file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean
CircleDeg1Lift.ext
[]
[ 174, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/MeasureTheory/Measure/Content.lean
MeasureTheory.Content.innerContent_iSup_nat
[ { "state_after": "G : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\n⊢ (fun s => ↑(toFun μ s)) K ≤ ∑' (i : ℕ), innerContent μ (U i)", "state_before": "G : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\n⊢ innerContent μ (⨆ (i : ℕ), U i) ≤ ∑' (i : ℕ), innerContent μ (U i)", "tactic": "refine' iSup₂_le fun K hK => _" }, { "state_after": "case intro\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\n⊢ (fun s => ↑(toFun μ s)) K ≤ ∑' (i : ℕ), innerContent μ (U i)", "state_before": "G : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\n⊢ (fun s => ↑(toFun μ s)) K ≤ ∑' (i : ℕ), innerContent μ (U i)", "tactic": "obtain ⟨t, ht⟩ :=\n K.isCompact.elim_finite_subcover _ (fun i => (U i).isOpen) (by rwa [← Opens.coe_iSup])" }, { "state_after": "case intro.intro.intro.intro\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\n⊢ (fun s => ↑(toFun μ s)) K ≤ ∑' (i : ℕ), innerContent μ (U i)", "state_before": "case intro\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\n⊢ (fun s => ↑(toFun μ s)) K ≤ ∑' (i : ℕ), innerContent μ (U i)", "tactic": "rcases K.isCompact.finite_compact_cover t (SetLike.coe ∘ U) (fun i _ => (U i).isOpen) ht with\n ⟨K', h1K', h2K', h3K'⟩" }, { "state_after": "case intro.intro.intro.intro\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ (fun s => ↑(toFun μ s)) K ≤ ∑' (i : ℕ), innerContent μ (U i)", "state_before": "case intro.intro.intro.intro\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\n⊢ (fun s => ↑(toFun μ s)) K ≤ ∑' (i : ℕ), innerContent μ (U i)", "tactic": "let L : ℕ → Compacts G := fun n => ⟨K' n, h1K' n⟩" }, { "state_after": "case h.e'_3.h.e'_1\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ K = Finset.sup t L\n\ncase intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ (Finset.sum t fun i => (fun s => ↑(toFun μ s)) (L i)) ≤ ∑' (i : ℕ), innerContent μ (U i)", "state_before": "case intro.intro.intro.intro\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ (fun s => ↑(toFun μ s)) K ≤ ∑' (i : ℕ), innerContent μ (U i)", "tactic": "convert le_trans (h3 t L) _" }, { "state_after": "case intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ ∀ (i : ℕ), i ∈ t → (fun s => ↑(toFun μ s)) (L i) ≤ innerContent μ (U i)", "state_before": "case intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ (Finset.sum t fun i => (fun s => ↑(toFun μ s)) (L i)) ≤ ∑' (i : ℕ), innerContent μ (U i)", "tactic": "refine' le_trans (Finset.sum_le_sum _) (ENNReal.sum_le_tsum t)" }, { "state_after": "case intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\ni : ℕ\na✝ : i ∈ t\n⊢ (fun s => ↑(toFun μ s)) (L i) ≤ innerContent μ (U i)", "state_before": "case intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ ∀ (i : ℕ), i ∈ t → (fun s => ↑(toFun μ s)) (L i) ≤ innerContent μ (U i)", "tactic": "intro i _" }, { "state_after": "case intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\ni : ℕ\na✝ : i ∈ t\n⊢ (fun s => ↑(toFun μ s)) (L i) ≤ ⨆ (_ : ↑(L i) ⊆ ↑(U i)), (fun s => ↑(toFun μ s)) (L i)", "state_before": "case intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\ni : ℕ\na✝ : i ∈ t\n⊢ (fun s => ↑(toFun μ s)) (L i) ≤ innerContent μ (U i)", "tactic": "refine' le_trans _ (le_iSup _ (L i))" }, { "state_after": "case intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\ni : ℕ\na✝ : i ∈ t\n⊢ (fun s => ↑(toFun μ s)) (L i) ≤ (fun s => ↑(toFun μ s)) (L i)", "state_before": "case intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\ni : ℕ\na✝ : i ∈ t\n⊢ (fun s => ↑(toFun μ s)) (L i) ≤ ⨆ (_ : ↑(L i) ⊆ ↑(U i)), (fun s => ↑(toFun μ s)) (L i)", "tactic": "refine' le_trans _ (le_iSup _ (h2K' i))" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.convert_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\ni : ℕ\na✝ : i ∈ t\n⊢ (fun s => ↑(toFun μ s)) (L i) ≤ (fun s => ↑(toFun μ s)) (L i)", "tactic": "rfl" }, { "state_after": "G : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\n⊢ (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)", "state_before": "G : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\n⊢ ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)", "tactic": "intro t K" }, { "state_after": "case refine'_1\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\n⊢ (fun s => ↑(toFun μ s)) (Finset.sup ∅ K) ≤ Finset.sum ∅ fun i => (fun s => ↑(toFun μ s)) (K i)\n\ncase refine'_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\n⊢ ∀ ⦃a : ℕ⦄ {s : Finset ℕ},\n ¬a ∈ s →\n ((fun s => ↑(toFun μ s)) (Finset.sup s K) ≤ Finset.sum s fun i => (fun s => ↑(toFun μ s)) (K i)) →\n (fun s => ↑(toFun μ s)) (Finset.sup (insert a s) K) ≤\n Finset.sum (insert a s) fun i => (fun s => ↑(toFun μ s)) (K i)", "state_before": "G : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\n⊢ (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)", "tactic": "refine' Finset.induction_on t _ _" }, { "state_after": "no goals", "state_before": "case refine'_1\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\n⊢ (fun s => ↑(toFun μ s)) (Finset.sup ∅ K) ≤ Finset.sum ∅ fun i => (fun s => ↑(toFun μ s)) (K i)", "tactic": "simp only [μ.empty, nonpos_iff_eq_zero, Finset.sum_empty, Finset.sup_empty]" }, { "state_after": "case refine'_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\nn : ℕ\ns : Finset ℕ\nhn : ¬n ∈ s\nih : (fun s => ↑(toFun μ s)) (Finset.sup s K) ≤ Finset.sum s fun i => (fun s => ↑(toFun μ s)) (K i)\n⊢ (fun s => ↑(toFun μ s)) (Finset.sup (insert n s) K) ≤ Finset.sum (insert n s) fun i => (fun s => ↑(toFun μ s)) (K i)", "state_before": "case refine'_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\n⊢ ∀ ⦃a : ℕ⦄ {s : Finset ℕ},\n ¬a ∈ s →\n ((fun s => ↑(toFun μ s)) (Finset.sup s K) ≤ Finset.sum s fun i => (fun s => ↑(toFun μ s)) (K i)) →\n (fun s => ↑(toFun μ s)) (Finset.sup (insert a s) K) ≤\n Finset.sum (insert a s) fun i => (fun s => ↑(toFun μ s)) (K i)", "tactic": "intro n s hn ih" }, { "state_after": "case refine'_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\nn : ℕ\ns : Finset ℕ\nhn : ¬n ∈ s\nih : (fun s => ↑(toFun μ s)) (Finset.sup s K) ≤ Finset.sum s fun i => (fun s => ↑(toFun μ s)) (K i)\n⊢ (fun s => ↑(toFun μ s)) (K n ⊔ Finset.sup s K) ≤\n (fun s => ↑(toFun μ s)) (K n) + Finset.sum s fun x => (fun s => ↑(toFun μ s)) (K x)", "state_before": "case refine'_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\nn : ℕ\ns : Finset ℕ\nhn : ¬n ∈ s\nih : (fun s => ↑(toFun μ s)) (Finset.sup s K) ≤ Finset.sum s fun i => (fun s => ↑(toFun μ s)) (K i)\n⊢ (fun s => ↑(toFun μ s)) (Finset.sup (insert n s) K) ≤ Finset.sum (insert n s) fun i => (fun s => ↑(toFun μ s)) (K i)", "tactic": "rw [Finset.sup_insert, Finset.sum_insert hn]" }, { "state_after": "no goals", "state_before": "case refine'_2\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nt : Finset ℕ\nK : ℕ → Compacts G\nn : ℕ\ns : Finset ℕ\nhn : ¬n ∈ s\nih : (fun s => ↑(toFun μ s)) (Finset.sup s K) ≤ Finset.sum s fun i => (fun s => ↑(toFun μ s)) (K i)\n⊢ (fun s => ↑(toFun μ s)) (K n ⊔ Finset.sup s K) ≤\n (fun s => ↑(toFun μ s)) (K n) + Finset.sum s fun x => (fun s => ↑(toFun μ s)) (K x)", "tactic": "exact le_trans (μ.sup_le _ _) (add_le_add_left ih _)" }, { "state_after": "no goals", "state_before": "G : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\n⊢ ↑K ⊆ ⋃ (i : ℕ), ↑(U i)", "tactic": "rwa [← Opens.coe_iSup]" }, { "state_after": "case h.e'_3.h.e'_1.h\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ ↑K = ↑(Finset.sup t L)", "state_before": "case h.e'_3.h.e'_1\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ K = Finset.sup t L", "tactic": "ext1" }, { "state_after": "case h.e'_3.h.e'_1.h\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ ↑K = ⨆ (a : ℕ) (_ : a ∈ t), ↑(L a)", "state_before": "case h.e'_3.h.e'_1.h\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ ↑K = ↑(Finset.sup t L)", "tactic": "rw [Compacts.coe_finset_sup, Finset.sup_eq_iSup]" }, { "state_after": "no goals", "state_before": "case h.e'_3.h.e'_1.h\nG : Type w\ninst✝¹ : TopologicalSpace G\nμ : Content G\ninst✝ : T2Space G\nU : ℕ → Opens G\nh3 :\n ∀ (t : Finset ℕ) (K : ℕ → Compacts G),\n (fun s => ↑(toFun μ s)) (Finset.sup t K) ≤ Finset.sum t fun i => (fun s => ↑(toFun μ s)) (K i)\nK : Compacts G\nhK : ↑K ⊆ ↑(⨆ (i : ℕ), U i)\nt : Finset ℕ\nht : ↑K ⊆ ⋃ (i : ℕ) (_ : i ∈ t), ↑(U i)\nK' : ℕ → Set G\nh1K' : ∀ (i : ℕ), IsCompact (K' i)\nh2K' : ∀ (i : ℕ), K' i ⊆ (SetLike.coe ∘ U) i\nh3K' : ↑K = ⋃ (i : ℕ) (_ : i ∈ t), K' i\nL : ℕ → Compacts G := fun n => { carrier := K' n, isCompact' := (_ : IsCompact (K' n)) }\n⊢ ↑K = ⨆ (a : ℕ) (_ : a ∈ t), ↑(L a)", "tactic": "exact h3K'" } ]
[ 196, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/Data/List/Zip.lean
List.mem_zip
[ { "state_after": "case head\nα : Type u\nβ : Type u_1\nγ : Type ?u.74738\nδ : Type ?u.74741\nε : Type ?u.74744\na : α\nb : β\nl₁ : List α\nl₂ : List β\n⊢ a ∈ a :: l₁ ∧ b ∈ b :: l₂\n\ncase tail\nα : Type u\nβ : Type u_1\nγ : Type ?u.74738\nδ : Type ?u.74741\nε : Type ?u.74744\na : α\nb : β\nhead✝¹ : α\nl₁ : List α\nhead✝ : β\nl₂ : List β\nh : Mem (a, b) (zipWith Prod.mk l₁ l₂)\n⊢ a ∈ head✝¹ :: l₁ ∧ b ∈ head✝ :: l₂", "state_before": "α : Type u\nβ : Type u_1\nγ : Type ?u.74738\nδ : Type ?u.74741\nε : Type ?u.74744\na : α\nb : β\nhead✝¹ : α\nl₁ : List α\nhead✝ : β\nl₂ : List β\nh : (a, b) ∈ zip (head✝¹ :: l₁) (head✝ :: l₂)\n⊢ a ∈ head✝¹ :: l₁ ∧ b ∈ head✝ :: l₂", "tactic": "cases' h with _ _ _ h" }, { "state_after": "no goals", "state_before": "case head\nα : Type u\nβ : Type u_1\nγ : Type ?u.74738\nδ : Type ?u.74741\nε : Type ?u.74744\na : α\nb : β\nl₁ : List α\nl₂ : List β\n⊢ a ∈ a :: l₁ ∧ b ∈ b :: l₂", "tactic": "simp" }, { "state_after": "case tail\nα : Type u\nβ : Type u_1\nγ : Type ?u.74738\nδ : Type ?u.74741\nε : Type ?u.74744\na : α\nb : β\nhead✝¹ : α\nl₁ : List α\nhead✝ : β\nl₂ : List β\nh : Mem (a, b) (zipWith Prod.mk l₁ l₂)\nthis : a ∈ l₁ ∧ b ∈ l₂\n⊢ a ∈ head✝¹ :: l₁ ∧ b ∈ head✝ :: l₂", "state_before": "case tail\nα : Type u\nβ : Type u_1\nγ : Type ?u.74738\nδ : Type ?u.74741\nε : Type ?u.74744\na : α\nb : β\nhead✝¹ : α\nl₁ : List α\nhead✝ : β\nl₂ : List β\nh : Mem (a, b) (zipWith Prod.mk l₁ l₂)\n⊢ a ∈ head✝¹ :: l₁ ∧ b ∈ head✝ :: l₂", "tactic": "have := mem_zip h" }, { "state_after": "no goals", "state_before": "case tail\nα : Type u\nβ : Type u_1\nγ : Type ?u.74738\nδ : Type ?u.74741\nε : Type ?u.74744\na : α\nb : β\nhead✝¹ : α\nl₁ : List α\nhead✝ : β\nl₂ : List β\nh : Mem (a, b) (zipWith Prod.mk l₁ l₂)\nthis : a ∈ l₁ ∧ b ∈ l₂\n⊢ a ∈ head✝¹ :: l₁ ∧ b ∈ head✝ :: l₂", "tactic": "exact ⟨Mem.tail _ this.1, Mem.tail _ this.2⟩" } ]
[ 178, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.row_mulVec
