file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Computability/PartrecCode.lean
Nat.Partrec.Code.fixed_point₂
[ { "state_after": "no goals", "state_before": "f : Code → ℕ →. ℕ\nhf : Partrec₂ f\ncf : Code\nef : eval cf = fun n => Part.bind ↑(decode n) fun a => Part.map encode ((fun p => f p.fst p.snd) a)\nc : Code\ne : eval (curry cf (encode c)) = eval c\nn : ℕ\n⊢ eval c n = f c n", "tactic": "simp [e.symm, ef, Part.map_id']" } ]
[ 1192, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1189, 1 ]
Mathlib/Order/Height.lean
Set.chainHeight_insert_of_forall_gt
[ { "state_after": "α : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\n⊢ chainHeight (insert a s) + 0 = chainHeight s + 1", "state_before": "α : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\n⊢ chainHeight (insert a s) = chainHeight s + 1", "tactic": "rw [← add_zero (insert a s).chainHeight]" }, { "state_after": "α : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\n⊢ chainHeight (insert a s) + ↑0 = chainHeight s + ↑1", "state_before": "α : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\n⊢ chainHeight (insert a s) + 0 = chainHeight s + 1", "tactic": "change (insert a s).chainHeight + (0 : ℕ) = s.chainHeight + (1 : ℕ)" }, { "state_after": "case a\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\n⊢ ∀ (l : List α), l ∈ subchain (insert a s) → ∃ l', l' ∈ subchain s ∧ length l + 0 ≤ length l' + 1\n\ncase a\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\n⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (insert a s) ∧ length l + 1 ≤ length l' + 0", "state_before": "α : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\n⊢ chainHeight (insert a s) + ↑0 = chainHeight s + ↑1", "tactic": "apply le_antisymm <;> rw [chainHeight_add_le_chainHeight_add]" }, { "state_after": "case a.nil\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nh : [] ∈ subchain (insert a s)\n⊢ ∃ l', l' ∈ subchain s ∧ length [] + 0 ≤ length l' + 1\n\ncase a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\ny : α\nys : List α\nh : y :: ys ∈ subchain (insert a s)\n⊢ ∃ l', l' ∈ subchain s ∧ length (y :: ys) + 0 ≤ length l' + 1", "state_before": "case a\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\n⊢ ∀ (l : List α), l ∈ subchain (insert a s) → ∃ l', l' ∈ subchain s ∧ length l + 0 ≤ length l' + 1", "tactic": "rintro (_ | ⟨y, ys⟩) h" }, { "state_after": "no goals", "state_before": "case a.nil\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nh : [] ∈ subchain (insert a s)\n⊢ ∃ l', l' ∈ subchain s ∧ length [] + 0 ≤ length l' + 1", "tactic": "exact ⟨[], nil_mem_subchain _, zero_le _⟩" }, { "state_after": "case a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\ny : α\nys : List α\nh : y :: ys ∈ subchain (insert a s)\nh' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b\n⊢ ∃ l', l' ∈ subchain s ∧ length (y :: ys) + 0 ≤ length l' + 1", "state_before": "case a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\ny : α\nys : List α\nh : y :: ys ∈ subchain (insert a s)\n⊢ ∃ l', l' ∈ subchain s ∧ length (y :: ys) + 0 ≤ length l' + 1", "tactic": "have h' := cons_mem_subchain_iff.mp h" }, { "state_after": "case a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\ny : α\nys : List α\nh : y :: ys ∈ subchain (insert a s)\nh' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b\ni : α\nhi : i ∈ ys\n⊢ i ∈ s", "state_before": "case a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\ny : α\nys : List α\nh : y :: ys ∈ subchain (insert a s)\nh' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b\n⊢ ∃ l', l' ∈ subchain s ∧ length (y :: ys) + 0 ≤ length l' + 1", "tactic": "refine' ⟨ys, ⟨h'.2.1.1, fun i hi ↦ _⟩, by simp⟩" }, { "state_after": "case a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\ny : α\nys : List α\nh : y :: ys ∈ subchain (insert a s)\nh' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b\ni : α\nhi : i ∈ ys\n⊢ ¬i = a", "state_before": "case a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\ny : α\nys : List α\nh : y :: ys ∈ subchain (insert a s)\nh' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b\ni : α\nhi : i ∈ ys\n⊢ i ∈ s", "tactic": "apply (h'.2.1.2 i hi).resolve_left" }, { "state_after": "case a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\ny : α\nys : List α\ni : α\nhi : i ∈ ys\nhx : ∀ (b : α), b ∈ s → i < b\nh : y :: ys ∈ subchain (insert i s)\nh' : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b\n⊢ False", "state_before": "case a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\ny : α\nys : List α\nh : y :: ys ∈ subchain (insert a s)\nh' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b\ni : α\nhi : i ∈ ys\n⊢ ¬i = a", "tactic": "rintro rfl" }, { "state_after": "case a.cons.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\ny : α\nys : List α\ni : α\nhi : i ∈ ys\nhx : ∀ (b : α), b ∈ s → i < b\nh : y :: ys ∈ subchain (insert i s)\nh' : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b\na✝ : List.Pairwise (fun x x_1 => x < x_1) ys\nhy : ∀ (a' : α), a' ∈ ys → y < a'\n⊢ False", "state_before": "case a.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\ny : α\nys : List α\ni : α\nhi : i ∈ ys\nhx : ∀ (b : α), b ∈ s → i < b\nh : y :: ys ∈ subchain (insert i s)\nh' : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b\n⊢ False", "tactic": "cases' chain'_iff_pairwise.mp h.1 with _ _ hy" }, { "state_after": "case a.cons.cons.inl\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\ny : α\nys : List α\ni : α\nhi : i ∈ ys\nhx : ∀ (b : α), b ∈ s → i < b\nh : y :: ys ∈ subchain (insert i s)\nh'✝ : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b\na✝ : List.Pairwise (fun x x_1 => x < x_1) ys\nhy : ∀ (a' : α), a' ∈ ys → y < a'\nh' : y = i\n⊢ False\n\ncase a.cons.cons.inr\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\ny : α\nys : List α\ni : α\nhi : i ∈ ys\nhx : ∀ (b : α), b ∈ s → i < b\nh : y :: ys ∈ subchain (insert i s)\nh'✝ : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b\na✝ : List.Pairwise (fun x x_1 => x < x_1) ys\nhy : ∀ (a' : α), a' ∈ ys → y < a'\nh' : y ∈ s\n⊢ False", "state_before": "case a.cons.cons\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\ny : α\nys : List α\ni : α\nhi : i ∈ ys\nhx : ∀ (b : α), b ∈ s → i < b\nh : y :: ys ∈ subchain (insert i s)\nh' : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b\na✝ : List.Pairwise (fun x x_1 => x < x_1) ys\nhy : ∀ (a' : α), a' ∈ ys → y < a'\n⊢ False", "tactic": "cases' h'.1 with h' h'" }, { "state_after": "no goals", "state_before": "case a.cons.cons.inl\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\ny : α\nys : List α\ni : α\nhi : i ∈ ys\nhx : ∀ (b : α), b ∈ s → i < b\nh : y :: ys ∈ subchain (insert i s)\nh'✝ : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b\na✝ : List.Pairwise (fun x x_1 => x < x_1) ys\nhy : ∀ (a' : α), a' ∈ ys → y < a'\nh' : y = i\n⊢ False\n\ncase a.cons.cons.inr\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\ny : α\nys : List α\ni : α\nhi : i ∈ ys\nhx : ∀ (b : α), b ∈ s → i < b\nh : y :: ys ∈ subchain (insert i s)\nh'✝ : y ∈ insert i s ∧ ys ∈ subchain (insert i s) ∧ ∀ (b : α), b ∈ head? ys → y < b\na✝ : List.Pairwise (fun x x_1 => x < x_1) ys\nhy : ∀ (a' : α), a' ∈ ys → y < a'\nh' : y ∈ s\n⊢ False", "tactic": "exacts [(hy _ hi).ne h', not_le_of_gt (hy _ hi) (hx _ h').le]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\ny : α\nys : List α\nh : y :: ys ∈ subchain (insert a s)\nh' : y ∈ insert a s ∧ ys ∈ subchain (insert a s) ∧ ∀ (b : α), b ∈ head? ys → y < b\n⊢ length (y :: ys) + 0 ≤ length ys + 1", "tactic": "simp" }, { "state_after": "case a\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ ∃ l', l' ∈ subchain (insert a s) ∧ length l + 1 ≤ length l' + 0", "state_before": "case a\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\n⊢ ∀ (l : List α), l ∈ subchain s → ∃ l', l' ∈ subchain (insert a s) ∧ length l + 1 ≤ length l' + 0", "tactic": "intro l hl" }, { "state_after": "case a.refine'_1\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ Chain' (fun x x_1 => x < x_1) (a :: l)\n\ncase a.refine'_2\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ ∀ (i : α), i ∈ a :: l → i ∈ insert a s", "state_before": "case a\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ ∃ l', l' ∈ subchain (insert a s) ∧ length l + 1 ≤ length l' + 0", "tactic": "refine' ⟨a::l, ⟨_, _⟩, by simp⟩" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ length l + 1 ≤ length (a :: l) + 0", "tactic": "simp" }, { "state_after": "case a.refine'_1\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ (∀ (y : α), y ∈ head? l → a < y) ∧ Chain' (fun x x_1 => x < x_1) l", "state_before": "case a.refine'_1\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ Chain' (fun x x_1 => x < x_1) (a :: l)", "tactic": "rw [chain'_cons']" }, { "state_after": "no goals", "state_before": "case a.refine'_1\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ (∀ (y : α), y ∈ head? l → a < y) ∧ Chain' (fun x x_1 => x < x_1) l", "tactic": "exact ⟨fun y hy ↦ hx _ (hl.2 _ (mem_of_mem_head? hy)), hl.1⟩" }, { "state_after": "case a.refine'_2.head\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ a ∈ insert a s\n\ncase a.refine'_2.tail\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\nx : α\na✝ : Mem x l\n⊢ x ∈ insert a s", "state_before": "case a.refine'_2\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ ∀ (i : α), i ∈ a :: l → i ∈ insert a s", "tactic": "rintro x (_ | _)" }, { "state_after": "no goals", "state_before": "case a.refine'_2.head\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\n⊢ a ∈ insert a s\n\ncase a.refine'_2.tail\nα : Type u_1\nβ : Type ?u.34460\ns t : Set α\ninst✝ : Preorder α\na : α\nhx : ∀ (b : α), b ∈ s → a < b\nl : List α\nhl : l ∈ subchain s\nx : α\na✝ : Mem x l\n⊢ x ∈ insert a s", "tactic": "exacts [Or.inl (Set.mem_singleton a), Or.inr (hl.2 x ‹_›)]" } ]
[ 309, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/Data/List/Nodup.lean
List.Nodup.pairwise_coe
[ { "state_after": "case nil\nα : Type u\nβ : Type v\nl l₁ l₂ : List α\nr : α → α → Prop\na b : α\ninst✝ : IsSymm α r\nhl✝ : Nodup l\nhl : Nodup []\n⊢ Set.Pairwise {a | a ∈ []} r ↔ Pairwise r []\n\ncase cons\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : IsSymm α r\nhl✝ : Nodup l✝\na : α\nl : List α\nih : Nodup l → (Set.Pairwise {a | a ∈ l} r ↔ Pairwise r l)\nhl : Nodup (a :: l)\n⊢ Set.Pairwise {a_1 | a_1 ∈ a :: l} r ↔ Pairwise r (a :: l)", "state_before": "α : Type u\nβ : Type v\nl l₁ l₂ : List α\nr : α → α → Prop\na b : α\ninst✝ : IsSymm α r\nhl : Nodup l\n⊢ Set.Pairwise {a | a ∈ l} r ↔ Pairwise r l", "tactic": "induction' l with a l ih" }, { "state_after": "case cons\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : IsSymm α r\nhl✝ : Nodup l✝\na : α\nl : List α\nih : Nodup l → (Set.Pairwise {a | a ∈ l} r ↔ Pairwise r l)\nhl : ¬a ∈ l ∧ Nodup l\n⊢ Set.Pairwise {a_1 | a_1 ∈ a :: l} r ↔ Pairwise r (a :: l)", "state_before": "case cons\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : IsSymm α r\nhl✝ : Nodup l✝\na : α\nl : List α\nih : Nodup l → (Set.Pairwise {a | a ∈ l} r ↔ Pairwise r l)\nhl : Nodup (a :: l)\n⊢ Set.Pairwise {a_1 | a_1 ∈ a :: l} r ↔ Pairwise r (a :: l)", "tactic": "rw [List.nodup_cons] at hl" }, { "state_after": "case cons\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : IsSymm α r\nhl✝ : Nodup l✝\na : α\nl : List α\nih : Nodup l → (Set.Pairwise {a | a ∈ l} r ↔ Pairwise r l)\nhl : ¬a ∈ l ∧ Nodup l\nthis : ∀ (b : α), b ∈ l → (¬a = b → r a b ↔ r a b)\n⊢ Set.Pairwise {a_1 | a_1 ∈ a :: l} r ↔ Pairwise r (a :: l)", "state_before": "case cons\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : IsSymm α r\nhl✝ : Nodup l✝\na : α\nl : List α\nih : Nodup l → (Set.Pairwise {a | a ∈ l} r ↔ Pairwise r l)\nhl : ¬a ∈ l ∧ Nodup l\n⊢ Set.Pairwise {a_1 | a_1 ∈ a :: l} r ↔ Pairwise r (a :: l)", "tactic": "have : ∀ b ∈ l, ¬a = b → r a b ↔ r a b := fun b hb =>\n imp_iff_right (ne_of_mem_of_not_mem hb hl.1).symm" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : IsSymm α r\nhl✝ : Nodup l✝\na : α\nl : List α\nih : Nodup l → (Set.Pairwise {a | a ∈ l} r ↔ Pairwise r l)\nhl : ¬a ∈ l ∧ Nodup l\nthis : ∀ (b : α), b ∈ l → (¬a = b → r a b ↔ r a b)\n⊢ Set.Pairwise {a_1 | a_1 ∈ a :: l} r ↔ Pairwise r (a :: l)", "tactic": "simp [Set.setOf_or, Set.pairwise_insert_of_symmetric (@symm_of _ r _), ih hl.2, and_comm,\n forall₂_congr this]" }, { "state_after": "no goals", "state_before": "case nil\nα : Type u\nβ : Type v\nl l₁ l₂ : List α\nr : α → α → Prop\na b : α\ninst✝ : IsSymm α r\nhl✝ : Nodup l\nhl : Nodup []\n⊢ Set.Pairwise {a | a ∈ []} r ↔ Pairwise r []", "tactic": "simp" } ]
[ 449, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 441, 1 ]
Mathlib/Logic/Function/Conjugate.lean
Function.Semiconj.inverses_right
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.1160\nf fab : α → β\nfbc : β → γ\nga ga' : α → α\ngb gb' : β → β\ngc gc' : γ → γ\nh : Semiconj f ga gb\nha : RightInverse ga' ga\nhb : LeftInverse gb' gb\nx : α\n⊢ f (ga' x) = gb' (f x)", "tactic": "rw [← hb (f (ga' x)), ← h.eq, ha x]" } ]
[ 71, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 1 ]
Mathlib/Data/Set/Lattice.lean
iSup_iUnion
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.304567\nι : Sort u_3\nι' : Sort ?u.304573\nι₂ : Sort ?u.304576\nκ : ι → Sort ?u.304581\nκ₁ : ι → Sort ?u.304586\nκ₂ : ι → Sort ?u.304591\nκ' : ι' → Sort ?u.304596\ninst✝ : CompleteLattice β\ns : ι → Set α\nf : α → β\n⊢ (⨆ (a : α) (_ : a ∈ ⋃ (i : ι), s i), f a) = ⨆ (j : α) (i : ι) (_ : j ∈ s i), f j", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.304567\nι : Sort u_3\nι' : Sort ?u.304573\nι₂ : Sort ?u.304576\nκ : ι → Sort ?u.304581\nκ₁ : ι → Sort ?u.304586\nκ₂ : ι → Sort ?u.304591\nκ' : ι' → Sort ?u.304596\ninst✝ : CompleteLattice β\ns : ι → Set α\nf : α → β\n⊢ (⨆ (a : α) (_ : a ∈ ⋃ (i : ι), s i), f a) = ⨆ (i : ι) (a : α) (_ : a ∈ s i), f a", "tactic": "rw [iSup_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.304567\nι : Sort u_3\nι' : Sort ?u.304573\nι₂ : Sort ?u.304576\nκ : ι → Sort ?u.304581\nκ₁ : ι → Sort ?u.304586\nκ₂ : ι → Sort ?u.304591\nκ' : ι' → Sort ?u.304596\ninst✝ : CompleteLattice β\ns : ι → Set α\nf : α → β\n⊢ (⨆ (a : α) (_ : a ∈ ⋃ (i : ι), s i), f a) = ⨆ (j : α) (i : ι) (_ : j ∈ s i), f j", "tactic": "simp_rw [mem_iUnion, iSup_exists]" } ]
