file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Algebra/Algebra/Unitization.lean
Unitization.snd_inr
[]
[ 128, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.eq_union_left
[]
[ 1707, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1706, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.nat_cast_eq_nat_cast_iff
[ { "state_after": "no goals", "state_before": "a b c : ℕ\n⊢ ↑a = ↑b ↔ a ≡ b [MOD c]", "tactic": "simpa [Int.coe_nat_modEq_iff] using ZMod.int_cast_eq_int_cast_iff a b c" } ]
[ 467, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 466, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.succ_succAbove_one
[ { "state_after": "n✝ m n : ℕ\ninst✝ : NeZero n\ni : Fin (n + 1)\n⊢ ↑(succAbove (succ i)) (succ 0) = succ (↑(succAbove i) 0)", "state_before": "n✝ m n : ℕ\ninst✝ : NeZero n\ni : Fin (n + 1)\n⊢ ↑(succAbove (succ i)) 1 = succ (↑(succAbove i) 0)", "tactic": "rw [← succ_zero_eq_one]" }, { "state_after": "no goals", "state_before": "n✝ m n : ℕ\ninst✝ : NeZero n\ni : Fin (n + 1)\n⊢ ↑(succAbove (succ i)) (succ 0) = succ (↑(succAbove i) 0)", "tactic": "exact succ_succAbove_succ i 0" } ]
[ 2240, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2237, 1 ]
Mathlib/Topology/Instances/EReal.lean
continuous_coe_ennreal_ereal
[]
[ 123, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContDiffOn.continuousOn_deriv_of_open
[]
[ 2144, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2142, 1 ]
Mathlib/Data/Int/Parity.lean
Int.add_one_ediv_two_mul_two_of_odd
[ { "state_after": "case intro\nm c : ℤ\n⊢ 1 + (2 * c + 1) / 2 * 2 = 2 * c + 1", "state_before": "m n : ℤ\n⊢ Odd n → 1 + n / 2 * 2 = n", "tactic": "rintro ⟨c, rfl⟩" }, { "state_after": "case intro\nm c : ℤ\n⊢ (2 * c + 1) / 2 * 2 + 1 = 2 * c + 1", "state_before": "case intro\nm c : ℤ\n⊢ 1 + (2 * c + 1) / 2 * 2 = 2 * c + 1", "tactic": "rw [add_comm]" }, { "state_after": "case h.e'_2.h.e'_6\nm c : ℤ\n⊢ 1 = (2 * c + 1) % 2", "state_before": "case intro\nm c : ℤ\n⊢ (2 * c + 1) / 2 * 2 + 1 = 2 * c + 1", "tactic": "convert Int.ediv_add_emod' (2 * c + 1) 2" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_6\nm c : ℤ\n⊢ 1 = (2 * c + 1) % 2", "tactic": "simp [Int.add_emod]" } ]
[ 277, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/RingTheory/LaurentSeries.lean
PowerSeries.coe_one
[]
[ 194, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.coe_nat
[]
[ 679, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 679, 1 ]
Mathlib/Order/CompleteLattice.lean
iSup_split_single
[ { "state_after": "case h.e'_3.h.e'_3\nα : Type u_1\nβ : Type u_2\nβ₂ : Type ?u.134534\nγ : Type ?u.134537\nι : Sort ?u.134540\nι' : Sort ?u.134543\nκ : ι → Sort ?u.134548\nκ' : ι' → Sort ?u.134553\ninst✝ : CompleteLattice α\nf✝ g s t : ι → α\na b : α\nf : β → α\ni₀ : β\n⊢ f i₀ = ⨆ (i : β) (_ : i = i₀), f i", "state_before": "α : Type u_1\nβ : Type u_2\nβ₂ : Type ?u.134534\nγ : Type ?u.134537\nι : Sort ?u.134540\nι' : Sort ?u.134543\nκ : ι → Sort ?u.134548\nκ' : ι' → Sort ?u.134553\ninst✝ : CompleteLattice α\nf✝ g s t : ι → α\na b : α\nf : β → α\ni₀ : β\n⊢ (⨆ (i : β), f i) = f i₀ ⊔ ⨆ (i : β) (_ : i ≠ i₀), f i", "tactic": "convert iSup_split f (fun i => i = i₀)" }, { "state_after": "no goals", "state_before": "case h.e'_3.h.e'_3\nα : Type u_1\nβ : Type u_2\nβ₂ : Type ?u.134534\nγ : Type ?u.134537\nι : Sort ?u.134540\nι' : Sort ?u.134543\nκ : ι → Sort ?u.134548\nκ' : ι' → Sort ?u.134553\ninst✝ : CompleteLattice α\nf✝ g s t : ι → α\na b : α\nf : β → α\ni₀ : β\n⊢ f i₀ = ⨆ (i : β) (_ : i = i₀), f i", "tactic": "simp" } ]
[ 1434, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1432, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.add_sub_cancel_left
[]
[ 1141, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1140, 11 ]
Mathlib/Algebra/Order/Group/Defs.lean
mul_inv_le_one_iff_le
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝² : Group α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c : α\n⊢ a ≤ 1 * b ↔ a ≤ b", "tactic": "rw [one_mul]" } ]
[ 259, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.mul_top
[]
[ 753, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 752, 1 ]
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
AlgHom.map_adjugate
[]
[ 374, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 371, 1 ]
Mathlib/SetTheory/Ordinal/FixedPoint.lean
Ordinal.nfp_le
[]
[ 458, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 457, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
dist_le_norm_mul_norm
[ { "state_after": "𝓕 : Type ?u.82158\n𝕜 : Type ?u.82161\nα : Type ?u.82164\nι : Type ?u.82167\nκ : Type ?u.82170\nE : Type u_1\nF : Type ?u.82176\nG : Type ?u.82179\ninst✝² : SeminormedGroup E\ninst✝¹ : SeminormedGroup F\ninst✝ : SeminormedGroup G\ns : Set E\na✝ a₁ a₂ b✝ b₁ b₂ : E\nr r₁ r₂ : ℝ\na b : E\n⊢ ‖a / b‖ ≤ ‖a‖ + ‖b‖", "state_before": "𝓕 : Type ?u.82158\n𝕜 : Type ?u.82161\nα : Type ?u.82164\nι : Type ?u.82167\nκ : Type ?u.82170\nE : Type u_1\nF : Type ?u.82176\nG : Type ?u.82179\ninst✝² : SeminormedGroup E\ninst✝¹ : SeminormedGroup F\ninst✝ : SeminormedGroup G\ns : Set E\na✝ a₁ a₂ b✝ b₁ b₂ : E\nr r₁ r₂ : ℝ\na b : E\n⊢ dist a b ≤ ‖a‖ + ‖b‖", "tactic": "rw [dist_eq_norm_div]" }, { "state_after": "no goals", "state_before": "𝓕 : Type ?u.82158\n𝕜 : Type ?u.82161\nα : Type ?u.82164\nι : Type ?u.82167\nκ : Type ?u.82170\nE : Type u_1\nF : Type ?u.82176\nG : Type ?u.82179\ninst✝² : SeminormedGroup E\ninst✝¹ : SeminormedGroup F\ninst✝ : SeminormedGroup G\ns : Set E\na✝ a₁ a₂ b✝ b₁ b₂ : E\nr r₁ r₂ : ℝ\na b : E\n⊢ ‖a / b‖ ≤ ‖a‖ + ‖b‖", "tactic": "apply norm_div_le" } ]
[ 554, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 552, 1 ]
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.aecover_Iio_of_Iio
[]
[ 188, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 187, 1 ]
Mathlib/RingTheory/Polynomial/Cyclotomic/Basic.lean
Polynomial.cyclotomic.isPrimitive
[]
[ 329, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 328, 1 ]
Mathlib/Data/Polynomial/Degree/Lemmas.lean
Polynomial.natDegree_comp_le
[ { "state_after": "R : Type u\nS : Type v\nι : Type w\na b : R\nm n : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh0 : comp p q = 0\n⊢ 0 ≤ natDegree p * natDegree q", "state_before": "R : Type u\nS : Type v\nι : Type w\na b : R\nm n : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh0 : comp p q = 0\n⊢ natDegree (comp p q) ≤ natDegree p * natDegree q", "tactic": "rw [h0, natDegree_zero]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nι : Type w\na b : R\nm n : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh0 : comp p q = 0\n⊢ 0 ≤ natDegree p * natDegree q", "tactic": "exact Nat.zero_le _" }, { "state_after": "R : Type u\nS : Type v\nι : Type w\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh0 : ¬comp p q = 0\nn : ℕ\nhn : n ∈ support p\n⊢ ↑n * ↑(natDegree q) = ↑(n * natDegree q)", "state_before": "R : Type u\nS : Type v\nι : Type w\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh0 : ¬comp p q = 0\nn : ℕ\nhn : n ∈ support p\n⊢ ↑(natDegree (↑C (coeff p n))) + n • ↑(natDegree q) = ↑(n * natDegree q)", "tactic": "rw [natDegree_C, Nat.cast_zero, zero_add, nsmul_eq_mul]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nι : Type w\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh0 : ¬comp p q = 0\nn : ℕ\nhn : n ∈ support p\n⊢ ↑n * ↑(natDegree q) = ↑(n * natDegree q)", "tactic": "simp" } ]
[ 63, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 40, 1 ]
Mathlib/Topology/MetricSpace/Closeds.lean
Metric.lipschitz_infDist_set
