Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
|---|---|---|---|---|---|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.*;
import java.math.*;
public class Main {
/**
* @param args
*/
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
if (n==1) {
System.out.println("1");
}
else if(n%4==2 || n%4==3) {
System.out.println("-1");
}
else {
for(int i=0;i<n/4;i++) {
System.out.print((i*2+2)+" ");
System.out.print((n-i*2)+" ");
}
if(n%4==1) System.out.print((n/2+1)+" ");
for(int i=n/4-1;i>0;i--) {
System.out.print((i*2+1)+" ");
System.out.print((n-i*2-1)+" ");
}
System.out.println("1 "+(n-1));
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (((n / 2) * 2) % 4 != 0) {
System.out.println(-1);
} else {
int[] perm = new int[n];
for (int i = 0; i < n; i++) {
perm[i] = n - 1 - i;
}
int[] res = new int[n];
Arrays.fill(res, -1);
for (int i = 0; i < n/2;) {
res[i] = i + 1;
int tmp=i;
while (res[res[i]] == -1) {
res[res[i]] = perm[i];
i = res[i];
}
i =tmp+2;
}
if (n % 2 == 1) {
res[n / 2] = n / 2;
}
PrintWriter out = new PrintWriter(System.out);
for (int i = 0; i < n; i++) {
out.print((res[i] + 1) + " ");
}
out.println();
out.flush();
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
const int MAXN = 100010;
int n, a[MAXN];
int main() {
scanf("%d", &n);
if (n % 4 == 2 || n % 4 == 3) {
printf("-1");
return 0;
}
if (n % 4 == 0) {
for (int i = 1; i <= n / 2 - 1; i += 2) {
a[i] = i + 1;
a[i + 1] = n - i + 1;
a[n - i + 1] = n - i;
a[n - i] = i;
}
for (int i = 1; i <= n; i++) printf("%d ", a[i]);
} else {
for (int i = 1; i <= n / 2 - 1; i += 2) {
a[i] = i + 1;
a[i + 1] = n - i + 1;
a[n - i + 1] = n - i;
a[n - i] = i;
}
a[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n; i++) printf("%d ", a[i]);
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.Scanner;
public class C {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (n % 4 > 1)
System.out.println(-1);
else {
int[] P = new int[n];
int start = 0;
int end = n - 1;
int min = 1;
int max = n;
while (n > 1) {
P[end - 1] = min++;
P[start] = min++;
P[start + 1] = max--;
P[end] = max--;
start += 2;
end -= 2;
n -= 4;
}
if (n == 1)
P[start] = min;
for (int i = 0; i < P.length; i++)
System.out.print(P[i] + " ");
System.out.println();
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
from itertools import permutations
from sys import stdin
def checkit(vector, upto=-1):
if upto == -1:
upto = len(vector)
for i in range(0, upto):
if vector[vector[i] - 1] != len(vector) - (i + 1) + 1:
return False
return True
def calculate(n):
numbers = list(range(1, n + 1))
result = [0] * n
for i in range(0, n):
if result[i] != 0: continue
if i > 0 and checkit(result, i): continue
expected = n - i
for v in numbers:
if v - 1 == i and expected != v:
continue
if v == expected:
result[v-1] = v
numbers.remove(v)
break
elif result[v - 1] == expected:
numbers.remove(v)
result[i] = v
break
elif result[v - 1] == 0:
assert expected in numbers
result[i] = v
result[v - 1] = expected
numbers.remove(v)
numbers.remove(expected)
break
return result
def calculate_v2(n):
result = [0] * n
first_sum = n + 2
second_sum = n
nf = n
i = 0
while nf > first_sum // 2:
result[i] = first_sum - nf
result[i + 1] = nf
nf -= 2
i += 2
if n % 2 == 1:
result[i] = i + 1
i = n - 1
while i > n // 2:
result[i] = i
result[i-1] = second_sum - i
i -= 2
return result
def main():
number = int(stdin.readline())
result = calculate_v2(number)
if not checkit(result):
print(-1)
else:
print(" ".join([str(v) for v in result]))
if __name__ == "__main__":
main()
|
PYTHON3
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, a[100005] = {0}, i, j;
cin >> n;
if (n % 4 > 1) {
cout << -1;
return 0;
}
a[n / 2 + 1] = n / 2 + 1;
for (j = 1; j <= n / 4; j++) {
a[n - j * 2 + 1] = j * 2 - 1;
i = n - j * 2 + 1;
do {
a[a[i]] = n - i + 1;
i = a[i];
} while (i != n - j * 2 + 1);
}
for (i = 1; i <= n; i++) cout << a[i] << " ";
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
long long n, a[100005];
int main() {
cin >> n;
if (n % 4 == 2 || n % 4 == 3) {
cout << "-1\n";
return 0;
}
long long f = 1;
long long b = n;
while (f < b) {
if (f == b) {
a[f] = f;
break;
}
a[f] = f + 1;
a[f + 1] = b;
a[b - 1] = f;
a[b] = b - 1;
f += 2;
b -= 2;
}
if (n & 1) a[(n + 1) / 2] = (n + 1) / 2;
for (long long i = 1; i <= n; i++) cout << a[i] << " ";
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int d[100100];
int main() {
int n;
while (scanf(" %d", &n) == 1) {
if (n % 4 == 0) {
int r = n;
for (int i = 1; i < n;) {
d[i] = i + 1;
d[i + 1] = n;
d[n] = n - 1;
d[n - 1] = i;
i += 2;
n -= 2;
}
for (int i = 1; i <= r; i++) printf("%d ", d[i]);
puts("");
} else if ((n - 1) % 4 == 0) {
int r = n;
for (int i = 1; i < n;) {
d[i] = i + 1;
d[i + 1] = n;
d[n] = n - 1;
d[n - 1] = i;
i += 2;
n -= 2;
}
d[n] = n;
for (int i = 1; i <= r; i++) printf("%d ", d[i]);
puts("");
} else {
puts("-1");
}
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int a[200009];
int main() {
int i, j, k, n;
scanf("%d", &n);
if (n == 1) {
printf("1\n");
} else if (n % 4 > 1) {
printf("-1\n");
} else {
for (i = 1; i < n / 2; i += 2) {
a[i] = i + 1;
j = i;
while (!a[a[j]]) {
a[a[j]] = n - j + 1;
j = a[j];
}
}
if (!a[n / 2 + 1]) a[n / 2 + 1] = n / 2 + 1;
for (i = 1; i <= n; i++) printf("%d ", a[i]);
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.InputStream;
import java.util.NoSuchElementException;
import java.io.OutputStreamWriter;
import java.math.BigInteger;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.io.IOException;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Nguyen Trung Hieu - [email protected]
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int count = in.readInt();
if (count % 4 >= 2) {
out.printLine(-1);
return;
}
int left = 2;
int right = count;
while (left <= right) {
out.print(left + " " + right + " ");
left += 2;
right -= 2;
}
if (count % 2 == 1) {
out.print((count + 1) / 2 + " ");
}
left = (count - 2 - count % 2) / 2;
right = (count + 2 + count % 2) / 2;
while (left > 0) {
out.print(left + " " + right + " ");
left -= 2;
right += 2;
}
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int p[100500];
set<int> nused;
int n;
void sol() {
if (n == 1)
cout << 1;
else if (((n - 1) % 4 == 0) || (n % 4 == 0)) {
for (int i = (1); i <= (n); i++) nused.insert(i);
memset(p, 0, sizeof(p));
int i = 1;
for (int i = (1); i <= (n / 2); i++) {
if (p[i] != 0) continue;
int t = -1;
for (set<int>::iterator it = nused.begin(); it != nused.end(); it++) {
t = *it;
if (t != i && t != n - i + 1) {
nused.erase(it);
break;
}
}
if (t == -1) {
cout << -100;
break;
}
int at = i;
p[at] = t;
while (p[p[at]] == 0) {
p[p[at]] = n - at + 1;
at = p[at];
nused.erase(nused.find(p[at]));
}
}
if ((n - 1) % 4 == 0) p[n / 2 + 1] = n / 2 + 1;
for (int i = (1); i <= (n); i++) printf("%d ", p[i]);
printf("\n");
} else
cout << -1;
}
int main() {
cin >> n;
sol();
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
#pragma comment(linker, "/stack:336777216")
#pragma GCC optimize("O3")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using ui = unsigned int;
template <typename T>
using less_priority_queue = priority_queue<T, vector<T>, greater<T>>;
ll const mod = 1e9 + 7;
auto mt = mt19937(chrono::steady_clock::now().time_since_epoch().count());
inline namespace segment_tree {
template <typename T>
class Segment_Tree {
public:
vector<T> &v;
vector<T> lazy, tree;
int n;
Segment_Tree(vector<T> &v) : v(v), n(v.size()) {
tree.resize(4 * n);
lazy.resize(4 * n, 0);
build(0, n - 1, 1);
}
void build(int s, int e, int i) {
if (s == e) return void(tree[i] = v[s]);
int m = (s + e) / 2;
build(s, m, 2 * i);
build(m + 1, e, 2 * i + 1);
tree[i] = tree[2 * i] + tree[2 * i + 1];
}
void push(int s, int e, int i) {
if (!lazy[i]) return;
tree[i] += lazy[i] * (e - s + 1);
if (s == e) return void(lazy[i] = 0);
lazy[2 * i] += lazy[i];
lazy[2 * i + 1] += lazy[i];
lazy[i] = 0;
}
void update(int l, int r, T val) { update(0, n - 1, 1, l, r, val); }
void update(int s, int e, int i, int l, int r, T val) {
push(s, e, i);
if (s > r || e < l) return;
if (l <= s && e <= r) {
tree[i] += val * (e - s + 1);
if (s == e) return;
lazy[2 * i] += val;
lazy[2 * i + 1] += val;
return;
}
int m = (s + e) / 2;
update(s, m, 2 * i, l, r, val);
update(m + 1, e, 2 * i + 1, l, r, val);
tree[i] = tree[2 * i] + tree[2 * i + 1];
}
T query(int l, int r) { return query(0, n - 1, 1, l, r); }
T query(int s, int e, int i, int l, int r) {
push(s, e, i);
if (s > r || e < l) return T(0);
if (l <= s && e <= r) return tree[i];
int m = (s + e) / 2;
return query(s, m, 2 * i, l, r) + query(m + 1, e, 2 * i + 1, l, r);
}
void fill(vector<T> &v) {
v.resize(n);
fill(0, n - 1, 1, v);
}
void fill(int s, int e, int i, vector<T> &v) {
push(s, e, i);
if (s == e) return void(v[s] = tree[i]);
int m = (s + e) / 2;
fill(s, m, 2 * i, v);
fill(m + 1, e, 2 * i + 1, v);
}
T get(int idx) {
T res;
get(0, n - 1, 1, idx, res);
return res;
}
void get(int s, int e, int i, int idx, T &val) {
push(s, e, i);
if (s == e && s == idx) return void(val = tree[i]);
int m = (s + e) / 2;
if (idx <= m)
get(s, m, 2 * i, idx, val);
else
get(m + 1, e, 2 * i + 1, idx, val);
}
void update(int idx, int val) { update(0, n - 1, 1, idx, val); }
void update(int s, int e, int i, int idx, int val) {
push(s, e, i);
if (s == e && s == idx) return void(tree[i] += val);
tree[i] += val;
int m = (s + e) / 2;
if (idx <= m)
update(s, m, 2 * i, idx, val);
else
update(m + 1, e, 2 * i + 1, idx, val);
}
};
} // namespace segment_tree
int main() {
ios_base::sync_with_stdio(false), cin.tie(nullptr);
int n;
cin >> n;
int x = n % 4;
if (x == 2 || x == 3) return cout << -1 << '\n', 0;
if (x == 1) {
vector<int> v(n, 0);
v[n / 2] = 1;
auto segt = Segment_Tree<int>(v);
int s = n / 2;
int e = n / 2;
int len = 1;
while (s) {
len += 4;
segt.update(s, e, 2);
segt.update(s - 1, len);
segt.update(s - 2, 2);
segt.update(e + 1, 1);
segt.update(e + 2, len - 1);
s -= 2;
e += 2;
}
vector<int> ans;
segt.fill(ans);
for (auto &x : ans) cout << x << " ";
cout << '\n';
} else {
vector<int> v(n, 0);
v[(n - 4) / 2] = 2;
v[(n - 4) / 2 + 1] = 4;
v[(n - 4) / 2 + 2] = 1;
v[(n - 4) / 2 + 3] = 3;
auto segt = Segment_Tree<int>(v);
int len = 4;
int s = (n - 4) / 2;
int e = s + 3;
while (s) {
len += 4;
segt.update(s, e, 2);
segt.update(s - 1, len);
segt.update(s - 2, 2);
segt.update(e + 1, 1);
segt.update(e + 2, len - 1);
s -= 2;
e += 2;
}
vector<int> ans;
segt.fill(ans);
for (auto &x : ans) cout << x << " ";
cout << '\n';
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
scanf("%d", &n);
int p[n + 1];
if (n % 4 <= 1) {
if (n % 2 == 1) p[(n + 1) / 2] = (n + 1) / 2;
for (int s = 1, e = n; s < e; s += 2, e -= 2) {
p[s] = s + 1;
p[s + 1] = e;
p[e] = e - 1;
p[e - 1] = s;
}
for (int i = 1; i <= n; ++i) printf("%d ", p[i]);
printf("\n");
} else
puts("-1");
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
private static void debug(Object... args) {
System.out.println(Arrays.deepToString(args));
}
public static void main(String[] rags) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int N = Integer.parseInt(br.readLine());
if(N%4 != 0 && N%4 != 1) {
System.out.println(-1);
return;
}
int[]v=new int[N];
for(int i=0;i<N/2;i+=2) {
v[N - i - 1] = N - i - 1;
v[N - i - 2] = i+1;
v[i] = i+2;
v[i+1] = N - i;
}
if(N%4==1) {
v[N/2] = (N+1)/2;
}
for(int i=0;i<N;i++) {
System.out.print(v[i] + " ");
}
System.out.println();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
int main() {
int n, m, i, x, y;
scanf("%d", &n);
m = n / 2;
if (m % 2 == 0) {
x = m / 2;
for (i = 0; i < x; i++) printf("%d ", m - i);
for (i = x - 1; i >= 0; i--) printf("%d ", n - i);
if (n % 2 == 1) printf("%d ", m + 1);
for (i = 1; i <= x; i++) printf("%d ", i);