[ 2239, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2237, 1 ]
Mathlib/Data/Multiset/Nodup.lean
Multiset.nodup_singleton
[]
[ 54, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Star.lean
HasFDerivAtFilter.star
[]
[ 46, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 44, 1 ]
Mathlib/Algebra/MonoidAlgebra/Basic.lean
AddMonoidAlgebra.mul_single_apply_of_not_exists_add
[]
[ 1637, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1635, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineEquiv.lean
AffineEquiv.coeFn_inj
[]
[ 149, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 1 ]
Mathlib/NumberTheory/LegendreSymbol/MulCharacter.lean
MulChar.map_nonunit
[]
[ 165, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
Mathlib/Data/Fintype/Card.lean
Finite.of_injective
[ { "state_after": "case intro\nα✝ : Type ?u.13191\nβ✝ : Type ?u.13194\nγ : Type ?u.13197\nα : Sort u_1\nβ : Sort u_2\ninst✝ : Finite β\nf : α → β\nH : Injective f\nval✝ : Fintype (PLift β)\n⊢ Finite α", "state_before": "α✝ : Type ?u.13191\nβ✝ : Type ?u.13194\nγ : Type ?u.13197\nα : Sort u_1\nβ : Sort u_2\ninst✝ : Finite β\nf : α → β\nH : Injective f\n⊢ Finite α", "tactic": "cases nonempty_fintype (PLift β)" }, { "state_after": "case intro\nα✝ : Type ?u.13191\nβ✝ : Type ?u.13194\nγ : Type ?u.13197\nα : Sort u_1\nβ : Sort u_2\ninst✝ : Finite β\nf : α → β\nH : Injective (↑Equiv.plift.symm ∘ f ∘ ↑Equiv.plift)\nval✝ : Fintype (PLift β)\n⊢ Finite α", "state_before": "case intro\nα✝ : Type ?u.13191\nβ✝ : Type ?u.13194\nγ : Type ?u.13197\nα : Sort u_1\nβ : Sort u_2\ninst✝ : Finite β\nf : α → β\nH : Injective f\nval✝ : Fintype (PLift β)\n⊢ Finite α", "tactic": "rw [← Equiv.injective_comp Equiv.plift f, ← Equiv.comp_injective _ Equiv.plift.symm] at H" }, { "state_after": "case intro\nα✝ : Type ?u.13191\nβ✝ : Type ?u.13194\nγ : Type ?u.13197\nα : Sort u_1\nβ : Sort u_2\ninst✝ : Finite β\nf : α → β\nH : Injective (↑Equiv.plift.symm ∘ f ∘ ↑Equiv.plift)\nval✝ : Fintype (PLift β)\nthis : Fintype (PLift α)\n⊢ Finite α", "state_before": "case intro\nα✝ : Type ?u.13191\nβ✝ : Type ?u.13194\nγ : Type ?u.13197\nα : Sort u_1\nβ : Sort u_2\ninst✝ : Finite β\nf : α → β\nH : Injective (↑Equiv.plift.symm ∘ f ∘ ↑Equiv.plift)\nval✝ : Fintype (PLift β)\n⊢ Finite α", "tactic": "haveI := Fintype.ofInjective _ H" }, { "state_after": "no goals", "state_before": "case intro\nα✝ : Type ?u.13191\nβ✝ : Type ?u.13194\nγ : Type ?u.13197\nα : Sort u_1\nβ : Sort u_2\ninst✝ : Finite β\nf : α → β\nH : Injective (↑Equiv.plift.symm ∘ f ∘ ↑Equiv.plift)\nval✝ : Fintype (PLift β)\nthis : Fintype (PLift α)\n⊢ Finite α", "tactic": "exact Finite.of_equiv _ Equiv.plift" } ]
[ 440, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 436, 1 ]
Mathlib/Algebra/BigOperators/Fin.lean
Fin.prod_Ioi_zero
[ { "state_after": "no goals", "state_before": "α : Type ?u.63689\nβ : Type ?u.63692\nM : Type u_1\ninst✝ : CommMonoid M\nn : ℕ\nv : Fin (Nat.succ n) → M\n⊢ ∏ i in Ioi 0, v i = ∏ j : Fin n, v (succ j)", "tactic": "rw [Ioi_zero_eq_map, Finset.prod_map, RelEmbedding.coe_toEmbedding, val_succEmbedding]" } ]
[ 177, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.cycleFactorsFinset_noncommProd
[]
[ 1404, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1400, 1 ]
Mathlib/Order/SupIndep.lean
Finset.SupIndep.subset
[]
[ 74, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
HasSum.tendsto_sum_nat
[]
[ 289, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 287, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.sUnion_diff_singleton_empty
[]
[ 1150, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1149, 1 ]
Mathlib/CategoryTheory/Preadditive/AdditiveFunctor.lean
CategoryTheory.AdditiveFunctor.ofExact_map
[]
[ 325, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 323, 1 ]
Mathlib/Order/CompleteLattice.lean
Monotone.iSup_nat_add
[]
[ 1638, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1637, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.ofLists_moveLeft'
[]
[ 195, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.TM2.stmts_supportsStmt
[ { "state_after": "K : Type u_1\ninst✝¹ : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\nσ : Type u_4\ninst✝ : Inhabited Λ\nM : Λ → Stmt₂\nS : Finset Λ\nq : Stmt₂\nss : Supports M S\n⊢ ∀ (x : Λ), x ∈ S → q ∈ stmts₁ (M x) → SupportsStmt S q", "state_before": "K : Type u_1\ninst✝¹ : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\nσ : Type u_4\ninst✝ : Inhabited Λ\nM : Λ → Stmt₂\nS : Finset Λ\nq : Stmt₂\nss : Supports M S\n⊢ some q ∈ stmts M S → SupportsStmt S q", "tactic": "simp only [stmts, Finset.mem_insertNone, Finset.mem_biUnion, Option.mem_def, Option.some.injEq,\n forall_eq', exists_imp, and_imp]" }, { "state_after": "no goals", "state_before": "K : Type u_1\ninst✝¹ : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\nσ : Type u_4\ninst✝ : Inhabited Λ\nM : Λ → Stmt₂\nS : Finset Λ\nq : Stmt₂\nss : Supports M S\n⊢ ∀ (x : Λ), x ∈ S → q ∈ stmts₁ (M x) → SupportsStmt S q", "tactic": "exact fun l ls h ↦ stmts₁_supportsStmt_mono h (ss.2 _ ls)" } ]
[ 2249, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2245, 1 ]
Mathlib/Data/Polynomial/FieldDivision.lean
Polynomial.degree_pos_of_ne_zero_of_nonunit
[ { "state_after": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : DivisionRing R\np q : R[X]\nhp0 : ↑C (coeff p 0) ≠ 0\nhp : ¬IsUnit (↑C (coeff p 0))\nh : 0 ≥ degree p\n⊢ False", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : DivisionRing R\np q : R[X]\nhp0 : p ≠ 0\nhp : ¬IsUnit p\nh : 0 ≥ degree p\n⊢ False", "tactic": "rw [eq_C_of_degree_le_zero h] at hp0 hp" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : DivisionRing R\np q : R[X]\nhp0 : ↑C (coeff p 0) ≠ 0\nhp : ¬IsUnit (↑C (coeff p 0))\nh : 0 ≥ degree p\n⊢ False", "tactic": "exact hp (IsUnit.map C (IsUnit.mk0 (coeff p 0) (mt C_inj.2 (by simpa using hp0))))" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : DivisionRing R\np q : R[X]\nhp0 : ↑C (coeff p 0) ≠ 0\nhp : ¬IsUnit (↑C (coeff p 0))\nh : 0 ≥ degree p\n⊢ ¬↑C (coeff p 0) = ↑C 0", "tactic": "simpa using hp0" } ]
[ 124, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/Topology/Category/CompHaus/Basic.lean
CompHaus.isClosedMap
[]
[ 116, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/SetTheory/Lists.lean
Lists'.subset_nil
[ { "state_after": "α : Type u_1\nl : Lists' α true\n⊢ ofList (toList l) ⊆ nil → ofList (toList l) = nil", "state_before": "α : Type u_1\nl : Lists' α true\n⊢ l ⊆ nil → l = nil", "tactic": "rw [← of_toList l]" }, { "state_after": "case nil\nα : Type u_1\nl : Lists' α true\nh : ofList [] ⊆ nil\n⊢ ofList [] = nil\n\ncase cons\nα : Type u_1\nl : Lists' α true\nhead✝ : Lists α\ntail✝ : List (Lists α)\ntail_ih✝ : ofList tail✝ ⊆ nil → ofList tail✝ = nil\nh : ofList (head✝ :: tail✝) ⊆ nil\n⊢ ofList (head✝ :: tail✝) = nil", "state_before": "α : Type u_1\nl : Lists' α true\n⊢ ofList (toList l) ⊆ nil → ofList (toList l) = nil", "tactic": "induction toList l <;> intro h" }, { "state_after": "no goals", "state_before": "case nil\nα : Type u_1\nl : Lists' α true\nh : ofList [] ⊆ nil\n⊢ ofList [] = nil", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u_1\nl : Lists' α true\nhead✝ : Lists α\ntail✝ : List (Lists α)\ntail_ih✝ : ofList tail✝ ⊆ nil → ofList tail✝ = nil\nh : ofList (head✝ :: tail✝) ⊆ nil\n⊢ ofList (head✝ :: tail✝) = nil", "tactic": "rcases cons_subset.1 h with ⟨⟨_, ⟨⟩, _⟩, _⟩" } ]
[ 193, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/AlgebraicTopology/SplitSimplicialObject.lean
SimplicialObject.Splitting.IndexSet.eqId_iff_eq
[ { "state_after": "case mp\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ EqId A → A.fst = Δ\n\ncase mpr\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ A.fst = Δ → EqId A", "state_before": "C : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ EqId A ↔ A.fst = Δ", "tactic": "constructor" }, { "state_after": "case mp\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : EqId A\n⊢ A.fst = Δ", "state_before": "case mp\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ EqId A → A.fst = Δ", "tactic": "intro h" }, { "state_after": "case mp\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : A = id Δ\n⊢ A.fst = Δ", "state_before": "case mp\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : EqId A\n⊢ A.fst = Δ", "tactic": "dsimp at h" }, { "state_after": "case mp\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : A = id Δ\n⊢ (id Δ).fst = Δ", "state_before": "case mp\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : A = id Δ\n⊢ A.fst = Δ", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case mp\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : A = id Δ\n⊢ (id Δ).fst = Δ", "tactic": "rfl" }, { "state_after": "case mpr\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : A.fst = Δ\n⊢ EqId A", "state_before": "case mpr\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ A.fst = Δ → EqId A", "tactic": "intro h" }, { "state_after": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nΔ fst✝ : SimplexCategoryᵒᵖ\nf : Δ.unop ⟶ fst✝.unop\nhf : Epi f\nh : { fst := fst✝, snd := { val := f, property := hf } }.fst = Δ\n⊢ EqId { fst := fst✝, snd := { val := f, property := hf } }", "state_before": "case mpr\nC : Type ?u.4324\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : A.fst = Δ\n⊢ EqId A", "tactic": "rcases A with ⟨_, ⟨f, hf⟩⟩" }, { "state_after": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nΔ fst✝ : SimplexCategoryᵒᵖ\nf : Δ.unop ⟶ fst✝.unop\nhf : Epi f\nh : fst✝ = Δ\n⊢ EqId { fst := fst✝, snd := { val := f, property := hf } }", "state_before": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nΔ fst✝ : SimplexCategoryᵒᵖ\nf : Δ.unop ⟶ fst✝.unop\nhf : Epi f\nh : { fst := fst✝, snd := { val := f, property := hf } }.fst = Δ\n⊢ EqId { fst := fst✝, snd := { val := f, property := hf } }", "tactic": "simp only at h" }, { "state_after": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nfst✝ : SimplexCategoryᵒᵖ\nf : fst✝.unop ⟶ fst✝.unop\nhf : Epi f\n⊢ EqId { fst := fst✝, snd := { val := f, property := hf } }", "state_before": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nΔ fst✝ : SimplexCategoryᵒᵖ\nf : Δ.unop ⟶ fst✝.unop\nhf : Epi f\nh : fst✝ = Δ\n⊢ EqId { fst := fst✝, snd := { val := f, property := hf } }", "tactic": "subst h" }, { "state_after": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nfst✝ : SimplexCategoryᵒᵖ\nf : fst✝.unop ⟶ fst✝.unop\nhf : Epi f\n⊢ e { fst := fst✝, snd := { val := f, property := hf } } ≫\n eqToHom (_ : { fst := fst✝, snd := { val := f, property := hf } }.fst.unop = (id fst✝).fst.unop) =\n e (id fst✝)", "state_before": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nfst✝ : SimplexCategoryᵒᵖ\nf : fst✝.unop ⟶ fst✝.unop\nhf : Epi f\n⊢ EqId { fst := fst✝, snd := { val := f, property := hf } }", "tactic": "refine' ext _ _ rfl _" }, { "state_after": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nfst✝ : SimplexCategoryᵒᵖ\nf : fst✝.unop ⟶ fst✝.unop\nhf this : Epi f\n⊢ e { fst := fst✝, snd := { val := f, property := hf } } ≫\n eqToHom (_ : { fst := fst✝, snd := { val := f, property := hf } }.fst.unop = (id fst✝).fst.unop) =\n e (id fst✝)", "state_before": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nfst✝ : SimplexCategoryᵒᵖ\nf : fst✝.unop ⟶ fst✝.unop\nhf : Epi f\n⊢ e { fst := fst✝, snd := { val := f, property := hf } } ≫\n eqToHom (_ : { fst := fst✝, snd := { val := f, property := hf } }.fst.unop = (id fst✝).fst.unop) =\n e (id fst✝)", "tactic": "haveI := hf" }, { "state_after": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nfst✝ : SimplexCategoryᵒᵖ\nf : fst✝.unop ⟶ fst✝.unop\nhf this : Epi f\n⊢ e { fst := fst✝, snd := { val := f, property := hf } } = e (id fst✝)", "state_before": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nfst✝ : SimplexCategoryᵒᵖ\nf : fst✝.unop ⟶ fst✝.unop\nhf this : Epi f\n⊢ e { fst := fst✝, snd := { val := f, property := hf } } ≫\n eqToHom (_ : { fst := fst✝, snd := { val := f, property := hf } }.fst.unop = (id fst✝).fst.unop) =\n e (id fst✝)", "tactic": "simp only [eqToHom_refl, comp_id]" }, { "state_after": "no goals", "state_before": "case mpr.mk.mk\nC : Type ?u.4324\ninst✝ : Category C\nfst✝ : SimplexCategoryᵒᵖ\nf : fst✝.unop ⟶ fst✝.unop\nhf this : Epi f\n⊢ e { fst := fst✝, snd := { val := f, property := hf } } = e (id fst✝)", "tactic": "exact eq_id_of_epi f" } ]
[ 144, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/CategoryTheory/Limits/Constructions/EpiMono.lean
CategoryTheory.reflects_epi_of_reflectsColimit
[ { "state_after": "C : Type u₁\nD : Type u₂\ninst✝³ : Category C\ninst✝² : Category D\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : ReflectsColimit (span f f) F\ninst✝ : Epi (F.map f)\nthis : IsColimit (PushoutCocone.mk (𝟙 (F.obj Y)) (𝟙 (F.obj Y)) (_ : F.map f ≫ 𝟙 (F.obj Y) = F.map f ≫ 𝟙 (F.obj Y)))\n⊢ Epi f", "state_before": "C : Type u₁\nD : Type u₂\ninst✝³ : Category C\ninst✝² : Category D\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : ReflectsColimit (span f f) F\ninst✝ : Epi (F.map f)\n⊢ Epi f", "tactic": "have := PushoutCocone.isColimitMkIdId (F.map f)" }, { "state_after": "C : Type u₁\nD : Type u₂\ninst✝³ : Category C\ninst✝² : Category D\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : ReflectsColimit (span f f) F\ninst✝ : Epi (F.map f)\nthis : IsColimit (PushoutCocone.mk (F.map (𝟙 Y)) (F.map (𝟙 Y)) (_ : F.map f ≫ F.map (𝟙 Y) = F.map f ≫ F.map (𝟙 Y)))\n⊢ Epi f", "state_before": "C : Type u₁\nD : Type u₂\ninst✝³ : Category C\ninst✝² : Category D\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : ReflectsColimit (span f f) F\ninst✝ : Epi (F.map f)\nthis : IsColimit (PushoutCocone.mk (𝟙 (F.obj Y)) (𝟙 (F.obj Y)) (_ : F.map f ≫ 𝟙 (F.obj Y) = F.map f ≫ 𝟙 (F.obj Y)))\n⊢ Epi f", "tactic": "simp_rw [← F.map_id] at this" }, { "state_after": "no goals", "state_before": "C : Type u₁\nD : Type u₂\ninst✝³ : Category C\ninst✝² : Category D\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : ReflectsColimit (span f f) F\ninst✝ : Epi (F.map f)\nthis : IsColimit (PushoutCocone.mk (F.map (𝟙 Y)) (F.map (𝟙 Y)) (_ : F.map f ≫ F.map (𝟙 Y) = F.map f ≫ F.map (𝟙 Y)))\n⊢ Epi f", "tactic": "apply\n PushoutCocone.epi_of_isColimitMkIdId _\n (isColimitOfIsColimitPushoutCoconeMap F _ this)" } ]
