title
stringlengths 1
544
โ | parent
stringlengths 0
57
โ | created
stringlengths 11
12
โ | editor
stringclasses 1
value | creator
stringclasses 4
values | edited
stringlengths 11
12
โ | refs
stringlengths 0
536
โ | text
stringlengths 1
26k
| id
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|
StarChat
|
Huggingface H4
| null | null | null | null | null |
> [HuggingFaceH4/starchat-beta ยท Hugging Face](https://huggingface.co/HuggingFaceH4/starchat-beta)
> [TheBloke/starchat-beta-GPTQ at main](https://huggingface.co/TheBloke/starchat-beta-GPTQ/tree/main)
|
ea316ec509564a51b56ad92b22831220
|
HuggingFace Docker Space
|
HuggingFace Space SDK
|
Jul 13, 2023
|
Alan Jo
|
Alan Jo
|
Jul 13, 2023
|
### HuggingFace Docker Space Templates
|Title|
|:-:|
|[HuggingFace ChatUI Template](https://texonom.com/huggingface-chatui-template-9cd1b4ab300f44b0bc91c87f33edf6bb)|
|
0f250609ad1f493bb91146813de8d8a6
|
|
HuggingFace ChatUI Template
|
HuggingFace Docker Space Templates
|
Jul 13, 2023
|
Alan Jo
|
Alan Jo
|
Jul 13, 2023
|
9cd1b4ab300f44b0bc91c87f33edf6bb
|
||
fastbook
|
Deep Learning Tools
|
Nov 25, 2019
|
Alan Jo
|
Alan Jo
|
May 29, 2023
|
> [fastai/fastbook](https://github.com/fastai/fastbook)
|
d022baa785a14ce5af5cf1ef59995cb1
|
|
Netron
|
Deep Learning Tools
|
Oct 6, 2021
|
Alan Jo
|
Alan Jo
|
May 29, 2023
|
### visualize Neural Network
> [lutzroeder/netron](https://github.com/lutzroeder/netron)
|
2e410ef29aaa4a7d9e2a2777ce4dd3ee
|
|
Activation Function
|
Neural Network Components
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
Jun 6, 2023
|
### Unlike sign function for [Back Propagation](https://texonom.com/back-propagation-18f4493692ad43449d4271f1bb293781), use non zero derivative
- sigmoid function - probability
- sign function - predict class
### Activation Functions
|Title|
|:-:|
|[Sigmoid Function](https://texonom.com/sigmoid-function-417e17b995cf40c996cec78f699ea59b)|
|[GELU](https://texonom.com/gelu-8f18023a80b84a06b5afd648811df6bc)|
|[ReLU](https://texonom.com/relu-e582549804da48b893758895e446ffb9)|
|[Sign Function](https://texonom.com/sign-function-b95e191cc2dc43c0befd6231f022555f)|
|[ELU Function](https://texonom.com/elu-function-c7306a8566014b4e9d0733b52bd399fa)|
|[Mish Function](https://texonom.com/mish-function-39eaae692b284adbadde08d3d707f13d)|
|[Tanh Function](https://texonom.com/tanh-function-679abf35c4eb4fb0bb0e56140cac3d23)|
|[Maxout Function](https://texonom.com/maxout-function-ad1f081fa0c34a6fbee08259c82ea4a1)|
|[ELU Function](https://texonom.com/elu-function-e6f30f8fff2c422993a85565f8ce5ee7)|
> [0023 Loss & Metric - Deepest Documentation](https://deepestdocs.readthedocs.io/en/latest/002_deep_learning_part_1/0023/)
|
8e52ee5f83a244d88abeeee3fb9497a8
|
|
Forward Forward Algorithm
|
Neural Network Components
|
Apr 3, 2023
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
[Back Propagation](https://texonom.com/back-propagation-18f4493692ad43449d4271f1bb293781) ๋ณด๋ค ๋๋ํผ์ง ์๋๋ฐฉ์์ ์ ์ฌ
์๋
์ค์ ์ฒ์์ผ๋ก ๋์๊ฐ๊ธฐ ์ ์ cortical layer๋ฅผ ์ง๋๋ ๊ณผ์ ์์ย *๋ชจ์ข
์ ๋ฃจํ๋ฅผ ํ์ฑํ๋ค*
๋คํธ์ํฌ์ ๋ ์ด์ด ์๊ฐ ๋ง์์ง์๋ก FF๊ฐ Backprop๋ณด๋ค ๋ฉ๋ชจ๋ฆฌ๋ฅผ ๋ ์ฌ์ฉํฉ๋๋ค. ํ์ง๋ง 20๊ฐ ์ดํ์ ๋ ์ด์ด๋ฅผ ๊ฐ์ง thin network์์๋ FF๊ฐ backprop๋ณด๋ค ํจ์ฌ ๋ ๋ง์ ๋ฉ๋ชจ๋ฆฌ๋ฅผ ์ฌ์ฉ
### Forward Forward Algorithm Notion
|Title|
|:-:|
> [[๋ฅ๋ฌ๋] The Forward-Forward Algorithm: Some Preliminary Investigations (FF)](https://velog.io/@nochesita/๋ฅ๋ฌ๋-The-Forward-Forward-Algorithm-Some-Preliminary-Investigations)
> [Welcome to JunYoung's blog | ๋ฅ๋ฌ๋์ ์ฒด๊ณ๋ฅผ ๋ฐ๊พผ๋ค! The Forward-Forward Algorithm ๋
ผ๋ฌธ ๋ฆฌ๋ทฐ (1)](https://junia3.github.io/blog/ffalgorithm)
> [The Forward-Forward Algorithm: Some Preliminary Investigations](https://arxiv.org/abs/2212.13345)
|
6c989313e382466bba02d15c412fb17f
|
|
Neural Network Layer
|
Neural Network Components
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
### Do not count input layer as perceptron (no weights & bias)
$$ learnable\;parameters = weights(edges) + perceptron(bias)$$
### Neural Network Layer Notion
|Title|
|:-:|
|[Layer Normalization](https://texonom.com/layer-normalization-c5111411c0594c04847b0eb4d8fa6682)|
|[Batch Normalization](https://texonom.com/batch-normalization-0e5e919e98b74b168a248a9fd3e0cb63)|
|[Fully Connected Layer](https://texonom.com/fully-connected-layer-3fd5a241e2b84a53a2339c60fbcd957a)|
|[Input Layer](https://texonom.com/input-layer-abdd1cda0d124843a34c66dc5ec7eba1)|
|[Hidden Layer](https://texonom.com/hidden-layer-a22cafa21026469094d260b473fd4789)|
|[Output Layer](https://texonom.com/output-layer-184eb47c3a98437daceba11104377194)|
|[Residual Connection](https://texonom.com/residual-connection-f6778b3cfbee4b0cab02f7fad533372f)|
|
e10ef2afe1954cf6b909f8aa40077393
|
|
skip connections
|
Neural Network Components
|
May 23, 2023
|
Alan Jo
|
Alan Jo
|
May 23, 2023
|
**help dampen the impact of poor layer**
|
d7ad187f3487468db6eea278f0236a22
|
|
ELU Function
|
Activation Functions
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
Apr 27, 2023
|
c7306a8566014b4e9d0733b52bd399fa
|
||
ELU Function
|
Activation Functions
|
Jun 7, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
e6f30f8fff2c422993a85565f8ce5ee7
|
||
GELU
|
Activation Functions
|
Apr 8, 2023
|
Alan Jo