[ { "state_after": "α : Type u\ninst✝ : MetricSpace α\nx : α\ns t : NonemptyCompacts α\n⊢ infDist x ↑s ≤ infDist x ↑t + dist t s", "state_before": "α : Type u\ninst✝ : MetricSpace α\nx : α\ns t : NonemptyCompacts α\n⊢ infDist x ↑s ≤ infDist x ↑t + dist s t", "tactic": "rw [dist_comm]" }, { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : MetricSpace α\nx : α\ns t : NonemptyCompacts α\n⊢ infDist x ↑s ≤ infDist x ↑t + dist t s", "tactic": "exact infDist_le_infDist_add_hausdorffDist (edist_ne_top t s)" } ]
[ 426, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 423, 1 ]
Mathlib/Data/Multiset/Dedup.lean
Multiset.dedup_nsmul
[ { "state_after": "case a\nα : Type u_1\nβ : Type ?u.13180\ninst✝ : DecidableEq α\ns : Multiset α\nn : ℕ\nh0 : n ≠ 0\na : α\n⊢ count a (dedup (n • s)) = count a (dedup s)", "state_before": "α : Type u_1\nβ : Type ?u.13180\ninst✝ : DecidableEq α\ns : Multiset α\nn : ℕ\nh0 : n ≠ 0\n⊢ dedup (n • s) = dedup s", "tactic": "ext a" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\nβ : Type ?u.13180\ninst✝ : DecidableEq α\ns : Multiset α\nn : ℕ\nh0 : n ≠ 0\na : α\n⊢ count a (dedup (n • s)) = count a (dedup s)", "tactic": "by_cases h : a ∈ s <;> simp [h, h0]" } ]
[ 141, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]
Mathlib/NumberTheory/LucasLehmer.lean
LucasLehmer.sZMod_eq_s
[ { "state_after": "case zero\np' : ℕ\n⊢ sZMod (p' + 2) zero = ↑(s zero)\n\ncase succ\np' i : ℕ\nih : sZMod (p' + 2) i = ↑(s i)\n⊢ sZMod (p' + 2) (succ i) = ↑(s (succ i))", "state_before": "p' i : ℕ\n⊢ sZMod (p' + 2) i = ↑(s i)", "tactic": "induction' i with i ih" }, { "state_after": "case zero\np' : ℕ\n⊢ 4 = ↑4", "state_before": "case zero\np' : ℕ\n⊢ sZMod (p' + 2) zero = ↑(s zero)", "tactic": "dsimp [s, sZMod]" }, { "state_after": "no goals", "state_before": "case zero\np' : ℕ\n⊢ 4 = ↑4", "tactic": "norm_num" }, { "state_after": "case succ\np' i : ℕ\nih : sZMod (p' + 2) i = ↑(s i)\n⊢ ↑(s i) ^ 2 - 2 = ↑(s i) ^ 2 - 2", "state_before": "case succ\np' i : ℕ\nih : sZMod (p' + 2) i = ↑(s i)\n⊢ sZMod (p' + 2) (succ i) = ↑(s (succ i))", "tactic": "push_cast [s, sZMod, ih]" }, { "state_after": "no goals", "state_before": "case succ\np' i : ℕ\nih : sZMod (p' + 2) i = ↑(s i)\n⊢ ↑(s i) ^ 2 - 2 = ↑(s i) ^ 2 - 2", "tactic": "rfl" } ]
[ 127, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Topology/MetricSpace/IsometricSMul.lean
IsometryEquiv.divRight_symm
[]
[ 232, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 231, 1 ]
Mathlib/CategoryTheory/Limits/Fubini.lean
CategoryTheory.Limits.limitUncurryIsoLimitCompLim_inv_π
[ { "state_after": "J K : Type v\ninst✝⁵ : SmallCategory J\ninst✝⁴ : SmallCategory K\nC : Type u\ninst✝³ : Category C\nF : J ⥤ K ⥤ C\ninst✝² : HasLimitsOfShape K C\ninst✝¹ : HasLimit (uncurry.obj F)\ninst✝ : HasLimit (F ⋙ lim)\nj : J\nk : K\n⊢ (limitUncurryIsoLimitCompLim F).hom ≫ (limitUncurryIsoLimitCompLim F).inv ≫ limit.π (uncurry.obj F) (j, k) =\n (limitUncurryIsoLimitCompLim F).hom ≫ limit.π (F ⋙ lim) j ≫ limit.π (F.obj j) k", "state_before": "J K : Type v\ninst✝⁵ : SmallCategory J\ninst✝⁴ : SmallCategory K\nC : Type u\ninst✝³ : Category C\nF : J ⥤ K ⥤ C\ninst✝² : HasLimitsOfShape K C\ninst✝¹ : HasLimit (uncurry.obj F)\ninst✝ : HasLimit (F ⋙ lim)\nj : J\nk : K\n⊢ (limitUncurryIsoLimitCompLim F).inv ≫ limit.π (uncurry.obj F) (j, k) = limit.π (F ⋙ lim) j ≫ limit.π (F.obj j) k", "tactic": "rw [← cancel_epi (limitUncurryIsoLimitCompLim F).hom]" }, { "state_after": "no goals", "state_before": "J K : Type v\ninst✝⁵ : SmallCategory J\ninst✝⁴ : SmallCategory K\nC : Type u\ninst✝³ : Category C\nF : J ⥤ K ⥤ C\ninst✝² : HasLimitsOfShape K C\ninst✝¹ : HasLimit (uncurry.obj F)\ninst✝ : HasLimit (F ⋙ lim)\nj : J\nk : K\n⊢ (limitUncurryIsoLimitCompLim F).hom ≫ (limitUncurryIsoLimitCompLim F).inv ≫ limit.π (uncurry.obj F) (j, k) =\n (limitUncurryIsoLimitCompLim F).hom ≫ limit.π (F ⋙ lim) j ≫ limit.π (F.obj j) k", "tactic": "simp" } ]
[ 213, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/Topology/ContinuousFunction/Bounded.lean
BoundedContinuousFunction.coe_smul
[]
[ 1078, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1078, 1 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.insert'.valid
[ { "state_after": "α : Type u_1\ninst✝² : Preorder α\ninst✝¹ : IsTotal α fun x x_1 => x ≤ x_1\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nx : α\nt : Ordnode α\nh : Valid t\n⊢ Valid (insertWith id x t)", "state_before": "α : Type u_1\ninst✝² : Preorder α\ninst✝¹ : IsTotal α fun x x_1 => x ≤ x_1\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nx : α\nt : Ordnode α\nh : Valid t\n⊢ Valid (insert' x t)", "tactic": "rw [insert'_eq_insertWith]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : Preorder α\ninst✝¹ : IsTotal α fun x x_1 => x ≤ x_1\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nx : α\nt : Ordnode α\nh : Valid t\n⊢ Valid (insertWith id x t)", "tactic": "exact insertWith.valid _ _ (fun _ => id) h" } ]
[ 1561, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1559, 1 ]
Mathlib/Data/Set/Finite.lean
Set.finite_range
[]
[ 858, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 857, 1 ]
Mathlib/Logic/Relation.lean
Relation.transitive_join
[]
[ 636, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 632, 1 ]
Mathlib/LinearAlgebra/BilinearForm.lean
BilinForm.congr_congr
[]
[ 698, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 696, 1 ]
Mathlib/CategoryTheory/Opposites.lean
Quiver.Hom.op_inj
[]
[ 44, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/Analysis/Convex/Strict.lean
strictConvex_Ico
[]
[ 197, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 196, 1 ]
Mathlib/Topology/Homotopy/Basic.lean
ContinuousMap.HomotopyWith.apply_one
[]
[ 460, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 459, 1 ]
Mathlib/CategoryTheory/Bicategory/Basic.lean
CategoryTheory.Bicategory.associator_inv_naturality_middle
[ { "state_after": "no goals", "state_before": "B : Type u\ninst✝ : Bicategory B\na b c d e : B\nf : a ⟶ b\ng g' : b ⟶ c\nη : g ⟶ g'\nh : c ⟶ d\n⊢ f ◁ η ▷ h ≫ (α_ f g' h).inv = (α_ f g h).inv ≫ (f ◁ η) ▷ h", "tactic": "simp" } ]
[ 365, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 364, 1 ]
Mathlib/Algebra/Algebra/Hom.lean
AlgHom.toFun_eq_coe
[]
[ 130, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/Data/PNat/Basic.lean
PNat.add_sub_of_lt
[ { "state_after": "a b : ℕ+\nh : a < b\n⊢ ↑a + (↑b - ↑a) = ↑b", "state_before": "a b : ℕ+\nh : a < b\n⊢ ↑(a + (b - a)) = ↑b", "tactic": "rw [add_coe, sub_coe, if_pos h]" }, { "state_after": "no goals", "state_before": "a b : ℕ+\nh : a < b\n⊢ ↑a + (↑b - ↑a) = ↑b", "tactic": "exact add_tsub_cancel_of_le h.le" } ]
[ 300, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 296, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Arctan.lean
Real.cos_sq_arctan
[ { "state_after": "no goals", "state_before": "x : ℝ\n⊢ cos (arctan x) ^ 2 = ↑1 / (↑1 + x ^ 2)", "tactic": "rw_mod_cast [one_div, ← inv_one_add_tan_sq (cos_arctan_pos x).ne', tan_arctan]" } ]
[ 145, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/Order/Concept.lean
Concept.fst_ssubset_fst_iff
[]
[ 241, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean
CategoryTheory.Presieve.FamilyOfElements.Compatible.to_sieveCompatible
[]
[ 242, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean
PrimeSpectrum.vanishingIdeal_singleton
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nx : PrimeSpectrum R\n⊢ vanishingIdeal {x} = x.asIdeal", "tactic": "simp [vanishingIdeal]" } ]
[ 178, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 177, 1 ]
Std/Data/RBMap/WF.lean
Std.RBNode.All.ins