[ 81, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.DominatedFinMeasAdditive.smul
[ { "state_after": "α : Type u_3\nE : Type ?u.107083\nF : Type ?u.107086\nF' : Type ?u.107089\nG : Type ?u.107092\n𝕜 : Type u_1\np : ℝ≥0∞\ninst✝⁹ : NormedAddCommGroup E\ninst✝⁸ : NormedSpace ℝ E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : NormedSpace ℝ F'\ninst✝³ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nβ : Type u_2\ninst✝² : SeminormedAddCommGroup β\nT T' : Set α → β\nC C' : ℝ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 β\nhT : DominatedFinMeasAdditive μ T C\nc : 𝕜\ns : Set α\nhs : MeasurableSet s\nhμs : ↑↑μ s < ⊤\n⊢ ‖(fun s => c • T s) s‖ ≤ ‖c‖ * C * ENNReal.toReal (↑↑μ s)", "state_before": "α : Type u_3\nE : Type ?u.107083\nF : Type ?u.107086\nF' : Type ?u.107089\nG : Type ?u.107092\n𝕜 : Type u_1\np : ℝ≥0∞\ninst✝⁹ : NormedAddCommGroup E\ninst✝⁸ : NormedSpace ℝ E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : NormedSpace ℝ F'\ninst✝³ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nβ : Type u_2\ninst✝² : SeminormedAddCommGroup β\nT T' : Set α → β\nC C' : ℝ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 β\nhT : DominatedFinMeasAdditive μ T C\nc : 𝕜\n⊢ DominatedFinMeasAdditive μ (fun s => c • T s) (‖c‖ * C)", "tactic": "refine' ⟨hT.1.smul c, fun s hs hμs => _⟩" }, { "state_after": "α : Type u_3\nE : Type ?u.107083\nF : Type ?u.107086\nF' : Type ?u.107089\nG : Type ?u.107092\n𝕜 : Type u_1\np : ℝ≥0∞\ninst✝⁹ : NormedAddCommGroup E\ninst✝⁸ : NormedSpace ℝ E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : NormedSpace ℝ F'\ninst✝³ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nβ : Type u_2\ninst✝² : SeminormedAddCommGroup β\nT T' : Set α → β\nC C' : ℝ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 β\nhT : DominatedFinMeasAdditive μ T C\nc : 𝕜\ns : Set α\nhs : MeasurableSet s\nhμs : ↑↑μ s < ⊤\n⊢ ‖c • T s‖ ≤ ‖c‖ * C * ENNReal.toReal (↑↑μ s)", "state_before": "α : Type u_3\nE : Type ?u.107083\nF : Type ?u.107086\nF' : Type ?u.107089\nG : Type ?u.107092\n𝕜 : Type u_1\np : ℝ≥0∞\ninst✝⁹ : NormedAddCommGroup E\ninst✝⁸ : NormedSpace ℝ E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : NormedSpace ℝ F'\ninst✝³ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nβ : Type u_2\ninst✝² : SeminormedAddCommGroup β\nT T' : Set α → β\nC C' : ℝ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 β\nhT : DominatedFinMeasAdditive μ T C\nc : 𝕜\ns : Set α\nhs : MeasurableSet s\nhμs : ↑↑μ s < ⊤\n⊢ ‖(fun s => c • T s) s‖ ≤ ‖c‖ * C * ENNReal.toReal (↑↑μ s)", "tactic": "dsimp only" }, { "state_after": "α : Type u_3\nE : Type ?u.107083\nF : Type ?u.107086\nF' : Type ?u.107089\nG : Type ?u.107092\n𝕜 : Type u_1\np : ℝ≥0∞\ninst✝⁹ : NormedAddCommGroup E\ninst✝⁸ : NormedSpace ℝ E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : NormedSpace ℝ F'\ninst✝³ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nβ : Type u_2\ninst✝² : SeminormedAddCommGroup β\nT T' : Set α → β\nC C' : ℝ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 β\nhT : DominatedFinMeasAdditive μ T C\nc : 𝕜\ns : Set α\nhs : MeasurableSet s\nhμs : ↑↑μ s < ⊤\n⊢ ‖c‖ * ‖T s‖ ≤ ‖c‖ * (C * ENNReal.toReal (↑↑μ s))", "state_before": "α : Type u_3\nE : Type ?u.107083\nF : Type ?u.107086\nF' : Type ?u.107089\nG : Type ?u.107092\n𝕜 : Type u_1\np : ℝ≥0∞\ninst✝⁹ : NormedAddCommGroup E\ninst✝⁸ : NormedSpace ℝ E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : NormedSpace ℝ F'\ninst✝³ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nβ : Type u_2\ninst✝² : SeminormedAddCommGroup β\nT T' : Set α → β\nC C' : ℝ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 β\nhT : DominatedFinMeasAdditive μ T C\nc : 𝕜\ns : Set α\nhs : MeasurableSet s\nhμs : ↑↑μ s < ⊤\n⊢ ‖c • T s‖ ≤ ‖c‖ * C * ENNReal.toReal (↑↑μ s)", "tactic": "rw [norm_smul, mul_assoc]" }, { "state_after": "no goals", "state_before": "α : Type u_3\nE : Type ?u.107083\nF : Type ?u.107086\nF' : Type ?u.107089\nG : Type ?u.107092\n𝕜 : Type u_1\np : ℝ≥0∞\ninst✝⁹ : NormedAddCommGroup E\ninst✝⁸ : NormedSpace ℝ E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : NormedSpace ℝ F'\ninst✝³ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nβ : Type u_2\ninst✝² : SeminormedAddCommGroup β\nT T' : Set α → β\nC C' : ℝ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 β\nhT : DominatedFinMeasAdditive μ T C\nc : 𝕜\ns : Set α\nhs : MeasurableSet s\nhμs : ↑↑μ s < ⊤\n⊢ ‖c‖ * ‖T s‖ ≤ ‖c‖ * (C * ENNReal.toReal (↑↑μ s))", "tactic": "exact mul_le_mul le_rfl (hT.2 s hs hμs) (norm_nonneg _) (norm_nonneg _)" } ]
[ 232, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 227, 1 ]
Mathlib/Computability/Encoding.lean
Computability.Encoding.encode_injective
[ { "state_after": "α : Type u\ne : Encoding α\nx✝¹ x✝ : α\nh : encode e x✝¹ = encode e x✝\n⊢ some x✝¹ = some x✝", "state_before": "α : Type u\ne : Encoding α\n⊢ Function.Injective e.encode", "tactic": "refine' fun _ _ h => Option.some_injective _ _" }, { "state_after": "no goals", "state_before": "α : Type u\ne : Encoding α\nx✝¹ x✝ : α\nh : encode e x✝¹ = encode e x✝\n⊢ some x✝¹ = some x✝", "tactic": "rw [← e.decode_encode, ← e.decode_encode, h]" } ]
[ 47, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 45, 1 ]
Mathlib/MeasureTheory/Measure/AEDisjoint.lean
MeasureTheory.AEDisjoint.eq
[]
[ 54, 4 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 11 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
Metric.infDist_empty
[ { "state_after": "no goals", "state_before": "ι : Sort ?u.57575\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\n⊢ infDist x ∅ = 0", "tactic": "simp [infDist]" } ]
[ 485, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 485, 1 ]
Mathlib/Topology/Order/Basic.lean
Ico_mem_nhdsWithin_Iic
[]
[ 574, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 573, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.dvd_of_mem_factors'
[ { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : α\np : Associates α\nhp : Irreducible p\nhz : a ≠ 0\nh_mem : { val := p, property := hp } ∈ factors' a\nthis : DecidableEq (Associates α)\n⊢ p ∣ Associates.mk a", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : α\np : Associates α\nhp : Irreducible p\nhz : a ≠ 0\nh_mem : { val := p, property := hp } ∈ factors' a\n⊢ p ∣ Associates.mk a", "tactic": "haveI := Classical.decEq (Associates α)" }, { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : α\np : Associates α\nhp : Irreducible p\nhz : a ≠ 0\nh_mem : { val := p, property := hp } ∈ factors' a\nthis : DecidableEq (Associates α)\n⊢ p ∈ factors (Associates.mk a)", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : α\np : Associates α\nhp : Irreducible p\nhz : a ≠ 0\nh_mem : { val := p, property := hp } ∈ factors' a\nthis : DecidableEq (Associates α)\n⊢ p ∣ Associates.mk a", "tactic": "apply dvd_of_mem_factors (hp := hp)" }, { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : α\np : Associates α\nhp : Irreducible p\nhz : a ≠ 0\nh_mem : { val := p, property := hp } ∈ factors' a\nthis : DecidableEq (Associates α)\n⊢ p ∈ ↑(factors' a)", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : α\np : Associates α\nhp : Irreducible p\nhz : a ≠ 0\nh_mem : { val := p, property := hp } ∈ factors' a\nthis : DecidableEq (Associates α)\n⊢ p ∈ factors (Associates.mk a)", "tactic": "rw [factors_mk _ hz]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : α\np : Associates α\nhp : Irreducible p\nhz : a ≠ 0\nh_mem : { val := p, property := hp } ∈ factors' a\nthis : DecidableEq (Associates α)\n⊢ p ∈ ↑(factors' a)", "tactic": "apply mem_factorSet_some.2 h_mem" } ]
[ 1601, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1596, 1 ]
Mathlib/Algebra/Regular/Basic.lean
MulLECancellable.isLeftRegular
[]
[ 81, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 11 ]
Mathlib/Probability/Kernel/Basic.lean
ProbabilityTheory.kernel.restrict_apply'
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nι : Type ?u.1443714\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ✝ : { x // x ∈ kernel α β }\ns t : Set β\nκ : { x // x ∈ kernel α β }\nhs : MeasurableSet s\na : α\nht : MeasurableSet t\n⊢ ↑↑(↑(kernel.restrict κ hs) a) t = ↑↑(↑κ a) (t ∩ s)", "tactic": "rw [restrict_apply κ hs a, Measure.restrict_apply ht]" } ]
[ 500, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 498, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
InnerProductSpace.Core.inner_mul_symm_re_eq_norm
[ { "state_after": "𝕜 : Type u_1\nE : Type ?u.606441\nF : Type u_2\ninst✝² : IsROrC 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\nx y : F\n⊢ ↑re (inner y x * ↑(starRingEnd 𝕜) (inner y x)) = ‖inner y x * ↑(starRingEnd 𝕜) (inner y x)‖", "state_before": "𝕜 : Type u_1\nE : Type ?u.606441\nF : Type u_2\ninst✝² : IsROrC 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\nx y : F\n⊢ ↑re (inner x y * inner y x) = ‖inner x y * inner y x‖", "tactic": "rw [← inner_conj_symm, mul_comm]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type ?u.606441\nF : Type u_2\ninst✝² : IsROrC 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\nx y : F\n⊢ ↑re (inner y x * ↑(starRingEnd 𝕜) (inner y x)) = ‖inner y x * ↑(starRingEnd 𝕜) (inner y x)‖", "tactic": "exact re_eq_norm_of_mul_conj (inner y x)" } ]
[ 302, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 300, 1 ]
Mathlib/Topology/FiberBundle/Trivialization.lean
Trivialization.map_proj_nhds
[ { "state_after": "no goals", "state_before": "ι : Type ?u.29960\nB : Type u_2\nF : Type u_3\nE : B → Type ?u.29971\nZ : Type u_1\ninst✝³ : TopologicalSpace B\ninst✝² : TopologicalSpace F\nproj : Z → B\ninst✝¹ : TopologicalSpace Z\ninst✝ : TopologicalSpace (TotalSpace E)\ne : Trivialization F proj\nx : Z\nex : x ∈ e.source\n⊢ map proj (𝓝 x) = 𝓝 (proj x)", "tactic": "rw [← e.coe_fst ex, ← map_congr (e.coe_fst_eventuallyEq_proj ex), ← map_map, ← e.coe_coe,\n e.map_nhds_eq ex, map_fst_nhds]" } ]
[ 441, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Mathlib/Topology/Algebra/Module/FiniteDimension.lean
LinearEquiv.coe_toContinuousLinearEquiv_symm'
[]
[ 387, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 385, 1 ]
Mathlib/Analysis/NormedSpace/AffineIsometry.lean
AffineIsometryEquiv.antilipschitz
[]
[ 664, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 663, 11 ]
Mathlib/LinearAlgebra/Matrix/ZPow.lean
Matrix.conjTranspose_zpow
[ { "state_after": "no goals", "state_before": "n' : Type u_2\ninst✝³ : DecidableEq n'\ninst✝² : Fintype n'\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : StarRing R\nA : M\nn : ℕ\n⊢ (A ^ ↑n)ᴴ = Aᴴ ^ ↑n", "tactic": "rw [zpow_ofNat, zpow_ofNat, conjTranspose_pow]" }, { "state_after": "no goals", "state_before": "n' : Type u_2\ninst✝³ : DecidableEq n'\ninst✝² : Fintype n'\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : StarRing R\nA : M\nn : ℕ\n⊢ (A ^ -[n+1])ᴴ = Aᴴ ^ -[n+1]", "tactic": "rw [zpow_negSucc, zpow_negSucc, conjTranspose_nonsing_inv, conjTranspose_pow]" } ]
[ 346, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 344, 1 ]
Mathlib/Analysis/NormedSpace/ContinuousLinearMap.lean
ContinuousLinearEquiv.coe_toSpanNonzeroSingleton_symm
[]
[ 309, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 307, 1 ]
Mathlib/CategoryTheory/Monoidal/End.lean
CategoryTheory.μ_naturalityₗ
[ { "state_after": "C : Type u\ninst✝² : Category C\nM : Type u_2\ninst✝¹ : Category M\ninst✝ : MonoidalCategory M\nF : MonoidalFunctor M (C ⥤ C)\nm n m' : M\nf : m ⟶ m'\nX : C\n⊢ (F.obj n).map ((F.map f).app X) ≫ (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor m' n).app X =\n (F.map (𝟙 n)).app ((F.obj m).obj X) ≫\n (F.obj n).map ((F.map f).app X) ≫ (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor m' n).app X", "state_before": "C : Type u\ninst✝² : Category C\nM : Type u_2\ninst✝¹ : Category M\ninst✝ : MonoidalCategory M\nF : MonoidalFunctor M (C ⥤ C)\nm n m' : M\nf : m ⟶ m'\nX : C\n⊢ (F.obj n).map ((F.map f).app X) ≫ (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor m' n).app X =\n (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor m n).app X ≫ (F.map (f ⊗ 𝟙 n)).app X", "tactic": "rw [← μ_naturality₂ F f (𝟙 n) X]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\nM : Type u_2\ninst✝¹ : Category M\ninst✝ : MonoidalCategory M\nF : MonoidalFunctor M (C ⥤ C)\nm n m' : M\nf : m ⟶ m'\nX : C\n⊢ (F.obj n).map ((F.map f).app X) ≫ (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor m' n).app X =\n (F.map (𝟙 n)).app ((F.obj m).obj X) ≫\n (F.obj n).map ((F.map f).app X) ≫ (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor m' n).app X", "tactic": "simp" } ]
[ 158, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Mathlib/Data/Nat/Order/Lemmas.lean
Nat.dvd_left_injective
[]
[ 253, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/Data/Set/Sups.lean
Set.infs_right_comm
[]
[ 362, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 1 ]
Mathlib/Data/Sum/Interval.lean
Sum.Ico_inr_inl
[]
[ 184, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Mathlib/Analysis/Convex/Topology.lean
Convex.combo_self_interior_mem_interior
[]
[ 179, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/RingTheory/Coprime/Basic.lean
IsCoprime.mul_add_right_left
[ { "state_after": "R : Type u\ninst✝ : CommRing R\nx y : R\nh : IsCoprime x y\nz : R\n⊢ IsCoprime (x + z * y) y", "state_before": "R : Type u\ninst✝ : CommRing R\nx y : R\nh : IsCoprime x y\nz : R\n⊢ IsCoprime (z * y + x) y", "tactic": "rw [add_comm]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommRing R\nx y : R\nh : IsCoprime x y\nz : R\n⊢ IsCoprime (x + z * y) y", "tactic": "exact h.add_mul_right_left z" } ]
[ 310, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 308, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
volume_image_subtype_coe
[]
[ 4266, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 4264, 1 ]
Mathlib/Analysis/Normed/Field/InfiniteSum.lean
summable_mul_of_summable_norm
[]
[ 50, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/Topology/VectorBundle/Basic.lean
VectorBundleCore.inCoordinates_eq