for (i = 0; i < x; i++) printf("%d ", n - x - i);
} else
printf("-1");
printf("\n");
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
const int N = 100010;
int p[N];
int L[N];
int cnt[N];
int partner[N];
int list[N];
void combine(int i, int j) {
assert(L[i] == L[j]);
assert(L[i] > 0 && !(L[i] & 1));
int flag = 0;
list[0] = i;
list[1] = j;
int n = 2;
int ci = p[i], cj = p[j];
while (ci != i && cj != j) {
list[n++] = ci;
list[n++] = cj;
ci = p[ci];
cj = p[cj];
}
assert(ci == i && cj == j);
assert(n == 2 * L[i]);
list[n] = list[0];
for (int r = 0; r < n; r++) p[list[r]] = list[r + 1];
}
int main() {
int n;
scanf("%d", &n);
memset(cnt, 0, (n + 2) * sizeof(int));
memset(L, 0, (n + 2) * sizeof(int));
int i, j;
for (i = 1; i <= n; i++) {
p[i] = n - i + 1;
}
for (i = 1; i <= n; i++) {
if (!L[i]) {
L[i] = 1;
int j = p[i];
while (!L[j]) {
L[j] = -i;
L[i]++;
j = p[i];
}
cnt[L[i]]++;
}
}
bool flag = true;
for (i = 2; i <= n; i += 2) {
if (cnt[i] & 1) {
flag = false;
break;
}
}
if (!flag) {
printf("-1\n");
return 0;
}
memset(partner, 0, (n + 2) * sizeof(int));
for (i = 1; i <= n; i++) {
if (L[i] > 0 && !(L[i] & 1)) {
int my_partner = partner[L[i]];
if (my_partner == 0) {
partner[L[i]] = i;
} else {
partner[L[i]] = 0;
combine(i, my_partner);
}
}
}
for (i = 1; i < n; i++) printf("%d ", p[i]);
printf("%d\n", p[n]);
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main(int argc, char *argv[]) {
int n;
cin >> n;
if (n % 4 == 0 || n % 4 == 1) {
int a[n];
int low = 1, high = n;
int i = 0;
while (low < high) {
a[i] = low + 1;
a[i + 1] = high;
a[n - i - 1] = high - 1;
a[n - i - 2] = low;
low += 2;
high -= 2;
i += 2;
}
if (low == high) a[i] = low;
for (int i = 0; i < n; i++) {
std::cout << a[i] << " ";
}
std::cout << std::endl;
} else {
std::cout << -1 << std::endl;
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
n=input()
if n%4 not in {0,1}: print -1;exit()
p=[(n+1)/2]*n
for i in range(n/4):
a=i*2
p[a],p[a+1],p[-a-2],p[-a-1]=a+2,n-a,a+1,n-a-1
print ' '.join(map(str, p))
|
PYTHON
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.*;
import java.util.*;
public class LuckyPermutation {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(f.readLine());
if (n % 4 == 2 || n % 4 == 3)
{
System.out.println(-1);
return;
}
int[] a = new int[n+1];
for (int i = 1; i <= n/2-1; i += 2)
{
a[i] = i+1;
a[i+1] = n-i+1;
a[n-i+1] = n-i;
a[n-i] = i;
}
if (n % 4 == 1)
a[(n+1)/2] = (n+1)/2;
for (int i = 1; i <= n; i++)
System.out.print(a[i]+" ");
System.out.println();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int a[100000 + 10];
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n % 4 == 2 || n % 4 == 3) {
printf("-1\n");
continue;
}
for (int i = 1; i <= n / 2; i += 2) {
a[i] = i + 1;
a[i + 1] = n - i + 1;
a[n - i + 1] = n - i;
a[n - i] = i;
}
if (n % 2 != 0) {
a[n / 2 + 1] = n / 2 + 1;
}
for (int i = 1; i <= n; i++) printf("%d ", a[i]);
}
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int N, P[100010];
int main(int argc, char *argv[]) {
scanf("%d", &N);
if (N % 4 == 2 || N % 4 == 3) {
printf("-1\n");
return 0;
}
int K = N >> 1;
for (int i = 1; i <= K; i++)
if (P[i] == 0) {
P[i] = i + 1;
P[i + 1] = N - i + 1;
P[N - i + 1] = N - (i + 1) + 1;
P[N - (i + 1) + 1] = N - (N - i + 1) + 1;
}
if (N & 1) {
P[K + 1] = K + 1;
}
for (int i = 1; i <= N; i++) {
printf("%d", P[i]);
printf(i == N ? "\n" : " ");
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int mark[100002], p[100002];
int main() {
int t, n;
while (scanf("%d", &n) != EOF) {
int next = 2;
mark[0] = 0;
for (int i = 1; i <= n; i++) {
mark[i] = 0;
p[i] = 0;
}
int f = 0;
for (int i = 1; i <= n; i++) {
if (p[i] != 0) continue;
int temp = n - i + 1;
if (mark[temp] != 0) continue;
if (temp != i) {
if (next == i) {
next = next + 1;
while (mark[next] != 0) {
next++;
if (next == n && f == 0) {
f = 1;
next = 1;
}
if (next == n && f == 1) break;
}
}
}
if (temp == i) {
p[temp] = temp;
mark[temp] = 1;
while (mark[next] != 0) {
next++;
if (next == n && f == 0) {
f = 1;
next = 1;
}
if (next == n && f == 1) break;
}
} else {
p[i] = next;
p[p[i]] = temp;
mark[next] = 1;
mark[temp] = 1;
while (mark[next] != 0) {
next++;
if (next == n && f == 0) {
f = 1;
next = 1;
}
if (next == n && f == 1) break;
}
}
if (f == 1) break;
}
int ans = 0;
for (int i = 1; i <= n; i++) {
if (p[i] < 1 || p[i] > n || mark[i] == 0) {
ans = -1;
break;
}
}
if (ans != 0)
cout << ans;
else {
for (int i = 1; i <= n; i++) {
cout << p[i] << " ";
}
}
cout << "\n";
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.Scanner;
public class A {
public static final boolean DEBUG = false;
Scanner sc;
public void debug(Object o) {
if (DEBUG) {
int ln = Thread.currentThread().getStackTrace()[2].getLineNumber();
String fn = Thread.currentThread().getStackTrace()[2].getFileName();
System.out.println("(" + fn + ":" + ln+ "): " + o);
}
}
public void pln(Object o) {
System.out.println(o);
}
public void run() {
sc = new Scanner(System.in);
int n = sc.nextInt();
if (n==1) {
pln(1);
return;
}
if (n%4==2 || n%4==3) {
pln(-1);
return;
}
int[] p = new int[n+1];
if (n%4==0 || n%4 == 1) {
for (int i=1; i<=n/2; i+=2) {
p[i] = i+1;
p[i+1] = n-i+1;
p[n-i+1] = n-i;
p[n-i] = i;
}
if (n%4==1) {
p[n/2+1] = n/2+1;
}
}
for (int i=1; i<=n; i++) {
System.out.print(p[i]);
System.out.print(" ");
}
System.out.println();
}
public static void main(String[] args) {
A t = new A();
t.run();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import static java.lang.Math.*;
import static java.math.BigInteger.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class A {
final static boolean autoflush = false;
public A () {
int N = sc.nextInt();
int [] res = new int [N];
switch(N%4) {
case 1:
int m = (N-1)/2;
res[m] = m;
case 0:
for (int i : rep(N/4)) {
int a = 2*i, b = a+1;
res[a] = b;
res[b] = N-1-a;
res[N-1-a] = N-1-b;
res[N-1-b] = a;
}
for (int i : rep(N))
++res[i];
exit(res);
default:
exit(-1);
}
}
////////////////////////////////////////////////////////////////////////////////////
static int [] rep(int N) { return rep(0, N); }
static int [] rep(int S, int T) { int [] res = new int [max(T-S, 0)]; for (int i = S; i < T; ++i) res[i-S] = i; return res; }
static int [] req(int S, int T) { return rep(S, T+1); }
////////////////////////////////////////////////////////////////////////////////////
/* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */
final static MyScanner sc = new MyScanner();
static class MyScanner {
public String next() {
newLine();
return line[index++];
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
line = null;
return readLine();
}
public String [] nextStrings() {
line = null;
return readLine().split(" ");
}
public char [] nextChars() {
return next ().toCharArray ();
}
public Integer [] nextInts() {
String [] L = nextStrings();
Integer [] res = new Integer [L.length];
for (int i : rep(L.length))
res[i] = Integer.parseInt(L[i]);
return res;
}
public Long [] nextLongs() {
String [] L = nextStrings();
Long [] res = new Long [L.length];
for (int i : rep(L.length))
res[i] = Long.parseLong(L[i]);
return res;
}
public Double [] nextDoubles() {
String [] L = nextStrings();
Double [] res = new Double [L.length];
for (int i : rep(L.length))
res[i] = Double.parseDouble(L[i]);
return res;
}
public String [] next (int N) {
String [] res = new String [N];
for (int i : rep(N))
res[i] = sc.next();
return res;
}
public Integer [] nextInt (int N) {
Integer [] res = new Integer [N];
for (int i : rep(N))
res[i] = sc.nextInt();
return res;
}
public Long [] nextLong (int N) {
Long [] res = new Long [N];
for (int i : rep(N))
res[i] = sc.nextLong();
return res;
}
public Double [] nextDouble (int N) {
Double [] res = new Double [N];
for (int i : rep(N))
res[i] = sc.nextDouble();
return res;
}
public String [][] nextStrings (int N) {
String [][] res = new String [N][];
for (int i : rep(N))
res[i] = sc.nextStrings();
return res;
}
public Integer [][] nextInts (int N) {
Integer [][] res = new Integer [N][];
for (int i : rep(N))
res[i] = sc.nextInts();
return res;
}
public Long [][] nextLongs (int N) {
Long [][] res = new Long [N][];
for (int i : rep(N))
res[i] = sc.nextLongs();
return res;
}
public Double [][] nextDoubles (int N) {
Double [][] res = new Double [N][];
for (int i : rep(N))
res[i] = sc.nextDoubles();
return res;
}
//////////////////////////////////////////////
private boolean eol() {
return index == line.length;
}
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error (e);
}
}
private final java.io.BufferedReader r;
MyScanner () {
this(new java.io.BufferedReader(new java.io.InputStreamReader(System.in)));
}
MyScanner (java.io.BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = readLine().split(" ");
index = 0;
}
}
}
static void print (Object o, Object... a) {
printDelim(" ", o, a);
}
static void cprint (Object o, Object... a) {
printDelim("", o, a);
}
static void printDelim (String delim, Object o, Object... a) {
pw.println(build(delim, o, a));
}
static void exit (Object o, Object... a) {
print(o, a);
exit();
}
static void exit() {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
static void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build (String delim, Object o, Object... a) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : a)
append(b, p, delim);
return b.toString().trim();
}
static void append(StringBuilder b, Object o, String delim) {
if (o.getClass().isArray()) {
int L = java.lang.reflect.Array.getLength(o);
for (int i : rep(L))
append(b, java.lang.reflect.Array.get(o, i), delim);
} else if (o instanceof Iterable<?>)
for (Object p : (Iterable<?>)o)
append(b, p, delim);
else
b.append(delim).append(o);
}
////////////////////////////////////////////////////////////////////////////////////
static void statics() {
abs(0);
valueOf(0);
asList(new Object [0]);
reverseOrder();
}
public static void main (String[] args) {
new A();
exit();
}
static void start() {
t = millis();
}
static java.io.PrintWriter pw = new java.io.PrintWriter(System.out, autoflush);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
const double pi = acos(-1);
const double EPS = 1e-9;
long long binpowmod(long long a, long long b) {
a %= MOD;
long long ret = 1;
while (b) {
if (b & 1) ret = ret * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ret % MOD;
}
long long gcd(long long a, long long b) {
if (!b) return a;
return gcd(b, a % b);
}
const int N = 1 << 18;
const int E = N * 2;
class UnionFind {
public:
vector<int> p, rank, setSize;
int numSets;
UnionFind(int N) {
setSize.assign(N, 1);
numSets = N;
rank.assign(N, 0);
p.assign(N, 0);
for (int i = 0; i < N; i++) p[i] = i;
}
int findSet(int i) { return (p[i] == i) ? i : (p[i] = findSet(p[i])); }
bool isSameSet(int i, int j) { return findSet(i) == findSet(j); }
void unionSet(int i, int j) {
if (!isSameSet(i, j)) {
numSets--;
int x = findSet(i), y = findSet(j);
if (rank[x] > rank[y]) {
p[y] = x;
setSize[x] += setSize[y];
} else {
p[x] = y;
setSize[y] += setSize[x];
if (rank[x] == rank[y]) rank[y]++;
}
}
}
int numDisjointSets() { return numSets; }
int sizeOfSet(int i) { return setSize[findSet(i)]; }
};
void solve() {
int n;
cin >> n;
vector<int> prefix, suffix;
vector<bool> taken(n + 1);
for (int i = 1; i <= n / 2; ++i) {
if (i * 2 >= n - (i - 1) * 2) break;
taken[i * 2] = true;
taken[n - (i - 1) * 2] = true;
prefix.push_back(i * 2);
prefix.push_back(n - (i - 1) * 2);
}
for (int i = 1; i <= n / 2; ++i) {
if (i * 2 - 1 >= n - i * 2 + 1) break;
taken[i * 2 - 1] = true;
taken[n - i * 2 + 1] = true;
suffix.push_back(n - i * 2 + 1);
suffix.push_back(i * 2 - 1);
}
for (int i = 1; i <= n; ++i)
if (!taken[i]) prefix.push_back(i);
reverse(suffix.begin(), suffix.end());
vector<int> ans;
