title
stringlengths
1
544
โŒ€
parent
stringlengths
0
57
โŒ€
created
stringlengths
11
12
โŒ€
editor
stringclasses
1 value
creator
stringclasses
4 values
edited
stringlengths
11
12
โŒ€
refs
stringlengths
0
536
โŒ€
text
stringlengths
1
26k
id
stringlengths
32
32
StarChat
Huggingface H4
null
null
null
null
null
> [HuggingFaceH4/starchat-beta ยท Hugging Face](https://huggingface.co/HuggingFaceH4/starchat-beta) > [TheBloke/starchat-beta-GPTQ at main](https://huggingface.co/TheBloke/starchat-beta-GPTQ/tree/main)
ea316ec509564a51b56ad92b22831220
HuggingFace Docker Space
HuggingFace Space SDK
Jul 13, 2023
Alan Jo
Alan Jo
Jul 13, 2023
### HuggingFace Docker Space Templates |Title| |:-:| |[HuggingFace ChatUI Template](https://texonom.com/huggingface-chatui-template-9cd1b4ab300f44b0bc91c87f33edf6bb)|
0f250609ad1f493bb91146813de8d8a6
HuggingFace ChatUI Template
HuggingFace Docker Space Templates
Jul 13, 2023
Alan Jo
Alan Jo
Jul 13, 2023
9cd1b4ab300f44b0bc91c87f33edf6bb
fastbook
Deep Learning Tools
Nov 25, 2019
Alan Jo
Alan Jo
May 29, 2023
> [fastai/fastbook](https://github.com/fastai/fastbook)
d022baa785a14ce5af5cf1ef59995cb1
Netron
Deep Learning Tools
Oct 6, 2021
Alan Jo
Alan Jo
May 29, 2023
### visualize Neural Network > [lutzroeder/netron](https://github.com/lutzroeder/netron)
2e410ef29aaa4a7d9e2a2777ce4dd3ee
Activation Function
Neural Network Components
Apr 27, 2023
Alan Jo
Alan Jo
Jun 6, 2023
### Unlike sign function for [Back Propagation](https://texonom.com/back-propagation-18f4493692ad43449d4271f1bb293781), use non zero derivative - sigmoid function - probability - sign function - predict class ### Activation Functions |Title| |:-:| |[Sigmoid Function](https://texonom.com/sigmoid-function-417e17b995cf40c996cec78f699ea59b)| |[GELU](https://texonom.com/gelu-8f18023a80b84a06b5afd648811df6bc)| |[ReLU](https://texonom.com/relu-e582549804da48b893758895e446ffb9)| |[Sign Function](https://texonom.com/sign-function-b95e191cc2dc43c0befd6231f022555f)| |[ELU Function](https://texonom.com/elu-function-c7306a8566014b4e9d0733b52bd399fa)| |[Mish Function](https://texonom.com/mish-function-39eaae692b284adbadde08d3d707f13d)| |[Tanh Function](https://texonom.com/tanh-function-679abf35c4eb4fb0bb0e56140cac3d23)| |[Maxout Function](https://texonom.com/maxout-function-ad1f081fa0c34a6fbee08259c82ea4a1)| |[ELU Function](https://texonom.com/elu-function-e6f30f8fff2c422993a85565f8ce5ee7)| > [0023 Loss & Metric - Deepest Documentation](https://deepestdocs.readthedocs.io/en/latest/002_deep_learning_part_1/0023/)
8e52ee5f83a244d88abeeee3fb9497a8
Forward Forward Algorithm
Neural Network Components
Apr 3, 2023
Alan Jo
Alan Jo
May 11, 2023
[Back Propagation](https://texonom.com/back-propagation-18f4493692ad43449d4271f1bb293781) ๋ณด๋‹ค ๋Œ€๋‡Œํ”ผ์งˆ ์ž‘๋™๋ฐฉ์‹์— ์œ ์‚ฌ ์‹œ๋ƒ…์Šค์˜ ์ฒ˜์Œ์œผ๋กœ ๋Œ์•„๊ฐ€๊ธฐ ์ „์— cortical layer๋ฅผ ์ง€๋‚˜๋Š” ๊ณผ์ •์—์„œย *๋ชจ์ข…์˜ ๋ฃจํ”„๋ฅผ ํ˜•์„ฑํ•œ๋‹ค* ๋„คํŠธ์›Œํฌ์˜ ๋ ˆ์ด์–ด ์ˆ˜๊ฐ€ ๋งŽ์•„์งˆ์ˆ˜๋ก FF๊ฐ€ Backprop๋ณด๋‹ค ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ๋œ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ 20๊ฐœ ์ดํ•˜์˜ ๋ ˆ์ด์–ด๋ฅผ ๊ฐ€์ง„ thin network์—์„œ๋Š” FF๊ฐ€ backprop๋ณด๋‹ค ํ›จ์”ฌ ๋” ๋งŽ์€ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฌ์šฉ ### Forward Forward Algorithm Notion |Title| |:-:| > [[๋”ฅ๋Ÿฌ๋‹] The Forward-Forward Algorithm: Some Preliminary Investigations (FF)](https://velog.io/@nochesita/๋”ฅ๋Ÿฌ๋‹-The-Forward-Forward-Algorithm-Some-Preliminary-Investigations) > [Welcome to JunYoung's blog | ๋”ฅ๋Ÿฌ๋‹์˜ ์ฒด๊ณ„๋ฅผ ๋ฐ”๊พผ๋‹ค! The Forward-Forward Algorithm ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ (1)](https://junia3.github.io/blog/ffalgorithm) > [The Forward-Forward Algorithm: Some Preliminary Investigations](https://arxiv.org/abs/2212.13345)
6c989313e382466bba02d15c412fb17f
Neural Network Layer
Neural Network Components
Apr 27, 2023
Alan Jo
Alan Jo
Jun 7, 2023
### Do not count input layer as perceptron (no weights & bias) $$ learnable\;parameters = weights(edges) + perceptron(bias)$$ ### Neural Network Layer Notion |Title| |:-:| |[Layer Normalization](https://texonom.com/layer-normalization-c5111411c0594c04847b0eb4d8fa6682)| |[Batch Normalization](https://texonom.com/batch-normalization-0e5e919e98b74b168a248a9fd3e0cb63)| |[Fully Connected Layer](https://texonom.com/fully-connected-layer-3fd5a241e2b84a53a2339c60fbcd957a)| |[Input Layer](https://texonom.com/input-layer-abdd1cda0d124843a34c66dc5ec7eba1)| |[Hidden Layer](https://texonom.com/hidden-layer-a22cafa21026469094d260b473fd4789)| |[Output Layer](https://texonom.com/output-layer-184eb47c3a98437daceba11104377194)| |[Residual Connection](https://texonom.com/residual-connection-f6778b3cfbee4b0cab02f7fad533372f)|
e10ef2afe1954cf6b909f8aa40077393
skip connections
Neural Network Components
May 23, 2023
Alan Jo
Alan Jo
May 23, 2023
**help dampen the impact of poor layer**
d7ad187f3487468db6eea278f0236a22
ELU Function
Activation Functions
Apr 27, 2023
Alan Jo
Alan Jo
Apr 27, 2023
c7306a8566014b4e9d0733b52bd399fa
ELU Function
Activation Functions
Jun 7, 2023
Alan Jo
Alan Jo
Jun 7, 2023
e6f30f8fff2c422993a85565f8ce5ee7
GELU
Activation Functions
Apr 8, 2023
Alan Jo
Alan Jo
Apr 27, 2023
8f18023a80b84a06b5afd648811df6bc
Maxout Function
Activation Functions
Jun 7, 2023
Alan Jo
Alan Jo
Jun 7, 2023
ad1f081fa0c34a6fbee08259c82ea4a1
Mish Function
Activation Functions
May 18, 2023
Alan Jo
Alan Jo
May 18, 2023
39eaae692b284adbadde08d3d707f13d
ReLU
Activation Functions
Mar 7, 2023
Alan Jo
Alan Jo
Jun 7, 2023
## Rectified Linear Unit ์ž…๋ ฅ๊ฐ’์ด ์Œ์ˆ˜์ธ ๋‰ด๋Ÿฐ์€ ๋‹ค์‹œ ํšŒ์ƒ์‹œํ‚ค๊ธฐ ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ Dying ReLU ### ReLU Variants |Title| |:-:| |[PReLU](https://texonom.com/prelu-67cdafbec19248bfad4225946a4c9fc3)| |[Leaky ReLU](https://texonom.com/leaky-relu-fa25fa8a234044068fd839a93512a762)|
e582549804da48b893758895e446ffb9
Sigmoid Function
Activation Functions
Nov 19, 2020
Alan Jo
Alan Jo
Jun 14, 2023
