title
stringlengths
1
544
โŒ€
parent
stringlengths
0
57
โŒ€
created
stringlengths
11
12
โŒ€
editor
stringclasses
1 value
creator
stringclasses
4 values
edited
stringlengths
11
12
โŒ€
refs
stringlengths
0
536
โŒ€
text
stringlengths
1
26k
id
stringlengths
32
32
Explainable AI
AI Terms
Mar 4, 2023
Alan Jo
Alan Jo
Aug 6, 2023
### Interpretability degree to which a model can be understood in human terms ### Explainability ๋ชจ๋ธ์ด ๋ณต์žกํ•˜๊ฑฐ๋‚˜ ๋ธ”๋ž™๋ฐ•์Šค๋ผ ์ถ”๊ฐ€์ ์ธ ํ…Œํฌ๋‹‰์„ ์‚ฌ์šฉํ•ด์„œ ์•ˆ์˜ ๋ชจ๋ธ์˜ ๊ฒฐ์ • ๊ณผ์ •์„ ์ดํ•ด ### Using another AI > [OpenAI's new tool attempts to explain language models' behaviors](https://techcrunch.com/2023/05/09/openais-new-tool-attempts-to-explain-language-models-behaviors/)
e1b35d4b9a6342dc863578350a7b4325
Super Intelligence
AI Terms
Aug 23, 2020
Alan Jo
Alan Jo
Jul 4, 2023
[AGI](https://texonom.com/agi-38ec1ab5796f472ca4475676519e29c1)
### ์˜์‹์ด๋ผ๋Š” ํ—ˆ์ƒ์„ ๊ตฌํ˜„ํ•˜๋ ค๊ณ  ํ•˜๋ฉด ์•ˆ๋œ๋‹ค **์ดˆ์ง€๋Šฅ AI์˜ ๋ชฉ์ ์„ ์–ด๋–ป๊ฒŒ ์šฐ๋ฆฌ ๋ชฉ์ ์— ๋งž์ถฐ ์ •๋ ฌํ•  ์ง€ ๋ฐฉ๋ฒ•์„ ์ฐพ์•„๋‚ด๋Š” ๊ฑด ์ค‘์š”ํ•˜๊ณ  ์–ด๋ ต๋‹ค** **ํ•˜์œ„๋ชฉ์  ํŒŒ์ƒ ๋ฌธ์ œ**๋ฅผ ๊ณ ๋ คํ•  ๋•Œ, ์šฐ๋ฆฌ๋Š” ๋ชฉ์ ์ •๋ ฌ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ์ด์ „์— ์ดˆ์ง€๋Šฅ์„ ํ’€๋ฉด ์•ˆ๋œ๋‹ค ์ปดํ“จํ„ฐ๋Š” ๊ตฌ์กฐ์™€ ๋…๋ฆฝ์ ์œผ๋กœ ์ƒ์šฉ์œผ๋กœ ๋ชจ๋“  ๊ธฐ๋Šฅ์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ์ด๋‹ค ๋‡Œ๋Š” ๊ธฐ๋Šฅ ์ž์ฒด์— ๋”ฐ๋ผ ์ง„ํ™”ํ•˜๋ฉฐ ์—ฐ๊ด€๋œ ๊ตฌ์กฐ์ด๋‹ค ๊ตฌ์กฐ์™€ ๊ธฐ๋ˆ™ ์ž์ฒด๊ฐ€ ๋ณ‘๋ ฌ๋กœ ์ •๋ณด๋ฅผ ๋‹จ์ˆœํ™”ํ•˜์—ฌ ์˜์‹ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ๊ฐ€ ๋˜๊ธฐ์— ์ง๋ ฌํ™”๋œ ์ปดํ“จํ„ฐ๋กœ ๊ตฌํ˜„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค ### Super Intelligence Books - Life 3.0 - ํŠน์ด์ ์ด ์˜จ๋‹ค > [Untitled](https://www.youtube.com/watch?v=HkdpO6GSxYI)
b057e644731546d9b39cb41939d36712
Technological singularity
null
null
null
null
null
null
๊ธฐ์ˆ ์  ํŠน์ด์  ๋ชจ๋“  ์ธ๋ฅ˜์˜ ์ง€์„ฑ์„ ํ•ฉ์นœ ๊ฒƒ๋ณด๋‹ค ๋” ๋›ฐ์–ด๋‚œ ์ดˆ์ธ๊ณต์ง€๋Šฅ์ด ์ถœํ˜„ํ•˜๋Š” ์‹œ์  ### ์„ ํ˜•์ฃผ์˜์ž ### Singularitarian > [๊ธฐ์ˆ ์  ํŠน์ด์ ](https://ko.wikipedia.org/wiki/%EA%B8%B0%EC%88%A0%EC%A0%81_%ED%8A%B9%EC%9D%B4%EC%A0%90#%EC%9C%A0%EC%A0%84%EC%9E%90_%EC%B9%A9)
4a2e2f5be15a4947ab1515a9ea8e1903
**Transfer Learning**
null
null
null
null
null
null
## Transfer weight from model to model ํ•˜๋‚˜์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ์ด์™€ ๋‹ค๋ฅด๋ฉด์„œ ๊ด€๋ จ๋œ ๋ฌธ์ œ์— ์ ์šฉํ•˜๋Š” ๋™์•ˆ ์–ป์€ ์ง€์‹์„ ์ €์žฅํ•˜๋Š”๋ฐ ์ง‘์ค‘ํ•˜๋Š” ๊ธฐ๊ณ„ ํ•™์Šต์˜ ์—ฐ๊ตฌ ๋ฌธ์ œ transfer learning by proportionally small data make category vector ### Category Vector - Style Vector - one hot vector - usual - Gaussian normal random vector - for linear ํ•˜๋‚˜์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ์ด์™€ ๋‹ค๋ฅด๋ฉด์„œ ๊ด€๋ จ๋œ ๋ฌธ์ œ์— ์ ์šฉํ•˜๋Š” ๋™์•ˆ ์–ป์€ ์ง€์‹์„ ์ €์žฅํ•˜์—ฌ ์ด์šฉ Pre trained model ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F1de9392d-9f37-49d7-b6f2-203b55e74c20%2FUntitled.png?table=block&id=f9192046-19c0-4563-a3c2-c7fd60d6e68f&cache=v2) > [[6์ฃผ์ฐจ] Introduction to Meta Learning](https://velog.io/@tobigs_xai/6์ฃผ์ฐจ-Introduction-to-Meta-Learning)
442feb66465944eebf144d4e9dd1dbf8
Turing Test
AI Terms
Dec 31, 2020
Alan Jo
Alan Jo
Jul 5, 2023
[Alan Turing](https://texonom.com/alan-turing-df61b5084e544ac58577d289983e0d28)
### Ambiguous ### Turing Test Notion |Title| |:-:| |[Church Turing Thesis ](https://texonom.com/church-turing-thesis-0bbb1e1b35064a8f88cda36b2739f384)| |[Feasibility thesis](https://texonom.com/feasibility-thesis-1ece05de5a8d443683dbeab4307877ac)| |[Reverse Turing Test](https://texonom.com/reverse-turing-test-3d2e3d1006d640ce8169187408d6f5dc)| |[Visual Turing Test](https://texonom.com/visual-turing-test-6bfe733ba0ce4ec4820717c8e2f6f1f5)| ์ธ๊ฐ„๊ณผ ์ธ๊ฐ„ ๊ตฌ๋ณ„๋ณด๋‹ค ai์™€ ai ๊ตฌ๋ณ„์ด ์ค‘์š”ํ•ด์งˆ > [The Turing Test is obsolete. It's time to build a new barometer for AI](https://www.fastcompany.com/90590042/turing-test-obsolete-ai-benchmark-amazon-alexa) ### [Mirror Test](https://texonom.com/mirror-test-a3383d21fd964c59a91c80cf546348cb) > [Introducing theย AIย Mirror Test, which very smart people keep failing](https://www.theverge.com/23604075/ai-chatbots-bing-chatgpt-intelligent-sentient-mirror-test)
db633c61340449c4bf0143b06fe981c0
Church Turing Thesis
Turing Test Notion
Mar 2, 2021
Alan Jo
Alan Jo
Jul 5, 2023
๋ชจ๋“  ๊ธฐ๊ณ„์—์„œ ์ˆ˜ํ–‰๋˜๋Š” ์—ฐ์‚ฐ์€ ํŠœ๋ง๊ธฐ๊ณ„์—์„œ ์ˆ˜ํ–‰ ๊ฐ€๋Šฅ ๋ช…์ œ์ธ ์ด์œ ๋Š” ์™„์ „ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ ์•„์ง๊นŒ์ง€ ํ‹€๋ฆผ ์ฆ๋ช… ์•ˆ๋Œ church turing thesis ๋ฏธ์ฆ๋ช… ๋Œ > [Churchโ€“Turing thesis](https://en.wikipedia.org/wiki/Churchโ€“Turing_thesis)
0bbb1e1b35064a8f88cda36b2739f384
F**easibility thesis**
null
null
null
null
null
null
## Extended Church Turing Thesis [Quantum Computing](https://texonom.com/quantum-computing-f7299cf6bc554d58aeae450df6bc6248) ์„ ํฌํ•จํ•˜๋ฉด ๋ชจ๋“  ํ˜„์ƒ์„ ๊ณ„์‚ฐ์œผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๋ฏฟ์Œ [Simulation Cosmology](https://texonom.com/simulation-cosmology-e100063d72584813b17c3da95333591f) whether an arbitrary but "reasonable" model of computation can be efficiently simulated
1ece05de5a8d443683dbeab4307877ac
Reverse Turing Test
Turing Test Notion
Jun 21, 2022
Alan Jo
Alan Jo
Jul 5, 2023
[CAPTCHA](https://texonom.com/captcha-c7d4838aad8a44b99ba70290eb6e6bf1)
3d2e3d1006d640ce8169187408d6f5dc
Visual Turing Test
Turing Test Notion
Dec 3, 2021
Alan Jo
Alan Jo
Jul 5, 2023
[Virtual Reality](https://texonom.com/virtual-reality-51e72eb0921f4d94bd512ca1c2e9937a) > [[๋ฏธ๋ผํด๋ ˆํ„ฐ] ์ €์ปค๋ฒ„๊ทธ๊ฐ€ ๋งํ•œ VRํŠœ๋ง ํ…Œ์ŠคํŠธ](https://stibee.com/api/v1.0/emails/share/TcTVnjQyZd2t3dWp3gOczltwnB_mXvM=)
6bfe733ba0ce4ec4820717c8e2f6f1f5
****CAPTCHA****
Reverse Turing Test
null
null
null
null
null
[mCaptcha](https://github.com/mCaptcha/mCaptcha) > [Cloudflare's CAPTCHA replacement lacks crosswalks, checkboxes, Google](https://arstechnica.com/information-technology/2022/09/cloudflares-captcha-replacement-lacks-crosswalks-checkboxes-google) > [How Apple could kill CAPTCHAs with Private Access Tokens | AppleInsider](https://appleinsider.com/articles/22/06/14/how-apple-could-kill-captchas-with-private-access-tokens)
c7d4838aad8a44b99ba70290eb6e6bf1
AI Ensemble
Machine Learning Notion
Oct 6, 2021
Alan Jo
Alan Jo
Jun 4, 2023
[Knowledge Distillation](https://texonom.com/knowledge-distillation-d5f32ad3da32434892a9765d68d31542)
### Very Heavy 1. sampling 2. make diverse model 3. boost every model 4. blend models ### AI Ensemble Notion |Title| |:-:| |[Bagging and Pasting](https://texonom.com/bagging-and-pasting-8e4e988cff704560970d031ce9958b77)| |[Random Forest](https://texonom.com/random-forest-2cf3f2d6f4994017accc228c98c160c8)| |[Boosting](https://texonom.com/boosting-c383ee60ceaf4e2b9ab03a2382760b62)| |[Voting Classifier](https://texonom.com/voting-classifier-a5d5cf9476d847089125eb3a53bc3ef2)| |[Stacking](https://texonom.com/stacking-58a696bdecb54bb29f0c16d32031437e)| ํด๋ž˜์Šค(๋˜๋Š” label) ์€ ๋ถ„๋ฅ˜์— ์˜ํ•œ ์„ ํƒ๋ชฉ๋ก ๊ฐ๊ฐ > [์•™์ƒ๋ธ” ํ•™์Šต ๋ฐ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ](https://excelsior-cjh.tistory.com/166)
03bf3a1926dd46f18400b5830d8fdf0b
Discriminative Learning
Machine Learning Notion
Mar 30, 2023
Alan Jo
Alan Jo
Jun 25, 2023
[Generative Learning](https://texonom.com/generative-learning-63566344cc974563bcd76131207267f9) [Decision Boundary](https://texonom.com/decision-boundary-716a1c142cd74425bb819e60e11e3e2b) [Frequentist](https://texonom.com/frequentist-c7636520ad8d4ae3ba69b8c24f516ab1)