for (int i = 0; i < (int)prefix.size(); ++i) ans.push_back(prefix[i]);
for (int i = 0; i < (int)suffix.size(); ++i) ans.push_back(suffix[i]);
bool good = true;
for (int i = 0; i < n; ++i) {
int ind = ans[i] - 1;
int val = n - (i + 1) + 1;
if (ans[ind] != val) good = false;
}
if (good)
for (int x : ans) cout << x << ' ';
else
cout << -1;
cout << '\n';
}
int main(void) {
ios::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int tc = 1;
while (tc--) {
solve();
}
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
#pragma comment(linker, "/STACK:250777216")
using namespace std;
const int MOD = int(1e9) + 7;
const int HMOD = (1 << 22) - 1;
int p1[110000] = {};
int n;
int main() {
scanf("%d", &n);
int num = n;
int i = 1;
for (i = 1; num > 3; i += 2) {
p1[i + 1] = i;
p1[i] = n - i;
p1[n - i] = n - i + 1;
p1[n - i + 1] = i + 1;
num -= 4;
}
if (num == 1) p1[i] = i;
if (num == 3 || num == 2) {
printf("-1\n");
return 0;
}
for (int i = 1; i <= n; i++) printf("%d ", p1[i]);
printf("\n");
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.*;
import java.lang.*;
import java.io.*;
import java.text.*;
/**
* @author soumitri12
*/
/* Name of the class has to be "Main" only if the class is public*/
public class CF287C
{
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class Node {
long pp;
long a, b;
Node(long x, long y) {
a = x;
b = y;
pp = a * b;
}
}
static class Comp implements Comparator<Node> {
public int compare(Node o1, Node o2) {
if (o1.pp > o2.pp) {
return 1;
} else {
return -1;
}
}
}
static int gcd(int x, int y)
{
if(y==0) return x;
else return gcd(y,x%y);
}
static long mod_pow(long a, long b, long mod)
{
a%=mod;
if(b==0) return 1%mod;
if((b&1)==1) return a*(mod_pow(a,b-1,mod))%mod;
else
{
long u=mod_pow(a,b>>1,mod);
return (u*u)%mod;
}
}
static long _pow(long a, long b)
{
if(b==0) return 1;
if((b&1)==1) return a*_pow(a,b-1);
else
{
long u=_pow(a,b>>1);
return u*u;
}
}
static int modInv(int a, int m)
{
if(gcd(a,m)!=1) return -999;
else return (a%m+m)%m;
}
static boolean isPowerOfTwo(int x)
{
return x!=0 && ((x&(x-1)) == 0);
}
static boolean isprime(int x)
{
for(int i=2;i<=Math.sqrt(x);i++)
{
if(x%i==0) return false;
}
return true;
}
static boolean prime[];
static final int INT_MAX=1000007;
static void sieve() {
prime=new boolean[INT_MAX];
Arrays.fill(prime,true);
prime[0]=prime[1]=false;
for(int i=2;i<=Math.sqrt(INT_MAX);i++)
{
if(prime[i]) {
for(int j=i*2;j<INT_MAX;j+=i)
prime[j]=false;
}
}
}
static class Pair {
int ff,ss;
public Pair(int ff,int ss) {
this.ff=ff; this.ss=ss;
}
}
public static void main(String[] args) {
FastReader sc=new FastReader();
PrintWriter out=new PrintWriter(System.out);
StringBuffer sb=new StringBuffer();
//your code starts here
int n=sc.nextInt();
int p[]=new int[n+1];
if((n&1)==1) p[(n+1)>>1]=(n+1)>>1;
if((n&2)>=2) {
System.out.println(-1);
return;
}
for(int i=1;i<=n/2;i+=2)
{
p[i]=i+1; p[i+1]=n-i+1;
p[n-i+1]=n-i; p[n-i]=i;
}
for(int i=1;i<=n;i++) out.print(" "+p[i]);
out.close();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
# -*- coding:utf-8 -*-
def PrintPermutation(n):
if n % 4 != 0 and (n-1) %4 != 0:
print '-1'
return
data = [0] * (n + 1)
if n%2 == 1:
data[(n+1)/2] = (n+1)/2
i0 = 1
i1 = n
while True:
j0 = i0+1
j1 = i1-1
if j0 >= j1 :
break;
data[i0] = j0
data[i1] = j1
data[j0] = i1
data[j1] = i0
i0 = i0 + 2
i1 = n + 1 - i0
print '%s' % ' '.join(map(str, data[1:]))
if __name__ == "__main__":
n = raw_input()
PrintPermutation(int(n))
|
PYTHON
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
n = int(raw_input())
p = [0] * (n+1)
lo, hi = 1, n
possible = True
while hi - lo > 2:
if not p[hi-1]: p[hi-1] = lo
if not p[lo]: p[lo] = lo+1
if not p[hi]: p[hi] = hi-1
if not p[lo+1]: p[lo+1] = hi
lo += 2
hi -= 2
n -= 4
# lo is the first zero
if n == 1:
p[lo] = lo
elif n != 0:
possible = False
if possible:
print ' '.join(map(str, p[1:]))
else:
print -1
|
PYTHON
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
template <class _T>
inline string tostr(const _T& a) {
ostringstream os("");
os << a;
return os.str();
}
const long double pi = 3.1415926535897932384626433832795;
const long double eps = 1e-9;
const int INF = (int)1e9;
const int N = (int)1e5 + 10;
long long n, k;
int p[20];
void gen(int n) {
cout << "N = " << n << endl;
for (int i = 0; i < n; i++) p[i] = i;
do {
bool first = true;
for (int i = 0; i < n && first; i++)
if (p[p[i]] != n - i - 1) first = false;
if (first) {
for (int i = 0; i < n; i++) cout << p[i] + 1 << " ";
cout << "\n";
}
} while (next_permutation(p, p + n));
}
int a[N];
set<int> second;
vector<int> ost;
int main() {
cout.flags(ios::fixed);
cout.precision(2);
ios_base::sync_with_stdio(0);
int n;
cin >> n;
if (n == 1) {
cout << 1;
return 0;
}
if (n % 4 >= 2) {
cout << -1;
return 0;
}
for (int i = 1; i <= n; ++i) second.insert(i);
for (int i = 1; i <= n / 2; i += 2) a[i] = i + 1;
for (int i = n; i > (n + 1) / 2; i -= 2) a[i] = i - 1;
for (int i = 1; i <= n; ++i)
if (a[i]) second.erase(a[i]);
for (set<int>::iterator it = second.begin(); it != second.end(); it++)
ost.push_back(*it);
reverse(ost.begin(), ost.end());
for (int i = 1, j = 0; i <= n; ++i)
if (!a[i]) a[i] = ost[j++];
for (int i = 1; i <= n; ++i) printf("%d ", a[i]);
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.*;
import java.io.*;
public class Main implements Runnable {
public void solve() throws IOException {
int N = nextInt();
int[] ans = new int[N];
if((N%4) > 1){
System.out.println(-1);
return;
}
if(N % 4 == 1){
ans[N/2] = N/2 + 1;
}
int A = 2, B = N, C = N - 1, D = 1;
for(int i = 0; i < N/2; i += 2){
ans[i] = A;
ans[i+1] = B;
ans[N - 1 - i] = C;
ans[N - 2 - i] = D;
A += 2;
B -= 2;
C -= 2;
D += 2;
}
StringBuilder sb = new StringBuilder();
for(int i = 0; i < N; i++) sb.append(" " + ans[i]);
System.out.println(sb.toString().substring(1));
}
//-----------------------------------------------------------
public static void main(String[] args) {
new Main().run();
}
public void print1Int(int[] a){
for(int i = 0; i < a.length; i++)
System.out.print(a[i] + " ");
System.out.println();
}
public void print2Int(int[][] a){
for(int i = 0; i < a.length; i++){
for(int j = 0; j < a[0].length; j++){
System.out.print(a[i][j] + " ");
}
System.out.println();
}
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tok = null;
solve();
in.close();
} catch (IOException e) {
System.exit(0);
}
}
public String nextToken() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
BufferedReader in;
StringTokenizer tok;
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
int a[maxn];
int main() {
int n;
scanf("%d", &n);
if (n & 1) {
if ((n - 1) % 4) {
puts("-1");
return 0;
} else {
for (int i = 1; i <= n / 2; i += 2) {
a[i] = i + 1;
a[i + 1] = n + 1 - i;
a[n + 1 - i] = n - i;
a[n - i] = i;
}
a[n / 2 + 1] = n / 2 + 1;
}
} else {
if (n % 4) {
puts("-1");
return 0;
} else {
for (int i = 1; i <= n / 2; i += 2) {
a[i] = i + 1;
a[i + 1] = n + 1 - i;
a[n + 1 - i] = n - i;
a[n - i] = i;
}
}
}
for (int i = 1; i <= n; ++i) {
printf("%d%c", a[i], " \n"[i == n]);
}
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author dy
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int N = in.nextInt();
if(N == 1){
out.println(1);return;
}
if(N % 2 == 1 && (N - 1) % 4 != 0 || N % 2 == 0 && N % 4 != 0 || N == 2 || N == 3){
out.println(-1);return;
}
int[] ans = new int[N + 1];
// int even = N / 2 * 2;
for(int i = 1; i <= N / 2; i += 2){
int[] P = new int[]{i, i + 1, N - i + 1, N - i};
for(int j = 0; j < P.length; ++j)
ans[P[j]] = P[(j + 1) % 4];
}
if(N % 2 == 1)
ans[N / 2 + 1] = N / 2 + 1;
out.print(ans[1]);
for(int i = 2; i < ans.length; ++i)
out.print(" " + ans[i]);
out.println();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
int n, res[N];
int main() {
scanf("%d", &n);
if ((n / 2) % 2 == 1) {
puts("-1");
} else {
res[n / 2] = n / 2;
for (int i = 0; i < n / 2; i += 2) {
res[i] = i + 1;
res[i + 1] = n - i - 1;
res[n - i - 1] = n - i - 2;
res[n - i - 2] = i;
}
for (int i = 0; i < n; i++) {
printf("%d%c", res[i] + 1, (i + 1 == n) ? '\n' : ' ');
}
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int n, i, a[100005];
int main() {
scanf("%d", &n);
if (n % 4 != 0 && n % 4 != 1) {
printf("-1\n");
return 0;
}
for (i = 1; i <= n / 4; i++) {
a[(i - 1) * 2 + 1] = i * 2;
a[i * 2] = n - (i - 1) * 2;
a[n - (i - 1) * 2] = n - (i - 1) * 2 - 1;
a[n - (i - 1) * 2 - 1] = i * 2 - 1;
}
if (n & 1) a[n / 2 + 1] = n / 2 + 1;
for (i = 1; i <= n; i++) printf("%d ", a[i]);
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int MaxN = 100000;
int main() {
int n;
static int p[MaxN + 1];
cin >> n;
if ((n / 2) % 2 != 0)
cout << "-1" << endl;
else {
for (int i = 1; i <= n - i + 1; i += 2) {
if (i == n - i + 1)
p[i] = i;
else {
p[i] = i + 1;
p[i + 1] = n - i + 1;
p[n - i + 1] = n - i;
p[n - i] = i;
}
}
for (int i = 1; i <= n; i++) printf("%d ", p[i]);
cout << endl;
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.*;
import java.io.*;
import java.math.*;
import java.lang.*;
/**
*
* @author calcsaransh
*/
public class Main {
/**
* @param args the command line arguments
*/
static int arr[];
public static void main(String[] args) {
// TODO code application logic here
try
{
Parserdoubt pd=new Parserdoubt(System.in);
PrintWriter pw=new PrintWriter(System.out);
int n=pd.nextInt();
arr=new int[n+1];
if(n==1)
{
System.out.println(1);
return;
}
if(n%4==2||n%4==3)
{
System.out.println(-1);
return;
}
int rightbound=n-1;
int leftbound=0;
int forward=1;
int backward=n;
for(int i=0;i<n/4;i++) {
arr[rightbound-1]=forward++;
arr[leftbound+1]=backward--;
arr[leftbound]=forward++;
arr[rightbound]=backward--;
rightbound-=2;
leftbound+=2;
}
for(int i=0;i<n;i++)
{
if(arr[i]==0)arr[i]=n/2+1;
pw.print(arr[i]+" ");
}
pw.flush();
}
catch(Exception e)
{
e.printStackTrace();
}
}
}
class Parserdoubt {
final private int BUFFER_SIZE = 1 << 17;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Parserdoubt(InputStream in) {
din = new DataInputStream(in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String nextString() throws Exception {
StringBuffer sb = new StringBuffer("");
byte c = read();
while (c <= ' ') {
c = read();
}
do {
sb.append((char) c);
c = read();
} while (c > ' ');
return sb.toString();
}
public char nextChar() throws Exception {
byte c = read();
while (c <= ' ') {
c = read();
}
return (char) c;
}
public int nextInt() throws Exception {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
c = read();
} while (c > ' ');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws Exception {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
c = read();
} while (c > ' ');
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws Exception {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws Exception {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.StringTokenizer;
public class Solver {
public static void main(String[] Args) throws NumberFormatException,
IOException {
new Solver().Run();
}
PrintWriter pw;
StringTokenizer Stok;
BufferedReader br;
public String nextToken() throws IOException {
while (Stok == null || !Stok.hasMoreTokens()) {
Stok = new StringTokenizer(br.readLine());
}
return Stok.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
public long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
public int zero (int[] arg1,int length){
int i = 0;
while (arg1[i]!=0 && i<length/2){
i++;
}
if (i==length/2){
i = -1;
}
return i;
}
public void Run() throws NumberFormatException, IOException {
//br = new BufferedReader(new FileReader("input.txt"));
//pw = new PrintWriter("output.txt");
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out));
int n = nextInt();
if (n==1)
pw.print(1);
else if (n%4 > 1)
pw.print(-1);
else {
int[] per = new int[n];