[ { "state_after": "case a.h\nl : Type ?u.1216877\nm : Type u_2\nn : Type u_1\no : Type ?u.1216886\nm' : o → Type ?u.1216891\nn' : o → Type ?u.1216896\nR : Type ?u.1216899\nS : Type ?u.1216902\nα : Type v\nβ : Type w\nγ : Type ?u.1216909\ninst✝¹ : Fintype n\ninst✝ : NonUnitalNonAssocSemiring α\nM : Matrix m n α\nv : n → α\ni✝ : Unit\nx✝ : m\n⊢ row (mulVec M v) i✝ x✝ = (M ⬝ col v)ᵀ i✝ x✝", "state_before": "l : Type ?u.1216877\nm : Type u_2\nn : Type u_1\no : Type ?u.1216886\nm' : o → Type ?u.1216891\nn' : o → Type ?u.1216896\nR : Type ?u.1216899\nS : Type ?u.1216902\nα : Type v\nβ : Type w\nγ : Type ?u.1216909\ninst✝¹ : Fintype n\ninst✝ : NonUnitalNonAssocSemiring α\nM : Matrix m n α\nv : n → α\n⊢ row (mulVec M v) = (M ⬝ col v)ᵀ", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a.h\nl : Type ?u.1216877\nm : Type u_2\nn : Type u_1\no : Type ?u.1216886\nm' : o → Type ?u.1216891\nn' : o → Type ?u.1216896\nR : Type ?u.1216899\nS : Type ?u.1216902\nα : Type v\nβ : Type w\nγ : Type ?u.1216909\ninst✝¹ : Fintype n\ninst✝ : NonUnitalNonAssocSemiring α\nM : Matrix m n α\nv : n → α\ni✝ : Unit\nx✝ : m\n⊢ row (mulVec M v) i✝ x✝ = (M ⬝ col v)ᵀ i✝ x✝", "tactic": "rfl" } ]
[ 2723, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2720, 1 ]
Mathlib/RingTheory/Localization/Basic.lean
Localization.algEquiv_mk'
[]
[ 1070, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1069, 8 ]
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.comap_isPrime
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nF : Type u_1\ninst✝¹ : Semiring R\ninst✝ : Semiring S\nrc : RingHomClass F R S\nf : F\nI J : Ideal R\nK L : Ideal S\nG : Type ?u.792741\nrcg : RingHomClass G S R\nι : Sort ?u.792775\nH : IsPrime K\nx y : R\nh : x * y ∈ comap f K\n⊢ ↑f x * ↑f y ∈ K", "tactic": "rwa [mem_comap, map_mul] at h" } ]
[ 1497, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1496, 1 ]
Mathlib/Analysis/Convex/Basic.lean
convex_iff_pairwise_pos
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.14989\nβ : Type ?u.14992\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns : Set E\nx : E\n⊢ (Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s) →\n ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.14989\nβ : Type ?u.14992\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns : Set E\nx : E\n⊢ Convex 𝕜 s ↔ Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s", "tactic": "refine' convex_iff_forall_pos.trans ⟨fun h x hx y hy _ => h hx hy, _⟩" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.14989\nβ : Type ?u.14992\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns : Set E\nx✝ : E\nh : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • x + b • y ∈ s", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.14989\nβ : Type ?u.14992\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns : Set E\nx : E\n⊢ (Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s) →\n ∀ ⦃x : E⦄, x ∈ s → ∀ ⦃y : E⦄, y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s", "tactic": "intro h x hx y hy a b ha hb hab" }, { "state_after": "case inl\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.14989\nβ : Type ?u.14992\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns : Set E\nx✝ : E\nh : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s\nx : E\nhx : x ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\nhy : x ∈ s\n⊢ a • x + b • x ∈ s\n\ncase inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.14989\nβ : Type ?u.14992\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns : Set E\nx✝ : E\nh : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\nhxy : x ≠ y\n⊢ a • x + b • y ∈ s", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.14989\nβ : Type ?u.14992\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns : Set E\nx✝ : E\nh : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • x + b • y ∈ s", "tactic": "obtain rfl | hxy := eq_or_ne x y" }, { "state_after": "no goals", "state_before": "case inl\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.14989\nβ : Type ?u.14992\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns : Set E\nx✝ : E\nh : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s\nx : E\nhx : x ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\nhy : x ∈ s\n⊢ a • x + b • x ∈ s", "tactic": "rwa [Convex.combo_self hab]" }, { "state_after": "no goals", "state_before": "case inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.14989\nβ : Type ?u.14992\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\ns : Set E\nx✝ : E\nh : Set.Pairwise s fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\nhxy : x ≠ y\n⊢ a • x + b • y ∈ s", "tactic": "exact h hx hy hxy ha hb hab" } ]
[ 163, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 157, 1 ]
Mathlib/Topology/Connected.lean
IsConnected.iUnion_of_chain
[ { "state_after": "α : Type u\nβ : Type v\nι : Type ?u.12147\nπ : ι → Type ?u.12152\ninst✝⁴ : TopologicalSpace α\ns✝ t u v : Set α\ninst✝³ : LinearOrder β\ninst✝² : SuccOrder β\ninst✝¹ : IsSuccArchimedean β\ninst✝ : Nonempty β\ns : β → Set α\nH : ∀ (n : β), IsConnected (s n)\nK : ∀ (n : β), Set.Nonempty (s n ∩ s (succ n))\ni✝ j i : β\nx✝ : i ∈ Ico j i✝\n⊢ Set.Nonempty (s i ∩ s (succ i))", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.12147\nπ : ι → Type ?u.12152\ninst✝⁴ : TopologicalSpace α\ns✝ t u v : Set α\ninst✝³ : LinearOrder β\ninst✝² : SuccOrder β\ninst✝¹ : IsSuccArchimedean β\ninst✝ : Nonempty β\ns : β → Set α\nH : ∀ (n : β), IsConnected (s n)\nK : ∀ (n : β), Set.Nonempty (s n ∩ s (succ n))\ni✝ j i : β\nx✝ : i ∈ Ico j i✝\n⊢ Set.Nonempty (s (succ i) ∩ s i)", "tactic": "rw [inter_comm]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.12147\nπ : ι → Type ?u.12152\ninst✝⁴ : TopologicalSpace α\ns✝ t u v : Set α\ninst✝³ : LinearOrder β\ninst✝² : SuccOrder β\ninst✝¹ : IsSuccArchimedean β\ninst✝ : Nonempty β\ns : β → Set α\nH : ∀ (n : β), IsConnected (s n)\nK : ∀ (n : β), Set.Nonempty (s n ∩ s (succ n))\ni✝ j i : β\nx✝ : i ∈ Ico j i✝\n⊢ Set.Nonempty (s i ∩ s (succ i))", "tactic": "exact K i" } ]
[ 255, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 250, 1 ]
Mathlib/FieldTheory/RatFunc.lean
RatFunc.map_apply_ofFractionRing_mk
[ { "state_after": "K : Type u\ninst✝⁵ : CommRing K\nG₀ : Type ?u.616578\nL : Type ?u.616581\nR : Type u_2\nS : Type u_3\nF : Type u_1\ninst✝⁴ : CommGroupWithZero G₀\ninst✝³ : Field L\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : MonoidHomClass F R[X] S[X]\nφ : F\nhφ : R[X]⁰ ≤ Submonoid.comap φ S[X]⁰\nn : R[X]\nd : { x // x ∈ R[X]⁰ }\n⊢ (if h : ↑φ ↑d ∈ S[X]⁰ then { toFractionRing := Localization.mk (↑φ n) { val := ↑φ ↑d, property := h } } else 0) =\n { toFractionRing := Localization.mk (↑φ n) { val := ↑φ ↑d, property := (_ : ↑d ∈ Submonoid.comap φ S[X]⁰) } }", "state_before": "K : Type u\ninst✝⁵ : CommRing K\nG₀ : Type ?u.616578\nL : Type ?u.616581\nR : Type u_2\nS : Type u_3\nF : Type u_1\ninst✝⁴ : CommGroupWithZero G₀\ninst✝³ : Field L\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : MonoidHomClass F R[X] S[X]\nφ : F\nhφ : R[X]⁰ ≤ Submonoid.comap φ S[X]⁰\nn : R[X]\nd : { x // x ∈ R[X]⁰ }\n⊢ ↑(map φ hφ) { toFractionRing := Localization.mk n d } =\n { toFractionRing := Localization.mk (↑φ n) { val := ↑φ ↑d, property := (_ : ↑d ∈ Submonoid.comap φ S[X]⁰) } }", "tactic": "refine (liftOn_ofFractionRing_mk n _ _ _).trans ?_" }, { "state_after": "no goals", "state_before": "K : Type u\ninst✝⁵ : CommRing K\nG₀ : Type ?u.616578\nL : Type ?u.616581\nR : Type u_2\nS : Type u_3\nF : Type u_1\ninst✝⁴ : CommGroupWithZero G₀\ninst✝³ : Field L\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : MonoidHomClass F R[X] S[X]\nφ : F\nhφ : R[X]⁰ ≤ Submonoid.comap φ S[X]⁰\nn : R[X]\nd : { x // x ∈ R[X]⁰ }\n⊢ (if h : ↑φ ↑d ∈ S[X]⁰ then { toFractionRing := Localization.mk (↑φ n) { val := ↑φ ↑d, property := h } } else 0) =\n { toFractionRing := Localization.mk (↑φ n) { val := ↑φ ↑d, property := (_ : ↑d ∈ Submonoid.comap φ S[X]⁰) } }", "tactic": "rw [dif_pos]" } ]
[ 657, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 651, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.mk_cons
[]
[ 861, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 859, 1 ]
Mathlib/Algebra/Order/Pi.lean
Function.one_lt_const
[]
[ 145, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/Data/List/BigOperators/Lemmas.lean
unop_map_list_prod
[ { "state_after": "no goals", "state_before": "ι : Type ?u.30337\nα : Type ?u.30340\nM : Type u_2\nN : Type u_3\nP : Type ?u.30349\nM₀ : Type ?u.30352\nG : Type ?u.30355\nR : Type ?u.30358\ninst✝² : Monoid M\ninst✝¹ : Monoid N\nF : Type u_1\ninst✝ : MonoidHomClass F M Nᵐᵒᵖ\nf : F\nl : List M\n⊢ unop (↑f (prod l)) = prod (reverse (map (unop ∘ ↑f) l))", "tactic": "rw [map_list_prod f l, MulOpposite.unop_list_prod, List.map_map]" } ]
[ 165, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
Ico_eq_locus_Ioc_eq_iUnion_Ioo
[ { "state_after": "case h\nα : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na b c : α\nn : ℤ\nx✝ : α\n⊢ x✝ ∈ {b | toIcoMod hp a b = toIocMod hp a b} ↔ x✝ ∈ ⋃ (z : ℤ), Set.Ioo (a + z • p) (a + p + z • p)", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na b c : α\nn : ℤ\n⊢ {b | toIcoMod hp a b = toIocMod hp a b} = ⋃ (z : ℤ), Set.Ioo (a + z • p) (a + p + z • p)", "tactic": "ext1" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na b c : α\nn : ℤ\nx✝ : α\n⊢ x✝ ∈ {b | toIcoMod hp a b = toIocMod hp a b} ↔ x✝ ∈ ⋃ (z : ℤ), Set.Ioo (a + z • p) (a + p + z • p)", "tactic": "simp_rw [Set.mem_setOf, Set.mem_iUnion, ← Set.sub_mem_Ioo_iff_left, ←\n not_modEq_iff_toIcoMod_eq_toIocMod, modEq_iff_not_forall_mem_Ioo_mod hp, not_forall,\n Classical.not_not]" } ]
[ 693, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 688, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
toIcoDiv_add_zsmul'
[ { "state_after": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ b - (toIcoDiv hp a b - m) • p ∈ Set.Ico (a + m • p) (a + m • p + p)", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ toIcoDiv hp (a + m • p) b = toIcoDiv hp a b - m", "tactic": "refine' toIcoDiv_eq_of_sub_zsmul_mem_Ico _ _" }, { "state_after": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ b - toIcoDiv hp a b • p + m • p ∈ Set.Ico (a + m • p) (a + p + m • p)", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ b - (toIcoDiv hp a b - m) • p ∈ Set.Ico (a + m • p) (a + m • p + p)", "tactic": "rw [sub_smul, ← sub_add, add_right_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ b - toIcoDiv hp a b • p + m • p ∈ Set.Ico (a + m • p) (a + p + m • p)", "tactic": "simpa using sub_toIcoDiv_zsmul_mem_Ico hp a b" } ]
[ 245, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 241, 1 ]
Mathlib/MeasureTheory/Measure/GiryMonad.lean
MeasureTheory.Measure.measurable_lintegral