[ { "state_after": "no goals", "state_before": "R : Type ?u.536498\nB : Type u_4\nF : Type u_5\nE : B → Type ?u.536509\ninst✝²² : NontriviallyNormedField R\ninst✝²¹ : (x : B) → AddCommMonoid (E x)\ninst✝²⁰ : (x : B) → Module R (E x)\ninst✝¹⁹ : NormedAddCommGroup F\ninst✝¹⁸ : NormedSpace R F\ninst✝¹⁷ : TopologicalSpace B\ninst✝¹⁶ : (x : B) → TopologicalSpace (E x)\n𝕜₁ : Type u_3\n𝕜₂ : Type u_6\ninst✝¹⁵ : NontriviallyNormedField 𝕜₁\ninst✝¹⁴ : NontriviallyNormedField 𝕜₂\nσ : 𝕜₁ →+* 𝕜₂\nB' : Type u_7\ninst✝¹³ : TopologicalSpace B'\ninst✝¹² : NormedSpace 𝕜₁ F\ninst✝¹¹ : (x : B) → Module 𝕜₁ (E x)\ninst✝¹⁰ : TopologicalSpace (TotalSpace E)\nF' : Type u_8\ninst✝⁹ : NormedAddCommGroup F'\ninst✝⁸ : NormedSpace 𝕜₂ F'\nE' : B' → Type ?u.537479\ninst✝⁷ : (x : B') → AddCommMonoid (E' x)\ninst✝⁶ : (x : B') → Module 𝕜₂ (E' x)\ninst✝⁵ : TopologicalSpace (TotalSpace E')\ninst✝⁴ : FiberBundle F E\ninst✝³ : VectorBundle 𝕜₁ F E\ninst✝² : (x : B') → TopologicalSpace (E' x)\ninst✝¹ : FiberBundle F' E'\ninst✝ : VectorBundle 𝕜₂ F' E'\nι : Type u_1\nι' : Type u_2\nZ : VectorBundleCore 𝕜₁ B F ι\nZ' : VectorBundleCore 𝕜₂ B' F' ι'\nx₀ x : B\ny₀ y : B'\nϕ : F →SL[σ] F'\nhx : x ∈ VectorBundleCore.baseSet Z (VectorBundleCore.indexAt Z x₀)\nhy : y ∈ VectorBundleCore.baseSet Z' (VectorBundleCore.indexAt Z' y₀)\n⊢ inCoordinates F (VectorBundleCore.Fiber Z) F' (VectorBundleCore.Fiber Z') x₀ x y₀ y ϕ =\n comp (VectorBundleCore.coordChange Z' (VectorBundleCore.indexAt Z' y) (VectorBundleCore.indexAt Z' y₀) y)\n (comp ϕ (VectorBundleCore.coordChange Z (VectorBundleCore.indexAt Z x₀) (VectorBundleCore.indexAt Z x) x))", "tactic": "simp_rw [inCoordinates, Z'.trivializationAt_continuousLinearMapAt hy,\n Z.trivializationAt_symmL hx]" } ]
[ 1059, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1052, 11 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.eapprox_comp
[]
[ 929, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 927, 1 ]
Mathlib/Data/Sign.lean
SignType.not_lt_neg_one
[]
[ 216, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.union_le_union_right
[]
[ 1711, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1710, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.IsTrail.of_cons
[ { "state_after": "no goals", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v w : V\nh : Adj G u v\np : Walk G v w\n⊢ IsTrail (cons h p) → IsTrail p", "tactic": "simp [isTrail_def]" } ]
[ 923, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 922, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
CategoryTheory.Limits.IsZero.of_mono
[ { "state_after": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : Mono f\ni : IsZero Y\nhf : f = 0\n⊢ IsZero X", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : Mono f\ni : IsZero Y\n⊢ IsZero X", "tactic": "have hf := i.eq_zero_of_tgt f" }, { "state_after": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\ni : IsZero Y\ninst✝ : Mono 0\n⊢ IsZero X", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : Mono f\ni : IsZero Y\nhf : f = 0\n⊢ IsZero X", "tactic": "subst hf" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nX Y : C\ni : IsZero Y\ninst✝ : Mono 0\n⊢ IsZero X", "tactic": "exact IsZero.of_mono_zero X Y" } ]
[ 238, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/RingTheory/Polynomial/Chebyshev.lean
Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U
[ { "state_after": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\nh :\n ↑derivative (T R (n + 2)) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)\n⊢ (↑n + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ (↑n + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "tactic": "have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) +\n 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by\n conv_lhs => rw [T_eq_X_mul_T_sub_pol_U]\n simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow,\n one_mul, T_derivative_eq_U]\n rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast]\n ring" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\nh :\n ↑derivative (T R (n + 2)) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)\n⊢ (↑n + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "tactic": "calc\n ((n : R[X]) + 1) * T R (n + 1) =\n ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) -\n (X * U R n + T R (n + 1)) :=\n by ring\n _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by\n rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ←\n T_derivative_eq_U (n + 1)]\n _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n -\n (1 - X ^ 2) * derivative (U R n) -\n X * derivative (T R (n + 1)) -\n U R (n + 1) :=\n by rw [h]\n _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring" }, { "state_after": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ ↑derivative (X * T R (n + 1) - (1 - X ^ 2) * U R n) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ ↑derivative (T R (n + 2)) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "tactic": "conv_lhs => rw [T_eq_X_mul_T_sub_pol_U]" }, { "state_after": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ T R (n + 1) + X * ((↑n + 1) * U R n) - ((0 - ↑C ↑2 * X ^ (2 - 1)) * U R n + (1 - X ^ 2) * ↑derivative (U R n)) =\n U R (n + 1) - X * U R n + X * ((↑n + 1) * U R n) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ ↑derivative (X * T R (n + 1) - (1 - X ^ 2) * U R n) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "tactic": "simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow,\n one_mul, T_derivative_eq_U]" }, { "state_after": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ U R (n + 1) - X * U R n + X * ((↑n + 1) * U R n) -\n ((0 - ↑2 * X ^ (2 - 1)) * U R n + (1 - X ^ 2) * ↑derivative (U R n)) =\n U R (n + 1) - X * U R n + X * ((↑n + 1) * U R n) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ T R (n + 1) + X * ((↑n + 1) * U R n) - ((0 - ↑C ↑2 * X ^ (2 - 1)) * U R n + (1 - X ^ 2) * ↑derivative (U R n)) =\n U R (n + 1) - X * U R n + X * ((↑n + 1) * U R n) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "tactic": "rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ U R (n + 1) - X * U R n + X * ((↑n + 1) * U R n) -\n ((0 - ↑2 * X ^ (2 - 1)) * U R n + (1 - X ^ 2) * ↑derivative (U R n)) =\n U R (n + 1) - X * U R n + X * ((↑n + 1) * U R n) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "tactic": "ring" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\nh :\n ↑derivative (T R (n + 2)) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)\n⊢ (↑n + 1) * T R (n + 1) = (↑n + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((↑n + 1) * U R n) - (X * U R n + T R (n + 1))", "tactic": "ring" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\nh :\n ↑derivative (T R (n + 2)) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)\n⊢ (↑n + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((↑n + 1) * U R n) - (X * U R n + T R (n + 1)) =\n ↑derivative (T R (n + 2)) - X * ↑derivative (T R (n + 1)) - U R (n + 1)", "tactic": "rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ←\n T_derivative_eq_U (n + 1)]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\nh :\n ↑derivative (T R (n + 2)) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)\n⊢ ↑derivative (T R (n + 2)) - X * ↑derivative (T R (n + 1)) - U R (n + 1) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n) -\n X * ↑derivative (T R (n + 1)) -\n U R (n + 1)", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.79032\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\nh :\n ↑derivative (T R (n + 2)) =\n U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n)\n⊢ U R (n + 1) - X * U R n + X * ↑derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * ↑derivative (U R n) -\n X * ↑derivative (T R (n + 1)) -\n U R (n + 1) =\n X * U R n - (1 - X ^ 2) * ↑derivative (U R n)", "tactic": "ring" } ]
[ 236, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 214, 1 ]
Mathlib/Order/RelIso/Basic.lean
RelIso.cast_symm
[]
[ 758, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 756, 11 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
csInf_univ
[]
[ 1029, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1028, 1 ]
Mathlib/RingTheory/Polynomial/Pochhammer.lean
pochhammer_map
[ { "state_after": "case zero\nS : Type u\ninst✝¹ : Semiring S\nT : Type v\ninst✝ : Semiring T\nf : S →+* T\n⊢ map f (pochhammer S Nat.zero) = pochhammer T Nat.zero\n\ncase succ\nS : Type u\ninst✝¹ : Semiring S\nT : Type v\ninst✝ : Semiring T\nf : S →+* T\nn : ℕ\nih : map f (pochhammer S n) = pochhammer T n\n⊢ map f (pochhammer S (Nat.succ n)) = pochhammer T (Nat.succ n)", "state_before": "S : Type u\ninst✝¹ : Semiring S\nT : Type v\ninst✝ : Semiring T\nf : S →+* T\nn : ℕ\n⊢ map f (pochhammer S n) = pochhammer T n", "tactic": "induction' n with n ih" }, { "state_after": "no goals", "state_before": "case zero\nS : Type u\ninst✝¹ : Semiring S\nT : Type v\ninst✝ : Semiring T\nf : S →+* T\n⊢ map f (pochhammer S Nat.zero) = pochhammer T Nat.zero", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case succ\nS : Type u\ninst✝¹ : Semiring S\nT : Type v\ninst✝ : Semiring T\nf : S →+* T\nn : ℕ\nih : map f (pochhammer S n) = pochhammer T n\n⊢ map f (pochhammer S (Nat.succ n)) = pochhammer T (Nat.succ n)", "tactic": "simp [ih, pochhammer_succ_left, map_comp]" } ]
[ 73, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/NumberTheory/Multiplicity.lean
Int.sq_mod_four_eq_one_of_odd
[ { "state_after": "R : Type ?u.849581\nn : ℕ\nx : ℤ\nhx : Odd x\n⊢ x ^ 2 % 4 = 1", "state_before": "R : Type ?u.849581\nn : ℕ\nx : ℤ\n⊢ Odd x → x ^ 2 % 4 = 1", "tactic": "intro hx" }, { "state_after": "R : Type ?u.849581\nn : ℕ\nx : ℤ\nhx : ∃ k, x = 2 * k + 1\n⊢ x ^ 2 % 4 = 1", "state_before": "R : Type ?u.849581\nn : ℕ\nx : ℤ\nhx : Odd x\n⊢ x ^ 2 % 4 = 1", "tactic": "unfold Odd at hx" }, { "state_after": "case intro\nR : Type ?u.849581\nn : ℕ\nw✝ : ℤ\n⊢ (2 * w✝ + 1) ^ 2 % 4 = 1", "state_before": "R : Type ?u.849581\nn : ℕ\nx : ℤ\nhx : ∃ k, x = 2 * k + 1\n⊢ x ^ 2 % 4 = 1", "tactic": "rcases hx with ⟨_, rfl⟩" }, { "state_after": "case intro\nR : Type ?u.849581\nn : ℕ\nw✝ : ℤ\n⊢ (1 + w✝ * 4 + w✝ ^ 2 * 4) % 4 = 1", "state_before": "case intro\nR : Type ?u.849581\nn : ℕ\nw✝ : ℤ\n⊢ (2 * w✝ + 1) ^ 2 % 4 = 1", "tactic": "ring_nf" }, { "state_after": "case intro\nR : Type ?u.849581\nn : ℕ\nw✝ : ℤ\n⊢ 1 % 4 = 1", "state_before": "case intro\nR : Type ?u.849581\nn : ℕ\nw✝ : ℤ\n⊢ (1 + w✝ * 4 + w✝ ^ 2 * 4) % 4 = 1", "tactic": "rw [add_assoc, ← add_mul, Int.add_mul_emod_self]" }, { "state_after": "no goals", "state_before": "case intro\nR : Type ?u.849581\nn : ℕ\nw✝ : ℤ\n⊢ 1 % 4 = 1", "tactic": "norm_num" } ]
[ 275, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.le_toReal_sub
[ { "state_after": "case intro\nα : Type ?u.791480\nβ : Type ?u.791483\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na : ℝ≥0∞\nb : ℝ≥0\n⊢ ENNReal.toReal a - ENNReal.toReal ↑b ≤ ENNReal.toReal (a - ↑b)", "state_before": "α : Type ?u.791480\nβ : Type ?u.791483\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\nhb : b ≠ ⊤\n⊢ ENNReal.toReal a - ENNReal.toReal b ≤ ENNReal.toReal (a - b)", "tactic": "lift b to ℝ≥0 using hb" }, { "state_after": "case intro.top\nα : Type ?u.791480\nβ : Type ?u.791483\na b✝ c d : ℝ≥0∞\nr p q b : ℝ≥0\n⊢ ENNReal.toReal ⊤ - ENNReal.toReal ↑b ≤ ENNReal.toReal (⊤ - ↑b)\n\ncase intro.coe\nα : Type ?u.791480\nβ : Type ?u.791483\na b✝ c d : ℝ≥0∞\nr p q b x✝ : ℝ≥0\n⊢ ENNReal.toReal ↑x✝ - ENNReal.toReal ↑b ≤ ENNReal.toReal (↑x✝ - ↑b)", "state_before": "case intro\nα : Type ?u.791480\nβ : Type ?u.791483\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na : ℝ≥0∞\nb : ℝ≥0\n⊢ ENNReal.toReal a - ENNReal.toReal ↑b ≤ ENNReal.toReal (a - ↑b)", "tactic": "induction a using recTopCoe" }, { "state_after": "no goals", "state_before": "case intro.top\nα : Type ?u.791480\nβ : Type ?u.791483\na b✝ c d : ℝ≥0∞\nr p q b : ℝ≥0\n⊢ ENNReal.toReal ⊤ - ENNReal.toReal ↑b ≤ ENNReal.toReal (⊤ - ↑b)", "tactic": "simp" }, { "state_after": "case intro.coe\nα : Type ?u.791480\nβ : Type ?u.791483\na b✝ c d : ℝ≥0∞\nr p q b x✝ : ℝ≥0\n⊢ ↑x✝ - ↑b ≤ max (↑x✝ - ↑b) 0", "state_before": "case intro.coe\nα : Type ?u.791480\nβ : Type ?u.791483\na b✝ c d : ℝ≥0∞\nr p q b x✝ : ℝ≥0\n⊢ ENNReal.toReal ↑x✝ - ENNReal.toReal ↑b ≤ ENNReal.toReal (↑x✝ - ↑b)", "tactic": "simp only [← coe_sub, NNReal.sub_def, Real.coe_toNNReal', coe_toReal]" }, { "state_after": "no goals", "state_before": "case intro.coe\nα : Type ?u.791480\nβ : Type ?u.791483\na b✝ c d : ℝ≥0∞\nr p q b x✝ : ℝ≥0\n⊢ ↑x✝ - ↑b ≤ max (↑x✝ - ↑b) 0", "tactic": "exact le_max_left _ _" } ]
[ 1963, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1958, 1 ]
Mathlib/Data/Set/Prod.lean
Set.prod_mk_mem_set_prod_eq
[]
[ 65, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/LinearAlgebra/LinearPMap.lean
LinearPMap.mem_domain_iff