[ { "state_after": "case node\nα : Type u_1\np : α → Prop\ncmp : α → α → Ordering\nx : α\nh₁ : p x\nc✝ : RBColor\nl✝ : RBNode α\nv✝ : α\nr✝ : RBNode α\nl_ih✝ : All p l✝ → All p (ins cmp x l✝)\nr_ih✝ : All p r✝ → All p (ins cmp x r✝)\nh₂ : All p (node c✝ l✝ v✝ r✝)\n⊢ All p\n (match node c✝ l✝ v✝ r✝ with\n | nil => node red nil x nil\n | node red a y b =>\n match cmp x y with\n | Ordering.lt => node red (ins cmp x a) y b\n | Ordering.gt => node red a y (ins cmp x b)\n | Ordering.eq => node red a x b\n | node black a y b =>\n match cmp x y with\n | Ordering.lt => balance1 (ins cmp x a) y b\n | Ordering.gt => balance2 a y (ins cmp x b)\n | Ordering.eq => node black a x b)", "state_before": "α : Type u_1\np : α → Prop\ncmp : α → α → Ordering\nx : α\nt : RBNode α\nh₁ : p x\nh₂ : All p t\n⊢ All p (ins cmp x t)", "tactic": "induction t <;> unfold ins <;> simp [*]" }, { "state_after": "no goals", "state_before": "case node\nα : Type u_1\np : α → Prop\ncmp : α → α → Ordering\nx : α\nh₁ : p x\nc✝ : RBColor\nl✝ : RBNode α\nv✝ : α\nr✝ : RBNode α\nl_ih✝ : All p l✝ → All p (ins cmp x l✝)\nr_ih✝ : All p r✝ → All p (ins cmp x r✝)\nh₂ : All p (node c✝ l✝ v✝ r✝)\n⊢ All p\n (match node c✝ l✝ v✝ r✝ with\n | nil => node red nil x nil\n | node red a y b =>\n match cmp x y with\n | Ordering.lt => node red (ins cmp x a) y b\n | Ordering.gt => node red a y (ins cmp x b)\n | Ordering.eq => node red a x b\n | node black a y b =>\n match cmp x y with\n | Ordering.lt => balance1 (ins cmp x a) y b\n | Ordering.gt => balance2 a y (ins cmp x b)\n | Ordering.eq => node black a x b)", "tactic": "split <;> cases ‹_=_› <;> split <;> simp at h₂ <;> simp [*]" } ]
[ 95, 62 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 92, 11 ]
Mathlib/Algebra/Group/Defs.lean
mul_ne_mul_right
[]
[ 203, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Mathlib/Topology/MetricSpace/Completion.lean
UniformSpace.Completion.eq_of_dist_eq_zero
[ { "state_after": "α : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\nthis : SeparatedSpace (Completion α)\n⊢ x = y", "state_before": "α : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\n⊢ x = y", "tactic": "have : SeparatedSpace (Completion α) := by infer_instance" }, { "state_after": "α : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\nthis : SeparatedSpace (Completion α)\ns : Set (Completion α × Completion α)\nhs : s ∈ 𝓤 (Completion α)\n⊢ (x, y) ∈ s", "state_before": "α : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\nthis : SeparatedSpace (Completion α)\n⊢ x = y", "tactic": "refine' separated_def.1 this x y fun s hs ↦ _" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\nthis : SeparatedSpace (Completion α)\ns : Set (Completion α × Completion α)\nhs : s ∈ 𝓤 (Completion α)\nε : ℝ\nεpos : ε > 0\nhε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s\n⊢ (x, y) ∈ s", "state_before": "α : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\nthis : SeparatedSpace (Completion α)\ns : Set (Completion α × Completion α)\nhs : s ∈ 𝓤 (Completion α)\n⊢ (x, y) ∈ s", "tactic": "rcases (Completion.mem_uniformity_dist s).1 hs with ⟨ε, εpos, hε⟩" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\nthis : SeparatedSpace (Completion α)\ns : Set (Completion α × Completion α)\nhs : s ∈ 𝓤 (Completion α)\nε : ℝ\nεpos : ε > dist x y\nhε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s\n⊢ (x, y) ∈ s", "state_before": "case intro.intro\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\nthis : SeparatedSpace (Completion α)\ns : Set (Completion α × Completion α)\nhs : s ∈ 𝓤 (Completion α)\nε : ℝ\nεpos : ε > 0\nhε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s\n⊢ (x, y) ∈ s", "tactic": "rw [← h] at εpos" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\nthis : SeparatedSpace (Completion α)\ns : Set (Completion α × Completion α)\nhs : s ∈ 𝓤 (Completion α)\nε : ℝ\nεpos : ε > dist x y\nhε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s\n⊢ (x, y) ∈ s", "tactic": "exact hε εpos" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y : Completion α\nh : dist x y = 0\n⊢ SeparatedSpace (Completion α)", "tactic": "infer_instance" } ]
[ 153, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 11 ]
Mathlib/Topology/LocallyConstant/Algebra.lean
LocallyConstant.coe_smul
[]
[ 162, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Order/WithBot.lean
WithTop.monotone_map_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.94162\nδ : Type ?u.94165\ninst✝¹ : Preorder α\ninst✝ : Preorder β\nf : α → β\n⊢ ((Monotone fun a => map f ↑a) ∧ ∀ (x : α), map f ↑x ≤ map f ⊤) ↔ Monotone f", "tactic": "simp [Monotone]" } ]
[ 1130, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1128, 1 ]
Mathlib/MeasureTheory/Group/FundamentalDomain.lean
MeasureTheory.IsFundamentalDomain.mk''
[]
[ 102, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Order.lean
tsum_le_of_sum_le'
[ { "state_after": "case pos\nι : Type u_2\nκ : Type ?u.25943\nα : Type u_1\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g : ι → α\na a₁ a₂ : α\nha₂ : 0 ≤ a₂\nh : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂\nhf : Summable f\n⊢ (∑' (i : ι), f i) ≤ a₂\n\ncase neg\nι : Type u_2\nκ : Type ?u.25943\nα : Type u_1\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g : ι → α\na a₁ a₂ : α\nha₂ : 0 ≤ a₂\nh : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂\nhf : ¬Summable f\n⊢ (∑' (i : ι), f i) ≤ a₂", "state_before": "ι : Type u_2\nκ : Type ?u.25943\nα : Type u_1\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g : ι → α\na a₁ a₂ : α\nha₂ : 0 ≤ a₂\nh : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂\n⊢ (∑' (i : ι), f i) ≤ a₂", "tactic": "by_cases hf : Summable f" }, { "state_after": "no goals", "state_before": "case pos\nι : Type u_2\nκ : Type ?u.25943\nα : Type u_1\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g : ι → α\na a₁ a₂ : α\nha₂ : 0 ≤ a₂\nh : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂\nhf : Summable f\n⊢ (∑' (i : ι), f i) ≤ a₂", "tactic": "exact tsum_le_of_sum_le hf h" }, { "state_after": "case neg\nι : Type u_2\nκ : Type ?u.25943\nα : Type u_1\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g : ι → α\na a₁ a₂ : α\nha₂ : 0 ≤ a₂\nh : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂\nhf : ¬Summable f\n⊢ 0 ≤ a₂", "state_before": "case neg\nι : Type u_2\nκ : Type ?u.25943\nα : Type u_1\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g : ι → α\na a₁ a₂ : α\nha₂ : 0 ≤ a₂\nh : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂\nhf : ¬Summable f\n⊢ (∑' (i : ι), f i) ≤ a₂", "tactic": "rw [tsum_eq_zero_of_not_summable hf]" }, { "state_after": "no goals", "state_before": "case neg\nι : Type u_2\nκ : Type ?u.25943\nα : Type u_1\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g : ι → α\na a₁ a₂ : α\nha₂ : 0 ≤ a₂\nh : ∀ (s : Finset ι), ∑ i in s, f i ≤ a₂\nhf : ¬Summable f\n⊢ 0 ≤ a₂", "tactic": "exact ha₂" } ]
[ 125, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/Deprecated/Group.lean
IsAddMonoidHom.isAddMonoidHom_mul_left
[]
[ 232, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 229, 1 ]
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
affineIndependent_iff_not_collinear_of_ne
[ { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\nι : Type ?u.280484\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\np : Fin 3 → P\ni₁ i₂ i₃ : Fin 3\nh₁₂ : i₁ ≠ i₂\nh₁₃ : i₁ ≠ i₃\nh₂₃ : i₂ ≠ i₃\nhu : Finset.univ = {i₁, i₂, i₃}\n⊢ AffineIndependent k p ↔ ¬Collinear k {p i₁, p i₂, p i₃}", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\nι : Type ?u.280484\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\np : Fin 3 → P\ni₁ i₂ i₃ : Fin 3\nh₁₂ : i₁ ≠ i₂\nh₁₃ : i₁ ≠ i₃\nh₂₃ : i₂ ≠ i₃\n⊢ AffineIndependent k p ↔ ¬Collinear k {p i₁, p i₂, p i₃}", "tactic": "have hu : (Finset.univ : Finset (Fin 3)) = {i₁, i₂, i₃} := by\n fin_cases i₁ <;> fin_cases i₂ <;> fin_cases i₃ <;> simp only at h₁₂ h₁₃ h₂₃ ⊢" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\nι : Type ?u.280484\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\np : Fin 3 → P\ni₁ i₂ i₃ : Fin 3\nh₁₂ : i₁ ≠ i₂\nh₁₃ : i₁ ≠ i₃\nh₂₃ : i₂ ≠ i₃\nhu : Finset.univ = {i₁, i₂, i₃}\n⊢ AffineIndependent k p ↔ ¬Collinear k {p i₁, p i₂, p i₃}", "tactic": "rw [affineIndependent_iff_not_collinear, ← Set.image_univ, ← Finset.coe_univ, hu,\n Finset.coe_insert, Finset.coe_insert, Finset.coe_singleton, Set.image_insert_eq, Set.image_pair]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\nι : Type ?u.280484\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\np : Fin 3 → P\ni₁ i₂ i₃ : Fin 3\nh₁₂ : i₁ ≠ i₂\nh₁₃ : i₁ ≠ i₃\nh₂₃ : i₂ ≠ i₃\n⊢ Finset.univ = {i₁, i₂, i₃}", "tactic": "fin_cases i₁ <;> fin_cases i₂ <;> fin_cases i₃ <;> simp only at h₁₂ h₁₃ h₂₃ ⊢" } ]