[ { "state_after": "α : Type u_1\nβ : Type ?u.4410\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nf : α → ℝ≥0∞\nhf : Measurable f\n⊢ Measurable fun μ =>\n ⨆ (n : ℕ),\n ∑ x in SimpleFunc.range (SimpleFunc.eapprox (fun x => f x) n),\n x * ↑↑μ (↑(SimpleFunc.eapprox (fun x => f x) n) ⁻¹' {x})", "state_before": "α : Type u_1\nβ : Type ?u.4410\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nf : α → ℝ≥0∞\nhf : Measurable f\n⊢ Measurable fun μ => ∫⁻ (x : α), f x ∂μ", "tactic": "simp only [lintegral_eq_iSup_eapprox_lintegral, hf, SimpleFunc.lintegral]" }, { "state_after": "α : Type u_1\nβ : Type ?u.4410\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nf : α → ℝ≥0∞\nhf : Measurable f\nn : ℕ\ni : ℝ≥0∞\nx✝ : i ∈ SimpleFunc.range (SimpleFunc.eapprox (fun x => f x) n)\n⊢ Measurable fun μ => i * ↑↑μ (↑(SimpleFunc.eapprox (fun x => f x) n) ⁻¹' {i})", "state_before": "α : Type u_1\nβ : Type ?u.4410\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nf : α → ℝ≥0∞\nhf : Measurable f\n⊢ Measurable fun μ =>\n ⨆ (n : ℕ),\n ∑ x in SimpleFunc.range (SimpleFunc.eapprox (fun x => f x) n),\n x * ↑↑μ (↑(SimpleFunc.eapprox (fun x => f x) n) ⁻¹' {x})", "tactic": "refine' measurable_iSup fun n => Finset.measurable_sum _ fun i _ => _" }, { "state_after": "α : Type u_1\nβ : Type ?u.4410\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nf : α → ℝ≥0∞\nhf : Measurable f\nn : ℕ\ni : ℝ≥0∞\nx✝ : i ∈ SimpleFunc.range (SimpleFunc.eapprox (fun x => f x) n)\n⊢ Measurable fun μ => ↑↑μ (↑(SimpleFunc.eapprox (fun x => f x) n) ⁻¹' {i})", "state_before": "α : Type u_1\nβ : Type ?u.4410\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nf : α → ℝ≥0∞\nhf : Measurable f\nn : ℕ\ni : ℝ≥0∞\nx✝ : i ∈ SimpleFunc.range (SimpleFunc.eapprox (fun x => f x) n)\n⊢ Measurable fun μ => i * ↑↑μ (↑(SimpleFunc.eapprox (fun x => f x) n) ⁻¹' {i})", "tactic": "refine' Measurable.const_mul _ _" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.4410\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nf : α → ℝ≥0∞\nhf : Measurable f\nn : ℕ\ni : ℝ≥0∞\nx✝ : i ∈ SimpleFunc.range (SimpleFunc.eapprox (fun x => f x) n)\n⊢ Measurable fun μ => ↑↑μ (↑(SimpleFunc.eapprox (fun x => f x) n) ⁻¹' {i})", "tactic": "exact measurable_coe ((SimpleFunc.eapprox f n).measurableSet_preimage _)" } ]
[ 97, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.TM2to1.tr_respects_aux₃
[ { "state_after": "case zero\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\n⊢ Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[Nat.zero]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }\n\ncase succ\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\nn : ℕ\nIH :\n Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }\n⊢ Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[Nat.succ n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }", "state_before": "K : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\nn : ℕ\n⊢ Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }", "tactic": "induction' n with n IH" }, { "state_after": "case succ\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\nn : ℕ\nIH :\n Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }\n⊢ { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) } ∈\n TM1.step (tr M)\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[Nat.succ n]) (Tape.mk' ∅ (addBottom L)) }", "state_before": "case succ\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\nn : ℕ\nIH :\n Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }\n⊢ Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[Nat.succ n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }", "tactic": "refine' Reaches₀.head _ IH" }, { "state_after": "case succ\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\nn : ℕ\nIH :\n Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }\n⊢ some (TM1.stepAux (tr M (ret q)) v ((Tape.move Dir.right^[Nat.succ n]) (Tape.mk' ∅ (addBottom L)))) =\n some { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }", "state_before": "case succ\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\nn : ℕ\nIH :\n Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }\n⊢ { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) } ∈\n TM1.step (tr M)\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[Nat.succ n]) (Tape.mk' ∅ (addBottom L)) }", "tactic": "simp only [Option.mem_def, TM1.step]" }, { "state_after": "case succ\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\nn : ℕ\nIH :\n Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }\n⊢ (bif false then\n TM1.stepAux (trNormal q) v (Tape.move Dir.right ((Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L))))\n else TM1.stepAux (goto fun x x => ret q) v ((Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)))) =\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }", "state_before": "case succ\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\nn : ℕ\nIH :\n Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }\n⊢ some (TM1.stepAux (tr M (ret q)) v ((Tape.move Dir.right^[Nat.succ n]) (Tape.mk' ∅ (addBottom L)))) =\n some { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }", "tactic": "rw [Option.some_inj, tr, TM1.stepAux, Tape.move_right_n_head, Tape.mk'_nth_nat,\n addBottom_nth_succ_fst, TM1.stepAux, iterate_succ', Function.comp_apply, Tape.move_right_left]" }, { "state_after": "no goals", "state_before": "case succ\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\nn : ℕ\nIH :\n Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }\n⊢ (bif false then\n TM1.stepAux (trNormal q) v (Tape.move Dir.right ((Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L))))\n else TM1.stepAux (goto fun x x => ret q) v ((Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)))) =\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[n]) (Tape.mk' ∅ (addBottom L)) }", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case zero\nK : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type u_3\ninst✝¹ : Inhabited Λ\nσ : Type u_4\ninst✝ : Inhabited σ\nM : Λ → Stmt₂\nq : Stmt₂\nv : σ\nL : ListBlank ((k : K) → Option (Γ k))\n⊢ Reaches₀ (TM1.step (tr M))\n { l := some (ret q), var := v, Tape := (Tape.move Dir.right^[Nat.zero]) (Tape.mk' ∅ (addBottom L)) }\n { l := some (ret q), var := v, Tape := Tape.mk' ∅ (addBottom L) }", "tactic": "rfl" } ]
[ 2678, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2670, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
contDiff_const_smul
[]
[ 1540, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1539, 1 ]
Mathlib/LinearAlgebra/Prod.lean
LinearMap.prodMap_comap_prod
[]
[ 325, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 322, 1 ]
Mathlib/Analysis/SpecialFunctions/ExpDeriv.lean
ContDiffOn.exp
[]
[ 269, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 268, 1 ]
Mathlib/Algebra/Algebra/Operations.lean
Submodule.bot_mul
[]
[ 216, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.not_isBoundedUnder_of_tendsto_atBot
[]
[ 139, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 137, 1 ]
Std/Data/Int/Lemmas.lean
Int.zero_sub
[ { "state_after": "no goals", "state_before": "a : Int\n⊢ 0 - a = -a", "tactic": "simp [Int.sub_eq_add_neg]" } ]
[ 347, 82 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 347, 11 ]
Mathlib/Algebra/Divisibility/Units.lean
IsUnit.dvd
[ { "state_after": "case intro\nα : Type u_1\ninst✝ : Monoid α\na b : α\nu : αˣ\n⊢ ↑u ∣ a", "state_before": "α : Type u_1\ninst✝ : Monoid α\na b u : α\nhu : IsUnit u\n⊢ u ∣ a", "tactic": "rcases hu with ⟨u, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\ninst✝ : Monoid α\na b : α\nu : αˣ\n⊢ ↑u ∣ a", "tactic": "apply Units.coe_dvd" } ]
[ 81, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/Analysis/Convex/Function.lean
ConvexOn.add_strictConvexOn
[]
[ 513, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 511, 1 ]
Mathlib/CategoryTheory/StructuredArrow.lean
CategoryTheory.StructuredArrow.ext_iff
[]
[ 147, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Data/Set/Basic.lean
Set.union_univ
[]
[ 878, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 877, 1 ]
Mathlib/Order/SuccPred/Basic.lean
WithTop.pred_untop
[ { "state_after": "no goals", "state_before": "α : Type ?u.55953\ninst✝² : Preorder α\ninst✝¹ : OrderTop α\ninst✝ : PredOrder α\na : WithTop α\nha : a ≠ ⊤\n⊢ pred a ≠ ⊤", "tactic": "induction a using WithTop.recTopCoe <;> simp" } ]
[ 1113, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1109, 1 ]
Mathlib/Analysis/BoxIntegral/Basic.lean
BoxIntegral.Integrable.tendsto_integralSum_toFilteriUnion_single
[]
[ 548, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 544, 1 ]
Mathlib/Algebra/Algebra/Hom.lean
AlgHom.map_mul
[]
[ 254, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 253, 11 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.natDegree_cubic_le
[]
[ 1234, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1233, 1 ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_right_pure_add_one
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.12341\nγ : Type ?u.12344\ninst✝³ : LinearOrderedRing α\ninst✝² : FloorRing α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nn : ℤ\n⊢ Tendsto ceil (𝓝[Ioi ↑n] ↑n) (pure (n + 1))", "tactic": "simpa only [floor_intCast] using tendsto_ceil_right_pure_floor_add_one (n : α)" } ]
[ 112, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 110, 1 ]
Mathlib/Logic/Equiv/List.lean
Denumerable.lower_raise'
[ { "state_after": "no goals", "state_before": "α : Type ?u.56215\nβ : Type ?u.56218\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nm : ℕ\nl : List ℕ\nn : ℕ\n⊢ lower' (raise' (m :: l) n) n = m :: l", "tactic": "simp [raise', lower', add_tsub_cancel_right, lower_raise']" } ]
[ 363, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 1 ]
Mathlib/NumberTheory/LegendreSymbol/ZModChar.lean
ZMod.χ₈'_eq_χ₄_mul_χ₈
[ { "state_after": "case head\n\n⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } =\n ↑χ₄ ↑{ val := 0, isLt := (_ : 0 < 7 + 1) } * ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) }\n\ncase tail.head\n\n⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } =\n ↑χ₄ ↑{ val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } * ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) }\n\ncase tail.tail.head\n\n⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } =\n ↑χ₄ ↑{ val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } *\n ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) }\n\ncase tail.tail.tail.head\n\n⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } =\n ↑χ₄ ↑{ val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } *\n ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) }\n\ncase tail.tail.tail.tail.head\n\n⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } =\n ↑χ₄ ↑{ val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } *\n ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) }\n\ncase tail.tail.tail.tail.tail.head\n\n⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } =\n ↑χ₄ ↑{ val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } *\n ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) }\n\ncase tail.tail.tail.tail.tail.tail.head\n\n⊢ ↑χ₈'\n { val := 6,\n isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =\n ↑χ₄\n ↑{ val := 6,\n isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } *\n ↑χ₈\n { val := 6,\n isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) }\n\ncase tail.tail.tail.tail.tail.tail.tail.head\n\n⊢ ↑χ₈'\n { val := 7,\n isLt :=\n (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } =\n ↑χ₄\n ↑{ val := 7,\n isLt :=\n (_ :\n (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)\n 7) } *\n ↑χ₈\n { val := 7,\n isLt :=\n (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) }", "state_before": "a : ZMod 8\n⊢ ↑χ₈' a = ↑χ₄ ↑a * ↑χ₈ a", "tactic": "fin_cases a" }, { "state_after": "no goals", "state_before": "case head\n\n⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } =\n ↑χ₄ ↑{ val := 0, isLt := (_ : 0 < 7 + 1) } * ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) }\n\ncase tail.head\n\n⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } =\n ↑χ₄ ↑{ val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } * ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) }\n\ncase