[ { "state_after": "case mp\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny : M\nf : E →ₗ.[R] F\nx : E\nh : x ∈ f.domain\n⊢ ∃ y, (x, y) ∈ graph f\n\ncase mpr\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny : M\nf : E →ₗ.[R] F\nx : E\nh : ∃ y, (x, y) ∈ graph f\n⊢ x ∈ f.domain", "state_before": "R : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny : M\nf : E →ₗ.[R] F\nx : E\n⊢ x ∈ f.domain ↔ ∃ y, (x, y) ∈ graph f", "tactic": "constructor <;> intro h" }, { "state_after": "case mpr.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nh : (x, y) ∈ graph f\n⊢ x ∈ f.domain", "state_before": "case mpr\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny : M\nf : E →ₗ.[R] F\nx : E\nh : ∃ y, (x, y) ∈ graph f\n⊢ x ∈ f.domain", "tactic": "cases' h with y h" }, { "state_after": "case mpr.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nh : ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd\n⊢ x ∈ f.domain", "state_before": "case mpr.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nh : (x, y) ∈ graph f\n⊢ x ∈ f.domain", "tactic": "rw [mem_graph_iff] at h" }, { "state_after": "case mpr.intro.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nx' : { x // x ∈ f.domain }\nh : ↑x' = (x, y).fst ∧ ↑f x' = (x, y).snd\n⊢ x ∈ f.domain", "state_before": "case mpr.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nh : ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd\n⊢ x ∈ f.domain", "tactic": "cases' h with x' h" }, { "state_after": "case mpr.intro.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nx' : { x // x ∈ f.domain }\nh : ↑x' = x ∧ ↑f x' = y\n⊢ x ∈ f.domain", "state_before": "case mpr.intro.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nx' : { x // x ∈ f.domain }\nh : ↑x' = (x, y).fst ∧ ↑f x' = (x, y).snd\n⊢ x ∈ f.domain", "tactic": "simp only at h" }, { "state_after": "case mpr.intro.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nx' : { x // x ∈ f.domain }\nh : ↑x' = x ∧ ↑f x' = y\n⊢ ↑x' ∈ f.domain", "state_before": "case mpr.intro.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nx' : { x // x ∈ f.domain }\nh : ↑x' = x ∧ ↑f x' = y\n⊢ x ∈ f.domain", "tactic": "rw [← h.1]" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny✝ : M\nf : E →ₗ.[R] F\nx : E\ny : F\nx' : { x // x ∈ f.domain }\nh : ↑x' = x ∧ ↑f x' = y\n⊢ ↑x' ∈ f.domain", "tactic": "simp" }, { "state_after": "case mp\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny : M\nf : E →ₗ.[R] F\nx : E\nh : x ∈ f.domain\n⊢ (x, ↑f { val := x, property := h }) ∈ graph f", "state_before": "case mp\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny : M\nf : E →ₗ.[R] F\nx : E\nh : x ∈ f.domain\n⊢ ∃ y, (x, y) ∈ graph f", "tactic": "use f ⟨x, h⟩" }, { "state_after": "no goals", "state_before": "case mp\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type u_3\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.569553\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\nM : Type ?u.570069\ninst✝² : Monoid M\ninst✝¹ : DistribMulAction M F\ninst✝ : SMulCommClass R M F\ny : M\nf : E →ₗ.[R] F\nx : E\nh : x ∈ f.domain\n⊢ (x, ↑f { val := x, property := h }) ∈ graph f", "tactic": "exact f.mem_graph ⟨x, h⟩" } ]
[ 840, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 831, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.mem_closure_iff
[ { "state_after": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\n⊢ 0 ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\n⊢ 0 * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "rw [zero_mul q]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\n⊢ 0 ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "apply AddSubgroup.zero_mem _" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\np₁ p₂ : R\nihp₁ : p₁ * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nihp₂ : p₂ * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ p₁ * q + p₂ * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\np₁ p₂ : R\nihp₁ : p₁ * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nihp₂ : p₂ * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ (p₁ + p₂) * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "rw [add_mul p₁ p₂ q]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\np₁ p₂ : R\nihp₁ : p₁ * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nihp₂ : p₂ * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ p₁ * q + p₂ * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "apply AddSubgroup.add_mem _ ihp₁ ihp₂" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝¹ : R\nh : x✝¹ ∈ closure s\nx✝ y : R\nhx✝ : x✝ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\nx : R\nhx : x * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nf : -x * q = -(x * q)\n⊢ -x * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝¹ : R\nh : x✝¹ ∈ closure s\nx✝ y : R\nhx✝ : x✝ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\nx : R\nhx : x * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ -x * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "have f : -x * q = -(x * q) := by simp" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝¹ : R\nh : x✝¹ ∈ closure s\nx✝ y : R\nhx✝ : x✝ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\nx : R\nhx : x * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nf : -x * q = -(x * q)\n⊢ -(x * q) ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝¹ : R\nh : x✝¹ ∈ closure s\nx✝ y : R\nhx✝ : x✝ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\nx : R\nhx : x * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nf : -x * q = -(x * q)\n⊢ -x * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "rw [f]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝¹ : R\nh : x✝¹ ∈ closure s\nx✝ y : R\nhx✝ : x✝ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\nx : R\nhx : x * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nf : -x * q = -(x * q)\n⊢ -(x * q) ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "apply AddSubgroup.neg_mem _ hx" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝¹ : R\nh : x✝¹ ∈ closure s\nx✝ y : R\nhx✝ : x✝ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq : R\nhq : q ∈ ↑(Submonoid.closure s)\nx : R\nhx : x * q ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ -x * q = -(x * q)", "tactic": "simp" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ 0 ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ x * 0 ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "rw [mul_zero x]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ 0 ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "apply AddSubgroup.zero_mem _" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq₁ q₂ : R\nihq₁ : x * q₁ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nihq₂ : x * q₂ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ x * q₁ + x * q₂ ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq₁ q₂ : R\nihq₁ : x * q₁ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nihq₂ : x * q₂ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ x * (q₁ + q₂) ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "rw [mul_add x q₁ q₂]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nq₁ q₂ : R\nihq₁ : x * q₁ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nihq₂ : x * q₂ ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ x * q₁ + x * q₂ ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "apply AddSubgroup.add_mem _ ihq₁ ihq₂" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nz : R\nhz : x * z ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nf : x * -z = -(x * z)\n⊢ x * -z ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nz : R\nhz : x * z ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ x * -z ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "have f : x * -z = -(x * z) := by simp" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nz : R\nhz : x * z ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nf : x * -z = -(x * z)\n⊢ -(x * z) ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nz : R\nhz : x * z ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nf : x * -z = -(x * z)\n⊢ x * -z ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "rw [f]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nz : R\nhz : x * z ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nf : x * -z = -(x * z)\n⊢ -(x * z) ∈ AddSubgroup.closure ↑(Submonoid.closure s)", "tactic": "apply AddSubgroup.neg_mem _ hz" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : Ring T\ns : Set R\nx✝ : R\nh : x✝ ∈ closure s\nx y : R\nhx : x ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nhy : y ∈ AddSubgroup.closure ↑(Submonoid.closure s)\nz : R\nhz : x * z ∈ AddSubgroup.closure ↑(Submonoid.closure s)\n⊢ x * -z = -(x * z)", "tactic": "simp" } ]
[ 982, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 955, 1 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.measurable
[]
[ 216, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 11 ]
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
NNReal.rpow_lt_rpow_of_exponent_gt
[]
[ 180, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.L1.setToL1_eq_setToL1SCLM
[]
[ 1033, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1030, 1 ]
Mathlib/Data/Finmap.lean
Finmap.mem_erase
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : α → Type v\ninst✝ : DecidableEq α\na a' : α\ns✝ : Finmap β\ns : AList β\n⊢ a' ∈ erase a ⟦s⟧ ↔ a' ≠ a ∧ a' ∈ ⟦s⟧", "tactic": "simp" } ]
[ 439, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 438, 1 ]
Mathlib/MeasureTheory/Integral/Bochner.lean
MeasureTheory.ae_le_trim_of_stronglyMeasurable
[ { "state_after": "α : Type ?u.1731454\nE : Type ?u.1731457\nF : Type ?u.1731460\n𝕜 : Type ?u.1731463\ninst✝¹³ : NormedAddCommGroup E\ninst✝¹² : NormedSpace ℝ E\ninst✝¹¹ : CompleteSpace E\ninst✝¹⁰ : NontriviallyNormedField 𝕜\ninst✝⁹ : NormedSpace 𝕜 E\ninst✝⁸ : SMulCommClass ℝ 𝕜 E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : CompleteSpace F\nH : Type ?u.1734134\nβ : Type u_2\nγ : Type u_1\ninst✝⁴ : NormedAddCommGroup H\nm m0 : MeasurableSpace β\nμ : Measure β\ninst✝³ : LinearOrder γ\ninst✝² : TopologicalSpace γ\ninst✝¹ : OrderClosedTopology γ\ninst✝ : PseudoMetrizableSpace γ\nhm : m ≤ m0\nf g : β → γ\nhf : StronglyMeasurable f\nhg : StronglyMeasurable g\nhfg : f ≤ᵐ[μ] g\n⊢ MeasurableSet {a | ¬f a ≤ g a}", "state_before": "α : Type ?u.1731454\nE : Type ?u.1731457\nF : Type ?u.1731460\n𝕜 : Type ?u.1731463\ninst✝¹³ : NormedAddCommGroup E\ninst✝¹² : NormedSpace ℝ E\ninst✝¹¹ : CompleteSpace E\ninst✝¹⁰ : NontriviallyNormedField 𝕜\ninst✝⁹ : NormedSpace 𝕜 E\ninst✝⁸ : SMulCommClass ℝ 𝕜 E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : CompleteSpace F\nH : Type ?u.1734134\nβ : Type u_2\nγ : Type u_1\ninst✝⁴ : NormedAddCommGroup H\nm m0 : MeasurableSpace β\nμ : Measure β\ninst✝³ : LinearOrder γ\ninst✝² : TopologicalSpace γ\ninst✝¹ : OrderClosedTopology γ\ninst✝ : PseudoMetrizableSpace γ\nhm : m ≤ m0\nf g : β → γ\nhf : StronglyMeasurable f\nhg : StronglyMeasurable g\nhfg : f ≤ᵐ[μ] g\n⊢ f ≤ᵐ[Measure.trim μ hm] g", "tactic": "rwa [EventuallyLE, @ae_iff _ m, trim_measurableSet_eq hm _]" }, { "state_after": "no goals", "state_before": "α : Type ?u.1731454\nE : Type ?u.1731457\nF : Type ?u.1731460\n𝕜 : Type ?u.1731463\ninst✝¹³ : NormedAddCommGroup E\ninst✝¹² : NormedSpace ℝ E\ninst✝¹¹ : CompleteSpace E\ninst✝¹⁰ : NontriviallyNormedField 𝕜\ninst✝⁹ : NormedSpace 𝕜 E\ninst✝⁸ : SMulCommClass ℝ 𝕜 E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace ℝ F\ninst✝⁵ : CompleteSpace F\nH : Type ?u.1734134\nβ : Type u_2\nγ : Type u_1\ninst✝⁴ : NormedAddCommGroup H\nm m0 : MeasurableSpace β\nμ : Measure β\ninst✝³ : LinearOrder γ\ninst✝² : TopologicalSpace γ\ninst✝¹ : OrderClosedTopology γ\ninst✝ : PseudoMetrizableSpace γ\nhm : m ≤ m0\nf g : β → γ\nhf : StronglyMeasurable f\nhg : StronglyMeasurable g\nhfg : f ≤ᵐ[μ] g\n⊢ MeasurableSet {a | ¬f a ≤ g a}", "tactic": "exact (hf.measurableSet_le hg).compl" } ]
[ 1815, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1810, 1 ]
Mathlib/Algebra/Module/LocalizedModule.lean
LocalizedModule.divBy_mul_by
[ { "state_after": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ ↑(divBy s) (↑(↑(algebraMap R (Module.End R (LocalizedModule S M))) ↑s) (Quotient.mk (r.setoid S M) (m, t))) =\n Quotient.mk (r.setoid S M) (m, t)", "state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\n⊢ ∀ (a : M × { x // x ∈ S }),\n ↑(divBy s) (↑(↑(algebraMap R (Module.End R (LocalizedModule S M))) ↑s) (Quotient.mk (r.setoid S M) a)) =\n Quotient.mk (r.setoid S M) a", "tactic": "intro ⟨m, t⟩" }, { "state_after": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ liftOn (↑s • Quotient.mk (r.setoid S M) (m, t)) (fun p => mk p.fst (s * p.snd))\n (_ :\n ∀ (x x_1 : M × { x // x ∈ S }),\n x ≈ x_1 → (fun p => mk p.fst (s * p.snd)) x = (fun p => mk p.fst (s * p.snd)) x_1) =\n Quotient.mk (r.setoid S M) (m, t)", "state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ ↑(divBy s) (↑(↑(algebraMap R (Module.End R (LocalizedModule S M))) ↑s) (Quotient.mk (r.setoid S M) (m, t))) =\n Quotient.mk (r.setoid S M) (m, t)", "tactic": "simp only [Module.algebraMap_end_apply, smul'_mk, divBy_apply]" }, { "state_after": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ mk ((↑(algebraMap R R) ↑s, 1).fst • (m, t).fst, (↑(algebraMap R R) ↑s, 1).snd * (m, t).snd).fst\n (s * ((↑(algebraMap R R) ↑s, 1).fst • (m, t).fst, (↑(algebraMap R R) ↑s, 1).snd * (m, t).snd).snd) =\n Quotient.mk (r.setoid S M) (m, t)", "state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ liftOn (↑s • Quotient.mk (r.setoid S M) (m, t)) (fun p => mk p.fst (s * p.snd))\n (_ :\n ∀ (x x_1 : M × { x // x ∈ S }),\n x ≈ x_1 → (fun p => mk p.fst (s * p.snd)) x = (fun p => mk p.fst (s * p.snd)) x_1) =\n Quotient.mk (r.setoid S M) (m, t)", "tactic": "erw [LocalizedModule.liftOn_mk]" }, { "state_after": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ mk (↑(algebraMap R R) ↑s • m) (s * t) = Quotient.mk (r.setoid S M) (m, t)", "state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ mk ((↑(algebraMap R R) ↑s, 1).fst • (m, t).fst, (↑(algebraMap R R) ↑s, 1).snd * (m, t).snd).fst\n (s * ((↑(algebraMap R R) ↑s, 1).fst • (m, t).fst, (↑(algebraMap R R) ↑s, 1).snd * (m, t).snd).snd) =\n Quotient.mk (r.setoid S M) (m, t)", "tactic": "simp only [one_mul]" }, { "state_after": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ mk (s • m) (s * t) = mk m t", "state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ mk (↑(algebraMap R R) ↑s • m) (s * t) = Quotient.mk (r.setoid S M) (m, t)", "tactic": "change mk (s • m) (s * t) = mk m t" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : { x // x ∈ S }\np : LocalizedModule S M\nm : M\nt : { x // x ∈ S }\n⊢ mk (s • m) (s * t) = mk m t", "tactic": "rw [mk_cancel_common_left s t]" } ]
[ 519, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 510, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.Lf.not_ge
[]
[ 418, 5 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 417, 1 ]
Mathlib/Algebra/Lie/Submodule.lean
LieIdeal.comap_map_eq
[ { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI : LieIdeal R L\nJ : LieIdeal R L'\nh : ↑(map f I) = ↑f '' ↑I\n⊢ comap f (map f I) = I ⊔ LieHom.ker f", "tactic": "rw [← LieSubmodule.coe_toSubmodule_eq_iff, comap_coeSubmodule, I.map_coeSubmodule f h,\n LieSubmodule.sup_coe_toSubmodule, f.ker_coeSubmodule, Submodule.comap_map_eq]" } ]
[ 1098, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1096, 1 ]
Mathlib/Topology/Algebra/Module/FiniteDimension.lean
Basis.coe_constrL
[]
[ 450, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 449, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
Real.logb_lt_logb_iff