### inverse of the natural logit function logistic์€ s์ž ๋ชจ์–‘์„ ์˜๋ฏธํ•˜๋Š” ์‹œ๊ทธ๋ชจ์ด๋“œ์ค‘ ๋Œ€ํ‘œ์  ReLU๊ฐ€ ๋“ฑ์žฅํ•˜๊ธฐ ์ด์ „์— ํ™œ๋ฐœํ•˜๊ฒŒ ์‚ฌ์šฉ๋˜์—ˆ๋˜ activation function hidden ๋…ธ๋“œ ๋ฐ”๋กœ ๋’ค์— ๋ถ€์ฐฉ ### Sigmoid Functions |Title| |:-:| |[SoftMax Function](https://texonom.com/softmax-function-d8364b5e839145e89df423e0c5365dc1)| |[Logit Function](https://texonom.com/logit-function-104e55a12b234813a020cb09ec51c754)| $$\sigma(x) = \frac{1}{1 + e^{-(wx + b)}}$$ > [์–ด๋–ป๊ฒŒ ํ•˜๋ฉด "๋ถ€๋“œ๋Ÿฝ๊ฒŒ" ์—ฐ๊ฒฐํ• ๊นŒ?](https://youtube.com/watch?v=LS-C8KBvJYY&feature=shares) > [Logistic function](https://en.wikipedia.org/wiki/Logistic_function) > [logit, sigmoid, softmax์˜ ๊ด€๊ณ„ - ํ•œ ํŽ˜์ด์ง€ ๋จธ์‹ ๋Ÿฌ๋‹](https://opentutorials.org/module/3653/22995)
417e17b995cf40c996cec78f699ea59b
Sign Function
Activation Functions
Apr 27, 2023
Alan Jo
Alan Jo
Apr 27, 2023
b95e191cc2dc43c0befd6231f022555f
Tanh Function
Activation Functions
May 23, 2023
Alan Jo
Alan Jo
May 23, 2023
679abf35c4eb4fb0bb0e56140cac3d23
Leaky ReLU
ReLU Variants
Apr 27, 2023
Alan Jo
Alan Jo
May 23, 2023
์Œ์ˆ˜์ผ ๋•Œ ์ถœ๋ ฅ๊ฐ’์„ 0์ด ์•„๋‹Œ 0.001๊ณผ ๊ฐ™์€ ๋งค์šฐ ์ž‘์€ ๊ฐ’์„ ์ถœ๋ ฅํ•˜๋„๋ก ์„ค์ •
fa25fa8a234044068fd839a93512a762
PReLU
ReLU Variants
May 18, 2023
Alan Jo
Alan Jo
May 18, 2023
67cdafbec19248bfad4225946a4c9fc3
Logit Function
Sigmoid Functions
Nov 1, 2020
Alan Jo
Alan Jo
Apr 27, 2023
$$g(z) = \frac{1}{1 + e^{-z}}$$ ### This is important $$g'(z) = g(z)(1 - g(z))$$ [Logit](https://texonom.com/logit-84e304d3bf104e3fbc6029bcc7eea6c2)
104e55a12b234813a020cb09ec51c754
SoftMax Function
Sigmoid Functions
Nov 1, 2020
Alan Jo
Alan Jo
Apr 27, 2023
[Cross Entropy](https://texonom.com/cross-entropy-fefc71fd930a41a7842f39bccb3abcc9)
### softmaxํ•จ์ˆ˜๋Š” sigmoid์˜ ์ผ๋ฐ˜ํ˜• - 2๊ฐœ ํด๋ž˜์Šค๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ •์˜ํ•˜๋˜ logit์„ K๊ฐœ์˜ ํด๋ž˜์Šค๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ผ๋ฐ˜ํ™”ํ•˜๋ฉด softmaxํ•จ์ˆ˜๊ฐ€ ์œ ๋„(derived) - softmaxํ•จ์ˆ˜์—์„œ K๋ฅผ 2๋กœ ๋†“์œผ๋ฉด sigmoidํ•จ์ˆ˜๋กœ ํ™˜์› - sigmoidํ•จ์ˆ˜๋ฅผ K๊ฐœ์˜ ํด๋ž˜์Šค๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ผ๋ฐ˜ํ™”ํ•˜๋ฉด softmaxํ•จ์ˆ˜๊ฐ€ ์œ ๋„ ### classification softmaxํ•จ์ˆ˜๋Š” ์ธ๊ณต์‹ ๊ฒฝ๋ง์ด ๋‚ด๋†“์€ K๊ฐœ์˜ ํด๋ž˜์Šค ๊ตฌ๋ถ„ ๊ฒฐ๊ณผ๋ฅผ ํ™•๋ฅ ์ฒ˜๋Ÿผ ํ•ด์„ํ•˜๋„๋ก sigmoid๋Š” activation์—, softmax๋Š” classification์— ์‚ฌ์šฉ๋˜์ง€๋งŒ ์ˆ˜ํ•™์ ์œผ๋กœ ๊ฐ™๋‹ค > ๋‹ค๋ฃจ๋Š” ํด๋ž˜์Šค๊ฐ€ 2๊ฐœ๋ƒ K๊ฐœ๋ƒ๋กœ ์ฐจ์ด๊ฐ€ ์žˆ์„ ๋ฟ > [logit, sigmoid, softmax์˜ ๊ด€๊ณ„ - ํ•œ ํŽ˜์ด์ง€ ๋จธ์‹ ๋Ÿฌ๋‹](https://opentutorials.org/module/3653/22995)
d8364b5e839145e89df423e0c5365dc1
Logit
Logit Function
null
null
null
null
null
โ€˜logisticโ€™ +โ€Ž โ€˜probitโ€™ > [logit, sigmoid, softmax์˜ ๊ด€๊ณ„ - ํ•œ ํŽ˜์ด์ง€ ๋จธ์‹ ๋Ÿฌ๋‹](https://opentutorials.org/module/3653/22995)
84e304d3bf104e3fbc6029bcc7eea6c2
**Batch Normalization**
Neural Network Layer Notion
Mar 7, 2023
Alan Jo
Alan Jo
Jul 6, 2023
[Layer Normalization](https://texonom.com/layer-normalization-c5111411c0594c04847b0eb4d8fa6682)
๋ ˆ์ด์–ด๋งˆ๋‹ค Normalization์„ ํ•˜๋Š” ๋ ˆ์ด์–ด๋ฅผ ๋‘์–ด, ๋ณ€ํ˜•๋œ ๋ถ„ํฌ๊ฐ€ ๋‚˜์˜ค์ง€ ์•Š๋„๋ก ํ•˜๋Š” ๊ฒƒ ### Limitation 1. dependent to mini batch size 2. hard to apply to RNN ### **Batch Normalization Methods** |Title| |:-:| |[Internalย Covariate Shift](https://texonom.com/internalcovariate-shift-827b94e336a141b4a2ca100fc42dab66)| |[Whitening](https://texonom.com/whitening-5bfaed3572904c208125cc9df6c664b0)| > [๋ฐฐ์น˜ ์ •๊ทœํ™”(Batch Normalization)](https://gaussian37.github.io/dl-concept-batchnorm/) > [Batch normalization](https://en.wikipedia.org/wiki/Batch_normalization)
0e5e919e98b74b168a248a9fd3e0cb63
Fully Connected Layer
Neural Network Layer Notion
Apr 27, 2023
Alan Jo
Alan Jo
Jun 1, 2023
## FC Layer input node is connected to each input node is connected to each output node number of parameter is $m\times n$
3fd5a241e2b84a53a2339c60fbcd957a
Hidden Layer
Neural Network Layer Notion
May 11, 2023
Alan Jo
Alan Jo
May 11, 2023
a22cafa21026469094d260b473fd4789
Input Layer
Neural Network Layer Notion
May 11, 2023
Alan Jo
Alan Jo
May 11, 2023
abdd1cda0d124843a34c66dc5ec7eba1
Layer Normalization
Neural Network Layer Notion
Nov 19, 2019
Alan Jo
Alan Jo
Jul 6, 2023
[Batch Normalization](https://texonom.com/batch-normalization-0e5e919e98b74b168a248a9fd3e0cb63)
BN normalizes the activations of each batch, while LN normalizes the activations of each layer
c5111411c0594c04847b0eb4d8fa6682
Output Layer
Neural Network Layer Notion
May 11, 2023
Alan Jo
Alan Jo
May 11, 2023
184eb47c3a98437daceba11104377194
Residual Connection
Neural Network Layer Notion
Mar 7, 2023
Alan Jo
Alan Jo
May 11, 2023
### **Skip connection** **ํ•˜์œ„ ์ธต์—์„œ ํ•™์Šต๋œ ์ •๋ณด๊ฐ€ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๊ณผ์ •์—์„œ ์†์‹ค๋˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•** > [[DL] Exploding & Vanishing Gradient ๋ฌธ์ œ์™€ Residual Connection](https://heeya-stupidbutstudying.tistory.com/entry/DL-Exploding-Vanishing-gradient-๋ฌธ์ œ์™€-Residual-Connection์ž”์ฐจ์—ฐ๊ฒฐ)
f6778b3cfbee4b0cab02f7fad533372f
**Internalย Covariate Shift**
Batch Normalization Methods
Jul 5, 2023
Alan Jo
Alan Jo
Jul 6, 2023
Internal distribution could have bias or variance even if input data distribution is normalized > [[PyTorch๋กœ ์‹œ์ž‘ํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ดˆ] 09-4 Batch-Normalization](https://wegonnamakeit.tistory.com/47)
827b94e336a141b4a2ca100fc42dab66
Whitening
Batch Normalization Methods
Mar 7, 2023
Alan Jo
Alan Jo
Jul 6, 2023
๋“ค์–ด์˜ค๋Š” ์ž…๋ ฅ๊ฐ’์˜ ํŠน์ง•๋“ค์„ uncorrelated ํ•˜๊ฒŒ ๋งŒ๋“ค์–ด์ฃผ๊ณ , ๊ฐ๊ฐ์˜ ๋ถ„์‚ฐ์„ 1๋กœ ๋งŒ๋“ค์–ด์ฃผ๋Š” ์ž‘์—… **covariance matrix์˜ ๊ณ„์‚ฐ๊ณผ inverse์˜ ๊ณ„์‚ฐ์ด ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณ„์‚ฐ๋Ÿ‰์ด ๋งŽ์„ ๋ฟ๋”๋Ÿฌ,ย Whitening์€ ์ผ๋ถ€ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์˜ ์˜ํ–ฅ์ด ๋ฌด์‹œ๋œ๋‹ค** **ํŠน์ • ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๊ณ„์† ์ปค์ง€๋Š” ์ƒํƒœ๋กœ ์œ ์ง€๋ ์ˆ˜ ์žˆ๋‹ค๋Š” ๋ฌธ์ œ๋„** > [[Deep Learning] Batch Normalization (๋ฐฐ์น˜ ์ •๊ทœํ™”)](https://eehoeskrap.tistory.com/430)
5bfaed3572904c208125cc9df6c664b0
ANN
Neural Networks
Mar 5, 2023
Alan Jo
Alan Jo
Mar 6, 2023
### Artificial Neural Network ๊ธฐ๊ณ„ํ•™์Šต๊ณผ ์ธ์ง€๊ณผํ•™์—์„œ ์ƒ๋ฌผํ•™์˜ ์‹ ๊ฒฝ๋ง์—์„œ ์˜๊ฐ์„ ์–ป์€ ํ†ต๊ณ„ํ•™์  ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜
d4232205ecf9463c95a911d179c87a84
CNN
Neural Networks
Nov 5, 2019
Alan Jo
Seong-lae Cho
Jul 4, 2023
[Capsule Network](https://texonom.com/capsule-network-a14fc7e569864154aae1ef44106e8991) [BCI](https://texonom.com/bci-e7b6d2a55d19435b9d3f8990441cab9e)