[ 481, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 474, 1 ]
Std/Data/List/Init/Lemmas.lean
List.foldr_append
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nf : α → β → β\nb : β\nl l' : List α\n⊢ foldr f b (l ++ l') = foldr f (foldr f b l') l", "tactic": "simp [foldr_eq_foldrM]" } ]
[ 200, 80 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 199, 9 ]
Mathlib/RingTheory/Polynomial/Cyclotomic/Basic.lean
Polynomial.cyclotomic_coeff_zero
[ { "state_after": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\n⊢ coeff (cyclotomic n R) 0 = 1", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn : ℕ\nhn : 1 < n\n⊢ coeff (cyclotomic n R) 0 = 1", "tactic": "induction' n using Nat.strong_induction_on with n hi" }, { "state_after": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\n⊢ coeff (cyclotomic n R) 0 = 1", "state_before": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\n⊢ coeff (cyclotomic n R) 0 = 1", "tactic": "have hprod : (∏ i in Nat.properDivisors n, (Polynomial.cyclotomic i R).coeff 0) = -1 := by\n rw [← Finset.insert_erase (Nat.one_mem_properDivisors_iff_one_lt.2\n (lt_of_lt_of_le one_lt_two hn)), Finset.prod_insert (Finset.not_mem_erase 1 _),\n cyclotomic_one R]\n have hleq : ∀ j ∈ n.properDivisors.erase 1, 2 ≤ j := by\n intro j hj\n apply Nat.succ_le_of_lt\n exact (Ne.le_iff_lt (Finset.mem_erase.1 hj).1.symm).mp\n (Nat.succ_le_of_lt (Nat.pos_of_mem_properDivisors (Finset.mem_erase.1 hj).2))\n have hcongr : ∀ j ∈ n.properDivisors.erase 1, (cyclotomic j R).coeff 0 = 1 := by\n intro j hj\n exact hi j (Nat.mem_properDivisors.1 (Finset.mem_erase.1 hj).2).2 (hleq j hj)\n have hrw : (∏ x : ℕ in n.properDivisors.erase 1, (cyclotomic x R).coeff 0) = 1 := by\n rw [Finset.prod_congr (refl (n.properDivisors.erase 1)) hcongr]\n simp only [Finset.prod_const_one]\n simp only [hrw, mul_one, zero_sub, coeff_one_zero, coeff_X_zero, coeff_sub]" }, { "state_after": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\nheq : coeff (X ^ n - 1) 0 = -coeff (cyclotomic n R) 0\n⊢ coeff (cyclotomic n R) 0 = 1", "state_before": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\n⊢ coeff (cyclotomic n R) 0 = 1", "tactic": "have heq : (X ^ n - 1 : R[X]).coeff 0 = -(cyclotomic n R).coeff 0 := by\n rw [← prod_cyclotomic_eq_X_pow_sub_one (zero_le_one.trans_lt hn), ←\n Nat.cons_self_properDivisors hn.ne_bot, Finset.prod_cons, mul_coeff_zero, coeff_zero_prod,\n hprod, mul_neg, mul_one]" }, { "state_after": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\nheq : coeff (X ^ n - 1) 0 = -coeff (cyclotomic n R) 0\nhzero : coeff (X ^ n - 1) 0 = -1\n⊢ coeff (cyclotomic n R) 0 = 1", "state_before": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\nheq : coeff (X ^ n - 1) 0 = -coeff (cyclotomic n R) 0\n⊢ coeff (cyclotomic n R) 0 = 1", "tactic": "have hzero : (X ^ n - 1 : R[X]).coeff 0 = (-1 : R) := by\n rw [coeff_zero_eq_eval_zero _]\n simp only [zero_pow (lt_of_lt_of_le zero_lt_two hn), eval_X, eval_one, zero_sub, eval_pow,\n eval_sub]" }, { "state_after": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\nheq : -1 = -coeff (cyclotomic n R) 0\nhzero : coeff (X ^ n - 1) 0 = -1\n⊢ coeff (cyclotomic n R) 0 = 1", "state_before": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\nheq : coeff (X ^ n - 1) 0 = -coeff (cyclotomic n R) 0\nhzero : coeff (X ^ n - 1) 0 = -1\n⊢ coeff (cyclotomic n R) 0 = 1", "tactic": "rw [hzero] at heq" }, { "state_after": "no goals", "state_before": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\nheq : -1 = -coeff (cyclotomic n R) 0\nhzero : coeff (X ^ n - 1) 0 = -1\n⊢ coeff (cyclotomic n R) 0 = 1", "tactic": "exact neg_inj.mp (Eq.symm heq)" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\n⊢ coeff (X - 1) 0 * ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = -1", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\n⊢ ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1", "tactic": "rw [← Finset.insert_erase (Nat.one_mem_properDivisors_iff_one_lt.2\n (lt_of_lt_of_le one_lt_two hn)), Finset.prod_insert (Finset.not_mem_erase 1 _),\n cyclotomic_one R]" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\n⊢ coeff (X - 1) 0 * ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = -1", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\n⊢ coeff (X - 1) 0 * ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = -1", "tactic": "have hleq : ∀ j ∈ n.properDivisors.erase 1, 2 ≤ j := by\n intro j hj\n apply Nat.succ_le_of_lt\n exact (Ne.le_iff_lt (Finset.mem_erase.1 hj).1.symm).mp\n (Nat.succ_le_of_lt (Nat.pos_of_mem_properDivisors (Finset.mem_erase.1 hj).2))" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\nhcongr : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → coeff (cyclotomic j R) 0 = 1\n⊢ coeff (X - 1) 0 * ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = -1", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\n⊢ coeff (X - 1) 0 * ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = -1", "tactic": "have hcongr : ∀ j ∈ n.properDivisors.erase 1, (cyclotomic j R).coeff 0 = 1 := by\n intro j hj\n exact hi j (Nat.mem_properDivisors.1 (Finset.mem_erase.1 hj).2).2 (hleq j hj)" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\nhcongr : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → coeff (cyclotomic j R) 0 = 1\nhrw : ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = 1\n⊢ coeff (X - 1) 0 * ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = -1", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\nhcongr : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → coeff (cyclotomic j R) 0 = 1\n⊢ coeff (X - 1) 0 * ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = -1", "tactic": "have hrw : (∏ x : ℕ in n.properDivisors.erase 1, (cyclotomic x R).coeff 0) = 1 := by\n rw [Finset.prod_congr (refl (n.properDivisors.erase 1)) hcongr]\n simp only [Finset.prod_const_one]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\nhcongr : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → coeff (cyclotomic j R) 0 = 1\nhrw : ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = 1\n⊢ coeff (X - 1) 0 * ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = -1", "tactic": "simp only [hrw, mul_one, zero_sub, coeff_one_zero, coeff_X_zero, coeff_sub]" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nj : ℕ\nhj : j ∈ Finset.erase (Nat.properDivisors n) 1\n⊢ 2 ≤ j", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\n⊢ ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j", "tactic": "intro j hj" }, { "state_after": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nj : ℕ\nhj : j ∈ Finset.erase (Nat.properDivisors n) 1\n⊢ 1 < j", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nj : ℕ\nhj : j ∈ Finset.erase (Nat.properDivisors n) 1\n⊢ 2 ≤ j", "tactic": "apply Nat.succ_le_of_lt" }, { "state_after": "no goals", "state_before": "case h\nR : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nj : ℕ\nhj : j ∈ Finset.erase (Nat.properDivisors n) 1\n⊢ 1 < j", "tactic": "exact (Ne.le_iff_lt (Finset.mem_erase.1 hj).1.symm).mp\n (Nat.succ_le_of_lt (Nat.pos_of_mem_properDivisors (Finset.mem_erase.1 hj).2))" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\nj : ℕ\nhj : j ∈ Finset.erase (Nat.properDivisors n) 1\n⊢ coeff (cyclotomic j R) 0 = 1", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\n⊢ ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → coeff (cyclotomic j R) 0 = 1", "tactic": "intro j hj" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\nj : ℕ\nhj : j ∈ Finset.erase (Nat.properDivisors n) 1\n⊢ coeff (cyclotomic j R) 0 = 1", "tactic": "exact hi j (Nat.mem_properDivisors.1 (Finset.mem_erase.1 hj).2).2 (hleq j hj)" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\nhcongr : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → coeff (cyclotomic j R) 0 = 1\n⊢ ∏ x in Finset.erase (Nat.properDivisors n) 1, 1 = 1", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\nhcongr : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → coeff (cyclotomic j R) 0 = 1\n⊢ ∏ x in Finset.erase (Nat.properDivisors n) 1, coeff (cyclotomic x R) 0 = 1", "tactic": "rw [Finset.prod_congr (refl (n.properDivisors.erase 1)) hcongr]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhleq : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → 2 ≤ j\nhcongr : ∀ (j : ℕ), j ∈ Finset.erase (Nat.properDivisors n) 1 → coeff (cyclotomic j R) 0 = 1\n⊢ ∏ x in Finset.erase (Nat.properDivisors n) 1, 1 = 1", "tactic": "simp only [Finset.prod_const_one]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\n⊢ coeff (X ^ n - 1) 0 = -coeff (cyclotomic n R) 0", "tactic": "rw [← prod_cyclotomic_eq_X_pow_sub_one (zero_le_one.trans_lt hn), ←\n Nat.cons_self_properDivisors hn.ne_bot, Finset.prod_cons, mul_coeff_zero, coeff_zero_prod,\n hprod, mul_neg, mul_one]" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\nheq : coeff (X ^ n - 1) 0 = -coeff (cyclotomic n R) 0\n⊢ eval 0 (X ^ n - 1) = -1", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\nheq : coeff (X ^ n - 1) 0 = -coeff (cyclotomic n R) 0\n⊢ coeff (X ^ n - 1) 0 = -1", "tactic": "rw [coeff_zero_eq_eval_zero _]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ : ℕ\nhn✝ : 1 < n✝\nn : ℕ\nhi : ∀ (m : ℕ), m < n → 1 < m → coeff (cyclotomic m R) 0 = 1\nhn : 1 < n\nhprod : ∏ i in Nat.properDivisors n, coeff (cyclotomic i R) 0 = -1\nheq : coeff (X ^ n - 1) 0 = -coeff (cyclotomic n R) 0\n⊢ eval 0 (X ^ n - 1) = -1", "tactic": "simp only [zero_pow (lt_of_lt_of_le zero_lt_two hn), eval_X, eval_one, zero_sub, eval_pow,\n eval_sub]" } ]
[ 615, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 587, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.star_leftMoves
[]
[ 1839, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1838, 1 ]
Mathlib/Topology/Order/Basic.lean
nhdsWithin_Ioi_self_neBot
[]
[ 2397, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2396, 1 ]
Mathlib/Analysis/Normed/Field/Basic.lean
norm_pow
[]
[ 548, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 547, 1 ]
Mathlib/Analysis/InnerProductSpace/Projection.lean
Submodule.topologicalClosure_eq_top_iff
[ { "state_after": "𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.886369\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace E\n⊢ Kᗮᗮ = ⊤ ↔ Kᗮ = ⊥", "state_before": "𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.886369\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace E\n⊢ topologicalClosure K = ⊤ ↔ Kᗮ = ⊥", "tactic": "rw [← Submodule.orthogonal_orthogonal_eq_closure]" }, { "state_after": "case mp\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.886369\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace E\nh : Kᗮᗮ = ⊤\n⊢ Kᗮ = ⊥\n\ncase mpr\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.886369\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace E\nh : Kᗮ = ⊥\n⊢ Kᗮᗮ = ⊤", "state_before": "𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.886369\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace E\n⊢ Kᗮᗮ = ⊤ ↔ Kᗮ = ⊥", "tactic": "constructor <;> intro h" }, { "state_after": "no goals", "state_before": "case mp\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.886369\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace E\nh : Kᗮᗮ = ⊤\n⊢ Kᗮ = ⊥", "tactic": "rw [← Submodule.triorthogonal_eq_orthogonal, h, Submodule.top_orthogonal_eq_bot]" }, { "state_after": "no goals", "state_before": "case mpr\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.886369\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace E\nh : Kᗮ = ⊥\n⊢ Kᗮᗮ = ⊤", "tactic": "rw [h, Submodule.bot_orthogonal_eq_top]" } ]
[ 936, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 931, 1 ]
Mathlib/NumberTheory/Padics/Hensel.lean
soln_deriv_norm
[]
[ 396, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 395, 9 ]
Mathlib/Analysis/Convex/Gauge.lean
Convex.gauge_le
[ { "state_after": "case pos\n𝕜 : Type ?u.77419\nE : Type u_1\nF : Type ?u.77425\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na✝ : ℝ\nhs : Convex ℝ s\nh₀ : 0 ∈ s\nabsorbs : Absorbent ℝ s\na : ℝ\nha : 0 ≤ a\n⊢ Convex ℝ {x | gauge s x ≤ a}\n\ncase neg\n𝕜 : Type ?u.77419\nE : Type u_1\nF : Type ?u.77425\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na✝ : ℝ\nhs : Convex ℝ s\nh₀ : 0 ∈ s\nabsorbs : Absorbent ℝ s\na : ℝ\nha : ¬0 ≤ a\n⊢ Convex ℝ {x | gauge s x ≤ a}", "state_before": "𝕜 : Type ?u.77419\nE : Type u_1\nF : Type ?u.77425\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na✝ : ℝ\nhs : Convex ℝ s\nh₀ : 0 ∈ s\nabsorbs : Absorbent ℝ s\na : ℝ\n⊢ Convex ℝ {x | gauge s x ≤ a}", "tactic": "by_cases ha : 0 ≤ a" }, { "state_after": "case pos\n𝕜 : Type ?u.77419\nE : Type u_1\nF : Type ?u.77425\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na✝ : ℝ\nhs : Convex ℝ s\nh₀ : 0 ∈ s\nabsorbs : Absorbent ℝ s\na : ℝ\nha : 0 ≤ a\n⊢ Convex ℝ (⋂ (r : ℝ) (_ : a < r), r • s)", "state_before": "case pos\n𝕜 : Type ?u.77419\nE : Type u_1\nF : Type ?u.77425\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na✝ : ℝ\nhs : Convex ℝ s\nh₀ : 0 ∈ s\nabsorbs : Absorbent ℝ s\na : ℝ\nha : 0 ≤ a\n⊢ Convex ℝ {x | gauge s x ≤ a}", "tactic": "rw [gauge_le_eq hs h₀ absorbs ha]" }, { "state_after": "no goals", "state_before": "case pos\n𝕜 : Type ?u.77419\nE : Type u_1\nF : Type ?u.77425\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na✝ : ℝ\nhs : Convex ℝ s\nh₀ : 0 ∈ s\nabsorbs : Absorbent ℝ s\na : ℝ\nha : 0 ≤ a\n⊢ Convex ℝ (⋂ (r : ℝ) (_ : a < r), r • s)", "tactic": "exact convex_iInter fun i => convex_iInter fun _ => hs.smul _" }, { "state_after": "case h.e'_6\n𝕜 : Type ?u.77419\nE : Type u_1\nF : Type ?u.77425\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na✝ : ℝ\nhs : Convex ℝ s\nh₀ : 0 ∈ s\nabsorbs : Absorbent ℝ s\na : ℝ\nha : ¬0 ≤ a\n⊢ {x | gauge s x ≤ a} = ∅", "state_before": "case neg\n𝕜 : Type ?u.77419\nE : Type u_1\nF : Type ?u.77425\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na✝ : ℝ\nhs : Convex ℝ s\nh₀ : 0 ∈ s\nabsorbs : Absorbent ℝ s\na : ℝ\nha : ¬0 ≤ a\n⊢ Convex ℝ {x | gauge s x ≤ a}", "tactic": "convert convex_empty (𝕜 := ℝ) (E := E)" }, { "state_after": "no goals", "state_before": "case h.e'_6\n𝕜 : Type ?u.77419\nE : Type u_1\nF : Type ?u.77425\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na✝ : ℝ\nhs : Convex ℝ s\nh₀ : 0 ∈ s\nabsorbs : Absorbent ℝ s\na : ℝ\nha : ¬0 ≤ a\n⊢ {x | gauge s x ≤ a} = ∅", "tactic": "exact eq_empty_iff_forall_not_mem.2 fun x hx => ha <| (gauge_nonneg _).trans hx" } ]
[ 213, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 206, 1 ]
Mathlib/Order/Monotone/Basic.lean
antitoneOn_const
[]
[ 538, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 536, 1 ]
Mathlib/Topology/PathConnected.lean
Joined.refl
[]
[ 774, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 773, 1 ]