[ { "state_after": "b x y : ℝ\nhb : 1 < b\nhx : 0 < x\nhy : 0 < y\n⊢ log x < log y ↔ x < y", "state_before": "b x y : ℝ\nhb : 1 < b\nhx : 0 < x\nhy : 0 < y\n⊢ logb b x < logb b y ↔ x < y", "tactic": "rw [logb, logb, div_lt_div_right (log_pos hb)]" }, { "state_after": "no goals", "state_before": "b x y : ℝ\nhb : 1 < b\nhx : 0 < x\nhy : 0 < y\n⊢ log x < log y ↔ x < y", "tactic": "exact log_lt_log_iff hx hy" } ]
[ 160, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
MeasureTheory.Measure.add_haar_ball_center
[ { "state_after": "no goals", "state_before": "E✝ : Type ?u.1965249\ninst✝¹² : NormedAddCommGroup E✝\ninst✝¹¹ : NormedSpace ℝ E✝\ninst✝¹⁰ : MeasurableSpace E✝\ninst✝⁹ : BorelSpace E✝\ninst✝⁸ : FiniteDimensional ℝ E✝\nμ✝ : Measure E✝\ninst✝⁷ : IsAddHaarMeasure μ✝\nF : Type ?u.1965918\ninst✝⁶ : NormedAddCommGroup F\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : CompleteSpace F\ns : Set E✝\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nx : E\nr : ℝ\nthis : ball 0 r = (fun x x_1 => x + x_1) x ⁻¹' ball x r\n⊢ ↑↑μ (ball x r) = ↑↑μ (ball 0 r)", "tactic": "rw [this, measure_preimage_add]" }, { "state_after": "no goals", "state_before": "E✝ : Type ?u.1965249\ninst✝¹² : NormedAddCommGroup E✝\ninst✝¹¹ : NormedSpace ℝ E✝\ninst✝¹⁰ : MeasurableSpace E✝\ninst✝⁹ : BorelSpace E✝\ninst✝⁸ : FiniteDimensional ℝ E✝\nμ✝ : Measure E✝\ninst✝⁷ : IsAddHaarMeasure μ✝\nF : Type ?u.1965918\ninst✝⁶ : NormedAddCommGroup F\ninst✝⁵ : NormedSpace ℝ F\ninst✝⁴ : CompleteSpace F\ns : Set E✝\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nx : E\nr : ℝ\n⊢ ball 0 r = (fun x x_1 => x + x_1) x ⁻¹' ball x r", "tactic": "simp [preimage_add_ball]" } ]
[ 406, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 403, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.ball_subset_interior_closedBall
[]
[ 1894, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1893, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
min_div_div_right
[]
[ 605, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 604, 1 ]
Mathlib/GroupTheory/Nilpotent.lean
comap_upperCentralSeries_quotient_center
[ { "state_after": "case zero\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\n⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) Nat.zero) = upperCentralSeries G (Nat.succ Nat.zero)\n\ncase succ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nn : ℕ\nih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)\n⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) (Nat.succ n)) = upperCentralSeries G (Nat.succ (Nat.succ n))", "state_before": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nn : ℕ\n⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)", "tactic": "induction' n with n ih" }, { "state_after": "no goals", "state_before": "case zero\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\n⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) Nat.zero) = upperCentralSeries G (Nat.succ Nat.zero)", "tactic": "simp only [Nat.zero_eq, upperCentralSeries_zero, MonoidHom.comap_bot, ker_mk',\n (upperCentralSeries_one G).symm]" }, { "state_after": "case succ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nn : ℕ\nih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)\nHn : Subgroup (G ⧸ center G) := upperCentralSeries (G ⧸ center G) n\n⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) (Nat.succ n)) = upperCentralSeries G (Nat.succ (Nat.succ n))", "state_before": "case succ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nn : ℕ\nih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)\n⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) (Nat.succ n)) = upperCentralSeries G (Nat.succ (Nat.succ n))", "tactic": "let Hn := upperCentralSeries (G ⧸ center G) n" }, { "state_after": "no goals", "state_before": "case succ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nn : ℕ\nih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)\nHn : Subgroup (G ⧸ center G) := upperCentralSeries (G ⧸ center G) n\n⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) (Nat.succ n)) = upperCentralSeries G (Nat.succ (Nat.succ n))", "tactic": "calc\n comap (mk' (center G)) (upperCentralSeriesStep Hn) =\n comap (mk' (center G)) (comap (mk' Hn) (center ((G ⧸ center G) ⧸ Hn))) :=\n by rw [upperCentralSeriesStep_eq_comap_center]\n _ = comap (mk' (comap (mk' (center G)) Hn)) (center (G ⧸ comap (mk' (center G)) Hn)) :=\n QuotientGroup.comap_comap_center\n _ = comap (mk' (upperCentralSeries G n.succ)) (center (G ⧸ upperCentralSeries G n.succ)) :=\n (comap_center_subst ih)\n _ = upperCentralSeriesStep (upperCentralSeries G n.succ) :=\n symm (upperCentralSeriesStep_eq_comap_center _)" }, { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nn : ℕ\nih : comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = upperCentralSeries G (Nat.succ n)\nHn : Subgroup (G ⧸ center G) := upperCentralSeries (G ⧸ center G) n\n⊢ comap (mk' (center G)) (upperCentralSeriesStep Hn) =\n comap (mk' (center G)) (comap (mk' Hn) (center ((G ⧸ center G) ⧸ Hn)))", "tactic": "rw [upperCentralSeriesStep_eq_comap_center]" } ]
[ 610, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 595, 1 ]
Mathlib/Topology/Support.lean
hasCompactMulSupport_comp_left
[ { "state_after": "no goals", "state_before": "X : Type ?u.14903\nα : Type u_3\nα' : Type ?u.14909\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.14918\nM : Type ?u.14921\nE : Type ?u.14924\nR : Type ?u.14927\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace α'\ninst✝² : One β\ninst✝¹ : One γ\ninst✝ : One δ\ng : β → γ\nf : α → β\nf₂ : α → γ\nm : β → γ → δ\nx : α\nhg : ∀ {x : β}, g x = 1 ↔ x = 1\n⊢ HasCompactMulSupport (g ∘ f) ↔ HasCompactMulSupport f", "tactic": "simp_rw [hasCompactMulSupport_def, mulSupport_comp_eq g (@hg) f]" } ]
[ 212, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 210, 1 ]
Mathlib/Data/Set/BoolIndicator.lean
Set.mem_iff_boolIndicator
[ { "state_after": "α : Type u_1\ns : Set α\nx : α\n⊢ x ∈ s ↔ (if x ∈ s then true else false) = true", "state_before": "α : Type u_1\ns : Set α\nx : α\n⊢ x ∈ s ↔ boolIndicator s x = true", "tactic": "unfold boolIndicator" }, { "state_after": "no goals", "state_before": "α : Type u_1\ns : Set α\nx : α\n⊢ x ∈ s ↔ (if x ∈ s then true else false) = true", "tactic": "split_ifs with h <;> simp [h]" } ]
[ 32, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 30, 1 ]
Mathlib/Data/Int/GCD.lean
Nat.xgcdAux_zero
[]
[ 52, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/CategoryTheory/StructuredArrow.lean
CategoryTheory.StructuredArrow.mk_right
[]
[ 75, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/Analysis/InnerProductSpace/Orientation.lean
OrthonormalBasis.orientation_adjustToOrientation
[ { "state_after": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace ℝ E\nι : Type u_2\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\nne : Nonempty ι\ne f : OrthonormalBasis ι ℝ E\nx : Orientation ℝ E ι\n⊢ Basis.orientation (Basis.adjustToOrientation (OrthonormalBasis.toBasis e) x) = x", "state_before": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace ℝ E\nι : Type u_2\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\nne : Nonempty ι\ne f : OrthonormalBasis ι ℝ E\nx : Orientation ℝ E ι\n⊢ Basis.orientation (OrthonormalBasis.toBasis (adjustToOrientation e x)) = x", "tactic": "rw [e.toBasis_adjustToOrientation]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace ℝ E\nι : Type u_2\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\nne : Nonempty ι\ne f : OrthonormalBasis ι ℝ E\nx : Orientation ℝ E ι\n⊢ Basis.orientation (Basis.adjustToOrientation (OrthonormalBasis.toBasis e) x) = x", "tactic": "exact e.toBasis.orientation_adjustToOrientation x" } ]
[ 127, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]
Mathlib/NumberTheory/BernoulliPolynomials.lean
Polynomial.bernoulli_generating_function
[ { "state_after": "case h\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\n⊢ ↑(PowerSeries.coeff A n) ((PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) * (exp A - 1)) =\n ↑(PowerSeries.coeff A n) (PowerSeries.X * ↑(rescale t) (exp A))", "state_before": "A : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\n⊢ (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) * (exp A - 1) = PowerSeries.X * ↑(rescale t) (exp A)", "tactic": "ext n" }, { "state_after": "case h.zero\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\n⊢ ↑(PowerSeries.coeff A Nat.zero) ((PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) * (exp A - 1)) =\n ↑(PowerSeries.coeff A Nat.zero) (PowerSeries.X * ↑(rescale t) (exp A))\n\ncase h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\n⊢ ↑(PowerSeries.coeff A (succ n)) ((PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) * (exp A - 1)) =\n ↑(PowerSeries.coeff A (succ n)) (PowerSeries.X * ↑(rescale t) (exp A))", "state_before": "case h\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\n⊢ ↑(PowerSeries.coeff A n) ((PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) * (exp A - 1)) =\n ↑(PowerSeries.coeff A n) (PowerSeries.X * ↑(rescale t) (exp A))", "tactic": "cases' n with n" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\n⊢ ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A (x, succ n - x).fst) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (x, succ n - x).snd) (exp A - 1) +\n ↑(PowerSeries.coeff A (n + 1, succ n - (n + 1)).fst)\n (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (n + 1, succ n - (n + 1)).snd) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (1 / ↑n !)", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\n⊢ ↑(PowerSeries.coeff A (succ n)) ((PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) * (exp A - 1)) =\n ↑(PowerSeries.coeff A (succ n)) (PowerSeries.X * ↑(rescale t) (exp A))", "tactic": "rw [coeff_succ_X_mul, coeff_rescale, coeff_exp, PowerSeries.coeff_mul,\n Nat.sum_antidiagonal_eq_sum_range_succ_mk, sum_range_succ]" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\n⊢ ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (1 / ↑n !)", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\n⊢ ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A (x, succ n - x).fst) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (x, succ n - x).snd) (exp A - 1) +\n ↑(PowerSeries.coeff A (n + 1, succ n - (n + 1)).fst)\n (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (n + 1, succ n - (n + 1)).snd) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (1 / ↑n !)", "tactic": "simp only [RingHom.map_sub, tsub_self, constantCoeff_one, constantCoeff_exp,\n coeff_zero_eq_constantCoeff, MulZeroClass.mul_zero, sub_self, add_zero]" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (1 / ↑n !)", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\n⊢ ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (1 / ↑n !)", "tactic": "have hnp1 : IsUnit ((n + 1)! : ℚ) := IsUnit.mk0 _ (by exact_mod_cast factorial_ne_zero (n + 1))" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n ↑(algebraMap ℚ A) ↑(n + 1)! * (t ^ n * ↑(algebraMap ℚ A) (1 / ↑n !))", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (1 / ↑n !)", "tactic": "rw [← (hnp1.map (algebraMap ℚ A)).mul_right_inj]" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (↑(n + 1)! * (1 / ↑n !))", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n ↑(algebraMap ℚ A) ↑(n + 1)! * (t ^ n * ↑(algebraMap ℚ A) (1 / ↑n !))", "tactic": "rw [mul_left_comm, ← RingHom.map_mul]" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (↑((n + 1) * n !) * (1 / ↑n !))", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (↑(n + 1)! * (1 / ↑n !))", "tactic": "change _ = t ^ n * algebraMap ℚ A (((n + 1) * n ! : ℕ) * (1 / n !))" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n ↑(aeval t) (↑(monomial n) (↑n + 1))", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n t ^ n * ↑(algebraMap ℚ A) (↑((n + 1) * n !) * (1 / ↑n !))", "tactic": "rw [cast_mul, mul_assoc,\n mul_one_div_cancel (show (n ! : ℚ) ≠ 0 from cast_ne_zero.2 (factorial_ne_zero n)), mul_one,\n mul_comm (t ^ n), ← aeval_monomial, cast_add, cast_one]" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ∑ x in range (n + 1),\n ↑(algebraMap ℚ A) ↑(n + 1)! *\n (↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1)) =\n ∑ x in range (n + 1), ↑(aeval t) (↑(Nat.choose (n + 1) x) • bernoulli x)", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n ∑ x in range (n + 1),\n ↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1) =\n ↑(aeval t) (↑(monomial n) (↑n + 1))", "tactic": "rw [← sum_bernoulli, Finset.mul_sum, AlgHom.map_sum]" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ∀ (x : ℕ),\n x ∈ range (n + 1) →\n ↑(algebraMap ℚ A) ↑(n + 1)! *\n (↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1)) =\n ↑(aeval t) (↑(Nat.choose (n + 1) x) • bernoulli x)", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ∑ x in range (n + 1),\n ↑(algebraMap ℚ A) ↑(n + 1)! *\n (↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1)) =\n ∑ x in range (n + 1), ↑(aeval t) (↑(Nat.choose (n + 1) x) • bernoulli x)", "tactic": "apply Finset.sum_congr rfl" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\ni : ℕ\nhi : i ∈ range (n + 1)\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n (↑(PowerSeries.coeff A i) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - i)) (exp A - 1)) =\n ↑(aeval t) (↑(Nat.choose (n + 1) i) • bernoulli i)", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\n⊢ ∀ (x : ℕ),\n x ∈ range (n + 1) →\n ↑(algebraMap ℚ A) ↑(n + 1)! *\n (↑(PowerSeries.coeff A x) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - x)) (exp A - 1)) =\n ↑(aeval t) (↑(Nat.choose (n + 1) x) • bernoulli x)", "tactic": "intro i hi" }, { "state_after": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\ni : ℕ\nhi : i ∈ range (n + 1)\n⊢ ↑(algebraMap ℚ A) (↑(n + 1)! * (↑i !)⁻¹ * (↑(n + 1 - i)!)⁻¹) * ↑(aeval t) (bernoulli i) =\n ↑(algebraMap ℚ A) (↑(n + 1)! / (↑i ! * ↑(n + 1 - i)!)) * ↑(aeval t) (bernoulli i)", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\ni : ℕ\nhi : i ∈ range (n + 1)\n⊢ ↑(algebraMap ℚ A) ↑(n + 1)! *\n (↑(PowerSeries.coeff A i) (PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) *\n ↑(PowerSeries.coeff A (succ n - i)) (exp A - 1)) =\n ↑(aeval t) (↑(Nat.choose (n + 1) i) • bernoulli i)", "tactic": "simp only [Nat.cast_choose ℚ (mem_range_le hi), coeff_mk, if_neg (mem_range_sub_ne_zero hi),\n one_div, AlgHom.map_smul, PowerSeries.coeff_one, coeff_exp, sub_zero, LinearMap.map_sub,\n Algebra.smul_mul_assoc, Algebra.smul_def, mul_right_comm _ ((aeval t) _), ← mul_assoc, ←\n RingHom.map_mul, succ_eq_add_one, ← Polynomial.C_eq_algebraMap, Polynomial.aeval_mul,\n Polynomial.aeval_C]" }, { "state_after": "no goals", "state_before": "case h.succ\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\nhnp1 : IsUnit ↑(n + 1)!\ni : ℕ\nhi : i ∈ range (n + 1)\n⊢ ↑(algebraMap ℚ A) (↑(n + 1)! * (↑i !)⁻¹ * (↑(n + 1 - i)!)⁻¹) * ↑(aeval t) (bernoulli i) =\n ↑(algebraMap ℚ A) (↑(n + 1)! / (↑i ! * ↑(n + 1 - i)!)) * ↑(aeval t) (bernoulli i)", "tactic": "field_simp" }, { "state_after": "no goals", "state_before": "case h.zero\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\n⊢ ↑(PowerSeries.coeff A Nat.zero) ((PowerSeries.mk fun n => ↑(aeval t) ((1 / ↑n !) • bernoulli n)) * (exp A - 1)) =\n ↑(PowerSeries.coeff A Nat.zero) (PowerSeries.X * ↑(rescale t) (exp A))", "tactic": "simp" }, { "state_after": "no goals", "state_before": "A : Type u_1\ninst✝¹ : CommRing A\ninst✝ : Algebra ℚ A\nt : A\nn : ℕ\n⊢ ↑(n + 1)! ≠ 0", "tactic": "exact_mod_cast factorial_ne_zero (n + 1)" } ]
