file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Algebra/Module/Submodule/Lattice.lean
Submodule.mem_sSup_of_mem
[ { "state_after": "R : Type u_2\nS✝ : Type ?u.168464\nM : Type u_1\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S✝ M\ninst✝¹ : SMul S✝ R\ninst✝ : IsScalarTower S✝ R M\np q : Submodule R M\nS : Set (Submodule R M)\ns : Submodule R M\nhs : s ∈ S\nthis : s ≤ sSup S\n⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S", "state_before": "R : Type u_2\nS✝ : Type ?u.168464\nM : Type u_1\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S✝ M\ninst✝¹ : SMul S✝ R\ninst✝ : IsScalarTower S✝ R M\np q : Submodule R M\nS : Set (Submodule R M)\ns : Submodule R M\nhs : s ∈ S\n⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S", "tactic": "have := le_sSup hs" }, { "state_after": "R : Type u_2\nS✝ : Type ?u.168464\nM : Type u_1\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S✝ M\ninst✝¹ : SMul S✝ R\ninst✝ : IsScalarTower S✝ R M\np q : Submodule R M\nS : Set (Submodule R M)\ns : Submodule R M\nhs : s ∈ S\nthis : Preorder.toLE.1 s (sSup S)\n⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S", "state_before": "R : Type u_2\nS✝ : Type ?u.168464\nM : Type u_1\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S✝ M\ninst✝¹ : SMul S✝ R\ninst✝ : IsScalarTower S✝ R M\np q : Submodule R M\nS : Set (Submodule R M)\ns : Submodule R M\nhs : s ∈ S\nthis : s ≤ sSup S\n⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S", "tactic": "rw [LE.le] at this" }, { "state_after": "no goals", "state_before": "R : Type u_2\nS✝ : Type ?u.168464\nM : Type u_1\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S✝ M\ninst✝¹ : SMul S✝ R\ninst✝ : IsScalarTower S✝ R M\np q : Submodule R M\nS : Set (Submodule R M)\ns : Submodule R M\nhs : s ∈ S\nthis : Preorder.toLE.1 s (sSup S)\n⊢ ∀ {x : M}, x ∈ s → x ∈ sSup S", "tactic": "exact this" } ]
[ 324, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 320, 1 ]
Mathlib/Topology/Algebra/UniformGroup.lean
TopologicalGroup.tendstoUniformly_iff
[]
[ 618, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 613, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.image_smul_product
[]
[ 1275, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1274, 1 ]
Mathlib/Topology/Order.lean
isClosed_induced_iff'
[ { "state_after": "α : Type u_2\nβ : Type u_1\nt✝ : TopologicalSpace β\nf✝ : α → β\nt : TopologicalSpace β\nf : α → β\ns : Set α\nthis : TopologicalSpace α := induced f t\n⊢ IsClosed s ↔ ∀ (a : α), f a ∈ closure (f '' s) → a ∈ s", "state_before": "α : Type u_2\nβ : Type u_1\nt✝ : TopologicalSpace β\nf✝ : α → β\nt : TopologicalSpace β\nf : α → β\ns : Set α\n⊢ IsClosed s ↔ ∀ (a : α), f a ∈ closure (f '' s) → a ∈ s", "tactic": "letI := t.induced f" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nt✝ : TopologicalSpace β\nf✝ : α → β\nt : TopologicalSpace β\nf : α → β\ns : Set α\nthis : TopologicalSpace α := induced f t\n⊢ IsClosed s ↔ ∀ (a : α), f a ∈ closure (f '' s) → a ∈ s", "tactic": "simp only [← closure_subset_iff_isClosed, subset_def, closure_induced]" } ]
[ 891, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 888, 1 ]
Mathlib/Analysis/Calculus/ContDiffDef.lean
ContDiff.differentiable
[]
[ 1477, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1476, 1 ]
Mathlib/Data/Polynomial/HasseDeriv.lean
Polynomial.hasseDeriv_apply
[ { "state_after": "R : Type u_1\ninst✝ : Semiring R\nk : ℕ\nf : R[X]\n⊢ (sum f fun n r => ↑(monomial (n - k)) (choose n k • r)) = sum f fun i r => ↑(monomial (i - k)) (↑(choose i k) * r)", "state_before": "R : Type u_1\ninst✝ : Semiring R\nk : ℕ\nf : R[X]\n⊢ ↑(hasseDeriv k) f = sum f fun i r => ↑(monomial (i - k)) (↑(choose i k) * r)", "tactic": "dsimp [hasseDeriv]" }, { "state_after": "case e_f\nR : Type u_1\ninst✝ : Semiring R\nk : ℕ\nf : R[X]\n⊢ (fun n r => ↑(monomial (n - k)) (choose n k • r)) = fun i r => ↑(monomial (i - k)) (↑(choose i k) * r)", "state_before": "R : Type u_1\ninst✝ : Semiring R\nk : ℕ\nf : R[X]\n⊢ (sum f fun n r => ↑(monomial (n - k)) (choose n k • r)) = sum f fun i r => ↑(monomial (i - k)) (↑(choose i k) * r)", "tactic": "congr" }, { "state_after": "case e_f.h.h.a\nR : Type u_1\ninst✝ : Semiring R\nk : ℕ\nf : R[X]\nx✝¹ : ℕ\nx✝ : R\nn✝ : ℕ\n⊢ coeff (↑(monomial (x✝¹ - k)) (choose x✝¹ k • x✝)) n✝ = coeff (↑(monomial (x✝¹ - k)) (↑(choose x✝¹ k) * x✝)) n✝", "state_before": "case e_f\nR : Type u_1\ninst✝ : Semiring R\nk : ℕ\nf : R[X]\n⊢ (fun n r => ↑(monomial (n - k)) (choose n k • r)) = fun i r => ↑(monomial (i - k)) (↑(choose i k) * r)", "tactic": "ext" }, { "state_after": "case e_f.h.h.a.e_a.h.e_6.h\nR : Type u_1\ninst✝ : Semiring R\nk : ℕ\nf : R[X]\nx✝¹ : ℕ\nx✝ : R\nn✝ : ℕ\n⊢ choose x✝¹ k • x✝ = ↑(choose x✝¹ k) * x✝", "state_before": "case e_f.h.h.a\nR : Type u_1\ninst✝ : Semiring R\nk : ℕ\nf : R[X]\nx✝¹ : ℕ\nx✝ : R\nn✝ : ℕ\n⊢ coeff (↑(monomial (x✝¹ - k)) (choose x✝¹ k • x✝)) n✝ = coeff (↑(monomial (x✝¹ - k)) (↑(choose x✝¹ k) * x✝)) n✝", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case e_f.h.h.a.e_a.h.e_6.h\nR : Type u_1\ninst✝ : Semiring R\nk : ℕ\nf : R[X]\nx✝¹ : ℕ\nx✝ : R\nn✝ : ℕ\n⊢ choose x✝¹ k • x✝ = ↑(choose x✝¹ k) * x✝", "tactic": "apply nsmul_eq_mul" } ]
[ 69, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/LinearAlgebra/Quotient.lean
Submodule.mkQ_apply
[]
[ 327, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 326, 1 ]
Mathlib/Dynamics/FixedPoints/Topology.lean
isFixedPt_of_tendsto_iterate
[ { "state_after": "α : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T2Space α\nf : α → α\nx y : α\nhy : Tendsto (fun n => (f^[n]) x) atTop (𝓝 y)\nhf : ContinuousAt f y\n⊢ Tendsto (fun n => (f^[n + 1]) x) atTop (𝓝 (f y))", "state_before": "α : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T2Space α\nf : α → α\nx y : α\nhy : Tendsto (fun n => (f^[n]) x) atTop (𝓝 y)\nhf : ContinuousAt f y\n⊢ IsFixedPt f y", "tactic": "refine' tendsto_nhds_unique ((tendsto_add_atTop_iff_nat 1).1 _) hy" }, { "state_after": "α : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T2Space α\nf : α → α\nx y : α\nhy : Tendsto (fun n => (f^[n]) x) atTop (𝓝 y)\nhf : ContinuousAt f y\n⊢ Tendsto (fun n => (f ∘ f^[n]) x) atTop (𝓝 (f y))", "state_before": "α : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T2Space α\nf : α → α\nx y : α\nhy : Tendsto (fun n => (f^[n]) x) atTop (𝓝 y)\nhf : ContinuousAt f y\n⊢ Tendsto (fun n => (f^[n + 1]) x) atTop (𝓝 (f y))", "tactic": "simp only [iterate_succ' f]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T2Space α\nf : α → α\nx y : α\nhy : Tendsto (fun n => (f^[n]) x) atTop (𝓝 y)\nhf : ContinuousAt f y\n⊢ Tendsto (fun n => (f ∘ f^[n]) x) atTop (𝓝 (f y))", "tactic": "exact hf.tendsto.comp hy" } ]
[ 40, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 36, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.update_eq_sub_add_single
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.565928\nγ : Type ?u.565931\nι : Type ?u.565934\nM : Type ?u.565937\nM' : Type ?u.565940\nN : Type ?u.565943\nP : Type ?u.565946\nG : Type u_1\nH : Type ?u.565952\nR : Type ?u.565955\nS : Type ?u.565958\ninst✝ : AddGroup G\nf : α →₀ G\na : α\nb : G\n⊢ update f a b = f - single a (↑f a) + single a b", "tactic": "rw [update_eq_erase_add_single, erase_eq_sub_single]" } ]
[ 1318, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1316, 1 ]
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_pow_length_eq_one_of_nodup
[ { "state_after": "case H\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\n⊢ ↑(formPerm l ^ length l) x = ↑1 x", "state_before": "α : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx : α\nhl : Nodup l\n⊢ formPerm l ^ length l = 1", "tactic": "ext x" }, { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : x ∈ l\n⊢ ↑(formPerm l ^ length l) x = ↑1 x\n\ncase neg\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\n⊢ ↑(formPerm l ^ length l) x = ↑1 x", "state_before": "case H\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\n⊢ ↑(formPerm l ^ length l) x = ↑1 x", "tactic": "by_cases hx : x ∈ l" }, { "state_after": "case pos.intro.intro\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx : α\nhl : Nodup l\nk : ℕ\nhk : k < length l\nhx : nthLe l k hk ∈ l\n⊢ ↑(formPerm l ^ length l) (nthLe l k hk) = ↑1 (nthLe l k hk)", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : x ∈ l\n⊢ ↑(formPerm l ^ length l) x = ↑1 x", "tactic": "obtain ⟨k, hk, rfl⟩ := nthLe_of_mem hx" }, { "state_after": "no goals", "state_before": "case pos.intro.intro\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx : α\nhl : Nodup l\nk : ℕ\nhk : k < length l\nhx : nthLe l k hk ∈ l\n⊢ ↑(formPerm l ^ length l) (nthLe l k hk) = ↑1 (nthLe l k hk)", "tactic": "simp [formPerm_pow_apply_nthLe _ hl, Nat.mod_eq_of_lt hk]" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\nthis : ¬x ∈ {x | ↑(formPerm l ^ length l) x ≠ x}\n⊢ ↑(formPerm l ^ length l) x = ↑1 x", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\n⊢ ↑(formPerm l ^ length l) x = ↑1 x", "tactic": "have : x ∉ { x | (l.formPerm ^ l.length) x ≠ x } := by\n intro H\n refine' hx _\n replace H := set_support_zpow_subset l.formPerm l.length H\n simpa using support_formPerm_le' _ H" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\nthis : ¬x ∈ {x | ↑(formPerm l ^ length l) x ≠ x}\n⊢ ↑(formPerm l ^ length l) x = ↑1 x", "tactic": "simpa using this" }, { "state_after": "α : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\nH : x ∈ {x | ↑(formPerm l ^ length l) x ≠ x}\n⊢ False", "state_before": "α : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\n⊢ ¬x ∈ {x | ↑(formPerm l ^ length l) x ≠ x}", "tactic": "intro H" }, { "state_after": "α : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\nH : x ∈ {x | ↑(formPerm l ^ length l) x ≠ x}\n⊢ x ∈ l", "state_before": "α : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\nH : x ∈ {x | ↑(formPerm l ^ length l) x ≠ x}\n⊢ False", "tactic": "refine' hx _" }, { "state_after": "α : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\nH : x ∈ {x | ↑(formPerm l) x ≠ x}\n⊢ x ∈ l", "state_before": "α : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\nH : x ∈ {x | ↑(formPerm l ^ length l) x ≠ x}\n⊢ x ∈ l", "tactic": "replace H := set_support_zpow_subset l.formPerm l.length H" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.842481\ninst✝ : DecidableEq α\nl : List α\nx✝ : α\nhl : Nodup l\nx : α\nhx : ¬x ∈ l\nH : x ∈ {x | ↑(formPerm l) x ≠ x}\n⊢ x ∈ l", "tactic": "simpa using support_formPerm_le' _ H" } ]
[ 468, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 458, 1 ]
Mathlib/Data/ULift.lean
PLift.up_bijective
[]
[ 53, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
mul_sub_mul_div_mul_nonpos_iff
[ { "state_after": "no goals", "state_before": "ι : Type ?u.193207\nα : Type u_1\nβ : Type ?u.193213\ninst✝ : LinearOrderedField α\na b c d : α\nn : ℤ\nhc : c ≠ 0\nhd : d ≠ 0\n⊢ (a * d - b * c) / (c * d) ≤ 0 ↔ a / c ≤ b / d", "tactic": "rw [mul_comm b c, ← div_sub_div _ _ hc hd, sub_nonpos]" } ]
[ 962, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 960, 1 ]
Mathlib/Algebra/MonoidAlgebra/ToDirectSum.lean
AddMonoidAlgebra.toDirectSum_add
[]
[ 131, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Images.lean
CategoryTheory.Limits.as_factorThruImage
[]
[ 335, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 334, 1 ]
Mathlib/Topology/Algebra/ContinuousAffineMap.lean
ContinuousAffineMap.congr_fun
[]
[ 92, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Order/Lattice.lean
inf_comm
[]
[ 496, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 495, 1 ]
Mathlib/Order/CompleteLattice.lean
iSup_const