### Goal is directly model & estimate posterior probability **ํด๋ž˜์Šค ๊ฐ„ ์ฐจ์ด์— ์ง‘์ค‘ํ•ด ํ•™์Šต** ์ง์ ‘ ๋ชจ๋ธ๋งํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณดํ†ต ๋ถ„๋ฅ˜ ์ž‘์—…์—์„œ ๋” ํšจ์œจ์ ์ด๊ณ  ์ •ํ™•ํ•œ ๊ฒฐ๊ณผ Require positive and negative training data, Can be hard to interpret ### Discriminative Learning Methods |Title| |:-:| |[SVM](https://texonom.com/svm-8bf85b3080e2423ca43da0995a642acf)| ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fa01dd615-d197-4d8e-bc91-222d5f82cab7%2FUntitled.png?table=block&id=e724cc80-e6aa-4b3a-98af-67db5b689adb&cache=v2) ![Alex Holub](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F89c84ae4-4d48-47e7-af73-2699611de839%2FUntitled.png?table=block&id=bd1f7b78-562f-4273-abd2-7c2b0a54d5d3&cache=v2)
6c8fa85172824233934d62cc217871f4
Generative Learning
Machine Learning Notion
Mar 30, 2023
Alan Jo
Alan Jo
Jun 25, 2023
[Discriminative Learning](https://texonom.com/discriminative-learning-6c8fa85172824233934d62cc217871f4) [Bayesian inference](https://texonom.com/bayesian-inference-e3cabe7844954db097867a732143ddd8) [Bayes Theorem](https://texonom.com/bayes-theorem-e512b6c0308f4270aaae9ae53060ccab) [Bayesian](https://texonom.com/bayesian-abfa2017bb054f3a9dfcbc9a6c1042f6)
### model and learn likelihood from data distribution Estimate prior and deduce posterior **๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๋ฅผ ํ•™์Šตํ•˜์—ฌ ์ƒ์„ฑ ๊ทœ์น™**์„ ํŒŒ์•… can compute how probable any given model instance is Can be learned using images from just a single category ### Generative Learning Notion |Title| |:-:| |[Generative Model](https://texonom.com/generative-model-6e5204d2982b4042847aa42e88eb8fb5)| |[Discriminant Analysis](https://texonom.com/discriminant-analysis-2ffa0dbd34204642b6fe23ed5fbf3b00)| |[Naรฏve Bayes](https://texonom.com/nave-bayes-0d56821e2bcf4504899d63c22d9a533f)| |[Variational Inference](https://texonom.com/variational-inference-05563e34ddec467c95c9bda931770d50)|
63566344cc974563bcd76131207267f9
Inductive Learning
Machine Learning Notion
Mar 6, 2023
Alan Jo
Alan Jo
Mar 30, 2023
[Inductive Inference](https://texonom.com/inductive-inference-5b1e3298a9e0410d9d0a6de3da798a69) [Transduction Learning](https://texonom.com/transduction-learning-1ff573898b0b46f782e199870952ddad)
### reasoning from observed training cases to general rules
b4088c5d69514827aa95fcf12c0daaa9
Machine Learning Theory
Machine Learning Notion
Nov 5, 2019
Alan Jo
Seong-lae Cho
Mar 9, 2023
### ML Theory Notion |Title| |:-:| |[Cross Validation](https://texonom.com/cross-validation-184e7cfc80d6410188922d27ef4ef52c)| |[Learning Hypothesis](https://texonom.com/learning-hypothesis-a4cc437840df4eb99cb311d1ab836258)| |[Unknown Target Function](https://texonom.com/unknown-target-function-a71dd16e5b6943f28827e946ace7914b)| |[Empirical Rule](https://texonom.com/empirical-rule-31cf23b1578c42ab84e160251c3ca38b)| |[Logistic Multinomial Classification](https://texonom.com/logistic-multinomial-classification-3d7407bc18da4940bdadb5849a8cc3eb)| |[Maximum Likelihood Estimation](https://texonom.com/maximum-likelihood-estimation-b30e67a4e47b4b7494aa23667adb6acd)| |[Hyperparameter](https://texonom.com/hyperparameter-ef7e34566add4e98b673d4cef59fca90)| |[Closed-form Solution](https://texonom.com/closed-form-solution-02dd2781a9334df7ba731da9b9e31ea4)| |[Automatic Differentiation](https://texonom.com/automatic-differentiation-368d94f0c6d848ff93a2f10f99bd4e01)| |[Kernel Trick](https://texonom.com/kernel-trick-a3d7cdc0b30d44efbb072a926b0d99aa)| |[Learning Rate](https://texonom.com/learning-rate-c9a29280131f4f95a6191bde244f6789)| ### Training method > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ff993748a-09c7-4862-a735-c31912d208ba%2FUntitled.png?table=block&id=111475dc-7068-4ed7-b358-eef69b517037&cache=v2) > # Replay memory > <details><summary> > > **Why?**</summary> > Learn each episode only once and throw away => Wasteful (Some episodes are rare or costly to obtain) > </details> > > <details><summary> > > **Usefulness**</summary> > 1. the process of credit/blame propagation is sped up > 2. an agent would get a chance to refresh what it has learned before > </details> > > # Self Play > <details><summary> > > **Why?**</summary> > 1. Converting compute into data (Data generation!) > 2. Smooth learning (Always 50% of winning rate) > </details> > > ### Programming pattern of tranning > 1. Data Provider โ€“ Pre-processing data > 2. Design model (network) โ€“ Define as class > 3. Construct loss / optimizer โ€“ Using provided APIs > 4. Training cycle โ€“ Implement for-loop of forward, backward, update > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F89e9a8a5-1010-4a73-ac6f-06cf1b3bb3e9%2FUntitled.png?table=block&id=2ffed152-4c64-421d-b5ca-dce400fc3101&cache=v2) > - There are tons of episodes so we multi-processing
c69317fb5dc24f05a29532fa27d27cb1
****Progressive Learning****
Machine Learning Notion
Jun 20, 2023
Alan Jo
Alan Jo
Jun 20, 2023
*1. ๊ฐ feature ๊ณ„์ธต์—์„œ ์‚ฌ์ „์ง€์‹์„ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ* *2. ์˜ˆ์ „ ๊ฒฐ๊ณผ๋Š” ์žฌ์‚ฌ์šฉํ•˜๊ณ  ์ƒˆ๋กœ์šด ๊ฒƒ์„ ๋ฐฐ์šฐ๋Š” ๋Šฅ๋ ฅ* *3. catastrophic forgetting์„ ์ค„์ด๋Š” ๋Šฅ๋ ฅ* > [Progressive Neural Network ์ดํ•ดํ•˜๊ธฐ](https://medium.com/@tjpark1990/progressive-neural-network-์ดํ•ดํ•˜๊ธฐ-2ce6a866b360)
46a222e83bc64bd49f4c44c3d0519fdb
T**ransduction **Learning
Machine Learning Notion
Mar 6, 2023
Alan Jo
Alan Jo
Mar 7, 2023
[Logic](https://texonom.com/logic-e562053ace984677a72cb9eaf5c6f91e) [Inductive Learning](https://texonom.com/inductive-learning-b4088c5d69514827aa95fcf12c0daaa9) [Semi-supervised Learning](https://texonom.com/semi-supervised-learning-c7d63d5b1abf49a28ba0dc07fd1db8ad)
### ๋ณ€ํ™˜ Reasoning from observed, specific cases to specific cases unlabeled training data๋„ ๊ทธ๋“ค์ด ๊ฐ€์ง„ ํŠน์„ฑ(ex. ๋ฐ์ดํ„ฐ ๊ฐ„ ์—ฐ๊ฒฐ ๊ด€๊ณ„, ๊ฑฐ๋ฆฌ)์„ ํ™œ์šฉํ•ด ์ƒˆ๋กœ์šด prediction์„ ํ•˜๋Š” ๊ฒƒ ์‚ฌ์ „์— ๋ช…์‹œ์ ์ธ function parameter๋ฅผ ํ•™์Šตํ•˜์ง€ ์•Š๋Š”๋‹ค ### T**ransduction **Learning Usages |Title| |:-:| > [Transduction (machine learning)](https://en.wikipedia.org/wiki/Transduction_(machine_learning)) > [transductive learning VS inductive learning](https://redstarhong.tistory.com/88)
1ff573898b0b46f782e199870952ddad
Bagging and Pasting
AI Ensemble Notion
Oct 6, 2021
Alan Jo
Alan Jo
Mar 5, 2023
### bagging is **bootstrap aggregating** - **Random Patches method** : ํŠน์„ฑ ๋ฐ ๋ฐ์ดํ„ฐ ์…‹ ์ƒ˜ํ”Œ๋ง(bootstraping) ๋ชจ๋‘ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ์‹ - **Random Subspace method** : ํŠน์„ฑ๋งŒ ์ƒ˜ํ”Œ๋งํ•˜๋Š” ๋ฐฉ์‹ ํŠน์„ฑ๋ฐฐ๊น…ํ•˜๋ฉด ํŽธํ–ฅ ์ฆ๊ฐ€, ๋ถ„์‚ฐ ๊ฐ์†Œ ๋ฐ์ดํ„ฐ์…‹ ๋ฐฐ๊น…ํ•˜๋ฉด ํŽธํ–ฅ ๋น„์Šท, ๋ถ„์‚ฐ๊ฐ์†Œ # Notion at statistics, ์ค‘๋ณต์„ ํ—ˆ์šฉํ•œ ๋ฆฌ์ƒ˜ํ”Œ๋ง(resampling) is bootstrapping ์ค‘๋ณต์„ ํ—ˆ์šฉํ•˜์ง€ ์•Š๋Š” ์ƒ˜ํ”Œ๋ง ๋ฐฉ์‹์„ **ํŽ˜์ด์ŠคํŒ… **pasting ์ „์ฒด ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•ด ํ•˜๋‚˜์˜ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ฌ ๋•Œ์™€ ๋น„๊ตํ•ด์„œ ํŽธํ–ฅ์€ ๋น„์Šทํ•˜์ง€๋งŒ ๋ถ„์‚ฐ์€ ์ค„์–ด๋“ ๋‹ค # class ๋ถ„๋ฅ˜(classification)์ผ ๋•Œ๋Š” **์ตœ๋นˆ๊ฐ’(mode)** ์ฆ‰, ๊ฐ€์žฅ ๋งŽ์€ ์˜ˆ์ธก ํด๋ž˜์Šค๋กœ ์•™์ƒ๋ธ”์ด ์˜ˆ์ธกํ•˜๋ฉฐ, ํšŒ๊ท€(regression)์ผ ๊ฒฝ์šฐ์—๋Š” ๊ฐ ๋ถ„๋ฅ˜๊ธฐ์˜ ์˜ˆ์ธก๊ฐ’์˜ ํ‰๊ท ์„ ๊ณ„์‚ฐํ•˜์—ฌ ํ‰๊ท ๊ฐ’์„ ์˜ˆ์ธก๊ฐ’์œผ๋กœ ํ•œ๋‹ค. # usage ๋– ํ•œ ๋ฐ์ดํ„ฐ ์ƒ˜ํ”Œ์€ ์—ฌ๋Ÿฌ๋ฒˆ ์ƒ˜ํ”Œ๋ง ๋˜๊ณ , ๋˜ ์–ด๋– ํ•œ ์ƒ˜ํ”Œ์€ ์ „ํ˜€ ์ƒ˜ํ”Œ๋ง ๋˜์ง€ ์•Š์„ ์ˆ˜๊ฐ€ ์žˆ๋‹ค. ํ‰๊ท ์ ์œผ๋กœ ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ „์ฒด ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹ ์ค‘ 63% ์ •๋„๋งŒ ์ƒ˜ํ”Œ๋ง ๋˜๋ฉฐ(์ž์„ธํ•œ ๋‚ด์šฉ์€ [์—ฌ๊ธฐ](https://tensorflow.blog/%EB%9E%9C%EB%8D%A4-%ED%8F%AC%EB%A0%88%EC%8A%A4%ED%8A%B8%EC%97%90%EC%84%9C-%EB%8D%B0%EC%9D%B4%ED%84%B0%EA%B0%80-%EB%88%84%EB%9D%BD%EB%90%A0-%ED%99%95%EB%A5%A0/) ์ฐธ๊ณ ), ์ƒ˜ํ”Œ๋ง ๋˜์ง€ ์•Š์€ ๋‚˜๋จธ์ง€ 37% ๋ฐ์ดํ„ฐ ์ƒ˜ํ”Œ๋“ค์„ **oob(out-of-bag) ์ƒ˜ํ”Œ**์ด๋ผ๊ณ  ํ•œ๋‹ค. ์•™์ƒ๋ธ”(๋ฐฐ๊น…) ๋ชจ๋ธ์˜ ํ•™์Šต ๋‹จ๊ณ„์—์„œ๋Š” oob ์ƒ˜ํ”Œ์ด ์‚ฌ์šฉ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ์ด๋Ÿฌํ•œ oob ์ƒ˜ํ”Œ์„ ๊ฒ€์ฆ์…‹(validation set)์ด๋‚˜ ๊ต์ฐจ๊ฒ€์ฆ(cross validation)์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.