tail.tail.head\n\n⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } =\n ↑χ₄ ↑{ val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } *\n ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) }\n\ncase tail.tail.tail.head\n\n⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } =\n ↑χ₄ ↑{ val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } *\n ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) }\n\ncase tail.tail.tail.tail.head\n\n⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } =\n ↑χ₄ ↑{ val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } *\n ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) }\n\ncase tail.tail.tail.tail.tail.head\n\n⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } =\n ↑χ₄ ↑{ val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } *\n ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) }\n\ncase tail.tail.tail.tail.tail.tail.head\n\n⊢ ↑χ₈'\n { val := 6,\n isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =\n ↑χ₄\n ↑{ val := 6,\n isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } *\n ↑χ₈\n { val := 6,\n isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) }\n\ncase tail.tail.tail.tail.tail.tail.tail.head\n\n⊢ ↑χ₈'\n { val := 7,\n isLt :=\n (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } =\n ↑χ₄\n ↑{ val := 7,\n isLt :=\n (_ :\n (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)\n 7) } *\n ↑χ₈\n { val := 7,\n isLt :=\n (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) }", "tactic": "all_goals decide" }, { "state_after": "no goals", "state_before": "case tail.tail.tail.tail.tail.tail.tail.head\n\n⊢ ↑χ₈'\n { val := 7,\n isLt :=\n (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } =\n ↑χ₄\n ↑{ val := 7,\n isLt :=\n (_ :\n (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)\n 7) } *\n ↑χ₈\n { val := 7,\n isLt :=\n (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) }", "tactic": "decide" } ]
[ 216, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearMap.isBigO_sub
[]
[ 686, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 684, 1 ]
Mathlib/Combinatorics/DoubleCounting.lean
Finset.card_mul_le_card_mul
[]
[ 98, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Ici_prod_Ici
[]
[ 1888, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1887, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
CategoryTheory.Limits.biprod.braiding'_eq_braiding
[ { "state_after": "no goals", "state_before": "J : Type w\nC : Type u\ninst✝² : Category C\ninst✝¹ : HasZeroMorphisms C\nP✝ Q✝ : C\ninst✝ : HasBinaryBiproducts C\nP Q : C\n⊢ braiding' P Q = braiding P Q", "tactic": "aesop_cat" } ]
[ 1831, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1830, 1 ]
Mathlib/Order/Bounds/Basic.lean
IsLUB.of_image
[]
[ 1564, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1561, 1 ]
Mathlib/FieldTheory/SeparableDegree.lean
Polynomial.HasSeparableContraction.dvd_degree'
[]
[ 84, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 83, 1 ]
Mathlib/Analysis/Convex/Function.lean
ConvexOn.lt_right_of_left_lt
[ { "state_after": "case intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.618434\nα : Type ?u.618437\nβ : Type u_3\nι : Type ?u.618443\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedCancelAddCommMonoid β\ninst✝² : Module 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : ConvexOn 𝕜 s f\nx y : E\nhx : x ∈ s\nhy : y ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\nhxz : f x < f (a • x + b • y)\n⊢ f (a • x + b • y) < f y", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.618434\nα : Type ?u.618437\nβ : Type u_3\nι : Type ?u.618443\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedCancelAddCommMonoid β\ninst✝² : Module 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : ConvexOn 𝕜 s f\nx y z : E\nhx : x ∈ s\nhy : y ∈ s\nhz : z ∈ openSegment 𝕜 x y\nhxz : f x < f z\n⊢ f z < f y", "tactic": "obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.618434\nα : Type ?u.618437\nβ : Type u_3\nι : Type ?u.618443\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedCancelAddCommMonoid β\ninst✝² : Module 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : ConvexOn 𝕜 s f\nx y : E\nhx : x ∈ s\nhy : y ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\nhxz : f x < f (a • x + b • y)\n⊢ f (a • x + b • y) < f y", "tactic": "exact hf.lt_right_of_left_lt' hx hy ha hb hab hxz" } ]
[ 817, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 814, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.restrictScalars_bot_eq_self
[ { "state_after": "case h\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nK : IntermediateField F E\nx : E\n⊢ x ∈ restrictScalars F ⊥ ↔ x ∈ K", "state_before": "F : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nK : IntermediateField F E\n⊢ restrictScalars F ⊥ = K", "tactic": "ext x" }, { "state_after": "case h\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nK : IntermediateField F E\nx : E\n⊢ x ∈ Set.range ↑(algebraMap { x // x ∈ K } E) ↔ x ∈ K", "state_before": "case h\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nK : IntermediateField F E\nx : E\n⊢ x ∈ restrictScalars F ⊥ ↔ x ∈ K", "tactic": "rw [mem_restrictScalars, mem_bot]" }, { "state_after": "no goals", "state_before": "case h\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nK : IntermediateField F E\nx : E\n⊢ x ∈ Set.range ↑(algebraMap { x // x ∈ K } E) ↔ x ∈ K", "tactic": "exact Set.ext_iff.mp Subtype.range_coe x" } ]
[ 265, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 261, 1 ]
Mathlib/Analysis/Calculus/Deriv/Slope.lean
hasDerivAt_iff_tendsto_slope
[]
[ 88, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.sign_toReal
[ { "state_after": "case inl\nθ : Angle\nh : θ ≠ ↑π\nht : toReal θ < 0\n⊢ ↑SignType.sign (toReal θ) = sign θ\n\ncase inr.inl\nθ : Angle\nh : θ ≠ ↑π\nht : toReal θ = 0\n⊢ ↑SignType.sign (toReal θ) = sign θ\n\ncase inr.inr\nθ : Angle\nh : θ ≠ ↑π\nht : 0 < toReal θ\n⊢ ↑SignType.sign (toReal θ) = sign θ", "state_before": "θ : Angle\nh : θ ≠ ↑π\n⊢ ↑SignType.sign (toReal θ) = sign θ", "tactic": "rcases lt_trichotomy θ.toReal 0 with (ht | ht | ht)" }, { "state_after": "no goals", "state_before": "case inl\nθ : Angle\nh : θ ≠ ↑π\nht : toReal θ < 0\n⊢ ↑SignType.sign (toReal θ) = sign θ", "tactic": "simp [ht, toReal_neg_iff_sign_neg.1 ht]" }, { "state_after": "no goals", "state_before": "case inr.inl\nθ : Angle\nh : θ ≠ ↑π\nht : toReal θ = 0\n⊢ ↑SignType.sign (toReal θ) = sign θ", "tactic": "simp [sign, ht, ← sin_toReal]" }, { "state_after": "no goals", "state_before": "case inr.inr\nθ : Angle\nh : θ ≠ ↑π\nht : 0 < toReal θ\n⊢ ↑SignType.sign (toReal θ) = sign θ", "tactic": "rw [sign, ← sin_toReal, sign_pos ht,\n sign_pos\n (sin_pos_of_pos_of_lt_pi ht ((toReal_le_pi θ).lt_of_ne (toReal_eq_pi_iff.not.2 h)))]" } ]
[ 929, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 923, 1 ]
Mathlib/MeasureTheory/MeasurableSpace.lean
Measurable.snd
[]
[ 660, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 659, 1 ]
Mathlib/Data/Set/Pointwise/SMul.lean
Set.inter_vsub_subset
[]
[ 693, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 692, 1 ]
Mathlib/Data/List/Chain.lean
List.chain'_map_of_chain'
[]
[ 239, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/Algebra/Periodic.lean
Function.Periodic.zsmul
[ { "state_after": "case ofNat\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.104199\nf g : α → β\nc c₁ c₂ x : α\ninst✝ : AddGroup α\nh : Periodic f c\nn : ℕ\n⊢ Periodic f (Int.ofNat n • c)\n\ncase negSucc\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.104199\nf g : α → β\nc c₁ c₂ x : α\ninst✝ : AddGroup α\nh : Periodic f c\nn : ℕ\n⊢ Periodic f (Int.negSucc n • c)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.104199\nf g : α → β\nc c₁ c₂ x : α\ninst✝ : AddGroup α\nh : Periodic f c\nn : ℤ\n⊢ Periodic f (n • c)", "tactic": "cases' n with n n" }, { "state_after": "no goals", "state_before": "case ofNat\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.104199\nf g : α → β\nc c₁ c₂ x : α\ninst✝ : AddGroup α\nh : Periodic f c\nn : ℕ\n⊢ Periodic f (Int.ofNat n • c)", "tactic": "simpa only [Int.ofNat_eq_coe, coe_nat_zsmul] using h.nsmul n" }, { "state_after": "no goals", "state_before": "case negSucc\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.104199\nf g : α → β\nc c₁ c₂ x : α\ninst✝ : AddGroup α\nh : Periodic f c\nn : ℕ\n⊢ Periodic f (Int.negSucc n • c)", "tactic": "simpa only [negSucc_zsmul] using (h.nsmul (n + 1)).neg" } ]
[ 237, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 234, 11 ]
Mathlib/Data/Polynomial/Splits.lean
Polynomial.roots_ne_zero_of_splits'
[ { "state_after": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhs : Splits i f\nhf0 : natDegree (map i f) ≠ 0\nx : L\nhx : eval x (map i f) = 0\nh : roots (map i f) = 0\n⊢ False", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhs : Splits i f\nhf0 : natDegree (map i f) ≠ 0\nx : L\nhx : eval₂ i x f = 0\nh : roots (map i f) = 0\n⊢ False", "tactic": "rw [← eval_map] at hx" }, { "state_after": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhs : Splits i f\nhf0 : natDegree (map i f) ≠ 0\nx : L\nhx : eval x (map i f) = 0\nh : roots (map i f) = 0\nthis : map i f ≠ 0\n⊢ False", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhs : Splits i f\nhf0 : natDegree (map i f) ≠ 0\nx : L\nhx : eval x (map i f) = 0\nh : roots (map i f) = 0\n⊢ False", "tactic": "have : f.map i ≠ 0 := by intro; simp_all" }, { "state_after": "no goals", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhs : Splits i f\nhf0 : natDegree (map i f) ≠ 0\nx : L\nhx : eval x (map i f) = 0\nh : roots (map i f) = 0\nthis : map i f ≠ 0\n⊢ False", "tactic": "cases h.subst ((mem_roots this).2 hx)" }, { "state_after": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhs : Splits i f\nhf0 : natDegree (map i f) ≠ 0\nx : L\nhx : eval x (map i f) = 0\nh : roots (map i f) = 0\na✝ : map i f = 0\n⊢ False", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhs : Splits i f\nhf0 : natDegree (map i f) ≠ 0\nx : L\nhx : eval x (map i f) = 0\nh : roots (map i f) = 0\n⊢ map i f ≠ 0", "tactic": "intro" }, { "state_after": "no goals", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhs : Splits i f\nhf0 : natDegree (map i f) ≠ 0\nx : L\nhx : eval x (map i f) = 0\nh : roots (map i f) = 0\na✝ : map i f = 0\n⊢ False", "tactic": "simp_all" } ]
[ 193, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 187, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigOWith.prod_rightl
[]
[ 953, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 951, 1 ]
Mathlib/Order/Hom/Basic.lean
OrderHom.symm_dual_comp
[]
[ 595, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 593, 1 ]
Mathlib/GroupTheory/Subsemigroup/Operations.lean
MulHom.mem_srange
[]
[ 766, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 765, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.preimage_neg_Icc
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\n⊢ -Icc a b = Icc (-b) (-a)", "tactic": "simp [← Ici_inter_Iic, inter_comm]" } ]
[ 153, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 153, 1 ]
Mathlib/Topology/DenseEmbedding.lean
DenseInducing.mk'