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.86729\nβ₂ : Type ?u.86732\nγ : Type ?u.86735\nι : Sort u_1\nι' : Sort ?u.86741\nκ : ι → Sort ?u.86746\nκ' : ι' → Sort ?u.86751\ninst✝¹ : CompleteLattice α\nf g s t : ι → α\na b : α\ninst✝ : Nonempty ι\n⊢ (⨆ (x : ι), a) = a", "tactic": "rw [iSup, range_const, sSup_singleton]" } ]
[ 1044, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1044, 1 ]
Mathlib/Topology/MetricSpace/PiNat.lean
PiNat.exists_disjoint_cylinder
[ { "state_after": "case inl\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\nx : (n : ℕ) → E n\nhs : IsClosed ∅\nhx : ¬x ∈ ∅\n⊢ ∃ n, Disjoint ∅ (cylinder x n)\n\ncase inr\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\n⊢ ∃ n, Disjoint s (cylinder x n)", "state_before": "E : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\n⊢ ∃ n, Disjoint s (cylinder x n)", "tactic": "rcases eq_empty_or_nonempty s with (rfl | hne)" }, { "state_after": "case inr\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\n⊢ ∃ n, Disjoint s (cylinder x n)", "state_before": "case inr\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\n⊢ ∃ n, Disjoint s (cylinder x n)", "tactic": "have A : 0 < infDist x s := (hs.not_mem_iff_infDist_pos hne).1 hx" }, { "state_after": "case inr.intro\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\nn : ℕ\nhn : (1 / 2) ^ n < infDist x s\n⊢ ∃ n, Disjoint s (cylinder x n)", "state_before": "case inr\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\n⊢ ∃ n, Disjoint s (cylinder x n)", "tactic": "obtain ⟨n, hn⟩ : ∃ n, (1 / 2 : ℝ) ^ n < infDist x s := exists_pow_lt_of_lt_one A one_half_lt_one" }, { "state_after": "case inr.intro\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\nn : ℕ\nhn : (1 / 2) ^ n < infDist x s\ny : (n : ℕ) → E n\nys : y ∈ s\nhy : y ∈ cylinder x n\n⊢ False", "state_before": "case inr.intro\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\nn : ℕ\nhn : (1 / 2) ^ n < infDist x s\n⊢ ∃ n, Disjoint s (cylinder x n)", "tactic": "refine' ⟨n, disjoint_left.2 fun y ys hy => ?_⟩" }, { "state_after": "case inr.intro\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\nn : ℕ\nhn : (1 / 2) ^ n < infDist x s\ny : (n : ℕ) → E n\nys : y ∈ s\nhy : y ∈ cylinder x n\n⊢ infDist x s < infDist x s", "state_before": "case inr.intro\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\nn : ℕ\nhn : (1 / 2) ^ n < infDist x s\ny : (n : ℕ) → E n\nys : y ∈ s\nhy : y ∈ cylinder x n\n⊢ False", "tactic": "apply lt_irrefl (infDist x s)" }, { "state_after": "no goals", "state_before": "case inr.intro\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\nn : ℕ\nhn : (1 / 2) ^ n < infDist x s\ny : (n : ℕ) → E n\nys : y ∈ s\nhy : y ∈ cylinder x n\n⊢ infDist x s < infDist x s", "tactic": "calc\n infDist x s ≤ dist x y := infDist_le_dist_of_mem ys\n _ ≤ (1 / 2) ^ n := by\n rw [mem_cylinder_comm] at hy\n exact mem_cylinder_iff_dist_le.1 hy\n _ < infDist x s := hn" }, { "state_after": "no goals", "state_before": "case inl\nE : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\nx : (n : ℕ) → E n\nhs : IsClosed ∅\nhx : ¬x ∈ ∅\n⊢ ∃ n, Disjoint ∅ (cylinder x n)", "tactic": "exact ⟨0, by simp⟩" }, { "state_after": "no goals", "state_before": "E : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\nx : (n : ℕ) → E n\nhs : IsClosed ∅\nhx : ¬x ∈ ∅\n⊢ Disjoint ∅ (cylinder x 0)", "tactic": "simp" }, { "state_after": "E : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\nn : ℕ\nhn : (1 / 2) ^ n < infDist x s\ny : (n : ℕ) → E n\nys : y ∈ s\nhy : x ∈ cylinder y n\n⊢ dist x y ≤ (1 / 2) ^ n", "state_before": "E : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\nn : ℕ\nhn : (1 / 2) ^ n < infDist x s\ny : (n : ℕ) → E n\nys : y ∈ s\nhy : y ∈ cylinder x n\n⊢ dist x y ≤ (1 / 2) ^ n", "tactic": "rw [mem_cylinder_comm] at hy" }, { "state_after": "no goals", "state_before": "E : ℕ → Type u_1\ninst✝¹ : (n : ℕ) → TopologicalSpace (E n)\ninst✝ : ∀ (n : ℕ), DiscreteTopology (E n)\ns : Set ((n : ℕ) → E n)\nhs : IsClosed s\nx : (n : ℕ) → E n\nhx : ¬x ∈ s\nhne : Set.Nonempty s\nA : 0 < infDist x s\nn : ℕ\nhn : (1 / 2) ^ n < infDist x s\ny : (n : ℕ) → E n\nys : y ∈ s\nhy : x ∈ cylinder y n\n⊢ dist x y ≤ (1 / 2) ^ n", "tactic": "exact mem_cylinder_iff_dist_le.1 hy" } ]
[ 503, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 490, 1 ]
Mathlib/Topology/UniformSpace/Cauchy.lean
CauchySeq.eventually_eventually
[]
[ 250, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 1 ]
Mathlib/RingTheory/AdjoinRoot.lean
AdjoinRoot.isDomain_of_prime
[]
[ 375, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 373, 1 ]
Mathlib/Analysis/Calculus/LHopital.lean
deriv.lhopital_zero_atTop_on_Ioi
[ { "state_after": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Ioi a)\nhg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0\nhftop : Tendsto f atTop (𝓝 0)\nhgtop : Tendsto g atTop (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l\nhdf : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ f x\n⊢ Tendsto (fun x => f x / g x) atTop l", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf : DifferentiableOn ℝ f (Ioi a)\nhg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0\nhftop : Tendsto f atTop (𝓝 0)\nhgtop : Tendsto g atTop (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l\n⊢ Tendsto (fun x => f x / g x) atTop l", "tactic": "have hdf : ∀ x ∈ Ioi a, DifferentiableAt ℝ f x := fun x hx =>\n (hdf x hx).differentiableAt (Ioi_mem_nhds hx)" }, { "state_after": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Ioi a)\nhg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0\nhftop : Tendsto f atTop (𝓝 0)\nhgtop : Tendsto g atTop (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l\nhdf : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ f x\nhdg : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ g x\n⊢ Tendsto (fun x => f x / g x) atTop l", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Ioi a)\nhg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0\nhftop : Tendsto f atTop (𝓝 0)\nhgtop : Tendsto g atTop (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l\nhdf : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ f x\n⊢ Tendsto (fun x => f x / g x) atTop l", "tactic": "have hdg : ∀ x ∈ Ioi a, DifferentiableAt ℝ g x := fun x hx =>\n by_contradiction fun h => hg' x hx (deriv_zero_of_not_differentiableAt h)" }, { "state_after": "no goals", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhdf✝ : DifferentiableOn ℝ f (Ioi a)\nhg' : ∀ (x : ℝ), x ∈ Ioi a → deriv g x ≠ 0\nhftop : Tendsto f atTop (𝓝 0)\nhgtop : Tendsto g atTop (𝓝 0)\nhdiv : Tendsto (fun x => deriv f x / deriv g x) atTop l\nhdf : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ f x\nhdg : ∀ (x : ℝ), x ∈ Ioi a → DifferentiableAt ℝ g x\n⊢ Tendsto (fun x => f x / g x) atTop l", "tactic": "exact HasDerivAt.lhopital_zero_atTop_on_Ioi (fun x hx => (hdf x hx).hasDerivAt)\n (fun x hx => (hdg x hx).hasDerivAt) hg' hftop hgtop hdiv" } ]
[ 257, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 1 ]
Mathlib/Topology/Instances/TrivSqZeroExt.lean
TrivSqZeroExt.continuous_snd
[]
[ 66, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 8 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.lt_neg_iff
[ { "state_after": "no goals", "state_before": "x y : PGame\n⊢ y < -x ↔ x < -y", "tactic": "rw [← neg_neg x, neg_lt_neg_iff, neg_neg]" } ]
[ 1368, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1368, 1 ]
Mathlib/CategoryTheory/Extensive.lean
CategoryTheory.FinitaryExtensive.mono_inl_of_isColimit
[]
[ 251, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/Algebra/DirectSum/Decomposition.lean
DirectSum.decompose_zero
[]
[ 147, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Data/Rat/NNRat.lean
Rat.toNNRat_lt_toNNRat_iff
[]
[ 370, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 369, 1 ]
Mathlib/Analysis/Calculus/Deriv/Pow.lean
differentiableAt_pow
[]
[ 75, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
CategoryTheory.Limits.biprod.lift_fst
[]
[ 1365, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1363, 1 ]
Mathlib/Order/Filter/Pointwise.lean
Filter.comap_mul_comap_le
[]
[ 628, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 625, 1 ]
Mathlib/Data/Analysis/Topology.lean
Ctop.Realizer.ext
[]
[ 173, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/CategoryTheory/Equivalence.lean
CategoryTheory.Equivalence.pow_one
[]
[ 461, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 460, 1 ]
Mathlib/Order/RelIso/Basic.lean
RelEmbedding.acc
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.41887\nδ : Type ?u.41890\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nu : δ → δ → Prop\nf : r ↪r s\na : α\nb : β\nh : ↑f a = b\n⊢ Acc s b → Acc r a", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.41887\nδ : Type ?u.41890\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nu : δ → δ → Prop\nf : r ↪r s\na : α\n⊢ Acc s (↑f a) → Acc r a", "tactic": "generalize h : f a = b" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.41887\nδ : Type ?u.41890\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nu : δ → δ → Prop\nf : r ↪r s\na : α\nb : β\nh : ↑f a = b\nac : Acc s b\n⊢ Acc r a", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.41887\nδ : Type ?u.41890\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nu : δ → δ → Prop\nf : r ↪r s\na : α\nb : β\nh : ↑f a = b\n⊢ Acc s b → Acc r a", "tactic": "intro ac" }, { "state_after": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.41887\nδ : Type ?u.41890\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nu : δ → δ → Prop\nf : r ↪r s\na✝ : α\nb : β\nh✝ : ↑f a✝ = b\nx✝ : β\nH : ∀ (y : β), s y x✝ → Acc s y\nIH : ∀ (y : β), s y x✝ → ∀ (a : α), ↑f a = y → Acc r a\na : α\nh : ↑f a = x✝\n⊢ Acc r a", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.41887\nδ : Type ?u.41890\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nu : δ → δ → Prop\nf : r ↪r s\na : α\nb : β\nh : ↑f a = b\nac : Acc s b\n⊢ Acc r a", "tactic": "induction' ac with _ H IH generalizing a" }, { "state_after": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.41887\nδ : Type ?u.41890\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nu : δ → δ → Prop\nf : r ↪r s\na✝ : α\nb : β\nh : ↑f a✝ = b\na : α\nH : ∀ (y : β), s y (↑f a) → Acc s y\nIH : ∀ (y : β), s y (↑f a) → ∀ (a : α), ↑f a = y → Acc r a\n⊢ Acc r a", "state_before": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.41887\nδ : Type ?u.41890\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nu : δ → δ → Prop\nf : r ↪r s\na✝ : α\nb : β\nh✝ : ↑f a✝ = b\nx✝ : β\nH : ∀ (y : β), s y x✝ → Acc s y\nIH : ∀ (y : β), s y x✝ → ∀ (a : α), ↑f a = y → Acc r a\na : α\nh : ↑f a = x✝\n⊢ Acc r a", "tactic": "subst h" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.41887\nδ : Type ?u.41890\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nu : δ → δ → Prop\nf : r ↪r s\na✝ : α\nb : β\nh : ↑f a✝ = b\na : α\nH : ∀ (y : β), s y (↑f a) → Acc s y\nIH : ∀ (y : β), s y (↑f a) → ∀ (a : α), ↑f a = y → Acc r a\n⊢ Acc r a", "tactic": "exact ⟨_, fun a' h => IH (f a') (f.map_rel_iff.2 h) _ rfl⟩" } ]
[ 396, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 391, 11 ]
Mathlib/Computability/NFA.lean
NFA.evalFrom_nil
[]
[ 73, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/Analysis/Convex/Strict.lean
strictConvex_iff_openSegment_subset
[]
[ 57, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
Real.sinh_neg_iff
[ { "state_after": "no goals", "state_before": "x y z : ℝ\n⊢ sinh x < 0 ↔ x < 0", "tactic": "simpa only [sinh_zero] using @sinh_lt_sinh x 0" } ]
[ 713, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 713, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Arctan.lean
Real.tan_surjective
[]
[ 102, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/Combinatorics/SimpleGraph/Density.lean
SimpleGraph.mk_mem_interedges_iff
[]