|
Alan Jo
|
Apr 27, 2023
|
8f18023a80b84a06b5afd648811df6bc
|
||
Maxout Function
|
Activation Functions
|
Jun 7, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
ad1f081fa0c34a6fbee08259c82ea4a1
|
||
Mish Function
|
Activation Functions
|
May 18, 2023
|
Alan Jo
|
Alan Jo
|
May 18, 2023
|
39eaae692b284adbadde08d3d707f13d
|
||
ReLU
|
Activation Functions
|
Mar 7, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
## Rectified Linear Unit
์
๋ ฅ๊ฐ์ด ์์์ธ ๋ด๋ฐ์ ๋ค์ ํ์์ํค๊ธฐ ์ด๋ ต๋ค๋ ํ๊ณ
์ด๋ฌํ ๋ฌธ์ ๋ฅผ Dying ReLU
### ReLU Variants
|Title|
|:-:|
|[PReLU](https://texonom.com/prelu-67cdafbec19248bfad4225946a4c9fc3)|
|[Leaky ReLU](https://texonom.com/leaky-relu-fa25fa8a234044068fd839a93512a762)|
|
e582549804da48b893758895e446ffb9
|
|
Sigmoid Function
|
Activation Functions
|
Nov 19, 2020
|
Alan Jo
|
Alan Jo
|
Jun 14, 2023
|
### inverse of the natural logit function
logistic์ s์ ๋ชจ์์ ์๋ฏธํ๋ ์๊ทธ๋ชจ์ด๋์ค ๋ํ์
ReLU๊ฐ ๋ฑ์ฅํ๊ธฐ ์ด์ ์ ํ๋ฐํ๊ฒ ์ฌ์ฉ๋์๋ activation function
hidden ๋
ธ๋ ๋ฐ๋ก ๋ค์ ๋ถ์ฐฉ
### Sigmoid Functions
|Title|
|:-:|
|[SoftMax Function](https://texonom.com/softmax-function-d8364b5e839145e89df423e0c5365dc1)|
|[Logit Function](https://texonom.com/logit-function-104e55a12b234813a020cb09ec51c754)|
$$\sigma(x) = \frac{1}{1 + e^{-(wx + b)}}$$
> [์ด๋ป๊ฒ ํ๋ฉด "๋ถ๋๋ฝ๊ฒ" ์ฐ๊ฒฐํ ๊น?](https://youtube.com/watch?v=LS-C8KBvJYY&feature=shares)
> [Logistic function](https://en.wikipedia.org/wiki/Logistic_function)
> [logit, sigmoid, softmax์ ๊ด๊ณ - ํ ํ์ด์ง ๋จธ์ ๋ฌ๋](https://opentutorials.org/module/3653/22995)
|
417e17b995cf40c996cec78f699ea59b
|
|
Sign Function
|
Activation Functions
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
Apr 27, 2023
|
b95e191cc2dc43c0befd6231f022555f
|
||
Tanh Function
|
Activation Functions
|
May 23, 2023
|
Alan Jo
|
Alan Jo
|
May 23, 2023
|
679abf35c4eb4fb0bb0e56140cac3d23
|
||
Leaky ReLU
|
ReLU Variants
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
May 23, 2023
|
์์์ผ ๋ ์ถ๋ ฅ๊ฐ์ 0์ด ์๋ 0.001๊ณผ ๊ฐ์ ๋งค์ฐ ์์ ๊ฐ์ ์ถ๋ ฅํ๋๋ก ์ค์
|
fa25fa8a234044068fd839a93512a762
|
|
PReLU
|
ReLU Variants
|
May 18, 2023
|
Alan Jo
|
Alan Jo
|
May 18, 2023
|
67cdafbec19248bfad4225946a4c9fc3
|
||
Logit Function
|
Sigmoid Functions
|
Nov 1, 2020
|
Alan Jo
|
Alan Jo
|
Apr 27, 2023
|
$$g(z) = \frac{1}{1 + e^{-z}}$$
### This is important
$$g'(z) = g(z)(1 - g(z))$$
[Logit](https://texonom.com/logit-84e304d3bf104e3fbc6029bcc7eea6c2)
|
104e55a12b234813a020cb09ec51c754
|
|
SoftMax Function
|
Sigmoid Functions
|
Nov 1, 2020
|
Alan Jo
|
Alan Jo
|
Apr 27, 2023
|
[Cross Entropy](https://texonom.com/cross-entropy-fefc71fd930a41a7842f39bccb3abcc9)
|
### softmaxํจ์๋ sigmoid์ ์ผ๋ฐํ
- 2๊ฐ ํด๋์ค๋ฅผ ๋์์ผ๋ก ์ ์ํ๋ logit์ K๊ฐ์ ํด๋์ค๋ฅผ ๋์์ผ๋ก ์ผ๋ฐํํ๋ฉด softmaxํจ์๊ฐ ์ ๋(derived)
- softmaxํจ์์์ K๋ฅผ 2๋ก ๋์ผ๋ฉด sigmoidํจ์๋ก ํ์
- sigmoidํจ์๋ฅผ K๊ฐ์ ํด๋์ค๋ฅผ ๋์์ผ๋ก ์ผ๋ฐํํ๋ฉด softmaxํจ์๊ฐ ์ ๋
### classification
softmaxํจ์๋ ์ธ๊ณต์ ๊ฒฝ๋ง์ด ๋ด๋์ K๊ฐ์ ํด๋์ค ๊ตฌ๋ถ ๊ฒฐ๊ณผ๋ฅผ ํ๋ฅ ์ฒ๋ผ ํด์ํ๋๋ก
sigmoid๋ activation์, softmax๋ classification์ ์ฌ์ฉ๋์ง๋ง ์ํ์ ์ผ๋ก ๊ฐ๋ค
> ๋ค๋ฃจ๋ ํด๋์ค๊ฐ 2๊ฐ๋ K๊ฐ๋๋ก ์ฐจ์ด๊ฐ ์์ ๋ฟ
> [logit, sigmoid, softmax์ ๊ด๊ณ - ํ ํ์ด์ง ๋จธ์ ๋ฌ๋](https://opentutorials.org/module/3653/22995)
|
d8364b5e839145e89df423e0c5365dc1
|
Logit
|
Logit Function
| null | null | null | null | null |
โlogisticโ +โ โprobitโ
> [logit, sigmoid, softmax์ ๊ด๊ณ - ํ ํ์ด์ง ๋จธ์ ๋ฌ๋](https://opentutorials.org/module/3653/22995)
|
84e304d3bf104e3fbc6029bcc7eea6c2
|
**Batch Normalization**
|
Neural Network Layer Notion
|
Mar 7, 2023
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
[Layer Normalization](https://texonom.com/layer-normalization-c5111411c0594c04847b0eb4d8fa6682)
|
๋ ์ด์ด๋ง๋ค Normalization์ ํ๋ ๋ ์ด์ด๋ฅผ ๋์ด, ๋ณํ๋ ๋ถํฌ๊ฐ ๋์ค์ง ์๋๋ก ํ๋ ๊ฒ
### Limitation
1. dependent to mini batch size
2. hard to apply to RNN
### **Batch Normalization Methods**
|Title|
|:-:|
|[Internalย Covariate Shift](https://texonom.com/internalcovariate-shift-827b94e336a141b4a2ca100fc42dab66)|
|[Whitening](https://texonom.com/whitening-5bfaed3572904c208125cc9df6c664b0)|
> [๋ฐฐ์น ์ ๊ทํ(Batch Normalization)](https://gaussian37.github.io/dl-concept-batchnorm/)
> [Batch normalization](https://en.wikipedia.org/wiki/Batch_normalization)
|
0e5e919e98b74b168a248a9fd3e0cb63
|
Fully Connected Layer
|
Neural Network Layer Notion
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
Jun 1, 2023
|
## FC Layer
input node is connected to each input node is connected to each output node
number of parameter is $m\times n$
|
3fd5a241e2b84a53a2339c60fbcd957a
|
|
Hidden Layer
|
Neural Network Layer Notion
|
May 11, 2023
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
a22cafa21026469094d260b473fd4789
|
||
Input Layer
|
Neural Network Layer Notion
|
May 11, 2023
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
abdd1cda0d124843a34c66dc5ec7eba1
|
||
Layer Normalization
|
Neural Network Layer Notion
|
Nov 19, 2019
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
[Batch Normalization](https://texonom.com/batch-normalization-0e5e919e98b74b168a248a9fd3e0cb63)
|
BN normalizes the activations of each batch, while LN normalizes the activations of each layer
|
c5111411c0594c04847b0eb4d8fa6682
|
Output Layer
|
Neural Network Layer Notion
|
May 11, 2023