## Convolutional Neural Network Actually we use [Correlation](https://texonom.com/correlation-d75ea902ec294bf19e1180b6bfd22137) not the [Convolution](https://texonom.com/convolution-54def9d34de64e199ea46393675af2ce) Convolutional Layer์™€ Pooling Layer๋ฅผ ๋ฒˆ๊ฐˆ์•„ ๊ฐ€๋ฉฐ ์ ์šฉํ•˜์—ฌ ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ  (Fully Connected) Layer๋ฅผ ํ†ตํ•ด ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์ˆ˜ํ–‰ ### Hyperparameters - Convolution layerโ€™s filter type, size, stride which result each activation map - Placements and types of convolution layer, pooling layer and activation layer So the typical architecture look like this where N is usually up to ~5, M is large, 0 <= K <= 2. but recent advances challenge this paradigm ```type[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX``` ### CNN Notion |Title| |:-:| |[CNN History](https://texonom.com/cnn-history-76ffc514584846348136ea794f37ea9a)| |[Pooling Layer](https://texonom.com/pooling-layer-c36550932e8c4436b4b6da0d4d2fc946)| |[Convolutional Layer](https://texonom.com/convolutional-layer-0880b6c2089b4b20bb9a6232b6cb4b19)| |[CNN bottleneck layer](https://texonom.com/cnn-bottleneck-layer-c67427171be5400db198dd6e7ef644ce)| |[Training CNN](https://texonom.com/training-cnn-dc4f33cdf45544668d6f9cb6d059f431)| |[Local Contrast Normalization](https://texonom.com/local-contrast-normalization-036406a996c94edab249e7ff8a32b2bc)| |[ctivation map](https://texonom.com/ctivation-map-d0117ee2531b44dcbb0d19d33dff23ac)| ### CNN Models |Title| |:-:| |[ResNet](https://texonom.com/resnet-d8c7707445684e848ebef939500672d4)| |[ALexNet](https://texonom.com/alexnet-e33d746e06a540d4b8900be7ccede18c)| |[ConvNets](https://texonom.com/convnets-1846cf4fac8b4feea6fa8cf4ac083df9)| |[SuperVision](https://texonom.com/supervision-9d75ddb2bccd4dc9857f4332ae096298)| |[GoogLeNet](https://texonom.com/googlenet-64b5ad51aafc48d492ba489f47ffa58a)| |[VGG](https://texonom.com/vgg-c59b523e5e894bf2842474c9022dceec)| |[MSRA](https://texonom.com/msra-9024cb9533e54bdc9ada6d30601f847b)|
002bf81a77bc40d1858740d26b61d97b
FFNN
Neural Networks
Mar 5, 2023
Alan Jo
Alan Jo
Mar 7, 2023
[Tree Data](https://texonom.com/tree-data-45f2e08b1f184e60b2e47c96e4cb535f) [RNN](https://texonom.com/rnn-f7aad56acb5542b2ac26c2908be4ce16)
### ***Feed-Forward Neural Network*** ๊ณ ์•ˆ๋œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์˜ ์ตœ์ดˆ์˜ ๊ฐ€์žฅ ๋‹จ์ˆœํ•œ ํ˜•ํƒœ ### FFNN Usages |Title| |:-:| |[Position-wise FFNN](https://texonom.com/position-wise-ffnn-6fe30c96aa9245d898c73ec34625377d)|
89ecee87d8b7482e86995950db90eb31
GNN
Neural Networks
Apr 30, 2023
Alan Jo
Alan Jo
Apr 30, 2023
### **Graph neural network** ๊ทธ๋ž˜ํ”„๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง ๊ธฐ์กด์˜ ํŠน์ • ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜๋Š” ์ ์ ˆํ•˜๊ฒŒ ์ •์˜๋œ ๊ทธ๋ž˜ํ”„์—์„œ ์ž‘๋™ํ•˜๋Š” GNN์œผ๋กœ ํ•ด์„๊ฐ€๋Šฅ ### GNN Notion |Title| |:-:| > [Learnable Structural Semantic Readout for Graph Classification](https://arxiv.org/abs/2111.11523)
58adb81cb2b649d9af19019182960bb2
Perceptron
Neural Networks
Nov 5, 2019
Alan Jo
Seong-lae Cho
Jun 7, 2023
[Discriminant Function](https://texonom.com/discriminant-function-ed98e4c8d7284c34824f332770ccaf52) [Neuron](https://texonom.com/neuron-35ebe3514dc64647a74a0c3bad47b51b)
Can mimic OR function but cannot separate XOR by manipulating weights (flexibility) ์ž…๋ ฅ๊ฐ’์— ๋Œ€ํ•œ ์ด์ง„ ๋ถ„๋ฅ˜๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ฑฐ๋‚˜ ์„ ํ˜• ์˜ˆ์ธก๊ธฐ๋กœ ์‚ฌ์šฉ based on only mistakes gradient descent update weight vector ### Perceptron Notion |Title| |:-:| |[Perceptron Criterion](https://texonom.com/perceptron-criterion-5524bf3059d244f2b2437e74120d1b2b)| |[Optimization for Perceptron Criterion](https://texonom.com/optimization-for-perceptron-criterion-e64193867ff34deebc0b319d13be3545)| |[Perceptron convergence theorem](https://texonom.com/perceptron-convergence-theorem-7837263544974463b5bcc6a812fc6dce)| |[Universal Approximation Theorem](https://texonom.com/universal-approximation-theorem-872ac98a16c94f1f8a29f49496a1dfcd)| |[Multi Layer Perceptron](https://texonom.com/multi-layer-perceptron-9de4da2c68f24d76824e792b0c949ab8)| |[Perceptron History](https://texonom.com/perceptron-history-24992383cc2c44718e86d1cb53133e41)|
1deb66f486d54c93bb928d8afba1864c
RNN
Neural Networks
Mar 12, 2021
Alan Jo
Alan Jo
Jul 30, 2023
[Sequential Data](https://texonom.com/sequential-data-784908b963384da3b3b603ebf1068e4d) [Tanh Function](https://texonom.com/tanh-function-679abf35c4eb4fb0bb0e56140cac3d23) [Vanishing Gradient](https://texonom.com/vanishing-gradient-6dc21442840841b3879d6502c5efd98a)
## Recurrent Neural Networ sequential ํ•˜๊ฑฐ๋‚˜ time series data ์— ์ ํ•ฉํ•œ ๋ชจ๋ธ RNN๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ธ LSTM๊ณผ GRU๋Š” ๊ตฌ์กฐ์ ์œผ๋กœ ๊ณ ์ • ๊ธธ์ด์˜ hidden state ๋ฒกํ„ฐ์— ๋ชจ๋“  ๋‹จ์–ด์˜ ์˜๋ฏธ๋ฅผ ๋‹ด์•„์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฌธ์žฅ์ด ๊ธธ์–ด์ง€๋ฉด ๋ชจ๋“  ๋‹จ์–ด ์ •๋ณด๋ฅผ ๊ณ ์ • ๊ธธ์ด ๋ฒกํ„ฐ์— ๋‹ด๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๋ฌธ์ œ Input Seqโ€™s information lost so ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด [Attention Mechanism](https://texonom.com/attention-mechanism-762711860abb45f59904f1ac4e4af285) ์‚ฌ์šฉ ์–ดํ…์…˜์„ RNN์˜ ๋ณด์ •์„ ์œ„ํ•œ ์šฉ๋„๋กœ์„œ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์ธ์ฝ”๋” ๋””์ฝ”๋”์—๋„ ์‚ฌ์šฉํ•˜๊ฒŒ ### RNN Notion |Title| |:-:| |[Recurrent Neurons](https://texonom.com/recurrent-neurons-341ce79b6a0648bb8c57fafc806573cc)| |[Long-term dependency](https://texonom.com/long-term-dependency-0b4e9db8d0cd4fc4889b83e32408e5f8)| |[RWKV](https://texonom.com/rwkv-639fb6fcbaba43e398a6e2fe5495373a)| |[Hidden State](https://texonom.com/hidden-state-7b65c9b953ce4a9b843d2a0b381a5453)| ### RNNs |Title| |:-:| |[LSTM](https://texonom.com/lstm-7946d20b7c394827b02e7b6b297bbadf)| |[GRU](https://texonom.com/gru-280a4b083b0b49989e3cc36ef493410c)| |[Bidirectional RNN](https://texonom.com/bidirectional-rnn-4f44262a3cc3417e8b31f24040cef871)| |[Vanilla RNN](https://texonom.com/vanilla-rnn-f4032d5ead424efaaf6e1fb210b546cf)| > [07-1.์ˆœํ™˜ ์‹ ๊ฒฝ๋ง(RNN, Recurrent Neural Network) - (1)](https://excelsior-cjh.tistory.com/183)
f7aad56acb5542b2ac26c2908be4ce16
SNN
Neural Networks
May 30, 2022
Alan Jo
Alan Jo
Mar 6, 2023