if (n%2==1)
per[n/2] = 1+n/2;
int i;
for (i=0;i<n/2;i=i+2){
per[i]=i+2;
}
for (i=1;i<n/2;i=i+2){
per[i]=n-i+1;
}
for (i=n-1;i>n/2;i=i-2){
per[i]=i;
}
for (i=n-2;i>=n/2;i=i-2){
per[i]=n-i-1;
}
for (int j : per){
pw.print(j);
pw.print(' ');
}
}
pw.flush();
pw.close();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.BufferedWriter;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Scanner;
public class cf287c {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = in.nextInt();
if(n%4 >= 2) {
out.println("-1");
out.close();
return;
}
int[] v = new int[n];
if(n%2 == 1) v[n/2] = n/2;
for(int i=0; i<n/4; i++) {
v[i*2] = i*2 + 1;
v[i*2+1] = n-(i*2+1);
v[n-(i*2+1)] = n - (i*2+1) - 1;
v[n-(i*2+1)-1] = i*2;
}
for(int x : v) out.print((x+1)+" ");
out.close();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
n = int(raw_input())
if n % 4 == 2 or n % 4 == 3:
print "-1"
else:
perm = [0 for i in range(n)]
d = n/4
for i in range(d):
perm[2*i] = 2*i + 2
perm[2*i + 1] = n - 2*i
perm[n - 2*i - 1] = n - 2*i - 1
perm[n - 2*i - 2] = 2*i + 1
if n % 2 == 1:
perm[n / 2] = n / 2 + 1
print " ".join([str(x) for x in perm])
|
PYTHON
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int n, a[100009];
int main() {
cin >> n;
if (n == 1)
cout << 1;
else if ((n / 2) % 2 == 1)
cout << -1;
else {
for (int i = 1; i <= (n / 2 / 2); i++) {
a[i * 2 - 1] = i * 2;
a[i * 2] = n - (i - 1) * 2;
a[n - i * 2 + 1] = i * 2 - 1;
a[n - (i - 1) * 2] = n - (i - 1) * 2 - 1;
if (n % 2 == 1) a[n / 2 + 1] = n / 2 + 1;
}
for (int i = 1; i <= n; i++) cout << a[i] << " ";
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
const int N = 1e5 + 10;
int n, m, i, t, x, a[N];
bool e[N];
int check() {
int i, x;
for (i = 1; i <= n; i++) {
x = a[a[i]];
if (x + i == n + 1)
;
else
return 0;
}
return 1;
}
void print() {
int i;
for (i = 1; i < n; i++) printf("%d ", a[i]);
printf("%d\n", a[n]);
}
void dfs(int p) {
if (p == n + 1) {
if (check()) print();
}
int i;
for (i = 1; i <= n; i++)
if (e[i] == 0) {
e[i] = 1;
a[p] = i;
dfs(p + 1);
e[i] = 0;
}
}
void test() {
for (n = 1; n <= 12; n++) {
dfs(1);
}
}
int main() {
scanf("%d", &n);
t = n % 4;
if (t == 2 || t == 3)
printf("-1\n");
else if (t == 0) {
m = n / 2;
for (i = 2; i <= m; i += 2) a[i] = i - 1;
for (i = 1; i <= m; i += 2) a[i] = n - i;
for (i = m + 1; i <= n; i += 2) a[i] = i + 1;
for (i = m + 2; i <= n; i += 2) a[i] = n + 2 - i;
print();
} else if (t == 1) {
m = n / 2 + 1;
for (i = 2, x = 1; i < m; i += 2, x += 2) a[i] = x;
{
a[m] = x;
x += 2;
}
for (i = m + 1; i <= n; i += 2, x += 2) a[i] = x;
for (i = 1, x = n - 1; i < m; i += 2, x -= 2) a[i] = x;
for (i = m + 2; i <= n; i += 2, x -= 2) a[i] = x;
print();
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.Scanner;
// http://codeforces.com/contest/287/problem/C
public class LuckyPermutation {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
s.close();
if (n % 4 == 0 || (n - 1) % 4 == 0) {
int p = n / 4;
int[] a = new int[n + 1];
if ((n - 1) % 4 == 0) {
int mid = (n + 1) / 2;
a[mid] = mid;
}
for (int i = 1; i <= p; i++) {
a[i] = p + p - i + 1;
}
for (int i = p + 1; i <= p + p; i++) {
a[i] = n + i - p - p;
}
for (int i = n - p - p + 1; i <= n - p; i++) {
a[i] = i - n + p + p;
}
for (int i = n - p + 1; i <= n; i++) {
a[i] = n + n - i - p - p + 1;
}
StringBuilder sb = new StringBuilder();
for (int i = 1; i <= n; i++) {
sb.append(a[i]);
sb.append(' ');
}
System.out.println(sb);
} else {
System.out.println(-1);
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
void solve() {
int n;
cin >> n;
if (n == 4) {
cout << "2 4 1 3" << endl;
return;
}
int a[n];
if (n % 4 == 0 || (n - 1) % 4 == 0) {
a[n - 3] = n + 1 - 4;
a[0] = 2;
a[n - 2] = 1;
a[2] = 4;
a[n - 1] = n - 1;
a[1] = n;
if (n % 2 == 0) {
for (int i = 3; i <= n / 2; i++) {
if (i % 2 == 0) {
a[i] = min((a[i - 2] + 2), (n - a[i - 2] - 1));
a[n - i - 1] = n + 1 - a[i];
} else {
a[i] = max((a[i - 2] - 2), (n - a[i - 2] + 3));
a[n - i - 1] = n + 1 - a[i];
}
}
} else {
for (int i = 3; i <= n / 2; i++) {
if (i % 2 == 0) {
a[i] = min((a[i - 2] + 2), (n - a[i - 2] - 1));
a[n - i - 1] = n + 1 - a[i];
} else {
a[i] = max((a[i - 2] - 2), (n - a[i - 2] + 3));
a[n - i - 1] = n + 1 - a[i];
}
}
a[n / 2] = (n + 1) / 2;
}
for (int i = 0; i < n; i++) {
cout << a[i] << " ";
}
} else
cout << "-1" << endl;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
solve();
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int n;
int mas[100005];
int main() {
cin >> n;
if (n % 4 >= 2) {
cout << "-1\n";
return 0;
}
for (int i = 0; i < n; ++i) mas[i] = i;
for (int l = 0, r = n - 1; l < r; l += 2, r -= 2) {
mas[l] = l + 1;
mas[l + 1] = r;
mas[r] = r - 1;
mas[r - 1] = l;
}
for (int i = 0; i < n; ++i) printf("%d ", mas[i] + 1);
cout << endl;
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int n, p[1010000];
int main() {
scanf("%d", &n);
if (n % 4 == 2 || n % 4 == 3) {
puts("-1");
return 0;
}
if (n % 4 == 0) {
for (int i = 1; i <= n / 2; i++) {
if (i % 2 == 1)
p[i] = i + 1, p[n + 1 - i] = n - i;
else
p[i] = n + 2 - i, p[n + 1 - i] = i - 1;
}
for (int i = 1; i <= n; i++) printf("%d ", p[i]);
} else {
for (int i = 1; i <= n / 2; i++) {
if (i % 2 == 1)
p[i] = i + 1, p[n + 1 - i] = n - i;
else
p[i] = n + 2 - i, p[n + 1 - i] = i - 1;
}
p[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n; i++) printf("%d ", p[i]);
}
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
// package Practice3.CF286;
import java.util.Iterator;
import java.util.Scanner;
import java.util.TreeSet;
public class CF286A {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if (n % 4 > 1) {
System.out.println(-1);
} else {
int[] p = new int[n + 1];
int[] ans = new int[n + 1];
TreeSet<Integer> available = new TreeSet<>();
for (int i = 1; i <= n; i++) {
p[i] = n - i + 1;
available.add(p[i]);
}
int count = 0;
int newI = 0;
int val = 0;
boolean bool = false;
if(n % 2 != 0){
ans[n/2 + 1] = n/2 + 1;
available.remove(n/2 + 1);
bool = true;
n--;
}
while(count != n) {
if (count % 4 == 0) {
newI = available.first();
available.remove(newI);
Iterator<Integer> iter = available.iterator();
int m = 0;
while(iter.hasNext()){
int k = iter.next();
if(k == newI || k == p[newI] || k == (n/2 + 1)){
continue;
}
val = k;
break;
}
ans[newI] = val;
val = p[newI];
newI = ans[newI];
} else {
available.remove(newI);
ans[newI] = val;
val = p[newI];
newI = ans[newI];
}
count++;
}
// System.out.println(Arrays.toString(ans));
if(bool){
n++;
}
for (int i = 1; i <= n; i++) {
System.out.print(ans[i] + " ");
}
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.*;
import java.util.regex.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.lang.Integer.*;
import static java.lang.Double.*;
import static java.util.Collections.*;
import java.io.*;
public class _287_C_Lucky_Permutation {
public void solve() {
int n = ni();
int ar[]=new int [n];
if(n%4>1){
out.print(-1);
return;
}
pr(ar);
if((ar.length&1)!=0)
ar[(n)/2]=(n+2)/2;
pr(ar);
for (int i = 0; i<n/2; i+=2) {
int e=n-1-i;
ar[i+1]=n-(i+1)+1;
ar[e]=n-(i+2)+1;
ar[e-1]=n-(e+1)+1;
ar[i]=n-(e+1-1)+1;
}
pr(ar);
for (int j = 0; j < n; j++) {
out.print(ar[j]+" ");
}
}
boolean check(int ar[]){
for (int i = 0; i < ar.length; i++) {
if(ar[ar[i]-1]!=ar.length-(i+1)+1){
pr("false",i,ar);
return false;
}
}
return true;
}
void run() throws Exception {
long s = System.currentTimeMillis();
solve();
out.flush();
pr(System.currentTimeMillis() - s + "ms");
}
public static void main(String[] args) throws Exception {new _287_C_Lucky_Permutation().run();}
InputStream in=System.in;
PrintWriter out=new PrintWriter(System.out);
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = in.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {return !(c >= 33 && c <= 126);}
private int skip() {int b;while ((b = readByte()) != -1 && isSpaceChar(b));return b;}
public String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != // ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
public char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
public int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
public int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
public long nl(){
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
void pr(Object... ob) {if (!oj)System.out.println(Arrays.deepToString(ob).replace("],", "],\n"));}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.*;
import java.io.*;
public class LuckyPermutation {
public static InputReader in;
public static PrintWriter out;
public static final int MOD = (int) (1e9 + 7);
public static void main(String[] args) {
in = new InputReader(System.in);
out = new PrintWriter(System.out);
int n = in.nextInt();
if(n <= 3 || n%4 >= 2) {
out.println(n == 1 ? 1 : -1);
out.close();
return;
}
int[] p = new int[n + 1];
if((n&1) == 1)
p[n/2 + 1] = n/2 + 1;
int no = 1;
for(int i = n/2; i >= 1; i--, no++) {
if((i&1) == 0) {
p[i] = no;
p[n - i + 1] = n - no + 1;
} else {
p[i] = n - no + 1;
p[n - i + 1] = no;
}
}
for(int i = 1; i <= n/2; i++) {
if(p[i] == i || p[i] == n - i + 1) {
p[i]--;
p[n - i + 1]++;
p[i + 1]++;
p[n - i]--;
break;
}
}
boolean pos = true;
for(int i = 1; i <= n/2; i++) {
if(p[i] == i || p[i] == n - i + 1 || p[i] <= 0 || p[i] > n) {
pos = false;
}
}
if(pos)
for (int i = 1; i <= n; i++) out.print(p[i] + " ");
else
out.println(-1);
out.close();
}
static class Node implements Comparable<Node> {
int next;
long dist;
public Node(int u, int v) {
this.next = u;
this.dist = v;
}
public void print() {
out.println(next + " " + dist + " ");
}
public int compareTo(Node n) {
return Integer.compare(-this.next, -n.next);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.Scanner;
public class A {
public static void main(String args[]) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if (n % 4 <= 1) {
int arr[] = new int[n + 1];
int c = n / 4, i = 1;
while (i <= c) {
arr[2 * i - 1] = 2 * i;
arr[2 * i] = n - (i * 2 - 2);
arr[n - (i * 2 - 2)] = n - (i * 2 - 1);
arr[n - (i * 2 - 1)] = i * 2 - 1;
i++;
}
if (n % 4 == 1)
arr[n / 2 + 1] = n / 2 + 1;
i = 1;
while (i != n)
System.out.print(arr[i++] + " ");
System.out.println(arr[i]);
}
else System.out.println(-1);
s.close();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int n;
int p[100010];
bool used[100010];
int main() {
scanf("%d", &n);
memset(p, 0, sizeof(p));
memset(used, false, sizeof(used));
if (n == 1) {
printf("1\n");
return 0;
}
if (n % 2 == 0) {
if (n % 4 != 0) {
printf("-1\n");
return 0;
}
} else {
if ((n - 1) % 4 != 0) {
printf("-1\n");
return 0;
}
}
if (n % 2 != 0) {
p[n / 2 + 1] = n / 2 + 1;
used[n / 2 + 1] = true;
}
for (int i = 1; i <= n / 2; i++) {
if (!p[i]) {
int num = 1;
while (used[num] || num == i) num++;
p[i] = num;
used[num] = true;
p[num] = n + 1 - i;
used[n + 1 - i] = true;
p[n + 1 - i] = n + 1 - num;
used[n + 1 - num] = true;
p[n + 1 - num] = i;
used[i] = true;
}
}
for (int i = 1; i <= n; i++) printf("%d ", p[i]);
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.TreeSet;
/**
*
*
* @author pttrung
*/
public class C {
// public static long x, y, gcd;
// public static int Mod = 1000000007;
public static PrintWriter out;
public static void main(String[] args) throws FileNotFoundException {
Scanner in = new Scanner();
out = new PrintWriter(System.out);
// System.out.println(Integer.MAX_VALUE);
// PrintWriter out = new PrintWriter(new FileOutputStream(new File("output.txt")));
int n = in.nextInt();
int[] result = new int[n];
result[0] = 1;
int last = 0;
boolean[] check = new boolean[n];
check[0] = true;
TreeSet<Integer> set = new TreeSet();
for (int i = 1; i < n; i++) {
set.add(i);
}
if (n % 2 != 0) {
result[n / 2] = n / 2;
check[n / 2] = true;
set.remove(n / 2);
}
boolean found = true;
a:
while (true) {
result[result[last]] = n - last - 1;