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
184eb47c3a98437daceba11104377194
|
||
Residual Connection
|
Neural Network Layer Notion
|
Mar 7, 2023
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
### **Skip connection**
**ํ์ ์ธต์์ ํ์ต๋ ์ ๋ณด๊ฐ ๋ฐ์ดํฐ ์ฒ๋ฆฌ ๊ณผ์ ์์ ์์ค๋๋ ๊ฒ์ ๋ฐฉ์งํ๊ธฐ ์ํ ๋ฐฉ๋ฒ**
> [[DL] Exploding & Vanishing Gradient ๋ฌธ์ ์ Residual Connection](https://heeya-stupidbutstudying.tistory.com/entry/DL-Exploding-Vanishing-gradient-๋ฌธ์ ์-Residual-Connection์์ฐจ์ฐ๊ฒฐ)
|
f6778b3cfbee4b0cab02f7fad533372f
|
|
**Internalย Covariate Shift**
|
Batch Normalization Methods
|
Jul 5, 2023
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
Internal distribution could have bias or variance even if input data distribution is normalized
> [[PyTorch๋ก ์์ํ๋ ๋ฅ๋ฌ๋ ๊ธฐ์ด] 09-4 Batch-Normalization](https://wegonnamakeit.tistory.com/47)
|
827b94e336a141b4a2ca100fc42dab66
|
|
Whitening
|
Batch Normalization Methods
|
Mar 7, 2023
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
๋ค์ด์ค๋ ์
๋ ฅ๊ฐ์ ํน์ง๋ค์ uncorrelated ํ๊ฒ ๋ง๋ค์ด์ฃผ๊ณ , ๊ฐ๊ฐ์ ๋ถ์ฐ์ 1๋ก ๋ง๋ค์ด์ฃผ๋ ์์
**covariance matrix์ ๊ณ์ฐ๊ณผ inverse์ ๊ณ์ฐ์ด ํ์ํ๊ธฐ ๋๋ฌธ์ ๊ณ์ฐ๋์ด ๋ง์ ๋ฟ๋๋ฌ,ย Whitening์ ์ผ๋ถ ํ๋ผ๋ฏธํฐ๋ค์ ์ํฅ์ด ๋ฌด์๋๋ค**
**ํน์ ํ๋ผ๋ฏธํฐ๊ฐ ๊ณ์ ์ปค์ง๋ ์ํ๋ก ์ ์ง๋ ์ ์๋ค๋ ๋ฌธ์ ๋**
> [[Deep Learning] Batch Normalization (๋ฐฐ์น ์ ๊ทํ)](https://eehoeskrap.tistory.com/430)
|
5bfaed3572904c208125cc9df6c664b0
|
|
ANN
|
Neural Networks
|
Mar 5, 2023
|
Alan Jo
|
Alan Jo
|
Mar 6, 2023
|
### Artificial Neural Network
๊ธฐ๊ณํ์ต๊ณผ ์ธ์ง๊ณผํ์์ ์๋ฌผํ์ ์ ๊ฒฝ๋ง์์ ์๊ฐ์ ์ป์ ํต๊ณํ์ ํ์ต ์๊ณ ๋ฆฌ์ฆ
|
d4232205ecf9463c95a911d179c87a84
|
|
CNN
|
Neural Networks
|
Nov 5, 2019
|
Alan Jo
|
Seong-lae Cho
|
Jul 4, 2023
|
[Capsule Network](https://texonom.com/capsule-network-a14fc7e569864154aae1ef44106e8991) [BCI](https://texonom.com/bci-e7b6d2a55d19435b9d3f8990441cab9e)
|
## Convolutional Neural Network
Actually we use [Correlation](https://texonom.com/correlation-d75ea902ec294bf19e1180b6bfd22137) not the [Convolution](https://texonom.com/convolution-54def9d34de64e199ea46393675af2ce)
Convolutional Layer์ Pooling Layer๋ฅผ ๋ฒ๊ฐ์ ๊ฐ๋ฉฐ ์ ์ฉํ์ฌ ์
๋ ฅ ์ด๋ฏธ์ง์ ํน์ง์ ์ถ์ถํ๊ณ (Fully Connected) Layer๋ฅผ ํตํด ๋ถ๋ฅ ์์
์ ์ํ
### Hyperparameters
- Convolution layerโs filter type, size, stride which result each activation map
- Placements and types of convolution layer, pooling layer and activation layer
So the typical architecture look like this
where N is usually up to ~5, M is large, 0 <= K <= 2. but recent advances challenge this paradigm
```type[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX```
### CNN Notion
|Title|
|:-:|
|[CNN History](https://texonom.com/cnn-history-76ffc514584846348136ea794f37ea9a)|
|[Pooling Layer](https://texonom.com/pooling-layer-c36550932e8c4436b4b6da0d4d2fc946)|
|[Convolutional Layer](https://texonom.com/convolutional-layer-0880b6c2089b4b20bb9a6232b6cb4b19)|
|[CNN bottleneck layer](https://texonom.com/cnn-bottleneck-layer-c67427171be5400db198dd6e7ef644ce)|
|[Training CNN](https://texonom.com/training-cnn-dc4f33cdf45544668d6f9cb6d059f431)|
|[Local Contrast Normalization](https://texonom.com/local-contrast-normalization-036406a996c94edab249e7ff8a32b2bc)|
|[ctivation map](https://texonom.com/ctivation-map-d0117ee2531b44dcbb0d19d33dff23ac)|
### CNN Models
|Title|
|:-:|
|[ResNet](https://texonom.com/resnet-d8c7707445684e848ebef939500672d4)|
|[ALexNet](https://texonom.com/alexnet-e33d746e06a540d4b8900be7ccede18c)|
|[ConvNets](https://texonom.com/convnets-1846cf4fac8b4feea6fa8cf4ac083df9)|
|[SuperVision](https://texonom.com/supervision-9d75ddb2bccd4dc9857f4332ae096298)|
|[GoogLeNet](https://texonom.com/googlenet-64b5ad51aafc48d492ba489f47ffa58a)|
|[VGG](https://texonom.com/vgg-c59b523e5e894bf2842474c9022dceec)|
|[MSRA](https://texonom.com/msra-9024cb9533e54bdc9ada6d30601f847b)|
|
002bf81a77bc40d1858740d26b61d97b
|
FFNN
|
Neural Networks
|
Mar 5, 2023
|
Alan Jo
|
Alan Jo
|
Mar 7, 2023
|
[Tree Data](https://texonom.com/tree-data-45f2e08b1f184e60b2e47c96e4cb535f) [RNN](https://texonom.com/rnn-f7aad56acb5542b2ac26c2908be4ce16)
|
### ***Feed-Forward Neural Network***
๊ณ ์๋ ์ธ๊ณต ์ ๊ฒฝ๋ง์ ์ต์ด์ ๊ฐ์ฅ ๋จ์ํ ํํ
### FFNN Usages
|Title|
|:-:|
|[Position-wise FFNN](https://texonom.com/position-wise-ffnn-6fe30c96aa9245d898c73ec34625377d)|
|
89ecee87d8b7482e86995950db90eb31
|
GNN
|
Neural Networks
|
Apr 30, 2023
|
Alan Jo
|
Alan Jo
|
Apr 30, 2023
|
### **Graph neural network**
๊ทธ๋ํ๋ก ๋ํ๋ผ ์ ์๋ ๋ฐ์ดํฐ๋ฅผ ์ฒ๋ฆฌํ๊ธฐ ์ํ ์ธ๊ณต ์ ๊ฒฝ๋ง
๊ธฐ์กด์ ํน์ ์ ๊ฒฝ๋ง ์ํคํ
์ฒ๋ ์ ์ ํ๊ฒ ์ ์๋ ๊ทธ๋ํ์์ ์๋ํ๋ GNN์ผ๋ก ํด์๊ฐ๋ฅ
### GNN Notion
|Title|
|:-:|
> [Learnable Structural Semantic Readout for Graph Classification](https://arxiv.org/abs/2111.11523)
|
58adb81cb2b649d9af19019182960bb2
|
|
Perceptron
|
Neural Networks
|
Nov 5, 2019
|
Alan Jo
|
Seong-lae Cho
|
Jun 7, 2023
|
[Discriminant Function](https://texonom.com/discriminant-function-ed98e4c8d7284c34824f332770ccaf52) [Neuron](https://texonom.com/neuron-35ebe3514dc64647a74a0c3bad47b51b)
|
Can mimic OR function but cannot separate XOR by manipulating weights (flexibility)
์
๋ ฅ๊ฐ์ ๋ํ ์ด์ง ๋ถ๋ฅ๋ฅผ ์ํํ๊ฑฐ๋ ์ ํ ์์ธก๊ธฐ๋ก ์ฌ์ฉ
based on only mistakes gradient descent update weight vector
### Perceptron Notion
|Title|
|:-:|