Mathlib/ModelTheory/FinitelyGenerated.lean
FirstOrder.Language.Substructure.cg_iff_structure_cg
[ { "state_after": "L : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\n⊢ CG S ↔ CG ⊤", "state_before": "L : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\n⊢ CG S ↔ Structure.CG L { x // x ∈ S }", "tactic": "rw [Structure.cg_def]" }, { "state_after": "case refine'_1\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh : CG S\n⊢ CG (map (Embedding.toHom (subtype S)) ⊤)\n\ncase refine'_2\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh : CG ⊤\n⊢ CG S", "state_before": "L : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\n⊢ CG S ↔ CG ⊤", "tactic": "refine' ⟨fun h => CG.of_map_embedding S.subtype _, fun h => _⟩" }, { "state_after": "case refine'_1\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh : CG S\n⊢ CG S", "state_before": "case refine'_1\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh : CG S\n⊢ CG (map (Embedding.toHom (subtype S)) ⊤)", "tactic": "rw [← Hom.range_eq_map, range_subtype]" }, { "state_after": "no goals", "state_before": "case refine'_1\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh : CG S\n⊢ CG S", "tactic": "exact h" }, { "state_after": "case refine'_2\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh✝ : CG ⊤\nh : CG (map (Embedding.toHom (subtype S)) ⊤)\n⊢ CG S", "state_before": "case refine'_2\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh : CG ⊤\n⊢ CG S", "tactic": "have h := h.map S.subtype.toHom" }, { "state_after": "case refine'_2\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh✝ : CG ⊤\nh : CG S\n⊢ CG S", "state_before": "case refine'_2\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh✝ : CG ⊤\nh : CG (map (Embedding.toHom (subtype S)) ⊤)\n⊢ CG S", "tactic": "rw [← Hom.range_eq_map, range_subtype] at h" }, { "state_after": "no goals", "state_before": "case refine'_2\nL : Language\nM : Type u_3\ninst✝ : Structure L M\nS : Substructure L M\nh✝ : CG ⊤\nh : CG S\n⊢ CG S", "tactic": "exact h" } ]
[ 294, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 287, 1 ]
Mathlib/FieldTheory/Subfield.lean
Subfield.mk_le_mk
[]
[ 199, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.coe_add
[]
[ 715, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 714, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.range_fst
[]
[ 1280, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1279, 1 ]
Mathlib/LinearAlgebra/Matrix/ToLin.lean
Algebra.leftMulMatrix_mulVec_repr
[]
[ 900, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 898, 1 ]
Mathlib/Order/Disjoint.lean
Codisjoint.mono_left
[]
[ 257, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 256, 1 ]
Mathlib/Data/PNat/Prime.lean
PNat.Coprime.symm
[ { "state_after": "m n : ℕ+\n⊢ gcd m n = 1 → gcd n m = 1", "state_before": "m n : ℕ+\n⊢ Coprime m n → Coprime n m", "tactic": "unfold Coprime" }, { "state_after": "m n : ℕ+\n⊢ gcd n m = 1 → gcd n m = 1", "state_before": "m n : ℕ+\n⊢ gcd m n = 1 → gcd n m = 1", "tactic": "rw [gcd_comm]" }, { "state_after": "no goals", "state_before": "m n : ℕ+\n⊢ gcd n m = 1 → gcd n m = 1", "tactic": "simp" } ]
[ 245, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 242, 1 ]
Mathlib/Analysis/Calculus/Deriv/Basic.lean
HasDerivWithinAt.congr_of_eventuallyEq_of_mem
[]
[ 595, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 593, 1 ]
Mathlib/Data/Polynomial/Coeff.lean
Polynomial.coeff_X_pow_mul
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q r p : R[X]\nn d : ℕ\n⊢ coeff (X ^ n * p) (d + n) = coeff p d", "tactic": "rw [(commute_X_pow p n).eq, coeff_mul_X_pow]" } ]
[ 246, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 245, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineMap.lean
AffineMap.zero_linear
[]
[ 290, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/Analysis/Calculus/LocalExtr.lean
Polynomial.card_rootSet_le_derivative
[ { "state_after": "no goals", "state_before": "F : Type u_1\ninst✝¹ : CommRing F\ninst✝ : Algebra F ℝ\np : F[X]\n⊢ Fintype.card ↑(rootSet p ℝ) ≤ Fintype.card ↑(rootSet (↑derivative p) ℝ) + 1", "tactic": "simpa only [rootSet_def, Finset.coe_sort_coe, Fintype.card_coe, derivative_map] using\n card_roots_toFinset_le_derivative (p.map (algebraMap F ℝ))" } ]
[ 415, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 412, 1 ]
Mathlib/GroupTheory/PGroup.lean
IsPGroup.coprime_card_of_ne
[ { "state_after": "case intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ : ℕ\nheq₁ : card { x // x ∈ H₁ } = p₁ ^ n₁\n⊢ Nat.coprime (card { x // x ∈ H₁ }) (card { x // x ∈ H₂ })", "state_before": "p : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\n⊢ Nat.coprime (card { x // x ∈ H₁ }) (card { x // x ∈ H₂ })", "tactic": "obtain ⟨n₁, heq₁⟩ := iff_card.mp hH₁" }, { "state_after": "case intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ : ℕ\nheq₁ : card { x // x ∈ H₁ } = p₁ ^ n₁\n⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ })", "state_before": "case intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ : ℕ\nheq₁ : card { x // x ∈ H₁ } = p₁ ^ n₁\n⊢ Nat.coprime (card { x // x ∈ H₁ }) (card { x // x ∈ H₂ })", "tactic": "rw [heq₁]" }, { "state_after": "case intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ : ℕ\n⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ })", "state_before": "case intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ : ℕ\nheq₁ : card { x // x ∈ H₁ } = p₁ ^ n₁\n⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ })", "tactic": "clear heq₁" }, { "state_after": "case intro.intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ n₂ : ℕ\nheq₂ : card { x // x ∈ H₂ } = p₂ ^ n₂\n⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ })", "state_before": "case intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ : ℕ\n⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ })", "tactic": "obtain ⟨n₂, heq₂⟩ := iff_card.mp hH₂" }, { "state_after": "case intro.intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ n₂ : ℕ\nheq₂ : card { x // x ∈ H₂ } = p₂ ^ n₂\n⊢ Nat.coprime (p₁ ^ n₁) (p₂ ^ n₂)", "state_before": "case intro.intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ n₂ : ℕ\nheq₂ : card { x // x ∈ H₂ } = p₂ ^ n₂\n⊢ Nat.coprime (p₁ ^ n₁) (card { x // x ∈ H₂ })", "tactic": "rw [heq₂]" }, { "state_after": "case intro.intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ n₂ : ℕ\n⊢ Nat.coprime (p₁ ^ n₁) (p₂ ^ n₂)", "state_before": "case intro.intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ n₂ : ℕ\nheq₂ : card { x // x ∈ H₂ } = p₂ ^ n₂\n⊢ Nat.coprime (p₁ ^ n₁) (p₂ ^ n₂)", "tactic": "clear heq₂" }, { "state_after": "no goals", "state_before": "case intro.intro\np : ℕ\nG : Type u_2\ninst✝³ : Group G\nG₂ : Type u_1\ninst✝² : Group G₂\np₁ p₂ : ℕ\nhp₁ : Fact (Nat.Prime p₁)\nhp₂ : Fact (Nat.Prime p₂)\nhne : p₁ ≠ p₂\nH₁ : Subgroup G\nH₂ : Subgroup G₂\ninst✝¹ : Fintype { x // x ∈ H₁ }\ninst✝ : Fintype { x // x ∈ H₂ }\nhH₁ : IsPGroup p₁ { x // x ∈ H₁ }\nhH₂ : IsPGroup p₂ { x // x ∈ H₂ }\nn₁ n₂ : ℕ\n⊢ Nat.coprime (p₁ ^ n₁) (p₂ ^ n₂)", "tactic": "exact Nat.coprime_pow_primes _ _ hp₁.elim hp₂.elim hne" } ]
[ 350, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 344, 1 ]
Mathlib/GroupTheory/Index.lean
Subgroup.relindex_inf_mul_relindex
[ { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝ : Group G\nH K L : Subgroup G\n⊢ relindex H (K ⊓ L) * relindex K L = relindex (H ⊓ K) L", "tactic": "rw [← inf_relindex_right H (K ⊓ L), ← inf_relindex_right K L, ← inf_relindex_right (H ⊓ K) L,\n inf_assoc, relindex_mul_relindex (H ⊓ (K ⊓ L)) (K ⊓ L) L inf_le_right inf_le_right]" } ]
[ 150, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 1 ]
Mathlib/Algebra/Lie/Normalizer.lean