[ 335, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 334, 1 ]
Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.mem_incidenceSet
[ { "state_after": "no goals", "state_before": "ι : Sort ?u.137668\n𝕜 : Type ?u.137671\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v✝ w✝ : V\ne : Sym2 V\nv w : V\n⊢ Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ incidenceSet G v ↔ Adj G v w", "tactic": "simp [incidenceSet]" } ]
[ 959, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 958, 1 ]
Mathlib/LinearAlgebra/FreeModule/Basic.lean
Module.Free.of_basis
[]
[ 72, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.tendsto_comp_val_Ioi_atTop
[ { "state_after": "ι : Type ?u.337904\nι' : Type ?u.337907\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.337916\ninst✝¹ : SemilatticeSup α\ninst✝ : NoMaxOrder α\na : α\nf : α → β\nl : Filter β\n⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l", "state_before": "ι : Type ?u.337904\nι' : Type ?u.337907\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.337916\ninst✝¹ : SemilatticeSup α\ninst✝ : NoMaxOrder α\na : α\nf : α → β\nl : Filter β\n⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto f atTop l", "tactic": "rw [← map_val_Ioi_atTop a, tendsto_map'_iff]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.337904\nι' : Type ?u.337907\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.337916\ninst✝¹ : SemilatticeSup α\ninst✝ : NoMaxOrder α\na : α\nf : α → β\nl : Filter β\n⊢ Tendsto (fun x => f ↑x) atTop l ↔ Tendsto (f ∘ Subtype.val) atTop l", "tactic": "rfl" } ]
[ 1618, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1616, 1 ]
Mathlib/Analysis/SpecificLimits/Basic.lean
tendsto_factorial_div_pow_self_atTop
[ { "state_after": "no goals", "state_before": "α : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nn : ℕ\n⊢ 0 ≤ ↑n !", "tactic": "exact_mod_cast n.factorial_pos.le" }, { "state_after": "no goals", "state_before": "α : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nn : ℕ\n⊢ 0 ≤ ↑n", "tactic": "exact_mod_cast n.zero_le" }, { "state_after": "α : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nn : ℕ\nhn : 0 < n\n⊢ ↑n ! / ↑n ^ n ≤ 1 / ↑n", "state_before": "α : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\n⊢ ∀ᶠ (b : ℕ) in atTop, ↑b ! / ↑b ^ b ≤ 1 / ↑b", "tactic": "refine' (eventually_gt_atTop 0).mono fun n hn => _" }, { "state_after": "case intro\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\n⊢ ↑(succ k)! / ↑(succ k) ^ succ k ≤ 1 / ↑(succ k)", "state_before": "α : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nn : ℕ\nhn : 0 < n\n⊢ ↑n ! / ↑n ^ n ≤ 1 / ↑n", "tactic": "rcases Nat.exists_eq_succ_of_ne_zero hn.ne.symm with ⟨k, rfl⟩" }, { "state_after": "case intro\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\n⊢ (∏ k_1 in Finset.range k, ↑(k_1 + 1 + 1) * (↑k + 1)⁻¹) * (↑(0 + 1) * (↑k + 1)⁻¹) ≤ (↑k + 1)⁻¹", "state_before": "case intro\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\n⊢ ↑(succ k)! / ↑(succ k) ^ succ k ≤ 1 / ↑(succ k)", "tactic": "rw [← prod_range_add_one_eq_factorial, pow_eq_prod_const, div_eq_mul_inv, ← inv_eq_one_div,\n prod_natCast, Nat.cast_succ, ← prod_inv_distrib, ← prod_mul_distrib,\n Finset.prod_range_succ']" }, { "state_after": "case intro\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\n⊢ (∏ x in Finset.range k, (↑x + 1 + 1) * (↑k + 1)⁻¹) * (↑k + 1)⁻¹ ≤ (↑k + 1)⁻¹", "state_before": "case intro\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\n⊢ (∏ k_1 in Finset.range k, ↑(k_1 + 1 + 1) * (↑k + 1)⁻¹) * (↑(0 + 1) * (↑k + 1)⁻¹) ≤ (↑k + 1)⁻¹", "tactic": "simp only [prod_range_succ', one_mul, Nat.cast_add, zero_add, Nat.cast_one]" }, { "state_after": "case intro.refine'_1\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\nx : ℕ\nhx : x < k\n⊢ 0 ≤ (↑x + 1 + 1) * (↑k + 1)⁻¹\n\ncase intro.refine'_2\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\nx : ℕ\nhx : x < k\n⊢ (↑x + 1 + 1) * (↑k + 1)⁻¹ ≤ 1", "state_before": "case intro\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\n⊢ (∏ x in Finset.range k, (↑x + 1 + 1) * (↑k + 1)⁻¹) * (↑k + 1)⁻¹ ≤ (↑k + 1)⁻¹", "tactic": "refine'\n mul_le_of_le_one_left (inv_nonneg.mpr <| by exact_mod_cast hn.le) (prod_le_one _ _) <;>\n intro x hx <;>\n rw [Finset.mem_range] at hx" }, { "state_after": "no goals", "state_before": "α : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\n⊢ 0 ≤ ↑k + 1", "tactic": "exact_mod_cast hn.le" }, { "state_after": "no goals", "state_before": "case intro.refine'_1\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\nx : ℕ\nhx : x < k\n⊢ 0 ≤ (↑x + 1 + 1) * (↑k + 1)⁻¹", "tactic": "refine' mul_nonneg _ (inv_nonneg.mpr _) <;> norm_cast <;> linarith" }, { "state_after": "case intro.refine'_2\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\nx : ℕ\nhx : x < k\n⊢ ↑x + 1 + 1 ≤ ↑k + 1", "state_before": "case intro.refine'_2\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\nx : ℕ\nhx : x < k\n⊢ (↑x + 1 + 1) * (↑k + 1)⁻¹ ≤ 1", "tactic": "refine' (div_le_one <| by exact_mod_cast hn).mpr _" }, { "state_after": "case intro.refine'_2\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\nx : ℕ\nhx : x < k\n⊢ x + 1 + 1 ≤ k + 1", "state_before": "case intro.refine'_2\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\nx : ℕ\nhx : x < k\n⊢ ↑x + 1 + 1 ≤ ↑k + 1", "tactic": "norm_cast" }, { "state_after": "no goals", "state_before": "case intro.refine'_2\nα : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\nx : ℕ\nhx : x < k\n⊢ x + 1 + 1 ≤ k + 1", "tactic": "linarith" }, { "state_after": "no goals", "state_before": "α : Type ?u.482700\nβ : Type ?u.482703\nι : Type ?u.482706\nk : ℕ\nhn : 0 < succ k\nx : ℕ\nhx : x < k\n⊢ 0 < ↑k + 1", "tactic": "exact_mod_cast hn" } ]
[ 562, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 541, 1 ]
Mathlib/Order/OmegaCompletePartialOrder.lean
OmegaCompletePartialOrder.ContinuousHom.ωSup_def
[]
[ 841, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 840, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.coe_ennreal_nonneg
[]
[ 540, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 539, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.ofLists_moveRight
[]
[ 200, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 198, 1 ]
Mathlib/LinearAlgebra/Pi.lean
LinearEquiv.piCongrRight_trans
[]
[ 375, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 373, 1 ]
Mathlib/Order/Basic.lean
LT.lt.gt
[]
[ 304, 4 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 303, 11 ]
Mathlib/Analysis/Complex/Liouville.lean
Differentiable.apply_eq_apply_of_bounded
[ { "state_after": "E : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\ng : ℂ → F := f ∘ fun t => t • (w - z) + z\n⊢ f z = f w", "state_before": "E : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\n⊢ f z = f w", "tactic": "set g : ℂ → F := f ∘ fun t : ℂ => t • (w - z) + z" }, { "state_after": "E : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\ng : ℂ → F := f ∘ fun t => t • (w - z) + z\n⊢ g 0 = g 1", "state_before": "E : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\ng : ℂ → F := f ∘ fun t => t • (w - z) + z\n⊢ f z = f w", "tactic": "suffices g 0 = g 1 by simpa" }, { "state_after": "case hf\nE : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\ng : ℂ → F := f ∘ fun t => t • (w - z) + z\n⊢ Differentiable ℂ g\n\ncase hb\nE : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\ng : ℂ → F := f ∘ fun t => t • (w - z) + z\n⊢ Metric.Bounded (range g)", "state_before": "E : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\ng : ℂ → F := f ∘ fun t => t • (w - z) + z\n⊢ g 0 = g 1", "tactic": "apply liouville_theorem_aux" }, { "state_after": "no goals", "state_before": "case hf\nE : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\ng : ℂ → F := f ∘ fun t => t • (w - z) + z\n⊢ Differentiable ℂ g\n\ncase hb\nE : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\ng : ℂ → F := f ∘ fun t => t • (w - z) + z\n⊢ Metric.Bounded (range g)", "tactic": "exacts [hf.comp ((differentiable_id.smul_const (w - z)).add_const z),\n hb.mono (range_comp_subset_range _ _)]" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℂ E\nF : Type v\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℂ F\nf : E → F\nhf : Differentiable ℂ f\nhb : Metric.Bounded (range f)\nz w : E\ng : ℂ → F := f ∘ fun t => t • (w - z) + z\nthis : g 0 = g 1\n⊢ f z = f w", "tactic": "simpa" } ]
[ 123, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/MeasureTheory/Group/Action.lean
MeasureTheory.smul_ae_eq_self_of_mem_zpowers
[ { "state_after": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\n⊢ x ^ k • s =ᶠ[ae μ] s", "state_before": "G : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx y : G\nhs : x • s =ᶠ[ae μ] s\nhy : y ∈ Subgroup.zpowers x\n⊢ y • s =ᶠ[ae μ] s", "tactic": "obtain ⟨k, rfl⟩ := Subgroup.mem_zpowers_iff.mp hy" }, { "state_after": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\n⊢ x ^ k • s =ᶠ[ae μ] s", "state_before": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\n⊢ x ^ k • s =ᶠ[ae μ] s", "tactic": "let e : α ≃ α := MulAction.toPermHom G α x" }, { "state_after": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\nhe : QuasiMeasurePreserving ↑e\n⊢ x ^ k • s =ᶠ[ae μ] s", "state_before": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\n⊢ x ^ k • s =ᶠ[ae μ] s", "tactic": "have he : QuasiMeasurePreserving e μ μ := (measurePreserving_smul x μ).quasiMeasurePreserving" }, { "state_after": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\nhe : QuasiMeasurePreserving ↑e\nhe' : QuasiMeasurePreserving ↑e.symm\n⊢ x ^ k • s =ᶠ[ae μ] s", "state_before": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\nhe : QuasiMeasurePreserving ↑e\n⊢ x ^ k • s =ᶠ[ae μ] s", "tactic": "have he' : QuasiMeasurePreserving e.symm μ μ :=\n (measurePreserving_smul x⁻¹ μ).quasiMeasurePreserving" }, { "state_after": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\nhe : QuasiMeasurePreserving ↑e\nhe' : QuasiMeasurePreserving ↑e.symm\nh : ↑(e ^ k) '' s =ᶠ[ae μ] s\n⊢ x ^ k • s =ᶠ[ae μ] s", "state_before": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\nhe : QuasiMeasurePreserving ↑e\nhe' : QuasiMeasurePreserving ↑e.symm\n⊢ x ^ k • s =ᶠ[ae μ] s", "tactic": "have h := he.image_zpow_ae_eq he' k hs" }, { "state_after": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\nhe : QuasiMeasurePreserving ↑e\nhe' : QuasiMeasurePreserving ↑e.symm\nh : (fun a => ↑(↑(MulAction.toPermHom G α) (x ^ k)) a) '' s =ᶠ[ae μ] s\n⊢ x ^ k • s =ᶠ[ae μ] s", "state_before": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\nhe : QuasiMeasurePreserving ↑e\nhe' : QuasiMeasurePreserving ↑e.symm\nh : ↑(e ^ k) '' s =ᶠ[ae μ] s\n⊢ x ^ k • s =ᶠ[ae μ] s", "tactic": "simp only [← MonoidHom.map_zpow] at h" }, { "state_after": "no goals", "state_before": "case intro\nG : Type u_2\nM : Type ?u.82889\nα : Type u_1\ns : Set α\nm : MeasurableSpace α\ninst✝⁴ : Group G\ninst✝³ : MulAction G α\ninst✝² : MeasurableSpace G\ninst✝¹ : MeasurableSMul G α\nc : G\nμ : Measure α\ninst✝ : SMulInvariantMeasure G α μ\nx : G\nhs : x • s =ᶠ[ae μ] s\nk : ℤ\nhy : x ^ k ∈ Subgroup.zpowers x\ne : α ≃ α := ↑(MulAction.toPermHom G α) x\nhe : QuasiMeasurePreserving ↑e\nhe' : QuasiMeasurePreserving ↑e.symm\nh : (fun a => ↑(↑(MulAction.toPermHom G α) (x ^ k)) a) '' s =ᶠ[ae μ] s\n⊢ x ^ k • s =ᶠ[ae μ] s", "tactic": "simpa only [MulAction.toPermHom_apply, MulAction.toPerm_apply, image_smul] using h" } ]
[ 274, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/Logic/Basic.lean
Decidable.not_ball
[]
[ 1090, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1087, 11 ]
Mathlib/Topology/ContinuousFunction/Basic.lean
ContinuousMap.restrict_apply_mk
[]
[ 378, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 376, 1 ]