### **Spiking neural network** **Closely mimic natural neural networks** ์ž์—ฐ ์‹ ๊ฒฝ๋ง์„ ๋” ๊ฐ€๊น๊ฒŒ ๋ชจ๋ฐฉํ•œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง. ๋‰ด๋Ÿฐ ๋ฐ ์‹œ๋ƒ…์Šค ์ƒํƒœ ์™ธ์—๋„ SNN์€ ์ž‘๋™ ๋ชจ๋ธ์— ์‹œ๊ฐ„ ๊ฐœ๋…์„ ํ†ตํ•ฉ ### SNN Notion |Title| |:-:| > [Untitled](http://www.koreascience.kr/article/JAKO202025465017052.pdf)
6cf69239a87e4df9a32b3494862374e4
ALexNet
CNN Models
Sep 14, 2020
Alan Jo
Alan Jo
May 31, 2023
[ImageNet](https://texonom.com/imagenet-d5542cdb730f4e218bacb583b5e2576b)
### GPU CNN ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ALexNet, ILSVRC ์˜ค์ฐจ์œจ์ด 10%๋กœ ์ค„์–ด๋“  ํ˜์‹ ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ > [CS231n 1๊ฐ• ์š”์•ฝ](https://taeyoung96.github.io/cs231n/CS231n_1/)
e33d746e06a540d4b8900be7ccede18c
ConvNets
CNN Models
May 23, 2023
Alan Jo
Alan Jo
May 23, 2023
CNN โ‡’ [Local Contrast Normalization](https://texonom.com/local-contrast-normalization-6357cfe8ce294c69ae102053dcb5aaff) โ‡’ [Pooling Layer](https://texonom.com/pooling-layer-c36550932e8c4436b4b6da0d4d2fc946)
1846cf4fac8b4feea6fa8cf4ac083df9
GoogLeNet
CNN Models
May 23, 2023
Alan Jo
Alan Jo
Jun 7, 2023
2014
64b5ad51aafc48d492ba489f47ffa58a
MSRA
CNN Models
May 23, 2023
Alan Jo
Alan Jo
Jun 7, 2023
2015
9024cb9533e54bdc9ada6d30601f847b
ResNet
CNN Models
May 30, 2023
Alan Jo
Alan Jo
Jun 6, 2023
[CNN bottleneck layer](https://texonom.com/cnn-bottleneck-layer-c67427171be5400db198dd6e7ef644ce)
### Microsoft 2015 [COCO](https://texonom.com/coco-c7524d6e059444c09a5067e07caf94e6) > [ResNet - Azure Machine Learning](https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/resnet?view=azureml-api-2) > [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) > [Pytorch๋กœ ResNet ๊ตฌํ˜„, torch summary ์‚ดํŽด๋ณด๊ธฐ](https://velog.io/@gibonki77/ResNetwithPyTorch)
d8c7707445684e848ebef939500672d4
SuperVision
CNN Models
May 23, 2023
Alan Jo
Alan Jo
Jun 7, 2023
2012
9d75ddb2bccd4dc9857f4332ae096298
VGG
CNN Models
May 23, 2023
Alan Jo
Alan Jo
Jun 7, 2023
2014
c59b523e5e894bf2842474c9022dceec
CNN bottleneck layer
CNN Notion
May 30, 2023
Alan Jo
Alan Jo
Jun 7, 2023
## inception module ํ•ต์‹ฌ์€ 1x1 Convolution ์—ฐ์‚ฐ๋Ÿ‰์„ ์ตœ์†Œํ™” ์—ฐ์‚ฐ๋Ÿ‰๊ณผ ์ •๋ณด์†์‹ค์€ ์„œ๋กœ tradeoff ๊ด€๊ณ„๋ผ ์—ฐ์‚ฐ๋Ÿ‰๊ณผ ์ •๋ณด ์†์‹ค์˜ ๊ด€๊ณ„๋ฅผ ์ž˜ ๋ณด๋ฉด์„œ Error๊ฐ€ ์ตœ์†Œ๊ฐ€ ๋˜๋Š” ์ง€์  ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F59552677-4c80-46c9-b3fc-9678673bf88f%2FUntitled.png?table=block&id=4344af8f-0f0c-4470-bc0e-482e0f837efe&cache=v2) [ResNet](https://texonom.com/resnet-d8c7707445684e848ebef939500672d4) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Facc5b086-6258-4b9c-9aba-d9e0bcd5a220%2FUntitled.png?table=block&id=559e2275-d78b-4266-91ce-47404eab13c1&cache=v2) ### [GoogLeNet](https://texonom.com/googlenet-64b5ad51aafc48d492ba489f47ffa58a) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F75fa731a-374c-4ea7-b572-2086555c79ca%2FUntitled.png?table=block&id=8c337e84-43f0-47cf-acf7-9b683cebfc88&cache=v2) > [CNN์˜ Bottleneck์— ๋Œ€ํ•œ ์ดํ•ด](https://velog.io/@lighthouse97/CNN์˜-Bottleneck์—-๋Œ€ํ•œ-์ดํ•ด)
c67427171be5400db198dd6e7ef644ce
CNN History
CNN Notion
Sep 14, 2020
Alan Jo
Alan Jo
May 30, 2023
1998๋…„์— ์ด๋ฏธ CNN ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค.ํ•˜์ง€๋งŒ ์—ฌ๋Ÿฌ ๋ฌธ์ œ๋“ค์— ๋ถ€๋”ซํ˜€ ๊ทธ ๋™์•ˆ ๋ฐœ์ „ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. > ๋ฐ์ดํ„ฐ์˜ ์–‘์ด ๋„ˆ๋ฌด ์ ์—ˆ๋‹ค.์—ฐ์‚ฐ ์†๋„๊ฐ€ ๊ต‰์žฅํžˆ ๋А๋ ธ๋‹ค. ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F12554e84-bfcd-4125-8bed-f31d172c4bf4%2FUntitled.png?table=block&id=4d668c12-9d63-4e37-a8b5-0b23fdeee53c&cache=v2) ### 1980 Fukushima โ€œsandwichโ€ architecture (SCSCSCโ€ฆ) > [Untitled](https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf) ### 1998 [Yann LeCun](https://texonom.com/yann-lecun-7866102480474d939d45d97ddd318c3a), Bottou, Bengio, Haffner Gradient-based learning applied to document recognition > [Untitled](https://ieeexplore.ieee.org/document/726791) ### 2012 [ALexNet](https://texonom.com/alexnet-e33d746e06a540d4b8900be7ccede18c) [Geoffrey Hinton](https://texonom.com/geoffrey-hinton-441d5ce2b78146d0935454042b4f06d9), [Ilya Sutskever](https://texonom.com/ilya-sutskever-f38707abee824d21b2ec9824a1706342) ImageNet Classification with Deep Convolutional Neural Networks > [Untitled](https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf)
76ffc514584846348136ea794f37ea9a
Convolutional Layer
CNN Notion
May 18, 2023
Alan Jo
Alan Jo
Jun 7, 2023
### Share the same parameters across different locations (assume input stationary) In practice usually zero pad the border parameter ๊ฐ€ fully connected ๋‚˜ locally connected ๋ณด๋‹ค ํ›จ์”ฌ ์ž‘์•„์„œ There are weight variables which are same as the size of filter including all that channels Using small filter is better [CNN Stride](https://texonom.com/cnn-stride-b84e6cf4abd347289dc8dbe6ffc1097d) 1x1 is also valid because we can reduce or increase the Output Channel of feature map with different scaling ์ฑ„๋„๋ณ„ ํ•„ํ„ฐ ์ดํ•ฉ์ด ์ตœ์ข…ํ•„ํ„ฐ **Commonly number of filters K is powers of 2** K๊ฐ€ ๋Š˜๋ฉด ์ง€์ˆ˜์ ์œผ๋กœ ์—ฐ๊ด€ ํ”ฝ์…€์ด ๋Š˜์–ด๋‚˜๋Š”๊ฒŒ ์•„๋‹ˆ๋ผ ์„ ํ˜•์ ์œผ๋กœ ๊ฐ€๊นŒ์šด ๊ฑฐ๋ฆฌ๋กœ ๋Š˜์–ด๋‚จ ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F2b27a771-bf6c-4c73-bb6c-6dc888a9d56e%2FUntitled.png?table=block&id=04353e66-16fb-48a3-a472-44bf24a7fe77&cache=v2) ### Multiple small sized filter layerโ€™s parameters have much smaller than one large sized filter layer (also more nonlinearity, less compute) so we use mostly 3x3 after [VGG](https://texonom.com/vgg-c59b523e5e894bf2842474c9022dceec) ([ALexNet](https://texonom.com/alexnet-e33d746e06a540d4b8900be7ccede18c) used 11x11 or 7x7 convolution layer) 1x1 ์œผ๋กœ ๋” ์ค„์ผ ์ˆ˜ ์žˆ๋Š”๋ฐ ๊ทธ๊ฒŒ [CNN bottleneck layer](https://texonom.com/cnn-bottleneck-layer-c67427171be5400db198dd6e7ef644ce) ### total parameter $$filter \; size ^2 +1\;for\;bias$$
0880b6c2089b4b20bb9a6232b6cb4b19
ctivation map
CNN Notion
Jun 7, 2023
Alan Jo
Alan Jo
Jun 18, 2023
์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ๊ฐ ์œ„์น˜์—์„œ ํ™œ์„ฑํ™”๋œ ๋‰ด๋Ÿฐ์˜ ์ถœ๋ ฅ๊ฐ’์„ ์‹œ๊ฐํ™”ํ•œ ๊ฒƒ ๋ชจ๋ธ์ด ์–ด๋–ค ๋ถ€๋ถ„์—์„œ ์ž…๋ ฅ ์ด๋ฏธ์ง€๋ฅผ ๋ณด๊ณ  ํŒ๋‹จํ•˜๋Š”์ง€ ์ดํ•ดํ•˜๋Š” ๋ฐ ๋„์›€์„ ์คŒ
d0117ee2531b44dcbb0d19d33dff23ac
Local Contrast Normalization
CNN Notion
Jun 7, 2023
Alan Jo
Alan Jo
Jun 7, 2023
after convolution layer, before pooling layer ConvNet
036406a996c94edab249e7ff8a32b2bc
Pooling Layer
CNN Notion
Apr 30, 2023