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.27032\nδ : Type ?u.27035\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ni✝ : α → β\ndi : DenseInducing i✝\ninst✝¹ : TopologicalSpace δ\nf : γ → α\ng : γ → δ\nh : δ → β\ninst✝ : TopologicalSpace γ\ni : α → β\nc : Continuous i\ndense : ∀ (x : β), x ∈ closure (range i)\nH : ∀ (a : α) (s : Set α), s ∈ 𝓝 a → ∃ t, t ∈ 𝓝 (i a) ∧ ∀ (b : α), i b ∈ t → b ∈ s\na : α\n⊢ comap i (𝓝 (i a)) ≤ 𝓝 a", "tactic": "simpa [Filter.le_def] using H a" } ]
[ 228, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 224, 1 ]
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
BilinForm.toQuadraticForm_sum
[]
[ 708, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 706, 1 ]
Mathlib/Data/MvPolynomial/Variables.lean
MvPolynomial.vars_C_mul
[ { "state_after": "case a\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\n⊢ i ∈ vars (↑C a * φ) ↔ i ∈ vars φ", "state_before": "R : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\n⊢ vars (↑C a * φ) = vars φ", "tactic": "ext1 i" }, { "state_after": "case a\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\n⊢ (∃ d, coeff d (↑C a * φ) ≠ 0 ∧ i ∈ d.support) ↔ ∃ d, coeff d φ ≠ 0 ∧ i ∈ d.support", "state_before": "case a\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\n⊢ i ∈ vars (↑C a * φ) ↔ i ∈ vars φ", "tactic": "simp only [mem_vars, exists_prop, mem_support_iff]" }, { "state_after": "case a.h\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\n⊢ ∀ (a_1 : σ →₀ ℕ), coeff a_1 (↑C a * φ) ≠ 0 ∧ i ∈ a_1.support ↔ coeff a_1 φ ≠ 0 ∧ i ∈ a_1.support", "state_before": "case a\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\n⊢ (∃ d, coeff d (↑C a * φ) ≠ 0 ∧ i ∈ d.support) ↔ ∃ d, coeff d φ ≠ 0 ∧ i ∈ d.support", "tactic": "apply exists_congr" }, { "state_after": "case a.h\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\nd : σ →₀ ℕ\n⊢ coeff d (↑C a * φ) ≠ 0 ∧ i ∈ d.support ↔ coeff d φ ≠ 0 ∧ i ∈ d.support", "state_before": "case a.h\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\n⊢ ∀ (a_1 : σ →₀ ℕ), coeff a_1 (↑C a * φ) ≠ 0 ∧ i ∈ a_1.support ↔ coeff a_1 φ ≠ 0 ∧ i ∈ a_1.support", "tactic": "intro d" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\nd : σ →₀ ℕ\n⊢ coeff d (↑C a * φ) ≠ 0 ↔ coeff d φ ≠ 0", "state_before": "case a.h\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\nd : σ →₀ ℕ\n⊢ coeff d (↑C a * φ) ≠ 0 ∧ i ∈ d.support ↔ coeff d φ ≠ 0 ∧ i ∈ d.support", "tactic": "apply and_congr _ Iff.rfl" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.169900\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝² : CommSemiring R\np q : MvPolynomial σ R\nA : Type u_1\ninst✝¹ : CommRing A\ninst✝ : IsDomain A\na : A\nha : a ≠ 0\nφ : MvPolynomial σ A\ni : σ\nd : σ →₀ ℕ\n⊢ coeff d (↑C a * φ) ≠ 0 ↔ coeff d φ ≠ 0", "tactic": "rw [coeff_C_mul, mul_ne_zero_iff, eq_true ha, true_and_iff]" } ]
[ 406, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 399, 1 ]
Mathlib/Order/OrdContinuous.lean
LeftOrdContinuous.id
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝² : Preorder α\ninst✝¹ : Preorder β\ninst✝ : Preorder γ\ng : β → γ\nf : α → β\ns : Set α\nx : α\nh : IsLUB s x\n⊢ IsLUB (id '' s) (id x)", "tactic": "simpa only [image_id] using h" } ]
[ 59, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 11 ]
Mathlib/Data/Fin/Basic.lean
Fin.mk_one
[]
[ 643, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 642, 1 ]
Mathlib/GroupTheory/Submonoid/Inverses.lean
Submonoid.leftInv_leftInv_le
[ { "state_after": "case intro.mk.intro\nM : Type u_1\ninst✝ : Monoid M\nS : Submonoid M\nx y : M\nz : { x // x ∈ S }\nh₁ : y * ↑z = 1\nh₂ : x * y = 1\n⊢ x ∈ S", "state_before": "M : Type u_1\ninst✝ : Monoid M\nS : Submonoid M\n⊢ leftInv (leftInv S) ≤ S", "tactic": "rintro x ⟨⟨y, z, h₁⟩, h₂ : x * y = 1⟩" }, { "state_after": "case h.e'_4\nM : Type u_1\ninst✝ : Monoid M\nS : Submonoid M\nx y : M\nz : { x // x ∈ S }\nh₁ : y * ↑z = 1\nh₂ : x * y = 1\n⊢ x = ↑z", "state_before": "case intro.mk.intro\nM : Type u_1\ninst✝ : Monoid M\nS : Submonoid M\nx y : M\nz : { x // x ∈ S }\nh₁ : y * ↑z = 1\nh₂ : x * y = 1\n⊢ x ∈ S", "tactic": "convert z.prop" }, { "state_after": "no goals", "state_before": "case h.e'_4\nM : Type u_1\ninst✝ : Monoid M\nS : Submonoid M\nx y : M\nz : { x // x ∈ S }\nh₁ : y * ↑z = 1\nh₂ : x * y = 1\n⊢ x = ↑z", "tactic": "rw [← mul_one x, ← h₁, ← mul_assoc, h₂, one_mul]" } ]
[ 75, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/Algebra/DirectLimit.lean
Module.DirectLimit.of.zero_exact
[ { "state_after": "no goals", "state_before": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\ni : ι\nx : G i\nH : ↑(of R ι G f i) x = 0\nthis : Nonempty ι\nj : ι\nhj : ∀ (k : ι), k ∈ Dfinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j\nhxj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G (fun i j H => f i j H) i j) (↑(DirectSum.lof R ι G i) x) = 0\nhx0 : x = 0\n⊢ ↑(f i i (_ : i ≤ i)) x = 0", "tactic": "simp [hx0]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\ni : ι\nx : G i\nH : ↑(of R ι G f i) x = 0\nthis : Nonempty ι\nj : ι\nhj : ∀ (k : ι), k ∈ Dfinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j\nhxj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G (fun i j H => f i j H) i j) (↑(DirectSum.lof R ι G i) x) = 0\nhx0 : ¬x = 0\n⊢ i ∈ Dfinsupp.support (↑(DirectSum.lof R ι G i) x)", "tactic": "simp [DirectSum.apply_eq_component, hx0]" }, { "state_after": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\ni : ι\nx : G i\nH : ↑(of R ι G f i) x = 0\nthis : Nonempty ι\nj : ι\nhj : ∀ (k : ι), k ∈ Dfinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j\nhx0 : ¬x = 0\nhij : i ≤ j\nhxj : ↑(totalize G (fun i j H => f i j H) i j) x = 0\n⊢ ↑(f i j hij) x = 0", "state_before": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\ni : ι\nx : G i\nH : ↑(of R ι G f i) x = 0\nthis : Nonempty ι\nj : ι\nhj : ∀ (k : ι), k ∈ Dfinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j\nhxj : ↑(DirectSum.toModule R ι (G j) fun i => totalize G (fun i j H => f i j H) i j) (↑(DirectSum.lof R ι G i) x) = 0\nhx0 : ¬x = 0\nhij : i ≤ j\n⊢ ↑(f i j hij) x = 0", "tactic": "simp only [DirectSum.toModule_lof] at hxj" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝⁷ : Ring R\nι : Type v\ndec_ι : DecidableEq ι\ninst✝⁶ : Preorder ι\nG : ι → Type w\ninst✝⁵ : (i : ι) → AddCommGroup (G i)\ninst✝⁴ : (i : ι) → Module R (G i)\nf : (i j : ι) → i ≤ j → G i →ₗ[R] G j\nP : Type u₁\ninst✝³ : AddCommGroup P\ninst✝² : Module R P\ng : (i : ι) → G i →ₗ[R] P\nHg : ∀ (i j : ι) (hij : i ≤ j) (x : G i), ↑(g j) (↑(f i j hij) x) = ↑(g i) x\ninst✝¹ : DirectedSystem G fun i j h => ↑(f i j h)\ninst✝ : IsDirected ι fun x x_1 => x ≤ x_1\ni : ι\nx : G i\nH : ↑(of R ι G f i) x = 0\nthis : Nonempty ι\nj : ι\nhj : ∀ (k : ι), k ∈ Dfinsupp.support (↑(DirectSum.lof R ι G i) x) → k ≤ j\nhx0 : ¬x = 0\nhij : i ≤ j\nhxj : ↑(totalize G (fun i j H => f i j H) i j) x = 0\n⊢ ↑(f i j hij) x = 0", "tactic": "rwa [totalize_of_le hij] at hxj" } ]
[ 268, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Topology/Algebra/UniformGroup.lean
uniformContinuous_div
[]
[ 78, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/RingTheory/IsTensorProduct.lean
IsBaseChange.alg_hom_ext
[ { "state_after": "case h\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ↑g₁ x = ↑g₂ x", "state_before": "R : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\n⊢ g₁ = g₂", "tactic": "ext x" }, { "state_after": "case h.refine_1\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ↑g₁ 0 = ↑g₂ 0\n\ncase h.refine_2\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ∀ (m : M), ↑g₁ (↑f m) = ↑g₂ (↑f m)\n\ncase h.refine_3\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ∀ (s : S) (n : N), ↑g₁ n = ↑g₂ n → ↑g₁ (s • n) = ↑g₂ (s • n)\n\ncase h.refine_4\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ∀ (n₁ n₂ : N), ↑g₁ n₁ = ↑g₂ n₁ → ↑g₁ n₂ = ↑g₂ n₂ → ↑g₁ (n₁ + n₂) = ↑g₂ (n₁ + n₂)", "state_before": "case h\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ↑g₁ x = ↑g₂ x", "tactic": "refine h.inductionOn x ?_ ?_ ?_ ?_" }, { "state_after": "no goals", "state_before": "case h.refine_1\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ↑g₁ 0 = ↑g₂ 0", "tactic": "rw [map_zero, map_zero]" }, { "state_after": "no goals", "state_before": "case h.refine_2\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ∀ (m : M), ↑g₁ (↑f m) = ↑g₂ (↑f m)", "tactic": "assumption" }, { "state_after": "case h.refine_3\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\ns : S\nn : N\ne' : ↑g₁ n = ↑g₂ n\n⊢ ↑g₁ (s • n) = ↑g₂ (s • n)", "state_before": "case h.refine_3\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ∀ (s : S) (n : N), ↑g₁ n = ↑g₂ n → ↑g₁ (s • n) = ↑g₂ (s • n)", "tactic": "intro s n e'" }, { "state_after": "no goals", "state_before": "case h.refine_3\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\ns : S\nn : N\ne' : ↑g₁ n = ↑g₂ n\n⊢ ↑g₁ (s • n) = ↑g₂ (s • n)", "tactic": "rw [g₁.map_smul, g₂.map_smul, e']" }, { "state_after": "case h.refine_4\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx✝ x y : N\ne₁ : ↑g₁ x = ↑g₂ x\ne₂ : ↑g₁ y = ↑g₂ y\n⊢ ↑g₁ (x + y) = ↑g₂ (x + y)", "state_before": "case h.refine_4\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx : N\n⊢ ∀ (n₁ n₂ : N), ↑g₁ n₁ = ↑g₂ n₁ → ↑g₁ n₂ = ↑g₂ n₂ → ↑g₁ (n₁ + n₂) = ↑g₂ (n₁ + n₂)", "tactic": "intro x y e₁ e₂" }, { "state_after": "no goals", "state_before": "case h.refine_4\nR : Type u_2\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid N\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Algebra R S\ninst✝⁷ : Module R M\ninst✝⁶ : Module R N\ninst✝⁵ : Module S N\ninst✝⁴ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.233499\nQ : Type u_1\ninst✝³ : AddCommMonoid P\ninst✝² : Module R P\ninst✝¹ : AddCommMonoid Q\ninst✝ : Module S Q\ng₁ g₂ : N →ₗ[S] Q\ne : ∀ (x : M), ↑g₁ (↑f x) = ↑g₂ (↑f x)\nx✝ x y : N\ne₁ : ↑g₁ x = ↑g₂ x\ne₂ : ↑g₁ y = ↑g₂ y\n⊢ ↑g₁ (x + y) = ↑g₂ (x + y)", "tactic": "rw [map_add, map_add, e₁, e₂]" } ]
[ 215, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 207, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.disjoint_comap_iff
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.264840\nι : Sort x\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nm : α → β\nm' : β → γ\ns : Set α\nt : Set β\nh : Surjective m\n⊢ Disjoint (comap m g₁) (comap m g₂) ↔ Disjoint g₁ g₂", "tactic": "rw [disjoint_iff, disjoint_iff, ← comap_inf, comap_surjective_eq_bot h]" } ]
[ 2366, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2364, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.subsingleton_of_finrank_adjoin_eq_one
[]
[ 770, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 768, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isBigO_iff_isBigOWith
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.12161\nE : Type u_2\nF : Type u_3\nG : Type ?u.12170\nE' : Type ?u.12173\nF' : Type ?u.12176\nG' : Type ?u.12179\nE'' : Type ?u.12182\nF'' : Type ?u.12185\nG'' : Type ?u.12188\nR : Type ?u.12191\nR' : Type ?u.12194\n𝕜 : Type ?u.12197\n𝕜' : Type ?u.12200\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\n⊢ f =O[l] g ↔ ∃ c, IsBigOWith c l f g", "tactic": "rw [IsBigO_def]" } ]
[ 115, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Equalizers.lean
CategoryTheory.Limits.coequalizer.π_colimMap_desc