[ 260, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 222, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.coe_castPred
[ { "state_after": "case mk\nn✝ m n a : ℕ\nha : a < n + 2\nhx : { val := a, isLt := ha } < last (n + 1)\n⊢ ↑(castPred { val := a, isLt := ha }) = ↑{ val := a, isLt := ha }", "state_before": "n✝ m n : ℕ\na : Fin (n + 2)\nhx : a < last (n + 1)\n⊢ ↑(castPred a) = ↑a", "tactic": "rcases a with ⟨a, ha⟩" }, { "state_after": "case mk.h\nn✝ m n a : ℕ\nha : a < n + 2\nhx : { val := a, isLt := ha } < last (n + 1)\n⊢ a < n + 1", "state_before": "case mk\nn✝ m n a : ℕ\nha : a < n + 2\nhx : { val := a, isLt := ha } < last (n + 1)\n⊢ ↑(castPred { val := a, isLt := ha }) = ↑{ val := a, isLt := ha }", "tactic": "rw [castPred_mk]" }, { "state_after": "no goals", "state_before": "case mk.h\nn✝ m n a : ℕ\nha : a < n + 2\nhx : { val := a, isLt := ha } < last (n + 1)\n⊢ a < n + 1", "tactic": "exact hx" } ]
[ 2338, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2334, 1 ]
Mathlib/Data/PFunctor/Univariate/M.lean
PFunctor.M.iselect_eq_default
[ { "state_after": "case nil\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nx : M F\nh : ¬IsPath [] x\n⊢ iselect [] x = head default\n\ncase cons\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nps_hd : IdxCat F\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → iselect ps_tail x = head default\nx : M F\nh : ¬IsPath (ps_hd :: ps_tail) x\n⊢ iselect (ps_hd :: ps_tail) x = head default", "state_before": "F : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx : M F\nh : ¬IsPath ps x\n⊢ iselect ps x = head default", "tactic": "induction' ps with ps_hd ps_tail ps_ih generalizing x" }, { "state_after": "case nil.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nx : M F\nh : ¬IsPath [] x\n⊢ False", "state_before": "case nil\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nx : M F\nh : ¬IsPath [] x\n⊢ iselect [] x = head default", "tactic": "exfalso" }, { "state_after": "case nil.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nx : M F\nh : ¬IsPath [] x\n⊢ IsPath [] x", "state_before": "case nil.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nx : M F\nh : ¬IsPath [] x\n⊢ False", "tactic": "apply h" }, { "state_after": "no goals", "state_before": "case nil.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nx : M F\nh : ¬IsPath [] x\n⊢ IsPath [] x", "tactic": "constructor" }, { "state_after": "case cons.mk\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → iselect ps_tail x = head default\nx : M F\na : F.A\ni : B F a\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\n⊢ iselect ({ fst := a, snd := i } :: ps_tail) x = head default", "state_before": "case cons\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nps_hd : IdxCat F\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → iselect ps_tail x = head default\nx : M F\nh : ¬IsPath (ps_hd :: ps_tail) x\n⊢ iselect (ps_hd :: ps_tail) x = head default", "tactic": "cases' ps_hd with a i" }, { "state_after": "case cons.mk.f\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → iselect ps_tail x = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\n⊢ iselect ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f }) = head default", "state_before": "case cons.mk\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → iselect ps_tail x = head default\nx : M F\na : F.A\ni : B F a\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\n⊢ iselect ({ fst := a, snd := i } :: ps_tail) x = head default", "tactic": "induction' x using PFunctor.M.casesOn' with x_a x_f" }, { "state_after": "case cons.mk.f\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\n⊢ head\n (M.casesOn' (M.mk { fst := x_a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default", "state_before": "case cons.mk.f\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → iselect ps_tail x = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\n⊢ iselect ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f }) = head default", "tactic": "simp only [iselect, isubtree] at ps_ih⊢" }, { "state_after": "case pos\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\nh'' : a = x_a\n⊢ head\n (M.casesOn' (M.mk { fst := x_a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default\n\ncase neg\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\nh'' : ¬a = x_a\n⊢ head\n (M.casesOn' (M.mk { fst := x_a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default", "state_before": "case cons.mk.f\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\n⊢ head\n (M.casesOn' (M.mk { fst := x_a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default", "tactic": "by_cases h'' : a = x_a" }, { "state_after": "case pos\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\n⊢ head\n (M.casesOn' (M.mk { fst := a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default\n\ncase neg\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\nh'' : ¬a = x_a\n⊢ head\n (M.casesOn' (M.mk { fst := x_a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default", "state_before": "case pos\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\nh'' : a = x_a\n⊢ head\n (M.casesOn' (M.mk { fst := x_a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default\n\ncase neg\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\nh'' : ¬a = x_a\n⊢ head\n (M.casesOn' (M.mk { fst := x_a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default", "tactic": "subst x_a" }, { "state_after": "case pos\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\n⊢ head (isubtree ps_tail (x_f (cast (_ : B F a = B F a) i))) = head default", "state_before": "case pos\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\n⊢ head\n (M.casesOn' (M.mk { fst := a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default", "tactic": "simp only [dif_pos, eq_self_iff_true, casesOn_mk']" }, { "state_after": "case pos.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\n⊢ ¬IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))", "state_before": "case pos\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\n⊢ head (isubtree ps_tail (x_f (cast (_ : B F a = B F a) i))) = head default", "tactic": "rw [ps_ih]" }, { "state_after": "case pos.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\nh' : IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))\n⊢ False", "state_before": "case pos.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\n⊢ ¬IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))", "tactic": "intro h'" }, { "state_after": "case pos.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\nh' : IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))\n⊢ IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })", "state_before": "case pos.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\nh' : IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))\n⊢ False", "tactic": "apply h" }, { "state_after": "case pos.h.a\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\nh' : IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))\n⊢ IsPath ps_tail (x_f i)", "state_before": "case pos.h\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\nh' : IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))\n⊢ IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })", "tactic": "constructor <;> try rfl" }, { "state_after": "no goals", "state_before": "case pos.h.a\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\nh' : IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))\n⊢ IsPath ps_tail (x_f i)", "tactic": "apply h'" }, { "state_after": "case pos.h.a\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\nh' : IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))\n⊢ IsPath ps_tail (x_f i)", "state_before": "case pos.h.a\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_f : B F a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := a, snd := x_f })\nh' : IsPath ps_tail (x_f (cast (_ : B F a = B F a) i))\n⊢ IsPath ps_tail (x_f i)", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case neg\nF : PFunctor\nX : Type ?u.22988\nf : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\nx✝ : M F\nh✝¹ : ¬IsPath ps x✝\nps_tail : List (IdxCat F)\nps_ih : ∀ (x : M F), ¬IsPath ps_tail x → head (isubtree ps_tail x) = head default\nx : M F\na : F.A\ni : B F a\nh✝ : ¬IsPath ({ fst := a, snd := i } :: ps_tail) x\nx_a : F.A\nx_f : B F x_a → M F\nh : ¬IsPath ({ fst := a, snd := i } :: ps_tail) (M.mk { fst := x_a, snd := x_f })\nh'' : ¬a = x_a\n⊢ head\n (M.casesOn' (M.mk { fst := x_a, snd := x_f }) fun a' f =>\n if h : a = a' then isubtree ps_tail (f (cast (_ : B F a = B F a') i)) else default) =\n head default", "tactic": "simp [*]" } ]
[ 532, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 515, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
SemiconjBy.cast_int_mul_cast_int_mul
[]
[ 1076, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1074, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
HasFTaylorSeriesUpToOn.restrictScalars
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_2\ninst✝¹⁶ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝¹⁵ : NormedAddCommGroup D\ninst✝¹⁴ : NormedSpace 𝕜 D\nE : Type uE\ninst✝¹³ : NormedAddCommGroup E\ninst✝¹² : NormedSpace 𝕜 E\nF : Type uF\ninst✝¹¹ : NormedAddCommGroup F\ninst✝¹⁰ : NormedSpace 𝕜 F\nG : Type uG\ninst✝⁹ : NormedAddCommGroup G\ninst✝⁸ : NormedSpace 𝕜 G\nX : Type ?u.3124593\ninst✝⁷ : NormedAddCommGroup X\ninst✝⁶ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nb : E × F → G\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\n𝕜' : Type u_1\ninst✝⁵ : NontriviallyNormedField 𝕜'\ninst✝⁴ : NormedAlgebra 𝕜 𝕜'\ninst✝³ : NormedSpace 𝕜' E\ninst✝² : IsScalarTower 𝕜 𝕜' E\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\np' : E → FormalMultilinearSeries 𝕜' E F\nh : HasFTaylorSeriesUpToOn n f p' s\nm : ℕ\nhm : ↑m < n\nx : E\nhx : x ∈ s\n⊢ HasFDerivWithinAt (fun x => FormalMultilinearSeries.restrictScalars 𝕜 (p' x) m)\n (ContinuousMultilinearMap.curryLeft (FormalMultilinearSeries.restrictScalars 𝕜 (p' x) (Nat.succ m))) s x", "tactic": "simpa only using (ContinuousMultilinearMap.restrictScalarsLinear 𝕜).hasFDerivAt.comp_hasFDerivWithinAt x <|\n (h.fderivWithin m hm x hx).restrictScalars 𝕜" } ]
[ 2214, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2207, 1 ]
Mathlib/Topology/Sheaves/Limits.lean
TopCat.limit_isSheaf
[]
[ 58, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 56, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
self_sub_toIocDiv_zsmul
[]
[ 121, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 1 ]
Mathlib/LinearAlgebra/Lagrange.lean
Lagrange.interpolate_empty
[ { "state_after": "no goals", "state_before": "F : Type u_1\ninst✝¹ : Field F\nι : Type u_2\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\n⊢ ↑(interpolate ∅ v) r = 0", "tactic": "rw [interpolate_apply, sum_empty]" } ]
[ 309, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 309, 1 ]
Mathlib/Order/Lattice.lean
SemilatticeInf.dual_dual
[]
[ 582, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 580, 1 ]
Mathlib/Algebra/Group/Pi.lean
Function.update_div
[]
[ 638, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 636, 1 ]
Std/Data/List/Lemmas.lean
List.get?_set
[ { "state_after": "no goals", "state_before": "α : Type u_1\na : α\nm n : Nat\nl : List α\n⊢ get? (set l m a) n = if m = n then (fun x => a) <$> get? l n else get? l n", "tactic": "by_cases m = n <;> simp [*, get?_set_eq, get?_set_ne]" } ]
[ 807, 56 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 805, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineEquiv.lean
AffineEquiv.injective_pointReflection_left_of_injective_bit0
[]
[ 596, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 594, 1 ]
Mathlib/Topology/LocalExtr.lean
IsLocalMinOn.inf
[]
[ 487, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 485, 8 ]
Mathlib/Data/Stream/Init.lean
Stream'.eq_or_mem_of_mem_cons
[ { "state_after": "case zero\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nh : a = nth (b :: s) zero\n⊢ a = b ∨ a ∈ s\n\ncase succ\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nn' : ℕ\nh : a = nth (b :: s) (succ n')\n⊢ a = b ∨ a ∈ s", "state_before": "α : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nn : ℕ\nh : (fun b => a = b) (nth (b :: s) n)\n⊢ a = b ∨ a ∈ s", "tactic": "cases' n with n'" }, { "state_after": "case zero.h\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nh : a = nth (b :: s) zero\n⊢ a = b", "state_before": "case zero\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nh : a = nth (b :: s) zero\n⊢ a = b ∨ a ∈ s", "tactic": "left" }, { "state_after": "no goals", "state_before": "case zero.h\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nh : a = nth (b :: s) zero\n⊢ a = b", "tactic": "exact h" }, { "state_after": "case succ.h\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nn' : ℕ\nh : a = nth (b :: s) (succ n')\n⊢ a ∈ s", "state_before": "case succ\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nn' : ℕ\nh : a = nth (b :: s) (succ n')\n⊢ a = b ∨ a ∈ s", "tactic": "right" }, { "state_after": "case succ.h\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nn' : ℕ\nh : a = nth s n'\n⊢ a ∈ s", "state_before": "case succ.h\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nn' : ℕ\nh : a = nth (b :: s) (succ n')\n⊢ a ∈ s", "tactic": "rw [nth_succ, tail_cons] at h" }, { "state_after": "no goals", "state_before": "case succ.h\nα : Type u\nβ : Type v\nδ : Type w\na b : α\ns : Stream' α\nx✝ : a ∈ b :: s\nn' : ℕ\nh : a = nth s n'\n⊢ a ∈ s", "tactic": "exact ⟨n', h⟩" } ]