LieSubalgebra.le_normalizer
[]
[ 131, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 130, 1 ]
Mathlib/NumberTheory/Padics/PadicVal.lean
padicValRat.of_int_multiplicity
[ { "state_after": "no goals", "state_before": "p : ℕ\nz : ℤ\nhp : p ≠ 1\nhz : z ≠ 0\n⊢ padicValRat p ↑z = ↑(Part.get (multiplicity (↑p) z) (_ : multiplicity.Finite (↑p) z))", "tactic": "rw [of_int, padicValInt.of_ne_one_ne_zero hp hz]" } ]
[ 184, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.bounded_iff_mem_bounded
[]
[ 2308, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2306, 1 ]
Mathlib/RingTheory/LaurentSeries.lean
PowerSeries.coe_C
[]
[ 231, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 230, 1 ]
Mathlib/Data/Nat/Lattice.lean
Nat.sInf_le
[ { "state_after": "s : Set ℕ\nm : ℕ\nhm : m ∈ s\n⊢ Nat.find (_ : ∃ x, x ∈ s) ≤ m", "state_before": "s : Set ℕ\nm : ℕ\nhm : m ∈ s\n⊢ sInf s ≤ m", "tactic": "rw [Nat.sInf_def ⟨m, hm⟩]" }, { "state_after": "no goals", "state_before": "s : Set ℕ\nm : ℕ\nhm : m ∈ s\n⊢ Nat.find (_ : ∃ x, x ∈ s) ≤ m", "tactic": "exact Nat.find_min' ⟨m, hm⟩ hm" } ]
[ 85, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 83, 11 ]
Mathlib/AlgebraicTopology/SplitSimplicialObject.lean
SimplicialObject.Splitting.IndexSet.ext'
[]
[ 77, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/Order/Filter/Archimedean.lean
tendsto_int_cast_atTop_atTop
[]
[ 71, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 1 ]
Mathlib/Computability/TMToPartrec.lean
Turing.ToPartrec.stepNormal_then
[ { "state_after": "case cons\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k'\n\ncase comp\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k'\n\ncase case\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')\n (List.headI v) =\n Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))\n k'\n\ncase fix\nk' : Cont\na✝ : Code\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'", "state_before": "c : Code\nk k' : Cont\nv : List ℕ\n⊢ stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'", "tactic": "induction c generalizing k v <;> simp only [Cont.then, stepNormal, *] <;>\n try { simp only [Cfg.then]; done }" }, { "state_after": "case comp\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k'\n\ncase case\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')\n (List.headI v) =\n Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))\n k'\n\ncase fix\nk' : Cont\na✝ : Code\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'", "state_before": "case cons\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k'\n\ncase comp\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k'\n\ncase case\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')\n (List.headI v) =\n Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))\n k'\n\ncase fix\nk' : Cont\na✝ : Code\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'", "tactic": "case cons c c' ih _ => rw [← ih, Cont.then]" }, { "state_after": "case case\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')\n (List.headI v) =\n Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))\n k'\n\ncase fix\nk' : Cont\na✝ : Code\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'", "state_before": "case comp\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k'\n\ncase case\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')\n (List.headI v) =\n Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))\n k'\n\ncase fix\nk' : Cont\na✝ : Code\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'", "tactic": "case comp c c' _ ih' => rw [← ih', Cont.then]" }, { "state_after": "no goals", "state_before": "case fix\nk' : Cont\na✝ : Code\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'", "tactic": "case fix c ih => rw [← ih, Cont.then]" }, { "state_after": "no goals", "state_before": "k' : Cont\nc c' : Code\nih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal c (Cont.cons₁ c' v (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.cons₁ c' v k) v) k'", "tactic": "rw [← ih, Cont.then]" }, { "state_after": "no goals", "state_before": "k' : Cont\nc c' : Code\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'\nih' : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal c' (Cont.comp c (Cont.then k k')) v = Cfg.then (stepNormal c' (Cont.comp c k) v) k'", "tactic": "rw [← ih', Cont.then]" }, { "state_after": "no goals", "state_before": "case case\nk' : Cont\na✝¹ a✝ : Code\na_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'\na_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'\nk : Cont\nv : List ℕ\n⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')\n (List.headI v) =\n Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))\n k'", "tactic": "cases v.headI <;> simp only [Nat.rec]" }, { "state_after": "no goals", "state_before": "k' : Cont\nc : Code\nih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'\nk : Cont\nv : List ℕ\n⊢ stepNormal c (Cont.fix c (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.fix c k) v) k'", "tactic": "rw [← ih, Cont.then]" } ]
[ 577, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 570, 1 ]
Mathlib/GroupTheory/Submonoid/Pointwise.lean
AddSubmonoid.mul_le_mul_right
[]
[ 595, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 594, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometryEquiv.one_trans
[]
[ 914, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 913, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometryEquiv.coe_prodAssoc_symm
[]
[ 1156, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1154, 1 ]
Mathlib/Analysis/Calculus/Deriv/AffineMap.lean
AffineMap.deriv
[]
[ 47, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 19 ]
Mathlib/MeasureTheory/Constructions/Pi.lean
MeasureTheory.volume_preserving_funUnique
[]
[ 789, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 787, 1 ]
Mathlib/Topology/ContinuousFunction/Basic.lean
Homeomorph.coe_refl
[]
[ 481, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 480, 1 ]
Mathlib/Topology/CompactOpen.lean
ContinuousMap.image_coev
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.40917\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\ny : β\ns : Set α\n⊢ ↑(coev α β y) '' s = {y} ×ˢ s", "tactic": "aesop" } ]
[ 325, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 324, 1 ]
Mathlib/Order/CompleteLattice.lean
iInf_apply
[]
[ 1778, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1776, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
uniformContinuous_ofAdd
[]
[ 1456, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1455, 1 ]
Mathlib/Algebra/Order/Group/Abs.lean
abs_le_abs_of_nonpos
[ { "state_after": "α : Type u_1\ninst✝³ : AddGroup α\ninst✝² : LinearOrder α\ninst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\na b c : α\ninst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\nha : a ≤ 0\nhab : b ≤ a\n⊢ -a ≤ -b", "state_before": "α : Type u_1\ninst✝³ : AddGroup α\ninst✝² : LinearOrder α\ninst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\na b c : α\ninst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\nha : a ≤ 0\nhab : b ≤ a\n⊢ abs a ≤ abs b", "tactic": "rw [abs_of_nonpos ha, abs_of_nonpos (hab.trans ha)]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : AddGroup α\ninst✝² : LinearOrder α\ninst✝¹ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\na b c : α\ninst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\nha : a ≤ 0\nhab : b ≤ a\n⊢ -a ≤ -b", "tactic": "exact neg_le_neg_iff.mpr hab" } ]
[ 196, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/Analysis/Convex/Quasiconvex.lean
quasiconcaveOn_iff_min_le
[]
[ 136, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
Right.one_le_mul_of_le_of_le
[]