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\nX Y : C\nf g : X ⟶ Y\ninst✝¹ : HasCoequalizer f g\nX' Y' Z : C\nf' g' : X' ⟶ Y'\ninst✝ : HasCoequalizer f' g'\np : X ⟶ X'\nq : Y ⟶ Y'\nwf : f ≫ q = p ≫ f'\nwg : g ≫ q = p ≫ g'\nh : Y' ⟶ Z\nwh : f' ≫ h = g' ≫ h\n⊢ π f g ≫ colimMap (parallelPairHom f g f' g' p q wf wg) ≫ desc h wh = q ≫ h", "tactic": "rw [ι_colimMap_assoc, parallelPairHom_app_one, coequalizer.π_desc]" } ]
[ 991, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 986, 1 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
AlgHom.coe_codRestrict
[]
[ 647, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 645, 1 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.embDomain_injective
[ { "state_after": "case coeff.h\nΓ : Type u_1\nR : Type u_3\ninst✝² : PartialOrder Γ\ninst✝¹ : Zero R\na b : Γ\nr : R\nΓ' : Type u_2\ninst✝ : PartialOrder Γ'\nf : Γ ↪o Γ'\nx y : HahnSeries Γ R\nxy : embDomain f x = embDomain f y\ng : Γ\n⊢ coeff x g = coeff y g", "state_before": "Γ : Type u_1\nR : Type u_3\ninst✝² : PartialOrder Γ\ninst✝¹ : Zero R\na b : Γ\nr : R\nΓ' : Type u_2\ninst✝ : PartialOrder Γ'\nf : Γ ↪o Γ'\nx y : HahnSeries Γ R\nxy : embDomain f x = embDomain f y\n⊢ x = y", "tactic": "ext g" }, { "state_after": "case coeff.h\nΓ : Type u_1\nR : Type u_3\ninst✝² : PartialOrder Γ\ninst✝¹ : Zero R\na b : Γ\nr : R\nΓ' : Type u_2\ninst✝ : PartialOrder Γ'\nf : Γ ↪o Γ'\nx y : HahnSeries Γ R\nxy : ∀ (a : Γ'), coeff (embDomain f x) a = coeff (embDomain f y) a\ng : Γ\n⊢ coeff x g = coeff y g", "state_before": "case coeff.h\nΓ : Type u_1\nR : Type u_3\ninst✝² : PartialOrder Γ\ninst✝¹ : Zero R\na b : Γ\nr : R\nΓ' : Type u_2\ninst✝ : PartialOrder Γ'\nf : Γ ↪o Γ'\nx y : HahnSeries Γ R\nxy : embDomain f x = embDomain f y\ng : Γ\n⊢ coeff x g = coeff y g", "tactic": "rw [HahnSeries.ext_iff, Function.funext_iff] at xy" }, { "state_after": "case coeff.h\nΓ : Type u_1\nR : Type u_3\ninst✝² : PartialOrder Γ\ninst✝¹ : Zero R\na b : Γ\nr : R\nΓ' : Type u_2\ninst✝ : PartialOrder Γ'\nf : Γ ↪o Γ'\nx y : HahnSeries Γ R\nxy : ∀ (a : Γ'), coeff (embDomain f x) a = coeff (embDomain f y) a\ng : Γ\nxyg : coeff (embDomain f x) (↑f g) = coeff (embDomain f y) (↑f g)\n⊢ coeff x g = coeff y g", "state_before": "case coeff.h\nΓ : Type u_1\nR : Type u_3\ninst✝² : PartialOrder Γ\ninst✝¹ : Zero R\na b : Γ\nr : R\nΓ' : Type u_2\ninst✝ : PartialOrder Γ'\nf : Γ ↪o Γ'\nx y : HahnSeries Γ R\nxy : ∀ (a : Γ'), coeff (embDomain f x) a = coeff (embDomain f y) a\ng : Γ\n⊢ coeff x g = coeff y g", "tactic": "have xyg := xy (f g)" }, { "state_after": "no goals", "state_before": "case coeff.h\nΓ : Type u_1\nR : Type u_3\ninst✝² : PartialOrder Γ\ninst✝¹ : Zero R\na b : Γ\nr : R\nΓ' : Type u_2\ninst✝ : PartialOrder Γ'\nf : Γ ↪o Γ'\nx y : HahnSeries Γ R\nxy : ∀ (a : Γ'), coeff (embDomain f x) a = coeff (embDomain f y) a\ng : Γ\nxyg : coeff (embDomain f x) (↑f g) = coeff (embDomain f y) (↑f g)\n⊢ coeff x g = coeff y g", "tactic": "rwa [embDomain_coeff, embDomain_coeff] at xyg" } ]
[ 338, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 333, 1 ]
Std/Logic.lean
or_iff_right_iff_imp
[ { "state_after": "no goals", "state_before": "a b : Prop\n⊢ (a ∨ b ↔ b) ↔ a → b", "tactic": "rw [or_comm, or_iff_left_iff_imp]" } ]
[ 299, 36 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 298, 9 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.erase_add_left_neg
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.98762\nγ : Type ?u.98765\ninst✝ : DecidableEq α\ns✝ t✝ : Multiset α\na✝ b a : α\ns t : Multiset α\nh : ¬a ∈ t\n⊢ erase (s + t) a = erase s a + t", "tactic": "rw [add_comm, erase_add_right_neg s h, add_comm]" } ]
[ 1065, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1064, 1 ]
Mathlib/Topology/Algebra/ContinuousAffineMap.lean
ContinuousAffineMap.toContinuousMap_coe
[]
[ 105, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.attach_nonempty_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.288285\nγ : Type ?u.288288\ns : Finset α\n⊢ Finset.Nonempty (attach s) ↔ Finset.Nonempty s", "tactic": "simp [Finset.Nonempty]" } ]
[ 2422, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2421, 1 ]
Std/Data/Rat/Lemmas.lean
Rat.inv_divInt
[ { "state_after": "no goals", "state_before": "n d : Int\n⊢ Rat.inv (n /. d) = d /. n", "tactic": "if z : d = 0 then simp [z] else\ncases e : n /. d; rcases divInt_num_den z e with ⟨g, zg, rfl, rfl⟩\nsimp [inv_def, divInt_mul_right zg]" }, { "state_after": "no goals", "state_before": "n d : Int\nz : d = 0\n⊢ Rat.inv (n /. d) = d /. n", "tactic": "simp [z]" }, { "state_after": "case mk'\nn d : Int\nz : ¬d = 0\nnum✝ : Int\nden✝ : Nat\nden_nz✝ : den✝ ≠ 0\nreduced✝ : Nat.coprime (Int.natAbs num✝) den✝\ne : n /. d = mk' num✝ den✝\n⊢ Rat.inv (mk' num✝ den✝) = d /. n", "state_before": "n d : Int\nz : ¬d = 0\n⊢ Rat.inv (n /. d) = d /. n", "tactic": "cases e : n /. d" }, { "state_after": "case mk'.intro.intro.intro\nnum✝ : Int\nden✝ : Nat\nden_nz✝ : den✝ ≠ 0\nreduced✝ : Nat.coprime (Int.natAbs num✝) den✝\ng : Int\nzg : g ≠ 0\nz : ¬↑den✝ * g = 0\ne : num✝ * g /. (↑den✝ * g) = mk' num✝ den✝\n⊢ Rat.inv (mk' num✝ den✝) = ↑den✝ * g /. (num✝ * g)", "state_before": "case mk'\nn d : Int\nz : ¬d = 0\nnum✝ : Int\nden✝ : Nat\nden_nz✝ : den✝ ≠ 0\nreduced✝ : Nat.coprime (Int.natAbs num✝) den✝\ne : n /. d = mk' num✝ den✝\n⊢ Rat.inv (mk' num✝ den✝) = d /. n", "tactic": "rcases divInt_num_den z e with ⟨g, zg, rfl, rfl⟩" }, { "state_after": "no goals", "state_before": "case mk'.intro.intro.intro\nnum✝ : Int\nden✝ : Nat\nden_nz✝ : den✝ ≠ 0\nreduced✝ : Nat.coprime (Int.natAbs num✝) den✝\ng : Int\nzg : g ≠ 0\nz : ¬↑den✝ * g = 0\ne : num✝ * g /. (↑den✝ * g) = mk' num✝ den✝\n⊢ Rat.inv (mk' num✝ den✝) = ↑den✝ * g /. (num✝ * g)", "tactic": "simp [inv_def, divInt_mul_right zg]" } ]
[ 302, 38 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 299, 9 ]
Mathlib/FieldTheory/Separable.lean
Polynomial.separable_map
[ { "state_after": "no goals", "state_before": "F : Type u\ninst✝¹ : Field F\nK : Type v\ninst✝ : Field K\nf : F →+* K\np : F[X]\n⊢ Separable (map f p) ↔ Separable p", "tactic": "simp_rw [separable_def, derivative_map, isCoprime_map]" } ]
[ 291, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/Topology/Algebra/StarSubalgebra.lean
StarSubalgebra.embedding_inclusion
[]
[ 52, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/Order/Heyting/Basic.lean
hnot_hnot_sdiff_distrib
[ { "state_after": "case refine'_1\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬¬(a \\ b) ≤ ¬¬a \\ ¬¬b\n\ncase refine'_2\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬¬a \\ ¬¬b ≤ ¬¬(a \\ b)", "state_before": "ι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬¬(a \\ b) = ¬¬a \\ ¬¬b", "tactic": "refine' le_antisymm _ _" }, { "state_after": "case refine'_1\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬(¬¬a \\ ¬¬b) ≤ ¬(a ⊓ ¬b)", "state_before": "case refine'_1\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬¬(a \\ b) ≤ ¬¬a \\ ¬¬b", "tactic": "refine' hnot_le_comm.1 ((hnot_anti sdiff_le_inf_hnot).trans' _)" }, { "state_after": "case refine'_1\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬¬a ≤ ¬¬a \\ ¬¬b ⊔ ¬¬b", "state_before": "case refine'_1\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬(¬¬a \\ ¬¬b) ≤ ¬(a ⊓ ¬b)", "tactic": "rw [hnot_inf_distrib, hnot_le_iff_codisjoint_right, codisjoint_left_comm, ←\n hnot_le_iff_codisjoint_right]" }, { "state_after": "no goals", "state_before": "case refine'_1\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬¬a ≤ ¬¬a \\ ¬¬b ⊔ ¬¬b", "tactic": "exact le_sdiff_sup" }, { "state_after": "case refine'_2\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬¬a ≤ ¬¬(b ⊔ a \\ b)", "state_before": "case refine'_2\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬¬a \\ ¬¬b ≤ ¬¬(a \\ b)", "tactic": "rw [sdiff_le_iff, ← hnot_hnot_sup_distrib]" }, { "state_after": "no goals", "state_before": "case refine'_2\nι : Type ?u.179703\nα : Type u_1\nβ : Type ?u.179709\ninst✝ : CoheytingAlgebra α\na✝ b✝ c a b : α\n⊢ ¬¬a ≤ ¬¬(b ⊔ a \\ b)", "tactic": "exact hnot_anti (hnot_anti le_sup_sdiff)" } ]
[ 1123, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1116, 1 ]
Mathlib/Analysis/Calculus/LHopital.lean
HasDerivAt.lhopital_zero_nhds'
[ { "state_after": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhff' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (f' x) x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (f' x) x\nhgg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt g (g' x) x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt g (g' x) x\nhg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, g' x ≠ 0) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, g' x ≠ 0\nhfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto f (𝓝[Ioi a] a) (𝓝 0)\nhga : Tendsto g (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto g (𝓝[Ioi a] a) (𝓝 0)\nhdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l\n⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhff' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt f (f' x) x\nhgg' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, HasDerivAt g (g' x) x\nhg' : ∀ᶠ (x : ℝ) in 𝓝[{a}ᶜ] a, g' x ≠ 0\nhfa : Tendsto f (𝓝[{a}ᶜ] a) (𝓝 0)\nhga : Tendsto g (𝓝[{a}ᶜ] a) (𝓝 0)\nhdiv : Tendsto (fun x => f' x / g' x) (𝓝[{a}ᶜ] a) l\n⊢ Tendsto (fun x => f x / g x) (𝓝[{a}ᶜ] a) l", "tactic": "simp only [← Iio_union_Ioi, nhdsWithin_union, tendsto_sup, eventually_sup] at *" }, { "state_after": "no goals", "state_before": "a b : ℝ\nhab : a < b\nl : Filter ℝ\nf f' g g' : ℝ → ℝ\nhff' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt f (f' x) x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt f (f' x) x\nhgg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, HasDerivAt g (g' x) x) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, HasDerivAt g (g' x) x\nhg' : (∀ᶠ (x : ℝ) in 𝓝[Iio a] a, g' x ≠ 0) ∧ ∀ᶠ (x : ℝ) in 𝓝[Ioi a] a, g' x ≠ 0\nhfa : Tendsto f (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto f (𝓝[Ioi a] a) (𝓝 0)\nhga : Tendsto g (𝓝[Iio a] a) (𝓝 0) ∧ Tendsto g (𝓝[Ioi a] a) (𝓝 0)\nhdiv : Tendsto (fun x => f' x / g' x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f' x / g' x) (𝓝[Ioi a] a) l\n⊢ Tendsto (fun x => f x / g x) (𝓝[Iio a] a) l ∧ Tendsto (fun x => f x / g x) (𝓝[Ioi a] a) l", "tactic": "exact ⟨lhopital_zero_nhds_left hff'.1 hgg'.1 hg'.1 hfa.1 hga.1 hdiv.1,\n lhopital_zero_nhds_right hff'.2 hgg'.2 hg'.2 hfa.2 hga.2 hdiv.2⟩" } ]
[ 329, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 322, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
dist_eq_zero
[]
[ 2852, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2851, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
EMetric.cauchySeq_iff_le_tendsto_0