|[Perceptron Criterion](https://texonom.com/perceptron-criterion-5524bf3059d244f2b2437e74120d1b2b)|
|[Optimization for Perceptron Criterion](https://texonom.com/optimization-for-perceptron-criterion-e64193867ff34deebc0b319d13be3545)|
|[Perceptron convergence theorem](https://texonom.com/perceptron-convergence-theorem-7837263544974463b5bcc6a812fc6dce)|
|[Universal Approximation Theorem](https://texonom.com/universal-approximation-theorem-872ac98a16c94f1f8a29f49496a1dfcd)|
|[Multi Layer Perceptron](https://texonom.com/multi-layer-perceptron-9de4da2c68f24d76824e792b0c949ab8)|
|[Perceptron History](https://texonom.com/perceptron-history-24992383cc2c44718e86d1cb53133e41)|
|
1deb66f486d54c93bb928d8afba1864c
|
RNN
|
Neural Networks
|
Mar 12, 2021
|
Alan Jo
|
Alan Jo
|
Jul 30, 2023
|
[Sequential Data](https://texonom.com/sequential-data-784908b963384da3b3b603ebf1068e4d) [Tanh Function](https://texonom.com/tanh-function-679abf35c4eb4fb0bb0e56140cac3d23) [Vanishing Gradient](https://texonom.com/vanishing-gradient-6dc21442840841b3879d6502c5efd98a)
|
## Recurrent Neural Networ
sequential ํ๊ฑฐ๋ time series data ์ ์ ํฉํ ๋ชจ๋ธ
RNN๊ธฐ๋ฐ ๋ชจ๋ธ์ธ LSTM๊ณผ GRU๋ ๊ตฌ์กฐ์ ์ผ๋ก ๊ณ ์ ๊ธธ์ด์ hidden state ๋ฒกํฐ์ ๋ชจ๋ ๋จ์ด์ ์๋ฏธ๋ฅผ ๋ด์์ผ ํ๊ธฐ ๋๋ฌธ์ ๋ฌธ์ฅ์ด ๊ธธ์ด์ง๋ฉด ๋ชจ๋ ๋จ์ด ์ ๋ณด๋ฅผ ๊ณ ์ ๊ธธ์ด ๋ฒกํฐ์ ๋ด๊ธฐ ์ด๋ ต๋ค๋ ๋ฌธ์
Input Seqโs information lost so ๋ณด์ ํ๊ธฐ ์ํด [Attention Mechanism](https://texonom.com/attention-mechanism-762711860abb45f59904f1ac4e4af285) ์ฌ์ฉ
์ดํ
์
์ RNN์ ๋ณด์ ์ ์ํ ์ฉ๋๋ก์ ์ฌ์ฉํ๋ ๊ฒ์ด ์๋๋ผ ์ธ์ฝ๋ ๋์ฝ๋์๋ ์ฌ์ฉํ๊ฒ
### RNN Notion
|Title|
|:-:|
|[Recurrent Neurons](https://texonom.com/recurrent-neurons-341ce79b6a0648bb8c57fafc806573cc)|
|[Long-term dependency](https://texonom.com/long-term-dependency-0b4e9db8d0cd4fc4889b83e32408e5f8)|
|[RWKV](https://texonom.com/rwkv-639fb6fcbaba43e398a6e2fe5495373a)|
|[Hidden State](https://texonom.com/hidden-state-7b65c9b953ce4a9b843d2a0b381a5453)|
### RNNs
|Title|
|:-:|
|[LSTM](https://texonom.com/lstm-7946d20b7c394827b02e7b6b297bbadf)|
|[GRU](https://texonom.com/gru-280a4b083b0b49989e3cc36ef493410c)|
|[Bidirectional RNN](https://texonom.com/bidirectional-rnn-4f44262a3cc3417e8b31f24040cef871)|
|[Vanilla RNN](https://texonom.com/vanilla-rnn-f4032d5ead424efaaf6e1fb210b546cf)|
> [07-1.์ํ ์ ๊ฒฝ๋ง(RNN, Recurrent Neural Network) - (1)](https://excelsior-cjh.tistory.com/183)
|
f7aad56acb5542b2ac26c2908be4ce16
|
SNN
|
Neural Networks
|
May 30, 2022
|
Alan Jo
|
Alan Jo
|
Mar 6, 2023
|
### **Spiking neural network**
**Closely mimic natural neural networks**
์์ฐ ์ ๊ฒฝ๋ง์ ๋ ๊ฐ๊น๊ฒ ๋ชจ๋ฐฉํ ์ธ๊ณต ์ ๊ฒฝ๋ง. ๋ด๋ฐ ๋ฐ ์๋
์ค ์ํ ์ธ์๋ SNN์ ์๋ ๋ชจ๋ธ์ ์๊ฐ ๊ฐ๋
์ ํตํฉ
### SNN Notion
|Title|
|:-:|
> [Untitled](http://www.koreascience.kr/article/JAKO202025465017052.pdf)
|
6cf69239a87e4df9a32b3494862374e4
|
|
ALexNet
|
CNN Models
|
Sep 14, 2020
|
Alan Jo
|
Alan Jo
|
May 31, 2023
|
[ImageNet](https://texonom.com/imagenet-d5542cdb730f4e218bacb583b5e2576b)
|
### GPU
CNN ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ ALexNet, ILSVRC
์ค์ฐจ์จ์ด 10%๋ก ์ค์ด๋ ํ์ ์ ์ธ ์๊ณ ๋ฆฌ์ฆ
> [CS231n 1๊ฐ ์์ฝ](https://taeyoung96.github.io/cs231n/CS231n_1/)
|
e33d746e06a540d4b8900be7ccede18c
|
ConvNets
|
CNN Models
|
May 23, 2023
|
Alan Jo
|
Alan Jo
|
May 23, 2023
|
CNN โ [Local Contrast Normalization](https://texonom.com/local-contrast-normalization-6357cfe8ce294c69ae102053dcb5aaff) โ [Pooling Layer](https://texonom.com/pooling-layer-c36550932e8c4436b4b6da0d4d2fc946)
|
1846cf4fac8b4feea6fa8cf4ac083df9
|
|
GoogLeNet
|
CNN Models
|
May 23, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
2014
|
64b5ad51aafc48d492ba489f47ffa58a
|
|
MSRA
|
CNN Models
|
May 23, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
2015
|
9024cb9533e54bdc9ada6d30601f847b
|
|
ResNet
|
CNN Models
|
May 30, 2023
|
Alan Jo
|
Alan Jo
|
Jun 6, 2023
|
[CNN bottleneck layer](https://texonom.com/cnn-bottleneck-layer-c67427171be5400db198dd6e7ef644ce)
|
### Microsoft 2015
[COCO](https://texonom.com/coco-c7524d6e059444c09a5067e07caf94e6)
> [ResNet - Azure Machine Learning](https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/resnet?view=azureml-api-2)
> [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
> [Pytorch๋ก ResNet ๊ตฌํ, torch summary ์ดํด๋ณด๊ธฐ](https://velog.io/@gibonki77/ResNetwithPyTorch)
|
d8c7707445684e848ebef939500672d4
|
SuperVision
|
CNN Models
|
May 23, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
2012
|
9d75ddb2bccd4dc9857f4332ae096298
|
|
VGG
|
CNN Models
|
May 23, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
2014
|
c59b523e5e894bf2842474c9022dceec
|
|
CNN bottleneck layer
|
CNN Notion
|
May 30, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
## inception module
ํต์ฌ์ 1x1 Convolution
์ฐ์ฐ๋์ ์ต์ํ
์ฐ์ฐ๋๊ณผ ์ ๋ณด์์ค์ ์๋ก tradeoff ๊ด๊ณ๋ผ ์ฐ์ฐ๋๊ณผ ์ ๋ณด ์์ค์ ๊ด๊ณ๋ฅผ ์ ๋ณด๋ฉด์ Error๊ฐ ์ต์๊ฐ ๋๋ ์ง์

[ResNet](https://texonom.com/resnet-d8c7707445684e848ebef939500672d4)

### [GoogLeNet](https://texonom.com/googlenet-64b5ad51aafc48d492ba489f47ffa58a)

> [CNN์ Bottleneck์ ๋ํ ์ดํด](https://velog.io/@lighthouse97/CNN์-Bottleneck์-๋ํ-์ดํด)
|
c67427171be5400db198dd6e7ef644ce
|
|
CNN History
|
CNN Notion
|
Sep 14, 2020
|
Alan Jo
|
Alan Jo
|
May 30, 2023
|
1998๋
์ ์ด๋ฏธ CNN ์๊ณ ๋ฆฌ์ฆ์ด ์ ์๋์๋ค.ํ์ง๋ง ์ฌ๋ฌ ๋ฌธ์ ๋ค์ ๋ถ๋ซํ ๊ทธ ๋์ ๋ฐ์ ํ์ง ๋ชปํ๋ค.