Alan Jo
Alan Jo
Jun 7, 2023
### [Image Downsampling](https://texonom.com/image-downsampling-97df12a6eb2949aa808c6f03dac101a6) feature map์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๋Š” ๋ฐ ์‚ฌ์šฉ ### CNN Pooling Types |Title| |:-:| |[CNN Spatial Pooling](https://texonom.com/cnn-spatial-pooling-d191e60632c84b54b0266c2a73f54c51)| |[CNN Static Pooling](https://texonom.com/cnn-static-pooling-48534a9ed35e465c94694903dd2c80cb)| |[CNN Dynamic Pooling](https://texonom.com/cnn-dynamic-pooling-3412ef080ffb4e949bebfed80a17cf8d)| |[CNN Global Pooling](https://texonom.com/cnn-global-pooling-fe9913d4c6674a808ef6c899e778dcd4)|
c36550932e8c4436b4b6da0d4d2fc946
Training CNN
CNN Notion
Jun 1, 2023
Alan Jo
Alan Jo
Jun 1, 2023
![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F0b17e758-45f3-40f9-986e-592b434eb581%2FUntitled.png?table=block&id=07c57c5d-4ab9-43d3-aab3-dc7fb384178c&cache=v2)
dc4f33cdf45544668d6f9cb6d059f431
CNN Stride
Convolutional Layer
null
null
null
null
null
How many pixels to skip $$Count = (N + 2P - F) / stride + 1$$ P is padding size, N is input size, F is filter size and count is output size+
b84e6cf4abd347289dc8dbe6ffc1097d
CNN Dynamic Pooling
CNN Pooling Types
Apr 30, 2023
Alan Jo
Alan Jo
Apr 30, 2023
segment-level์—์„œ feature๋ฅผ ์ง‘๊ณ„ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ ๊ณ ์ˆ˜์ค€ ํŠน์ง•๋“ค์˜ ์‹œ๊ฐ„ ์ •๋ณด๋ฅผ ๋” ์ž˜ ๋ณด์กด > [Learnable Dynamic Temporal Pooling for Time Series Classification](https://arxiv.org/abs/2104.02577)
3412ef080ffb4e949bebfed80a17cf8d
CNN Global Pooling
CNN Pooling Types
Apr 30, 2023
Alan Jo
Alan Jo
Apr 30, 2023
๊ณ ์ˆ˜์ค€ ํŠน์ง•๋“ค์˜ ๋ฒ„๋ ค์งˆ ์ˆ˜ ์žˆ๋‹ค feature map ๋‚ด์˜ ๋ชจ๋“  ๊ฐ’์„ ์ง‘๊ณ„ํ•˜์—ฌ ํ•˜๋‚˜์˜ ์ˆซ์ž๋กœ
fe9913d4c6674a808ef6c899e778dcd4
CNN Spatial Pooling
CNN Pooling Types
May 23, 2023
Alan Jo
Alan Jo
Jun 7, 2023
Sum or max - max pooling - average pooling - min pooling - L2 pooling - L2 pooling over features
d191e60632c84b54b0266c2a73f54c51
CNN Static Pooling
CNN Pooling Types
Apr 30, 2023
Alan Jo
Alan Jo
Apr 30, 2023
๊ณ ์ •๋œ ํฌ๊ธฐ์˜ ์˜์—ญ์„ ์„ ํƒํ•˜์—ฌ ๊ทธ ์˜์—ญ ๋‚ด์˜ ๊ฐ’์„ ์ง‘๊ณ„
48534a9ed35e465c94694903dd2c80cb
****Position-wise FFNN****
FFNN Usages
Mar 5, 2023
Alan Jo
Alan Jo
Mar 7, 2023
## Fully-connected FFNN [Seq2Seq](https://texonom.com/seq2seq-01a9854dffa6417c87d92c11a607250c) ์ธ์ฝ”๋”์™€ ๋””์ฝ”๋”์—์„œ ๊ณตํ†ต์ ์œผ๋กœ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์„œ๋ธŒ์ธต > [16-01 ํŠธ๋žœ์Šคํฌ๋จธ(Transformer)](https://wikidocs.net/31379)
6fe30c96aa9245d898c73ec34625377d
Multi Layer Perceptron
Perceptron Notion
Mar 5, 2023
Alan Jo
Alan Jo
May 11, 2023
[Neural Network](https://texonom.com/neural-network-86f54f9f1de848c1a29c56c24f7d5094)
## MLP Can have non-linear decision boundary using 3 Perceptron, now available to separate XOR ### Two layer convex open or closed region ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ffb96ba60-f3ee-44af-9457-8d166f25df99%2FUntitled.png?table=block&id=83c05706-0b14-4c08-a841-60ce8ac8a182&cache=v2) each line means perceptron ### Three layer arbitrary (complexity limited by number of neurons) ### Hidden layer except final layer
9de4da2c68f24d76824e792b0c949ab8
Optimization for Perceptron Criterion
Perceptron Notion
Apr 27, 2023
Alan Jo
Alan Jo
Apr 27, 2023
### Maximize set of misclassified samples under w only update until convergence ### Weight Updates Start with weight 0 **For each training instance** > - If correct (i.e., y=y*), no change > - If wrong: adjust the weight vector - adding or subtracting the feature vector (f / y* exactly > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F96bde13f-ce87-46fb-942e-c9964ec7123f%2FUntitled.png?table=block&id=a35c861a-d054-4419-b50c-c672b7a6ae41&cache=v2) > > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F3e523c5e-9337-4c60-8453-1396f889d8a9%2FUntitled.png?table=block&id=fdbb578d-a453-4351-a61b-5efbfd34f979&cache=v2) > > x0 bias ican be tan add to f ### Error-Driven Linear Classification > Binary case - compare features to weight vector > Learning - figure out weight vector from examples
e64193867ff34deebc0b319d13be3545
Perceptron convergence theorem
Perceptron Notion
Apr 27, 2023
Alan Jo
Alan Jo
Apr 27, 2023
Convergence is guaranteed for linearly separable data Cannot classify non-linearly separable data
7837263544974463b5bcc6a812fc6dce
Perceptron Criterion
Perceptron Notion
Apr 27, 2023
Alan Jo
Alan Jo
Apr 27, 2023
### Inequality ### Linear Classifiers - Inputs **data **are feature values (**feature vector**) - (x0, x1, x2, ... , xn) - Each feature has a weight - Sum is the activation > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F97f9d462-0b77-464a-8d69-45b5d1a8d92b%2FUntitled.png?table=block&id=18b03cdd-2d54-42ea-8372-c57a7ff78e2a&cache=v2) - output - if activation is positive โ†’ 1 negative โ†’ -1 (classification +/-) ### Decision Rule binary decision rule One side corresponds to Y=+1 Other corresponds to Y=-1 ### Learning - binary perceptron 1. Start with weights = 0 > 1. For each training instance >> - Classify with current weights >> - If correct (i.e., y=y*), no change >> - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1. > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fcc561d3b-0dae-4866-bf99-e3d2593dba1f%2FUntitled.png?table=block&id=81c5098b-4384-4058-9615-2678d672d6e7&cache=v2) ## Multiclass dicision rule ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F9af73bdd-20cd-4421-a317-ddd37127ae63%2FUntitled.png?table=block&id=49e83b0c-2442-4df3-acbb-88eefa82cb3f&cache=v2) lower count of wrong class** (for this instance), **raise count of right class **(for this instance)** ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fc30c5970-b6a9-4c98-a062-562a93d94adb%2FUntitled.png?table=block&id=d15b9c2d-8e80-4688-9a70-675be4443d7f&cache=v2) **black box (kernel) K** that told us the dot product of two examples x and xโ€™ ### Solution 0. set true value to +/- 2. get data 3. choose true value 4. classification by hypothesis โ†’ compare to true value 5. update hypothesis to all data try this until no revise to all data redo these to data set ### multiclass ๋‹ค๋ฅธ๊ฑฐ ๋˜‘๊ฐ™์€๋ฐ ๋ถ„๋ฅ˜๋ผ์„œ argmax xf = y ํ‹€๋ฆฌ๋ฉด ๊ทธ๋†ˆ์€ ๊ฐ’ ๋นผ์ฃผ๊ณ  ๋งž๋Š”๋†ˆ์€ ์˜ฌ๋ ค์ฃผ๊ธฐ f๋งŒํผ ๋“€์–ผ์ด๋ฉด argmax alpha K(k is sigma ff) - at sigma only one f change by w if wrong ํ‹€๋ฆฐ๋†ˆ์€ ์•ŒํŒŒ์—์„œ 1 ๋นผ๊ณ  ๋งž๋Š”๋†ˆ๋“ค์€ 1๋งŒํผ ์˜ฌ๋ ค์คŒ ๋งž๋Š” ํด๋ž˜์Šค ํ‹€๋ฆฐ ํด๋ž˜์Šค ### Feature Vectors ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fd1bbd38a-1fa3-43b3-96de-b4161118d84f%2FUntitled.png?table=block&id=0d54acc4-2dc6-4fdf-ba33-4f798cdf9949&cache=v2) Some (Simplified) Biology - Inputs are feature values - Each feature has a weight - Sum is the activation ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fd20f5cf0-dbee-4d69-b541-77430ef0677e%2FUntitled.png?table=block&id=ad108811-66aa-45fa-a82f-89af6936407a&cache=v2) If the activation is: Positive, output +1 Negative, output -1 ### Weights - Binary case: compare features to a weight vector - Learning: figure out the weight vector from examples ### Decision Rules Binary Decision Rule in the space of feature vectors > - Examples are points > - Any weight vector is a hyperplane > - One side corresponds to Y=+1 > - Other corresponds to Y=-1
5524bf3059d244f2b2437e74120d1b2b
Perceptron History
Perceptron Notion
Jun 7, 2023
Alan Jo
Alan Jo
Jun 7, 2023
### 1957 released 1957 The Perceptron (Frank Rosenblatt) Mark I Perceptron The machine was connected to a camera that used 20ร—20 cadmium sulfide photocells to produce a 400-pixel image. Widrow and Hoff, ~1960: Adaline/Madaline 1969 Perceptrons (Minsky, Papert) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fef3314d0-ca74-4a67-bb3c-eae0eed6371d%2FUntitled.png?table=block&id=a63f0670-5848-468e-8eb6-2caf9025092c&cache=v2) > [Perceptron | Encyclopedia of Computer Science](https://dl.acm.org/doi/abs/10.5555/1074100.1074686)
24992383cc2c44718e86d1cb53133e41
Universal Approximation Theorem
Perceptron Notion
Apr 27, 2023
Alan Jo
Alan Jo
Jun 13, 2023
### at least 1 hidden layer Any continuous function $f: [0, 1] \rightarrow [0, 1]$ can be approximated arbitrarily well by aneural network with at least 1 hidden layer with a finite number of weights One wide (latent) layer is enough, but it is just a memorizer (Cybenko โ€™89) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fd15809a9-4c4b-4e05-bc71-c1005175924b%2FUntitled.png?table=block&id=86addc25-55d1-4a93-984f-c728d5375d25&cache=v2)
872ac98a16c94f1f8a29f49496a1dfcd
Hidden State
RNN Notion
Mar 7, 2023
Alan Jo
Alan Jo
Jun 21, 2023
[Latent Space](https://texonom.com/latent-space-d67b6bdef18b4058bfbc3d25f87ec087)
### latent state, internal state The hidden state is computed based on the current input and the previous hidden state **์ด ํ”„๋กœ์„ธ์Šค๋Š” ์ˆœ์ฐจ์ ์ด์—ˆ๊ณ  ๋ณ‘๋ ฌํ™”๋ฅผ ๋ฐฉํ•ด** > [Some Intuition on Attention and the Transformer](https://eugeneyan.com/writing/attention/)
7b65c9b953ce4a9b843d2a0b381a5453
Long-term dependency
RNN Notion
Mar 6, 2023
Alan Jo
Alan Jo
Mar 6, 2023
[GRU](https://texonom.com/gru-280a4b083b0b49989e3cc36ef493410c) [LSTM](https://texonom.com/lstm-7946d20b7c394827b02e7b6b297bbadf)
RNN Problem ๋ฌธ์žฅ์ด ๊ธธ์–ด์งˆ ๊ฒฝ์šฐ ์•ž ๋‹จ์–ด์˜ ์ •๋ณด๋ฅผ ์žƒ์–ด๋ฒ„๋ฆฌ๊ฒŒ > [[๋”ฅ๋Ÿฌ๋‹] ์–ธ์–ด๋ชจ๋ธ, RNN, GRU, LSTM, Attention, Transformer, GPT, BERT ๊ฐœ๋… ์ •๋ฆฌ](https://velog.io/@rsj9987/๋”ฅ๋Ÿฌ๋‹-์šฉ์–ด์ •๋ฆฌ)
0b4e9db8d0cd4fc4889b83e32408e5f8
Recurrent Neurons
RNN Notion
Mar 12, 2021
Alan Jo
Alan Jo
Oct 6, 2021
์ˆœํ™˜ ๋‰ด๋Ÿฐ
341ce79b6a0648bb8c57fafc806573cc
RWKV
RNN Notion
May 28, 2023
Alan Jo
Alan Jo
May 28, 2023
### parallelizable training ### RWKV Implementation |Title| |:-:| |[](https://texonom.com/4aea4d107bb245f280ce2ab0023546ce)| |[](https://texonom.com/8b87d4786fc6461b97ccc1250d23a9aa)| > [RWKV: Reinventing RNNs for the Transformer Era](https://arxiv.org/abs/2305.13048)
639fb6fcbaba43e398a6e2fe5495373a
[RWKV-LM](https://github.com/BlinkDL/RWKV-LM)
RWKV Implementation
May 28, 2023
Alan Jo
Alan Jo
May 28, 2023
4aea4d107bb245f280ce2ab0023546ce
[rwkv.cpp](https://github.com/saharNooby/rwkv.cpp)
RWKV Implementation
May 28, 2023
Alan Jo
Alan Jo
May 28, 2023
[GGML](https://texonom.com/ggml-d3297b7eedc846a1bea05cfa0f3cc24a)
8b87d4786fc6461b97ccc1250d23a9aa
Bidirectional RNN
RNNs
Jun 21, 2023
Alan Jo
Alan Jo
Jun 21, 2023
- forwatd state - backward state
4f44262a3cc3417e8b31f24040cef871
GRU
RNNs
Oct 6, 2021
Alan Jo
Alan Jo
Jul 6, 2023
## Gated recurrent unit 2014๋…„ ๋‰ด์š•๋Œ€ํ•™๊ต ์กฐ๊ฒฝํ˜„ ๊ต์ˆ˜๋‹˜์ด ์ง‘ํ•„ํ•œ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ LSTM์™€ ์„ฑ๋Šฅ๊ณผ ๊ตฌ์กฐ๊ฐ€ ๋น„์Šทํ•˜์ง€๋งŒ GRU๊ฐ€ ํ•™์Šตํ•  ๊ฐ€์ค‘์น˜๊ฐ€ ์ ๋‹ค ์ถœ๋ ฅ ๊ฒŒ์ดํŠธ ์—†์Œ ### GRU Notion |Title| |:-:| |[GRU Update Gate](https://texonom.com/gru-update-gate-42daff55639e4781a5fee0170a13b2a2)| |[GRU Reset Gate](https://texonom.com/gru-reset-gate-89417d3e3bd44a5f89d67e199b36f381)| > [Gated Recurrent Units (GRU)](https://yjjo.tistory.com/18)
280a4b083b0b49989e3cc36ef493410c
LSTM
RNNs
Aug 16, 2021
Alan Jo
Alan Jo
Jul 6, 2023
[Quant Trading](https://texonom.com/quant-trading-024f2adb817a4e33b9fc6905bba8eb0c)
## Long Short Term Memory RNN์˜ ๋‹จ์ ์ธ ๊ธฐ์šธ๊ธฐ ์†Œ์‹ค ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด gate๋ฅผ ์ถ”๊ฐ€ํ•œ ๋ชจ๋ธ ์‹œ๊ณ„์—ด ์‹œํ€€์Šค๊ฐ€ ์žˆ๋Š” ๋ฐ์ดํ„ฐ์—์„œ ๋‹ค์Œ์„ ์˜ˆ์ธก ์ด๋ฆ„์—์„œ ์•Œ ์ˆ˜ ์žˆ๋Š” ๋‹จ๊ธฐ ๊ธฐ์–ต์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ํ–‰๋™ํ•˜๋Š” ๋ชจ๋ธ ํŠนํžˆ ์ฃผ์‹ ์˜ˆ์ธก์— ๋งŽ์ด ์‚ฌ์šฉ ### LSTM Notion |Title| |:-:| |[LSTM Cell State](https://texonom.com/lstm-cell-state-128d65c00df5470a98d1603ae1e56bd0)| |[LSTM forgetย gate](https://texonom.com/lstm-forgetgate-ee99b6c3bb5b432295e2f54b1b58a9a1)| |[LSTM inputย gate](https://texonom.com/lstm-inputgate-02d2744fe7344bff9502e5bb111ff759)| - forget gate - input gate - output gate ### LSTMs |Title| |:-:| |[BiLSTM](https://texonom.com/bilstm-cc8242f116e643abb71167e859561991)| ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F4b058d6d-0010-47fe-95d8-9604f829655b%2FUntitled.png?table=block&id=c557c8ba-af7b-4ac2-929d-3e62c6599b79&cache=v2) ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F86665118-813b-4d35-a2d2-2f1923910e5c%2FUntitled.png?table=block&id=382fda06-da43-46d6-bb50-3da9736036d3&cache=v2) > [Long Short-Term Memory (LSTM) ์ดํ•ดํ•˜๊ธฐ](https://dgkim5360.tistory.com/entry/understanding-long-short-term-memory-lstm-kr) > [08-02 ์žฅ๋‹จ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ(Long Short-Term Memory, LSTM)](https://wikidocs.net/22888) > [์‚ผ์„ฑ์ „์ž ์ฃผ์‹, ์ด๋”๋ฆฌ์›€ ์‹œ์„ธ ์ธ๊ณต์ง€๋Šฅ์œผ๋กœ ์˜ˆ์ธกํ•ด๋ณด์ž - Python, Deep Learning](https://www.youtube.com/watch?v=sG_WeGbZ9A4&t=241s)
7946d20b7c394827b02e7b6b297bbadf