[ { "state_after": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\n⊢ (∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε) →\n ∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0)\n\ncase mpr\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\n⊢ (∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0)) →\n ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\n⊢ (∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε) ↔\n ∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0)", "tactic": "constructor" }, { "state_after": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\n⊢ ∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0)", "state_before": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\n⊢ (∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε) →\n ∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0)", "tactic": "intro hs" }, { "state_after": "case mp.refine_1\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nn m N : β\nhn : N ≤ n\nhm : N ≤ m\n⊢ edist (s n) (s m) ≤ (fun N => diam (s '' Ici N)) N\n\ncase mp.refine_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\n⊢ Tendsto (fun N => diam (s '' Ici N)) atTop (𝓝 0)", "state_before": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\n⊢ ∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0)", "tactic": "refine ⟨fun N => EMetric.diam (s '' Ici N), fun n m N hn hm => ?_, ?_⟩" }, { "state_after": "no goals", "state_before": "case mp.refine_1\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nn m N : β\nhn : N ≤ n\nhm : N ≤ m\n⊢ edist (s n) (s m) ≤ (fun N => diam (s '' Ici N)) N", "tactic": "exact EMetric.edist_le_diam_of_mem (mem_image_of_mem _ hn) (mem_image_of_mem _ hm)" }, { "state_after": "case mp.refine_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nε : ℝ≥0∞\nε0 : ε > 0\n⊢ ∀ᶠ (x : β) in atTop, diam (s '' Ici x) ≤ ε", "state_before": "case mp.refine_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\n⊢ Tendsto (fun N => diam (s '' Ici N)) atTop (𝓝 0)", "tactic": "refine ENNReal.tendsto_nhds_zero.2 fun ε ε0 => ?_" }, { "state_after": "case mp.refine_2.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nε : ℝ≥0∞\nε0 : ε > 0\nN : β\nhN : ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\n⊢ ∀ᶠ (x : β) in atTop, diam (s '' Ici x) ≤ ε", "state_before": "case mp.refine_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nε : ℝ≥0∞\nε0 : ε > 0\n⊢ ∀ᶠ (x : β) in atTop, diam (s '' Ici x) ≤ ε", "tactic": "rcases hs ε ε0 with ⟨N, hN⟩" }, { "state_after": "case mp.refine_2.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nε : ℝ≥0∞\nε0 : ε > 0\nN : β\nhN : ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nn : β\nhn : N ≤ n\n⊢ ∀ (x : α), x ∈ s '' Ici n → ∀ (y : α), y ∈ s '' Ici n → edist x y ≤ ε", "state_before": "case mp.refine_2.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nε : ℝ≥0∞\nε0 : ε > 0\nN : β\nhN : ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\n⊢ ∀ᶠ (x : β) in atTop, diam (s '' Ici x) ≤ ε", "tactic": "refine (eventually_ge_atTop N).mono fun n hn => EMetric.diam_le ?_" }, { "state_after": "case mp.refine_2.intro.intro.intro.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nε : ℝ≥0∞\nε0 : ε > 0\nN : β\nhN : ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nn : β\nhn : N ≤ n\nk : β\nhk : k ∈ Ici n\nl : β\nhl : l ∈ Ici n\n⊢ edist (s k) (s l) ≤ ε", "state_before": "case mp.refine_2.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nε : ℝ≥0∞\nε0 : ε > 0\nN : β\nhN : ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nn : β\nhn : N ≤ n\n⊢ ∀ (x : α), x ∈ s '' Ici n → ∀ (y : α), y ∈ s '' Ici n → edist x y ≤ ε", "tactic": "rintro _ ⟨k, hk, rfl⟩ _ ⟨l, hl, rfl⟩" }, { "state_after": "no goals", "state_before": "case mp.refine_2.intro.intro.intro.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nhs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nε : ℝ≥0∞\nε0 : ε > 0\nN : β\nhN : ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε\nn : β\nhn : N ≤ n\nk : β\nhk : k ∈ Ici n\nl : β\nhl : l ∈ Ici n\n⊢ edist (s k) (s l) ≤ ε", "tactic": "exact (hN _ (hn.trans hk) _ (hn.trans hl)).le" }, { "state_after": "case mpr.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nb : β → ℝ≥0∞\nb_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N\nb_lim : Tendsto b atTop (𝓝 0)\nε : ℝ≥0∞\nεpos : ε > 0\n⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε", "state_before": "case mpr\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\n⊢ (∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0)) →\n ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε", "tactic": "rintro ⟨b, ⟨b_bound, b_lim⟩⟩ ε εpos" }, { "state_after": "case mpr.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nb : β → ℝ≥0∞\nb_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N\nb_lim : Tendsto b atTop (𝓝 0)\nε : ℝ≥0∞\nεpos : ε > 0\nthis : ∀ᶠ (n : β) in atTop, b n < ε\n⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε", "state_before": "case mpr.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nb : β → ℝ≥0∞\nb_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N\nb_lim : Tendsto b atTop (𝓝 0)\nε : ℝ≥0∞\nεpos : ε > 0\n⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε", "tactic": "have : ∀ᶠ n in atTop, b n < ε := b_lim.eventually (gt_mem_nhds εpos)" }, { "state_after": "case mpr.intro.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nb : β → ℝ≥0∞\nb_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N\nb_lim : Tendsto b atTop (𝓝 0)\nε : ℝ≥0∞\nεpos : ε > 0\nthis : ∀ᶠ (n : β) in atTop, b n < ε\nN : β\nhN : b N < ε\n⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε", "state_before": "case mpr.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nb : β → ℝ≥0∞\nb_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N\nb_lim : Tendsto b atTop (𝓝 0)\nε : ℝ≥0∞\nεpos : ε > 0\nthis : ∀ᶠ (n : β) in atTop, b n < ε\n⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε", "tactic": "rcases this.exists with ⟨N, hN⟩" }, { "state_after": "case mpr.intro.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nb : β → ℝ≥0∞\nb_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N\nb_lim : Tendsto b atTop (𝓝 0)\nε : ℝ≥0∞\nεpos : ε > 0\nthis : ∀ᶠ (n : β) in atTop, b n < ε\nN : β\nhN : b N < ε\nm : β\nhm : N ≤ m\nn : β\nhn : N ≤ n\n⊢ edist (s m) (s n) < ε", "state_before": "case mpr.intro.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nb : β → ℝ≥0∞\nb_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N\nb_lim : Tendsto b atTop (𝓝 0)\nε : ℝ≥0∞\nεpos : ε > 0\nthis : ∀ᶠ (n : β) in atTop, b n < ε\nN : β\nhN : b N < ε\n⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε", "tactic": "refine ⟨N, fun m hm n hn => ?_⟩" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.416936\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : Nonempty β\ninst✝ : SemilatticeSup β\ns : β → α\nb : β → ℝ≥0∞\nb_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N\nb_lim : Tendsto b atTop (𝓝 0)\nε : ℝ≥0∞\nεpos : ε > 0\nthis : ∀ᶠ (n : β) in atTop, b n < ε\nN : β\nhN : b N < ε\nm : β\nhm : N ≤ m\nn : β\nhn : N ≤ n\n⊢ edist (s m) (s n) < ε", "tactic": "calc edist (s m) (s n) ≤ b N := b_bound m n N hm hn\n_ < ε := hN" } ]
[ 1431, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1411, 1 ]
Std/Data/List/Lemmas.lean
List.forall_mem_append
[ { "state_after": "no goals", "state_before": "α : Type u_1\np : α → Prop\nl₁ l₂ : List α\n⊢ (∀ (x : α), x ∈ l₁ ++ l₂ → p x) ↔ (∀ (x : α), x ∈ l₁ → p x) ∧ ∀ (x : α), x ∈ l₂ → p x", "tactic": "simp only [mem_append, or_imp, forall_and]" } ]
[ 225, 45 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 223, 1 ]
Mathlib/LinearAlgebra/Basic.lean
Submodule.map_id
[ { "state_after": "no goals", "state_before": "R : Type u_2\nR₁ : Type ?u.474481\nR₂ : Type ?u.474484\nR₃ : Type ?u.474487\nR₄ : Type ?u.474490\nS : Type ?u.474493\nK : Type ?u.474496\nK₂ : Type ?u.474499\nM : Type u_1\nM' : Type ?u.474505\nM₁ : Type ?u.474508\nM₂ : Type ?u.474511\nM₃ : Type ?u.474514\nM₄ : Type ?u.474517\nN : Type ?u.474520\nN₂ : Type ?u.474523\nι : Type ?u.474526\nV : Type ?u.474529\nV₂ : Type ?u.474532\ninst✝¹⁴ : Semiring R\ninst✝¹³ : Semiring R₂\ninst✝¹² : Semiring R₃\ninst✝¹¹ : AddCommMonoid M\ninst✝¹⁰ : AddCommMonoid M₂\ninst✝⁹ : AddCommMonoid M₃\ninst✝⁸ : AddCommMonoid M'\ninst✝⁷ : Module R M\ninst✝⁶ : Module R M'\ninst✝⁵ : Module R₂ M₂\ninst✝⁴ : Module R₃ M₃\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R →+* R₃\nσ₂₁ : R₂ →+* R\ninst✝³ : RingHomInvPair σ₁₂ σ₂₁\ninst✝² : RingHomInvPair σ₂₁ σ₁₂\ninst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\np p' : Submodule R M\nq q' : Submodule R₂ M₂\nq₁ q₁' : Submodule R M'\nr : R\nx y : M\ninst✝ : RingHomSurjective σ₁₂\nF : Type ?u.475113\nsc : SemilinearMapClass F σ₁₂ M M₂\na : M\n⊢ a ∈ map LinearMap.id p ↔ a ∈ p", "tactic": "simp" } ]
[ 726, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 725, 1 ]
Mathlib/Dynamics/Ergodic/Ergodic.lean
MeasureTheory.MeasurePreserving.ergodic_conjugate_iff
[ { "state_after": "α : Type u_1\nm : MeasurableSpace α\nf : α → α\ns : Set α\nμ : Measure α\nβ : Type u_2\nm' : MeasurableSpace β\nμ' : Measure β\ns' : Set β\ng : α → β\ne : α ≃ᵐ β\nh : MeasurePreserving ↑e\nthis : MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f\n⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f", "state_before": "α : Type u_1\nm : MeasurableSpace α\nf : α → α\ns : Set α\nμ : Measure α\nβ : Type u_2\nm' : MeasurableSpace β\nμ' : Measure β\ns' : Set β\ng : α → β\ne : α ≃ᵐ β\nh : MeasurePreserving ↑e\n⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f", "tactic": "have : MeasurePreserving (e ∘ f ∘ e.symm) μ' μ' ↔ MeasurePreserving f μ μ := by\n rw [h.comp_left_iff, (MeasurePreserving.symm e h).comp_right_iff]" }, { "state_after": "α : Type u_1\nm : MeasurableSpace α\nf : α → α\ns : Set α\nμ : Measure α\nβ : Type u_2\nm' : MeasurableSpace β\nμ' : Measure β\ns' : Set β\ng : α → β\ne : α ≃ᵐ β\nthis : MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f\nh : PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ PreErgodic f\n⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f", "state_before": "α : Type u_1\nm : MeasurableSpace α\nf : α → α\ns : Set α\nμ : Measure α\nβ : Type u_2\nm' : MeasurableSpace β\nμ' : Measure β\ns' : Set β\ng : α → β\ne : α ≃ᵐ β\nh : MeasurePreserving ↑e\nthis : MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f\n⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f", "tactic": "replace h : PreErgodic (e ∘ f ∘ e.symm) μ' ↔ PreErgodic f μ := h.preErgodic_conjugate_iff" }, { "state_after": "no goals", "state_before": "α : Type u_1\nm : MeasurableSpace α\nf : α → α\ns : Set α\nμ : Measure α\nβ : Type u_2\nm' : MeasurableSpace β\nμ' : Measure β\ns' : Set β\ng : α → β\ne : α ≃ᵐ β\nthis : MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f\nh : PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ PreErgodic f\n⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f", "tactic": "exact ⟨fun hf => { this.mp hf.toMeasurePreserving, h.mp hf.toPreErgodic with },\n fun hf => { this.mpr hf.toMeasurePreserving, h.mpr hf.toPreErgodic with }⟩" }, { "state_after": "no goals", "state_before": "α : Type u_1\nm : MeasurableSpace α\nf : α → α\ns : Set α\nμ : Measure α\nβ : Type u_2\nm' : MeasurableSpace β\nμ' : Measure β\ns' : Set β\ng : α → β\ne : α ≃ᵐ β\nh : MeasurePreserving ↑e\n⊢ MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f", "tactic": "rw [h.comp_left_iff, (MeasurePreserving.symm e h).comp_right_iff]" } ]
[ 114, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Analysis/SpecificLimits/Normed.lean
summable_pow_mul_geometric_of_norm_lt_1
[]
[ 342, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 340, 1 ]
Mathlib/RingTheory/OreLocalization/Basic.lean
OreLocalization.oreDiv_mul_oreDiv_comm