> ๋ฐ์ดํฐ์ ์์ด ๋๋ฌด ์ ์๋ค.์ฐ์ฐ ์๋๊ฐ ๊ต์ฅํ ๋๋ ธ๋ค.

### 1980 Fukushima
โsandwichโ architecture (SCSCSCโฆ)
> [Untitled](https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf)
### 1998 [Yann LeCun](https://texonom.com/yann-lecun-7866102480474d939d45d97ddd318c3a), Bottou, Bengio, Haffner
Gradient-based learning applied to document recognition
> [Untitled](https://ieeexplore.ieee.org/document/726791)
### 2012 [ALexNet](https://texonom.com/alexnet-e33d746e06a540d4b8900be7ccede18c) [Geoffrey Hinton](https://texonom.com/geoffrey-hinton-441d5ce2b78146d0935454042b4f06d9), [Ilya Sutskever](https://texonom.com/ilya-sutskever-f38707abee824d21b2ec9824a1706342)
ImageNet Classification with Deep Convolutional Neural Networks
> [Untitled](https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf)
|
76ffc514584846348136ea794f37ea9a
|
|
Convolutional Layer
|
CNN Notion
|
May 18, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
### Share the same parameters across different locations (assume input stationary)
In practice usually zero pad the border
parameter ๊ฐ fully connected ๋ locally connected ๋ณด๋ค ํจ์ฌ ์์์
There are weight variables which are same as the size of filter including all that channels
Using small filter is better
[CNN Stride](https://texonom.com/cnn-stride-b84e6cf4abd347289dc8dbe6ffc1097d)
1x1 is also valid because we can reduce or increase the Output Channel of feature map with different scaling
์ฑ๋๋ณ ํํฐ ์ดํฉ์ด ์ต์ข
ํํฐ
**Commonly number of filters K is powers of 2**
K๊ฐ ๋๋ฉด ์ง์์ ์ผ๋ก ์ฐ๊ด ํฝ์
์ด ๋์ด๋๋๊ฒ ์๋๋ผ ์ ํ์ ์ผ๋ก ๊ฐ๊น์ด ๊ฑฐ๋ฆฌ๋ก ๋์ด๋จ

### Multiple small sized filter layerโs parameters have much smaller than one large sized filter layer (also more nonlinearity, less compute)
so we use mostly 3x3 after [VGG](https://texonom.com/vgg-c59b523e5e894bf2842474c9022dceec) ([ALexNet](https://texonom.com/alexnet-e33d746e06a540d4b8900be7ccede18c) used 11x11 or 7x7 convolution layer)
1x1 ์ผ๋ก ๋ ์ค์ผ ์ ์๋๋ฐ ๊ทธ๊ฒ [CNN bottleneck layer](https://texonom.com/cnn-bottleneck-layer-c67427171be5400db198dd6e7ef644ce)
### total parameter
$$filter \; size ^2 +1\;for\;bias$$
|
0880b6c2089b4b20bb9a6232b6cb4b19
|
|
ctivation map
|
CNN Notion
|
Jun 7, 2023
|
Alan Jo
|
Alan Jo
|
Jun 18, 2023
|
์
๋ ฅ ์ด๋ฏธ์ง์ ๊ฐ ์์น์์ ํ์ฑํ๋ ๋ด๋ฐ์ ์ถ๋ ฅ๊ฐ์ ์๊ฐํํ ๊ฒ
๋ชจ๋ธ์ด ์ด๋ค ๋ถ๋ถ์์ ์
๋ ฅ ์ด๋ฏธ์ง๋ฅผ ๋ณด๊ณ ํ๋จํ๋์ง ์ดํดํ๋ ๋ฐ ๋์์ ์ค
|
d0117ee2531b44dcbb0d19d33dff23ac
|
|
Local Contrast Normalization
|
CNN Notion
|
Jun 7, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
after convolution layer, before pooling layer
ConvNet
|
036406a996c94edab249e7ff8a32b2bc
|
|
Pooling Layer
|
CNN Notion
|
Apr 30, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
### [Image Downsampling](https://texonom.com/image-downsampling-97df12a6eb2949aa808c6f03dac101a6)
feature map์ ํฌ๊ธฐ๋ฅผ ์ค์ด๋ ๋ฐ ์ฌ์ฉ
### CNN Pooling Types
|Title|
|:-:|
|[CNN Spatial Pooling](https://texonom.com/cnn-spatial-pooling-d191e60632c84b54b0266c2a73f54c51)|
|[CNN Static Pooling](https://texonom.com/cnn-static-pooling-48534a9ed35e465c94694903dd2c80cb)|
|[CNN Dynamic Pooling](https://texonom.com/cnn-dynamic-pooling-3412ef080ffb4e949bebfed80a17cf8d)|
|[CNN Global Pooling](https://texonom.com/cnn-global-pooling-fe9913d4c6674a808ef6c899e778dcd4)|
|
c36550932e8c4436b4b6da0d4d2fc946
|
|
Training CNN
|
CNN Notion
|
Jun 1, 2023
|
Alan Jo
|
Alan Jo
|
Jun 1, 2023
|

|
dc4f33cdf45544668d6f9cb6d059f431
|
|
CNN Stride
|
Convolutional Layer
| null | null | null | null | null |
How many pixels to skip
$$Count = (N + 2P - F) / stride + 1$$
P is padding size, N is input size, F is filter size and count is output size+
|
b84e6cf4abd347289dc8dbe6ffc1097d
|
CNN Dynamic Pooling
|
CNN Pooling Types
|
Apr 30, 2023
|
Alan Jo
|
Alan Jo
|
Apr 30, 2023
|
segment-level์์ feature๋ฅผ ์ง๊ณ
์
๋ ฅ ๋ฐ์ดํฐ ๋ด์์ ๊ณ ์์ค ํน์ง๋ค์ ์๊ฐ ์ ๋ณด๋ฅผ ๋ ์ ๋ณด์กด
> [Learnable Dynamic Temporal Pooling for Time Series Classification](https://arxiv.org/abs/2104.02577)
|
3412ef080ffb4e949bebfed80a17cf8d
|
|
CNN Global Pooling
|
CNN Pooling Types
|
Apr 30, 2023
|
Alan Jo
|
Alan Jo
|
Apr 30, 2023
|
๊ณ ์์ค ํน์ง๋ค์ ๋ฒ๋ ค์ง ์ ์๋ค
feature map ๋ด์ ๋ชจ๋ ๊ฐ์ ์ง๊ณํ์ฌ ํ๋์ ์ซ์๋ก
|
fe9913d4c6674a808ef6c899e778dcd4
|
|
CNN Spatial Pooling
|
CNN Pooling Types
|
May 23, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
Sum or max
- max pooling
- average pooling
- min pooling
- L2 pooling
- L2 pooling over features
|
d191e60632c84b54b0266c2a73f54c51
|
|
CNN Static Pooling
|
CNN Pooling Types
|
Apr 30, 2023
|
Alan Jo
|
Alan Jo
|
Apr 30, 2023
|
๊ณ ์ ๋ ํฌ๊ธฐ์ ์์ญ์ ์ ํํ์ฌ ๊ทธ ์์ญ ๋ด์ ๊ฐ์ ์ง๊ณ
|
48534a9ed35e465c94694903dd2c80cb
|
|
****Position-wise FFNN****
|
FFNN Usages
|
Mar 5, 2023
|
Alan Jo
|
Alan Jo
|
Mar 7, 2023
|
## Fully-connected FFNN
[Seq2Seq](https://texonom.com/seq2seq-01a9854dffa6417c87d92c11a607250c) ์ธ์ฝ๋์ ๋์ฝ๋์์ ๊ณตํต์ ์ผ๋ก ๊ฐ์ง๊ณ ์๋ ์๋ธ์ธต
> [16-01 ํธ๋์คํฌ๋จธ(Transformer)](https://wikidocs.net/31379)
|
6fe30c96aa9245d898c73ec34625377d
|
|
Multi Layer Perceptron
|
Perceptron Notion
|
Mar 5, 2023
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
[Neural Network](https://texonom.com/neural-network-86f54f9f1de848c1a29c56c24f7d5094)
|
## MLP
Can have non-linear decision boundary
using 3 Perceptron, now available to separate XOR
### Two layer
convex open or closed region

each line means perceptron
### Three layer
arbitrary (complexity limited by number of neurons)
### Hidden layer
except final layer
|
