Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | n = int(raw_input())
ans = {}
start = 1
end = n
while end - start + 1 >= 4:
ans[start] = start + 1
ans[start + 1] = end
ans[end] = end - 1
ans[end - 1] = start
start += 2
end -= 2
if (end - start + 1) <= 1:
if end - start + 1 == 1:
ans[end] = end
for i in range(1, n + 1):
print ans[i],
# print '\n'
else:
print '-1'
| PYTHON |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C {
static StringTokenizer st;
static BufferedReader in;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
if (n==1) {
System.out.println(1);
return;
}
if (n % 4==2 || n % 4==3)
System.out.println(-1);
else {
int min = 1, max = n;
int[]ans = new int[n+1];
int left = 1, right = n;
for (int i = 1; i <= n/4; i++) {
ans[left] = min+1;
ans[left+1] = max;
ans[right] = max-1;
ans[right-1] = min;
min += 2;
max -= 2;
left += 2;
right -= 2;
}
if (n % 2==1)
ans[n/2+1] = n/2+1;
for (int i = 1; i <= n; i++) {
pw.print(ans[i]+" ");
}
pw.println();
}
// int[]p = new int[n+1];
// for (int i = 1; i <= n; i++) {
// p[i] = i;
// }
// while (true) {
// boolean f = true;
// for (int i = 1; i <= n; i++) {
// if (p[p[i]] != n-i+1) {
// f = false;
// break;
// }
// }
// if (f) {
// for (int i = 1; i <= n; i++) {
// System.out.print(p[i]+" ");
// }
// return;
// }
// int ind1 = n;
// while (ind1 > 1 && p[ind1] < p[ind1-1])
// ind1--;
// if (ind1==1)
// break;
// int ind2 = n;
// while (p[ind2] < p[ind1-1])
// ind2--;
// int t = p[ind1-1];
// p[ind1-1] = p[ind2];
// p[ind2] = t;
// for (int i = 0; i+ind1 < n-i; i++) {
// t = p[ind1+i];
// p[ind1+i] = p[n-i];
// p[n-i] = t;
// }
// }
pw.close();
}
private static int nextInt() throws IOException{
return Integer.parseInt(next());
}
private static long nextLong() throws IOException{
return Long.parseLong(next());
}
private static double nextDouble() throws IOException{
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
}
/*
8
2 8 4 6 3 5 1 7
9
2 9 4 7 5 3 6 1 8
*/ | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const double eps(1e-8);
int p[110000];
void did(int a, int b, int n) {
for (int i = (1); i <= (4); ++i) {
p[a] = b;
int tmp = b;
b = n - a + 1;
a = tmp;
}
}
bool solve(int n) {
if (n % 4 == 2 || n % 4 == 3) return false;
for (int i = (1); i <= (n); ++i) {
if (p[i] == 0) {
if (i == (n + 1) / 2 && n % 2 == 1) {
p[i] = i;
} else {
did(i, i + 1, n);
}
}
}
return true;
}
int main() {
int n;
scanf("%d", &n);
bool sol = solve(n);
if (!sol)
puts("-1");
else {
for (int i = (1); i <= (n); ++i) {
if (i != 1) printf(" ");
printf("%d", p[i]);
}
cout << endl;
}
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int perm[100010];
int main(void) {
int n;
scanf("%d", &n);
if (n % 4 == 2 || n % 4 == 3) {
printf("-1\n");
} else {
for (int i = 1; i <= n / 2; i++) {
if (i % 2 == 1) {
perm[i] = n - i;
int iter = i;
for (int j = 0; j < 3; j++) {
perm[perm[iter]] = n - iter + 1;
iter = perm[iter];
}
}
}
if (n % 2 == 1) {
perm[(n + 1) / 2] = (n + 1) / 2;
}
for (int i = 1; i <= n; i++) {
printf("%d%c", perm[i], (i == n) ? '\n' : ' ');
}
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool func(T a, T b) {
return a < b;
}
int main(int argc, const char *argv[]) {
long long *a, b, i, j, n, k;
cin >> n;
if (n % 4 > 1)
cout << "-1";
else {
b = n / 4;
a = new long long[n + 1];
for (k = 1; k <= b; k++) {
j = 2 * k - 1;
a[j] = 2 * k;
for (i = 0; i < 4; i++) {
a[a[j]] = n - j + 1;
j = a[j];
}
}
if (n % 4 == 1) {
a[n / 2 + 1] = n / 2 + 1;
}
if (n % 4 == 3) {
a[n / 2 + 1] = n / 2 + 1;
a[n / 2 + 2] = n / 2;
a[n / 2] = n / 2 + 2;
}
if (n % 4 == 2) {
a[n / 2 + 1] = n / 2;
a[n / 2] = n / 2 + 1;
}
for (i = 1; i < n + 1; i++) {
cout << a[i] << " ";
}
}
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.util.*;
public class Main{
static PrintWriter out=new PrintWriter(System.out);
static void output(int l,int r){
if(l<r){
out.print(1+l+" "+r+" ");
output(2+l,r-2);
out.print(l+" "+(r-1)+" ");
}else if(l==r) out.print(l+" ");
}
public static void main(String[]args){
Scanner cin=new Scanner(System.in);
int n=cin.nextInt();
if(2>(3&n)) output(1,n);
else out.print(-1);
out.close();
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | from collections import Counter
from itertools import cycle, product as prod, permutations as perm, combinations as comb, combinations_with_replacement as combr
from sys import stdin, stdout
read_ints = lambda: map(int, raw_input().split())
read_floats = lambda: map(float, raw_input().split())
def main():
n = input()
b = [None] * (n + 1)
cur = 1
if n % 4 == 0:
for i in xrange(1, n/2+1, 2):
o = (i, i+1, n-i+1, n-i)
for j in xrange(4):
b[o[j]] = o[j+1 & 3]
print ' '.join(map(str, b[1:]))
elif n % 4 == 1:
for i in xrange(1, n/2+1, 2):
o = (i, i+1, n-i+1, n-i)
for j in xrange(4):
b[o[j]] = o[j+1 & 3]
b[n/2+1] = n/2+1
print ' '.join(map(str, b[1:]))
else:
print -1
if __name__ == '__main__':
main()
| PYTHON |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
template <class T>
T _max(T x, T y) {
return x > y ? x : y;
}
template <class T>
T _min(T x, T y) {
return x < y ? x : y;
}
template <class T>
T _abs(T x) {
return (x < 0) ? -x : x;
}
template <class T>
T _mod(T x, T y) {
return (x > 0) ? x % y : ((x % y) + y) % y;
}
template <class T>
void _swap(T& x, T& y) {
T t = x;
x = y;
y = t;
}
template <class T>
void getmax(T& x, T y) {
x = (y > x) ? y : x;
}
template <class T>
void getmin(T& x, T y) {
x = (x < 0 || y < x) ? y : x;
}
int TS, cas = 1;
const int M = 100000 + 5;
int n, a[M];
void run() {
int i, j;
if (n % 4 > 1)
puts("-1");
else {
for (i = 1; i < n / 2; i += 2) {
j = i + 1;
a[i] = j;
a[n - i + 1] = n - j + 1;
a[j] = n - i + 1;
a[n - j + 1] = i;
}
if (n % 4 == 1) a[(n + 1) / 2] = (n + 1) / 2;
for (i = 1; i < n; i++) printf("%d ", a[i]);
printf("%d\n", a[n]);
}
}
void preSof() {}
int main() {
preSof();
while ((~scanf("%d", &n))) run();
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const double PI = acos(-1.0);
const int MAXN = 100000 + 9;
template <class T>
inline T f_min(T a, T b) {
return a < b ? a : b;
}
template <class T>
inline T f_max(T a, T b) {
return a > b ? a : b;
}
template <class T>
inline T f_abs(T a) {
return a > 0 ? a : -a;
}
template <class T>
inline T f_gcd(T a, T b) {
return b == 0 ? a : f_gcd(b, a % b);
}
int x[10] = {0, 1, 0, -1};
int y[10] = {1, 0, -1, 0};
bool vis[MAXN];
int arr[MAXN];
int main() {
memset(vis, false, sizeof(vis));
int n;
scanf("%d", &n);
int i, j;
i = n - 1, j = 1;
int pos1 = 1, pos2 = 2;
bool flag = true;
for (; i >= j && i >= 1 && i <= n; i -= 2, j += 2) {
if (vis[i] || vis[j]) {
break;
}
vis[i] = vis[j] = true;
arr[pos1] = i;
arr[pos2] = j;
pos1 += 2;
pos2 += 2;
}
for (i = 1; i <= (n + 1) / 2; i++) {
arr[n + 1 - i] = n + 1 - arr[i];
}
if (n % 2) arr[(n + 1) / 2] = (n + 1) / 2;
for (i = 1; i <= n; i++) {
if (arr[arr[i]] != n - i + 1) {
flag = false;
break;
}
}
if (!flag) {
printf("-1\n");
} else {
for (i = 1; i < n; i++) {
printf("%d ", arr[i]);
}
printf("%d\n", arr[i]);
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int a[100010];
int n;
void work(int l, int r) {
if (l > r) return;
if (l == r) {
a[l] = l;
return;
}
a[l] = l + 1;
a[l + 1] = r;
a[r - 1] = l;
a[r] = r - 1;
work(l + 2, r - 2);
}
int main() {
cin >> n;
if (n == 1) {
puts("1");
} else if (n % 4 > 1) {
puts("-1");
} else {
work(1, n);
for (int i = 1; i <= n; i++) {
printf("%d", a[i]);
if (i < n) printf(" ");
}
}
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int a[100010], n;
int main() {
while (scanf("%d", &n) != EOF) {
if (n % 4 > 1)
puts("-1");
else {
int stpos = 1, edpos = n - 1;
int stval = 2, edval = 1;
for (int i = 0; i < n / 4; i++) {
a[stpos] = stval;
a[edpos] = edval;
a[stpos + 1] = n + 2 - stval;
a[edpos + 1] = n - edval;
stpos += 2;
edpos -= 2;
stval += 2;
edval += 2;
}
if (n % 4 == 1) a[stpos] = stval - 1;
for (int i = 1; i <= n; i++) printf("%d ", a[i]);
puts("");
}
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.util.Map;
import java.util.Map.Entry;
import java.io.BufferedReader;
import java.util.BitSet;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author AnandOza
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
ALuckyPermutation solver = new ALuckyPermutation();
solver.solve(1, in, out);
out.close();
}
static class ALuckyPermutation {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] p = Permutations.identity(n);
Util.reverse(p);
List<List<Integer>> originalCycles = Permutations.findCycles(p);
HashMap<Integer, List<List<Integer>>> cyclesByLength = new HashMap<>();
for (List<Integer> c : originalCycles) {
int l = c.size();
if (!cyclesByLength.containsKey(l))
cyclesByLength.put(l, new ArrayList<>());
cyclesByLength.get(l).add(c);
}
List<List<Integer>> sqrtCycles = new ArrayList<>();
for (Map.Entry<Integer, List<List<Integer>>> e : cyclesByLength.entrySet()) {
int len = e.getKey();
List<List<Integer>> cycles = e.getValue();
if (len % 2 == 1) {
for (List<Integer> c : cycles) {
List<Integer> sq = new ArrayList<>();
int k = len / 2;
for (int i = 0; i < k; i++) {
sq.add(c.get(i));
sq.add(c.get(i + k + 1));
}
sq.add(c.get(k));
sqrtCycles.add(sq);
}
} else {
if (cycles.size() % 2 == 1) {
out.println(-1);
return;
}
for (int i = 0; i < cycles.size(); i += 2) {
List<Integer> a = cycles.get(i);
List<Integer> b = cycles.get(i + 1);
List<Integer> sq = new ArrayList<>();
for (int j = 0; j < len; j++) {
sq.add(a.get(j));
sq.add(b.get(j));
}
sqrtCycles.add(sq);
}
}
}
int[] answer = Permutations.fromCycles(n, sqrtCycles);
for (int i = 0; i < answer.length; i++)
answer[i]++;
out.println(Util.join(answer));
}
}
static class InputReader {
public final BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
static class Util {
public static String join(int... i) {
StringBuilder sb = new StringBuilder();
for (int o : i) {
sb.append(o);
sb.append(" ");
}
if (sb.length() > 0) {
sb.deleteCharAt(sb.length() - 1);
}
return sb.toString();
}
public static void swap(int[] x, int i, int j) {
int t = x[i];
x[i] = x[j];
x[j] = t;
}
public static void reverse(int[] x) {