Mathlib/Algebra/Algebra/Hom.lean
AlgHom.map_zero
[]
[ 250, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 11 ]
Mathlib/Data/Real/Sqrt.lean
Real.continuous_sqrt
[]
[ 189, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Midpoint.lean
midpoint_self
[]
[ 200, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 199, 1 ]
Mathlib/Algebra/Order/Monoid/WithTop.lean
WithBot.one_le_coe
[]
[ 509, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 508, 1 ]
Mathlib/Data/Polynomial/Div.lean
Polynomial.zero_divByMonic
[ { "state_after": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : Ring R\np✝ q p : R[X]\n⊢ (if h : Monic p then\n (if h_1 : degree p ≤ degree 0 ∧ 0 ≠ 0 then\n let z := ↑C (leadingCoeff 0) * X ^ (natDegree 0 - natDegree p);\n let_fun _wf := (_ : degree (0 - ↑C (leadingCoeff 0) * X ^ (natDegree 0 - natDegree p) * p) < degree 0);\n let dm := divModByMonicAux (0 - z * p) (_ : Monic p);\n (z + dm.fst, dm.snd)\n else (0, 0)).fst\n else 0) =\n 0", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : Ring R\np✝ q p : R[X]\n⊢ 0 /ₘ p = 0", "tactic": "unfold divByMonic divModByMonicAux" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : Ring R\np✝ q p : R[X]\n⊢ (if h : Monic p then\n (if degree p ≤ ⊥ ∧ ¬0 = 0 then\n (↑C 0 * X ^ (0 - natDegree p) + (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).fst,\n (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).snd)\n else (0, 0)).fst\n else 0) =\n 0", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : Ring R\np✝ q p : R[X]\n⊢ (if h : Monic p then\n (if h_1 : degree p ≤ degree 0 ∧ 0 ≠ 0 then\n let z := ↑C (leadingCoeff 0) * X ^ (natDegree 0 - natDegree p);\n let_fun _wf := (_ : degree (0 - ↑C (leadingCoeff 0) * X ^ (natDegree 0 - natDegree p) * p) < degree 0);\n let dm := divModByMonicAux (0 - z * p) (_ : Monic p);\n (z + dm.fst, dm.snd)\n else (0, 0)).fst\n else 0) =\n 0", "tactic": "dsimp" }, { "state_after": "case pos\nR : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : Ring R\np✝ q p : R[X]\nhp : Monic p\n⊢ (if h : Monic p then\n (if degree p ≤ ⊥ ∧ ¬0 = 0 then\n (↑C 0 * X ^ (0 - natDegree p) + (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).fst,\n (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).snd)\n else (0, 0)).fst\n else 0) =\n 0\n\ncase neg\nR : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : Ring R\np✝ q p : R[X]\nhp : ¬Monic p\n⊢ (if h : Monic p then\n (if degree p ≤ ⊥ ∧ ¬0 = 0 then\n (↑C 0 * X ^ (0 - natDegree p) + (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).fst,\n (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).snd)\n else (0, 0)).fst\n else 0) =\n 0", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : Ring R\np✝ q p : R[X]\n⊢ (if h : Monic p then\n (if degree p ≤ ⊥ ∧ ¬0 = 0 then\n (↑C 0 * X ^ (0 - natDegree p) + (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).fst,\n (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).snd)\n else (0, 0)).fst\n else 0) =\n 0", "tactic": "by_cases hp : Monic p" }, { "state_after": "no goals", "state_before": "case pos\nR : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : Ring R\np✝ q p : R[X]\nhp : Monic p\n⊢ (if h : Monic p then\n (if degree p ≤ ⊥ ∧ ¬0 = 0 then\n (↑C 0 * X ^ (0 - natDegree p) + (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).fst,\n (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).snd)\n else (0, 0)).fst\n else 0) =\n 0", "tactic": "rw [dif_pos hp, if_neg (mt And.right (not_not_intro rfl))]" }, { "state_after": "no goals", "state_before": "case neg\nR : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : Ring R\np✝ q p : R[X]\nhp : ¬Monic p\n⊢ (if h : Monic p then\n (if degree p ≤ ⊥ ∧ ¬0 = 0 then\n (↑C 0 * X ^ (0 - natDegree p) + (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).fst,\n (divModByMonicAux (0 - ↑C 0 * X ^ (0 - natDegree p) * p) (_ : Monic p)).snd)\n else (0, 0)).fst\n else 0) =\n 0", "tactic": "rw [dif_neg hp]" } ]
[ 187, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
PowerSeries.rescale_neg_one_X
[ { "state_after": "no goals", "state_before": "R : Type ?u.3551663\nA : Type u_1\ninst✝ : CommRing A\n⊢ ↑(rescale (-1)) X = -X", "tactic": "rw [rescale_X, map_neg, map_one, neg_one_mul]" } ]
[ 1964, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1963, 1 ]
Mathlib/Topology/UniformSpace/Equicontinuity.lean
Equicontinuous.closure'
[]
[ 410, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 408, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.exists_measure_inter_spanningSets_pos
[ { "state_after": "α : Type u_1\nβ : Type ?u.733391\nγ : Type ?u.733394\nδ : Type ?u.733397\nι : Type ?u.733400\nR : Type ?u.733403\nR' : Type ?u.733406\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ (¬∃ n, 0 < ↑↑μ (s ∩ spanningSets μ n)) ↔ ¬0 < ↑↑μ s", "state_before": "α : Type u_1\nβ : Type ?u.733391\nγ : Type ?u.733394\nδ : Type ?u.733397\nι : Type ?u.733400\nR : Type ?u.733403\nR' : Type ?u.733406\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ (∃ n, 0 < ↑↑μ (s ∩ spanningSets μ n)) ↔ 0 < ↑↑μ s", "tactic": "rw [← not_iff_not]" }, { "state_after": "α : Type u_1\nβ : Type ?u.733391\nγ : Type ?u.733394\nδ : Type ?u.733397\nι : Type ?u.733400\nR : Type ?u.733403\nR' : Type ?u.733406\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ (∀ (x : ℕ), ↑↑μ (s ∩ spanningSets μ x) = 0) ↔ ↑↑μ s = 0", "state_before": "α : Type u_1\nβ : Type ?u.733391\nγ : Type ?u.733394\nδ : Type ?u.733397\nι : Type ?u.733400\nR : Type ?u.733403\nR' : Type ?u.733406\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ (¬∃ n, 0 < ↑↑μ (s ∩ spanningSets μ n)) ↔ ¬0 < ↑↑μ s", "tactic": "simp only [not_exists, not_lt, nonpos_iff_eq_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.733391\nγ : Type ?u.733394\nδ : Type ?u.733397\nι : Type ?u.733400\nR : Type ?u.733403\nR' : Type ?u.733406\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ (∀ (x : ℕ), ↑↑μ (s ∩ spanningSets μ x) = 0) ↔ ↑↑μ s = 0", "tactic": "exact forall_measure_inter_spanningSets_eq_zero s" } ]
[ 3569, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3565, 1 ]
Mathlib/Data/Stream/Init.lean
Stream'.odd_eq
[]
[ 461, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 460, 1 ]
Mathlib/Data/Polynomial/Degree/TrailingDegree.lean
Polynomial.le_natTrailingDegree
[ { "state_after": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nhp : p ≠ 0\nhn : ∀ (m : ℕ), m < n → coeff p m = 0\n⊢ n ≤ min' (support p) (_ : Finset.Nonempty (support p))", "state_before": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nhp : p ≠ 0\nhn : ∀ (m : ℕ), m < n → coeff p m = 0\n⊢ n ≤ natTrailingDegree p", "tactic": "rw [natTrailingDegree_eq_support_min' hp]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nhp : p ≠ 0\nhn : ∀ (m : ℕ), m < n → coeff p m = 0\n⊢ n ≤ min' (support p) (_ : Finset.Nonempty (support p))", "tactic": "exact Finset.le_min' _ _ _ fun m hm => not_lt.1 fun hmn => mem_support_iff.1 hm <| hn _ hmn" } ]
[ 335, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 332, 1 ]
Mathlib/SetTheory/ZFC/Basic.lean
ZFSet.mem_wf
[]
[ 1189, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1187, 1 ]
Mathlib/Order/RelClasses.lean
antisymm_of'
[]
[ 61, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/Data/Holor.lean
Holor.cprankMax_nil
[ { "state_after": "α : Type\nd : ℕ\nds ds₁ ds₂ ds₃ : List ℕ\ninst✝¹ : Monoid α\ninst✝ : AddMonoid α\nx : Holor α []\nh : CPRankMax (0 + 1) (x + 0)\n⊢ CPRankMax 1 x", "state_before": "α : Type\nd : ℕ\nds ds₁ ds₂ ds₃ : List ℕ\ninst✝¹ : Monoid α\ninst✝ : AddMonoid α\nx : Holor α []\n⊢ CPRankMax 1 x", "tactic": "have h := CPRankMax.succ 0 x 0 (CPRankMax1.nil x) CPRankMax.zero" }, { "state_after": "no goals", "state_before": "α : Type\nd : ℕ\nds ds₁ ds₂ ds₃ : List ℕ\ninst✝¹ : Monoid α\ninst✝ : AddMonoid α\nx : Holor α []\nh : CPRankMax (0 + 1) (x + 0)\n⊢ CPRankMax 1 x", "tactic": "rwa [add_zero x, zero_add] at h" } ]
[ 329, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 1 ]
Mathlib/Data/List/Intervals.lean
List.Ico.succ_top
[ { "state_after": "case hml\nn m : ℕ\nh : n ≤ m\n⊢ m ≤ m + 1", "state_before": "n m : ℕ\nh : n ≤ m\n⊢ Ico n (m + 1) = Ico n m ++ [m]", "tactic": "rwa [← succ_singleton, append_consecutive]" }, { "state_after": "no goals", "state_before": "case hml\nn m : ℕ\nh : n ≤ m\n⊢ m ≤ m + 1", "tactic": "exact Nat.le_succ _" } ]
[ 129, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Data/Nat/Pow.lean
Nat.pow_le_iff_le_right
[]
[ 109, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Algebra/Lie/Subalgebra.lean
LieSubalgebra.smul_mem
[]
[ 145, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/Data/Real/NNReal.lean
NNReal.inv_lt_inv
[]
[ 911, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 910, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPowerSeries.trunc_c
[ { "state_after": "σ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\nhnn : n ≠ 0\na : R\nm : σ →₀ ℕ\n⊢ (if m < n then if m = 0 then a else 0 else 0) = if 0 = m then a else 0", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\nhnn : n ≠ 0\na : R\nm : σ →₀ ℕ\n⊢ MvPolynomial.coeff m (↑(trunc R n) (↑(C σ R) a)) = MvPolynomial.coeff m (↑MvPolynomial.C a)", "tactic": "rw [coeff_trunc, coeff_C, MvPolynomial.coeff_C]" }, { "state_after": "case inr.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\nhnn : ¬n = m\nH : ¬m < n\nh✝ : 0 = m\n⊢ 0 = a", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\nhnn : n ≠ 0\na : R\nm : σ →₀ ℕ\n⊢ (if m < n then if m = 0 then a else 0 else 0) = if 0 = m then a else 0", "tactic": "split_ifs with H <;> first |rfl|try simp_all" }, { "state_after": "case inr.inl.h\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\nhnn : ¬n = m\nH : ¬m < n\nh✝ : 0 = m\n⊢ False", "state_before": "case inr.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\nhnn : ¬n = m\nH : ¬m < n\nh✝ : 0 = m\n⊢ 0 = a", "tactic": "exfalso" }, { "state_after": "case inr.inl.h\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\nhnn : ¬n = m\nH : ¬m < n\nh✝ : 0 = m\n⊢ m < n", "state_before": "case inr.inl.h\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\nhnn : ¬n = m\nH : ¬m < n\nh✝ : 0 = m\n⊢ False", "tactic": "apply H" }, { "state_after": "case inr.inl.h\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nhnn : ¬n = 0\nH : ¬0 < n\n⊢ 0 < n", "state_before": "case inr.inl.h\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\nhnn : ¬n = m\nH : ¬m < n\nh✝ : 0 = m\n⊢ m < n", "tactic": "subst m" }, { "state_after": "no goals", "state_before": "case inr.inl.h\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nhnn : ¬n = 0\nH : ¬0 < n\n⊢ 0 < n", "tactic": "exact Ne.bot_lt hnn" }, { "state_after": "no goals", "state_before": "case inr.inr\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\nhnn : n ≠ 0\na : R\nm : σ →₀ ℕ\nH : ¬m < n\nh✝ : ¬0 = m\n⊢ 0 = 0", "tactic": "rfl" }, { "state_after": "case inr.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\nhnn : ¬n = m\nH : ¬m < n\nh✝ : 0 = m\n⊢ 0 = a", "state_before": "case inr.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\nhnn : n ≠ 0\na : R\nm : σ →₀ ℕ\nH : ¬m < n\nh✝ : 0 = m\n⊢ 0 = a", "tactic": "try simp_all" }, { "state_after": "case inr.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\nhnn : ¬n = m\nH : ¬m < n\nh✝ : 0 = m\n⊢ 0 = a", "state_before": "case inr.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nn✝ n : σ →₀ ℕ\nhnn : n ≠ 0\na : R\nm : σ →₀ ℕ\nH : ¬m < n\nh✝ : 0 = m\n⊢ 0 = a", "tactic": "simp_all" } ]
[ 730, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 726, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.mapRange.linearMap_toAddMonoidHom
[]
[ 844, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 841, 1 ]
src/lean/Init/Control/StateCps.lean
StateCpsT.runK_bind_pure
[]