check[result[last]] = true;
set.remove(result[last]);
last = result[last];
//System.out.println(last);
if (check[result[last]]) {
if (result[result[last]] != n - last - 1) {
found = false;
break;
}
if (set.size() > 2) {
int i = set.pollFirst();
int j = set.first();
result[i] = j;
last = i;
check[i] = true;
continue a;
}
break;
}
}
for (int i = 0; i < n; i++) {
if (result[result[i]] != n - i - 1) {
found = false;
}
}
if (found) {
for (int i = 0; i < n; i++) {
out.print((result[i] + 1) + " ");
}
} else {
out.println(-1);
}
out.close();
}
public static int cross(Point a, Point b) {
int val = a.x * b.y - a.y * b.x;
return val;
}
public static long pow(long a, long b) {
if (b == 0) {
return 1;
}
if (b == 1) {
return a;
}
long val = pow(a, b / 2);
if (b % 2 == 0) {
return val * val;
} else {
return val * val * a;
}
}
public static int gcd(int a, int b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
public static class Point implements Comparable<Point> {
int x, y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(Point o) {
if (x != o.x) {
return x - o.x;
} else {
return y - o.y;
}
}
}
// public static void extendEuclid(long a, long b) {
// if (b == 0) {
// x = 1;
// y = 0;
// gcd = a;
// return;
// }
// extendEuclid(b, a % b);
// long x1 = y;
// long y1 = x - (a / b) * y;
// x = x1;
// y = y1;
//
// }
public static class FT {
int[] data;
FT(int n) {
data = new int[n];
}
public void update(int index, int value) {
while (index < data.length) {
data[index] += value;
index += (index & (-index));
}
}
public int get(int index) {
int result = 0;
while (index > 0) {
result += data[index];
index -= (index & (-index));
}
return result;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() throws FileNotFoundException {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
// br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt"))));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
#pragma comment(linker, "/STACK:16777216")
using namespace std;
const int MAXN = 100005;
int n, a[MAXN];
void Inp() { scanf("%d", &n); }
void Outp() {}
void Run() {
if (n % 4 == 2 || n % 4 == 3) {
printf("-1");
exit(0);
}
for (int i = 0; i < n / 4; ++i) {
a[i * 2] = i * 2 + 1;
a[i * 2 + 1] = n - i * 2 - 1;
a[n - i * 2 - 1] = n - i * 2 - 2;
a[n - i * 2 - 2] = i * 2;
}
if (n % 4 == 1) a[n / 2] = n / 2;
if (n % 4 == 3) {
a[n / 2] = n / 2;
a[n / 2 - 1] = n / 2 + 1;
a[n / 2 + 1] = n / 2 - 1;
}
for (int i = 0; i < n; ++i) printf("%d ", a[i] + 1);
}
int main() {
Inp();
Run();
Outp();
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.Scanner;
public class LuckyPermutation {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int num = s.nextInt();
int[]array = new int[num];
if(num ==1){
System.out.println(1);
}else{
if (num% 4== 2 || num%4 == 3 ){
System.out.println(-1);
}else {
for (int i = 0; i < num/2; i++)
if (i % 2 == 0) {
array[i] = i + 2;
array[num - (i + 2)] = (i + 1);
} else {
array[i] = num - (i - 1);
array[num - (i)] = num - i;
}
if(num%4 == 1 || num % 4 == 3){
array[num/2]=num/2+1;
}
for (int i = 0; i < num; i++) {
System.out.print(array[i] + " ");
}
}
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
while (scanf("%d", &n) == 1) {
if ((n / 2) & 1)
printf("-1\n");
else {
if (n & 1) {
int t = n;
for (int i = 1; i <= n; i++) {
if (i == n / 2 + 1) {
printf("%d", i);
t -= 2;
} else {
if (i & 1 && i < n / 2)
printf("%d", i + 1);
else if (i & 1 && i > n / 2)
printf("%d", i - 1);
else {
printf("%d", t);
t -= 2;
}
}
if (i != n) printf(" ");
}
} else {
int t = n;
for (int i = 1; i <= n / 2; i++) {
if (i & 1)
printf("%d", i + 1);
else {
printf("%d", t);
t -= 2;
}
printf(" ");
}
t--;
for (int i = n / 2 + 1; i <= n; i++) {
if (i & 1) {
printf("%d", t);
t -= 2;
} else
printf("%d", i - 1);
if (i != n) printf(" ");
}
}
printf("\n");
}
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n % 4 == 2 || n % 4 == 3) {
printf("-1\n");
continue;
}
for (int i = 0; i < n; ++i) {
if (i) printf(" ");
if (n % 2) {
if (i == (n - 1) / 2)
printf("%d", (n + 1) / 2);
else if (i < (n - 1) / 2)
printf("%d", i % 2 ? n + 1 - i : i + 2);
else {
int j = n - 1 - i;
printf("%d", n + 1 - (j % 2 ? n + 1 - j : j + 2));
}
} else {
if (i < n / 2)
printf("%d", i % 2 ? n + 1 - i : i + 2);
else {
int j = n - 1 - i;
printf("%d", n + 1 - (j % 2 ? n + 1 - j : j + 2));
}
}
}
printf("\n");
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
long long n, p[5000000], i;
int main() {
cin >> n;
if (n % 4 >= 2) {
cout << -1 << endl;
return 0;
}
for (i = 1; i <= n / 2; i += 2) {
p[i] = i + 1;
p[i + 1] = n - i + 1;
p[n - i + 1] = n - i;
p[n - i] = i;
}
if (n % 2) p[n / 2 + n % 2] = n / 2 + n % 2;
for (i = 1; i <= n; i++) cout << p[i] << " ";
cout << endl;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.*;
import java.util.*;
public class Template implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException {
try {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} catch (Exception e) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
}
class GraphBuilder {
int n, m;
int[] x, y;
int index;
int[] size;
GraphBuilder(int n, int m) {
this.n = n;
this.m = m;
x = new int[m];
y = new int[m];
size = new int[n];
}
void add(int u, int v) {
x[index] = u;
y[index] = v;
size[u]++;
size[v]++;
index++;
}
int[][] build() {
int[][] graph = new int[n][];
for (int i = 0; i < n; i++) {
graph[i] = new int[size[i]];
}
for (int i = index - 1; i >= 0; i--) {
int u = x[i];
int v = y[i];
graph[u][--size[u]] = v;
graph[v][--size[v]] = u;
}
return graph;
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException {
int[] res = new int[size];
for (int i = 0; i < size; i++) {
res[i] = readInt();
}
return res;
}
long[] readLongArray(int size) throws IOException {
long[] res = new long[size];
for (int i = 0; i < size; i++) {
res[i] = readLong();
}
return res;
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
<T> List<T>[] createGraphList(int size) {
List<T>[] list = new List[size];
for (int i = 0; i < size; i++) {
list[i] = new ArrayList<>();
}
return list;
}
public static void main(String[] args) {
new Template().run();
// new Thread(null, new Template(), "", 1l * 200 * 1024 * 1024).start();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
long memoryTotal, memoryFree;
void memory() {
memoryFree = Runtime.getRuntime().freeMemory();
System.err.println("Memory = " + ((memoryTotal - memoryFree) >> 10)
+ " KB");
}
public void run() {
try {
timeBegin = System.currentTimeMillis();
memoryTotal = Runtime.getRuntime().freeMemory();
init();
solve();
out.close();
if (System.getProperty("ONLINE_JUDGE") == null) {
time();
memory();
}
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
void brut(int[] a, int pos) {
if (a.length == pos) {
for (int i = 0; i < a.length; i++) {
if (a[a[i]] != a.length - 1 - i) return;
}
System.err.println(Arrays.toString(a));
return;
}
for (int i = pos; i < a.length; i++) {
int t = a[i];
a[i] = a[pos];
a[pos] = t;
brut(a, pos + 1);
t = a[i];
a[i] = a[pos];
a[pos] = t;
}
}
void solve() throws IOException {
// int n = 9;
// int[] a = new int[n];
// for (int i = 0; i < n; i++) a[i] = i;
// brut(a, 0);
int n = readInt();
if (n == 1) {
out.println(1);
return;
}
if (n % 4 <= 1) {
int[] res = new int[n];
if (n % 4 == 1) {
res[n / 2] = (n + 1) / 2;
}
int l = 0;
int r = n - 2;
boolean right = true;
int val = 1;
for (int i = 0; i < n / 2; i++) {
if (right) {
res[r] = val;
r -= 2;
} else {
res[l] = val;
l += 2;
}
right = !right;
val++;
}
l = 1;
r = n - 1;
val = n;
right = false;
for (int i = 0; i < n / 2; i++) {
if (right) {
res[r] = val;
r -= 2;
} else {
res[l] = val;
l += 2;
}
right = !right;
val--;
}
for (int x : res) {
out.print(x + " ");
}
return;
}
out.println(-1);
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int N = 100005;
int n;
int a[N];
int main() {
scanf("%d", &n);
if (n % 4 >= 2) {
printf("-1\n");
return 0;
}
for (int i = 1; i <= n / 2; i += 2) {
a[i] = i + 1, a[i + 1] = n - i + 1;
a[n - i + 1] = n - i, a[n - i] = i;
}
if (n % 4) a[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n; i++) printf("%d ", a[i]);
printf("\n");
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int res[100010];
int main() {
int n;
cin >> n;
if (n % 4 == 1) {
for (int i = 0; i < n / 2 - 1; i += 2) {
res[i] = i + 2;
res[i + 1] = n - i;
}
res[n / 2] = n / 2 + 1;
for (int i = n / 2 + 1; i < n - 1; i += 2) {
res[i] = n - i - 1;
res[i + 1] = i + 1;
}
for (int i = 0; i < n; i++) cout << res[i] << " ";
return 0;
}
if (n % 4 == 0) {
for (int i = 0; i < n / 2 - 1; i += 2) {
res[i] = i + 2;
res[i + 1] = n - i;
}
for (int i = n / 2; i < n - 1; i += 2) {
res[i] = n - i - 1;
res[i + 1] = i + 1;
}
for (int i = 0; i < n; i++) cout << res[i] << " ";
return 0;
} else
cout << -1;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class A implements Runnable {
private void solve() throws Exception {
int n = nextInt();
int[] res = solve(n);
// if (n < 20) {
// solvePerebor(n);
// }
if (res == null) {
System.out.println(-1);
} else {
for (int x : res) {
System.out.print(x + 1);
System.out.print(' ');
}
}
// [0]
// [1, 3, 0, 2]
// [1, 4, 2, 0, 3]
// [1, 7, 3, 5, 2, 4, 0, 6]
// [1, 8, 3, 6, 4, 2, 5, 0, 7]
// [1, 11, 3, 9, 5, 7, 4, 6, 2, 8, 0, 10]
// [1, 12, 3, 10, 5, 8, 6, 4, 7, 2, 9, 0, 11]
// for (int i = 1; i < 15; i++) {
// solvePerebor(i);
// }
}
private int[] solve(int n) {
int[] res = new int[n];
if (n <= 1) {
return res;
}
Arrays.fill(res, -1);
res[0] = 1;
res[1] = n - 1;
for (int i = 2; i < n / 2; i += 2) {
res[i] = res[i - 2] + 2;
res[i + 1] = res[i - 1] - 2;
}
res[n - 1] = n - 2;
res[n - 2] = 0;
for (int i = n - 3; i > n / 2; i -= 2) {
res[i] = res[i + 2] - 2;
res[i - 1] = res[i + 1] + 2;
}
SortedSet<Integer> avail = new TreeSet<>();
for (int i = 0; i < n; i++) {
avail.add(i);
}
for (int x : res) {
if (x >= 0 && !avail.contains(x)) {
return null;
}
avail.remove(x);
}
for (int i = 0; i < n; i++) {
if (res[i] < 0) {
res[i] = avail.first();
avail.remove(res[i]);
}
}
if (!good(res)) {
return null;
}
return res;
}
private void solvePerebor(int n) {
int[] p = new int[n];
int countP = 1;
for (int i = 0; i < n; i++) {
p[i] = i;
countP *= (i + 1);
}
for (int perm = 1; perm <= countP; perm++) {
if (good(p)) {
System.err.println(Arrays.toString(p));
}
if (perm < countP) {
nextPerm(p);
}
}
}
private void nextPerm(int[] p) {
int n = p.length;
int m = -1;
for (int i = n - 2; i >= 0; i--) {
if (p[i] < p[i + 1]) {
m = i;
break;
}
}
if (m < 0) {
System.err.println("Last one, n=" + n);
return;
}
int k = m + 1;
for (int i = m + 1; i < n; i++) {
if (p[i] < p[k] && p[i] > p[m]) {
k = i;
}
}
int tmp = p[k];
p[k] = p[m];
p[m] = tmp;
// swap m+1..n-1
for (int i = m + 1; i < n; i++) {
int j = n - i + m;
if (j <= i) {
break;
}
tmp = p[i];
p[i] = p[j];
p[j] = tmp;
}
}
private boolean good(int[] p) {
int n = p.length;
for (int i = 0; i < n; i++) {
if (p[p[i]] != n - i - 1) {
return false;
}
}
return true;
}
private BufferedReader in;
private StringTokenizer tokenizer = new StringTokenizer("");
private PrintWriter out;
private String nextToken() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
@Override
public void run() {
try (BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out))
{
this.in = in;
this.out = out;
solve();
} catch (Exception e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
new Thread(new A()).start();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.*;
import java.util.*;
public class CF_286A {
public static void main(String[] args) throws IOException {
new CF_286A().solve();
}
void solve() throws IOException{
InputStream in = System.in;
PrintStream out = System.out;
// in = new FileInputStream("in.txt");
// out = new PrintStream("out.txt");
Scanner sc=new Scanner(in);
