(infs) X = inf; end
github
EnricoGiordano1992/LMI-Matlab-master
deadhub.m
.m
LMI-Matlab-master/yalmip/@sdpvar/deadhub.m
1,425
utf_8
19c2ad46cb40a73e2e3512d91f306a52
function varargout = deadhub(varargin) switch class(varargin{1}) case 'double' error('Overloaded SDPVAR/SIN CALLED WITH DOUBLE. Report error') case 'sdpvar' varargout{1} = InstantiateElementWise(mfilename,varargin{:}); case 'char' operator = struct('convexity','convex','monotonicity','none','definiteness','positive','model','callback'); operator.bounds = @bounds; operator.convexhull = @convexhull; varargout{1} = []; varargout{2} = operator; varargout{3} = varargin{3}; otherwise error('SDPVAR/SIN called with CHAR argument?'); end function [L,U] = bounds(xL,xU,lambda) fL = deadhub(xL,lambda); fU = deadhub(xU,lambda); U = max(fL,fU); L = min(fL,fU); if xL<0 & xU>0 L = 0; end function [Ax, Ay, b, K] = convexhull(xL,xU,lambda) K.l = 0; K.f = 0; fL = deadhub(xL,lambda); fU = deadhub(xU,lambda); if xL>=-lambda & xU<=lambda Ax = 0;Ay = 1;b = 0;K.f = 1; elseif xU < -3*lambda Ax = 1;Ay = 1;b = 2*lambda^2;K.f = 1; elseif xL > 3*lambda Ax = -1;Ay = 1;b = 2*lambda^2;K.f = 1; else dfL = derivative(xL,lambda); dfU = derivative(xU,lambda); [Ax,Ay,b,K] = convexhullConvex(xL,xU,fL,fU,dfL,dfU); end function df=derivative(x,lambda) ax = abs(x); if ax<lambda df=0; elseif ax>3*lambda df = lambda; elseif ax<=3*lambda df = 0.25*(2*ax-6*lambda)+lambda; end if x<0 df=-df; end