for (int i = 0, j = x.length - 1; i < j; i++, j--) {
swap(x, i, j);
}
}
private Util() {
}
}
static class Permutations {
public static int[] identity(int n) {
int[] p = new int[n];
for (int i = 0; i < n; i++) {
p[i] = i;
}
return p;
}
public static List<List<Integer>> findCycles(int[] permutation) {
List<List<Integer>> cycles = new ArrayList<>();
int n = permutation.length;
BitSet visited = new BitSet(n);
for (int i = 0; i < n; i++) {
if (visited.get(i))
continue;
List<Integer> c = new ArrayList<>();
for (int j = i; c.isEmpty() || j != i; j = permutation[j]) {
c.add(j);
visited.set(j);
}
if (c.size() > 1) {
cycles.add(c);
}
}
return cycles;
}
public static int[] fromCycles(int n, List<List<Integer>> cycles) {
int[] p = new int[n];
Arrays.fill(p, -1);
for (List<Integer> c : cycles) {
for (int i = 0; i + 1 < c.size(); i++) {
p[c.get(i)] = c.get(i + 1);
}
p[c.get(c.size() - 1)] = c.get(0);
}
for (int i = 0; i < n; i++) {
if (p[i] == -1)
p[i] = i;
}
return p;
}
private Permutations() {
}
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int count = in.readInt();
if ((count & 3) >= 2) {
out.printLine(-1);
return;
}
int[] answer = new int[count];
if ((count & 1) == 1)
answer[count >> 1] = count >> 1;
for (int i = 0; i < (count >> 1); i += 2) {
answer[i] = i + 1;
answer[i + 1] = count - i - 1;
answer[count - i - 1] = count - i - 2;
answer[count - i - 2] = i;
}
for (int i = 0; i < count; i++)
answer[i]++;
out.printLine(answer);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void print(int[] array) {
for (int i = 0; i < array.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(array[i]);
}
}
public void printLine(int[] array) {
print(array);
writer.println();
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.util.*;
import java.lang.*;
import java.math.BigInteger;
import java.util.Map.Entry;
import java.util.logging.Level;
import java.util.logging.Logger;
public class Main
{
static StringTokenizer st=new StringTokenizer("");
static BufferedReader br;
///////////////////////////////////////////////////////////////////////////////////
public static void main(String args[]) throws FileNotFoundException, IOException, Exception
{
//Scanner in =new Scanner(new FileReader("input.txt"));
//PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
//Scanner in=new Scanner(System.in);
br=new BufferedReader(new InputStreamReader(System.in));
PrintWriter out=new PrintWriter(System.out);
//StringTokenizer st;//=new StringTokenizer(br.readLine());
int n=ni();
int arr[]=new int[n+1];
for(int i=n, j=1;i>0;i--,j++)
arr[i]=j;
int ans[]=new int[n+1];
int max=2;
if(n%4<2)
{
for(int i=1;i<=n/2;i+=2)
{
ans[i]=max;
ans[ans[i]]=arr[i];
ans[ans[ans[i]]]=arr[ans[i]];
ans[ans[ans[ans[i]]]]=arr[ans[ans[i]]];
max+=2;
}
if(n%2==1)
ans[n/2+1]=n/2+1;
for(int i=1;i<=n;i++)
out.print(ans[i]+" ");
}
else out.print(-1);
out.close();
}
///////////////////////////////////////////////////////////////////////////////
private static class pair implements Comparable<pair>
{
int ind;
long first;
long second;
pair()
{
ind=0;
first=0;
second=0;
}
pair(int i,long f,long s)
{
ind =i;
first=f;
second=s;
}
public int compareTo(pair o)
{
if(first < o.first)
return 1;
else if(first > o.first)
return -1;
else
return 0;
}
}
public static Integer ni() throws Exception
{
if(!st.hasMoreTokens())
st=new StringTokenizer(br.readLine());
return Integer.parseInt(st.nextToken());
}
public static BigInteger nb()throws Exception
{
if(!st.hasMoreElements())
st=new StringTokenizer(br.readLine());
return BigInteger.valueOf(Long.parseLong(st.nextToken()));
}
public static Long nl() throws Exception
{
if(!st.hasMoreTokens())
st=new StringTokenizer(br.readLine());
return Long.parseLong(st.nextToken());
}
public static Double nd()throws Exception
{
if(!st.hasMoreElements())
st=new StringTokenizer(br.readLine());
return Double.parseDouble(st.nextToken());
}
public static String ns()throws Exception
{
if(!st.hasMoreElements())
st=new StringTokenizer(br.readLine());
return st.nextToken();
}
} | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.util.*;
public class C176
{
public static void main(String[] args)
{
new C176();
}
public C176()
{
Scanner in = new Scanner(System.in);
int n = Integer.parseInt(in.nextLine());
if(n % 4 != 1 && n % 4 != 0)
System.out.println("-1");
else
{
int[] arr = new int[n];
if(n % 2 == 1)
arr[n / 2] = n / 2 + 1;
for(int x = 0; x < n / 2; x++)
{
if(x % 2 == 0)
arr[x] = x + 2;
else
arr[x] = n + 2 - arr[x - 1];
//System.out.println(x);
}
for(int x = 0; x < n / 2; x++)
{
arr[n - 1 - x] = n + 1 - arr[x];
//System.out.println(x);
}
for(int x = 0; x < n; x++)
System.out.print(arr[x] + " ");
}
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.util.*;
public class CFB {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
private static final long MOD = 1000L * 1000L * 1000L + 7;
private static final int[] dx = {0, -1, 0, 1};
private static final int[] dy = {1, 0, -1, 0};
private static final String yes = "Yes";
private static final String no = "No";
void solve() throws IOException {
int n = nextInt();
if (n % 4 == 2 || n % 4 == 3) {
outln(-1);
return;
}
if (n == 1) {
outln(1);
return;
}
int cnt = n / 4;
List<List<Integer>> ls = new ArrayList<>();
List<Integer> init = new ArrayList<>();
init.add(1);
init.add(n - 1);
init.add(0);
init.add(n - 2);
ls.add(init);
for (int i = 0; i < cnt - 1; i++) {
List<Integer> prev = ls.get(ls.size() - 1);
List<Integer> cur = new ArrayList<>();
for (int j = 0; j < prev.size(); j++) {
if (j % 2 == 0) {
cur.add(prev.get(j) + 2);
}
else {
cur.add(prev.get(j) - 2);
}
}
ls.add(cur);
}
List<Integer> res = new ArrayList<>();
for (int i = 0; i < ls.size(); i++) {
res.add(ls.get(i).get(0));
res.add(ls.get(i).get(1));
}
if (n % 4 != 0) {
res.add(n / 2);
}
for (int i = ls.size() - 1; i >= 0; i--) {
res.add(ls.get(i).get(2));
res.add(ls.get(i).get(3));
}
for (int i = 0; i < res.size(); i++) {
out((1 + res.get(i)) + " ");
}
}
void shuffle(long[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
long tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
private void formatPrint(double val) {
System.out.format("%.9f%n", val);
}
public CFB() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFB();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class C {
static PrintWriter out;
static StreamTokenizer st;
static BufferedReader bf;
public static void main(String[] args) throws IOException {
bf = new BufferedReader(new InputStreamReader(System.in));
st = new StreamTokenizer(bf);
out = new PrintWriter(new OutputStreamWriter(System.out));
int n = nextInt();
if (n == 1){
System.out.println(1);
return;
}
if (n%4 == 0 || ((n-1)%4) == 0){
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int []ans = new int [n+1];
int c = n;
int cnt = 0;
if (n == 4){
System.out.println("2 4 1 3");
return;
}
while (c > cnt+1){
cnt++;
ans[cnt] = cnt+1;
ans[cnt+1] = c;
ans[c] = --c;
ans[c] = cnt;
c--;
cnt++;
}
if (n%2 != 0) ans[c] = c;
for (int i = 1; i < ans.length; i++) {
out.print(ans[i]+" ");
}
out.close();
}else{
System.out.println(-1);
return;
}
}
private static String nextLine() throws IOException {
return bf.readLine().trim();
}
private static double nextDouble() throws IOException{
st.nextToken();
return st.nval;
}
private static long nextLong() throws IOException{
st.nextToken();
return (long) st.nval;
}
private static int nextInt() throws IOException {
st.nextToken();
return (int) st.nval;
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int p[100005];
bool m[100005];
int cnt;
int n;
void rec(int k) {
if (m[k]) return;
m[k] = true;
p[p[k]] = (n - (k) + 1);
cnt++;
rec(p[k]);
}
int main() {
scanf(" %d", &n);
for (int i = 1; i <= n; i++)
if ((n - (i) + 1) == i) p[i] = i, m[i] = true, cnt++;
int start = 0;
for (int i = 1; i <= n; i++)
if (!m[i]) {
int start = 0;
for (int k = i + 1; k <= n; k++)
if (!m[k] && (n - (i) + 1) != k) {
cnt++;
m[i] = true;
p[i] = start = k;
p[p[i]] = (n - (i) + 1);
break;
}
if (!start && cnt < n) {
printf("-1\n");
return 0;
}
rec(start);
}
if (cnt < n) {
printf("-1\n");
return 0;
}
for (int i = 1; i <= n; i++) printf("%d ", p[i]);
printf("\n");
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.nextLine());
sc.close();
if (n % 4 == 2 || n % 4 == 3)
System.out.println(-1);
else {
int[] num = new int[n + 1];
for (int i = 1; i <= n / 2; i += 2) {
num[i] = i + 1;
num[i + 1] = n + 1 - i;
num[n - i] = i;
num[n + 1 - i] = n - i;
}
if (n % 2 == 1)
num[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i < num.length; i++)
System.out.print(num[i] + " ");
}
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int P = 1e9 + 7, INF = 0x3f3f3f3f;
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
long long qpow(long long a, long long n) {
long long r = 1 % P;
for (a %= P; n; a = a * a % P, n >>= 1)
if (n & 1) r = r * a % P;
return r;
}
long long inv(long long first) {
return first <= 1 ? 1 : inv(P % first) * (P - P / first) % P;
}
inline int rd() {
int first = 0;
char p = getchar();
while (p < '0' || p > '9') p = getchar();
while (p >= '0' && p <= '9') first = first * 10 + p - '0', p = getchar();
return first;
}
const int N = 1e6 + 50;
int n, a[N], b[N], c[N];
int main() {
scanf("%d", &n);
if (n % 4 > 1) return puts("-1"), 0;
int l = 1, r = n - 1, now = 1;
for (int i = 1; i <= n / 2; ++i) {
if (i & 1)
a[r] = now++, r -= 2;
else
a[l] = now++, l += 2;
}
if (n % 4 == 1) {
l = n / 2, r = n / 2 + 1;
a[r] = now++, r += 2;
for (int i = n / 2 + 2; i <= n; ++i) {
if (i & 1)
a[l] = now++, l -= 2;
else
a[r] = now++, r += 2;
}
} else if (n % 4 == 0) {
l = n / 2, r = n / 2 + 2;
for (int i = n / 2 + 1; i <= n; ++i) {
if (i & 1)
a[r] = now++, r += 2;
else
a[l] = now++, l -= 2;
}
}
for (int i = 1; i <= n; ++i) printf("%d ", a[i]);
putchar(10);
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | '''
Created on
@author: linhz
'''
import sys
usedNum=0
n=int(input())
p=[0 for i in range(n+1)]
usedNum=0
if n%4==3 or n%4==2:
print(-1)
else:
i=1
j=n
a=1
b=n
while j>i:
p[i]=a+1
p[i+1]=b
p[j]=b-1
p[j-1]=a