8e4e988cff704560970d031ce9958b77
Boosting
AI Ensemble Notion
Oct 6, 2021
Alan Jo
Alan Jo
Mar 5, 2023
์„ฑ๋Šฅ์ด ์•ฝํ•œ ํ•™์Šต๊ธฐ(weak learner)๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ ์—ฐ๊ฒฐํ•˜์—ฌ ๊ฐ•ํ•œ ํ•™์Šต๊ธฐ(strong learner)๋ฅผ ๋งŒ๋“œ๋Š” ์•™์ƒ๋ธ” ํ•™์Šต ์•ž์—์„œ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ๋ณด์™„ํ•ด๋‚˜๊ฐ€๋ฉด์„œ ๋”๋‚˜์€ ๋ชจ๋ธ๋กœ ํ•™์Šต # AdaBoost ๊ณผ์†Œ์ ํ•ฉ(underfitted)๋๋˜ ํ•™์Šต ๋ฐ์ดํ„ฐ ์ƒ˜ํ”Œ์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๋†’์ด๋ฉด์„œ ์ƒˆ๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ์ด ํ•™์Šตํ•˜๊ธฐ ์–ด๋ ค์šด ๋ฐ์ดํ„ฐ์— ๋” ์ž˜ ์ ํ•ฉ๋˜๋„๋ก ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F199e5187-75bb-4e03-969e-490cb8de79f4%2FUntitled.png?table=block&id=d211b702-3f18-4858-a8b5-b7305840e44e&cache=v2) ์—ฌ๊ธฐ์„  ๋ฉ€๋ฆฌ์žˆ๋Š”๋†ˆ๋“ค์ด ๊ณผ์†Œ์ ํ•ฉ **weighted linear combination** > (๊ฐ€์ค‘์น˜ ์„ ํ˜•๊ฒฐํ•ฉ)์„ ํ•˜์—ฌ h(x)strong learner > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F0e4ab44f-b40e-4772-9c5f-8d3a1037e7a5%2FUntitled.png?table=block&id=111e5592-320e-4749-85bf-eb756d00e24c&cache=v2) > โ€‹๋ฅผ ๊ตฌํ•˜์—ฌ ๊ฐ’์„ ์˜ˆ์ธกํ•œ๋‹ค. # ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ์•„๋‹ค๋ถ€์ŠคํŠธ'์—์„œ ์‚ดํŽด๋ณธ ๊ฒƒ ์ฒ˜๋Ÿผ ์ „์˜ ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ์˜ค์ฐจ๋ฅผ ๋ณด์™„ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ชจ๋ธ(๋ถ„๋ฅ˜๊ธฐ, ํ•™์Šต๊ธฐ)์„ ์ถ”๊ฐ€ํ•ด์ฃผ๋Š” ๋ฐฉ๋ฒ•์€ ๋™์ผํ•˜๋‹ค. ํ•˜์ง€๋งŒ, **๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ…** ์€ ์•„๋‹ค๋ถ€์ŠคํŠธ ์ฒ˜๋Ÿผ ํ•™์Šต๋‹จ๊ณ„ ๋งˆ๋‹ค ๋ฐ์ดํ„ฐ ์ƒ˜ํ”Œ์˜ ๊ฐ€์ค‘์น˜๋ฅผ ์—…๋ฐ์ดํŠธ ํ•ด์ฃผ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ํ•™์Šต ์ „๋‹จ๊ณ„ ๋ชจ๋ธ์—์„œ์˜ **์ž”์—ฌ ์˜ค์ฐจ(residual error)** ์— ๋Œ€ํ•ด ์ƒˆ๋กœ์šด ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F55fb73d4-7435-4d42-a78a-b452da3a134e%2FUntitled.png?table=block&id=2a5963cd-9029-405d-9974-1e55a1c4b637&cache=v2) ์˜ค์ฐจ์— ๋Œ€ํ•œ ์ƒˆ ๋ชจ๋ธ!์ด๋ ‡๊ฒŒ `learning_rate`๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„**์ถ•์†Œ**(shrinkage)๋ผ๊ณ  ํ•˜๋Š” ๊ทœ์ œ(regularization) ๋ฐฉ๋ฒ•์ด๋‹ค. ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F1ecaff29-9ea8-469f-9469-954172be68b5%2FUntitled.png?table=block&id=d686a6fc-0ae8-41bf-bddf-f1cffe73d147&cache=v2) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fe50c22c7-f0d9-4bbe-8630-cd6ac2972529%2FUntitled.png?table=block&id=5af744c9-bf9c-4f09-88a7-7df01097638f&cache=v2) overfitting ์‰ฌ์›€ ์กฐ๊ธฐ ์ข…๋ฃŒ(early stopping) GBRT๋ฅผ ํ•™์Šต์‹œํ‚จ ํ›„ `staged_predict()` ๋ฉ”์†Œ๋“œ๋ฅผ ์ด์šฉํ•ด ๊ฐ ๋ชจ๋ธ์˜ ์˜ˆ์ธก๊ฐ’( `y_pred` )๊ณผ ์‹ค์ œ๊ฐ’( `y_val` )์˜ MSE๋ฅผ ๊ตฌํ•œ ๋’ค MSE๊ฐ€์žฅ ๋‚ฎ์€ ์ตœ์ ์˜ ํŠธ๋ฆฌ์˜ ๊ฐœ์ˆ˜๋ฅผ ์ฐพ์•„ ๋‹ค์‹œ ์ตœ์ ์˜ ํŠธ๋ฆฌ ๊ฐœ์ˆ˜( `best_n_estimator` )๋กœ ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ…์„ ํ•™์Šต
c383ee60ceaf4e2b9ab03a2382760b62
Random Forest
AI Ensemble Notion
Oct 6, 2021
Alan Jo
Alan Jo
Mar 5, 2023
๋ฐฐ๊น…(bagging)์„ ์ ์šฉํ•œ ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด(decision tree)์˜ ์•™์ƒ๋ธ” ํŠธ๋ฆฌ๋ฅผ ์ƒ์„ฑํ•  ๋•Œ, ๊ฐ ๋…ธ๋“œ๋Š” ๋žœ๋คํ•˜๊ฒŒ ํŠน์„ฑ(feature)์˜ ์„œ๋ธŒ์…‹(์ž์‹ ๋…ธ๋“œ๋ฅผ)์„ ๋งŒ๋“ค์–ด ๋ถ„ํ• ํ•œ๋‹ค. **์—‘์ŠคํŠธ๋ผ ํŠธ๋ฆฌ** (Extra-Trees)๋Š” ํŠธ๋ฆฌ๋ฅผ ๋”์šฑ ๋žœ๋คํ•˜๊ฒŒ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋…ธ๋“œ๋ฅผ ๋ถ„ํ• ํ•˜๋Š” ์ตœ์ ์˜ ์ž„๊ณ„๊ฐ’์„ ์ฐพ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ํ›„๋ณด ํŠน์„ฑ์„ ์ด์šฉํ•ด ๋žœ๋คํ•˜๊ฒŒ ๋ถ„ํ• ํ•œ ๋‹ค์Œ ๊ทธ ์ค‘์—์„œ ์ตœ์ƒ์˜ ๋ถ„ํ• ์„ ์„ ํƒํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ์ฒ˜๋Ÿผ ๊ฐ ๋…ธ๋“œ์˜ ํŠน์„ฑ๋งˆ๋‹ค ์ตœ์ ์˜ ์ž„๊ณ„๊ฐ’์„ ์ฐพ๋Š”๊ฒƒ์ด ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์— ์—‘์ŠคํŠธ๋ผ ํŠธ๋ฆฌ๊ฐ€ ํ›จ์”ฌ ํ•™์Šต ์†๋„๊ฐ€ ๋น ๋ฅด๋‹ค **์‰ฝ๊ฒŒ๋งํ•ด ํŠธ๋ฆฌ๋ณ„๋กœ ํŠน์„ฑ์— ๋”ฐ๋ผ ๋ชฉํ‘œ๋งŒ ์ฐพ์•„์„œ ๋น ๋ฆ„** ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ์˜ ์žฅ์ ์€ ํŠน์„ฑ(feature)์˜ ์ƒ๋Œ€์ ์ธ ์ค‘์š”๋„๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์‰ฝ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. Scikit-Learn์—์„œ๋Š” ์–ด๋– ํ•œ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•œ ๋…ธ๋“œ๊ฐ€ ๋ถˆ์ˆœ๋„(impurity)๋ฅผ ์–ผ๋งˆ๋‚˜ ๊ฐ์†Œ์‹œํ‚ค๋Š”์ง€๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ๊ฐ ํŠน์„ฑ๋งˆ๋‹ค ์ƒ๋Œ€์  ์ค‘์š”๋„๋ฅผ ์ธก์ •ํ•œ๋‹ค. ### ์˜ˆ๋ฅผ๋“ค์–ด ํ”ฝ์…€๋ณ„ ์ค‘์š”๋„ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Œ ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fac057740-ec65-4928-a839-84b0f8451512%2FUntitled.png?table=block&id=b9c6d3da-a3be-43a0-bc9d-9aa10e55b0b7&cache=v2) mnist ํ”ฝ์…€๋ณ„ ์ค‘์š”๋„ [๋ถˆ์ˆœ๋„](https://texonom.com/14c2866368974d6fa82b764ef56eed7f)
2cf3f2d6f4994017accc228c98c160c8
Stacking
AI Ensemble Notion
Oct 6, 2021
Alan Jo
Alan Jo
Mar 5, 2023
not just vote (stacking, stacked generalization์˜ ์ค„์ž„)์€ voting๋ฅ˜๊ฐ€ ์•„๋‹ˆ๋ผ ์•™์ƒ๋ธ” ํ•™์Šต์—์„œ ๊ฐ ๋ชจ๋ธ์˜ ์˜ˆ์ธก๊ฐ’์„ ๊ฐ€์ง€๊ณ  ์ƒˆ๋กœ์šด **๋ฉ”ํƒ€ ๋ชจ๋ธ(meta learner)** ์„ ํ•™์Šต์‹œ์ผœ ์ตœ์ข… ์˜ˆ์ธก ๋ชจ๋ธ์„ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ๋งํ•œ๋‹ค. ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ff9c23e40-ead9-4e6c-91a9-faed1e45f4da%2FUntitled.png?table=block&id=32749096-d404-4751-98bd-4c67cc74d9f0&cache=v2) # Blender ๋ผ๋Š” meta learner ๊ฐ€ ํ•„์š” and boosting
58a696bdecb54bb29f0c16d32031437e
Voting Classifier
AI Ensemble Notion
Oct 6, 2021
Alan Jo
Alan Jo
Mar 5, 2023
hard voting - direct democracy soft voting - indirect democracy
a5d5cf9476d847089125eb3a53bc3ef2
๋ถˆ์ˆœ๋„
Random Forest
null
null
null
null
null
์ด๋ ‡๊ฒŒ ํ•˜๋‚˜์˜ ํŠน์„ฑ์—์„œ ๋‘ ๊ฐœ์˜ ์„œ๋ธŒ์…‹์œผ๋กœ ๋‚˜๋ˆ„๋Š” ๊ธฐ์ค€์€ ๋ถˆ์ˆœ๋„(impurity)๋ฅผ ์ตœ์†Œ(๋˜๋Š”, ์ˆœ๋„, homogeneity๋ฅผ ์ตœ๋Œ€)๋กœ ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ ‡๊ฒŒ ๋ถˆ์ˆœ๋„ ์ฆ‰, ๋ถˆํ™•์‹ค์„ฑ์ด ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ์ •๋ณด์ด๋ก ์—์„œ๋Š” ์ •๋ณดํš๋“(Information Gain)์ด๋ผ๊ณ  ํ•œ๋‹ค > [ExcelsiorCJH/Hands-On-ML](https://github.com/ExcelsiorCJH/Hands-On-ML/blob/master/Chap06-Decision_Tree/Chap06-Decision_Tree.ipynb)
14c2866368974d6fa82b764ef56eed7f
SVM
Discriminative Learning Methods
Mar 5, 2023
Alan Jo
Alan Jo
Jul 4, 2023
[PCA](https://texonom.com/pca-5f0f360d90944cccb62613910c3bf9f6)
## **Support vector machine** 2000s was age of SVM powerful classifier before deep learning No direct multi-class SVM, must combine two-class SVMs but good for small dataset w is weight, b is bias margin $\gamma$ 1. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ํ˜• ๋˜๋Š” ๋น„์„ ํ˜•์œผ๋กœ ๋ถ„๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ์ดˆ๊ธฐ ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค. 2. ์ดˆ๊ธฐ ๊ฒฐ์ • ๊ฒฝ๊ณ„์™€ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋“ค์„ ์„œํฌํŠธ ๋ฒกํ„ฐ๋กœ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค. 3. ์„œํฌํŠธ ๋ฒกํ„ฐ๋“ค์„ ์‚ฌ์šฉํ•˜์—ฌ ์ดˆ๊ธฐ ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฅผ ์—…๋ฐ์ดํŠธํ•ฉ๋‹ˆ๋‹ค. 4. 2~3๋‹จ๊ณ„๋ฅผ ๋ฐ˜๋ณตํ•˜์—ฌ ์ตœ์ ์˜ ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค. ### SVM Notion |Title| |:-:| |[Support Vector](https://texonom.com/support-vector-e18f7e6ff16a4ce08d7ce4c34e3106d3)| |[Functional Margin](https://texonom.com/functional-margin-71a665c7f96a4fed8b51b6fa70baa0ad)| |[Geometric Margin](https://texonom.com/geometric-margin-fdbba20e3faa430f95cfe3aa263d26db)| |[Optimal Margin Classifier](https://texonom.com/optimal-margin-classifier-5151f4af7d884f3fb4c9e1de07a59f95)| |[Maximum Margin Classifier](https://texonom.com/maximum-margin-classifier-9e209bbbf89d4ebdba08497821d97cf7)| |[SMO](https://texonom.com/smo-54f83167822443f4b4922a6aad94b6df)| |[Slack Variable](https://texonom.com/slack-variable-e91b24cd50c64e96a0cebf4c81d6f273)| |[Soft-margin Clasffier](https://texonom.com/soft-margin-clasffier-92ccd972993f4c708a755891e8b9e0a7)| ### SVMs |Title| |:-:| |[TSVM](https://texonom.com/tsvm-7ec2ffe8f06f4a82b5388d5192fc0119)| |[Latent SVM](https://texonom.com/latent-svm-29b86dc7d0624c8fb1657e4ddae72e72)| |[Structural SVM](https://texonom.com/structural-svm-c4800f5fa5634eb59c9149c23f777682)| > [Untitled](https://www.linkedin.com/feed/update/urn:li:activity:7082025501048918016/) ### Implementations > [Software โ€” Kernel Machines](http://www.kernel-machines.org/software) > [Support vector machine](https://en.wikipedia.org/wiki/Support_vector_machine)
8bf85b3080e2423ca43da0995a642acf
Functional Margin
SVM Notion
Apr 6, 2023
Alan Jo
Alan Jo
Jun 7, 2023
data input x and output y $$\hat{y}^{(i)} = y^{(i)}(w^Tx^{(i)} + b)$$ ### Margin is normalized functional margin w๊ฐ€ ์ž‘๊ณ  margin์ด ํด์ˆ˜๋ก ๋ถ„๋ฅ˜ ์ž˜ํ•จ svm์—์„œ๋Š” w = 1๋กœ ์ •๊ทœํ™”ํ•˜์—ฌ ์‚ฌ์šฉ y is 1 if () > 0 and y is -1 when () < 0
71a665c7f96a4fed8b51b6fa70baa0ad
Geometric Margin
SVM Notion
Apr 11, 2023
Alan Jo
Alan Jo
Jun 7, 2023
### Normal Version of Functional Margin $$Geometric \; Margin = y (x^Tx + b) / ||w||$$ $$Margin = min(Geometrix \; Margin)$$ geometrically it means distance to hyperplane
fdbba20e3faa430f95cfe3aa263d26db