int n=sc.nextInt();
if (n%4==2 || n%4==3) {
out.println(-1+"");
return;
}
int[] p=new int[n];
for (int i=0;i<n;i++)
p[i]=i+1;
for (int v=0;v+1<n/2;v+=2){
int a=p[v], b=p[v+1], c=p[n-1-v-1], d=p[n-1-v];
p[v]=b;
p[v+1]=d;
p[n-1-v-1]=a;
p[n-1-v]=c;
// System.out.println(Arrays.toString(p));
}
for (int val:p)
out.print(val+" ");
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const long maxn = 60000;
const long maxm = 15000000;
const long oo = 100000000;
const long mod = 1000000007;
const double le = 1e-10;
long i, j, k, n, m;
long a[1000000];
int main() {
scanf("%ld", &n);
if (n % 4 == 3 || n % 4 == 2) {
puts("-1");
return 0;
}
m = n >> 1;
if (n & 1) a[m + 1] = m + 1;
for (i = 1; i <= m; i += 2) {
a[i] = i + 1;
a[i + 1] = n - i + 1;
a[n - i + 1] = n - i;
a[n - i] = i;
}
for (i = 1; i <= n; ++i) {
printf("%ld ", a[i]);
}
puts("");
;
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, tam;
cin >> n;
vector<int> v;
if (((n % 4) == 2) || ((n % 4) == 3)) {
cout << -1 << endl;
return 0;
} else if (n % 4 == 0) {
tam = (int)v.size();
v.push_back(2);
v.push_back(4);
v.push_back(1);
v.push_back(3);
int cnt = n / 4, c = 4;
cnt--;
for (int i = 0; i < cnt; i++) {
v.insert(v.begin(), c + 4);
v.insert(v.begin(), 2);
v.insert(v.end(), 1);
v.insert(v.end(), c + 3);
c += 4;
}
for (int i = 0; i < cnt * 2 + 2; i++) {
v[i] = v[i] + 2 * (i / 2);
}
for (int i = cnt * 2 + 2; i < (int)v.size(); i++) {
v[i] = v[i] + 2 * (((int)v.size() - 1 - i) / 2);
}
} else {
v.push_back(1);
int cnt = (n - 1) / 4, c = 1;
for (int i = 0; i < cnt; i++) {
v.insert(v.begin(), c + 4);
v.insert(v.begin(), 2);
v.insert(v.end(), 1);
v.insert(v.end(), c + 3);
c += 4;
}
for (int i = 0; i < cnt * 2 + 1; i++) {
v[i] = v[i] + 2 * (i / 2);
}
for (int i = cnt * 2 + 1; i < (int)v.size(); i++) {
v[i] = v[i] + 2 * (((int)v.size() - 1 - i) / 2);
}
}
for (int i = 0; i < (int)v.size(); i++)
cout << v[i] << char(i + 1 == (int)v.size() ? 10 : 32);
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int mx = 1e5 + 10;
int p[mx];
int main() {
int n;
cin >> n;
if (n % 4 > 1) {
puts("-1");
return 0;
}
int l = 1, r = n;
while (l < r) {
p[l] = l + 1;
p[l + 1] = r;
p[r] = r - 1;
p[r - 1] = l;
l += 2;
r -= 2;
}
if (l == r) p[l] = l;
for (int i = 1; i <= n; i++) printf("%d ", p[i]);
puts("");
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.BufferedReader;
import java.io.Closeable;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class LuckyPermutation implements Closeable {
private InputReader in = new InputReader(System.in);
private PrintWriter out = new PrintWriter(System.out);
public void solve() {
int n = in.ni();
if (n == 1) {
out.println(1);
return;
}
if (n % 4 >= 2) {
out.println(-1);
return;
}
int[] result = new int[n + 1];
if (n % 2 == 1) result[(n + 1) / 2] = (n + 1) / 2;
for (int idx = 1; idx < n / 2; idx += 2) {
int value = idx + 1;
int i = idx;
for (int j = 0; j < 4; j++) {
result[i] = value;
int next = n - i + 1;
i = value;
value = next;
}
}
for (int i = 1; i <= n; i++) {
out.print(result[i]);
out.print(' ');
}
}
@Override
public void close() throws IOException {
in.close();
out.close();
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int ni() {
return Integer.parseInt(next());
}
public long nl() {
return Long.parseLong(next());
}
public void close() throws IOException {
reader.close();
}
}
public static void main(String[] args) throws IOException {
try (LuckyPermutation instance = new LuckyPermutation()) {
instance.solve();
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.*; //Scanner;
import java.io.PrintWriter; //PrintWriter
public class R176_Div2_C //Name: Lucky Permutation
{
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
solve(in, out);
out.close();
in.close();
}
public static void solve(Scanner in, PrintWriter out)
{
int n = in.nextInt();
if (n % 4 == 2 || n % 4 == 3)
out.println(-1);
else if (n == 1)
out.println(1);
else
{
int[] p = new int[n + 1];
p[1] = 2;
p[2] = n;
p[n - 1] = 1;
p[n] = n - 1;
int it = n / 4 - 1;
for (int i = 1; i <= it; i++)
{
p[1 + 2*i] = p[1 + 2*(i-1)] + 2;
p[2 + 2*i] = p[2 + 2*(i-1)] - 2;
p[n-1 - 2*i] = p[n-1 - 2*(i-1)] + 2;
p[n - 2*i] = p[n - 2*(i-1)] - 2;
}
if (n % 4 == 1)
p[n / 2 + 1] = n / 2 + 1;
StringBuilder sb = new StringBuilder();
for (int i = 1; i <= n; i++)
sb.append(p[i] + " ");
out.println(sb);
}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int ans[200000], was[200000];
int link[200000];
int main() {
int n;
scanf("%d", &n);
if (n % 2 == 1) {
ans[n / 2 + 1] = n / 2 + 1;
was[n / 2 + 1] = 1;
}
for (int i = 1; i <= n; i++) link[i] = n - i + 1;
int x = 1;
for (int i = 1; i <= n; i++) {
if (ans[i]) continue;
while (was[x] || x == i) x = x % n + 1;
int lin = x, pos = i;
while (ans[pos] == 0) {
ans[pos] = lin;
was[lin] = 1;
lin = pos;
pos = n - ans[pos] + 1;
}
}
bool f = true;
for (int i = 1; i <= n; i++) f = f && (link[i] == ans[ans[i]]);
if (f == false) {
printf("-1");
return 0;
}
for (int i = 1; i <= n; i++) printf("%d ", ans[i]);
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
bool good(vector<int> p) {
for (int i = 0; i < p.size(); ++i)
if (p[p[i]] != p.size() - i - 1) return false;
return true;
}
void print(vector<int> p) {
for (int i = 0; i < p.size(); ++i) cout << p[i] + 1 << " ";
cout << endl;
}
void solve() {
int n;
cin >> n;
if (n % 4 >= 2) {
cout << -1;
return;
}
vector<int> ans(n, n / 2);
int hi = n - 1;
int lo = 0;
for (int l = 0, r = 1, x = n - 2, y = n - 1; r < x;
x -= 2, y -= 2, l += 2, r += 2) {
ans[l] = lo + 1;
ans[r] = hi;
ans[x] = lo;
ans[y] = hi - 1;
hi -= 2;
lo += 2;
}
print(ans);
}
int main() {
ios_base::sync_with_stdio(false);
solve();
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int n, i, j, p[100011];
set<int> a;
set<int>::iterator b;
int main() {
scanf("%d", &n);
if (n == 1) {
printf("1\n");
return 0;
}
if (n % 4 == 2 || n % 4 == 3) {
printf("-1\n");
return 0;
}
for (i = 1; i <= n; ++i) a.insert(i);
for (j = 1; j <= n; ++j)
if (p[j] == 0) {
for (b = a.begin();; ++b)
if (*b != j || *b == j && n - j + 1 == j) break;
p[j] = *b;
a.erase(p[j]);
for (i = j; p[p[i]] == 0; i = p[i])
p[p[i]] = n - i + 1, a.erase(n - i + 1);
}
for (i = 1; i < n; ++i) printf("%d ", p[i]);
printf("%d\n", p[i]);
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import sys
from collections import deque
n = int(input())
if n % 4 == 2 or n % 4 == 3:
print('-1')
sys.exit()
arr = [None] * (n + 1)
qt = deque([i for i in range(1, n + 1)])
mark = set()
while qt:
while qt and qt[0] in mark:
qt.popleft()
if not qt:
break
a = qt.popleft()
while qt and qt[0] in mark:
qt.popleft()
if not qt:
break
b = qt.popleft()
for i in range(4):
mark.add(a)
mark.add(b)
arr[a] = b
arr[b] = n - a + 1
a = b
b = arr[b]
for i in range(1, n + 1):
if not arr[i]:
arr[i] = a
break
print(' '.join(map(str, arr[1:])))
|
PYTHON3
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.*;
import java.io.*;
import java.math.*;
public class Main
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
public int[] arr(int n){int[] ret = new int[n];for (int i = 0; i < n; i++) {ret[i] = i();}return ret;}
}
// |----| /\ | | ----- |
// | / / \ | | | |
// |--/ /----\ |----| | |
// | \ / \ | | | |
// | \ / \ | | ----- -------
static class PriorityComparator implements Comparator<ArrayList<Integer>>
{
public int compare(ArrayList<Integer> al1,ArrayList<Integer> al2)
{
for(int i=0;i<al1.size();i++)
if(al1.get(i)>al2.get(i))return 1;
else if((al1.get(i)<al2.get(i)))return -1;
return 0;
}
}
public static void func(int n)
{
Integer arr[]=new Integer[n];
for(int i=0;i<n;i++)
arr[i]=i+1;
int counter=0;
TreeSet<ArrayList<Integer>> hs=new TreeSet<>(new PriorityComparator());
while(counter++!=10000000)
{
Collections.shuffle(Arrays.asList(arr));
int flag=0;
for(int i=0;i<n;i++)
{
int a=arr[i]-1;
if(arr[a]!=n-i)
{
flag=1;
break;
}
}
if(flag==0)
{
ArrayList<Integer> al=new ArrayList<>();
for(int i=0;i<n;i++)
al.add(arr[i]);
hs.add(al);
}
}
System.out.println();
for(ArrayList<Integer> al:hs)
{
for(int i=0;i<al.size();i++)
System.out.print(al.get(i)+" ");
System.out.println();
}
}
public static void main(String[] args)throws IOException
{
Reader sc=new Reader();
PrintWriter out=new PrintWriter(System.out);
int n=sc.i();
//func(n);
if(n==1)
out.println(1);
else if(n%4>1)
System.out.println(-1);
else if(n%4==0)
{
int arr[]=new int[n];
int start=2;
int end=n;
int pointer=0;
while(start<end)
{
arr[pointer]=start;
arr[pointer+1]=end;
pointer+=2;
start+=2;
end-=2;
}
start =1;
end =n-1;
pointer=n-2;
while(start<end)
{
arr[pointer]=start;
arr[pointer+1]=end;
pointer-=2;
start+=2;
end-=2;
}
for(int i=0;i<n;i++)
out.print(arr[i]+" ");
}
else if(n%4==1)
{
int arr[]=new int[n];
int start=2;
int end=n-1;
int pointer=0;
while(start<end)
{
arr[pointer]=start;
arr[n-pointer-1]=end;
pointer+=2;
start+=2;
end-=2;
}
start =n;
end =1;
pointer=1;
while(start>end)
{
arr[pointer]=start;
arr[n-pointer-1]=end;
pointer+=2;
start-=2;
end+=2;
}
arr[n/2]=n/2+1;
for(int i=0;i<n;i++)
out.print(arr[i]+" ");
}
out.flush();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
int n, i, a[100005], t1, t2;
int main() {
scanf("%d", &n);
if (n % 4 > 1) {
printf("-1\n");
return 0;
};
t1 = n - 1;
t2 = -1;
while (t1 > (n + 1) / 2) {
a[t1] = (t2 += 2);
t1 -= 2;
};
if (n % 4 == 1) {
a[(n + 1) / 2] = (n + 1) / 2;
t2++;
};
for (t1 = (n + 1) / 2 + 2; t1 <= n; t1 += 2) a[t1] = (t2 += 2);
for (i = 1; i <= n / 2; i++) a[i] = n + 1 - a[n - i + 1];
for (i = 1; i <= n; i++) printf("%d ", a[i]);
printf("\n");
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
template <class F, class T>
T convert(F a, int p = -1) {
stringstream ss;
if (p >= 0) ss << fixed << setprecision(p);
ss << a;
T r;
ss >> r;
return r;
}
template <class T>
T gcd(T a, T b) {
T r;
while (b != 0) {
r = a % b;
a = b;
b = r;
}
return a;
}
template <class T>
T lcm(T a, T b) {
return a / gcd(a, b) * b;
}
template <class T>
T sqr(T x) {
return x * x;
}
template <class T>
T cube(T x) {
return x * x * x;
}
template <class T>
int getbit(T s, int i) {
return (s >> i) & 1;
}
template <class T>
T onbit(T s, int i) {
return s | (T(1) << i);
}
template <class T>
T offbit(T s, int i) {
return s & (~(T(1) << i));
}
template <class T>
int cntbit(T s) {
return s == 0 ? 0 : cntbit(s >> 1) + (s & 1);
}
const long double PI = acos(-1.0);
const long double eps = 1e-9;
const int dr[] = {-1, 0, +1, 0};
const int dc[] = {0, +1, 0, -1};
const int inf = (int)1e9 + 5;
const long long linf = (long long)1e16 + 5;
const long long mod = (long long)1e9 + 7;
const int maxn = 10005;
int a[100005];
int main() {
std::ios::sync_with_stdio(false);
int n;
cin >> n;
if (n % 4 == 2 || n % 4 == 3) {
cout << -1 << "\n";
return 0;
}
if (n % 4 == 1) a[(n + 1) / 2] = (n + 1) / 2;
for (int i = 1; i < n / 2; i += 2) {
a[i] = i + 1;
a[i + 1] = n - i + 1;
a[n - i + 1] = n - i;
a[n - i] = i;
}
for (int i = (1); i <= (n); ++i) cout << a[i] << " ";
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#!/usr/bin/env python
# coding=utf-8
n = input()
if n % 4 == 2 or n % 4 == 3:
print -1
exit(0)
ans = [0 for i in xrange(n)]
cnt = 0
if n % 2 == 1:
ans[(n - 1) / 2] = (n + 1) / 2
cnt += 1
p = 1
q = n
while cnt < n:
tmpp = p + 2
tmpq = q - 2
ans[p - 1] = p + 1
ans[p] = q
ans[q - 2] = p
ans[q - 1] = q - 1
cnt += 4
p = tmpp
q = tmpq
for i in xrange(n):
print ans[i]
|
PYTHON
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int N = 100500;
int A[N];
int main() {
int n;
scanf("%d", &n);
if (n % 4 == 2 || n % 4 == 3) {
printf("-1\n");
return 0;
}
for (int i = 0; i < n; i++) A[i] = i;
for (int i = 0; i < n / 2; i += 2) {
A[i] = i + 1;
A[i + 1] = n - i - 1;
A[n - i - 1] = n - i - 2;
A[n - i - 2] = i;
}
for (int i = 0; i < n; i++) printf("%d%c", A[i] + 1, " \n"[i == n - 1]);