i+=2
j-=2
a+=2
b-=2
if j==i:
p[i]=a
ans=""
for i in range(1,n+1):
ans+=str(p[i])+" "
print(ans) | PYTHON3 |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int OO = (int)2e9;
const double eps = 1e-9;
int arr[100005];
int main() {
std::ios_base::sync_with_stdio(false);
int i, n;
cin >> n;
if (!((n & 3) && ((n - 1) & 3))) {
if (n & 1) arr[n / 2 + 1] = n / 2 + 1;
for (i = 1; i < n / 2; i += 2) {
arr[i] = i + 1;
arr[i + 1] = n - i + 1;
arr[n - i] = i;
arr[n - i + 1] = n - i;
}
for ((i) = (1); (i) < (n + 1); (i)++) cout << arr[i] << " ";
} else {
cout << -1 << endl;
return 0;
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.util.*;
public class A {
void solve() throws IOException {
int n = nextInt();
if (n % 4 == 2 || n % 4 == 3) {
out.println("-1");
return;
}
int[] res = new int[n];
int down = 1;
int up = n;
for (int i = 0; up - down + 1 >= 4; i += 2) {
res[i] = down + 1;
res[i + 1] = up;
res[n - i - 1] = up - 1;
res[n - i - 2] = down;
down += 2;
up -= 2;
}
if (down == up) {
res[n / 2] = down;
}
for (int i = 0; i < n; i++) {
out.print(res[i] + " ");
}
}
void run() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new A().run();
}
BufferedReader br;
PrintWriter out;
StringTokenizer str;
String next() throws IOException {
while (str == null || !str.hasMoreTokens()) {
str = new StringTokenizer(br.readLine());
}
return str.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n % 4 == 3 || n % 4 == 2) {
cout << "-1";
}
if (n % 4 == 0) {
for (int i = 0; i < n / 2; i += 2) {
cout << (i + 2) << " ";
cout << n - i << " ";
}
for (int i = 1; i < n / 2; i += 2) {
cout << n / 2 - i << " ";
cout << n / 2 + i << " ";
}
}
if (n % 4 == 1) {
for (int i = 0; i < n / 2; i += 2) {
cout << (i + 2) << " ";
cout << n - i << " ";
}
cout << n / 2 + 1 << " ";
for (int i = 1; i < n / 2; i += 2) {
cout << n / 2 - i << " ";
cout << n / 2 + i + 1 << " ";
}
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int n;
int v[100005];
int main() {
cin >> n;
if (n % 4 == 2 || n % 4 == 3) {
cout << -1;
return 0;
}
for (int i = 2; i <= n / 2; i += 2) v[i - 1] = i, v[i] = n + 2 - i;
if (n % 2) v[n / 2 + 1] = n / 2 + 1;
for (int i = n / 2 - 1, j = 1; i >= 1; i -= 2, j += 2)
v[(n + 1) / 2 + j] = i, v[(n + 1) / 2 + j + 1] = n - i;
for (int i = 1; i <= n; i++) cout << v[i] << " ";
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | n = int(raw_input())
if n % 4 > 1:
print -1
exit()
a = [i for i in xrange(n)]
for i in xrange(0, n / 2, 2):
a[i] = i + 1
a[i + 1] = n - i - 1
a[n - i - 1] = n - i - 2
a[n - i - 2] = i
print ' '.join([str(i + 1) for i in a])
| PYTHON |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.util.Scanner;
public class C {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n = sc.nextInt();
if ((n - 1) % 4 == 1 || (n - 1) % 4 == 2) {
System.out.println("-1");
return;
}
if (n % 2 == 0) {
for (int i = 0; i < n/2; i += 2) {
System.out.print(i + 2+ " ");
System.out.print(n-i+" ");
}
int ab[][] = new int [n/2][2];
int ans = 0;
for (int i = 0; i < n/2; i += 2) {
ab[ans][0] = i+1;
ab[ans][1] = n-i-1;
ans++;
}
for (int i = ans-1; i >= 0; i--) {
System.out.print(ab[i][0]+" ");
System.out.print(ab[i][1]+" ");
}
} else {
for (int i = 0; i < n/2; i += 2) {
System.out.print(i + 2+ " ");
System.out.print(n-i+" ");
}
int a[][] = new int [n/2][2];
int ans = 0;
for (int i = 0; i < n/2; i += 2) {
a[ans][0] = i+1;
a[ans][1] = n-i-1;
ans++;
}
System.out.print(n/2+1+" ");
for (int i = ans-1; i >= 0; i--) {
System.out.print(a[i][0]+" ");
System.out.print(a[i][1]+" ");
}
}
}
} | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class TC
{
static int N;
static void print( int[] a )
{
for( int i=1; i<=N; i++ )
System.out.print( a[i] + " ");
System.out.println();
}
static void case0()
{
int cnt=0;
int i=1;
int[] a=new int[N+1];
Arrays.fill( a, 0 );
while( true )
{
if( a[i] > 0 )
break;
a[i]=i+1;
int inv=N+1-i;
a[i+1]=inv;
a[inv]=inv-1;
a[inv-1]=i;
cnt+=4;
i+=2;
}
print( a );
}
static void case1()
{
int cnt=0;
int i=1;
int[] a=new int[N+1];
Arrays.fill( a, 0 );
int mid=( N+1 )/2;
a[mid]=mid;
while( true )
{
if( a[i] > 0 )
break;
a[i]=i+1;
int inv=N+1-i;
a[i+1]=inv;
a[inv]=inv-1;
a[inv-1]=i;
cnt+=4;
i+=2;
}
print( a );
}
public static void main( String[] args ) throws IOException
{
BufferedReader br=new BufferedReader( new InputStreamReader( System.in ));
N=Integer.parseInt( br.readLine() );
if( N%4 == 0 )
case0();
else if( N%4 == 1 )
case1();
else
System.out.println( "-1");
}
} | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.util.*;
public class Main {
public static long calc(long k, long n) {
long l = 2, r = k + 1, mid, tmp;
while ( l < r ) {
mid = (l + r) / 2;
tmp = (k - mid + 1) * (k + mid) / 2 - (k - mid);
if ( tmp <= n ) r = mid;
else l = mid + 1;
}
return l;
}
public static void main(String[] strings) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
in.close();
if ( ((n % 4) > 1) ) {
System.out.println("-1");
return;
}
int i, n2 = n / 2, gap;
int[] p = new int[100005];
for (gap = n-1, i = 1; i <= n2; i += 2, gap -= 4) {
p[i] = gap - 1 + i;
p[i+1] = i;
p[gap+i-1] = gap + i;
p[gap+i] = 1 + i;
}
if ( (n % 4) == 1 ) p[n2+1] = n2 + 1;
for ( i = 1; i <= n; ++i ) {
System.out.print(p[i] + " ");
}
System.out.print("\r\n");
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
bool solve() {
int n;
if (scanf("%d", &n) == EOF) return false;
if (n % 4 > 1) {
printf("-1\n");
return true;
}
vector<int> ans(n);
for (int i = 0; i < n / 4; ++i) {
ans[i * 2] = i * 2 + 1;
ans[i * 2 + 1] = n - i * 2 - 1;
ans[n - i * 2 - 1] = n - (i * 2 + 1) - 1;
ans[n - (i * 2 + 1) - 1] = i * 2;
}
if (n % 2) ans[n / 2] = n / 2;
for (int i = 0; i < n; ++i) printf("%d ", ans[i] + 1);
return true;
}
int main() {
solve();
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.InputStreamReader;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.Writer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Niyaz Nigmatullin
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
FastPrinter out = new FastPrinter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, FastScanner in, FastPrinter out) {
int n = in.nextInt();
int[] ans = new int[n];
int m = n;
if ((n & 1) == 1) {
ans[n / 2] = n / 2;
--m;
}
if (m % 4 != 0) {
out.println(-1);
return;
}
for (int i = 0; i < n / 2; i += 2) {
ans[i] = i + 1;
ans[i + 1] = n - i - 1;
ans[n - i - 1] = n - i - 2;
ans[n - i - 2] = i;
}
for (int i = 0; i < n; i++) {
++ans[i];
}
out.printArray(ans);
}
}
class FastScanner extends BufferedReader {
boolean isEOF;
public FastScanner(InputStream is) {
super(new InputStreamReader(is));
}
public int read() {
try {
int ret = super.read();
if (isEOF && ret < 0) {
throw new InputMismatchException();
}
isEOF = ret == -1;
return ret;
} catch (IOException e) {
throw new InputMismatchException();
}
}
static boolean isWhiteSpace(int c) {
return c >= 0 && c <= 32;
}
public int nextInt() {
int c = read();
while (isWhiteSpace(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int ret = 0;
while (c >= 0 && !isWhiteSpace(c)) {
if (c < '0' || c > '9') {
throw new NumberFormatException("digit expected " + (char) c
+ " found");
}
ret = ret * 10 + c - '0';
c = read();
}
return ret * sgn;
}
}
class FastPrinter extends PrintWriter {
public FastPrinter(OutputStream out) {
super(out);
}
public FastPrinter(Writer out) {
super(out);
}
public void printArray(int[] a) {
for (int i = 0; i < a.length; i++) {
if (i > 0) {
print(' ');
}
print(a[i]);
}
println();
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int N = 100010;
int main() {
int n;
scanf("%d", &n);
if (n % 4 > 1) {
printf("-1\n");
return 0;
}
int p[N];
for (int i = 1; i <= n / 2; i += 2) {
p[i] = i + 1;
p[i + 1] = n - i + 1;
p[n - i + 1] = n - i;
p[n - i] = i;
}
if (n % 4 == 1) p[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n; i++) printf("%d ", p[i]);
printf("\n");
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int n=in.nextInt();
if(n%4>1){
out.println(-1);
return;
}
int ans[]=new int[n];
for (int i=0;i<n/2;i+=2){
ans[i]=i+2;
int t=i;
for (int j=0;j<4;j++){
ans[ans[t]-1]=n-t;
t=ans[t]-1;
}
}
if(n%2==1)
ans[n/2]=n/2+1;
for (int i=0;i<n;i++)
out.print(ans[i]+" ");
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int arr[maxn];
int main() {
int n;
cin >> n;
if ((n >> 1) & 1) return 0 * printf("-1\n");
for (int i = 0; i < n + 1; i++) arr[i] = i;
for (int i = 1; i <= n; i += 2) {
if (n & 1 && i == n / 2 + 1) i++;
swap(arr[i], arr[i + 1]);
}
for (int i = 1; i <= n / 2; i += 2) {
swap(arr[i], arr[n - i + 1]);
}
for (int i = 1; i <= n; i++) {
cout << arr[i] << " ";
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | n=int(input())
if n%4==2 or n%4==3:
from sys import exit
print(-1);exit()
res,i=[0]*n,0
for i in range(0,n//2,2):
res[i],res[i+1]=i+2,n-i
res[n-i-1],res[n-i-2]=n-i-1,i+1
i+=2
if n%4==1:res[n//2]=n//2+1
print(*res) | PYTHON3 |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import static java.lang.Math.*;
import static java.math.BigInteger.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
import java.io.*;
public class A {
final static boolean autoflush = false;
public A () {
int N = sc.nextInt();
sc = null;
int [] res = new int [N];
switch(N%4) {
case 1:
int m = (N-1)/2;
res[m] = m;
case 0:
for (int i : rep(N/4)) {
int a = 2*i, b = a+1;
res[a] = b;
res[b] = N-1-a;
res[N-1-a] = N-1-b;
res[N-1-b] = a;
}
for (int i : rep(N))
++res[i];
exit(res);
default:
exit(-1);
}
}
////////////////////////////////////////////////////////////////////////////////////
static int [] rep(int N) { return rep(0, N); }
static int [] rep(int S, int T) { int [] res = new int [max(T-S, 0)]; for (int i = S; i < T; ++i) res[i-S] = i; return res; }
static int [] req(int S, int T) { return rep(S, T+1); }
////////////////////////////////////////////////////////////////////////////////////
/* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */
static MyScanner sc = new MyScanner();
static class MyScanner {
public String next() {
readToken();
return new String(b, T[0], T[1] - T[0]);
}
public char nextChar() {