9de4da2c68f24d76824e792b0c949ab8
|
Optimization for Perceptron Criterion
|
Perceptron Notion
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
Apr 27, 2023
|
### Maximize
set of misclassified samples under w only update until convergence
### Weight Updates
Start with weight 0
**For each training instance**
> - If correct (i.e., y=y*), no change
> - If wrong: adjust the weight vector - adding or subtracting the feature vector (f / y* exactly
> 
>
> 
>
> x0 bias ican be tan add to f
### Error-Driven Linear Classification
> Binary case - compare features to weight vector
> Learning - figure out weight vector from examples
|
e64193867ff34deebc0b319d13be3545
|
|
Perceptron convergence theorem
|
Perceptron Notion
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
Apr 27, 2023
|
Convergence is guaranteed for linearly separable data
Cannot classify non-linearly separable data
|
7837263544974463b5bcc6a812fc6dce
|
|
Perceptron Criterion
|
Perceptron Notion
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
Apr 27, 2023
|
### Inequality
### Linear Classifiers
- Inputs **data **are feature values (**feature vector**) - (x0, x1, x2, ... , xn)
- Each feature has a weight
- Sum is the activation
> 
- output - if activation is positive โ 1 negative โ -1 (classification +/-)
### Decision Rule
binary decision rule
One side corresponds to Y=+1
Other corresponds to Y=-1
### Learning - binary perceptron
1. Start with weights = 0
> 1. For each training instance
>> - Classify with current weights
>> - If correct (i.e., y=y*), no change
>> - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.
> 
## Multiclass dicision rule

lower count of wrong class** (for this instance), **raise count of right class **(for this instance)**

**black box (kernel) K** that told us the dot product of two examples x and xโ
### Solution
0. set true value to +/-
2. get data
3. choose true value
4. classification by hypothesis โ compare to true value
5. update hypothesis
to all data try this
until no revise to all data redo these to data set
### multiclass
๋ค๋ฅธ๊ฑฐ ๋๊ฐ์๋ฐ ๋ถ๋ฅ๋ผ์ argmax xf = y
ํ๋ฆฌ๋ฉด ๊ทธ๋์ ๊ฐ ๋นผ์ฃผ๊ณ ๋ง๋๋์ ์ฌ๋ ค์ฃผ๊ธฐ f๋งํผ
๋์ผ์ด๋ฉด argmax alpha K(k is sigma ff) - at sigma only one f change by w
if wrong
ํ๋ฆฐ๋์ ์ํ์์ 1 ๋นผ๊ณ ๋ง๋๋๋ค์ 1๋งํผ ์ฌ๋ ค์ค ๋ง๋ ํด๋์ค ํ๋ฆฐ ํด๋์ค
### Feature Vectors

Some (Simplified) Biology
- Inputs are feature values
- Each feature has a weight
- Sum is the activation

If the activation is: Positive, output +1 Negative, output -1
### Weights
- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples
### Decision Rules
Binary Decision Rule in the space of feature vectors
> - Examples are points
> - Any weight vector is a hyperplane
> - One side corresponds to Y=+1
> - Other corresponds to Y=-1
|
5524bf3059d244f2b2437e74120d1b2b
|
|
Perceptron History
|
Perceptron Notion
|
Jun 7, 2023
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
### 1957 released
1957 The Perceptron (Frank Rosenblatt) Mark I Perceptron
The machine was connected to a camera that used 20ร20 cadmium sulfide photocells to produce a 400-pixel image.
Widrow and Hoff, ~1960: Adaline/Madaline
1969 Perceptrons (Minsky, Papert)

> [Perceptron | Encyclopedia of Computer Science](https://dl.acm.org/doi/abs/10.5555/1074100.1074686)
|
24992383cc2c44718e86d1cb53133e41
|
|
Universal Approximation Theorem
|
Perceptron Notion
|
Apr 27, 2023
|
Alan Jo
|
Alan Jo
|
Jun 13, 2023
|
### at least 1 hidden layer
Any continuous function $f: [0, 1] \rightarrow [0, 1]$ can be approximated arbitrarily well by aneural network with at least 1 hidden layer with a finite number of weights
One wide (latent) layer is enough, but it is just a memorizer (Cybenko โ89)

|
872ac98a16c94f1f8a29f49496a1dfcd
|
|
Hidden State
|
RNN Notion
|
Mar 7, 2023
|
Alan Jo
|
Alan Jo
|
Jun 21, 2023
|
[Latent Space](https://texonom.com/latent-space-d67b6bdef18b4058bfbc3d25f87ec087)
|
### latent state, internal state
The hidden state is computed based on the current input and the previous hidden state
**์ด ํ๋ก์ธ์ค๋ ์์ฐจ์ ์ด์๊ณ ๋ณ๋ ฌํ๋ฅผ ๋ฐฉํด**
> [Some Intuition on Attention and the Transformer](https://eugeneyan.com/writing/attention/)
|
7b65c9b953ce4a9b843d2a0b381a5453
|
Long-term dependency
|
RNN Notion
|
Mar 6, 2023
|
Alan Jo
|
Alan Jo
|
Mar 6, 2023
|
[GRU](https://texonom.com/gru-280a4b083b0b49989e3cc36ef493410c) [LSTM](https://texonom.com/lstm-7946d20b7c394827b02e7b6b297bbadf)
|
RNN Problem
๋ฌธ์ฅ์ด ๊ธธ์ด์ง ๊ฒฝ์ฐ ์ ๋จ์ด์ ์ ๋ณด๋ฅผ ์์ด๋ฒ๋ฆฌ๊ฒ
> [[๋ฅ๋ฌ๋] ์ธ์ด๋ชจ๋ธ, RNN, GRU, LSTM, Attention, Transformer, GPT, BERT ๊ฐ๋
์ ๋ฆฌ](https://velog.io/@rsj9987/๋ฅ๋ฌ๋-์ฉ์ด์ ๋ฆฌ)
|
0b4e9db8d0cd4fc4889b83e32408e5f8
|
Recurrent Neurons
|
RNN Notion
|
Mar 12, 2021
|
Alan Jo
|
Alan Jo
|
Oct 6, 2021
|
์ํ ๋ด๋ฐ
|
341ce79b6a0648bb8c57fafc806573cc
|
|
RWKV
|
RNN Notion
|
May 28, 2023
|
Alan Jo
|
Alan Jo
|
May 28, 2023
|
### parallelizable training
### RWKV Implementation
|Title|
|:-:|
|[](https://texonom.com/4aea4d107bb245f280ce2ab0023546ce)|
|[](https://texonom.com/8b87d4786fc6461b97ccc1250d23a9aa)|
> [RWKV: Reinventing RNNs for the Transformer Era](https://arxiv.org/abs/2305.13048)
|
639fb6fcbaba43e398a6e2fe5495373a
|
|
[RWKV-LM](https://github.com/BlinkDL/RWKV-LM)
|
RWKV Implementation
|
May 28, 2023
|
Alan Jo
|
Alan Jo
|
May 28, 2023
|
4aea4d107bb245f280ce2ab0023546ce
|
||
[rwkv.cpp](https://github.com/saharNooby/rwkv.cpp)
|
RWKV Implementation
|
May 28, 2023
|
Alan Jo
|