Vanilla RNN
RNNs
Jul 6, 2023
Alan Jo
Alan Jo
Jul 6, 2023
์งง์€ ์‹œํ€€์Šค์—๋งŒ ํšจ๊ณผ **the problem of Long-Term Dependencies** ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fa6b722a0-f76c-4dcf-a4dd-374531416413%2FUntitled.png?table=block&id=1c9f7c91-3cb8-4d9a-8fb7-04fa17238677&cache=v2) > [08-02 ์žฅ๋‹จ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ(Long Short-Term Memory, LSTM)](https://wikidocs.net/22888)
f4032d5ead424efaaf6e1fb210b546cf
GRU Reset Gate
GRU Notion
Jul 6, 2023
Alan Jo
Alan Jo
Jul 6, 2023
89417d3e3bd44a5f89d67e199b36f381
GRU Update Gate
GRU Notion
Jul 6, 2023
Alan Jo
Alan Jo
Jul 6, 2023
42daff55639e4781a5fee0170a13b2a2
LSTM Cell State
LSTM Notion
Jul 6, 2023
Alan Jo
Alan Jo
Jul 6, 2023
cell state์— ๋ญ”๊ฐ€๋ฅผ ๋”ํ•˜๊ฑฐ๋‚˜ ์—†์•จ ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ gate๋กœ ์ œ์–ดํ•จ
128d65c00df5470a98d1603ae1e56bd0
LSTM ****forgetย gate****
LSTM Notion
Jul 6, 2023
Alan Jo
Alan Jo
Jul 6, 2023
ee99b6c3bb5b432295e2f54b1b58a9a1
LSTM ****inputย gate****
LSTM Notion
Jul 6, 2023
Alan Jo
Alan Jo
Jul 6, 2023
02d2744fe7344bff9502e5bb111ff759
BiLSTM
LSTMs
Aug 16, 2021
Alan Jo
Alan Jo
Jul 6, 2023
### Bidirectional LSTM
cc8242f116e643abb71167e859561991
AI Data
AI Usages
May 13, 2021
Alan Jo
Alan Jo
Jun 1, 2023
[Model Generalization](https://texonom.com/model-generalization-0a2de5c4578c47dd9a5dc1b83fbaf72b) [Observation Noise](https://texonom.com/observation-noise-dcf85cf878d740b0ad7dd8ecab260165) [Data Processing](https://texonom.com/data-processing-d1b576ef34304e0fa6325db709860e0b)
### Data enhancement is more effective than code enhancement Don't try to be a hero, data is 80 ### AI Data Usages |Title| |:-:| |[AI Data Tool](https://texonom.com/ai-data-tool-3cb903994b5c4c2aad0e3fddb4511a3f)| |[Data Labeling](https://texonom.com/data-labeling-dda48db348de44a9bafa1ae69ca18133)| |[Data Augmentation](https://texonom.com/data-augmentation-fd2918b94bd54726a8c91e26af129545)| |[Data Testing](https://texonom.com/data-testing-bda06f8a3b0349ac8cb78d960f24bf46)| |[Experiment Management](https://texonom.com/experiment-management-cbea3983015346a6bd81c98d2d65252d)| |[Temporal Sequence](https://texonom.com/temporal-sequence-a2558b4ef95c4c37bee54056c1804c8d)| |[AI Dataset](https://texonom.com/ai-dataset-6383f9b5b0c54e598b90dc9ea0c8e5d1)| > [Introduction to streaming for data scientists](https://huyenchip.com//2022/08/03/stream-processing-for-data-scientists.html)
dcd9611d8a5647ba95e7bc63a7e6db1f
AI Development
AI Usages
Jun 13, 2021
Alan Jo
Alan Jo
Jun 21, 2023
[Statistics Tool](https://texonom.com/statistics-tool-cd8ad9a0f6be46b4979d8e302c6dbd52)
> [Emerging Architectures for LLM Applications | Andreessen Horowitz](https://a16z.com/2023/06/20/emerging-architectures-for-llm-applications) > [Stack Overflow](https://stackoverflow.co/labs/developer-sentiment-ai-ml) > [Futurepedia - The Largest AI Tools Directory | Home](https://www.futurepedia.io/)
94a4b3b469b5439aaa03a669f894e3c8
AI Industry
AI Usages
Aug 21, 2021
Alan Jo
Alan Jo
Jul 4, 2023
[Industry](https://texonom.com/industry-989c1bacc8b84fb1b63486f61e3b9052) [AI Object](https://texonom.com/ai-object-e69c83e69fd34103a83c1341b65158be) [Sex Industry](https://texonom.com/sex-industry-e5080bf012e0478f9e6fc996bdc8a2cb) [Copyright](https://texonom.com/copyright-02b119d69a0a475289bbcd13faae44f3)
AI progress is constrained by bottlenecks in essential economic sectors and steps of the innovation process, and that breakthroughs in manipulating the physical world are necessary ํ˜„์žฌ๊นŒ์ง€ AI ์ฐฝ์ž‘๋ฌผ์€ ์ €์ž‘๊ถŒ ์—†๋‹ค๋Š” ๊ฑธ ์ด์šฉํ•ด์•ผ ### AI Companies |Title| |:-:| |[OpenAI](https://texonom.com/openai-501e879eb1ca4ef8b388ba5b11e92e23)| |[Deepmind](https://texonom.com/deepmind-5eb171c77b344d4786a9a5b23ae70eca)| |[Stability AI](https://texonom.com/stability-ai-7285625019ec4498a7300ac9f0736b2d)| |[Anthropic AI](https://texonom.com/anthropic-ai-096e36d827a2421b9b0ee8d1ff3b0305)| |[AllenAI](https://texonom.com/allenai-930c776c8fdd4e358032803f037cd6fa)| |[Saltlux](https://texonom.com/saltlux-de9945849d70489f99a33f81a1707a46)| |[Neural Magic](https://texonom.com/neural-magic-021ab1b8be0d4f95b8ae6278c08e1562)| |[VoyagerX](https://texonom.com/voyagerx-bdc1dc8597e44f1aac3ab3ec6256eb87)| |[Upstage.ai](https://texonom.com/upstageai-319072815ced47bf98335f3a9c87cec4)| |[CarperAI](https://texonom.com/carperai-d69725f3dcfb4a57a9cf0f4bea30bc2a)| |[Eleuther AI](https://texonom.com/eleuther-ai-9f89e25571fe4930825ffabb3483c02a)| |[Preligens](https://texonom.com/preligens-040e14875d3b463fa71674578756944e)| |[inworld](https://texonom.com/inworld-29d82633e51742dabca809cc86d6e989)| |[Scatter Lab](https://texonom.com/scatter-lab-9524953c003c4c7d8ec48d387c1a42cf)| |[VAIV](https://texonom.com/vaiv-15772f18eca5478290a6ca76068cf077)| |[X.AI](https://texonom.com/xai-ccd1c9778b1349c788889cf20c1c9a72)| |[Inflection AI](https://texonom.com/inflection-ai-533110523b9f4b8ab79f663a6ba7f6b0)| |[MosaicML](https://texonom.com/mosaicml-d531ff0e6a51448c84296ab20f675d67)| |[Tiny corp](https://texonom.com/tiny-corp-2b42b01b901d4a93b80698286c5e2b40)| |[Cohere](https://texonom.com/cohere-5fc93cb3678841a7b23df3c7d0399aca)| |[Mind AI](https://texonom.com/mind-ai-007aca806190459c8437ce7046f5fbcc)| ### AI Products Diagram > [How to Build AI Products People Want โ€” Reforge](https://www.reforge.com/blog/ai-products-arms-race) ### Industry Landscape > [Why transformative AI is really, really hard to achieve](https://zhengdongwang.com/2023/06/27/why-transformative-ai-is-really-really-hard-to-achieve.html) > [LF AI Landscape](https://landscape.lfai.foundation/) ### Scaling > [3 ways AI is scaling helpful technologies worldwide](https://blog.google/technology/ai/ways-ai-is-scaling-helpful/) > [AI Will Create More Developers, Not Less](https://interconnect.substack.com/p/ai-will-create-more-developers-not)
d8709bd0498145e3a66af6da3f963fa7
AI Object
AI Usages
Jun 13, 2021
Alan Jo
Alan Jo
May 21, 2023
[ai-notes](https://github.com/sw-yx/ai-notes) [applied-ml](https://github.com/eugeneyan/applied-ml)