Maximum Margin Classifier
SVM Notion
May 22, 2023
Alan Jo
Alan Jo
Jun 7, 2023
9e209bbbf89d4ebdba08497821d97cf7
Optimal Margin Classifier
SVM Notion
Apr 11, 2023
Alan Jo
Alan Jo
Jun 7, 2023
[Lagrange Duality](https://texonom.com/lagrange-duality-8de2c3f1399e4765ba2543d4e8360eeb)
SVM์—์„œ ์‚ฌ์šฉ๋˜๋Š” Classifier ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜ maximize the margin $$max_{\gamma, w, b} \gamma$$ means minimize w ([Quadratic Programming](https://texonom.com/quadratic-programming-37ba256051654908ab3b688f48ccde7d)) $$min_{w, b} \frac{1}{2}||w||^2$$ QP ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ Optimal Margin Classifier ๊ตฌํ•จ ### How to compute $$w = \Sigma_{i=1}^n\alpha_i y^{(i)}x^{(i)}$$ 1. ๊ฒฐ์ • ๊ฒฝ๊ณ„์™€ ์„œํฌํŠธ ๋ฒกํ„ฐ๋“ค ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ, ์ฆ‰ ๋งˆ์ง„(margin)์„ ์ตœ๋Œ€ํ™”ํ•ฉ๋‹ˆ๋‹ค. 2. ์„ ํ˜• ๋˜๋Š” ๋น„์„ ํ˜• ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 3. ์ด์ƒ์น˜(outlier)์— ๋ฏผ๊ฐํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. We can compute Lagrangian(w, b, a) with only alpha without b and w
5151f4af7d884f3fb4c9e1de07a59f95
Slack Variable
SVM Notion
Apr 18, 2023
Alan Jo
Alan Jo
Jun 7, 2023
ํ›ˆ๋ จ ์˜ˆ์ œ(training example)์— ๋Œ€ํ•ด ์ถ”๊ฐ€์ ์ธ ๋ณ€์ˆ˜๋ฅผ ๋„์ž…ํ•˜์—ฌ, ๊ฒฐ์ • ๊ฒฝ๊ณ„(decision boundary)์™€์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์—ญํ•  hyperparameter C, control the effect of slack variable
e91b24cd50c64e96a0cebf4c81d6f273
SMO
SVM Notion
Apr 18, 2023
Alan Jo
Alan Jo
Jun 7, 2023
### Sequential Minimal Optimization support vector๋“ค๋„ w๊ณ„์‚ฐ update until converge ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F4d2e24f6-af82-4e79-b80e-4f0c7472dfe6%2FUntitled.png?table=block&id=4b0fc852-4375-42f9-b478-8e83db8d1b3f&cache=v2) 2๊ฐœ๋ฉด ๋˜๋‹ˆ๊นŒ 2๊ฐœ๋กœ reoptimize ํ•ด์„œ w๊ตฌํ•˜๊ณ  ๋‹ค์‹œ ๊ธฐ์šธ๊ธฐ๋กœ ์•ŒํŒŒ ์„œํฌํŠธ๋ฒกํ„ฐ ์ตœ์ ํ™”
54f83167822443f4b4922a6aad94b6df
Soft-margin Clasffier
SVM Notion
Apr 18, 2023
Alan Jo
Alan Jo
Jun 7, 2023
### Normal version is Hard-margin SVM ํฌ์‚ฌ์ด hyperparameter C, control the effect of slack variable ์ผ๋ถ€ ์ด์ƒ์น˜(outlier)๋‚˜ ์ž˜๋ชป ๋ถ„๋ฅ˜๋œ ๋ฐ์ดํ„ฐ๋„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋ฉฐ result of optimization is that the only difference is $$0 \leq \alpha \leq C$$ ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F02761694-f5d2-40bf-968e-98bd517225ee%2FUntitled.png?table=block&id=2a3e1aa7-a2df-45fb-810e-a33142fe470b&cache=v2)
92ccd972993f4c708a755891e8b9e0a7
Support Vector
SVM Notion
Apr 11, 2023
Alan Jo
Alan Jo
Jun 7, 2023
decision boundary์™€ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋“ค Note that $\alpha_i$ will all be zero except for the support vectors because of [Karush-Kuhn-Tucker Condition](https://texonom.com/karush-kuhn-tucker-condition-01c654c038e1493080cbcb9ec1d026d0) $$\Sigma \alpha y = 0$$ so there will be at least one + and one - ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fe1292586-ca6c-4193-a02d-91b71d65075e%2FUntitled.png?table=block&id=2da3f0d0-1e5e-4e28-9f9f-c9dc076db188&cache=v2) $$h_{w, b}(x) = g(w^Tx + b)$$
e18f7e6ff16a4ce08d7ce4c34e3106d3
Latent SVM
SVMs
Jun 6, 2023
Alan Jo
Alan Jo
Jun 7, 2023
29b86dc7d0624c8fb1657e4ddae72e72
Structural SVM
SVMs
Jun 6, 2023
Alan Jo
Alan Jo
Jun 7, 2023
c4800f5fa5634eb59c9149c23f777682
TSVM
SVMs
Mar 5, 2023
Alan Jo
Alan Jo
Jun 7, 2023
7ec2ffe8f06f4a82b5388d5192fc0119
Discriminant Analysis
Generative Learning Notion
Apr 28, 2023
Alan Jo
Alan Jo
Apr 28, 2023
### Discriminant Analysis Methods |Title| |:-:| |[Linear Discriminant Analysis](https://texonom.com/linear-discriminant-analysis-37825c2c31c744998b8aeb0715164fb8)| |[Gaussian Discriminant Analysis](https://texonom.com/gaussian-discriminant-analysis-67ec78f9fd6944e68671c610aeadb079)|
2ffa0dbd34204642b6fe23ed5fbf3b00
Generative Model
null
null
null
null
null
null
## Deep Generative Model (DGM) Generative models aim to **[Density Estimation](https://texonom.com/density-estimation-238e2a8e51f44a67a91c0567892ab643)**** of data** ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ์™€ ์ตœ๋Œ€ํ•œ ์œ ์‚ฌํ•œ ์‚ฌํ›„๋ถ„ํฌ์—์„œย **์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑ** we can address better concern on unseen data ![Tutorial on Generative Adversarial Networks (2017)](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fd9efd95b-5eed-4581-9355-2612eda293e6%2FUntitled.png?table=block&id=35a2f18c-e868-4f78-b32d-e040bccc0a48&cache=v2) > [Generative AI: autocomplete for everything](https://noahpinion.substack.com/p/generative-ai-autocomplete-for-everything) > [Generative AI: A Creative New World](https://www.sequoiacap.com/article/generative-ai-a-creative-new-world/) > [[์ธ๊ณต์ง€๋Šฅ] ์ƒ์„ฑ ๋ชจ๋ธ (Generative AI Model)์ด๋ž€? (1) : AutoEncoder, VAE, GAN](https://newstellar.tistory.com/25) > [์ง„์งœ AI ํ˜๋ช…์ด ์‹œ์ž‘๋œ๋‹ค?](https://stibee.com/api/v1.0/emails/share/BFu7h9MIxQKvkS1EPlAND_0ixxTCvio=)
6e5204d2982b4042847aa42e88eb8fb5
Naรฏve Bayes
Generative Learning Notion
Mar 30, 2023
Alan Jo
Alan Jo
Apr 28, 2023
[Data Classification](https://texonom.com/data-classification-0ed6ffa3555b4879be09f0501f0b580c)
handle discrete-value data, assume each x is [Conditionally Independent](https://texonom.com/conditionally-independent-8fe069550d0b4a28b031eed8293a7392) by applying chain rule $$p(x|y) = \Pi_ip(x_i|y)$$ Is called naive becuz of ์ž…๋ ฅ ๋ณ€์ˆ˜๋“ค ๊ฐ„์˜ ๋…๋ฆฝ์„ฑ์„ ๊ฐ€์ •ํ•˜๋ฉฐ, ์ด๋Š” ์‹ค์ œ ๋ฐ์ดํ„ฐ์—์„œ๋Š” ๋“œ๋ฌผ๊ฒŒ ์ผ์–ด๋‚˜๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ฐ€์ • ๋•๋ถ„์— ๋ชจ๋ธ ํ•™์Šต๊ณผ ์˜ˆ์ธก ์†๋„๊ฐ€ ๋นจ๋ผ์ง€๋ฉฐ, ์ž‘์€ ๋ฐ์ดํ„ฐ์…‹์—์„œ๋„ ์ข‹์€ ์„ฑ๋Šฅ [Laplace Smoothing](https://texonom.com/laplace-smoothing-3729b2d82d30420cb6540dc4fa28ab47)
0d56821e2bcf4504899d63c22d9a533f
Variational Inference
Generative Learning Notion
Jun 1, 2023
Alan Jo
Alan Jo
Jun 6, 2023
[KL Divergence](https://texonom.com/kl-divergence-c7964872f5184a7baaf312605405aef6) [Latent Variable](https://texonom.com/latent-variable-c2bb1127d53444018b2d0eaab231cc6c)
## Probability version of [Variational Method](https://texonom.com/variational-method-da57d88f392e4a20978a6b7a39fb7350) ์ƒ์„ฑ ๋ชจ๋ธ์€ ํŒ๋ณ„ ๋ชจ๋ธ์— ๋น„ํ•ด intractable ๋‹จ์ ์„ ๋ณต์žก์„ฑ์„ ๊ฐ„๋‹จํ•œ ํ•จ์ˆ˜๋กœ ํก์ˆ˜ ์‚ฌ์ „ํ™•๋ฅ ๊ณผ ์šฐ๋„์˜ ํŒŒ๋ผ๋ฉ”ํ„ฐ ๋˜ํ•œ ์•Œ๊ณ  ์žˆ์ง€ ๋ชปํ•˜๋Š” ๊ฒฝ์šฐ > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fb8d97c6b-060c-4435-ae1f-7b78dcbf966b%2FUntitled.png?table=block&id=99cd356d-3f06-4358-a603-d4472b57752f&cache=v2) > ๋ถ„ํฌ ์ถ”์ • ๋ฌธ์ œ๋ฅผ [Convex Optimization](https://texonom.com/convex-optimization-d3bdaf9012a34af18743ac995ca00366) ๋ฐ”๊พธ์–ด์ค€๋‹ค > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fc4169ead-b13a-4dd5-8ca4-4cec1f3c7bdb%2FUntitled.png?table=block&id=6d5dcf78-8bd6-422a-86d9-5f445fcf2e6e&cache=v2) approximate posterior $p(z|x)$ using $q(z)$ because computing [Posterior](https://texonom.com/posterior-87e0f5df288140c7ba475b0629bdda05) is hard ### Variational Inference Notion |Title| |:-:| |[Variational parameter](https://texonom.com/variational-parameter-e4eaf4c0bd8046219beb3e8872f459b6)| |[ELBO](https://texonom.com/elbo-bb7352bbce42480298d501c2ae1076d1)| > [Variational Inference ์•Œ์•„๋ณด๊ธฐ - MLE, MAP๋ถ€ํ„ฐ ELBO๊นŒ์ง€](https://modulabs.co.kr/blog/variational-inference-intro/) > [๋ณ€๋ถ„์ถ”๋ก (Variational Inference) ยท ratsgo's blog](https://ratsgo.github.io/generative%20model/2017/12/19/vi/)
05563e34ddec467c95c9bda931770d50
Gaussian Discriminant Analysis
Discriminant Analysis Methods
Mar 30, 2023
Alan Jo
Alan Jo
May 18, 2023
[Normal Distribution](https://texonom.com/normal-distribution-46824b2fc69b4c5c8304b57a8967ce4c) [Logistic Regression](https://texonom.com/logistic-regression-8ed39aeb672648b1933df8911996d5d7) [Data Classification](https://texonom.com/data-classification-0ed6ffa3555b4879be09f0501f0b580c)
## GDA GDA is commonly used for data classification when the data can be approximated with a normal distribution object is to predict posterior density by the Bayes Theorem phi $\phi$ is parameter for prior - class prior is Bernoulli - class conditional distribution is Normal estimate mean, covariance becuz continuous $$P(y|x)=P(x|y)Pprior(y)ฮฃgโˆˆYP(x|g)Pprior(g)$$ special case of MoG > [๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์™€ ๋ถ„๋ณ„ ํ•จ์ˆ˜ (์„ ํ˜• ๋ถ„๋ณ„ ๋ถ„์„(LDA), 2์ฐจ ๋ถ„๋ณ„ ๋ถ„์„(QDA))](https://gaussian37.github.io/ml-concept-gaussian_discriminant/)
67ec78f9fd6944e68671c610aeadb079
Linear Discriminant Analysis
Discriminant Analysis Methods
Apr 28, 2023
Alan Jo
Alan Jo
Apr 28, 2023
## LDA
37825c2c31c744998b8aeb0715164fb8
Laplace Smoothing
Naรฏve Bayes
null
null
null
null
null