[ 136, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/Topology/GDelta.lean
Set.Finite.isGδ_compl
[]
[ 150, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 149, 1 ]
Mathlib/Algebra/GCDMonoid/Finset.lean
Finset.normalize_lcm
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.5029\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizedGCDMonoid α\ns s₁ s₂ : Finset β\nf : β → α\n⊢ ↑normalize (lcm s f) = lcm s f", "tactic": "simp [lcm_def]" } ]
[ 95, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/Data/Set/Intervals/ProjIcc.lean
Set.projIcc_of_le_left
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.573\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx : α\nhx : x ≤ a\n⊢ projIcc a b h x = { val := a, property := (_ : a ∈ Icc a b) }", "tactic": "simp [projIcc, hx, hx.trans h]" } ]
[ 42, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 41, 1 ]
Mathlib/Algebra/Regular/SMul.lean
isRightRegular_iff
[]
[ 59, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 57, 1 ]
Mathlib/Analysis/SpecialFunctions/Integrals.lean
intervalIntegral.intervalIntegrable_cpow
[ { "state_after": "case pos\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]\nh2 : ¬0 ∈ [[a, b]]\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b\n\ncase neg\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]\nh2 : ¬¬0 ∈ [[a, b]]\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b", "state_before": "a b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b", "tactic": "by_cases h2 : (0 : ℝ) ∉ [[a, b]]" }, { "state_after": "case neg\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b", "state_before": "case neg\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]\nh2 : ¬¬0 ∈ [[a, b]]\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b", "tactic": "rw [eq_false h2, or_false_iff] at h" }, { "state_after": "case neg.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 < r.re\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b\n\ncase neg.inr\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b", "state_before": "case neg\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b", "tactic": "rcases lt_or_eq_of_le h with (h' | h')" }, { "state_after": "case neg.inr.refine'_1\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ AEStronglyMeasurable (fun x => ↑x ^ r) (Measure.restrict μ (Ι a b))\n\ncase neg.inr.refine'_2\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ IntervalIntegrable (fun t => ‖↑t ^ r‖) μ a b", "state_before": "case neg.inr\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b", "tactic": "refine' (IntervalIntegrable.intervalIntegrable_norm_iff _).mp _" }, { "state_after": "case neg.inr.refine'_2\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nthis : ∀ (c : ℝ), IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c\n⊢ IntervalIntegrable (fun t => ‖↑t ^ r‖) μ a b\n\ncase this\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "state_before": "case neg.inr.refine'_2\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ IntervalIntegrable (fun t => ‖↑t ^ r‖) μ a b", "tactic": "suffices : ∀ c : ℝ, IntervalIntegrable (fun x : ℝ => ‖(x:ℂ) ^ r‖) μ 0 c" }, { "state_after": "case this\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "state_before": "case neg.inr.refine'_2\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nthis : ∀ (c : ℝ), IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c\n⊢ IntervalIntegrable (fun t => ‖↑t ^ r‖) μ a b\n\ncase this\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "tactic": "exact (this a).symm.trans (this b)" }, { "state_after": "case this\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "state_before": "case this\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ ∀ (c : ℝ), IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "tactic": "intro c" }, { "state_after": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c\n\ncase this.inr\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "state_before": "case this\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "tactic": "rcases le_or_lt 0 c with (hc | hc)" }, { "state_after": "case pos\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]\nh2 : ¬0 ∈ [[a, b]]\nx : ℝ\nhx : x ∈ [[a, b]]\n⊢ ContinuousAt (fun x => ↑x ^ r) x", "state_before": "case pos\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]\nh2 : ¬0 ∈ [[a, b]]\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b", "tactic": "refine' (ContinuousAt.continuousOn fun x hx => _).intervalIntegrable" }, { "state_after": "no goals", "state_before": "case pos\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re ∨ ¬0 ∈ [[a, b]]\nh2 : ¬0 ∈ [[a, b]]\nx : ℝ\nhx : x ∈ [[a, b]]\n⊢ ContinuousAt (fun x => ↑x ^ r) x", "tactic": "exact Complex.continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_mem_of_not_mem hx h2)" }, { "state_after": "no goals", "state_before": "case neg.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 < r.re\n⊢ IntervalIntegrable (fun x => ↑x ^ r) μ a b", "tactic": "exact (Complex.continuous_ofReal_cpow_const h').intervalIntegrable _ _" }, { "state_after": "case neg.inr.refine'_1\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ ContinuousOn (fun x => ↑x ^ r) ({0}ᶜ)", "state_before": "case neg.inr.refine'_1\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ AEStronglyMeasurable (fun x => ↑x ^ r) (Measure.restrict μ (Ι a b))", "tactic": "refine' (measurable_of_continuousOn_compl_singleton (0 : ℝ) _).aestronglyMeasurable" }, { "state_after": "no goals", "state_before": "case neg.inr.refine'_1\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\n⊢ ContinuousOn (fun x => ↑x ^ r) ({0}ᶜ)", "tactic": "exact ContinuousAt.continuousOn fun x hx =>\n Complex.continuousAt_ofReal_cpow_const x r (Or.inr hx)" }, { "state_after": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\nthis : IntervalIntegrable (fun x => 1) μ 0 c\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "state_before": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "tactic": "have : IntervalIntegrable (fun _ => 1 : ℝ → ℝ) μ 0 c := intervalIntegrable_const" }, { "state_after": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\nthis : IntegrableOn (fun x => 1) (Set.Ioc 0 c)\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioc 0 c)", "state_before": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\nthis : IntervalIntegrable (fun x => 1) μ 0 c\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "tactic": "rw [intervalIntegrable_iff_integrable_Ioc_of_le hc] at this ⊢" }, { "state_after": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\nthis : IntegrableOn (fun x => 1) (Set.Ioc 0 c)\nx : ℝ\nhx : x ∈ Set.Ioc 0 c\n⊢ 1 = ‖↑x ^ r‖", "state_before": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\nthis : IntegrableOn (fun x => 1) (Set.Ioc 0 c)\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioc 0 c)", "tactic": "refine' IntegrableOn.congr_fun this (fun x hx => _) measurableSet_Ioc" }, { "state_after": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\nthis : IntegrableOn (fun x => 1) (Set.Ioc 0 c)\nx : ℝ\nhx : x ∈ Set.Ioc 0 c\n⊢ 1 = ‖↑x ^ r‖", "state_before": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\nthis : IntegrableOn (fun x => 1) (Set.Ioc 0 c)\nx : ℝ\nhx : x ∈ Set.Ioc 0 c\n⊢ 1 = ‖↑x ^ r‖", "tactic": "dsimp only" }, { "state_after": "no goals", "state_before": "case this.inl\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : 0 ≤ c\nthis : IntegrableOn (fun x => 1) (Set.Ioc 0 c)\nx : ℝ\nhx : x ∈ Set.Ioc 0 c\n⊢ 1 = ‖↑x ^ r‖", "tactic": "rw [Complex.norm_eq_abs, Complex.abs_cpow_eq_rpow_re_of_pos hx.1, ← h', rpow_zero]" }, { "state_after": "case this.inr.h\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ c 0", "state_before": "case this.inr\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ 0 c", "tactic": "apply IntervalIntegrable.symm" }, { "state_after": "case this.inr.h\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioc c 0)", "state_before": "case this.inr.h\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\n⊢ IntervalIntegrable (fun x => ‖↑x ^ r‖) μ c 0", "tactic": "rw [intervalIntegrable_iff_integrable_Ioc_of_le hc.le]" }, { "state_after": "case this.inr.h\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioc c 0)", "state_before": "case this.inr.h\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioc c 0)", "tactic": "have : Ioc c 0 = Ioo c 0 ∪ {(0 : ℝ)} := by\n rw [← Ioo_union_Icc_eq_Ioc hc (le_refl 0), ← Icc_def]\n simp_rw [← le_antisymm_iff, setOf_eq_eq_singleton']" }, { "state_after": "case this.inr.h\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) {0} ∧ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioo c 0)", "state_before": "case this.inr.h\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioc c 0)", "tactic": "rw [this, integrableOn_union, and_comm]" }, { "state_after": "case this.inr.h.left\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) {0}\n\ncase this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioo c 0)", "state_before": "case this.inr.h\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) {0} ∧ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioo c 0)", "tactic": "constructor" }, { "state_after": "a b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\n⊢ Set.Ioo c 0 ∪ {x | 0 ≤ x ∧ x ≤ 0} = Set.Ioo c 0 ∪ {0}", "state_before": "a b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\n⊢ Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}", "tactic": "rw [← Ioo_union_Icc_eq_Ioc hc (le_refl 0), ← Icc_def]" }, { "state_after": "no goals", "state_before": "a b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\n⊢ Set.Ioo c 0 ∪ {x | 0 ≤ x ∧ x ≤ 0} = Set.Ioo c 0 ∪ {0}", "tactic": "simp_rw [← le_antisymm_iff, setOf_eq_eq_singleton']" }, { "state_after": "case this.inr.h.left\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ ↑↑μ {0} < ⊤", "state_before": "case this.inr.h.left\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) {0}", "tactic": "refine' integrableOn_singleton_iff.mpr (Or.inr _)" }, { "state_after": "no goals", "state_before": "case this.inr.h.left\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ ↑↑μ {0} < ⊤", "tactic": "exact isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure.lt_top_of_isCompact\n isCompact_singleton" }, { "state_after": "case this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nthis : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioo c 0)", "state_before": "case this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioo c 0)", "tactic": "have : ∀ x : ℝ, x ∈ Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖(x : ℂ) ^ r‖ := by\n intro x hx\n rw [Complex.ofReal_cpow_of_nonpos hx.2.le, norm_mul, ← Complex.ofReal_neg,\n Complex.norm_eq_abs (_ ^ _), Complex.abs_cpow_eq_rpow_re_of_pos (neg_pos.mpr hx.2), ← h',\n rpow_zero, one_mul]" }, { "state_after": "case this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nthis : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖\n⊢ IntegrableOn (fun x => ‖Complex.exp (↑π * Complex.I * r)‖) (Set.Ioo c 0)", "state_before": "case this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nthis : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖\n⊢ IntegrableOn (fun x => ‖↑x ^ r‖) (Set.Ioo c 0)", "tactic": "refine' IntegrableOn.congr_fun _ this measurableSet_Ioo" }, { "state_after": "case this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nthis : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖\n⊢ ‖Complex.exp (↑π * Complex.I * r)‖ = 0 ∨ ↑↑μ (Set.Ioo c 0) < ⊤", "state_before": "case this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nthis : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖\n⊢ IntegrableOn (fun x => ‖Complex.exp (↑π * Complex.I * r)‖) (Set.Ioo c 0)", "tactic": "rw [integrableOn_const]" }, { "state_after": "case this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nthis : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖\n⊢ ↑↑μ (Set.Icc c 0) < ⊤", "state_before": "case this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nthis : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖\n⊢ ‖Complex.exp (↑π * Complex.I * r)‖ = 0 ∨ ↑↑μ (Set.Ioo c 0) < ⊤", "tactic": "refine' Or.inr ((measure_mono Set.Ioo_subset_Icc_self).trans_lt _)" }, { "state_after": "no goals", "state_before": "case this.inr.h.right\na b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis✝ : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nthis : ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖\n⊢ ↑↑μ (Set.Icc c 0) < ⊤", "tactic": "exact isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure.lt_top_of_isCompact isCompact_Icc" }, { "state_after": "a b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nx : ℝ\nhx : x ∈ Set.Ioo c 0\n⊢ ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖", "state_before": "a b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\n⊢ ∀ (x : ℝ), x ∈ Set.Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖", "tactic": "intro x hx" }, { "state_after": "no goals", "state_before": "a b : ℝ\nn : ℕ\nf : ℝ → ℝ\nμ ν : MeasureTheory.Measure ℝ\ninst✝ : IsLocallyFiniteMeasure μ\nc✝ d : ℝ\nr : ℂ\nh : 0 ≤ r.re\nh2 : ¬¬0 ∈ [[a, b]]\nh' : 0 = r.re\nc : ℝ\nhc : c < 0\nthis : Set.Ioc c 0 = Set.Ioo c 0 ∪ {0}\nx : ℝ\nhx : x ∈ Set.Ioo c 0\n⊢ ‖Complex.exp (↑π * Complex.I * r)‖ = ‖↑x ^ r‖", "tactic": "rw [Complex.ofReal_cpow_of_nonpos hx.2.le, norm_mul, ← Complex.ofReal_neg,\n Complex.norm_eq_abs (_ ^ _), Complex.abs_cpow_eq_rpow_re_of_pos (neg_pos.mpr hx.2), ← h',\n rpow_zero, one_mul]" } ]
[ 147, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 103, 1 ]