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n == 1) {
cout << "1" << endl;
return 0;
}
if (((n / 2) * 2) % 4 == 0) {
int p[n];
int temp;
if (n % 2 != 0) p[n / 2] = (n + 1) / 2;
for (int i = 0; i < n / 4; i++) {
temp = i + n / 2 + (n % 2 != 0 ? 2 : 1);
p[i] = temp;
temp = n - i;
p[p[i] - 1] = temp;
temp -= (n / 2 + (n % 2 != 0 ? 1 : 0));
p[p[p[i] - 1] - 1] = temp;
p[temp - 1] = (i + 1);
}
for (int i = 0; i < n; i++) cout << p[i] << " ";
} else {
cout << "-1" << endl;
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
const int maxn = 110000;
int a[maxn];
int n;
int main() {
scanf("%d", &n);
if (n % 4 == 2 || n % 4 == 3) {
printf("-1\n");
return 0;
}
for (int i = 1; i <= n / 4; i++) {
a[2 * i - 1] = 2 * i;
a[2 * i] = n - 2 * i + 2;
a[n - 2 * i + 2] = n - 2 * i + 1;
a[n - 2 * i + 1] = 2 * i - 1;
}
if (n & 1) a[(n + 1) / 2] = (n + 1) / 2;
for (int i = 1; i < n; i++) printf("%d ", a[i]);
printf("%d\n", a[n]);
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
const long long INF = 2009000999;
const float cp = 2 * acos(0.0);
const float eps = 1e-18;
using namespace std;
int main() {
long long n, p[1010000];
cin >> n;
if (n % 4 == 2 || n % 4 == 3) {
puts("-1");
return 0;
}
if (n % 4 == 0) {
for (int i = 1; i <= n / 2; i++) {
if (i % 2 == 1)
p[i] = i + 1, p[n + 1 - i] = n - i;
else
p[i] = n + 2 - i, p[n + 1 - i] = i - 1;
}
for (int(i) = (1); (i) <= (n); i++) cout << p[i] << ' ';
} else {
for (int(i) = (1); (i) <= (n / 2); i++) {
if (i % 2 == 1)
p[i] = i + 1, p[n + 1 - i] = n - i;
else
p[i] = n + 2 - i, p[n + 1 - i] = i - 1;
}
p[n / 2 + 1] = n / 2 + 1;
for (int(i) = (1); (i) <= (n); i++) cout << p[i] << ' ';
}
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
n=input()
a=[0]*(n+1)
b=[0]*(n+1)
if n==1:
print 1
elif n>3 and (n%4==0 or (n-1)%4==0):
if n%2==1:
a[(n+1)/2]=(n+1)/2
b[(n+1)/2]=(n+1)/2
j=1
while j<n/2:
a[j]=j+1
k=j+1
pre=j
while a[k]!=j:
a[k]=n+1-pre
pre=k
k=a[k]
j+=2
for i in range(1,n+1):
print a[i],
else:
print -1
|
PYTHON
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int ans[100000];
int main() {
int n;
scanf("%d", &n);
if (n / 2 % 2)
puts("-1");
else {
bool flag = 0;
if (n & 1) {
--n;
flag = 1;
}
for (int i = 0; i < n / 2; i += 2) ans[i] = i + 2;
for (int i = n / 2; i < n; i += 2) ans[i] = n - i - 1;
for (int i = 1; i < n / 2; i += 2) ans[i] = n + 2 - ans[i - 1];
for (int i = n / 2 + 1; i < n; i += 2) ans[i] = n - ans[i - 1];
for (int i = 0; i < n / 2; ++i)
printf("%d ", ans[i] + (ans[i] > n / 2 && flag));
if (flag) printf("%d ", n / 2 + 1);
for (int i = n / 2; i < n; ++i)
printf("%d ", ans[i] + (ans[i] > n / 2 && flag));
puts("");
if (flag) ++n;
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import static java.lang.Math.*;
import static java.math.BigInteger.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
import java.io.*;
public class A {
final static boolean autoflush = false;
public A () {
int N = sc.nextInt();
sc = null;
int [] res = new int [N];
switch(N%4) {
case 1:
int m = (N-1)/2;
res[m] = m;
case 0:
for (int i : rep(N/4)) {
int a = 2*i, b = a+1;
res[a] = b;
res[b] = N-1-a;
res[N-1-a] = N-1-b;
res[N-1-b] = a;
}
for (int i : rep(N))
++res[i];
exit(res);
default:
exit(-1);
}
}
////////////////////////////////////////////////////////////////////////////////////
static int [] rep(int N) { return rep(0, N); }
static int [] rep(int S, int T) { int [] res = new int [max(T-S, 0)]; for (int i = S; i < T; ++i) res[i-S] = i; return res; }
static int [] req(int S, int T) { return rep(S, T+1); }
////////////////////////////////////////////////////////////////////////////////////
/* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */
static MyScanner sc = new MyScanner();
static class MyScanner {
public String next() {
readToken();
return new String(b, T[0], T[1] - T[0]);
}
public char nextChar() {
readToken();
return (char)b[T[0]];
}
public int nextInt() {
return (int)nextLong();
}
public long nextLong() {
readToken();
return calc(T[0], T[1]);
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
readLine();
return new String(b, T[0], T[1] - T[0]);
}
public String [] next(int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = next();
return res;
}
public Integer [] nextInt(int N) {
Integer [] res = new Integer [N];
for (int i = 0; i < N; ++i)
res[i] = nextInt();
return res;
}
public Long [] nextLong(int N) {
Long [] res = new Long [N];
for (int i = 0; i < N; ++i)
res[i] = nextLong();
return res;
}
public Double [] nextDouble(int N) {
Double [] res = new Double [N];
for (int i = 0; i < N; ++i)
res[i] = nextDouble();
return res;
}
public String [] nextLine(int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = nextLine();
return res;
}
public String [] nextStrings() {
readLine();
int s = T[0], c = 0;
String [] res = new String[count(T[0], T[1])];
for (int i = T[0]; i < T[1]; ++i)
if (b[i] == SPACE) {
res[c++] = new String(b, s, i - s);
s = i+1;
}
res[c] = new String (b, s, T[1] - s);
return res;
}
public char [] nextChars() {
readToken();
int c = 0;
char [] res = new char[T[1] - T[0]];
for (int i = T[0]; i < T[1]; ++i)
res[c++] = (char)b[i];
return res;
}
public Integer [] nextInts() {
readLine();
int s = T[0], c = 0;
Integer [] res = new Integer[count(T[0], T[1])];
for (int i = T[0]; i < T[1]; ++i)
if (b[i] == SPACE) {
res[c++] = (int)calc(s, i);
s = i+1;
}
res[c] = (int)calc(s, T[1]);
return res;
}
public Long [] nextLongs() {
readLine();
int s = T[0], c = 0;
Long [] res = new Long[count(T[0], T[1])];
for (int i = T[0]; i < T[1]; ++i)
if (b[i] == SPACE) {
res[c++] = calc(s, i);
s = i+1;
}
res[c] = calc(s, T[1]);
return res;
}
public Double [] nextDoubles() {
readLine();
int s = T[0], c = 0;
Double [] res = new Double[count(T[0], T[1])];
for (int i = T[0]; i < T[1]; ++i)
if (b[i] == SPACE) {
res[c++] = Double.parseDouble(new String(b, s, i - s));
s = i+1;
}
res[c] = Double.parseDouble(new String(b, s, T[1] - s));
return res;
}
String [][] nextStrings(int N) {
String [][] res = new String [N][];
for (int i = 0; i < N; ++i)
res[i] = nextStrings();
return res;
}
char [][] nextChars(int N) {
char [][] res = new char [N][];
for (int i = 0; i < N; ++i)
res[i] = nextChars();
return res;
}
Integer [][] nextInts(int N) {
Integer [][] res = new Integer [N][];
for (int i = 0; i < N; ++i)
res[i] = nextInts();
return res;
}
Long [][] nextLongs(int N) {
Long [][] res = new Long [N][];
for (int i = 0; i < N; ++i)
res[i] = nextLongs();
return res;
}
Double [][] nextDoubles(int N) {
Double [][] res = new Double [N][];
for (int i = 0; i < N; ++i)
res[i] = nextDoubles();
return res;
}
//////////////////////////////////////////////
private final static int MAX_SZ = (int)5e7;
private final byte [] b = new byte[MAX_SZ];
private final int [] T = new int [2];
private int cur = 0;
MyScanner () {
try {
InputStream is = new BufferedInputStream(System.in);
while (is.available() == 0)
Thread.sleep(1);
start();
int off = 0, c;
while ((c = is.read(b, off, MAX_SZ - off)) != -1)
off += c;
} catch (Exception e) {
throw new Error(e);
}
}
private void readLine() {
int c;
for (c = cur; b[c] != LF && b[c] != CR && b[c] != 0; ++c);
T[0] = cur; T[1] = c;
for (cur = c; b[cur] == LF || b[cur] == CR; ++cur);
}
private void readToken() {
int c;
for (c = cur; b[c] != SPACE && b[c] != LF && b[c] != CR && b[c] != 0; ++c);
T[0] = cur; T[1] = c;
for (cur = c; b[cur] == SPACE || b[cur] == LF || b[cur] == CR; ++cur);
}
private int count(int s, int e) {
int cnt = 1;
for (int i = s; i < e; ++i)
if (b[i] == SPACE)
++cnt;
return cnt;
}
private long calc(int s, int e) {
long res = 0, f = 1;
for (int i = s; i < e; ++i)
if (b[i] == '-')
f = -1;
else
res = 10 * res + b[i] - '0';
return res * f;
}
private static final char LF = '\n';
private static final char CR = '\r';
private static final char SPACE = ' ';
}
static void print (Object o, Object... a) {
printDelim(" ", o, a);
}
static void cprint (Object o, Object... a) {
printDelim("", o, a);
}
static void printDelim (String delim, Object o, Object... a) {
pw.println(build(delim, o, a));
}
static void exit (Object o, Object... a) {
print(o, a);
exit();
}
static void exit() {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
static void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build (String delim, Object o, Object... a) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : a)
append(b, p, delim);
return b.toString().trim();
}
static void append(StringBuilder b, Object o, String delim) {
if (o.getClass().isArray()) {
int L = java.lang.reflect.Array.getLength(o);
for (int i : rep(L))
append(b, java.lang.reflect.Array.get(o, i), delim);
} else if (o instanceof Iterable<?>)
for (Object p : (Iterable<?>)o)
append(b, p, delim);
else
b.append(delim).append(o);
}
////////////////////////////////////////////////////////////////////////////////////
static void statics() {
abs(0);
valueOf(0);
asList(new Object [0]);
reverseOrder();
}
public static void main (String[] args) {
new A();
exit();
}
static void start() {
t = millis();
}
static java.io.PrintWriter pw = new java.io.PrintWriter(System.out, autoflush);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.util.Comparator;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Collection;
import java.util.List;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.StringTokenizer;
import java.math.BigInteger;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author AlexFetisov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
if (n == 1) {
out.println(1);
return;
}
if (n % 4 == 3 || n % 4 == 2) {
out.println(-1);
return;
}
int[] p = new int[n];
rec(p, 0, p.length-1, 1, p.length);
out.println(ArrayUtils.toString(p));
}
private void rec(int[] p, int le, int ri, int low, int high) {
if (le == ri) {
p[le] = low;
return;
}
if (le > ri) {
return;
}
p[le] = low + 1;
p[le + 1] = high;
p[ri] = high-1;
p[ri-1] = low;
rec(p, le + 2, ri - 2, low + 2, high - 2);
}
}
class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String nextString() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
class ArrayUtils {
public static String toString(int[] a) {
StringBuilder result = new StringBuilder("");
for (int x : a) result.append(x).append(' ');
return result.substring(0, result.length()-1);
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
bool used[123456];
int main() {
int n;
cin >> n;
vector<pair<int, int> > v1, v2;
vector<int> ans;
int a = 2, b = n;
while (a < b) {
used[a] = used[b] = 1;
v1.push_back(make_pair(a, b));
a += 2;
b -= 2;
}
a = 1, b = n - 1;
while (a < b) {
used[a] = used[b] = 1;
v2.push_back(make_pair(a, b));
a += 2;
b -= 2;
}
reverse(v2.begin(), v2.end());
for (int i = 0; i < (int)v1.size(); ++i) {
ans.push_back(v1[i].first);
ans.push_back(v1[i].second);
}
if (2 * (int)v1.size() + 2 * (int)v2.size() + 1 == n) {
for (int i = 0; i < n; ++i)
if (!used[i + 1]) {
ans.push_back(i + 1);
break;
}
}
for (int i = 0; i < (int)v2.size(); ++i) {
ans.push_back(v2[i].first);
ans.push_back(v2[i].second);
}
if ((int)ans.size() == n) {
for (int i = 0; i < (int)ans.size(); ++i) {
printf("%d%c", ans[i], " \n"[i == (int)ans.size() - 1]);
}
} else {
puts("-1");
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int a[100007];
int n;
int main() {
int i, j;
while (~scanf("%d", &n)) {
if (n % 4 == 2 || n % 4 == 3) {
printf("-1\n");
continue;
}
for (i = 1; i <= n / 2; i += 2) {
a[i] = i + 1;
a[i + 1] = n - i + 1;
a[n - i + 1] = n - i;
a[n - i] = i;
}
if (n & 1) {
a[n / 2 + 1] = n / 2 + 1;
}
for (i = 1; i < n; ++i) printf("%d ", a[i]);
printf("%d\n", a[i]);
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
const double PI = acos(-1.0);
using namespace std;
int p[100010];
int main() {
int n, i;
int a, b;
while (cin >> n) {