๊ฐ ๋ฒ”์ฃผ์— pseudo-counts๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ์˜ํ™•๋ฅ ์„ ํ”ผํ•œ๋‹ค ๊ด€์ฐฐ๋˜์ง€ ์•Š์€ ํŠน์ง•์˜ ํ™•๋ฅ ์€ 0์„ ๋ง‰๊ธฐ ์œ„ํ•ด ํŠน์ • ํด๋ž˜์Šค ๋ ˆ์ด๋ธ”์— ๋Œ€ํ•œ ๊ฐ ํŠน์ง•์˜ ํด๋ž˜์Šค ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ $$P(x_i | y) = (count(x_i, y) + alpha) / (count(y) + alpha * n)$$ This can be generalized as a [MAP](https://texonom.com/map-9ecf5e2396fb4901983a57761a3e7174) estimate w/ Dirichlet priors
3729b2d82d30420cb6540dc4fa28ab47
ELBO
Variational Inference Notion
May 18, 2023
Alan Jo
Alan Jo
Jun 6, 2023
[Jensenโ€™s Inequality](https://texonom.com/jensens-inequality-892c7bc3e16c40c897ad6549e8f0ec41)
## Evidence of Lower BOund **variational lower bound** minimize [KL Divergence](https://texonom.com/kl-divergence-c7964872f5184a7baaf312605405aef6) between $P(x|\theta)$ and $Q(x)$ $$ELBO(x, Q, \theta) = \Sigma_zQ(z)log\frac{p(x,z;\theta)}{Q(z)}$$ That is, $log \; p(x;\theta) \ge ELBO(x,Q,\theta), \forall Q, \theta, x$ > [๋ณ€๋ถ„์ถ”๋ก (Variational Inference) ยท ratsgo's blog](https://ratsgo.github.io/generative%20model/2017/12/19/vi/)
bb7352bbce42480298d501c2ae1076d1
Variational parameter
Variational Inference Notion
Jun 6, 2023
Alan Jo
Alan Jo
Jun 6, 2023
> [Variational Inference ์•Œ์•„๋ณด๊ธฐ - MLE, MAP๋ถ€ํ„ฐ ELBO๊นŒ์ง€](https://modulabs.co.kr/blog/variational-inference-intro/)
e4eaf4c0bd8046219beb3e8872f459b6
Automatic Differentiation
ML Theory Notion
Apr 3, 2023
Alan Jo
Alan Jo
Apr 4, 2023
[Loss Function](https://texonom.com/loss-function-e8f6343914494828988137987cf459f9)
## AD > [Automatic Differentiation: Forward and Reverse](https://jingnanshi.com/blog/autodiff.html) > [2.5. ์ž๋™ ๋ฏธ๋ถ„(automatic differentiation) โ€” Dive into Deep Learning documentation](https://ko.d2l.ai/chapter_crashcourse/autograd.html)
368d94f0c6d848ff93a2f10f99bd4e01
Closed-form Solution
ML Theory Notion
Mar 9, 2023
Alan Jo
Alan Jo
Mar 9, 2023
minimize the cost explicitly without relying on an iterative algorithm 1. take [Derivation](https://texonom.com/derivation-79d0547aee0d45ce93cdae0f26bc3ce6) of [Cost Function](https://texonom.com/cost-function-66c21423cc7347909016b3423f2ada7e) with respect to the model coefficient $\theta$ 2. find [Local extremum point](https://texonom.com/local-extremum-point-f7a7579a29474436b2a8670a28fed921) ### Normal Equation $$X^TX^\theta - X^T\vec{y} = 0$$ number 1โ€™s result is $d \times 1$ dimension if X is $n \times d$ vector (d is number of coefficient count) Fancy but Inverse matrix is very expensive $$\theta = (X^TX)^{-1}X^T\vec{y}$$
02dd2781a9334df7ba731da9b9e31ea4
Cross Validation
ML Theory Notion
Jan 26, 2020
Alan Jo
Alan Jo
Mar 9, 2023
### overfitting removal 'train set์„ ๋‹ค์‹œ train set + validation set์œผ๋กœ ๋ถ„๋ฆฌํ•˜์ง€ ์•Š๋Š”๋‹ค'๋ผ๊ณ  ๊ฐ€์ •ํ•˜๋ฉด, ์šฐ๋ฆฌ๋Š” ๋ชจ๋ธ ๊ฒ€์ฆ์„ ์œ„ํ•ด์„œ test set์„ ์‚ฌ์šฉํ•˜์—ฌ์•ผ ํ•  ๊ฒƒ์ด๋‹ค 'test set์— ๊ณผ์ ํ•ฉ ๋˜๋Š” ๋ฌธ์ œ'๋Š” test set์ด ๋ฐ์ดํ„ฐ ์ค‘ ์ผ๋ถ€๋ถ„์œผ๋กœ ๊ณ ์ •๋˜์–ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ฐœ์ƒ ๋จผ์ € ์ „์ฒด ๋ฐ์ดํ„ฐ ์…‹์„ k๊ฐœ์˜ subset์œผ๋กœ ๋‚˜๋ˆ„๊ณ  k๋ฒˆ์˜ ํ‰๊ฐ€๋ฅผ ์‹คํ–‰ํ•˜๋Š”๋ฐ, ์ด ๋•Œ test set์„ ์ค‘๋ณต ์—†์ด ๋ฐ”๊พธ์–ด๊ฐ€๋ฉด์„œ ํ‰๊ฐ€๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F0b0f07f1-9e21-4a17-86f7-7fbc18588e3b%2FUntitled.png?table=block&id=3e550a05-6908-43d4-bab9-66dda68f38fe&cache=v2) ### Cross Validation Methods |Title| |:-:| |[Holdout](https://texonom.com/holdout-41cf72ee915d45688bccfc2c16195ea9)| |[k fole cross validation](https://texonom.com/k-fole-cross-validation-55d6b33241a947fcb94278ed13ab51e2)| > [๊ต์ฐจ ๊ฒ€์ฆ(cross validation)](https://m.blog.naver.com/PostView.nhn?blogId=ckdgus1433&logNo=221599517834&categoryNo=11&proxyReferer=http%3A%2F%2Fwww.google.com%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D1%26ved%3D2ahUKEwjT5Pna59nmAhWyGaYKHaaTAQsQFjAAegQIBhAB%26url%3Dhttp%253A%252F%252Fm.blog.naver.com%252FPostView.nhn%253FblogId%253Dckdgus1433%2526logNo%253D221599517834%2526categoryNo%253D11%2526proxyReferer%253D%26usg%3DAOvVaw1_wYEneH8KBGG_rgcjFSiR)
184e7cfc80d6410188922d27ef4ef52c
Empirical Rule
ML Theory Notion
Nov 1, 2020
Alan Jo
Alan Jo
Mar 9, 2023
> [์ผ๋ฐ˜ํ†ต๊ณ„ 9 - ๊ฒฝํ—˜์  ๊ทœ์น™(68-95-99.7 Empirical Rule)์˜ ์˜๋ฏธ์™€ ์“ฐ์ž„์ƒˆ ์ดํ•ดํ•˜๊ธฐ](https://www.youtube.com/watch?v=28tbS7XAaCA)
31cf23b1578c42ab84e160251c3ca38b
Hyperparameter
null
null
null
null
null
null
### Fixed param before train ๊ฐ’์ด ํ•™์Šต ๊ณผ์ •์„ ์ œ์–ดํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๋‹ค๋ฅธ ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ๊ฐ’์€ ํ›ˆ๋ จ์„ ํ†ตํ•ด ํŒŒ์ƒ ์‚ฌ๋žŒ์ด ์ง์ ‘ ์„ค์ • ### Common - learning rate - regularization strength - โ€ฆ ### When you visualize the weight, it should be clean not noisy
ef7e34566add4e98b673d4cef59fca90
Kernel Trick
ML Theory Notion
Apr 6, 2023
Alan Jo
Alan Jo
Jun 5, 2023
[Kernel](https://texonom.com/kernel-13a25bedcee94977b02356d2320c490c) [Dimension Reduction](https://texonom.com/dimension-reduction-15e0474e20ea4645ae90092282391b39)
์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณ ์ฐจ์› ๊ณต๊ฐ„์œผ๋กœ ๋งคํ•‘ํ•˜์—ฌ ์„ ํ˜• ํ•จ์ˆ˜๋กœ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๋„๋ก ๋งคํ•‘๋œ ๊ณต๊ฐ„์—์„œ์˜ ๋‚ด์  ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ ํ˜• ํ•จ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•จ์œผ๋กœ์จ, ๋น„์„ ํ˜• ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค for Non-separable case, kernel mapping increase the likelihood to find linearly separable but cannot guarantee it Data โ†’ Feature Map โ†’ Kernel โ†’ Linear Classifier โ†’ Linear Combination ### Kernel Trick Notion |Title| |:-:| |[Kernel Function](https://texonom.com/kernel-function-ff82b05f1c5c4451a683abf0b789aefb)| |[Feature Map](https://texonom.com/feature-map-ce5417549f464c1aaed69b343eed49c3)| |[Kernel Matrix](https://texonom.com/kernel-matrix-91a5f7e0f0a5464883b3b4d09283a723)|
a3d7cdc0b30d44efbb072a926b0d99aa
Learning Hypothesis
ML Theory Notion
Oct 18, 2020
Alan Jo
Alan Jo
Mar 9, 2023
## Set of - (non) linear - (non) parametric - discriminative / generative
a4cc437840df4eb99cb311d1ab836258
Learning Rate
null
null
null
null
null
null
[Model Regularization](https://texonom.com/model-regularization-33936588cdef4041a94d0846c43ada98) tradeoff ![Andrej Kapathy](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F41b966ca-79b9-4769-a266-73eaadd97699%2FUntitled.png?table=block&id=1d82f52b-83c9-4f4d-81eb-3c9a57fffb48&cache=v2) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F4f388b76-eafd-4653-a29d-8c47b9eff86d%2FUntitled.png?table=block&id=4b982cd4-939b-4ddd-9365-cc5a8a4c5352&cache=v2)
c9a29280131f4f95a6191bde244f6789
Logistic Multinomial Classification
ML Theory Notion
Nov 1, 2020
Alan Jo
Alan Jo
Mar 9, 2023
3d7407bc18da4940bdadb5849a8cc3eb
Maximum Likelihood Estimation
ML Theory Notion
Oct 18, 2020
Alan Jo
Alan Jo
Mar 9, 2023
> [๋จธ์‹ ๋Ÿฌ๋‹ - ์ตœ๋Œ€์šฐ๋„์ถ”์ • (Maximum Likelihood Estimation)](https://www.youtube.com/watch?v=KefmJvzvcjM)
b30e67a4e47b4b7494aa23667adb6acd
Unknown Target Function
ML Theory Notion
Oct 18, 2020
Alan Jo
Alan Jo
Mar 9, 2023
a71dd16e5b6943f28827e946ace7914b
Holdout
Cross Validation Methods
Jan 26, 2020
null
null
null
null
41cf72ee915d45688bccfc2c16195ea9
k fole cross validation
Cross Validation Methods
Jan 26, 2020
null
null
null
null
55d6b33241a947fcb94278ed13ab51e2
Feature Map
Kernel Trick Notion
Apr 17, 2023
Alan Jo
Alan Jo
Jun 7, 2023
[Kernel](https://texonom.com/kernel-13a25bedcee94977b02356d2320c490c)
### vector to vector $\phi(x)$ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณ ์ฐจ์› ํŠน์ง• ๊ณต๊ฐ„(feature space)์œผ๋กœ ๋งคํ•‘ํ•˜๋Š” **ํ•จ์ˆ˜** ๋น„์„ ํ˜•์œผ๋กœ ๋งคํ•‘๋œ ๋ฐ์ดํ„ฐ๋Š” 3์ฐจ์› ๊ณต๊ฐ„์—์„œ ๋น„์„ ํ˜•์ ์ธ ํ˜•ํƒœ๋ฅผ ๊ฐ–๊ฒŒ ๋˜๋ฉฐ, ์„ ํ˜• ๋ถ„๋ฅ˜๊ธฐ๋กœ๋„ ์ž˜ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ปค๋„ํ•จ์ˆ˜ ๊ฒฐ๊ณผ ๋Š” x, z์˜ Feature Map ๋ผ๋ฆฌ ๋‚ด์ 
ce5417549f464c1aaed69b343eed49c3
Kernel Function
Kernel Trick Notion
Apr 17, 2023
Alan Jo
Alan Jo
Jun 7, 2023
$$K(x,z) = <ฯ•(x), ฯ•(z)> = ฯ•(x) \cdot ฯ•(z)$$ ์ด๋Ÿฌํ•œ ํŠน์ง•์„ ๊ฐ€์ง€๊ณ  ์ปค๋„ ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•œ๋‹ค ์ปค๋„ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์›๋ž˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋˜ ๋น„์„ ํ˜•์ ์ธ ํŠน์ง•์„ linear classifier๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณ ์ฐจ์› feature space ์œผ๋กœ ๋งคํ•‘์‹œํ‚ค๋Š” ํ•จ์ˆ˜ ์ปค๋„ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด์„œ๋„ ๋น„์„ ํ˜•์ ์ธ ํŠน์ง•์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ์ด์œ ๋Š”, ๊ณ ์ฐจ์› ํŠน์ง• ๊ณต๊ฐ„์—์„œ๋Š” Orthogonal ๊ด€๊ณ„์— ์žˆ๋Š” ๋ฐ์ดํ„ฐ ์Œ์ด ๋งค์šฐ ๋“œ๋ฌผ๊ธฐ ๋•Œ๋ฌธ ์—ฌ๊ธฐ์„œ ์ปค๋„ ํ•จ์ˆ˜๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ x์™€ z์˜ [Feature Map](https://texonom.com/feature-map-ce5417549f464c1aaed69b343eed49c3) ๊ฒฐ๊ณผ๊ฐ’์— ๋Œ€ํ•œ ๋‚ด์ (inner product)์„ ๊ณ„์‚ฐํ•˜๋Š” ํ•จ์ˆ˜. ์—ฌ๊ธฐ์„œ ์ƒˆ๋กœ ์ถ”๊ฐ€๋˜๋Š” ์ฐจ์›์— ๋Œ€ํ•œ input์€ ์ž„์˜๋กœ ๋‚˜๋จธ์ง€ ์ฐจ์›์„ ์ด์šฉํ•ด ๋งŒ๋“ค์–ด์ค€๋‹ค Kernels also can be interpreted as similarity metrics (especially [Gaussian Kernel](https://texonom.com/gaussian-kernel-0098c457bdc049568e8daf9fda306d49)) ### Kernel Functions |Title| |:-:| |[Gaussian Kernel](https://texonom.com/gaussian-kernel-0098c457bdc049568e8daf9fda306d49)| |[Polynomial Kernel](https://texonom.com/polynomial-kernel-aec7cc809f4546dab71c5bc92d176d7d)|