readToken();
return (char)b[T[0]];
}
public int nextInt() {
return (int)nextLong();
}
public long nextLong() {
readToken();
return calc(T[0], T[1]);
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
readLine();
return new String(b, T[0], T[1] - T[0]);
}
public String [] next(int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = next();
return res;
}
public Integer [] nextInt(int N) {
Integer [] res = new Integer [N];
for (int i = 0; i < N; ++i)
res[i] = nextInt();
return res;
}
public Long [] nextLong(int N) {
Long [] res = new Long [N];
for (int i = 0; i < N; ++i)
res[i] = nextLong();
return res;
}
public Double [] nextDouble(int N) {
Double [] res = new Double [N];
for (int i = 0; i < N; ++i)
res[i] = nextDouble();
return res;
}
public String [] nextLine(int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = nextLine();
return res;
}
public String [] nextStrings() {
readLine();
int s = T[0], c = 0;
String [] res = new String[count(T[0], T[1])];
for (int i = T[0]; i < T[1]; ++i)
if (b[i] == SPACE) {
res[c++] = new String(b, s, i - s);
s = i+1;
}
res[c] = new String (b, s, T[1] - s);
return res;
}
public char [] nextChars() {
readToken();
int c = 0;
char [] res = new char[T[1] - T[0]];
for (int i = T[0]; i < T[1]; ++i)
res[c++] = (char)b[i];
return res;
}
public Integer [] nextInts() {
readLine();
int s = T[0], c = 0;
Integer [] res = new Integer[count(T[0], T[1])];
for (int i = T[0]; i < T[1]; ++i)
if (b[i] == SPACE) {
res[c++] = (int)calc(s, i);
s = i+1;
}
res[c] = (int)calc(s, T[1]);
return res;
}
public Long [] nextLongs() {
readLine();
int s = T[0], c = 0;
Long [] res = new Long[count(T[0], T[1])];
for (int i = T[0]; i < T[1]; ++i)
if (b[i] == SPACE) {
res[c++] = calc(s, i);
s = i+1;
}
res[c] = calc(s, T[1]);
return res;
}
public Double [] nextDoubles() {
readLine();
int s = T[0], c = 0;
Double [] res = new Double[count(T[0], T[1])];
for (int i = T[0]; i < T[1]; ++i)
if (b[i] == SPACE) {
res[c++] = Double.parseDouble(new String(b, s, i - s));
s = i+1;
}
res[c] = Double.parseDouble(new String(b, s, T[1] - s));
return res;
}
String [][] nextStrings(int N) {
String [][] res = new String [N][];
for (int i = 0; i < N; ++i)
res[i] = nextStrings();
return res;
}
char [][] nextChars(int N) {
char [][] res = new char [N][];
for (int i = 0; i < N; ++i)
res[i] = nextChars();
return res;
}
Integer [][] nextInts(int N) {
Integer [][] res = new Integer [N][];
for (int i = 0; i < N; ++i)
res[i] = nextInts();
return res;
}
Long [][] nextLongs(int N) {
Long [][] res = new Long [N][];
for (int i = 0; i < N; ++i)
res[i] = nextLongs();
return res;
}
Double [][] nextDoubles(int N) {
Double [][] res = new Double [N][];
for (int i = 0; i < N; ++i)
res[i] = nextDoubles();
return res;
}
//////////////////////////////////////////////
private final static int MAX_SZ = (1 << 26);
private final byte [] b = new byte[MAX_SZ];
private final int [] T = new int [2];
private int cur = 0;
MyScanner () {
try {
InputStream is = new BufferedInputStream(System.in);
while (is.available() == 0)
Thread.sleep(1);
start();
int off = 0, c;
while ((c = is.read(b, off, MAX_SZ - off)) != -1)
off += c;
} catch (Exception e) {
throw new Error(e);
}
}
private void readLine() {
int c;
for (c = cur; b[c] != LF && b[c] != CR && b[c] != 0; ++c);
T[0] = cur; T[1] = c;
for (cur = c; b[cur] == LF || b[cur] == CR; ++cur);
}
private void readToken() {
int c;
for (c = cur; b[c] != SPACE && b[c] != LF && b[c] != CR && b[c] != 0; ++c);
T[0] = cur; T[1] = c;
for (cur = c; b[cur] == SPACE || b[cur] == LF || b[cur] == CR; ++cur);
}
private int count(int s, int e) {
int cnt = 1;
for (int i = s; i < e; ++i)
if (b[i] == SPACE)
++cnt;
return cnt;
}
private long calc(int s, int e) {
long res = 0, f = 1;
for (int i = s; i < e; ++i)
if (b[i] == '-')
f = -1;
else
res = 10 * res + b[i] - '0';
return res * f;
}
private static final char LF = '\n';
private static final char CR = '\r';
private static final char SPACE = ' ';
}
static void print (Object o, Object... a) {
printDelim(" ", o, a);
}
static void cprint (Object o, Object... a) {
printDelim("", o, a);
}
static void printDelim (String delim, Object o, Object... a) {
pw.println(build(delim, o, a));
}
static void exit (Object o, Object... a) {
print(o, a);
exit();
}
static void exit() {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
static void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build (String delim, Object o, Object... a) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : a)
append(b, p, delim);
return b.toString().trim();
}
static void append(StringBuilder b, Object o, String delim) {
if (o.getClass().isArray()) {
int L = java.lang.reflect.Array.getLength(o);
for (int i : rep(L))
append(b, java.lang.reflect.Array.get(o, i), delim);
} else if (o instanceof Iterable<?>)
for (Object p : (Iterable<?>)o)
append(b, p, delim);
else
b.append(delim).append(o);
}
////////////////////////////////////////////////////////////////////////////////////
static void statics() {
abs(0);
valueOf(0);
asList(new Object [0]);
reverseOrder();
}
public static void main (String[] args) {
new A();
exit();
}
static void start() {
t = millis();
}
static java.io.PrintWriter pw = new java.io.PrintWriter(System.out, autoflush);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.util.Scanner;
public class c_176 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if ((n - 1) % 4 == 1 || (n - 1) % 4 == 2) {
System.out.println(-1);
return;
}
for (int i = 2; i <= n / 2; i += 2) {
System.out.print(i + " " + ((n + 2) - i) + " ");
}
if (n % 2 == 1) {
System.out.print(n / 2 + 1 + " ");
}
for (int i = n / 2 - 1; i >= 1; i -= 2) {
System.out.print(i + " " + (n - i) + " ");
}
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
template <typename Arg1>
void __f(const char* name, Arg1&& arg1) {
cerr << name << " : " << arg1 << std::endl;
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args) {
const char* comma = strchr(names + 1, ',');
cerr.write(names, comma - names) << " : " << arg1 << " | ";
__f(comma + 1, args...);
}
int p[123123];
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n;
cin >> n;
if ((n / 2) % 2) {
cout << -1 << '\n';
return 0;
}
int s = 1;
int l = n;
if (n % 2 == 1) p[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n / 2; i += 2) {
p[i] = s + 1;
p[i + 1] = l;
p[n - i + 1] = l - 1;
p[n - i] = s;
s += 2;
l -= 2;
}
for (int i = 1; i <= n; i++) assert(p[p[i]] == n - i + 1);
for (int i = 1; i <= n; i++) cout << p[i] << " ";
cout << '\n';
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int num[100005] = {0};
int flag[100005] = {0};
int main() {
int n;
scanf("%d", &n);
if (n == 1)
printf("1\n");
else if (n >= 4) {
int kflag;
if (n % 2 == 1) num[(n + 1) / 2] = (n + 1) / 2;
while (1) {
int flags = 0;
kflag = 0;
for (int i = 1; i <= n; i++)
if (num[i] == 0) {
flags = i;
break;
}
int first = flags;
int next = 1;
if (flags != 0)
while (first == next || num[next] != 0) next++;
else
break;
while (num[next] == 0) {
num[next] = n - first + 1;
int t = next;
next = num[next];
first = t;
if (first == next) kflag = 1;
}
if (kflag == 1) break;
}
if (kflag == 1) {
printf("-1\n");
exit(0);
}
for (int i = 1; i <= n; i++)
if (i == n)
printf("%d\n", num[i]);
else
printf("%d ", num[i]);
} else
printf("-1\n");
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.util.*;
import java.lang.*;
public class Main
{
public static void main (String[] args) throws java.lang.Exception
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if((n%4==2)||(n%4==3)){
System.out.println(-1);
}
else{
int[] permutation = new int[n];
int halfway = n/2;
for(int i = 0; i<halfway;i+=2){
permutation[i]=i+2;
permutation[n-1-i]=n-1-i;
}
for(int j = 1; j<halfway;j+=2){
permutation[j]=n+1-j;
permutation[n-1-j]=j;
}
if(n%4==1){
permutation[halfway]=halfway+1;
}
for(int k = 0;k<n;k++){
System.out.print(permutation[k] + " ");
}
System.out.println("");
}
}
} | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int vis[100006];
int a[100005];
int ans[100005];
int main() {
ios_base::sync_with_stdio(false);
int i, j, k, x, n, t;
cin >> n;
if (n % 4 != 1 && n % 4 != 0) {
cout << -1 << endl;
return 0;
}
for (i = 1; i <= (n + 1) / 2; i += 2) {
if (i == (n + 1) / 2) {
ans[i] = i;
break;
}
ans[i] = i + 1;
ans[i + 1] = n - i + 1;
ans[n - i + 1] = n - i;
ans[n - i] = i;
}
for (i = 1; i <= n; i++) {
cout << ans[i] << " ";
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
int arr[100010];
int main() {
int n, counts, index, to, i, j, a, b;
scanf("%d", &n);
if (n == 1) {
printf("1\n");
return 0;
}
if (n == 2) {
printf("-1\n");
return 0;
}
if ((n % 4) > 1) {
printf("-1\n");
return 0;
}
a = 1;
b = 2;
for (i = 0; i < n / 4; i++) {
arr[a] = 2;
index = a;
to = b;
for (j = 0; j < 4; j++) {
arr[to] = n - index + 1;
index = to;
to = arr[to];
}
a += 2;
b += 2;
}
if (n % 2) arr[(n / 2) + 1] = (n / 2) + 1;
for (i = 1; i <= n; i++) {
printf("%d", arr[i]);
if (i == n)
printf("\n");
else
printf(" ");
}
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
long long pow(long long b, long long e, long long m) {
long long t = 1;
for (; e; e >>= 1, b = b * b % m) e & 1 ? t = t * b % m : 0;
return t;
}
template <class T>
inline bool chkmin(T &a, T b) {
return a > b ? a = b, true : false;
}
template <class T>
inline bool chkmax(T &a, T b) {
return a < b ? a = b, true : false;
}
template <class T>
inline T sqr(T x) {
return x * x;
}
template <typename T>
T gcd(T x, T y) {
for (T t; x; t = x, x = y % x, y = t)
;
return y;
}
template <class edge>
struct Graph {
vector<vector<edge> > adj;
Graph(int n) {
adj.clear();
adj.resize(n + 5);
}
Graph() { adj.clear(); }
void resize(int n) { adj.resize(n + 5); }
void add(int s, edge e) { adj[s].push_back(e); }
void del(int s, edge e) { adj[s].erase(find(iter(adj[s]), e)); }
vector<edge> &operator[](int t) { return adj[t]; }
};
const int maxn = 110000;
int p[maxn];
int main(int argc, char **argv) {
ios_base::sync_with_stdio(false);
int n;
cin >> n;
if (n % 4 == 2 || n % 4 == 3) {