Alan Jo
|
May 28, 2023
|
[GGML](https://texonom.com/ggml-d3297b7eedc846a1bea05cfa0f3cc24a)
|
8b87d4786fc6461b97ccc1250d23a9aa
|
|
Bidirectional RNN
|
RNNs
|
Jun 21, 2023
|
Alan Jo
|
Alan Jo
|
Jun 21, 2023
|
- forwatd state
- backward state
|
4f44262a3cc3417e8b31f24040cef871
|
|
GRU
|
RNNs
|
Oct 6, 2021
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
## Gated recurrent unit
2014๋
๋ด์๋ํ๊ต ์กฐ๊ฒฝํ ๊ต์๋์ด ์งํํ ๋
ผ๋ฌธ์์ ์ ์
LSTM์ ์ฑ๋ฅ๊ณผ ๊ตฌ์กฐ๊ฐ ๋น์ทํ์ง๋ง GRU๊ฐ ํ์ตํ ๊ฐ์ค์น๊ฐ ์ ๋ค
์ถ๋ ฅ ๊ฒ์ดํธ ์์
### GRU Notion
|Title|
|:-:|
|[GRU Update Gate](https://texonom.com/gru-update-gate-42daff55639e4781a5fee0170a13b2a2)|
|[GRU Reset Gate](https://texonom.com/gru-reset-gate-89417d3e3bd44a5f89d67e199b36f381)|
> [Gated Recurrent Units (GRU)](https://yjjo.tistory.com/18)
|
280a4b083b0b49989e3cc36ef493410c
|
|
LSTM
|
RNNs
|
Aug 16, 2021
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
[Quant Trading](https://texonom.com/quant-trading-024f2adb817a4e33b9fc6905bba8eb0c)
|
## Long Short Term Memory
RNN์ ๋จ์ ์ธ ๊ธฐ์ธ๊ธฐ ์์ค ๋ฌธ์ ๋ฅผ ํด๊ฒฐํ๊ธฐ ์ํด gate๋ฅผ ์ถ๊ฐํ ๋ชจ๋ธ
์๊ณ์ด ์ํ์ค๊ฐ ์๋ ๋ฐ์ดํฐ์์ ๋ค์์ ์์ธก
์ด๋ฆ์์ ์ ์ ์๋ ๋จ๊ธฐ ๊ธฐ์ต์ ๊ฐ์ง๋ ๊ฒ์ฒ๋ผ ํ๋ํ๋ ๋ชจ๋ธ
ํนํ ์ฃผ์ ์์ธก์ ๋ง์ด ์ฌ์ฉ
### LSTM Notion
|Title|
|:-:|
|[LSTM Cell State](https://texonom.com/lstm-cell-state-128d65c00df5470a98d1603ae1e56bd0)|
|[LSTM forgetย gate](https://texonom.com/lstm-forgetgate-ee99b6c3bb5b432295e2f54b1b58a9a1)|
|[LSTM inputย gate](https://texonom.com/lstm-inputgate-02d2744fe7344bff9502e5bb111ff759)|
- forget gate
- input gate
- output gate
### LSTMs
|Title|
|:-:|
|[BiLSTM](https://texonom.com/bilstm-cc8242f116e643abb71167e859561991)|


> [Long Short-Term Memory (LSTM) ์ดํดํ๊ธฐ](https://dgkim5360.tistory.com/entry/understanding-long-short-term-memory-lstm-kr)
> [08-02 ์ฅ๋จ๊ธฐ ๋ฉ๋ชจ๋ฆฌ(Long Short-Term Memory, LSTM)](https://wikidocs.net/22888)
> [์ผ์ฑ์ ์ ์ฃผ์, ์ด๋๋ฆฌ์ ์์ธ ์ธ๊ณต์ง๋ฅ์ผ๋ก ์์ธกํด๋ณด์ - Python, Deep Learning](https://www.youtube.com/watch?v=sG_WeGbZ9A4&t=241s)
|
7946d20b7c394827b02e7b6b297bbadf
|
Vanilla RNN
|
RNNs
|
Jul 6, 2023
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
์งง์ ์ํ์ค์๋ง ํจ๊ณผ
**the problem of Long-Term Dependencies**

> [08-02 ์ฅ๋จ๊ธฐ ๋ฉ๋ชจ๋ฆฌ(Long Short-Term Memory, LSTM)](https://wikidocs.net/22888)
|
f4032d5ead424efaaf6e1fb210b546cf
|
|
GRU Reset Gate
|
GRU Notion
|
Jul 6, 2023
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
89417d3e3bd44a5f89d67e199b36f381
|
||
GRU Update Gate
|
GRU Notion
|
Jul 6, 2023
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
42daff55639e4781a5fee0170a13b2a2
|
||
LSTM Cell State
|
LSTM Notion
|
Jul 6, 2023
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
cell state์ ๋ญ๊ฐ๋ฅผ ๋ํ๊ฑฐ๋ ์์จ ์ ์๋ ๋ฅ๋ ฅ
gate๋ก ์ ์ดํจ
|
128d65c00df5470a98d1603ae1e56bd0
|
|
LSTM ****forgetย gate****
|
LSTM Notion
|
Jul 6, 2023
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
ee99b6c3bb5b432295e2f54b1b58a9a1
|
||
LSTM ****inputย gate****
|
LSTM Notion
|
Jul 6, 2023
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
02d2744fe7344bff9502e5bb111ff759
|
||
BiLSTM
|
LSTMs
|
Aug 16, 2021
|
Alan Jo
|
Alan Jo
|
Jul 6, 2023
|
### Bidirectional LSTM
|
cc8242f116e643abb71167e859561991
|
|
AI Data
|
AI Usages
|
May 13, 2021
|
Alan Jo
|
Alan Jo
|
Jun 1, 2023
|
[Model Generalization](https://texonom.com/model-generalization-0a2de5c4578c47dd9a5dc1b83fbaf72b) [Observation Noise](https://texonom.com/observation-noise-dcf85cf878d740b0ad7dd8ecab260165) [Data Processing](https://texonom.com/data-processing-d1b576ef34304e0fa6325db709860e0b)
|
### Data enhancement is more effective than code enhancement
Don't try to be a hero, data is 80
### AI Data Usages
|Title|
|:-:|
|[AI Data Tool](https://texonom.com/ai-data-tool-3cb903994b5c4c2aad0e3fddb4511a3f)|
|[Data Labeling](https://texonom.com/data-labeling-dda48db348de44a9bafa1ae69ca18133)|
|[Data Augmentation](https://texonom.com/data-augmentation-fd2918b94bd54726a8c91e26af129545)|
|[Data Testing](https://texonom.com/data-testing-bda06f8a3b0349ac8cb78d960f24bf46)|
|[Experiment Management](https://texonom.com/experiment-management-cbea3983015346a6bd81c98d2d65252d)|
|[Temporal Sequence](https://texonom.com/temporal-sequence-a2558b4ef95c4c37bee54056c1804c8d)|
|[AI Dataset](https://texonom.com/ai-dataset-6383f9b5b0c54e598b90dc9ea0c8e5d1)|
> [Introduction to streaming for data scientists](https://huyenchip.com//2022/08/03/stream-processing-for-data-scientists.html)
|
dcd9611d8a5647ba95e7bc63a7e6db1f
|
AI Development
|
AI Usages
|
Jun 13, 2021
|
Alan Jo
|
Alan Jo
|
Jun 21, 2023
|
[Statistics Tool](https://texonom.com/statistics-tool-cd8ad9a0f6be46b4979d8e302c6dbd52)
|
> [Emerging Architectures for LLM Applications | Andreessen Horowitz](https://a16z.com/2023/06/20/emerging-architectures-for-llm-applications)
> [Stack Overflow](https://stackoverflow.co/labs/developer-sentiment-ai-ml)
> [Futurepedia - The Largest AI Tools Directory | Home](https://www.futurepedia.io/)
|
94a4b3b469b5439aaa03a669f894e3c8
|
AI Industry
|
AI Usages
|
Aug 21, 2021
|
Alan Jo
|
Alan Jo
|
Jul 4, 2023
|
[Industry](https://texonom.com/industry-989c1bacc8b84fb1b63486f61e3b9052) [AI Object](https://texonom.com/ai-object-e69c83e69fd34103a83c1341b65158be) [Sex Industry](https://texonom.com/sex-industry-e5080bf012e0478f9e6fc996bdc8a2cb) [Copyright](https://texonom.com/copyright-02b119d69a0a475289bbcd13faae44f3)
|