ff82b05f1c5c4451a683abf0b789aefb
Kernel Matrix
Kernel Trick Notion
Apr 17, 2023
Alan Jo
Alan Jo
Jun 5, 2023
<> means [Vector Similarity](https://texonom.com/vector-similarity-846675a408e74235acc836302110ab07) and $\phi(x)$ means vector kernel mapping function $$K_{nm} = K_{mn} = K(x_n, x_m) = <\phi(x_n), \phi(x_m)>$$ - If K is a valid kernel, K must be symmetric - If K is a valid kernel, K must be semi-definite ### Kernel Matrix Notion |Title| |:-:| |[Mercer Kernel Theorem](https://texonom.com/mercer-kernel-theorem-cebcf7555bf44413907751aa58633ee0)|
91a5f7e0f0a5464883b3b4d09283a723
Gaussian Kernel
Kernel Functions
Apr 17, 2023
Alan Jo
Alan Jo
Apr 17, 2023
$$K(x, z) = exp(-ฮณ ||x - z||^2)$$ ฮณ๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(hyperparameter)๋กœ์„œ, ์ž…๋ ฅ ๋ฐ์ดํ„ฐ x์™€ z ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์–ผ๋งˆ๋‚˜ ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ• ์ง€๋ฅผ ๊ฒฐ์ •\ ๊ฐ€์šฐ์‹œ์•ˆ ์ปค๋„์€ 0์„ ๋ชป๋งŒ๋“œ๋‹ˆ๊นŒ ๋‘ ๋ฒกํ„ฐ๋ฅผ orthogonalํ•˜๊ฒŒ ๋ชป๋ณ€ํ™˜
0098c457bdc049568e8daf9fda306d49
Polynomial Kernel
Kernel Functions
Apr 17, 2023
Alan Jo
Alan Jo
Apr 17, 2023
aec7cc809f4546dab71c5bc92d176d7d
Mercer Kernel Theorem
Kernel Matrix Notion
Apr 17, 2023
Alan Jo
Alan Jo
Jun 5, 2023
[Symmetric positive semi-definite](https://texonom.com/symmetric-positive-semi-definite-16ce5c2766e94f3d803ea6ddf2742660)
1. Symmetric: K(x, z) = K(z, x) 2. Positive semi-definite: for any finite set of points {x1, x2, ..., xn}, the corresponding kernel matrix K must be symmetric and positive semi-definite
cebcf7555bf44413907751aa58633ee0
Learn Machine Learning
Machine Learning Usages
Jul 6, 2021
Alan Jo
Alan Jo
Jun 6, 2023
[Linear Algebra](https://texonom.com/linear-algebra-a5879da463c442d89c51891d124f97ac) [Statistics](https://texonom.com/statistics-561b1e8231f44a45bb6284033db682fb) [Optimization](https://texonom.com/optimization-984100dcbc454057bffd1b97be6ef134) [Calculus](https://texonom.com/calculus-8e37e7dac61e435da6a6970da7296f73)
### Korean Study > [0000 Machine Learning Basic - Deepest Documentation](https://deepestdocs.readthedocs.io/en/latest/000_machine_learning/0000_machine_learning_basic/) > [๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•(gradient descent) - ๊ณต๋Œ์ด์˜ ์ˆ˜ํ•™์ •๋ฆฌ๋…ธํŠธ](https://angeloyeo.github.io/2020/08/16/gradient_descent.html) > [PRML](http://norman3.github.io/prml/)
1c6270ed8f544e52b0fa19044a459c6a
Machine Learning Method
Machine Learning Usages
May 13, 2021
Alan Jo
Alan Jo
Jul 6, 2023
[Parameter Estimation](https://texonom.com/parameter-estimation-2c5667f2707b4d3082e96a5928464029) [Machine Learning Theory](https://texonom.com/machine-learning-theory-c69317fb5dc24f05a29532fa27d27cb1)
### Machine Learning Techniques |Title| |:-:| |[ML Compiler Optimization](https://texonom.com/ml-compiler-optimization-011e7bd0ba8f417bb111ec5ea2171c8e)| |[Quantum Machine Learning](https://texonom.com/quantum-machine-learning-8f5276045f4d43b8b96f3b4ec6646f66)| |[Parallel Training](https://texonom.com/parallel-training-4a8896bc837b4dddb47c3700b715cdc8)| |[ Weight Initialization](https://texonom.com/weight-initialization-6cfc10eb06f948528aa76a9814a9ac85)| ### Machine Learning Methodology |Title| |:-:| |[MLOps](https://texonom.com/mlops-70d0a9a4ab154f528d364f0198f064d2)| |[Auto ML](https://texonom.com/auto-ml-2e283b8fb3b34a148979fe3feefa53f9)| |[Ray Architecture](https://texonom.com/ray-architecture-8c8b1acd717c4989a65230bc90d92b7f)| |[Pathway Architecture](https://texonom.com/pathway-architecture-70fd437c1f71460a9f31b28d690cc90c)| |[Vessl](https://texonom.com/vessl-467995baadef4f4e94bdfb8f236157f9)| ### Machine Learning Methods |Title| |:-:| |[Supervised Learning](https://texonom.com/supervised-learning-eaf91e20b3d04aadb4fc3ea512c73aa1)| |[Unsupervised learning](https://texonom.com/unsupervised-learning-8cb6e253bfa845b5931d22963ea93019)| |[Reinforcement Learning](https://texonom.com/reinforcement-learning-3e6e1e5b806941b6b586ce2c3d1bbd02)|
4d27fd7ddf4247e6b98df2ac09c2e25a
Machine Learning Tool
Machine Learning Usages
Aug 5, 2021
Alan Jo
Alan Jo
Mar 5, 2023
[AI Library](https://texonom.com/ai-library-30022d621bfd4843b908559bf1f6c1ac)
### Machine Learning Tools |Title| |:-:| |[ML Accelerator](https://texonom.com/ml-accelerator-0df3a271237b4e63a342aa7ce704870d)| |[ML Analyze Tool](https://texonom.com/ml-analyze-tool-5aeb48a9850245eb97e20ec56448a15f)| |[ML Platform](https://texonom.com/ml-platform-9d4142db8db042ed9e4a79085348cc55)| |[Function Transformers](https://texonom.com/function-transformers-c4396d81a01a4425ba0c6702501c911a)| |[ML Feature Store](https://texonom.com/ml-feature-store-f53069a7083b4719b1e5fab18a5a9bbd)| |[ML Container Tool](https://texonom.com/ml-container-tool-14223d2021c748268fba092dee1fa357)| > [ํ† ์Šคใ…ฃSLASH 22 - ๋ฌผ ํ๋ฅด๋“ฏ ์ž์—ฐ์Šค๋Ÿฌ์šด ML ์„œ๋น„์Šค ๋งŒ๋“ค๊ธฐ](https://youtu.be/EEsYbiqqcc0)
4183d7b4a9d44149932142731c91ca1d
Machine Unlearning
Machine Learning Usages
Jul 10, 2023
Alan Jo
Alan Jo
Jul 10, 2023
> [Announcing the first Machine Unlearning Challenge](https://ai.googleblog.com/2023/06/announcing-first-machine-unlearning.html)
7b6060981f15488e8708533a77b88a2d
ML Meta Algorithm
Machine Learning Usages
Oct 6, 2021
Alan Jo
Alan Jo
Mar 7, 2023
### ML Meta Algorithms |Title| |:-:| |[AdaBoost](https://texonom.com/adaboost-79feac6204384e7299e08e3cfa40d05e)|
29290f722f8c442a9e8c9a3528420be1
Neural Network
Machine Learning Usages
Nov 5, 2019
Alan Jo
Seong-lae Cho
Jul 6, 2023
[Synapse](https://texonom.com/synapse-955f5ab318f54b85a23f1240e9b93a0d) [Computational Graph](https://texonom.com/computational-graph-51f54bce30ed44569be80f56d596340f) [Back Propagation](https://texonom.com/back-propagation-18f4493692ad43449d4271f1bb293781)
## N**arrowly defined AI** ### [Data Representation](https://texonom.com/data-representation-81d5d9fe876c4c95a6bb3cdbc01fab2d) + [Data Classification](https://texonom.com/data-classification-0ed6ffa3555b4879be09f0501f0b580c) + [Algorithm](https://texonom.com/algorithm-678d8c51d1d3479badb557af87762562) ### Neural Network Notion |Title| |:-:| |[Neural Network History](https://texonom.com/neural-network-history-2127bdb56da54a659e570f47704e40b1)| |[Deep Learning](https://texonom.com/deep-learning-7d3c8b9ce05b49cf9eed92dbcdc80cfd)| |[Neural Network Structure](https://texonom.com/neural-network-structure-400bbea8029c4eb1a97c0dd063735551)| ### Visualization > [Tensorflow โ€” Neural Network Playground](https://playground.tensorflow.org/) ### **Zero to Hero** > [Neural Networks: Zero To Hero](https://karpathy.ai/zero-to-hero.html)
86f54f9f1de848c1a29c56c24f7d5094
Auto ML
Machine Learning Methodology
Sep 5, 2020
Alan Jo
Alan Jo
Apr 19, 2023
### Data Prep โ†’ Feature Engineering โ†’ Modeling โ†’ HyperParameter Tuning can pick us tool ### Auto MLs |Title| |:-:| |[Microsoft NNi](https://texonom.com/microsoft-nni-5df59b29fe4c4dcba6f738bf2e89e1df)| > [[6์ฃผ์ฐจ] Introduction to Meta Learning](https://velog.io/@tobigs_xai/6์ฃผ์ฐจ-Introduction-to-Meta-Learning) > [google-research/google-research](https://github.com/google-research/google-research/tree/master/automl_zero)
2e283b8fb3b34a148979fe3feefa53f9
MLOps
Machine Learning Methodology
Dec 26, 2020
Alan Jo
Alan Jo
Mar 8, 2023
[MLOPs-Primer](https://github.com/dair-ai/MLOPs-Primer)
## Machine Learning + Operation ### MLOps Usages |Title| |:-:| |[MLOps Framework](https://texonom.com/mlops-framework-3a7b16d0dd284c7d90f3ae7ceb288b81)| > [Online gradient descent written in SQL โ€ข Max Halford](https://maxhalford.github.io/blog/ogd-in-sql/)
70d0a9a4ab154f528d364f0198f064d2
Pathway Architecture
Machine Learning Methodology
Feb 9, 2022
Alan Jo
Alan Jo
Mar 5, 2023
### Google Search AI Architecture > [Introducing Pathways: A next-generation AI architecture](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/)
70fd437c1f71460a9f31b28d690cc90c
Ray Architecture
Machine Learning Methodology
Sep 11, 2020
Alan Jo
Alan Jo
Mar 5, 2023