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : CommMonoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ : { x // x ∈ S }\n⊢ r₁ /ₒ s₁ * (r₂ /ₒ s₂) = r₁ * r₂ /ₒ (s₁ * s₂)", "tactic": "rw [oreDiv_mul_char r₁ r₂ s₁ s₂ r₂ s₁ (by simp [mul_comm]), mul_comm s₂]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : CommMonoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ : { x // x ∈ S }\n⊢ r₂ * ↑s₁ = ↑s₁ * r₂", "tactic": "simp [mul_comm]" } ]
[ 446, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 444, 1 ]
Mathlib/CategoryTheory/Limits/Over.lean
CategoryTheory.Over.epi_iff_epi_left
[]
[ 73, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/MeasureTheory/Group/Measure.lean
MeasureTheory.eventually_mul_left_iff
[ { "state_after": "no goals", "state_before": "𝕜 : Type ?u.490392\nG : Type u_1\nH : Type ?u.490398\ninst✝⁴ : MeasurableSpace G\ninst✝³ : MeasurableSpace H\ninst✝² : Group G\ninst✝¹ : MeasurableMul G\nμ : Measure G\ninst✝ : IsMulLeftInvariant μ\nt : G\np : G → Prop\n⊢ (∀ᵐ (x : G) ∂μ, p (t * x)) ↔ ∀ᵐ (x : G) ∂μ, p x", "tactic": "conv_rhs => rw [Filter.Eventually, ← map_mul_left_ae μ t]; rfl" } ]
[ 322, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 320, 1 ]
Mathlib/Analysis/Convex/Basic.lean
convex_iff_openSegment_subset
[]
[ 148, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.support_neg
[]
[ 1300, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1295, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.sumElim_inr
[]
[ 1329, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1327, 1 ]
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
ContinuousLinearMap.isSelfAdjoint_iff'
[]
[ 226, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/LinearAlgebra/Pi.lean
LinearMap.coe_proj
[]
[ 92, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Algebra/Group/Opposite.lean
MulOpposite.opAddEquiv_toEquiv
[]
[ 280, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 1 ]
Mathlib/Data/Nat/Basic.lean
Nat.succ_ne_succ
[]
[ 180, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 179, 1 ]
Mathlib/Data/Set/Basic.lean
Set.nmem_setOf_iff
[]
[ 272, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 271, 1 ]
Mathlib/Topology/Order/Basic.lean
IsLUB.mem_upperBounds_of_tendsto
[ { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : LinearOrder α\ninst✝⁵ : LinearOrder β\ninst✝⁴ : OrderTopology α\ninst✝³ : OrderTopology β\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace γ\ninst✝ : OrderClosedTopology γ\nf : α → γ\ns : Set α\na : α\nb : γ\nhf : MonotoneOn f s\nha : IsLUB s a\nhb : Tendsto f (𝓝[s] a) (𝓝 b)\nx : α\nhx : x ∈ s\n⊢ f x ≤ b", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : LinearOrder α\ninst✝⁵ : LinearOrder β\ninst✝⁴ : OrderTopology α\ninst✝³ : OrderTopology β\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace γ\ninst✝ : OrderClosedTopology γ\nf : α → γ\ns : Set α\na : α\nb : γ\nhf : MonotoneOn f s\nha : IsLUB s a\nhb : Tendsto f (𝓝[s] a) (𝓝 b)\n⊢ b ∈ upperBounds (f '' s)", "tactic": "rintro _ ⟨x, hx, rfl⟩" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : LinearOrder α\ninst✝⁵ : LinearOrder β\ninst✝⁴ : OrderTopology α\ninst✝³ : OrderTopology β\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace γ\ninst✝ : OrderClosedTopology γ\nf : α → γ\ns : Set α\na : α\nb : γ\nhf : MonotoneOn f s\nhb : Tendsto f (𝓝[s] a) (𝓝 b)\nx : α\nhx : x ∈ s\nha : IsLUB (s ∩ Ici x) a\n⊢ f x ≤ b", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : LinearOrder α\ninst✝⁵ : LinearOrder β\ninst✝⁴ : OrderTopology α\ninst✝³ : OrderTopology β\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace γ\ninst✝ : OrderClosedTopology γ\nf : α → γ\ns : Set α\na : α\nb : γ\nhf : MonotoneOn f s\nha : IsLUB s a\nhb : Tendsto f (𝓝[s] a) (𝓝 b)\nx : α\nhx : x ∈ s\n⊢ f x ≤ b", "tactic": "replace ha := ha.inter_Ici_of_mem hx" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : LinearOrder α\ninst✝⁵ : LinearOrder β\ninst✝⁴ : OrderTopology α\ninst✝³ : OrderTopology β\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace γ\ninst✝ : OrderClosedTopology γ\nf : α → γ\ns : Set α\na : α\nb : γ\nhf : MonotoneOn f s\nhb : Tendsto f (𝓝[s] a) (𝓝 b)\nx : α\nhx : x ∈ s\nha : IsLUB (s ∩ Ici x) a\nthis : NeBot (𝓝[s ∩ Ici x] a)\n⊢ f x ≤ b", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : LinearOrder α\ninst✝⁵ : LinearOrder β\ninst✝⁴ : OrderTopology α\ninst✝³ : OrderTopology β\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace γ\ninst✝ : OrderClosedTopology γ\nf : α → γ\ns : Set α\na : α\nb : γ\nhf : MonotoneOn f s\nhb : Tendsto f (𝓝[s] a) (𝓝 b)\nx : α\nhx : x ∈ s\nha : IsLUB (s ∩ Ici x) a\n⊢ f x ≤ b", "tactic": "haveI := ha.nhdsWithin_neBot ⟨x, hx, le_rfl⟩" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : LinearOrder α\ninst✝⁵ : LinearOrder β\ninst✝⁴ : OrderTopology α\ninst✝³ : OrderTopology β\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace γ\ninst✝ : OrderClosedTopology γ\nf : α → γ\ns : Set α\na : α\nb : γ\nhf : MonotoneOn f s\nhb : Tendsto f (𝓝[s] a) (𝓝 b)\nx : α\nhx : x ∈ s\nha : IsLUB (s ∩ Ici x) a\nthis : NeBot (𝓝[s ∩ Ici x] a)\n⊢ ∀ᶠ (c : α) in 𝓝[s ∩ Ici x] a, f x ≤ f c", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : LinearOrder α\ninst✝⁵ : LinearOrder β\ninst✝⁴ : OrderTopology α\ninst✝³ : OrderTopology β\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace γ\ninst✝ : OrderClosedTopology γ\nf : α → γ\ns : Set α\na : α\nb : γ\nhf : MonotoneOn f s\nhb : Tendsto f (𝓝[s] a) (𝓝 b)\nx : α\nhx : x ∈ s\nha : IsLUB (s ∩ Ici x) a\nthis : NeBot (𝓝[s ∩ Ici x] a)\n⊢ f x ≤ b", "tactic": "refine' ge_of_tendsto (hb.mono_left (nhdsWithin_mono _ (inter_subset_left s (Ici x)))) _" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : TopologicalSpace β\ninst✝⁶ : LinearOrder α\ninst✝⁵ : LinearOrder β\ninst✝⁴ : OrderTopology α\ninst✝³ : OrderTopology β\ninst✝² : Preorder γ\ninst✝¹ : TopologicalSpace γ\ninst✝ : OrderClosedTopology γ\nf : α → γ\ns : Set α\na : α\nb : γ\nhf : MonotoneOn f s\nhb : Tendsto f (𝓝[s] a) (𝓝 b)\nx : α\nhx : x ∈ s\nha : IsLUB (s ∩ Ici x) a\nthis : NeBot (𝓝[s ∩ Ici x] a)\n⊢ ∀ᶠ (c : α) in 𝓝[s ∩ Ici x] a, f x ≤ f c", "tactic": "exact mem_of_superset self_mem_nhdsWithin fun y hy => hf hx hy.1 hy.2" } ]
[ 2034, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2027, 1 ]
Mathlib/Order/Hom/CompleteLattice.lean
sSupHom.dual_comp
[]
[ 807, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 805, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_left
[ { "state_after": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.100825\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nf : γ → α\ns : Set γ\nx : γ\nhx : f x ∈ e.source\nh : f ⁻¹' e.source ∈ 𝓝[s] x\nfe_cont : ContinuousWithinAt (↑e ∘ f) s x\n⊢ ContinuousWithinAt f s x", "state_before": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.100825\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nf : γ → α\ns : Set γ\nx : γ\nhx : f x ∈ e.source\nh : f ⁻¹' e.source ∈ 𝓝[s] x\n⊢ ContinuousWithinAt f s x ↔ ContinuousWithinAt (↑e ∘ f) s x", "tactic": "refine' ⟨(e.continuousAt hx).comp_continuousWithinAt, fun fe_cont => _⟩" }, { "state_after": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.100825\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nf : γ → α\ns : Set γ\nx : γ\nhx : f x ∈ e.source\nh : f ⁻¹' e.source ∈ 𝓝[s] x\nfe_cont : ContinuousWithinAt (↑e ∘ f) (s ∩ f ⁻¹' e.source) x\n⊢ ContinuousWithinAt f (s ∩ f ⁻¹' e.source) x", "state_before": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.100825\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nf : γ → α\ns : Set γ\nx : γ\nhx : f x ∈ e.source\nh : f ⁻¹' e.source ∈ 𝓝[s] x\nfe_cont : ContinuousWithinAt (↑e ∘ f) s x\n⊢ ContinuousWithinAt f s x", "tactic": "rw [← continuousWithinAt_inter' h] at fe_cont⊢" }, { "state_after": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.100825\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nf : γ → α\ns : Set γ\nx : γ\nhx : f x ∈ e.source\nh : f ⁻¹' e.source ∈ 𝓝[s] x\nfe_cont : ContinuousWithinAt (↑e ∘ f) (s ∩ f ⁻¹' e.source) x\nthis : ContinuousWithinAt (↑(LocalHomeomorph.symm e) ∘ ↑e ∘ f) (s ∩ f ⁻¹' e.source) x\n⊢ ContinuousWithinAt f (s ∩ f ⁻¹' e.source) x", "state_before": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.100825\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nf : γ → α\ns : Set γ\nx : γ\nhx : f x ∈ e.source\nh : f ⁻¹' e.source ∈ 𝓝[s] x\nfe_cont : ContinuousWithinAt (↑e ∘ f) (s ∩ f ⁻¹' e.source) x\n⊢ ContinuousWithinAt f (s ∩ f ⁻¹' e.source) x", "tactic": "have : ContinuousWithinAt (e.symm ∘ e ∘ f) (s ∩ f ⁻¹' e.source) x :=\n haveI : ContinuousWithinAt e.symm univ (e (f x)) :=\n (e.continuousAt_symm (e.map_source hx)).continuousWithinAt\n ContinuousWithinAt.comp this fe_cont (subset_univ _)" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.100825\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nf : γ → α\ns : Set γ\nx : γ\nhx : f x ∈ e.source\nh : f ⁻¹' e.source ∈ 𝓝[s] x\nfe_cont : ContinuousWithinAt (↑e ∘ f) (s ∩ f ⁻¹' e.source) x\nthis : ContinuousWithinAt (↑(LocalHomeomorph.symm e) ∘ ↑e ∘ f) (s ∩ f ⁻¹' e.source) x\n⊢ ContinuousWithinAt f (s ∩ f ⁻¹' e.source) x", "tactic": "exact this.congr (fun y hy => by simp [e.left_inv hy.2]) (by simp [e.left_inv hx])" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.100825\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nf : γ → α\ns : Set γ\nx : γ\nhx : f x ∈ e.source\nh : f ⁻¹' e.source ∈ 𝓝[s] x\nfe_cont : ContinuousWithinAt (↑e ∘ f) (s ∩ f ⁻¹' e.source) x\nthis : ContinuousWithinAt (↑(LocalHomeomorph.symm e) ∘ ↑e ∘ f) (s ∩ f ⁻¹' e.source) x\ny : γ\nhy : y ∈ s ∩ f ⁻¹' e.source\n⊢ f y = (↑(LocalHomeomorph.symm e) ∘ ↑e ∘ f) y", "tactic": "simp [e.left_inv hy.2]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.100825\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nf : γ → α\ns : Set γ\nx : γ\nhx : f x ∈ e.source\nh : f ⁻¹' e.source ∈ 𝓝[s] x\nfe_cont : ContinuousWithinAt (↑e ∘ f) (s ∩ f ⁻¹' e.source) x\nthis : ContinuousWithinAt (↑(LocalHomeomorph.symm e) ∘ ↑e ∘ f) (s ∩ f ⁻¹' e.source) x\n⊢ f x = (↑(LocalHomeomorph.symm e) ∘ ↑e ∘ f) x", "tactic": "simp [e.left_inv hx]" } ]
[ 1177, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1168, 1 ]
Mathlib/Algebra/GroupPower/Order.lean
zero_pow_le_one
[ { "state_after": "β : Type ?u.202613\nA : Type ?u.202616\nG : Type ?u.202619\nM : Type ?u.202622\nR : Type u_1\ninst✝ : OrderedSemiring R\na x y : R\nn✝ m n : ℕ\n⊢ 0 ≤ 1", "state_before": "β : Type ?u.202613\nA : Type ?u.202616\nG : Type ?u.202619\nM : Type ?u.202622\nR : Type u_1\ninst✝ : OrderedSemiring R\na x y : R\nn✝ m n : ℕ\n⊢ 0 ^ (n + 1) ≤ 1", "tactic": "rw [zero_pow n.succ_pos]" }, { "state_after": "no goals", "state_before": "β : Type ?u.202613\nA : Type ?u.202616\nG : Type ?u.202619\nM : Type ?u.202622\nR : Type u_1\ninst✝ : OrderedSemiring R\na x y : R\nn✝ m n : ℕ\n⊢ 0 ≤ 1", "tactic": "exact zero_le_one" } ]
[ 400, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 396, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.piecewise_le_piecewise
[]
[ 2574, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2572, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Real.surjOn_cos
[ { "state_after": "no goals", "state_before": "⊢ SurjOn cos (Icc 0 π) (Icc (-1) 1)", "tactic": "simpa only [cos_zero, cos_pi] using intermediate_value_Icc' pi_pos.le continuous_cos.continuousOn" } ]
[ 624, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 623, 1 ]
Mathlib/Order/Circular.lean
btw_cyclic
[]
[ 183, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]