[ 64, 166 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 64, 9 ]
Mathlib/Analysis/BoxIntegral/Partition/Tagged.lean
BoxIntegral.TaggedPrepartition.isPartition_iff_iUnion_eq
[]
[ 101, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 1 ]
Mathlib/Topology/Algebra/UniformGroup.lean
uniformity_translate_mul
[]
[ 178, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
SimpleGraph.neighborSet_subgraphOfAdj_of_ne_of_ne
[ { "state_after": "case h\nι : Sort ?u.223995\nV : Type u\nW : Type v\nG : SimpleGraph V\nG' : SimpleGraph W\nu v w : V\nhvw : Adj G v w\nhv : u ≠ v\nhw : u ≠ w\nx✝ : V\n⊢ x✝ ∈ Subgraph.neighborSet (subgraphOfAdj G hvw) u ↔ x✝ ∈ ∅", "state_before": "ι : Sort ?u.223995\nV : Type u\nW : Type v\nG : SimpleGraph V\nG' : SimpleGraph W\nu v w : V\nhvw : Adj G v w\nhv : u ≠ v\nhw : u ≠ w\n⊢ Subgraph.neighborSet (subgraphOfAdj G hvw) u = ∅", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nι : Sort ?u.223995\nV : Type u\nW : Type v\nG : SimpleGraph V\nG' : SimpleGraph W\nu v w : V\nhvw : Adj G v w\nhv : u ≠ v\nhw : u ≠ w\nx✝ : V\n⊢ x✝ ∈ Subgraph.neighborSet (subgraphOfAdj G hvw) u ↔ x✝ ∈ ∅", "tactic": "simp [hv.symm, hw.symm]" } ]
[ 960, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 957, 1 ]
Mathlib/Data/List/AList.lean
AList.lookup_to_alist
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : α → Type v\ninst✝ : DecidableEq α\na : α\ns : List (Sigma β)\n⊢ lookup a (toAList s) = dlookup a s", "tactic": "rw [List.toAList, lookup, dlookup_dedupKeys]" } ]
[ 316, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 315, 1 ]
Mathlib/Algebra/Star/StarAlgHom.lean
NonUnitalStarAlgHom.coe_comp
[]
[ 212, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Data/Int/GCD.lean
Int.gcd_dvd_iff
[ { "state_after": "case mp\na b : ℤ\nn : ℕ\n⊢ gcd a b ∣ n → ∃ x y, ↑n = a * x + b * y\n\ncase mpr\na b : ℤ\nn : ℕ\n⊢ (∃ x y, ↑n = a * x + b * y) → gcd a b ∣ n", "state_before": "a b : ℤ\nn : ℕ\n⊢ gcd a b ∣ n ↔ ∃ x y, ↑n = a * x + b * y", "tactic": "constructor" }, { "state_after": "case mp\na b : ℤ\nn : ℕ\nh : gcd a b ∣ n\n⊢ ∃ x y, ↑n = a * x + b * y", "state_before": "case mp\na b : ℤ\nn : ℕ\n⊢ gcd a b ∣ n → ∃ x y, ↑n = a * x + b * y", "tactic": "intro h" }, { "state_after": "case mp\na b : ℤ\nn : ℕ\nh : gcd a b ∣ n\n⊢ ∃ x y, a * (gcdA a b * ↑(n / gcd a b)) + b * (gcdB a b * ↑(n / gcd a b)) = a * x + b * y", "state_before": "case mp\na b : ℤ\nn : ℕ\nh : gcd a b ∣ n\n⊢ ∃ x y, ↑n = a * x + b * y", "tactic": "rw [← Nat.mul_div_cancel' h, Int.ofNat_mul, gcd_eq_gcd_ab, add_mul, mul_assoc, mul_assoc]" }, { "state_after": "no goals", "state_before": "case mp\na b : ℤ\nn : ℕ\nh : gcd a b ∣ n\n⊢ ∃ x y, a * (gcdA a b * ↑(n / gcd a b)) + b * (gcdB a b * ↑(n / gcd a b)) = a * x + b * y", "tactic": "exact ⟨_, _, rfl⟩" }, { "state_after": "case mpr.intro.intro\na b : ℤ\nn : ℕ\nx y : ℤ\nh : ↑n = a * x + b * y\n⊢ gcd a b ∣ n", "state_before": "case mpr\na b : ℤ\nn : ℕ\n⊢ (∃ x y, ↑n = a * x + b * y) → gcd a b ∣ n", "tactic": "rintro ⟨x, y, h⟩" }, { "state_after": "case mpr.intro.intro\na b : ℤ\nn : ℕ\nx y : ℤ\nh : ↑n = a * x + b * y\n⊢ ↑(gcd a b) ∣ a * x + b * y", "state_before": "case mpr.intro.intro\na b : ℤ\nn : ℕ\nx y : ℤ\nh : ↑n = a * x + b * y\n⊢ gcd a b ∣ n", "tactic": "rw [← Int.coe_nat_dvd, h]" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro\na b : ℤ\nn : ℕ\nx y : ℤ\nh : ↑n = a * x + b * y\n⊢ ↑(gcd a b) ∣ a * x + b * y", "tactic": "exact\n dvd_add (dvd_mul_of_dvd_left (gcd_dvd_left a b) _) (dvd_mul_of_dvd_left (gcd_dvd_right a b) y)" } ]
[ 399, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 391, 1 ]
Mathlib/Algebra/Ring/BooleanRing.lean
ofBoolRing_toBoolRing
[]
[ 419, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 418, 1 ]
Mathlib/MeasureTheory/Group/Measure.lean
MeasureTheory.eventually_mul_right_iff
[ { "state_after": "no goals", "state_before": "𝕜 : Type ?u.492377\nG : Type u_1\nH : Type ?u.492383\ninst✝⁴ : MeasurableSpace G\ninst✝³ : MeasurableSpace H\ninst✝² : Group G\ninst✝¹ : MeasurableMul G\nμ : Measure G\ninst✝ : IsMulRightInvariant μ\nt : G\np : G → Prop\n⊢ (∀ᵐ (x : G) ∂μ, p (x * t)) ↔ ∀ᵐ (x : G) ∂μ, p x", "tactic": "conv_rhs => rw [Filter.Eventually, ← map_mul_right_ae μ t]; rfl" } ]
[ 329, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 1 ]
Mathlib/Data/Stream/Init.lean
Stream'.nth_interleave_right
[ { "state_after": "α : Type u\nβ : Type v\nδ : Type w\nn : ℕ\ns₁ s₂ : Stream' α\n⊢ nth (s₁ ⋈ s₂) (succ (succ (2 * n + 1))) = nth s₂ (succ n)", "state_before": "α : Type u\nβ : Type v\nδ : Type w\nn : ℕ\ns₁ s₂ : Stream' α\n⊢ nth (s₁ ⋈ s₂) (2 * (n + 1) + 1) = nth s₂ (n + 1)", "tactic": "change nth (s₁ ⋈ s₂) (succ (succ (2 * n + 1))) = nth s₂ (succ n)" }, { "state_after": "α : Type u\nβ : Type v\nδ : Type w\nn : ℕ\ns₁ s₂ : Stream' α\n⊢ nth (tail s₂) n = nth s₂ (succ n)", "state_before": "α : Type u\nβ : Type v\nδ : Type w\nn : ℕ\ns₁ s₂ : Stream' α\n⊢ nth (s₁ ⋈ s₂) (succ (succ (2 * n + 1))) = nth s₂ (succ n)", "tactic": "rw [nth_succ, nth_succ, interleave_eq, tail_cons, tail_cons,\n nth_interleave_right n (tail s₁) (tail s₂)]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nδ : Type w\nn : ℕ\ns₁ s₂ : Stream' α\n⊢ nth (tail s₂) n = nth s₂ (succ n)", "tactic": "rfl" } ]
[ 449, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 442, 1 ]
Mathlib/Topology/Instances/Matrix.lean
continuous_matrix_diag
[]
[ 187, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.tendsto_atBot
[]
[ 370, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 368, 1 ]
Mathlib/Data/Vector.lean
Vector.head_cons
[]
[ 66, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/LinearAlgebra/Matrix/Nondegenerate.lean
Matrix.nondegenerate_of_det_ne_zero
[ { "state_after": "m : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\nhv : ∀ (w : m → A), v ⬝ᵥ mulVec M w = 0\n⊢ v = 0", "state_before": "m : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\n⊢ Nondegenerate M", "tactic": "intro v hv" }, { "state_after": "case h\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\nhv : ∀ (w : m → A), v ⬝ᵥ mulVec M w = 0\ni : m\n⊢ v i = OfNat.ofNat 0 i", "state_before": "m : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\nhv : ∀ (w : m → A), v ⬝ᵥ mulVec M w = 0\n⊢ v = 0", "tactic": "ext i" }, { "state_after": "case h\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ v i = OfNat.ofNat 0 i", "state_before": "case h\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\nhv : ∀ (w : m → A), v ⬝ᵥ mulVec M w = 0\ni : m\n⊢ v i = OfNat.ofNat 0 i", "tactic": "specialize hv (M.cramer (Pi.single i 1))" }, { "state_after": "case h\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ v i * det M = 0", "state_before": "case h\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ v i = OfNat.ofNat 0 i", "tactic": "refine' (mul_eq_zero.mp _).resolve_right hM" }, { "state_after": "case h.e'_2\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ v i * det M = v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1))", "state_before": "case h\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ v i * det M = 0", "tactic": "convert hv" }, { "state_after": "case h.e'_2\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ v i * det M = Finset.sum Finset.univ fun x => v x * (det M * Pi.single i 1 x)", "state_before": "case h.e'_2\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ v i * det M = v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1))", "tactic": "simp only [mulVec_cramer M (Pi.single i 1), dotProduct, Pi.smul_apply, smul_eq_mul]" }, { "state_after": "case h.e'_2.h₀\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ ∀ (b : m), b ∈ Finset.univ → b ≠ i → v b * (det M * Pi.single i 1 b) = 0\n\ncase h.e'_2.h₁\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ ¬i ∈ Finset.univ → v i * (det M * Pi.single i 1 i) = 0", "state_before": "case h.e'_2\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ v i * det M = Finset.sum Finset.univ fun x => v x * (det M * Pi.single i 1 x)", "tactic": "rw [Finset.sum_eq_single i, Pi.single_eq_same, mul_one]" }, { "state_after": "case h.e'_2.h₀\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\nj : m\na✝ : j ∈ Finset.univ\nhj : j ≠ i\n⊢ v j * (det M * Pi.single i 1 j) = 0", "state_before": "case h.e'_2.h₀\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ ∀ (b : m), b ∈ Finset.univ → b ≠ i → v b * (det M * Pi.single i 1 b) = 0", "tactic": "intro j _ hj" }, { "state_after": "no goals", "state_before": "case h.e'_2.h₀\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\nj : m\na✝ : j ∈ Finset.univ\nhj : j ≠ i\n⊢ v j * (det M * Pi.single i 1 j) = 0", "tactic": "simp [hj]" }, { "state_after": "case h.e'_2.h₁\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\na✝ : ¬i ∈ Finset.univ\n⊢ v i * (det M * Pi.single i 1 i) = 0", "state_before": "case h.e'_2.h₁\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\n⊢ ¬i ∈ Finset.univ → v i * (det M * Pi.single i 1 i) = 0", "tactic": "intros" }, { "state_after": "case h.e'_2.h₁\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\na✝ : ¬i ∈ Finset.univ\nthis : i ∈ Finset.univ\n⊢ v i * (det M * Pi.single i 1 i) = 0", "state_before": "case h.e'_2.h₁\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\na✝ : ¬i ∈ Finset.univ\n⊢ v i * (det M * Pi.single i 1 i) = 0", "tactic": "have := Finset.mem_univ i" }, { "state_after": "no goals", "state_before": "case h.e'_2.h₁\nm : Type u_1\nR : Type ?u.4064\nA : Type u_2\ninst✝⁴ : Fintype m\ninst✝³ : CommRing R\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\ninst✝ : DecidableEq m\nM : Matrix m m A\nhM : det M ≠ 0\nv : m → A\ni : m\nhv : v ⬝ᵥ mulVec M (↑(cramer M) (Pi.single i 1)) = 0\na✝ : ¬i ∈ Finset.univ\nthis : i ∈ Finset.univ\n⊢ v i * (det M * Pi.single i 1 i) = 0", "tactic": "contradiction" } ]
[ 66, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
Real.b_pos
[ { "state_after": "no goals", "state_before": "b x y : ℝ\nhb : 1 < b\n⊢ 0 < b", "tactic": "linarith" } ]
[ 142, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 142, 9 ]
Mathlib/MeasureTheory/Constructions/Polish.lean
MeasureTheory.measurablySeparable_range_of_disjoint
[ { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\n⊢ MeasurablySeparable (range f) (range g)", "tactic": "by_contra hfg" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\n⊢ False", "tactic": "have I : ∀ n x y, ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y', x' ∈ cylinder x n ∧ y' ∈ cylinder y n ∧\n ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1)) := by\n intro n x y\n contrapose!\n intro H\n rw [← iUnion_cylinder_update x n, ← iUnion_cylinder_update y n, image_iUnion, image_iUnion]\n refine' MeasurablySeparable.iUnion fun i j => _\n exact H _ _ (update_mem_cylinder _ _ _) (update_mem_cylinder _ _ _)" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\n⊢ False", "tactic": "let A :=\n { p : ℕ × (ℕ → ℕ) × (ℕ → ℕ) //\n ¬MeasurablySeparable (f '' cylinder p.2.1 p.1) (g '' cylinder p.2.2 p.1) }" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nthis :\n ∀ (p : A),\n ∃ q,\n (↑q).fst = (↑p).fst + 1 ∧\n (↑q).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst ∧ (↑q).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\n⊢ False", "tactic": "have : ∀ p : A, ∃ q : A,\n q.1.1 = p.1.1 + 1 ∧ q.1.2.1 ∈ cylinder p.1.2.1 p.1.1 ∧ q.1.2.2 ∈ cylinder p.1.2.2 p.1.1 := by\n rintro ⟨⟨n, x, y⟩, hp⟩\n rcases I n x y hp with ⟨x', y', hx', hy', h'⟩\n exact ⟨⟨⟨n + 1, x', y'⟩, h'⟩, rfl, hx', hy'⟩" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nthis :\n ∀ (p : A),\n ∃ q,\n (↑q).fst = (↑p).fst + 1 ∧\n (↑q).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst ∧ (↑q).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\n⊢ False", "tactic": "choose F hFn hFx hFy using this" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\n⊢ False", "tactic": "let p0 : A := ⟨⟨0, fun _ => 0, fun _ => 0⟩, by simp [hfg]⟩" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\n⊢ False", "tactic": "let p : ℕ → A := fun n => (F^[n]) p0" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\n⊢ False", "tactic": "have prec : ∀ n, p (n + 1) = F (p n) := fun n => by simp only [iterate_succ', Function.comp]" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\n⊢ False", "tactic": "set x : ℕ → ℕ := fun n => (p (n + 1)).1.2.1 n with hx" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\n⊢ False", "tactic": "set y : ℕ → ℕ := fun n => (p (n + 1)).1.2.2 n with hy" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\n⊢ False", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\n⊢ False", "tactic": "obtain ⟨u, v, u_open, v_open, xu, yv, huv⟩ :\n ∃ u v : Set α, IsOpen u ∧ IsOpen v ∧ f x ∈ u ∧ g y ∈ v ∧ Disjoint u v := by\n apply t2_separation\n exact disjoint_iff_forall_ne.1 h (mem_range_self _) (mem_range_self _)" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\n⊢ False", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\n⊢ False", "tactic": "letI : MetricSpace (ℕ → ℕ) := metricSpaceNatNat" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\n⊢ False", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\n⊢ False", "tactic": "obtain ⟨εx, εxpos, hεx⟩ : ∃ (εx : ℝ), εx > 0 ∧ Metric.ball x εx ⊆ f ⁻¹' u := by\n apply Metric.mem_nhds_iff.1\n exact hf.continuousAt.preimage_mem_nhds (u_open.mem_nhds xu)" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\n⊢ False", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\n⊢ False", "tactic": "obtain ⟨εy, εypos, hεy⟩ : ∃ (εy : ℝ), εy > 0 ∧ Metric.ball y εy ⊆ g ⁻¹' v := by\n apply Metric.mem_nhds_iff.1\n exact hg.continuousAt.preimage_mem_nhds (v_open.mem_nhds yv)" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ False", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\n⊢ False", "tactic": "obtain ⟨n, hn⟩ : ∃ n : ℕ, (1 / 2 : ℝ) ^ n < min εx εy :=\n exists_pow_lt_of_lt_one (lt_min εxpos εypos) (by norm_num)" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\nB : MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\n⊢ False", "tactic": "exact M n B" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\n⊢ ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧ y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\n⊢ ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))", "tactic": "intro n x y" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\n⊢ (∀ (x' y' : ℕ → ℕ),\n x' ∈ cylinder x n →\n y' ∈ cylinder y n → MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))) →\n MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\n⊢ ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧ y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))", "tactic": "contrapose!" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\nH :\n ∀ (x' y' : ℕ → ℕ),\n x' ∈ cylinder x n → y' ∈ cylinder y n → MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\n⊢ MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\n⊢ (∀ (x' y' : ℕ → ℕ),\n x' ∈ cylinder x n →\n y' ∈ cylinder y n → MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))) →\n MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)", "tactic": "intro H" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\nH :\n ∀ (x' y' : ℕ → ℕ),\n x' ∈ cylinder x n → y' ∈ cylinder y n → MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\n⊢ MeasurablySeparable (⋃ (i : ℕ), f '' cylinder (update x n i) (n + 1))\n (⋃ (i : ℕ), g '' cylinder (update y n i) (n + 1))", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\nH :\n ∀ (x' y' : ℕ → ℕ),\n x' ∈ cylinder x n → y' ∈ cylinder y n → MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\n⊢ MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)", "tactic": "rw [← iUnion_cylinder_update x n, ← iUnion_cylinder_update y n, image_iUnion, image_iUnion]" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\nH :\n ∀ (x' y' : ℕ → ℕ),\n x' ∈ cylinder x n → y' ∈ cylinder y n → MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\ni j : ℕ\n⊢ MeasurablySeparable (f '' cylinder (update x n i) (n + 1)) (g '' cylinder (update y n j) (n + 1))", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\nH :\n ∀ (x' y' : ℕ → ℕ),\n x' ∈ cylinder x n → y' ∈ cylinder y n → MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\n⊢ MeasurablySeparable (⋃ (i : ℕ), f '' cylinder (update x n i) (n + 1))\n (⋃ (i : ℕ), g '' cylinder (update y n i) (n + 1))", "tactic": "refine' MeasurablySeparable.iUnion fun i j => _" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nn : ℕ\nx y : ℕ → ℕ\nH :\n ∀ (x' y' : ℕ → ℕ),\n x' ∈ cylinder x n → y' ∈ cylinder y n → MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\ni j : ℕ\n⊢ MeasurablySeparable (f '' cylinder (update x n i) (n + 1)) (g '' cylinder (update y n j) (n + 1))", "tactic": "exact H _ _ (update_mem_cylinder _ _ _) (update_mem_cylinder _ _ _)" }, { "state_after": "case mk.mk.mk\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nn : ℕ\nx y : ℕ → ℕ\nhp :\n ¬MeasurablySeparable (f '' cylinder (n, x, y).snd.fst (n, x, y).fst) (g '' cylinder (n, x, y).snd.snd (n, x, y).fst)\n⊢ ∃ q,\n (↑q).fst = (↑{ val := (n, x, y), property := hp }).fst + 1 ∧\n (↑q).snd.fst ∈\n cylinder (↑{ val := (n, x, y), property := hp }).snd.fst (↑{ val := (n, x, y), property := hp }).fst ∧\n (↑q).snd.snd ∈\n cylinder (↑{ val := (n, x, y), property := hp }).snd.snd (↑{ val := (n, x, y), property := hp }).fst", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\n⊢ ∀ (p : A),\n ∃ q,\n (↑q).fst = (↑p).fst + 1 ∧\n (↑q).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst ∧ (↑q).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst", "tactic": "rintro ⟨⟨n, x, y⟩, hp⟩" }, { "state_after": "case mk.mk.mk.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nn : ℕ\nx y : ℕ → ℕ\nhp :\n ¬MeasurablySeparable (f '' cylinder (n, x, y).snd.fst (n, x, y).fst) (g '' cylinder (n, x, y).snd.snd (n, x, y).fst)\nx' y' : ℕ → ℕ\nhx' : x' ∈ cylinder x n\nhy' : y' ∈ cylinder y n\nh' : ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\n⊢ ∃ q,\n (↑q).fst = (↑{ val := (n, x, y), property := hp }).fst + 1 ∧\n (↑q).snd.fst ∈\n cylinder (↑{ val := (n, x, y), property := hp }).snd.fst (↑{ val := (n, x, y), property := hp }).fst ∧\n (↑q).snd.snd ∈\n cylinder (↑{ val := (n, x, y), property := hp }).snd.snd (↑{ val := (n, x, y), property := hp }).fst", "state_before": "case mk.mk.mk\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nn : ℕ\nx y : ℕ → ℕ\nhp :\n ¬MeasurablySeparable (f '' cylinder (n, x, y).snd.fst (n, x, y).fst) (g '' cylinder (n, x, y).snd.snd (n, x, y).fst)\n⊢ ∃ q,\n (↑q).fst = (↑{ val := (n, x, y), property := hp }).fst + 1 ∧\n (↑q).snd.fst ∈\n cylinder (↑{ val := (n, x, y), property := hp }).snd.fst (↑{ val := (n, x, y), property := hp }).fst ∧\n (↑q).snd.snd ∈\n cylinder (↑{ val := (n, x, y), property := hp }).snd.snd (↑{ val := (n, x, y), property := hp }).fst", "tactic": "rcases I n x y hp with ⟨x', y', hx', hy', h'⟩" }, { "state_after": "no goals", "state_before": "case mk.mk.mk.intro.intro.intro.intro\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nn : ℕ\nx y : ℕ → ℕ\nhp :\n ¬MeasurablySeparable (f '' cylinder (n, x, y).snd.fst (n, x, y).fst) (g '' cylinder (n, x, y).snd.snd (n, x, y).fst)\nx' y' : ℕ → ℕ\nhx' : x' ∈ cylinder x n\nhy' : y' ∈ cylinder y n\nh' : ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\n⊢ ∃ q,\n (↑q).fst = (↑{ val := (n, x, y), property := hp }).fst + 1 ∧\n (↑q).snd.fst ∈\n cylinder (↑{ val := (n, x, y), property := hp }).snd.fst (↑{ val := (n, x, y), property := hp }).fst ∧\n (↑q).snd.snd ∈\n cylinder (↑{ val := (n, x, y), property := hp }).snd.snd (↑{ val := (n, x, y), property := hp }).fst", "tactic": "exact ⟨⟨⟨n + 1, x', y'⟩, h'⟩, rfl, hx', hy'⟩" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\n⊢ ¬MeasurablySeparable (f '' cylinder (0, fun x => 0, fun x => 0).snd.fst (0, fun x => 0, fun x => 0).fst)\n (g '' cylinder (0, fun x => 0, fun x => 0).snd.snd (0, fun x => 0, fun x => 0).fst)", "tactic": "simp [hfg]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nn : ℕ\n⊢ p (n + 1) = F (p n)", "tactic": "simp only [iterate_succ', Function.comp]" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\nn : ℕ\n⊢ (↑(p n)).fst = n", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\n⊢ ∀ (n : ℕ), (↑(p n)).fst = n", "tactic": "intro n" }, { "state_after": "case zero\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\n⊢ (↑(p Nat.zero)).fst = Nat.zero\n\ncase succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\nn : ℕ\nIH : (↑(p n)).fst = n\n⊢ (↑(p (Nat.succ n))).fst = Nat.succ n", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\nn : ℕ\n⊢ (↑(p n)).fst = n", "tactic": "induction' n with n IH" }, { "state_after": "no goals", "state_before": "case zero\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\n⊢ (↑(p Nat.zero)).fst = Nat.zero", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\nn : ℕ\nIH : (↑(p n)).fst = n\n⊢ (↑(p (Nat.succ n))).fst = Nat.succ n", "tactic": "simp only [prec, hFn, IH]" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm : ℕ\n⊢ ∀ (n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\n⊢ ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m", "tactic": "intro m" }, { "state_after": "case base\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm : ℕ\n⊢ Prod.fst (↑(p (m + 1))).snd m = Prod.fst (↑(p (m + 1))).snd m\n\ncase succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm : ℕ\n⊢ ∀ (n : ℕ),\n m + 1 ≤ n →\n Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m →\n Prod.fst (↑(p (n + 1))).snd m = Prod.fst (↑(p (m + 1))).snd m", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm : ℕ\n⊢ ∀ (n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m", "tactic": "apply Nat.le_induction" }, { "state_after": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\n⊢ Prod.fst (↑(p (n + 1))).snd m = Prod.fst (↑(p (m + 1))).snd m", "state_before": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm : ℕ\n⊢ ∀ (n : ℕ),\n m + 1 ≤ n →\n Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m →\n Prod.fst (↑(p (n + 1))).snd m = Prod.fst (↑(p (m + 1))).snd m", "tactic": "intro n hmn IH" }, { "state_after": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI✝ :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nI : Prod.fst (↑(F (p n))).snd m = Prod.fst (↑(p n)).snd m\n⊢ Prod.fst (↑(p (n + 1))).snd m = Prod.fst (↑(p (m + 1))).snd m", "state_before": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\n⊢ Prod.fst (↑(p (n + 1))).snd m = Prod.fst (↑(p (m + 1))).snd m", "tactic": "have I : (F (p n)).val.snd.fst m = (p n).val.snd.fst m := by\n apply hFx (p n) m\n rw [pn_fst]\n exact hmn" }, { "state_after": "no goals", "state_before": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI✝ :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nI : Prod.fst (↑(F (p n))).snd m = Prod.fst (↑(p n)).snd m\n⊢ Prod.fst (↑(p (n + 1))).snd m = Prod.fst (↑(p (m + 1))).snd m", "tactic": "rw [prec, I, IH]" }, { "state_after": "no goals", "state_before": "case base\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm : ℕ\n⊢ Prod.fst (↑(p (m + 1))).snd m = Prod.fst (↑(p (m + 1))).snd m", "tactic": "rfl" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\n⊢ m < (↑(p n)).fst", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\n⊢ Prod.fst (↑(F (p n))).snd m = Prod.fst (↑(p n)).snd m", "tactic": "apply hFx (p n) m" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\n⊢ m < n", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\n⊢ m < (↑(p n)).fst", "tactic": "rw [pn_fst]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\n⊢ m < n", "tactic": "exact hmn" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm : ℕ\n⊢ ∀ (n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\n⊢ ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m", "tactic": "intro m" }, { "state_after": "case base\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm : ℕ\n⊢ Prod.snd (↑(p (m + 1))).snd m = Prod.snd (↑(p (m + 1))).snd m\n\ncase succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm : ℕ\n⊢ ∀ (n : ℕ),\n m + 1 ≤ n →\n Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m →\n Prod.snd (↑(p (n + 1))).snd m = Prod.snd (↑(p (m + 1))).snd m", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm : ℕ\n⊢ ∀ (n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m", "tactic": "apply Nat.le_induction" }, { "state_after": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\n⊢ Prod.snd (↑(p (n + 1))).snd m = Prod.snd (↑(p (m + 1))).snd m", "state_before": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm : ℕ\n⊢ ∀ (n : ℕ),\n m + 1 ≤ n →\n Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m →\n Prod.snd (↑(p (n + 1))).snd m = Prod.snd (↑(p (m + 1))).snd m", "tactic": "intro n hmn IH" }, { "state_after": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI✝ :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nI : Prod.snd (↑(F (p n))).snd m = Prod.snd (↑(p n)).snd m\n⊢ Prod.snd (↑(p (n + 1))).snd m = Prod.snd (↑(p (m + 1))).snd m", "state_before": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\n⊢ Prod.snd (↑(p (n + 1))).snd m = Prod.snd (↑(p (m + 1))).snd m", "tactic": "have I : (F (p n)).val.snd.snd m = (p n).val.snd.snd m := by\n apply hFy (p n) m\n rw [pn_fst]\n exact hmn" }, { "state_after": "no goals", "state_before": "case succ\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI✝ :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nI : Prod.snd (↑(F (p n))).snd m = Prod.snd (↑(p n)).snd m\n⊢ Prod.snd (↑(p (n + 1))).snd m = Prod.snd (↑(p (m + 1))).snd m", "tactic": "rw [prec, I, IH]" }, { "state_after": "no goals", "state_before": "case base\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm : ℕ\n⊢ Prod.snd (↑(p (m + 1))).snd m = Prod.snd (↑(p (m + 1))).snd m", "tactic": "rfl" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\n⊢ m < (↑(p n)).fst", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\n⊢ Prod.snd (↑(F (p n))).snd m = Prod.snd (↑(p n)).snd m", "tactic": "apply hFy (p n) m" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\n⊢ m < n", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\n⊢ m < (↑(p n)).fst", "tactic": "rw [pn_fst]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nm n : ℕ\nhmn : m + 1 ≤ n\nIH : Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\n⊢ m < n", "tactic": "exact hmn" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\n⊢ ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)", "tactic": "intro n" }, { "state_after": "case h.e'_1.h.e'_3.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ cylinder x n = cylinder (↑(p n)).snd.fst (↑(p n)).fst\n\ncase h.e'_1.h.e'_4.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ cylinder y n = cylinder (↑(p n)).snd.snd (↑(p n)).fst", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)", "tactic": "convert(p n).2 using 3" }, { "state_after": "case h.e'_1.h.e'_3.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ ∀ (i : ℕ), i < n → x i = Prod.fst (↑(p n)).snd i", "state_before": "case h.e'_1.h.e'_3.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ cylinder x n = cylinder (↑(p n)).snd.fst (↑(p n)).fst", "tactic": "rw [pn_fst, ← mem_cylinder_iff_eq, mem_cylinder_iff]" }, { "state_after": "case h.e'_1.h.e'_3.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn i : ℕ\nhi : i < n\n⊢ x i = Prod.fst (↑(p n)).snd i", "state_before": "case h.e'_1.h.e'_3.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ ∀ (i : ℕ), i < n → x i = Prod.fst (↑(p n)).snd i", "tactic": "intro i hi" }, { "state_after": "case h.e'_1.h.e'_3.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn i : ℕ\nhi : i < n\n⊢ (fun n => Prod.fst (↑(p (n + 1))).snd n) i = Prod.fst (↑(p n)).snd i", "state_before": "case h.e'_1.h.e'_3.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn i : ℕ\nhi : i < n\n⊢ x i = Prod.fst (↑(p n)).snd i", "tactic": "rw [hx]" }, { "state_after": "no goals", "state_before": "case h.e'_1.h.e'_3.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn i : ℕ\nhi : i < n\n⊢ (fun n => Prod.fst (↑(p (n + 1))).snd n) i = Prod.fst (↑(p n)).snd i", "tactic": "exact (Ix i n hi).symm" }, { "state_after": "case h.e'_1.h.e'_4.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ ∀ (i : ℕ), i < n → y i = Prod.snd (↑(p n)).snd i", "state_before": "case h.e'_1.h.e'_4.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ cylinder y n = cylinder (↑(p n)).snd.snd (↑(p n)).fst", "tactic": "rw [pn_fst, ← mem_cylinder_iff_eq, mem_cylinder_iff]" }, { "state_after": "case h.e'_1.h.e'_4.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn i : ℕ\nhi : i < n\n⊢ y i = Prod.snd (↑(p n)).snd i", "state_before": "case h.e'_1.h.e'_4.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn : ℕ\n⊢ ∀ (i : ℕ), i < n → y i = Prod.snd (↑(p n)).snd i", "tactic": "intro i hi" }, { "state_after": "case h.e'_1.h.e'_4.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn i : ℕ\nhi : i < n\n⊢ (fun n => Prod.snd (↑(p (n + 1))).snd n) i = Prod.snd (↑(p n)).snd i", "state_before": "case h.e'_1.h.e'_4.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn i : ℕ\nhi : i < n\n⊢ y i = Prod.snd (↑(p n)).snd i", "tactic": "rw [hy]" }, { "state_after": "no goals", "state_before": "case h.e'_1.h.e'_4.h.e'_4\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nn i : ℕ\nhi : i < n\n⊢ (fun n => Prod.snd (↑(p (n + 1))).snd n) i = Prod.snd (↑(p n)).snd i", "tactic": "exact (Iy i n hi).symm" }, { "state_after": "case h\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\n⊢ f x ≠ g y", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\n⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f x ∈ u ∧ g y ∈ v ∧ Disjoint u v", "tactic": "apply t2_separation" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\n⊢ f x ≠ g y", "tactic": "exact disjoint_iff_forall_ne.1 h (mem_range_self _) (mem_range_self _)" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\n⊢ f ⁻¹' u ∈ 𝓝 x", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\n⊢ ∃ εx, εx > 0 ∧ ball x εx ⊆ f ⁻¹' u", "tactic": "apply Metric.mem_nhds_iff.1" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\n⊢ f ⁻¹' u ∈ 𝓝 x", "tactic": "exact hf.continuousAt.preimage_mem_nhds (u_open.mem_nhds xu)" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\n⊢ g ⁻¹' v ∈ 𝓝 y", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\n⊢ ∃ εy, εy > 0 ∧ ball y εy ⊆ g ⁻¹' v", "tactic": "apply Metric.mem_nhds_iff.1" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\n⊢ g ⁻¹' v ∈ 𝓝 y", "tactic": "exact hg.continuousAt.preimage_mem_nhds (v_open.mem_nhds yv)" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\n⊢ 1 / 2 < 1", "tactic": "norm_num" }, { "state_after": "case refine'_1\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ f '' cylinder x n ⊆ u\n\ncase refine'_2\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ Disjoint (g '' cylinder y n) u", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)", "tactic": "refine' ⟨u, _, _, u_open.measurableSet⟩" }, { "state_after": "case refine'_1\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ cylinder x n ⊆ f ⁻¹' u", "state_before": "case refine'_1\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ f '' cylinder x n ⊆ u", "tactic": "rw [image_subset_iff]" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ cylinder x n ⊆ ball x εx", "state_before": "case refine'_1\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ cylinder x n ⊆ f ⁻¹' u", "tactic": "apply Subset.trans _ hεx" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\nz : ℕ → ℕ\nhz : z ∈ cylinder x n\n⊢ z ∈ ball x εx", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ cylinder x n ⊆ ball x εx", "tactic": "intro z hz" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\nz : ℕ → ℕ\nhz : dist z x ≤ (1 / 2) ^ n\n⊢ z ∈ ball x εx", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\nz : ℕ → ℕ\nhz : z ∈ cylinder x n\n⊢ z ∈ ball x εx", "tactic": "rw [mem_cylinder_iff_dist_le] at hz" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\nz : ℕ → ℕ\nhz : dist z x ≤ (1 / 2) ^ n\n⊢ z ∈ ball x εx", "tactic": "exact hz.trans_lt (hn.trans_le (min_le_left _ _))" }, { "state_after": "case refine'_2\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ g '' cylinder y n ≤ v", "state_before": "case refine'_2\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ Disjoint (g '' cylinder y n) u", "tactic": "refine' Disjoint.mono_left _ huv.symm" }, { "state_after": "case refine'_2\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ g '' cylinder y n ⊆ v", "state_before": "case refine'_2\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ g '' cylinder y n ≤ v", "tactic": "change g '' cylinder y n ⊆ v" }, { "state_after": "case refine'_2\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ cylinder y n ⊆ g ⁻¹' v", "state_before": "case refine'_2\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ g '' cylinder y n ⊆ v", "tactic": "rw [image_subset_iff]" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ cylinder y n ⊆ ball y εy", "state_before": "case refine'_2\nα : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ cylinder y n ⊆ g ⁻¹' v", "tactic": "apply Subset.trans _ hεy" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\nz : ℕ → ℕ\nhz : z ∈ cylinder y n\n⊢ z ∈ ball y εy", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\n⊢ cylinder y n ⊆ ball y εy", "tactic": "intro z hz" }, { "state_after": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\nz : ℕ → ℕ\nhz : dist z y ≤ (1 / 2) ^ n\n⊢ z ∈ ball y εy", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\nz : ℕ → ℕ\nhz : z ∈ cylinder y n\n⊢ z ∈ ball y εy", "tactic": "rw [mem_cylinder_iff_dist_le] at hz" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : TopologicalSpace α\nι : Type ?u.68523\ninst✝² : T2Space α\ninst✝¹ : MeasurableSpace α\ninst✝ : BorelSpace α\nf g : (ℕ → ℕ) → α\nhf : Continuous f\nhg : Continuous g\nh : Disjoint (range f) (range g)\nhfg : ¬MeasurablySeparable (range f) (range g)\nI :\n ∀ (n : ℕ) (x y : ℕ → ℕ),\n ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n) →\n ∃ x' y',\n x' ∈ cylinder x n ∧\n y' ∈ cylinder y n ∧ ¬MeasurablySeparable (f '' cylinder x' (n + 1)) (g '' cylinder y' (n + 1))\nA : Type := { p // ¬MeasurablySeparable (f '' cylinder p.snd.fst p.fst) (g '' cylinder p.snd.snd p.fst) }\nF : A → A\nhFn : ∀ (p : A), (↑(F p)).fst = (↑p).fst + 1\nhFx : ∀ (p : A), (↑(F p)).snd.fst ∈ cylinder (↑p).snd.fst (↑p).fst\nhFy : ∀ (p : A), (↑(F p)).snd.snd ∈ cylinder (↑p).snd.snd (↑p).fst\np0 : A :=\n { val := (0, fun x => 0, fun x => 0),\n property := (_ : ¬MeasurablySeparable (f '' cylinder (fun x => 0) 0) (g '' cylinder (fun x => 0) 0)) }\np : ℕ → A := fun n => (F^[n]) p0\nprec : ∀ (n : ℕ), p (n + 1) = F (p n)\npn_fst : ∀ (n : ℕ), (↑(p n)).fst = n\nIx : ∀ (m n : ℕ), m + 1 ≤ n → Prod.fst (↑(p n)).snd m = Prod.fst (↑(p (m + 1))).snd m\nIy : ∀ (m n : ℕ), m + 1 ≤ n → Prod.snd (↑(p n)).snd m = Prod.snd (↑(p (m + 1))).snd m\nx : ℕ → ℕ := fun n => Prod.fst (↑(p (n + 1))).snd n\nhx : x = fun n => Prod.fst (↑(p (n + 1))).snd n\ny : ℕ → ℕ := fun n => Prod.snd (↑(p (n + 1))).snd n\nhy : y = fun n => Prod.snd (↑(p (n + 1))).snd n\nM : ∀ (n : ℕ), ¬MeasurablySeparable (f '' cylinder x n) (g '' cylinder y n)\nu v : Set α\nu_open : IsOpen u\nv_open : IsOpen v\nxu : f x ∈ u\nyv : g y ∈ v\nhuv : Disjoint u v\nthis : MetricSpace (ℕ → ℕ) := metricSpaceNatNat\nεx : ℝ\nεxpos : εx > 0\nhεx : ball x εx ⊆ f ⁻¹' u\nεy : ℝ\nεypos : εy > 0\nhεy : ball y εy ⊆ g ⁻¹' v\nn : ℕ\nhn : (1 / 2) ^ n < min εx εy\nz : ℕ → ℕ\nhz : dist z y ≤ (1 / 2) ^ n\n⊢ z ∈ ball y εy", "tactic": "exact hz.trans_lt (hn.trans_le (min_le_right _ _))" } ]