Ray๋Š” ๋‹จ์ผ ๋™์  ์ž‘์—… ๊ทธ๋ž˜ํ”„์—์„œ ์ž‘์—… ๋ณ‘๋ ฌ ๋ฐ Actor ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ชจ๋ธ์„ ํ†ตํ•ฉํ•˜๊ณ  ๊ธ€๋กœ๋ฒŒ ์ œ์–ด ์ €์žฅ์†Œ ๋ฐ ์ƒํ–ฅ์‹ ๋ถ„์‚ฐ ์Šค์ผ€์ค„๋Ÿฌ๋ฅผ ํ†ตํ•ด ์ง€์›๋˜๋Š” ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์‚ฌ์šฉ ์•„ํ‚คํ…์ฒ˜์—์„œ ๋™์‹œ์— ๋‹ฌ์„ฑ๋˜๋Š” ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์œ ์—ฐ์„ฑ, ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰ ๋ฐ ๋‚ฎ์€ ๋Œ€๊ธฐ ์‹œ๊ฐ„์€ ๋ฆฌ์†Œ์Šค ์š”๊ตฌ ์‚ฌํ•ญ, ๊ธฐ๊ฐ„ ๋ฐ ๊ธฐ๋Šฅ์ด ๋‹ค์–‘ํ•œ ์ž‘์—…์„ ์ƒ์„ฑํ•˜๋Š” ์ƒˆ๋กœ์šด ์ธ๊ณต ์ง€๋Šฅ ์›Œํฌ๋กœ๋“œ์— ํŠนํžˆ ์ค‘์š” Ray๋Š” ๋ฏธ๋ž˜์˜ AI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด ์œ ์—ฐ์„ฑ, ์„ฑ๋Šฅ ๋ฐ ์‚ฌ์šฉ ํŽธ์˜์„ฑ์˜ ๊ฐ•๋ ฅํ•œ ์กฐํ•ฉ์„ ์ œ๊ณต > [Ray ์•„ํ‚คํ…์ณ ๋ฐฑ์„œ (๋ฒˆ์—ญ)](https://brunch.co.kr/@chris-song/106)
8c8b1acd717c4989a65230bc90d92b7f
Vessl
Machine Learning Methodology
Apr 3, 2023
Alan Jo
Alan Jo
May 17, 2023
[AI ํด๋Ÿฌ์Šคํ„ฐ VESSL ์‚ฌ์šฉ์ž ๋งค๋‰ด์–ผ](https://texonom.com/ai-vessl-1d134eb8f9f440f78ef87c08761ebe34) [VESSL for Academics](https://texonom.com/vessl-for-academics-fa47bf5e69b44e92b5daaead758cb057) ### Canโ€™t run docker inside workspace > [Tips & Limitations](https://docs.vessl.ai/user-guide/workspace/tips-and-limitations) ### Wroksapce custom image ```typeRUN apt-get install -y -q \ libsqlite3-dev \ build-essential``` > [Building Custom Images](https://docs.vessl.ai/user-guide/workspace/building-custom-images)
467995baadef4f4e94bdfb8f236157f9
Microsoft NNi
Auto MLs
Sep 5, 2020
null
null
null
null
## Neural Network Intelligence automate machine learning lifecycle ### Feature - Feature Engineering - Neural Architecture Search - Hyperparameter Tuning - Model Comperssion ### Windows ```type# installpython -m pip install --upgrade nni# testgit clone -b v1.8 https://github.com/Microsoft/nni.gitnnictl create --config nni/examples/trials/mnist-tfv1/config_windows.yml --port 9999``` ### Github > [microsoft/nni](https://github.com/microsoft/nni) > [AutoML ๋„๊ตฌ Microsoft NNI](https://eunguru.tistory.com/241)
5df59b29fe4c4dcba6f738bf2e89e1df
MLOps Framework
MLOps Usages
Oct 9, 2021
Alan Jo
Alan Jo
Oct 9, 2021
### MLOps Frameworks |Title| |:-:| |[ZenML](https://texonom.com/zenml-db8d78d303ba4e5c90e7cf4a99bcb7b0)| |[Open MLOps](https://texonom.com/open-mlops-78dadc74bbcd4609bc7f1d7267ea9fa7)| |[WanDB](https://texonom.com/wandb-1c57514e8a1f476f8451738d3486d77a)|
3a7b16d0dd284c7d90f3ae7ceb288b81
Open MLOps
MLOps Frameworks
Oct 9, 2021
Alan Jo
Alan Jo
Feb 18, 2022
[GNPS](https://texonom.com/gnps-a1f892efaeec4950ae30b7fcf90cd09d) > [Production ML solution for MS using Open MLOps](https://www.datarevenue.com/en-blog/production-machine-learning-omigami-open-mlops) > [GitHub - datarevenue-berlin/OpenMLOps](https://github.com/datarevenue-berlin/OpenMLOps)
78dadc74bbcd4609bc7f1d7267ea9fa7
WanDB
MLOps Frameworks
Apr 25, 2023
Alan Jo
Alan Jo
Apr 25, 2023
> [Pytorch wandb (Weight & Biases) ์ ์šฉ](https://velog.io/@nawnoes/Pytorch-Wandb-Weight-Biases-์ ์šฉ)
1c57514e8a1f476f8451738d3486d77a
ZenML
MLOps Frameworks
Dec 26, 2020
Alan Jo
Alan Jo
Oct 9, 2021
[ZenML Init](https://texonom.com/zenml-init-47e9d508a53f401ea8838e02464e5128) > [maiot-io/zenml](https://github.com/maiot-io/zenml)
db8d78d303ba4e5c90e7cf4a99bcb7b0
GNPS
Open MLOps
null
null
null
null
null
> [Collaborative MS Analysis with the GNPS Dashboard](https://www.datarevenue.com/en-blog/gnps-dashboard)
a1f892efaeec4950ae30b7fcf90cd09d
ZenML Init
ZenML
null
null
null
null
null
```typepip install zenmlcd repozenml init``` > [maiot-io/zenml](https://github.com/maiot-io/zenml)
47e9d508a53f401ea8838e02464e5128
Reinforcement Learning
Machine Learning Methods
Nov 5, 2019
Alan Jo
Seong-lae Cho
Jul 15, 2023
[gym](https://github.com/openai/gym) [Reinforcement](https://texonom.com/reinforcement-a04826d130484e65b22afbf08ca96800) [baselines](https://github.com/openai/baselines)
### Its label is a real-valued reward signal (possibly delayed) ์–ด๋–ค ํ™˜๊ฒฝ ์•ˆ์—์„œ ์ •์˜๋œ ์—์ด์ „ํŠธ๊ฐ€ ํ˜„์žฌ์˜ ์ƒํƒœ๋ฅผ ์ธ์‹ํ•˜์—ฌ, ์„ ํƒ ๊ฐ€๋Šฅํ•œ ํ–‰๋™๋“ค ์ค‘ ๋ณด์ƒ์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ํ–‰๋™ ํ˜น์€ ํ–‰๋™ ์ˆœ์„œ๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฐฉ๋ฒ• ์—์ด์ „ํŠธ๊ฐ€ ํ™˜๊ฒฝ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ ํ˜น์€ human feedback Special form of Supervised learning - Agent - Environment - Action - State - Reward <details><summary> **Basic idea - **random** **action โ†’check reward โ†’ observation given state โ†’ learn โ†’ make policy</summary> - Receive feedback in the form of rewards - Agentโ€™s utility is defined by the reward function - Must (learn to) act so as to maximize expected rewards - All learning is based on observed samples of outcomes </details> ### Reinforcement Learning Notion |Title| |:-:| |[Markov decision process](https://texonom.com/markov-decision-process-d01c5c23d56648ce843727514008e25c)| |[RL Exploration](https://texonom.com/rl-exploration-3b4038d0640f4fe184558e3d477cbec2)| |[RL Exploitation](https://texonom.com/rl-exploitation-caee227c108e4139b66ec1e7f71ab80c)| |[Reinforcement Learning Term](https://texonom.com/reinforcement-learning-term-c0e49da62c5a4690b9e6d653fc63d45a)| |[Passive reinforcement learning](https://texonom.com/passive-reinforcement-learning-5ff410c59608455380eb53627655fc1b)| |[Evolutionary Learning](https://texonom.com/evolutionary-learning-b63b9a0ef63845d3bfea5b9e0abb9692)| |[Model based learning](https://texonom.com/model-based-learning-7e1b7de3d4b54e7a8281dc4e5cd6dbb4)| |[Policy Iteration](https://texonom.com/policy-iteration-55cbe9219f8a48fbb850f64b677e847a)| |[Bellmanย Expectation Equation](https://texonom.com/bellmanexpectation-equation-1135fc0eb9bb46388bb1453399d8cca6)| |[State-value function](https://texonom.com/state-value-function-d9d3467fea994443b2336fd7958dc00b)| |[Q Function](https://texonom.com/q-function-115a8a9d62554ebf9fbb46efb3f263ca)| ### Reinforcement Learnings |Title| |:-:| |[RLHF](https://texonom.com/rlhf-4b184f9c9e8b4c7a8861fb6374e91aa6)| |[RRHF](https://texonom.com/rrhf-073c6bdf48444a1b9acad9e65057f3d0)| |[DQN](https://texonom.com/dqn-d3f9810ec70640a0b940b2d0c214adbb)| |[PPO](https://texonom.com/ppo-87ce8ebe81f84ac1a7617b1f6def9e26)| |[ACER](https://texonom.com/acer-a0eafd5e768c4f62955b12fc428e8719)| |[TRPO](https://texonom.com/trpo-23c0f917124d419cbfe478d20b804276)| |[A3C](https://texonom.com/a3c-eb1de7310234443d986317171949eaff)| |[SARSA](https://texonom.com/sarsa-e5d847a4fb6e41cdad5b9ffb6e974a10)| |[Q-Learning](https://texonom.com/q-learning-6fb81e4a53ab4e3097784cde99c8c038)| > [What is Reinforcement Learning ยท Fundamental of Reinforcement Learning](https://dnddnjs.gitbooks.io/rl/content/what_is_reinforcement_learning.html)
3e6e1e5b806941b6b586ce2c3d1bbd02
Supervised Learning
null
null
null
null
null
null
## Each example in a dataset is labeled in advance pairs of output y, input x $p(y|x, \theta)$. But [Data Labeling](https://texonom.com/data-labeling-dda48db348de44a9bafa1ae69ca18133) is expensive
eaf91e20b3d04aadb4fc3ea512c73aa1
Unsupervised learning
null
null
null
null
null
null
### x is output $p(x|\theta)$ How data is composed > [Using Large Language Models Effectively](https://unsupervisedlearning.substack.com/p/using-large-language-models-effectively)
8cb6e253bfa845b5931d22963ea93019
**Bellmanย Expectation Equation**
Reinforcement Learning Notion
Jul 18, 2023
Alan Jo
Alan Jo
Jul 18, 2023
### recursive equation that relates the value of a state to the values of its neighboring states $$V(s)=โˆ‘aโ€‹ฯ€(aโˆฃs)โˆ‘sโ€ฒ,rโ€‹p(sโ€ฒ,rโˆฃs,a)[r+ฮณV(sโ€ฒ)]$$ Reinforcement learning targets to solve this equation ๋ชฉํ‘œ๋Š”ย value func.์˜ ์ฐธ ๊ฐ’์„ ์ฐพ๋Š” ๊ฒƒ์ด ์•„๋‹Œย **์ตœ๋Œ€์˜ reward๋ฅผ ์–ป๋Š” policy๋ฅผ ์ฐพ๋Š” ๊ฒƒ** ํ˜„**์žฌ ์ƒํƒœ์˜ ๊ฐ€์น˜ํ•จ์ˆ˜์™€ ๋‹ค์Œ ์ƒํƒœ์˜ ๊ฐ€์น˜ํ•จ์ˆ˜ ์‚ฌ์ด์˜ ๊ด€๊ณ„** **์ƒํƒœ๊ฐ€ ๋งŽ์•„์งˆ์ˆ˜๋ก ์ƒ๋‹นํžˆ ๋น„ํšจ์œจ์ ์ธ ๋ฐฉ๋ฒ•** > [(3) ๊ฐ€์น˜ํ•จ์ˆ˜์™€ ๋ฒจ๋งŒ๋ฐฉ์ •์‹](https://jang-inspiration.com/bellman-equation) > [Untitled](https://sumniya.tistory.com/5)
1135fc0eb9bb46388bb1453399d8cca6
Evolutionary Learning
Reinforcement Learning Notion
Nov 12, 2021
Alan Jo
Alan Jo
Jul 15, 2023
[DERL](https://texonom.com/derl-f01c4bd87fe447f8871b24ca09e4b654)
b63b9a0ef63845d3bfea5b9e0abb9692
Markov decision process
Reinforcement Learning Notion
Mar 5, 2023
Alan Jo
Alan Jo
Jul 18, 2023
## Find most effective Policy from random Reinforcement Learning is process of resolving MDP > New twist - donโ€™t know R and T (different to traditional MDP) โ†’ **(Step 1)** >> โ†’ Must actually try actions and states out to learn > - A set of states s โˆˆS > - A set of actions (per state) A > - A **model T(s,a,sโ€™) **(probability) > - A **reward function** **R(s,a,sโ€™)** > Bellman equation - do not need to know environment model use action -value function ### MDP > [OpenRL - ๊ฐ•ํ™”ํ•™์Šต ๊ทธ๋ฆฌ๊ณ  OpenAI - 2: Intro to Reinforcement Learning (1) MDP &amp;Value Function](http://www.modulabs.co.kr/RL_library/2136) > MDP is Markov Decision Process and tuple of states, actions, station probability matrix (probability to go certain state to another state by certain action), reward function, discounted factor ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F38f74cd1-611d-4387-b7a2-08024494def7%2FUntitled.png?table=block&id=6816bd17-3b7f-4a1b-a5eb-168cc41935bb&cache=v2)
d01c5c23d56648ce843727514008e25c