[ 936, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 934, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.PushoutCocone.inr_colimit_cocone
[]
[ 1166, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1165, 1 ]
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
MeasureTheory.SignedMeasure.findExistsOneDivLT_min
[ { "state_after": "α : Type u_1\nβ : Type ?u.3427\ninst✝³ : MeasurableSpace α\nM : Type ?u.3433\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\nhi : ¬restrict s i ≤ restrict 0 i\nm : ℕ\nhm : m < Nat.find (_ : ∃ n, MeasureTheory.SignedMeasure.ExistsOneDivLT s i n)\n⊢ ¬MeasureTheory.SignedMeasure.ExistsOneDivLT s i m", "state_before": "α : Type u_1\nβ : Type ?u.3427\ninst✝³ : MeasurableSpace α\nM : Type ?u.3433\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\nhi : ¬restrict s i ≤ restrict 0 i\nm : ℕ\nhm : m < MeasureTheory.SignedMeasure.findExistsOneDivLT s i\n⊢ ¬MeasureTheory.SignedMeasure.ExistsOneDivLT s i m", "tactic": "rw [findExistsOneDivLT, dif_pos hi] at hm" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.3427\ninst✝³ : MeasurableSpace α\nM : Type ?u.3433\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\nhi : ¬restrict s i ≤ restrict 0 i\nm : ℕ\nhm : m < Nat.find (_ : ∃ n, MeasureTheory.SignedMeasure.ExistsOneDivLT s i n)\n⊢ ¬MeasureTheory.SignedMeasure.ExistsOneDivLT s i m", "tactic": "exact Nat.find_min _ hm" } ]
[ 121, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 9 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.mk_uniformity_basis_le
[ { "state_after": "α : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\n⊢ (∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s) ↔ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s", "state_before": "α : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\n⊢ HasBasis (𝓤 α) p fun x => {p | dist p.fst p.snd ≤ f x}", "tactic": "refine' ⟨fun s => uniformity_basis_dist.mem_iff.trans _⟩" }, { "state_after": "case mp\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\n⊢ (∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s) → ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s\n\ncase mpr\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\n⊢ (∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s) → ∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s", "state_before": "α : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\n⊢ (∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s) ↔ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s", "tactic": "constructor" }, { "state_after": "case mp.intro.intro\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε✝ ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\nε : ℝ\nε₀ : 0 < ε\nhε : {p | dist p.fst p.snd < ε} ⊆ s\n⊢ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s", "state_before": "case mp\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\n⊢ (∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s) → ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s", "tactic": "rintro ⟨ε, ε₀, hε⟩" }, { "state_after": "case mp.intro.intro.intro\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε✝ ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\nε : ℝ\nε₀ : 0 < ε\nhε : {p | dist p.fst p.snd < ε} ⊆ s\nε' : ℝ\nhε' : 0 < ε' ∧ ε' < ε\n⊢ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s", "state_before": "case mp.intro.intro\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε✝ ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\nε : ℝ\nε₀ : 0 < ε\nhε : {p | dist p.fst p.snd < ε} ⊆ s\n⊢ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s", "tactic": "rcases exists_between ε₀ with ⟨ε', hε'⟩" }, { "state_after": "case mp.intro.intro.intro.intro.intro\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε✝ ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\nε : ℝ\nε₀ : 0 < ε\nhε : {p | dist p.fst p.snd < ε} ⊆ s\nε' : ℝ\nhε' : 0 < ε' ∧ ε' < ε\ni : β\nhi : p i\nH : f i ≤ ε'\n⊢ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s", "state_before": "case mp.intro.intro.intro\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε✝ ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\nε : ℝ\nε₀ : 0 < ε\nhε : {p | dist p.fst p.snd < ε} ⊆ s\nε' : ℝ\nhε' : 0 < ε' ∧ ε' < ε\n⊢ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s", "tactic": "rcases hf ε' hε'.1 with ⟨i, hi, H⟩" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.intro.intro\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε✝ ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\nε : ℝ\nε₀ : 0 < ε\nhε : {p | dist p.fst p.snd < ε} ⊆ s\nε' : ℝ\nhε' : 0 < ε' ∧ ε' < ε\ni : β\nhi : p i\nH : f i ≤ ε'\n⊢ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s", "tactic": "exact ⟨i, hi, fun x (hx : _ ≤ _) => hε <| lt_of_le_of_lt (le_trans hx H) hε'.2⟩" }, { "state_after": "no goals", "state_before": "case mpr\nα : Type u\nβ✝ : Type v\nX : Type ?u.55514\nι : Type ?u.55517\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns✝ : Set α\nβ : Type u_1\np : β → Prop\nf : β → ℝ\nhf₀ : ∀ (x : β), p x → 0 < f x\nhf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε\ns : Set (α × α)\n⊢ (∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s) → ∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s", "tactic": "exact fun ⟨i, hi, H⟩ => ⟨f i, hf₀ i hi, fun x (hx : _ < _) => H (mem_setOf.2 hx.le)⟩" } ]
[ 792, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 783, 11 ]
Mathlib/Analysis/Normed/Group/Basic.lean
dist_inv
[ { "state_after": "no goals", "state_before": "𝓕 : Type ?u.635485\n𝕜 : Type ?u.635488\nα : Type ?u.635491\nι : Type ?u.635494\nκ : Type ?u.635497\nE : Type u_1\nF : Type ?u.635503\nG : Type ?u.635506\ninst✝¹ : SeminormedCommGroup E\ninst✝ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\nx y : E\n⊢ dist x⁻¹ y = dist x y⁻¹", "tactic": "simp_rw [dist_eq_norm_div, ← norm_inv' (x⁻¹ / y), inv_div, div_inv_eq_mul, mul_comm]" } ]
[ 1397, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1396, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.lt_of_equiv_of_lt
[]
[ 846, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 845, 1 ]
src/lean/Init/Core.lean
if_pos
[]
[ 793, 33 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 790, 1 ]
Mathlib/NumberTheory/Padics/PadicIntegers.lean
PadicInt.norm_int_cast_eq_padic_norm
[ { "state_after": "no goals", "state_before": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nz : ℤ\n⊢ ‖↑z‖ = ‖↑z‖", "tactic": "simp [norm_def]" } ]
[ 304, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 304, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/LogDeriv.lean
HasDerivAt.clog
[ { "state_after": "α : Type ?u.36688\ninst✝² : TopologicalSpace α\nE : Type ?u.36694\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → ℂ\nf' x : ℂ\nh₁ : HasDerivAt f f' x\nh₂ : 0 < (f x).re ∨ (f x).im ≠ 0\n⊢ HasDerivAt (fun t => log (f t)) ((f x)⁻¹ * f') x", "state_before": "α : Type ?u.36688\ninst✝² : TopologicalSpace α\nE : Type ?u.36694\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → ℂ\nf' x : ℂ\nh₁ : HasDerivAt f f' x\nh₂ : 0 < (f x).re ∨ (f x).im ≠ 0\n⊢ HasDerivAt (fun t => log (f t)) (f' / f x) x", "tactic": "rw [div_eq_inv_mul]" }, { "state_after": "no goals", "state_before": "α : Type ?u.36688\ninst✝² : TopologicalSpace α\nE : Type ?u.36694\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → ℂ\nf' x : ℂ\nh₁ : HasDerivAt f f' x\nh₂ : 0 < (f x).re ∨ (f x).im ≠ 0\n⊢ HasDerivAt (fun t => log (f t)) ((f x)⁻¹ * f') x", "tactic": "exact (hasStrictDerivAt_log h₂).hasDerivAt.comp x h₁" } ]
[ 104, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/Algebra/Order/Ring/Defs.lean
Antitone.mul
[]
[ 452, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 451, 1 ]