cout << -1 << endl;
return 0;
}
for (int i = 1, j = n; i <= j; i += 2, j -= 2) {
if (i == j) {
p[i] = j;
break;
}
int s = i + 1, t = j - 1;
p[i] = s;
p[s] = j;
p[j] = t;
p[t] = i;
}
for (int i = 1; i <= n; ++i) {
cout << p[i] << " ";
}
cout << endl;
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
(new Main()).solve();
}
public Main() {
}
MyReader in = new MyReader();
PrintWriter out = new PrintWriter(System.out);
void solve() throws IOException {
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
// Scanner in = new Scanner(System.in);
//Scanner in = new Scanner(new FileReader("forbidden-triples.in"));
//PrintWriter out = new PrintWriter("forbidden-triples.out");
int n = in.nextInt();
int[] p = new int[n];
if (n == 1) {
out.println(1);
} else if (n == 2) {
out.println(-1);
} else if (n == 3) {
out.println(-1);
} else if (n % 4 == 1 || n % 4 == 0) {
int b = 0;
int e = n;
while (n > 1) {
p[b] = 2 + b;
p[b + 1] = e;
p[e - 2] = 1 + b;
p[e - 1] = e - 1;
n -= 4;
b += 2;
e -= 2;
}
if (n % 4 == 1) {
p[p.length/2] = p.length/2 + 1;
}
for (int i = 0; i < p.length; i++) {
out.print(p[i] + " ");
}
} else {
out.println(-1);
}
out.close();
}
};
class MyReader {
private BufferedReader in;
String[] parsed;
int index = 0;
public MyReader() {
in = new BufferedReader(new InputStreamReader(System.in));
}
public int nextInt() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Integer.parseInt(parsed[index++]);
}
public long nextLong() throws NumberFormatException, IOException {
if (parsed == null || parsed.length == index) {
read();
}
return Long.parseLong(parsed[index++]);
}
public String nextString() throws IOException {
if (parsed == null || parsed.length == index) {
read();
}
return parsed[index++];
}
private void read() throws IOException {
parsed = in.readLine().split(" ");
index = 0;
}
public String readLine() throws IOException {
return in.readLine();
}
}; | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int m, k;
int n;
int p[100100];
int main() {
scanf("%d", &n);
if (n == 1) {
printf("1\n");
return 0;
}
if (n == 2 || n == 3) {
printf("-1\n");
return 0;
}
int a = 1;
set<int> per;
for (int i = 2; i <= n; i++) per.insert(i);
for (int i = 1; i <= n; i++) {
if (p[i] == 0) {
if (i == n / 2 + 1) {
p[i] = i;
break;
}
p[i] = i + 1;
a = i;
while (true) {
if (p[p[a]] > 0) {
if (p[p[a]] != n - a + 1) {
printf("-1");
return 0;
} else
break;
}
p[p[a]] = n - a + 1;
a = p[a];
}
}
}
for (int i = 1; i <= n; i++) printf("%d ", p[i]);
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Map;
import java.util.Queue;
import java.util.Scanner;
import java.util.ArrayList;
public class Main {
static int d[][];
static int N;
static boolean used[];
static class point
{
int x = 0;
int y = 0;
}
static point dats[];
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int N[] = new int[n+1];
int end = n;
int beg = 1;
if(n%4==2||n%4==3)
{
System.out.println(-1);
return;
}
else
while(end>beg)
{
N[beg] = beg+1;
N[beg+1] = end;
N[end] = end-1;
N[end-1] = beg;
end-=2;
beg+=2;
}
if(n%2==1) N[n/2+1] = n/2+1 ;
for(int i = 1;i<=n;i++)
{
System.out.print(N[i]+" ");
}
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.util.*;
import java.io.*;
import java.math.*;
import java.awt.geom.*;
import static java.lang.Math.*;
public class Solution implements Runnable {
public void solve() throws Exception {
int n = sc.nextInt();
if (n % 4 == 2 || n % 4 == 3) {
out.println(-1);
} else {
int[] p = new int[n];
for (int i = 0; i < n / 4; i++) {
p[2 * i] = 2 * i + 1;
p[2 * i + 1] = n - 1 - 2 * i;
p[n - 1 - 2 * i] = n - 2 - 2 * i;
p[n - 2 - 2 * i] = 2 * i;
}
if (n % 4 == 1) {
p[n / 2] = n / 2;
}
for (int i = 0; i < n; i++) {
out.print((p[i] + 1) + " ");
}
out.println();
}
}
static Throwable uncaught;
BufferedReader in;
FastScanner sc;
PrintWriter out;
@Override
public void run() {
try {
//in = new BufferedReader(new FileReader(".in"));
//out = new PrintWriter(new FileWriter(".out"));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
sc = new FastScanner(in);
solve();
} catch (Throwable uncaught) {
Solution.uncaught = uncaught;
} finally {
out.close();
}
}
public static void main(String[] args) throws Throwable {
new Solution().run();
//Thread thread = new Thread(null, new Solution(), "", (1 << 26));
//thread.start();
//thread.join();
if (Solution.uncaught != null) {
throw Solution.uncaught;
}
}
}
class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
} | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #br = open('c.in')
n = int(raw_input())
if n == 1:
print 1
exit()
a = [0 for i in range(n + 1)]
i, c, a[i], s, l = 1, 0, 2, 2, 1
while c < n - 2:
t = a[i]
s = n - i + 1
if a[t] != 0:
t += 2
s += 2
if s == l:
l += 2
a[t] = s
i = t
c += 1
a = [l if x == 0 else x for x in a]
can = 1
for i in range(1, n + 1):
if a[a[i]] != n - i + 1:
can = 0
print [-1, " ".join(map(str, a[1:]))][can]
| PYTHON |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
long long power(long long a, long long n, long long lelo) {
if (n == 0) return 1;
if (n == 1) return a;
if (n == 2) return (a * a) % lelo;
if (n % 2)
return (a * power(a, n - 1, lelo)) % lelo;
else
return power(power(a, n / 2, lelo), 2, lelo) % lelo;
}
void swap(long long &a, long long &b) {
auto tm = a;
a = b;
b = tm;
}
const long long N = 1e5 + 5;
const long long INF = 1e18;
void solve() {
long long n;
cin >> n;
if (((long long)n / 2) % 2) {
cout << -1;
return;
}
long long a[n];
for (long long(i) = (0); (i) < (n); (i)++) a[i] = i + 1;
for (long long i = 0; i < n / 2; i++) {
if (i % 2) swap(a[i], a[n - 1 - i]);
}
for (long long i = 0; i < n / 2; i += 2) swap(a[i], a[i + 1]);
for (long long i = n / 2 + n % 2; i < n; i += 2) swap(a[i], a[i + 1]);
for (long long(i) = (0); (i) < (n); (i)++) cout << a[i] << " ";
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long double tt = 1.0 * clock();
long long t = 1;
for (long long(i) = (1); (i) < (t + 1); (i)++) {
solve();
if (i < t) cout << "\n";
}
tt = 1.000000000 * (clock() - tt) / CLOCKS_PER_SEC;
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int arr[100015];
int N;
int main() {
cin >> N;
int s = 1, e = N;
bool fail = false;
int left = N;
while (true) {
if (left == 0) {
break;
} else if (left == 1) {
arr[s] = s;
break;
} else if (left >= 4) {
arr[s] = s + 1;
arr[s + 1] = e;
arr[e] = e - 1;
arr[e - 1] = s;
s += 2;
e -= 2;
left -= 4;
} else {
fail = true;
break;
}
}
if (fail)
cout << -1 << endl;
else {
for (int i = 1; i <= N; i++) cout << arr[i] << " ";
cout << endl;
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | n=int(input())
if (n//2)&1:
print(-1)
else:
ans=[0]*(n+1)
for i in range(1,(n//2)+1,2):
ans[i]=i+1
ans[i+1]=n-i+1
ans[n-i+1]=n-i
ans[n-i]=i
if n%2:
ans[(n//2)+1]=(n//2)+1
print(*ans[1:])
| PYTHON3 |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
struct Node {
int k, x;
};
int p[100010];
int N;
bool doit(int s) {
int i;
for (i = 1; i <= N; i++)
if (p[i] == 0) {
static Node q[100010];
int head = 1, tail = 2;
q[1].k = s, q[1].x = i;
p[s] = i;
bool flag = true;
while (head < tail) {
int k = q[head].k, x = q[head].x;
if (p[x] == 0) {
p[x] = N - k + 1;
q[tail].k = x;
q[tail].x = N - k + 1;
tail++;
}
if (p[x] != N - k + 1) {
flag = false;
for (int j = head; j < tail; j++) p[q[j].k] = 0;
break;
}
if (p[N - x + 1] == 0) {
p[N - x + 1] = k;
q[tail].k = N - x + 1;
q[tail].x = k;
tail++;
}
if (p[N - x + 1] != k) {
flag = false;
for (int j = head; j < tail; j++) p[q[j].k] = 0;
break;
}
head++;
}
if (flag) break;
}
if (i == N + 1) return false;
return true;
}
int main() {
cin >> N;
memset(p, 0, sizeof(p));
for (int k = 1; k <= N; k++)
if (p[k] == 0) {
if (!doit(k)) {
cout << "-1\n";
return 0;
}
}
printf("%d", p[1]);
for (int j = 2; j <= N; j++) printf(" %d", p[j]);
cout << endl;
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | from math import *
n = int(input())
if n == 1:
print(1)
elif n % 4 in [2, 3]:
print(-1)
else:
ans = [0] * n
for i in range(n // 2):
if i & 1:
ans[i] = n - 2 * (i // 2)
else:
ans[i] = 2 + i
for i in range(1, (n // 2), 2):
ans[ans[i] - 1] = n - i
ans[n - i - 1] = n - (n - i)
if n % 4 < 3 and n % 4 > 0:
ans[n // 2] = ceil(n / 2)
elif n % 4 == 3:
ans[int(floor(n / 2))] = ans[int(floor(n / 2)) - 1] + 1
ans[int(ceil(n / 2))] = ans[int(ceil(n / 2)) - 1] - 2
print(*ans)
| PYTHON3 |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int NMAX = 100005;
int A[NMAX];
int main() {
ios::sync_with_stdio(false);
int n;
cin >> n;
bool ok = true;
if (n % 2 == 1) {
if ((n - 1) % 4 == 0) {
for (int i = 1; i <= n / 2; i += 2) {
A[i] = i + 1;
A[i + 1] = n - i + 1;
A[n - i + 1] = n - i;
A[n - i] = i;
}
A[n / 2 + 1] = n / 2 + 1;
} else {
ok = false;
}
} else {
if (n % 4 == 0) {
for (int i = 1; i <= n / 2; i += 2) {
A[i] = i + 1;
A[i + 1] = n - i + 1;
A[n - i + 1] = n - i;
A[n - i] = i;
}
} else {
ok = false;
}
}
if (!ok) {
cout << "-1\n";
} else {
for (int i = 1; i <= n; ++i) {
cout << A[i] << ' ';
}
cout << '\n';
}
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n % 4 == 0 || n % 4 == 1) {
int arr[n];
int j = 0;
for (int i = 0; i < n / 4; i++) {
arr[j] = j + 2;
arr[j + 1] = n - j;
arr[n - j - 1] = n - j - 1;
arr[n - j - 2] = j + 1;
j += 2;
}
if (n % 4 == 1) {
arr[j] = j + 1;
}
for (int i = 0; i < n; i++) cout << arr[i] << ' ';
} else {
cout << -1 << endl;
}
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
int num[100100];
int n;
int main() {
scanf("%d", &n);
if (n % 4 != 0 && n % 4 != 1) {
puts("-1");
return 0;
}
if (n % 2 == 1) num[n / 2] = n / 2 + 1;
for (int i = 0, j = 0; j < n - n % 2; i += 2, j += 4) {
num[i] = 2 + i;
num[i + 1] = n - i;
num[n - 1 - i] = n - 1 - i;
num[n - 2 - i] = 1 + i;
}
for (int i = 0; i < n; i++) printf("%d ", num[i]);
puts("");
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int n, ans[100010];
int main() {
while (scanf("%d", &n) == 1) {
int i;
if ((n & 3) == 2 || (n & 3) == 3) {
puts("-1");
continue;
}
for (i = 1; i <= n / 2; i += 2) {
ans[i] = i + 1, ans[n - i + 1] = n - i;
ans[i + 1] = n - i + 1, ans[n - i] = i;
}
if (n & 1) ans[(n + 1) >> 1] = (n + 1) >> 1;