Model based learning
Reinforcement Learning Notion
Nov 5, 2019
Alan Jo
Seong-lae Cho
Jul 15, 2023
- Learn an approximate model based on experiences - Solve for values as if the learned model were correct? ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F8a46ac1d-3c48-4aa1-a780-fbe3036338a1%2FUntitled.png?table=block&id=92448420-b90c-4be0-81c7-8a7c47bda2f8&cache=v2) > Model free learning do not instersted in R and T **Step 1: Learn empirical MDP model** - Count outcomes sโ€™ for each s, a - Normalize to give an estimate of `math: T\hat(s, a, s')` - ๋‹จ์ˆœํ™•๋ฅ ํ‰๊ท  of action **Step 2: Solve the learned MDP** use value iteration, as before > State value function - sum of rewards get from states passed (all time) > Action value function - expected reward from action in this state (that time)
7e1b7de3d4b54e7a8281dc4e5cd6dbb4
**Passive reinforcement learning**
Reinforcement Learning Notion
Nov 5, 2019
Alan Jo
Seong-lae Cho
Jul 15, 2023
Do not consider T and R โ†’ simplified task - **just evaluate policy by state value** <details><summary> **So goal is compute value of each state under policy (input is policy โ†’ (episodes training by observation) โ†’ output is value per state)**</summary> <details><summary> **direct evaluation** - just sum of after state's value and divide by episode number</summary> </details> <details><summary> **Sample-based policy evaluation **- improve V per transition by estimate T and R by sample of outcome</summary> <details><summary> **Temporal difference learning** - ๊ทธ์ƒํƒœ๋งŒ ๊ณ ๋ ค</summary> ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F91ec5e05-f868-4806-859d-35d00b69575a%2FUntitled.png?table=block&id=4b86d05f-b8db-49b9-894a-571262041d23&cache=v2) </details> <details><summary> **Exponential moving average** - ์ตœ๊ทผ๊บผ ๋” ์ค‘์š”ํ•˜๊ฒŒ ๊ณ ๋ ค</summary> </details> <details><summary> **Active reinforcement learning **- ์‹คํ•ด๋กœ ํ–‰ํ•˜๋ฉด์„œ</summary> > Fundamental tradeoff: exploration vs. exploitation - since it is online playing </details> <details><summary> **Q-learning **- exponential + ์ „๋ถ€๋‹ค = Q-value-iteration</summary> ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fe0cc087b-dcad-48e8-9419-56b5ce7df7c0%2FUntitled.png?table=block&id=4f27f063-8a1c-4599-947c-5126a8ed5029&cache=v2) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F486a1aca-a438-4011-932b-4bad8be94167%2FUntitled.png?table=block&id=af9e1f2f-801d-42bb-85c6-46ae58d1c65a&cache=v2) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fe69f841c-7864-4e5b-8ea4-cc3b33c91a37%2FUntitled.png?table=block&id=07d1519b-abfb-41d1-8818-48e46c6e47ce&cache=v2) </details> </details> </details> > Optimal value function means high Q value > Q value is prediction of all future R by action > V value is prediction of all future R in state > Policy is action per state which maximize V > Alpha means learning rate ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F3e9870ff-dce0-4ac8-b380-9ab6bc418002%2FUntitled.png?table=block&id=46ea0752-d926-4a7f-bbf1-6adc2f1cd993&cache=v2) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fbfadfe49-2e0f-436f-afde-3a86a8f7bc17%2FUntitled.png?table=block&id=517faf71-946c-49af-8c3b-6ec539f68c2b&cache=v2) > So most reinforce learning is Q - MDP is not used - just for understanding
5ff410c59608455380eb53627655fc1b
****Policy Iteration****
Reinforcement Learning Notion
Jul 18, 2023
Alan Jo
Alan Jo
Jul 18, 2023
[Dynamic Programming](https://texonom.com/dynamic-programming-810a9aa590434f02b9fe4d869fb9c371)
## Generalized Policy Iteration (GPI) ### 1. Policy Evaluation ### 2. Policy Improvement ### Limitation - Computation Complexity - Canโ€™t get perfect information about the environment > [(5) ์ •์ฑ… ์ดํ„ฐ๋ ˆ์ด์…˜, ๊ฐ€์น˜ ์ดํ„ฐ๋ ˆ์ด์…˜](https://jang-inspiration.com/policy-value-iteration)
55cbe9219f8a48fbb850f64b677e847a
Q Function
Reinforcement Learning Notion
Jul 18, 2023
Alan Jo
Alan Jo
Aug 31, 2023
### value function Generalizing Across States - a table of all q-values hard โ†’ Too many state โ†’ **Generalize that experience to new, similar situations โ† Feature-Based Representations** This is a fundamental idea in machine learning, and weโ€™ll see it over and over again 1. linear value function > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F6d9e143e-699d-4223-bfcc-e08db89b34d4%2FUntitled.png?table=block&id=0ad0af52-6f54-4591-90e2-329545dab183&cache=v2) > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F1384f9c8-596e-47f0-bd22-4d8cf6ff695a%2FUntitled.png?table=block&id=dc1ca190-b602-4566-bbb0-b878e081173d&cache=v2) > + least squares or regression then minimize error ํ–‰๋™๊ฐ€์น˜ํ•จ์ˆ˜ **์–ด๋–ค ์ƒํƒœ์—์„œ ์–ด๋–ค ํ–‰๋™์ด ์–ผ๋งˆ๋‚˜ ์ข‹์€์ง€** > [(3) ๊ฐ€์น˜ํ•จ์ˆ˜์™€ ๋ฒจ๋งŒ๋ฐฉ์ •์‹](https://jang-inspiration.com/bellman-equation)
115a8a9d62554ebf9fbb46efb3f263ca
Reinforcement Learning Term
Reinforcement Learning Notion
Mar 5, 2023
Alan Jo
Alan Jo
Jul 15, 2023
### States - environment state - environment representation - **agent state** - agent representation - most used state - information state (Markov state) - probability from start to this state = probability from previous state to this state โ†’ state is Markov (independant) ### Others - history - sequence of observation, action, reward - value iteration > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F741e07fc-f795-4de3-a9b3-b0e5ffdcd557%2FUntitled.png?table=block&id=ec29a645-745b-4a6e-aeaf-f05124c05ddb&cache=v2) - policy iteration - MDP - policy and value > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fe77bfc9b-5f87-4825-8985-dd921d1523e7%2FUntitled.png?table=block&id=ee5c5148-bb6c-4042-8db8-48f906b174fc&cache=v2) > Both value iteration and policy iteration compute the same thing (all optimal values)
c0e49da62c5a4690b9e6d653fc63d45a
RL Exploitation
Reinforcement Learning Notion
Nov 5, 2019
Alan Jo
Seong-lae Cho
Jul 15, 2023
**Regret** - Regret is a measure of your total mistake cost = the difference between your (expected) rewards, including youthful sub-optimal, and optimal (expected) rewards ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fd4b2e050-d2fa-4f35-9e28-c340b1576838%2FUntitled.png?table=block&id=703ab4f6-b2dc-4b5d-b184-5a2cf4aa8d8c&cache=v2) > policy evaluation is prediction in policy iteration > policy improvement is control in policy iteration
caee227c108e4139b66ec1e7f71ab80c
RL Exploration
Reinforcement Learning Notion
Nov 5, 2019
Alan Jo
Seong-lae Cho
Jul 15, 2023
Simplest: random actions (ฮต-greedy) > With (small) probability ฮต, act randomly (if random is small then threshold) โ†’** threshold become lower greedly by learning **โ†’ become zero > With (large) probability 1-ฮต, act on current policy > - can keep thrashing around once learning is done >> One solution: lower ฮตover time **(decaying epsilon greedy) ** >> explore areas whose badness is not (yet) established **(optimism for uncertainty)**
3b4038d0640f4fe184558e3d477cbec2
State-value function
Reinforcement Learning Notion
Jul 18, 2023
Alan Jo
Alan Jo
Jul 18, 2023
## V-function expected return starting from a particular state under a given policy $$V(s) = E[G |S=s]$$
d9d3467fea994443b2336fd7958dc00b
DERL
Evolutionary Learning
null
null
null
null
null
## Deep Evolutionary Reinforcement Learning) [Unimal](https://texonom.com/unimal-1dc7297fd5014e0b81b8de92950c0dce) ๊ฐ•ํ™”ํ•™์Šต์„ ํ† ๋Œ€๋กœ ๋‹ค์–‘ํ•œ ์ง€ํ˜•์„ ์ด๋™ํ•  ์ˆ˜ ์žˆ๊ณ ,ย ๋ฌผ์ฒด๋ฅผ ์›€์ง์ด๋Š”๋ฐ ํ•„์š”ํ•œ ์‹ ์ฒด ์ƒ์„ฑ > [Stanford University Deep Evolutionary RL Framework Demonstrates Embodied Intelligence via Learning...](https://medium.com/syncedreview/stanford-university-deep-evolutionary-rl-framework-demonstrates-embodied-intelligence-via-learning-686c63e18dc9)
f01c4bd87fe447f8871b24ca09e4b654
Unimal
DERL
null
null
null
null
null
### Universe + Animal
1dc7297fd5014e0b81b8de92950c0dce
**A3C**
Reinforcement Learnings
Jun 17, 2023
Alan Jo
Alan Jo
Jul 15, 2023
[Deepmind](https://texonom.com/deepmind-5eb171c77b344d4786a9a5b23ae70eca)
### Asynchronous Advantage actor-critic
eb1de7310234443d986317171949eaff
ACER
Reinforcement Learnings
Jul 15, 2023
Alan Jo
Alan Jo
Jul 15, 2023
2016๋…„ 11์›”, DeepMind. > [Sample Efficient Actor-Critic with Experience Replay](https://arxiv.org/abs/1611.01224)
a0eafd5e768c4f62955b12fc428e8719
**DQN**
Reinforcement Learnings
Jun 17, 2023
Alan Jo
Alan Jo
Jul 15, 2023
[Deepmind](https://texonom.com/deepmind-5eb171c77b344d4786a9a5b23ae70eca)
d3f9810ec70640a0b940b2d0c214adbb