if (n % 4 == 0 || n % 4 == 1) {
for (i = 1; i <= n; i++) p[i] = i;
a = 1;
b = n;
for (i = 1; i < n / 2; i += 2) {
p[i] = a + 1;
p[i + 1] = b;
p[n - i] = a;
p[n - i + 1] = b - 1;
a += 2;
b -= 2;
}
for (i = 1; i <= n; i++) printf("%d ", p[i]);
puts("");
} else
puts("-1");
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws Throwable {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if(n==1) {
System.out.println(1);
return;
}
if((n%2==0 && (n/2)%2==1) || (n%2==1 && ((n-1)/2)%2==1))
{
System.out.println(-1);
return;
}
int[] a = new int[n+1];
for(int i = 1; i <= n;i++)
{
if(a[i]==0)
{
if(n%2==1 && i==n/2+1)
a[i] = i;
else
a[i] = i+1;
int idx = i;
while(a[a[idx]]==0)
{
a[a[idx]] = n-idx+1;
idx = a[idx];
}
}
}
StringBuilder sb = new StringBuilder();
for(int i = 1; i < a.length;i++)
sb.append(a[i]+" ");
System.out.println(sb);
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String file) throws FileNotFoundException {br = new BufferedReader(new FileReader(file));}
public String next() throws IOException {while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public int[] nexIntArray() throws Throwable {
st = new StringTokenizer(br.readLine());
int[] a = new int[st.countTokens()];
for (int i = 0; i < a.length; i++)a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {return br.ready();}
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int p[100000 + 11];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
if (n % 4 >= 2) {
cout << -1;
return 0;
}
if (n == 1) {
cout << 1;
return 0;
}
p[n - 1] = 1;
int fill = 1;
int prev = n - 1;
while (fill < n) {
if (p[p[prev]] and p[p[prev]] != n - prev + 1) {
cout << -1;
return 0;
}
if (p[p[prev]]) {
prev -= 3;
int num = 1;
while (p[num]) num++;
if (p[prev]) prev++;
p[prev] = num;
fill++;
continue;
}
p[p[prev]] = n - prev + 1;
prev = p[prev];
fill++;
}
for (int i = 1; i <= n; i++) {
cout << p[i] << ' ';
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int a[100010];
int n;
cin >> n;
if (n % 4 == 2 || n % 4 == 3) {
cout << "-1" << endl;
return 0;
}
if (n % 4 == 1) a[(n + 1) / 2] = (n + 1) / 2;
int i = 1;
int end = n;
while (i < end) {
a[i] = end - 1;
a[end - 1] = (n - i + 1);
a[(n - i + 1)] = n - (end - 1) + 1;
a[n - (end - 1) + 1] = n - (n - i + 1) + 1;
end -= 2;
i += 2;
}
for (int p = 1; p <= n; p++) cout << a[p] << " ";
cout << endl;
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, m;
scanf("%d", &n);
m = n;
int A[n];
if ((n - 2) % 4 == 0 || (n - 3) % 4 == 0) {
printf("-1\n");
return 0;
}
int i = 2;
int p = 0;
while (n > 0) {
if (n == 1) {
A[p] = p + 1;
n -= 1;
} else {
A[p] = i;
A[i - 1] = m - p;
A[m - p - 1] = m - i + 1;
A[m - i] = p + 1;
p += 2;
i += 2;
n -= 4;
}
}
for (int i = 0; i < m; i++) {
printf("%d ", A[i]);
}
printf("\n");
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
const int M = 1e5 + 5;
int main() {
ios_base::sync_with_stdio(false);
int n, i, p[N];
cin >> n;
if (n % 2 == 0) {
if (n % 4 != 0) {
cout << -1 << endl;
return 0;
} else {
int foo = n / 4;
for (i = 1; i <= 1 + 2 * (foo - 1); i += 2) {
p[i] = i + 1;
p[i + 1] = (n + 1) - i;
p[(n + 1) - i] = (n + 1) - (i + 1);
p[(n + 1) - i - 1] = (n + 1) - ((n + 1) - i);
}
for (i = 1; i <= n; i++) cout << p[i] << " ";
cout << endl;
}
} else {
if ((n - 1) % 4 != 0) {
cout << -1 << endl;
return 0;
} else {
n--;
int foo = n / 4;
for (i = 1; i <= 1 + 2 * (foo - 1); i += 2) {
p[i] = i + 1;
p[i + 1] = (n + 2) - i;
p[(n + 2) - i] = (n + 2) - (i + 1);
p[(n + 2) - i - 1] = (n + 2) - ((n + 2) - i);
}
p[(n / 2) + 1] = 1 + (n / 2);
for (i = 1; i <= n + 1; i++) cout << p[i] << " ";
cout << endl;
}
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int n;
int nums[100001];
int main() {
cin >> n;
if (n % 4 == 0 || n % 4 == 1) {
for (int i = 1; i <= n / 2; i += 2) {
nums[i] = i + 1;
nums[i + 1] = n - i + 1;
nums[n - i + 1] = n - i;
nums[n - i] = i;
}
if (n % 4 == 1) nums[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i < n; ++i) cout << nums[i] << ' ';
cout << nums[n] << endl;
} else
cout << -1 << endl;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n % 4 == 2 || n % 4 == 3) {
cout << -1;
return 0;
}
int ary[n + 1];
for (int i = 1; i <= n / 2; i += 2) {
ary[i] = i + 1;
ary[i + 1] = n - i + 1;
ary[n - i + 1] = n - i;
ary[n - i] = i;
}
if (n % 4 == 1) ary[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n; i++) cout << ary[i] << " ";
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int N = 200011;
const int MOD = 1e9 + 7;
long long int powmod(long long int a, long long int b) {
if (b == 0) return 1;
long long int x = powmod(a, b / 2);
long long int y = (x * x) % MOD;
if (b % 2) return (a * y) % MOD;
return y % MOD;
}
int main() {
int n;
scanf("%d", &n);
if (n == 1) {
printf("1\n");
return 0;
}
int a[n + 2];
if (n % 4 <= 1) {
if (n % 4) {
int mid = (n + 1) / 2, add = n - 2, sign = 1;
a[mid] = mid;
mid++;
a[mid] = 1;
for (int i = mid + 1; i <= n; i++) {
a[i] = a[i - 1] + add * sign;
add -= 2;
sign *= -1;
}
a[1] = n / 2, add = 3, sign = 1;
for (int i = 2; i <= n / 2; i++) {
a[i] = a[i - 1] + add * sign;
add += 2;
sign *= -1;
}
} else {
int mid = n / 2 + 1, add = n - 2, sign = 1;
a[mid] = 1;
for (int i = mid + 1; i <= n; i++) {
a[i] = a[i - 1] + add * sign;
add -= 2;
sign *= -1;
}
a[1] = n / 2, add = 2, sign = 1;
for (int i = 2; i <= n / 2; i++) {
a[i] = a[i - 1] + add * sign;
add += 2;
sign *= -1;
}
}
for (int i = 1; i <= n; i++) printf("%d ", a[i]);
printf("\n");
return 0;
}
printf("-1\n");
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int a[maxn];
int book[maxn];
set<int> num;
int main() {
int n, i;
cin >> n;
if (n == 1) return 0 * printf("1\n");
if (n % 4 > 1) return 0 * printf("-1\n");
for (i = 1; i <= n; i++) num.insert(i);
int m = n;
if (n & 1) {
a[n / 2 + 1] = n / 2 + 1;
book[n / 2 + 1] = 1;
num.erase(n / 2 + 1);
}
a[1] = 2;
a[2] = n;
a[n] = n - 1;
a[n - 1] = 1;
book[2] = 1;
book[1] = 1;
book[n] = 1;
book[n - 1] = 1;
num.erase(2);
num.erase(n);
num.erase(1);
num.erase(n - 1);
for (i = 1; i <= n; i++) {
if (book[i] == 0) {
int x;
x = i + 1;
a[i] = x;
a[x] = n - i + 1;
a[n - i + 1] = n - x + 1;
a[n - x + 1] = i;
num.erase(x);
num.erase(n - i + 1);
num.erase(n - x + 1);
num.erase(i);
book[i] = 1;
book[x] = 1;
book[n - x + 1] = 1;
book[n - i + 1] = 1;
}
}
printf("%d", a[1]);
for (i = 2; i <= n; i++) {
printf(" %d", a[i]);
}
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Solver {
BufferedReader br;
PrintWriter pw;
StringTokenizer stok;
public static void main(String[] args) throws NumberFormatException, IOException{
new Solver().Run();
}
public String nextToken() throws IOException{
while (stok==null || !stok.hasMoreTokens()){
stok=new StringTokenizer(br.readLine());
}
return stok.nextToken();
}
public int nextInt() throws NumberFormatException, IOException{
return Integer.parseInt(nextToken());
}
public long nextLong() throws NumberFormatException, IOException{
return Long.parseLong(nextToken());
}
public double nextDouble() throws NumberFormatException, IOException{
return Double.parseDouble(nextToken());
}
int n;
public void Run() throws NumberFormatException, IOException{
//br=new BufferedReader(new FileReader("input.txt")); pw=new PrintWriter("output.txt");
br=new BufferedReader(new InputStreamReader(System.in)); pw=new PrintWriter(new OutputStreamWriter(System.out));
n=nextInt();
if (n %4 ==0 || (n-1)%4==0){
int[] mas =new int[n];
int i=0;
int j=n-1;
while (i+1<j-1){
mas[i]=i+2;
mas[i+1]=j+1;
mas[j]=j;
mas[j-1]=i+1;
i+=2;
j-=2;
}
if (n%2!=0){
mas[n/2]=n/2+1;
}
for (i=0; i<n; i++){
pw.print(mas[i]);
pw.print(' ');
}
pw.println();
}
else {
pw.println(-1);
}
pw.flush();
pw.close();
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
import java.io.*;
import java.util.StringTokenizer;
/**
* 286A
* O(n) time
* O(n) space
*
* @author artyom
*/
public class _286A implements Runnable {
private BufferedReader in;
private StringTokenizer tok;
private Object solve() throws IOException {
int n = nextInt(), r = n % 4;
if (r > 1) {
return -1;
}
StringBuilder sb = new StringBuilder();
int k = 2, m = n, l = n / 4;
for (int i = 0; i < l; i++, k += 2, m -= 2) {
sb.append(k).append(' ').append(m).append(' ');
}
k -= 3;
m += 1;
if (r == 1) {
sb.append((n + 1) / 2).append(' ');
}
for (int i = 0; i < l; i++, k -= 2, m += 2) {
sb.append(k).append(' ').append(m).append(' ');
}
return sb;
}
//--------------------------------------------------------------
public static void main(String[] args) {
new _286A().run();
}
@Override
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tok = null;
System.out.print(solve());
in.close();
} catch (IOException e) {
System.exit(0);
}
}
private String nextToken() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
}
|
JAVA
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
const int N = 101000;
int P[N];
int n;
int main() {
scanf("%d", &n);
if ((n % 4) > 1) {
printf("-1\n");
} else {
int dl = (n - (n & 1));
bool dol = true;
int naDol = 2, gora = dl;
for (int i = 0; i < (dl / 2); ++i) {
if (dol) {
P[i] = naDol;
naDol += 2;
} else {
P[i] = gora;
gora -= 2;
}
dol = !dol;
}
naDol = n / 2 - 1;
gora = naDol + 2;
for (int i = 0; i < (dl / 2); ++i) {
if (dol) {
P[dl / 2 + i] = naDol;
naDol -= 2;
} else {
P[dl / 2 + i] = gora;
gora += 2;
}
dol = !dol;
}
if (n % 2 == 0) {
for (int i = 0; i < (n); ++i) printf("%d ", P[i]);
} else {
int pom = (n + 1) / 2;
for (int i = 0; i < (dl / 2); ++i) {
printf("%d ", P[i] + (P[i] >= pom));
}
printf("%d ", pom);
for (int i = 0; i < (dl / 2); ++i) {
printf("%d ", P[dl / 2 + i] + (P[dl / 2 + i] >= pom));
}
}
printf("\n");
}
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int a[100010];
int main() {
int n;
scanf("%d", &n);
if (n == 1)
puts("1");
else if (n % 4 > 1)
puts("-1");
else {
int i = 1, j = n;
for (; j - i > 0; i += 2, j -= 2) {
a[i] = i + 1;
a[i + 1] = j;
a[j] = j - 1;
a[j - 1] = i;
}
if (n & 1) a[n / 2 + 1] = n / 2 + 1;
for (int i = 1; i <= n; i++) printf("%d ", a[i]);
printf("\n");
}
return 0;
}
|
CPP
|
287_C. Lucky Permutation
|
A permutation p of size n is the sequence p1, p2, ..., pn, consisting of n distinct integers, each of them is from 1 to n (1 β€ pi β€ n).
A lucky permutation is such permutation p, that any integer i (1 β€ i β€ n) meets this condition ppi = n - i + 1.
You have integer n. Find some lucky permutation p of size n.
Input
The first line contains integer n (1 β€ n β€ 105) β the required permutation size.
Output
Print "-1" (without the quotes) if the lucky permutation p of size n doesn't exist.
Otherwise, print n distinct integers p1, p2, ..., pn (1 β€ pi β€ n) after a space β the required permutation.
If there are multiple answers, you can print any of them.
Examples
Input
1
Output
1
Input
2
Output
-1
Input
4
Output
2 4 1 3
Input
5
Output
2 5 3 1 4
| 2
| 9
|
#include <bits/stdc++.h>
using namespace std;
int M[100001];
int main() {
int n;
cin >> n;
if (n == 1) {
cout << 1 << endl;
return 0;
}
if (n % 4 == 2) {
cout << -1 << endl;
return 0;
}
if (n % 2 == 0) {
int j = n;
for (int i = n / 2; i > 0; i -= 2) {
M[i] = j;
j -= 2;
}
for (int i = 1; i < n / 2; i += 2) {
M[i] = j;
j -= 2;
}
j = 1;
for (int i = n / 2 + 1; i < n; i += 2) {
M[i] = j;
j += 2;
}
for (int i = n; i > n / 2; i -= 2) {
M[i] = j;
j += 2;
}
for (int i = 1; i <= n; i++) {
cout << M[i] << " ";
}
return 0;
} else {
if ((n + 1) % 4 == 0) {
cout << -1 << endl;
return 0;
} else {
int j = 2;
for (int i = 1; i < n / 2; i += 2) {
M[i] = j;
j += 2;
}
for (int i = n / 2 + 3; i <= n; i += 2) {
M[i] = j;
j += 2;
}
j = 1;
for (int i = n - 1; i >= 0; i--) {
if (M[i] == 0) {
M[i] = j;
j += 2;
}
}
for (int i = 1; i <= n; i++) {
cout << M[i] << " ";
}
return 0;
}
}
return 0;
}
|
CPP
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.