for (i = 1; i < n; i++) printf("%d ", ans[i]);
printf("%d\n", ans[n]);
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out){
int n = in.ri();
if (n == 1){
out.printLine(1);
return;
}
if (n % 4 == 2 || n % 4 == 3){
out.printLine(-1);
return;
}
if (n % 4 == 0){
int[] res = new int[n];
for(int i = 0; i < res.length; i+=2) {
int index = -1;
if (i < res.length/2) index = i;
else index = (res.length - 1) - i;
res[index] = i+2;
}
for(int i = res.length - 2; i >= 0; i-=2){
int val = res.length - i - 1;
int index = -1;
if (i >= res.length/2) index = i;
else index = res.length - i - 1;
res[index] = val;
}
// if (!check(res)) throw new RuntimeException();
for(int i : res) out.print(i + " ");
}
else{
int[] res = new int[n];
int cur = 2;
for(int i = 0; i < res.length; i+=2) {
res[i] = cur;
cur += 2;
if (i == (res.length/2-2)) i+=2;
}
cur = 1;
for(int i = res.length-2; i >= 0; i-=2){
res[i] = cur;
cur += 2;
if (i == res.length/2+1 || i == res.length/2) i++;
}
// if (!check(res)) throw new RuntimeException();
for(int i : res) out.print(i + " ");
}
// for(int length = 1; length <= 13; length++) {
// int[] temp = new int[length];
// for(int i = 0; i < temp.length; i++) temp[i] = i + 1;
// while(true){
// if (check(temp)) {
// out.printLine(length, Arrays.toString(temp));
// break;
// }
// if(!ArrayUtils.nextPermutation(temp)) break;
// }
// }
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int ri(){
return readInt();
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int v[100005];
int main() {
int n;
cin >> n;
if (n % 4 == 1) {
v[50001] = 1;
int st = 50000;
int dr = 50002;
for (int i = 1, n1 = 1; i < n; i += 4, n1 += 4) {
v[st] = n1 + 4;
st--;
v[st] = 2;
st--;
v[dr] = 1;
dr++;
v[dr] = n1 + 3;
dr++;
}
int st1, dr1, adun;
for (st1 = st + 3, dr1 = dr - 3, adun = 2; st1 < dr1; adun += 2) {
v[st1++] += adun;
v[st1++] += adun;
v[dr1--] += adun;
v[dr1--] += adun;
}
v[st1] += adun;
for (int i = st + 1; i < dr; ++i) cout << v[i] << ' ';
} else if (n % 4 == 2 || n % 4 == 3) {
cout << -1;
} else {
v[50000] = 2;
v[50001] = 4;
v[50002] = 1;
v[50003] = 3;
int st = 49999, dr = 50004;
for (int i = 4, n1 = 4; i < n; i += 4, n1 += 4) {
v[st] = n1 + 4;
st--;
v[st] = 2;
st--;
v[dr] = 1;
dr++;
v[dr] = n1 + 3;
dr++;
}
for (int st1 = st + 3, dr1 = dr - 3, adun = 2; st1 < dr1; adun += 2) {
v[st1++] += adun;
v[st1++] += adun;
v[dr1--] += adun;
v[dr1--] += adun;
}
for (int i = st + 1; i < dr; ++i) cout << v[i] << ' ';
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int i, j, k, n, m, t, a[100001];
cin >> n;
if ((n % 4 != 0) && (n - 1) % 4 != 0) {
cout << "-1";
return 0;
}
if (n % 4 == 0) {
for (i = 1, j = n; i <= n / 2; i += 2, j -= 2) {
a[i] = i + 1;
a[j - 1] = i;
a[i + 1] = j;
a[j] = j - 1;
}
} else {
for (i = 1, j = n; i <= n / 2; i += 2, j -= 2) {
a[i] = i + 1;
a[j - 1] = i;
a[i + 1] = j;
a[j] = j - 1;
}
a[(n / 2) + 1] = (n / 2) + 1;
}
for (i = 1; i <= n; i++) cout << a[i] << " ";
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int n, l, r, i, j, k;
int a[100005];
int main() {
scanf("%d", &n);
if ((n % 4 == 0) || ((n - 1) % 4 == 0)) {
l = 1;
r = n;
for (k = 1; k <= n / 4; k++) {
a[l] = l + 1;
a[r] = r - 1;
a[l + 1] = r;
a[r - 1] = l;
l += 2;
r -= 2;
}
if ((n - 1) % 4 == 0) a[n / 2 + 1] = n / 2 + 1;
for (i = 1; i <= n; i++) cout << a[i] << " ";
} else
cout << "-1";
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class R176qCLuckyPermutation {
static int ans[];
public static void main(String args[]) throws Exception {
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int n = in.nextInt();
ans = new int[n + 1];
if(n % 4 == 0 || n % 4 == 1){
solve(1,n);
if(!get(ans))
throw new Exception();
for(int i=1;i<=n;i++)
w.print(ans[i] + " ");
w.println();
}
else
w.println(-1);
w.close();
}
static public void solve(int l,int r){
if(l > r)
return;
if(l == r)
ans[l] = l;
else{
ans[l] = l + 1;
ans[l + 1] = r;
ans[r] = r - 1;
ans[r-1] = l;
solve(l+2,r-2);
}
}
static public void go(int i,int arr[],boolean state[],int n){
if(i == n+1){
if(get(arr))
System.out.println(Arrays.toString(arr));
}
else{
for(int j=1;j<=n;j++){
if(!state[j]){
state[j] = true;
arr[i] = j;
go(i+1,arr,state,n);
state[j] = false;
}
}
}
}
static public boolean get(int check[]){
boolean hmm = true;
for(int i=1;i<check.length;i++)
if(check[check[i]] != check.length - i){
hmm = false;
//System.out.println(i);
}
return hmm;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int a[100006];
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n == 1)
puts("1");
else if (n == 2)
puts("-1");
else {
int delta = n;
for (int i = 1; i <= n && delta > 0; i++) {
if (i == 1)
a[1] = 2;
else if (i & 1) {
a[i] = a[i - 1] - delta;
} else
a[i] = a[i - 1] + delta;
if (delta == 3)
delta = 2;
else
delta -= 2;
}
delta = n;
int flag = 0;
for (int i = n; i >= 1 && delta > 0; i--) {
if (i == n)
a[i] = n - 1;
else if (flag == 0) {
a[i] = a[i + 1] + delta;
} else
a[i] = a[i + 1] - delta;
if (delta == 3)
delta = 2;
else
delta -= 2;
flag ^= 1;
}
flag = 1;
for (int i = 1; i <= n; i++) {
if (a[a[i]] != n - i + 1) {
flag = 0;
break;
}
}
if (flag == 0) {
puts("-1");
continue;
}
for (int i = 1; i <= n; i++) printf(i == 1 ? "%d" : " %d", a[i]);
puts("");
}
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.util.*;
import java.lang.*;
public class A286A{
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int t,l,r,max,min;
int arr[]= new int[n+1];
if(n%2==0){
l=n/2;
r=n/2 + 1;
max=n;
min=1;
while(min<max){
arr[l]=max;
arr[r]=min;
max--;
min++;
if(r>l){
t=l;
l=r+1;
r=t-1;
}
else{
t=l;
l=r-1;
r=t+1;
}
}
}
else{
l=n/2;
r=n/2 + 2;
max=n;
min=1;
arr[l+1]=(n+1)/2;
while(min<max){
arr[l]=max;
arr[r]=min;
max--;
min++;
if(r>l){
t=l;
l=r+1;
r=t-1;
}
else{
t=l;
l=r-1;
r=t+1;
}
}
}
int f=1;
for(int i=1;i<n;i++){
if(n%2==1 && i==(n/2+1))continue;
if(arr[i]==i || arr[i]==(n+1-i)){
f=0;
break;
}
}
if(f==0)System.out.println(-1);
else{
for(int i=1;i<=n;i++)
System.out.print(arr[i]+" ");
System.out.print("\n");
}
}
} | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int n, p[1000007];
int main() {
scanf("%d", &n);
if (n == 1) {
puts("1");
return 0;
}
if (n % 4 == 2 || n % 4 == 3) {
puts("-1");
return 0;
}
if (n % 4 == 0) {
for (int i = 0; i < n / 2; i += 2) {
int a1 = i;
int a2 = i + 1;
int a3 = n - i - 1;
int a4 = n - i - 2;
p[a1] = a2;
p[a2] = a3;
p[a3] = a4;
p[a4] = a1;
}
for (int i = 0; i < n; ++i) {
printf("%d ", p[i] + 1);
}
puts("");
return 0;
}
int mid = n / 2;
p[mid] = mid;
vector<int> a(n - 1);
for (int i = 0; i < mid; ++i) {
a[i] = i;
}
for (int i = mid + 1; i < n; ++i) {
a[i - 1] = i;
}
for (int i = 0; i < (n - 1) / 2; i += 2) {
int a1 = a[i];
int a2 = a[i + 1];
int a3 = a[n - i - 2];
int a4 = a[n - i - 3];
p[a1] = a2;
p[a2] = a3;
p[a3] = a4;
p[a4] = a1;
}
for (int i = 0; i < n; ++i) {
printf("%d ", p[i] + 1);
}
puts("");
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int* array;
int n;
cin >> n;
if (n == 1)
cout << 1 << endl;
else if (n == 2 || n == 3 || ((n % 2 != 0) && ((n / 2) % 2 != 0)) ||
((n % 2 == 0) && ((n / 2) % 2 != 0)))
cout << -1 << endl;
else {
array = new int[n];
if (n & 1) array[(n / 2)] = (n / 2) + 1;
int segment = n / 4;
for (int it = 0; it < segment; it++) {
int idx = it * 2 + 1;
int segmentConst = (it + 1) * 2;
array[idx - 1] = segmentConst;
while (true) {
int i;
i = n + 1 - array[idx - 1];
array[i - 1] = idx;
idx = i;
if (idx == segmentConst) break;
}
}
for (int i = 0; i < n; i++) {
cout << array[i] << " ";
}
delete[] array;
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const long long int mx = 1e6 + 10, inf = 1e9 + 10;
int n, a[mx], g, h;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n;
if (n % 4 > 1) {
cout << -1;
return 0;
}
g = 2;
h = n - 2;
a[n / 2] = n / 2 + 1;
for (long long int i = 0; i < n / 2; i++) {
a[i] = g;
a[n - i - 1] = n - g + 1;
(i % 2 == 0) ? g += h : g -= h;
h -= 2;
}
for (long long int i = 0; i < n; i++) cout << a[i] << ' ';
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int a[100005];
int main() {
int n;
int i;
cin >> n;
if (n % 4 == 3 || n % 4 == 2) {
cout << -1;
return 0;
}
for (i = 1; i <= n / 2; i = i + 2) {
a[i] = i + 1;
a[i + 1] = n - i + 1;
a[n - i + 1] = n - i;
a[n - i] = i;
}
if (n % 2 == 1) a[n / 2 + 1] = n / 2 + 1;
for (i = 1; i <= n; i++) cout << a[i] << " ";
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import sys
def main() :
n = [ int( x ) for x in sys.stdin.readline().strip().split() ][ 0 ]
if n % 4 == 2 or n % 4 == 3 :
print -1
return
res = []
k = 1
while k + 1 <= n / 2 :
res.append( n - k )
res.append( k )
k += 2
k -= 2
if n % 2 == 1 :
res.append( n - int( n / 2 ) )
while k >= 1 :
res.append( n - k + 1 )
res.append( k + 1 )
k -= 2
print ' '.join( [ str( x ) for x in res ] )
if __name__ == '__main__' :
main()
| PYTHON |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
int mas[(int)1e5 + 10];
int main() {
int n;
scanf("%d", &n);
int m = n;
int q = 0;
int w = 0;
while (n >= 4) {
mas[q] = 2 + w;
mas[q + 1] = n + w;
mas[m - 1 - q] = n - 1 + w;
mas[m - 2 - q] = 1 + w;
q += 2;
w += 2;
n -= 4;
}
if (n == 1) {
mas[q] = 1 + w;
} else if (n == 2) {
printf("-1");
return 0;
} else if (n == 3) {
printf("-1");
return 0;
}
for (int i = 0; i < m; i++) printf("%d ", mas[i]);
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 100111;
int p[maxn];
bool vist[maxn];
int n;
void dfs(int cur) {
vist[cur] = 1;
if (p[p[cur]]) {
return;
}
p[p[cur]] = n - cur + 1;
dfs(p[cur]);
}
int main() {
scanf("%d", &n);
if (n % 4 == 2 || n % 4 == 3)
puts("-1");
else {
if (n & 1) {
p[n / 2 + 1] = n / 2 + 1;
for (int i = 1, j = 2; i <= n / 2; i += 2, j += 2) p[i] = j;
for (int i = 2, j = n; i <= n / 2; i += 2, j -= 2) p[i] = j;
for (int i = n, j = n - 1; i > n / 2 + 1; i -= 2, j -= 2) p[i] = j;
for (int i = n - 1, j = 1; i > n / 2 + 1; i -= 2, j += 2) p[i] = j;
} else {
for (int i = 1, j = 2; i <= n / 2; i += 2, j += 2) p[i] = j;
for (int i = 2, j = n; i <= n / 2; i += 2, j -= 2) p[i] = j;
for (int i = n, j = n - 1; i > n / 2; i -= 2, j -= 2) p[i] = j;