### AI ํŠน์„ฑ์ƒ ์ •ํ™•์„ฑ์ด ํ•„์š”์—†๋Š” ๋ถ„์•ผ๋ถ€ํ„ฐ ๋Œ€์ฒด๋  ๊ฒƒ์ด๊ณ  ๊ทธ๋ ‡๊ฒŒ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค ### AI Objects |Title| |:-:| |[AI Planning](https://texonom.com/ai-planning-2173477bde2147d1a91975e30756806a)| |[Vision AI](https://texonom.com/vision-ai-ba1da978d6f6488998e7cdc59431b41a)| |[Sound AI](https://texonom.com/sound-ai-c3f85fde353c4e7581cca5e3e30324f6)| |[IA](https://texonom.com/ia-92af447425bc4fe2b10f3aef85c1871e)| |[NLP](https://texonom.com/nlp-e0ae7b40dd23463ea7bc92195d6ec7fd)| |[AI Coding](https://texonom.com/ai-coding-f659b252482d4dfb90485c4a0428f442)| |[Recommend System](https://texonom.com/recommend-system-e94b364527554e65bfd9d3dc63fb1af7)| |[AI Invent](https://texonom.com/ai-invent-2fd3b79c01bd43239990cd547a2f6e41)| |[AI Game](https://texonom.com/ai-game-7cb70519f66942b1b59d1d7352ce34e1)| |[AI Automation](https://texonom.com/ai-automation-afa72ebcb9e4426799162de10da077f8)| |[AI Robot](https://texonom.com/ai-robot-0796068b90b246d8abc6aeed851624cd)| |[Multimodal AI](https://texonom.com/multimodal-ai-381b5ebe1218438689de97941a3d9829)| |[AI Agent](https://texonom.com/ai-agent-5efeaf8cd77f495988083eb2084d7f01)| |[Extract Information](https://texonom.com/extract-information-6988fe9ed1a444e7be50249e5ccf11bc)|
e69c83e69fd34103a83c1341b65158be
AI Protocol
AI Usages
Apr 11, 2023
Alan Jo
Alan Jo
Apr 11, 2023
### AI Protocols |Title| |:-:|
be3148d3c1b24b90a4f51020fde30bd6
AI Data Tool
AI Data Usages
Jan 18, 2023
Alan Jo
Alan Jo
Jan 18, 2023
### AI Data Tools |Title| |:-:| |[Clearnlab](https://texonom.com/clearnlab-479203d2d2cf4ad2999da2d1fcad12ff)| |[Eva db](https://texonom.com/eva-db-17a183f2967d455fbe7631ea89172e49)|
3cb903994b5c4c2aad0e3fddb4511a3f
AI Dataset
AI Data Usages
Mar 27, 2021
Alan Jo
Alan Jo
Jun 6, 2023
[Text Corpus](https://texonom.com/text-corpus-1befe731759849c48134768343a90703)
We typically say that a dataset is high-dimensional if the number of data points N issmaller than the dimensionality D > - not cheatable > - large degree of intra-class variability > > ![](https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F895def36-e573-4dd1-8322-2a360807feb7%2FUntitled.png?table=block&id=fcecf613-dddd-441d-bf75-31e18d3ec61a&cache=v2) ### Vision AI Datasets |Title| |:-:| |[ImageNet](https://texonom.com/imagenet-d5542cdb730f4e218bacb583b5e2576b)| |[WebLI](https://texonom.com/webli-5b0455624497488ba55432160ad812c6)| ### NLP Datasets |Title| |:-:| |[CommonCrawl](https://texonom.com/commoncrawl-e34ff04c04e14260a1ef19e3baa035c8)| |[C4 Data](https://texonom.com/c4-data-5e19c38f6e034c92857f71cb820dae89)| |[Code Data](https://texonom.com/code-data-071b31dcf1ee4073ad458f1ac781cd5f)| |[RedPajama Data](https://texonom.com/redpajama-data-ab8489ee6448474899c4b8e49b6faaac)| > [20 Open Datasets for Natural Language Processing](https://odsc.medium.com/20-open-datasets-for-natural-language-processing-538fbfaf8e38)
6383f9b5b0c54e598b90dc9ea0c8e5d1
Data Augmentation
AI Data Usages
Jun 22, 2021
Alan Jo
Alan Jo
Jun 7, 2023
### Flip, Scale, Crop, Rotation Jitter, Shear, Stretch, Lens Distortion ### Data Augmentation Tools |Title| |:-:| |[AI Data Generator](https://texonom.com/ai-data-generator-dd7e73ff30db4c0f89580aff9fb7df56)| |[AugLy](https://texonom.com/augly-0cbb390ff79642d1846f50f79ea9ed91)| ### Data Augmentation Notion |Title| |:-:| |[color jitter](https://texonom.com/color-jitter-08229f0a960c43acb65cedad8e7fb14a)|
fd2918b94bd54726a8c91e26af129545
Data Labeling
AI Data Usages
May 13, 2021
Alan Jo
Alan Jo
May 11, 2023
### Data Labelings |Title| |:-:| |[Image Labeling](https://texonom.com/image-labeling-dca8afabd8a14dc495545f414883d7b4)| ### Cheap Africa human power > [Africa: The Hidden Workforce Behind AI](https://www.mantralabsglobal.com/blog/ai-in-africa-artificial-intelligence-africa/)
dda48db348de44a9bafa1ae69ca18133
Data Testing
AI Data Usages
Mar 21, 2023
Alan Jo
Alan Jo
May 11, 2023
### Data Testing Tools |Title| |:-:| |[Pandera](https://texonom.com/pandera-632fbdee7cc847359bcc61bc9c67bf01)|
bda06f8a3b0349ac8cb78d960f24bf46
Experiment Management
AI Data Usages
Jun 13, 2021
Alan Jo
Alan Jo
May 11, 2023
### Experiment Management Tools |Title| |:-:| |[Neptune.ai](https://texonom.com/neptuneai-c61383aff215447a979fd6d446be277d)| |[Weights & Biases](https://texonom.com/weights-biases-51d1cbfc87324d1f8dd43a8978ea5f68)| |[TensorBoard](https://texonom.com/tensorboard-6af2721a16bd4dcdb172affcdf055d91)|
cbea3983015346a6bd81c98d2d65252d
Temporal Sequence
AI Data Usages
Apr 30, 2023
Alan Jo
Alan Jo
May 11, 2023
[TSDB](https://texonom.com/tsdb-e2b5383c82d040ab981de62b970cc2ea)
### Temporal Sequence Notion |Title| |:-:| |[DTW](https://texonom.com/dtw-ee045ba3b84e40b3b4e04d2257ed8814)|
a2558b4ef95c4c37bee54056c1804c8d
Clearnlab
AI Data Tools
Jan 18, 2023
Alan Jo
Alan Jo
Jan 18, 2023
[cleanlab](https://github.com/cleanlab/cleanlab)
479203d2d2cf4ad2999da2d1fcad12ff
Eva db
AI Data Tools
May 2, 2023
Alan Jo
Alan Jo
May 2, 2023
[eva](https://github.com/georgia-tech-db/eva)
### Eva db Usages |Title| |:-:| ```typeSELECT id, data FROM TrafficVideo WHERE ['car'] <@ YoloV5(data).labels;``` > [EVA AI-Relational Database System documentation](https://evadb.readthedocs.io/)
17a183f2967d455fbe7631ea89172e49
C4 Data
NLP Datasets
Apr 18, 2023
Alan Jo
Alan Jo
Apr 18, 2023
Common Crawl์˜ ์›น ํฌ๋กค๋ง ์ฝ”ํผ์Šค์˜ ๊ฑฐ๋Œ€ํ•˜๊ณ  ๊นจ๋—ํ•œ ๋ฒ„์ „
5e19c38f6e034c92857f71cb820dae89
Code Data
NLP Datasets
Apr 21, 2023
Alan Jo
Alan Jo
Apr 21, 2023
### Code Datas |Title| |:-:| |[BigCode](https://texonom.com/bigcode-7c4e3d53d63d4f9a923910cfd999367b)| |[The Stack](https://texonom.com/the-stack-f5e306b910ae43de882a3bcd39981b6a)|
071b31dcf1ee4073ad458f1ac781cd5f
CommonCrawl
NLP Datasets
Apr 18, 2023
Alan Jo
Alan Jo
Apr 18, 2023
e34ff04c04e14260a1ef19e3baa035c8
RedPajama Data
NLP Datasets
May 1, 2023
Alan Jo
Alan Jo
Jun 13, 2023
[MPT](https://texonom.com/mpt-bf2abacce4b14fe99929c1fb19ea2c71)
[RedPajama-Data](https://github.com/togethercomputer/RedPajama-Data) > [togethercomputer/RedPajama-Data-1T ยท Datasets at Hugging Face](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) > [RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens โ€” TOGETHER](https://www.together.xyz/blog/redpajama)
ab8489ee6448474899c4b8e49b6faaac
BigCode
Code Datas
Apr 21, 2023
Alan Jo
Alan Jo
Apr 21, 2023
> [Open and responsible development of LLMs for code](https://www.bigcode-project.org/) > [The Stack: 3 TB of permissively licensed source code](https://arxiv.org/abs/2211.15533)
7c4e3d53d63d4f9a923910cfd999367b