[ 402, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 293, 1 ]
Mathlib/Topology/Basic.lean
frontier_closure_subset
[]
[ 723, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 722, 1 ]
Mathlib/Topology/Perfect.lean
Preperfect.open_inter
[ { "state_after": "case intro\nα : Type u_1\ninst✝ : TopologicalSpace α\nC U : Set α\nhC : Preperfect C\nhU : IsOpen U\nx : α\nxU : x ∈ U\nxC : x ∈ C\n⊢ AccPt x (𝓟 (U ∩ C))", "state_before": "α : Type u_1\ninst✝ : TopologicalSpace α\nC U : Set α\nhC : Preperfect C\nhU : IsOpen U\n⊢ Preperfect (U ∩ C)", "tactic": "rintro x ⟨xU, xC⟩" }, { "state_after": "case intro\nα : Type u_1\ninst✝ : TopologicalSpace α\nC U : Set α\nhC : Preperfect C\nhU : IsOpen U\nx : α\nxU : x ∈ U\nxC : x ∈ C\n⊢ U ∈ 𝓝 x", "state_before": "case intro\nα : Type u_1\ninst✝ : TopologicalSpace α\nC U : Set α\nhC : Preperfect C\nhU : IsOpen U\nx : α\nxU : x ∈ U\nxC : x ∈ C\n⊢ AccPt x (𝓟 (U ∩ C))", "tactic": "apply (hC _ xC).nhds_inter" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\ninst✝ : TopologicalSpace α\nC U : Set α\nhC : Preperfect C\nhU : IsOpen U\nx : α\nxU : x ∈ U\nxC : x ∈ C\n⊢ U ∈ 𝓝 x", "tactic": "exact hU.mem_nhds xU" } ]
[ 98, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 94, 1 ]
Mathlib/Order/WellFoundedSet.lean
IsAntichain.finite_of_partiallyWellOrderedOn
[ { "state_after": "ι : Type ?u.49249\nα : Type u_1\nβ : Type ?u.49255\nr : α → α → Prop\nr' : β → β → Prop\nf : α → β\ns t : Set α\na : α\nha : IsAntichain r s\nhp : PartiallyWellOrderedOn s r\nhi : Set.Infinite s\n⊢ False", "state_before": "ι : Type ?u.49249\nα : Type u_1\nβ : Type ?u.49255\nr : α → α → Prop\nr' : β → β → Prop\nf : α → β\ns t : Set α\na : α\nha : IsAntichain r s\nhp : PartiallyWellOrderedOn s r\n⊢ Set.Finite s", "tactic": "refine' not_infinite.1 fun hi => _" }, { "state_after": "case intro.intro.intro\nι : Type ?u.49249\nα : Type u_1\nβ : Type ?u.49255\nr : α → α → Prop\nr' : β → β → Prop\nf : α → β\ns t : Set α\na : α\nha : IsAntichain r s\nhp : PartiallyWellOrderedOn s r\nhi : Set.Infinite s\nm n : ℕ\nhmn : m < n\nh : r ↑(↑(Infinite.natEmbedding s hi) m) ↑(↑(Infinite.natEmbedding s hi) n)\n⊢ False", "state_before": "ι : Type ?u.49249\nα : Type u_1\nβ : Type ?u.49255\nr : α → α → Prop\nr' : β → β → Prop\nf : α → β\ns t : Set α\na : α\nha : IsAntichain r s\nhp : PartiallyWellOrderedOn s r\nhi : Set.Infinite s\n⊢ False", "tactic": "obtain ⟨m, n, hmn, h⟩ := hp (fun n => hi.natEmbedding _ n) fun n => (hi.natEmbedding _ n).2" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nι : Type ?u.49249\nα : Type u_1\nβ : Type ?u.49255\nr : α → α → Prop\nr' : β → β → Prop\nf : α → β\ns t : Set α\na : α\nha : IsAntichain r s\nhp : PartiallyWellOrderedOn s r\nhi : Set.Infinite s\nm n : ℕ\nhmn : m < n\nh : r ↑(↑(Infinite.natEmbedding s hi) m) ↑(↑(Infinite.natEmbedding s hi) n)\n⊢ False", "tactic": "exact hmn.ne ((hi.natEmbedding _).injective <| Subtype.val_injective <|\n ha.eq (hi.natEmbedding _ m).2 (hi.natEmbedding _ n).2 h)" } ]
[ 287, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 282, 1 ]
Mathlib/Analysis/NormedSpace/Pointwise.lean
smul_unitBall_of_pos
[ { "state_after": "no goals", "state_before": "𝕜 : Type ?u.198360\nE : Type u_1\ninst✝³ : NormedField 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : NormedSpace 𝕜 E\ninst✝ : NormedSpace ℝ E\nx y z : E\nδ ε r : ℝ\nhr : 0 < r\n⊢ r • ball 0 1 = ball 0 r", "tactic": "rw [smul_unitBall hr.ne', Real.norm_of_nonneg hr.le]" } ]
[ 152, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/Analysis/Quaternion.lean
Quaternion.coeComplex_re
[]
[ 117, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isBigOWith_norm_norm
[]
[ 809, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 807, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isLittleO_const_left
[ { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.609377\nE : Type ?u.609380\nF : Type ?u.609383\nG : Type ?u.609386\nE' : Type ?u.609389\nF' : Type ?u.609392\nG' : Type ?u.609395\nE'' : Type u_2\nF'' : Type u_3\nG'' : Type ?u.609404\nR : Type ?u.609407\nR' : Type ?u.609410\n𝕜 : Type ?u.609413\n𝕜' : Type ?u.609416\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\n⊢ (fun _x => 0) =o[l] g'' ↔ 0 = 0 ∨ Tendsto (norm ∘ g'') l atTop\n\ncase inr\nα : Type u_1\nβ : Type ?u.609377\nE : Type ?u.609380\nF : Type ?u.609383\nG : Type ?u.609386\nE' : Type ?u.609389\nF' : Type ?u.609392\nG' : Type ?u.609395\nE'' : Type u_2\nF'' : Type u_3\nG'' : Type ?u.609404\nR : Type ?u.609407\nR' : Type ?u.609410\n𝕜 : Type ?u.609413\n𝕜' : Type ?u.609416\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc✝ c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nc : E''\nhc : c ≠ 0\n⊢ (fun _x => c) =o[l] g'' ↔ c = 0 ∨ Tendsto (norm ∘ g'') l atTop", "state_before": "α : Type u_1\nβ : Type ?u.609377\nE : Type ?u.609380\nF : Type ?u.609383\nG : Type ?u.609386\nE' : Type ?u.609389\nF' : Type ?u.609392\nG' : Type ?u.609395\nE'' : Type u_2\nF'' : Type u_3\nG'' : Type ?u.609404\nR : Type ?u.609407\nR' : Type ?u.609410\n𝕜 : Type ?u.609413\n𝕜' : Type ?u.609416\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc✝ c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nc : E''\n⊢ (fun _x => c) =o[l] g'' ↔ c = 0 ∨ Tendsto (norm ∘ g'') l atTop", "tactic": "rcases eq_or_ne c 0 with (rfl | hc)" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.609377\nE : Type ?u.609380\nF : Type ?u.609383\nG : Type ?u.609386\nE' : Type ?u.609389\nF' : Type ?u.609392\nG' : Type ?u.609395\nE'' : Type u_2\nF'' : Type u_3\nG'' : Type ?u.609404\nR : Type ?u.609407\nR' : Type ?u.609410\n𝕜 : Type ?u.609413\n𝕜' : Type ?u.609416\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\n⊢ (fun _x => 0) =o[l] g'' ↔ 0 = 0 ∨ Tendsto (norm ∘ g'') l atTop", "tactic": "simp only [isLittleO_zero, eq_self_iff_true, true_or_iff]" }, { "state_after": "case inr\nα : Type u_1\nβ : Type ?u.609377\nE : Type ?u.609380\nF : Type ?u.609383\nG : Type ?u.609386\nE' : Type ?u.609389\nF' : Type ?u.609392\nG' : Type ?u.609395\nE'' : Type u_2\nF'' : Type u_3\nG'' : Type ?u.609404\nR : Type ?u.609407\nR' : Type ?u.609410\n𝕜 : Type ?u.609413\n𝕜' : Type ?u.609416\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc✝ c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nc : E''\nhc : c ≠ 0\n⊢ Tendsto (fun x => ‖g'' x‖) l atTop ↔ Tendsto (norm ∘ g'') l atTop", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.609377\nE : Type ?u.609380\nF : Type ?u.609383\nG : Type ?u.609386\nE' : Type ?u.609389\nF' : Type ?u.609392\nG' : Type ?u.609395\nE'' : Type u_2\nF'' : Type u_3\nG'' : Type ?u.609404\nR : Type ?u.609407\nR' : Type ?u.609410\n𝕜 : Type ?u.609413\n𝕜' : Type ?u.609416\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc✝ c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nc : E''\nhc : c ≠ 0\n⊢ (fun _x => c) =o[l] g'' ↔ c = 0 ∨ Tendsto (norm ∘ g'') l atTop", "tactic": "simp only [hc, false_or_iff, isLittleO_const_left_of_ne hc]" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.609377\nE : Type ?u.609380\nF : Type ?u.609383\nG : Type ?u.609386\nE' : Type ?u.609389\nF' : Type ?u.609392\nG' : Type ?u.609395\nE'' : Type u_2\nF'' : Type u_3\nG'' : Type ?u.609404\nR : Type ?u.609407\nR' : Type ?u.609410\n𝕜 : Type ?u.609413\n𝕜' : Type ?u.609416\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc✝ c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nc : E''\nhc : c ≠ 0\n⊢ Tendsto (fun x => ‖g'' x‖) l atTop ↔ Tendsto (norm ∘ g'') l atTop", "tactic": "rfl" } ]
[ 1860, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1856, 1 ]
Mathlib/Data/Rat/NNRat.lean
NNRat.num_div_den
[ { "state_after": "case a\np q✝ q : ℚ≥0\n⊢ ↑(↑(num q) / ↑(den q)) = ↑q", "state_before": "p q✝ q : ℚ≥0\n⊢ ↑(num q) / ↑(den q) = q", "tactic": "ext1" }, { "state_after": "case a\np q✝ q : ℚ≥0\n⊢ ↑(↑q).num / ↑(den q) = ↑q", "state_before": "case a\np q✝ q : ℚ≥0\n⊢ ↑(↑(num q) / ↑(den q)) = ↑q", "tactic": "rw [coe_div, coe_natCast, coe_natCast, num, ← Int.cast_ofNat,\n Int.natAbs_of_nonneg (Rat.num_nonneg_iff_zero_le.2 q.prop)]" }, { "state_after": "no goals", "state_before": "case a\np q✝ q : ℚ≥0\n⊢ ↑(↑q).num / ↑(den q) = ↑q", "tactic": "exact Rat.num_div_den q" } ]
[ 489, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 485, 1 ]
Mathlib/Order/Basic.lean
le_of_eq_of_le'
[]
[ 195, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Std/Data/List/Lemmas.lean
List.head!_of_head?
[]
[ 439, 23 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 438, 1 ]
Mathlib/Order/Filter/Pi.lean
Filter.coprodᵢ_neBot_iff'
[ { "state_after": "no goals", "state_before": "ι : Type u_2\nα : ι → Type u_1\nf f₁ f₂ : (i : ι) → Filter (α i)\ns : (i : ι) → Set (α i)\n⊢ NeBot (Filter.coprodᵢ f) ↔ (∀ (i : ι), Nonempty (α i)) ∧ ∃ d, NeBot (f d)", "tactic": "simp only [Filter.coprodᵢ, iSup_neBot, ← exists_and_left, ← comap_eval_neBot_iff']" } ]
[ 215, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Data/Finset/Image.lean
Finset.map_map
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf✝ : α ↪ β\ns✝ : Finset α\nf : α ↪ β\ng : β ↪ γ\ns : Finset α\n⊢ Multiset.map ((fun x => ↑g x) ∘ fun x => ↑f x) s.val = Multiset.map (fun x => ↑(Embedding.trans f g) x) s.val", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf✝ : α ↪ β\ns✝ : Finset α\nf : α ↪ β\ng : β ↪ γ\ns : Finset α\n⊢ (map g (map f s)).val = (map (Embedding.trans f g) s).val", "tactic": "simp only [map_val, Multiset.map_map]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf✝ : α ↪ β\ns✝ : Finset α\nf : α ↪ β\ng : β ↪ γ\ns : Finset α\n⊢ Multiset.map ((fun x => ↑g x) ∘ fun x => ↑f x) s.val = Multiset.map (fun x => ↑(Embedding.trans f g) x) s.val", "tactic": "rfl" } ]
[ 138, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 137, 1 ]
Mathlib/MeasureTheory/MeasurableSpaceDef.lean
MeasurableSpace.measurableSpace_iSup_eq
[ { "state_after": "case h\nα : Type u_1\nβ : Type ?u.36119\nγ : Type ?u.36122\nδ : Type ?u.36125\nδ' : Type ?u.36128\nι : Sort u_2\ns✝ t u : Set α\nm : ι → MeasurableSpace α\ns : Set α\n⊢ MeasurableSet s ↔ MeasurableSet s", "state_before": "α : Type u_1\nβ : Type ?u.36119\nγ : Type ?u.36122\nδ : Type ?u.36125\nδ' : Type ?u.36128\nι : Sort u_2\ns t u : Set α\nm : ι → MeasurableSpace α\n⊢ (⨆ (n : ι), m n) = generateFrom {s | ∃ n, MeasurableSet s}", "tactic": "ext s" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.36119\nγ : Type ?u.36122\nδ : Type ?u.36125\nδ' : Type ?u.36128\nι : Sort u_2\ns✝ t u : Set α\nm : ι → MeasurableSpace α\ns : Set α\n⊢ GenerateMeasurable {s | ∃ i, MeasurableSet s} s ↔ MeasurableSet s", "state_before": "case h\nα : Type u_1\nβ : Type ?u.36119\nγ : Type ?u.36122\nδ : Type ?u.36125\nδ' : Type ?u.36128\nι : Sort u_2\ns✝ t u : Set α\nm : ι → MeasurableSpace α\ns : Set α\n⊢ MeasurableSet s ↔ MeasurableSet s", "tactic": "rw [measurableSet_iSup]" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.36119\nγ : Type ?u.36122\nδ : Type ?u.36125\nδ' : Type ?u.36128\nι : Sort u_2\ns✝ t u : Set α\nm : ι → MeasurableSpace α\ns : Set α\n⊢ GenerateMeasurable {s | ∃ i, MeasurableSet s} s ↔ MeasurableSet s", "tactic": "rfl" } ]
[ 517, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 513, 1 ]
Mathlib/ModelTheory/Satisfiability.lean
FirstOrder.Language.Theory.IsSatisfiable.isFinitelySatisfiable
[]
[ 105, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Mathlib/Order/Directed.lean
directedOn_singleton
[]
[ 243, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 242, 1 ]