for (int i = n - 1, j = 1; i > n / 2; i -= 2, j += 2) p[i] = j;
}
for (int i = (1); i <= (n); i++) printf("%d ", p[i]);
puts("");
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int mark[100002], p[100002];
int main() {
int t, n;
while (scanf("%d", &n) != EOF) {
int next = 2;
mark[0] = 0;
for (int i = 1; i <= n; i++) {
mark[i] = 0;
p[i] = 0;
}
int f = 0;
for (int i = 1; i <= n; i++) {
if (p[i] != 0) continue;
int temp = n - i + 1;
if (mark[temp] != 0) continue;
if (temp != i) {
if (next == i) {
next = next + 1;
while (mark[next] != 0) {
next++;
if (next == n && f == 0) {
f = 1;
next = 1;
}
}
}
}
if (temp == i) {
p[temp] = temp;
mark[temp] = 1;
while (mark[next] != 0) {
next++;
if (next == n && f == 0) {
f = 1;
next = 1;
}
}
} else {
p[i] = next;
p[p[i]] = temp;
mark[next] = 1;
mark[temp] = 1;
while (mark[next] != 0) {
next++;
if (next == n && f == 0) {
f = 1;
next = 1;
}
}
}
if (f == 1) break;
}
int ans = 0;
for (int i = 1; i <= n; i++) {
if (p[i] < 1 || p[i] > n || mark[i] == 0) {
ans = -1;
break;
}
}
if (ans != 0)
cout << ans;
else {
for (int i = 1; i <= n; i++) {
cout << p[i] << " ";
}
}
cout << "\n";
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader in;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int[]a = new int[n+1];
for (int i = 1; i <= n/2; i += 2) {
a[i] = i+1;
int ind = i;
for (int j = 1; j <= 3; j++) {
if (a[a[ind]] != 0)
break;
a[a[ind]] = n-ind+1;
ind = a[ind];
}
}
if (n % 2==1)
a[n/2+1] = n/2+1;
boolean f = true;
for (int i = 1; i <= n; i++) {
if (a[a[i]] != n-i+1 || a[i]==0) {
f = false;
break;
}
}
if (f) {
for (int i = 1; i <= n; i++) {
pw.print(a[i]+" ");
}
}
else
pw.println(-1);
pw.close();
}
private static int nextInt() throws IOException{
return Integer.parseInt(next());
}
private static long nextLong() throws IOException{
return Long.parseLong(next());
}
private static double nextDouble() throws IOException{
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.math.*;
import static java.lang.Math.*;
import java.security.SecureRandom;
import static java.util.Arrays.*;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import sun.misc.Regexp;
import java.awt.geom.*;
import sun.net.www.content.text.plain;
public class Main {
public static void main(String[] args) throws IOException {
new Main().run();
}
StreamTokenizer in;
PrintWriter out;
//deb////////////////////////////////////////////////
public static void deb(String n, Object n1) {
System.out.println(n + " is : " + n1);
}
public static void deb(int[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(boolean[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(double[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(String[] A) {
for (Object oo : A) {
System.out.print(oo + " ");
}
System.out.println("");
}
public static void deb(int[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(double[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(long[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
public static void deb(String[][] A) {
for (int i = 0; i < A.length; i++) {
for (Object oo : A[i]) {
System.out.print(oo + " ");
}
System.out.println("");
}
}
/////////////////////////////////////////////////////////////
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
void run() throws IOException {
// in = new StreamTokenizer(new BufferedReader(new FileReader("input.txt")));
// out = new PrintWriter(new FileWriter("output.txt"));
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
out.flush();
}
@SuppressWarnings("unchecked")
void solve() throws IOException {
// BufferedReader re= new BufferedReader(new FileReader("C:\\Users\\ASELA\\Desktop\\PROBLEMSET\\input\\F\\10.in"));
// BufferedReader re= new BufferedReader(new InputStreamReader(System.in));
int n=nextInt();
int[] A=new int[n+1];
for (int i = 1; i <= n/2; i+=2) {
A[i]=i+1;
}
for (int i = 2; i <= n/2; i+=2) {
A[i]=n+2-A[i-1];
}
for (int i = n-1; i >= (n+2)/2; i-=2) {
A[i]=n-i;
}
for (int i = n; i >= (n+2)/2; i-=2) {
A[i]=i-1;
}
if(n%4==1){
A[(n+1)/2]=(n+1)/2;
}
if(n%4==3||n%4==2){
out.println("-1");
return;
}
for (int i = 1; i <=n ; i++)
{
out.print(A[i] + " ");
}
out.println("");
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
public class Task286A {
public static void main(String... args) throws NumberFormatException,
IOException {
Solution.main(System.in, System.out);
}
static class Scanner {
private final BufferedReader br;
private String[] cache;
private int cacheIndex;
Scanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
cache = new String[0];
cacheIndex = 0;
}
int nextInt() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return Integer.parseInt(cache[cacheIndex++]);
}
long nextLong() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return Long.parseLong(cache[cacheIndex++]);
}
String next() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return cache[cacheIndex++];
}
void close() throws IOException {
br.close();
}
}
static class Solution {
public static void main(InputStream is, OutputStream os)
throws NumberFormatException, IOException {
PrintWriter pw = new PrintWriter(os);
Scanner sc = new Scanner(is);
int n = sc.nextInt();
if (n % 4 > 1) {
pw.println(-1);
pw.flush();
sc.close();
return;
}
int[] retVal = new int[n + 1];
if (n % 4 == 1) {
retVal[n / 2 + 1] = n / 2 + 1;
}
for (int i = 0; i < n / 4; i++) {
retVal[i * 2 + 1] = (i + 1) * 2;
retVal[i * 2 + 2] = n + 2 - retVal[i * 2 + 1];
retVal[n - i * 2 - 1] = retVal[i * 2 + 1] - 1;
retVal[n - i * 2] = retVal[i * 2 + 2] - 1;
}
for (int i = 1; i <= n; i++) {
pw.print(retVal[i]);
pw.print(" ");
}
pw.flush();
sc.close();
}
}
} | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
int perm[100010 + 1];
using namespace std;
int main() {
int n;
cin >> n;
int s = 1;
int e = n;
while (e - s > 0) {
perm[s] = s + 1;
perm[s + 1] = e;
perm[e] = e - 1;
perm[e - 1] = s;
s += 2;
e -= 2;
}
if (s == e) perm[s] = s;
if ((n % 4) > 1)
cout << -1;
else
for (int i = 1; i <= n; i++) cout << perm[i] << " ";
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> arr(n + 1);
for (int cnt = 1; cnt <= n; cnt++) {
if (cnt * 2 == 1 + n)
arr[cnt] = cnt;
else if (cnt <= n / 2) {
if (cnt % 2)
arr[cnt] = cnt + 1;
else
arr[cnt] = n - cnt + 2;
} else {
if ((n - cnt + 1) % 2)
arr[cnt] = cnt - 1;
else
arr[cnt] = n - cnt;
}
}
for (int cnt = 1; cnt <= n; cnt++) {
if (arr[arr[cnt]] != n - cnt + 1) {
printf("-1\n");
return 0;
}
}
for (int cnt = 1; cnt <= n; cnt++) {
if (cnt - 1) printf(" ");
printf("%d", arr[cnt]);
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | /*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
//package codeforces;
import java.util.*;
import java.io.*;
/**
*
* @author Arysson
*/
public class LuckyPermutation {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
if (n%4==2 || n%4==3) System.out.print(-1);
else if (n%2==1) for (int i=1; i<=n; i++) {
if (i==n/2+1) System.out.printf("%d ", n/2+1);
else if (i<=n/2) System.out.printf("%d ", i%2==1?i+1:n-i+2);
else System.out.printf("%d ", i%2==1?i-1:n-i);
}
else for (int i=1; i<=n; i++) {
if (i<=n/2) System.out.printf("%d ", i%2==1?i+1:n-i+2);
else System.out.printf ("%d ", i%2==1?n-i:i-1);
}
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.InputStreamReader;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Lokesh Khandelwal
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n=in.nextInt();
int i,a[]=new int[n+1];
if(n==1)
{
out.printLine(1);
return;
}
if(n%4==2||n%4==3)
{
out.printLine(-1);
return;
}
int times=n/4;
int c=1;
while (c<=times)
{
a[2*c-1]=2*c;
a[2*c]=n-(2*c-1)+1;
a[n-(2*c-1)+1]=n-2*c+1;
a[n-2*c+1]=n-(n-2*c+2)+1;
c++;
}
if(n%4==1)
a[n/2+1]=n/2+1;
for(i=1;i<n;i++)
{
out.print(a[i]+" ");
}
out.printLine(a[i]);
}
}
class InputReader
{
BufferedReader in;
StringTokenizer tokenizer=null;
public InputReader(InputStream inputStream)
{
in=new BufferedReader(new InputStreamReader(inputStream));
}
public String next()
{
try{
while (tokenizer==null||!tokenizer.hasMoreTokens())
{
tokenizer=new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
}
catch (IOException e)
{
return null;
}
}
public int nextInt()
{
return Integer.parseInt(next());
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int mas[100000];
int main() {
int N;
scanf("%d", &N);
if (N % 4 > 1)
printf("-1\n");
else {
int start = 0;
int finish = N - 1;
while (finish - start > 0) {
mas[start] = start + 1;
mas[start + 1] = finish;
mas[finish] = finish - 1;
mas[finish - 1] = start;
start += 2;
finish -= 2;
}
if (N % 4 == 1) mas[N / 2] = N / 2;
for (int i = 0; i < N; i++) printf("%d ", mas[i] + 1);
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n % 4 == 1 || n % 4 == 0) {
int *result = new int[n + 1];
if (n % 2 == 1) {
result[(n + 1) / 2] = n / 2 + 1;
}
for (int i = 1; i < (n + 1) / 2; i += 2) {
result[i] = i + 1;
result[i + 1] = n + 1 - i;
result[n + 1 - i] = n - i;
result[n - i] = i;
}
for (int i = 1; i <= n; i++) cout << result[i] << ' ';
delete[] result;
} else
cout << -1;
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
int ans[100002];
int main() {
int i, N, l, r;
scanf("%d", &N);
if (!(N % 4 <= 1)) {
printf("-1\n");
return 0;
}
l = 2;
r = N;
for (i = 1; i <= N / 2; i += 2) {
ans[i] = l;
ans[i + 1] = r;
ans[N + 1 - i] = r - 1;
ans[N - i] = l - 1;
l += 2;
r -= 2;
}
if (N % 2 == 1) ans[N / 2 + 1] = N / 2 + 1;
for (i = 1; i <= N; i++)
(i == N) ? printf("%d\n", ans[i]) : printf("%d ", ans[i]);
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int INF = 1000000000;
int t, n, m, i, j, l = 0, k, c = 0, v = 0, x, r = 0, used[1000001] = {0},
a[1000001], b[1000001];
char s[1000001], s2[1000001];
int main() {
scanf("%d", &n);
if (n % 4 == 2 || n % 4 == 3) {
printf("-1");
return 0;
}
if (n == 1) {
printf("1");
return 0;
}
c = 1;
v = 2;
l = 2;
r = n;
if (n % 4 == 0) {
for (i = 1, j = n; i <= n / 2, j >= (n / 2) + 1; i += 2, j -= 2) {
a[i] = l;
a[i + 1] = r;
a[j] = r - 1;
a[j - 1] = l - 1;
l += 2;
r -= 2;
}
for (i = 1; i <= n; i++) printf("%d ", a[i]);
} else {
for (i = 1, j = n; i <= n / 2, j >= (n / 2) + 2; i += 2, j -= 2) {
a[i] = l;
a[i + 1] = r;
a[j] = r - 1;
a[j - 1] = l - 1;
l += 2;
r -= 2;
}
a[(n / 2) + 1] = (n / 2) + 1;
for (i = 1; i <= n; i++) printf("%d ", a[i]);
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;
public class A implements Runnable {
public void solve() throws IOException {
int n = in.nextInt();
if ( n % 4 == 2 || n % 4 == 3 ) {
out.println( -1 );
return;
}
for ( int i = 1; i <= n / 4; i ++ ) {
out.print( ( 2 * i ) + " " + ( n - 2 * i + 2 ) + " " );
}
if ( n % 2 == 1 ) {
out.print( ( n / 2 + 1 ) + " " );
}
for ( int i = n / 4; i >= 1; i -- ) {
out.print( ( 2 * i - 1 ) + " " + ( n - 2 * i + 1 ) + " " );
}
out.println();
}
public Scanner in;
public PrintWriter out;
A() throws IOException {
in = new Scanner( System.in );
// in = new StreamTokenizer( new InputStreamReader( System.in ) );
out = new PrintWriter( System.out );
}
// int nextInt() throws IOException {
// in.nextToken();
// return ( int ) in.nval;
// }
void check( boolean f, String msg ) {
if ( ! f ) {
out.close();
throw new RuntimeException( msg );
}
}
void close() throws IOException {
out.close();
}
public void run() {
try {
solve();
close();
} catch ( Exception e ) {
e.printStackTrace( out );
out.flush();
throw new RuntimeException( e );
}
}
public static void main( String[] args ) throws IOException {
new Thread( new A() ).start();
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int n;
vector<int> a;
int main() {
cin >> n;
if (n % 4 == 2 || n % 4 == 3) {
cout << -1 << endl;
return 0;
}
a.resize(n + 1);
if (n % 4 == 1) a[(n + 1) / 2] = (n + 1) / 2;
int l = 1, r = n;
while (r - l >= 3) {
a[l] = l + 1;
a[l + 1] = r;
a[r] = r - 1;
a[r - 1] = l;
l += 2;
r -= 2;
}
for (int i = 1; i <= n; i++) cout << a[i] << " ";
cout << endl;
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.util.*;
public class C
{
static int n = 1;
public static void main(String [] args) throws IOException
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
PrintWriter writer = new PrintWriter(new OutputStreamWriter(System.out));
if(!(n%4 == 0 || n%4 == 1))
{
System.out.println(-1);
return;
}
int [] arr = new int[n];
int lb = 2;
int ub = n;
for(int i = 0 ; i < n/2 ; i+=2)
{
arr[i] = lb;
arr[i+1] = ub;
arr[n-i-1] = ub-1;
arr[n-i-2] = lb-1;
lb += 2;
ub -= 2;
}
if(n % 2 != 0)
arr[n/2] = n/2+1;
for(int i = 0 ; i < n-1 ; i++)
writer.print(arr[i]+" ");
writer.println(arr[n-1]);
writer.flush();
writer.close();
}
} | JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int N, ar[100005], mark[100005];
void sifir() {
for (int i = 2, j = N; i <= N / 2; i += 2, j -= 2) printf("%d %d ", i, j);
for (int i = N / 2 - 1, j = N / 2 + 1; i > 0; i -= 2, j += 2)
printf("%d %d ", i, j);
}
void bir() {
int orta = N / 2 + 1;
for (int i = 2, j = N; j > orta; j -= 2, i += 2) printf("%d %d ", i, j);
printf("%d ", orta);
for (int i = orta + 1, j = orta - 2; j >= 0; j -= 2, i += 2)
printf("%d %d ", j, i);
}
int main() {
scanf("%d", &N);
if ((N % 4) > 1) return puts("-1"), 0;
if (N % 4 == 0)
sifir();
else
bir();
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int n, c, idx, a[100001];
int main() {
scanf("%d", &n);
if (n % 4 > 1) return printf("-1\n"), 0;
c = 2, idx = 0;
for (int i = 0; i < n / 4; ++i) {
a[idx] = c;
idx += 2, c += 2;
}
c = n, idx = 1;
for (int i = 0; i < n / 4; ++i) {
a[idx] = c;
idx += 2, c -= 2;
}
c = n - 1, idx = n - 1;
for (int i = 0; i < n / 4; ++i) {
a[idx] = c;
idx -= 2, c -= 2;
}
c = 1, idx = n - 2;
for (int i = 0; i < n / 4; ++i) {
a[idx] = c;
idx -= 2, c += 2;
}
if (n % 2) a[n / 2] = n / 2 + 1;
for (int i = 0; i < n; ++i) {
cout << a[i] << ' ';
}
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int que[100010];
int main() {
int n, i;
scanf("%d", &n);
if (!(n % 4 == 1 || n % 4 == 0)) {
printf("-1\n");
return 0;
}
for (i = 1; i <= n / 2; i += 2) que[i] = i + 1;
for (i = 2; i <= n / 2; i += 2) que[i] = n + 2 - i;
for (i = n / 2 + 1; i <= n; i++) que[i] = n + 1 - que[n + 1 - i];
if (n % 2) que[n / 2 + 1] = (n + 1) / 2;
for (i = 1; i <= n; i++) printf("%d ", que[i]);
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | n = input()
ans = [0 for i in xrange(n + 1)]
s = 1
e = n
while e - s + 1 >= 4:
ans[s] = s + 1
ans[s + 1] = e
ans[e] = e - 1
ans[e - 1] = s
s += 2
e -= 2
if e - s + 1 <= 1:
if(e - s + 1 == 1):
ans[e] = e
for i in range(1, n + 1):
print ans[i],
else: print -1
| PYTHON |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 7;
int n, p[N];
void solve(int n) {
if ((n & 1) && (n - 1) % 4) {
puts("-1");
return;
}
if (!(n & 1) && n % 4) {
puts("-1");
return;
}
if (n & 1) p[(n + 1) >> 1] = (n + 1) >> 1;
for (int i = (1); i < ((n >> 1) + 1); ++i)
if (!p[i]) {
p[i] = i + 1;
p[i + 1] = n + 1 - i;
p[n + 1 - i] = n - i;
p[n - i] = i;
}
for (int i = (1); i < (n + 1); ++i) printf("%d%c", p[i], " \n"[i == n]);
}
int main() {
scanf("%d", &n);
solve(n);
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int arr[1000000];
int main() {
int n;
while (scanf("%d", &n) != -1) {
if (n == 1) {
printf("1\n");
continue;
}
if ((n & 1) && (n - 1) % 4) {
printf("-1\n");
continue;
}
if (!(n & 1) && n % 4) {
printf("-1\n");
continue;
}
for (int i = 1; i + i <= n; i += 2)
arr[i] = i + 1, arr[i + 1] = n - i + 1, arr[n - i + 1] = n - i,
arr[n - i] = i;
if (n % 2) arr[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n; ++i) printf(i > 1 ? " %d" : "%d", arr[i]);
printf("\n");
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 5;
const long long INF = 1000000000000000;
const long long m = 1000000007;
int a[MAXN];
long long binpow(long long v, long long st) {
long long ans = 1, a = v;
for (; st; st >>= 1) {
if (st & 1) ans *= a;
a *= a;
}
return ans;
}
int main() {
long long n;
cin >> n;
long long p = log(1. * n) / log(2.0);
long long ppow = binpow(2, p);
if (n == 2 || n == 3) {
printf("-1");
return 0;
}
if (n % 4 == 0 || n % 4 == 1) {
int cur = 2;
for (int i = 1; i < n / 2; i += 2) {
a[i] = cur;
a[n - i + 1] = n + 1 - cur;
a[a[i]] = n + 1 - i;
a[a[n - i + 1]] = n + 1 - (n - i + 1);
cur += 2;
}
if (n & 1) a[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n; i++) {
printf("%d ", a[i]);
}
} else {
printf("-1");
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int a[100005];
int n;
int main() {
while (cin >> n) {
if (n % 4 == 2 || n % 4 == 3) {
puts("-1");
continue;
}
if (n % 4) a[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n / 2; i += 2) {
a[i] = i + 1;
a[i + 1] = n + 1 - i;
a[n - i] = i;
a[n + 1 - i] = n - i;
}
for (int i = 1; i <= n; i++) printf("%d ", a[i]);
printf("\n");
}
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | import java.io.*;
import java.util.*;
public class Main{
public static void main(String[]args){
Scanner cin=new Scanner(System.in);
int n=cin.nextInt(),i=0,Q[];
PrintWriter out=new PrintWriter(System.out);
if(2>(3&n)){
Q=new int[n--];
for(Q[n>>1]=2+n>>1;i<n;n-=2){
Q[i++]=n;Q[i]=i;
Q[n-1]=1+n;Q[n]=++i;
}
for(int e:Q) out.print(e+" ");
}else out.print(-1);
out.close();
}
}
| JAVA |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int MAX = 1e5 + 5;
int ans[MAX];
int main() {
int n;
scanf("%d", &n);
if (n % 4 >= 2) return 0 * printf("-1\n");
int a = 2, b = n, idx = 1;
for (int i = 1; i <= n / 4; ++i) {
ans[idx] = a;
ans[idx + 1] = b;
ans[n - idx + 1] = b - 1;
ans[n - idx] = a - 1;
a += 2;
b -= 2;
idx += 2;
}
if (n % 4) ans[(n + 1) / 2] = (n + 1) / 2;
for (int i = 1; i <= n; ++i) printf("%d ", ans[i]);
printf("\n");
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
#pragma comment(linker, "/stack:64000000")
using namespace std;
const int MOD = 1000000007;
const int INF = 1000 * 1000 * 1000;
const double EPS = 1e-9;
const long double PI = acos(-1.0);
int main() {
int n;
cin >> n;
vector<int> a(n + 1);
if (n % 4 == 2 || n % 4 == 3) {
cout << -1 << endl;
return 0;
}
if (n == 1) {
cout << 1 << endl;
return 0;
}
for (int i = 1; i < n / 2; i += 2) {
a[i] = i + 1;
int cur = i;
for (int j = 0; j < 3; ++j) {
a[a[cur]] = n - cur + 1;
cur = a[cur];
}
}
if (n % 2) {
a[n / 2 + 1] = n / 2 + 1;
}
for (int i = 1; i <= n; ++i) cout << a[i] << " ";
cout << endl;
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
string tostr(long long x) {
stringstream ss;
ss << x;
return ss.str();
}
long long toint(string &s) {
stringstream ss;
ss << s;
long long x;
ss >> x;
return x;
}
void print(vector<int> p) {
for (int i = 0; i < p.size(); i++) {
cout << p[i] << " ";
}
cout << endl;
}
int main() {
string fname = "<stdin>";
string fname2 = "";
for (int i = 0; i < fname.length() - 4; i++) {
fname2 += fname[i];
}
fname = fname2;
int n;
cin >> n;
if (n % 4 == 2 || n % 4 == 3) {
cout << -1;
return 0;
}
vector<int> a(n);
int c = 0;
int f = 0, b = n - 1;
int k = 2;
int e = 0;
while (c < n / 2) {
a[f++] = k;
a[b--] = n + 1 - k;
k--;
a[f++] = n + 1 - k;
a[b--] = k;
k += 3;
c += 2;
}
if (n % 2) a[n / 2] = n / 2 + 1;
print(a);
return 0;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
int N;
vector<int> v;
void dog(int a, int b, int c, int d) {
v[a - 1] = b;
v[b - 1] = d;
v[d - 1] = c;
v[c - 1] = a;
}
int main() {
cin >> N;
v.resize(N);
if (N % 4 > 1) {
cout << -1 << endl;
return 0;
}
if (N & 1) {
int spc = N / 2 + 1;
v[spc - 1] = spc;
}
int i = 1, j = N;
while (j - i > 1) {
dog(i, i + 1, j - 1, j);
i += 2;
j -= 2;
}
for (int a : v) cout << a << " ";
cout << endl;
}
| CPP |
287_C. Lucky Permutation | A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4 | 2 | 9 | #include <bits/stdc++.h>
using namespace std;
const int imod = 1e9 + 7;
const long long lmod = 1e18 + 7;
const int iinf = INT_MAX;
const long long linf = LONG_MAX;
const double pi = 2 * acos(0.0);
const double eps = 1e-7;
int n;
int a[(int)1e6 + 134];
int main() {
ios_base ::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
;
cin >> n;
if (n % 4 >= 2) return cout << -1, 0;
int l = 1, r = n;
for (int i = 1; i <= n / 4; ++i) {
a[l] = l + 1;
a[l + 1] = r;
a[r] = r - 1;
a[r - 1] = l;
l++;
l++;
r--;
r--;
}
for (int i = 1; i <= n; ++i)
cout << (i == l ? (n % 4 == 1 ? l : a[l]) : a[i]) << ' ';
return 0;
}
| CPP |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.