AI progress is constrained by bottlenecks in essential economic sectors and steps of the innovation process, and that breakthroughs in manipulating the physical world are necessary
ํ์ฌ๊น์ง AI ์ฐฝ์๋ฌผ์ ์ ์๊ถ ์๋ค๋ ๊ฑธ ์ด์ฉํด์ผ
### AI Companies
|Title|
|:-:|
|[OpenAI](https://texonom.com/openai-501e879eb1ca4ef8b388ba5b11e92e23)|
|[Deepmind](https://texonom.com/deepmind-5eb171c77b344d4786a9a5b23ae70eca)|
|[Stability AI](https://texonom.com/stability-ai-7285625019ec4498a7300ac9f0736b2d)|
|[Anthropic AI](https://texonom.com/anthropic-ai-096e36d827a2421b9b0ee8d1ff3b0305)|
|[AllenAI](https://texonom.com/allenai-930c776c8fdd4e358032803f037cd6fa)|
|[Saltlux](https://texonom.com/saltlux-de9945849d70489f99a33f81a1707a46)|
|[Neural Magic](https://texonom.com/neural-magic-021ab1b8be0d4f95b8ae6278c08e1562)|
|[VoyagerX](https://texonom.com/voyagerx-bdc1dc8597e44f1aac3ab3ec6256eb87)|
|[Upstage.ai](https://texonom.com/upstageai-319072815ced47bf98335f3a9c87cec4)|
|[CarperAI](https://texonom.com/carperai-d69725f3dcfb4a57a9cf0f4bea30bc2a)|
|[Eleuther AI](https://texonom.com/eleuther-ai-9f89e25571fe4930825ffabb3483c02a)|
|[Preligens](https://texonom.com/preligens-040e14875d3b463fa71674578756944e)|
|[inworld](https://texonom.com/inworld-29d82633e51742dabca809cc86d6e989)|
|[Scatter Lab](https://texonom.com/scatter-lab-9524953c003c4c7d8ec48d387c1a42cf)|
|[VAIV](https://texonom.com/vaiv-15772f18eca5478290a6ca76068cf077)|
|[X.AI](https://texonom.com/xai-ccd1c9778b1349c788889cf20c1c9a72)|
|[Inflection AI](https://texonom.com/inflection-ai-533110523b9f4b8ab79f663a6ba7f6b0)|
|[MosaicML](https://texonom.com/mosaicml-d531ff0e6a51448c84296ab20f675d67)|
|[Tiny corp](https://texonom.com/tiny-corp-2b42b01b901d4a93b80698286c5e2b40)|
|[Cohere](https://texonom.com/cohere-5fc93cb3678841a7b23df3c7d0399aca)|
|[Mind AI](https://texonom.com/mind-ai-007aca806190459c8437ce7046f5fbcc)|
### AI Products Diagram
> [How to Build AI Products People Want โ Reforge](https://www.reforge.com/blog/ai-products-arms-race)
### Industry Landscape
> [Why transformative AI is really, really hard to achieve](https://zhengdongwang.com/2023/06/27/why-transformative-ai-is-really-really-hard-to-achieve.html)
> [LF AI Landscape](https://landscape.lfai.foundation/)
### Scaling
> [3 ways AI is scaling helpful technologies worldwide](https://blog.google/technology/ai/ways-ai-is-scaling-helpful/)
> [AI Will Create More Developers, Not Less](https://interconnect.substack.com/p/ai-will-create-more-developers-not)
|
d8709bd0498145e3a66af6da3f963fa7
|
AI Object
|
AI Usages
|
Jun 13, 2021
|
Alan Jo
|
Alan Jo
|
May 21, 2023
|
[ai-notes](https://github.com/sw-yx/ai-notes) [applied-ml](https://github.com/eugeneyan/applied-ml)
|
### AI ํน์ฑ์ ์ ํ์ฑ์ด ํ์์๋ ๋ถ์ผ๋ถํฐ ๋์ฒด๋ ๊ฒ์ด๊ณ ๊ทธ๋ ๊ฒ ์งํ๋๊ณ ์๋ค
### AI Objects
|Title|
|:-:|
|[AI Planning](https://texonom.com/ai-planning-2173477bde2147d1a91975e30756806a)|
|[Vision AI](https://texonom.com/vision-ai-ba1da978d6f6488998e7cdc59431b41a)|
|[Sound AI](https://texonom.com/sound-ai-c3f85fde353c4e7581cca5e3e30324f6)|
|[IA](https://texonom.com/ia-92af447425bc4fe2b10f3aef85c1871e)|
|[NLP](https://texonom.com/nlp-e0ae7b40dd23463ea7bc92195d6ec7fd)|
|[AI Coding](https://texonom.com/ai-coding-f659b252482d4dfb90485c4a0428f442)|
|[Recommend System](https://texonom.com/recommend-system-e94b364527554e65bfd9d3dc63fb1af7)|
|[AI Invent](https://texonom.com/ai-invent-2fd3b79c01bd43239990cd547a2f6e41)|
|[AI Game](https://texonom.com/ai-game-7cb70519f66942b1b59d1d7352ce34e1)|
|[AI Automation](https://texonom.com/ai-automation-afa72ebcb9e4426799162de10da077f8)|
|[AI Robot](https://texonom.com/ai-robot-0796068b90b246d8abc6aeed851624cd)|
|[Multimodal AI](https://texonom.com/multimodal-ai-381b5ebe1218438689de97941a3d9829)|
|[AI Agent](https://texonom.com/ai-agent-5efeaf8cd77f495988083eb2084d7f01)|
|[Extract Information](https://texonom.com/extract-information-6988fe9ed1a444e7be50249e5ccf11bc)|
|
e69c83e69fd34103a83c1341b65158be
|
AI Protocol
|
AI Usages
|
Apr 11, 2023
|
Alan Jo
|
Alan Jo
|
Apr 11, 2023
|
### AI Protocols
|Title|
|:-:|
|
be3148d3c1b24b90a4f51020fde30bd6
|
|
AI Data Tool
|
AI Data Usages
|
Jan 18, 2023
|
Alan Jo
|
Alan Jo
|
Jan 18, 2023
|
### AI Data Tools
|Title|
|:-:|
|[Clearnlab](https://texonom.com/clearnlab-479203d2d2cf4ad2999da2d1fcad12ff)|
|[Eva db](https://texonom.com/eva-db-17a183f2967d455fbe7631ea89172e49)|
|
3cb903994b5c4c2aad0e3fddb4511a3f
|
|
AI Dataset
|
AI Data Usages
|
Mar 27, 2021
|
Alan Jo
|
Alan Jo
|
Jun 6, 2023
|
[Text Corpus](https://texonom.com/text-corpus-1befe731759849c48134768343a90703)
|
We typically say that a dataset is high-dimensional if the number of data points N issmaller than the dimensionality D
> - not cheatable
> - large degree of intra-class variability
>
> 
### Vision AI Datasets
|Title|
|:-:|
|[ImageNet](https://texonom.com/imagenet-d5542cdb730f4e218bacb583b5e2576b)|
|[WebLI](https://texonom.com/webli-5b0455624497488ba55432160ad812c6)|
### NLP Datasets
|Title|
|:-:|
|[CommonCrawl](https://texonom.com/commoncrawl-e34ff04c04e14260a1ef19e3baa035c8)|
|[C4 Data](https://texonom.com/c4-data-5e19c38f6e034c92857f71cb820dae89)|
|[Code Data](https://texonom.com/code-data-071b31dcf1ee4073ad458f1ac781cd5f)|
|[RedPajama Data](https://texonom.com/redpajama-data-ab8489ee6448474899c4b8e49b6faaac)|
> [20 Open Datasets for Natural Language Processing](https://odsc.medium.com/20-open-datasets-for-natural-language-processing-538fbfaf8e38)
|
6383f9b5b0c54e598b90dc9ea0c8e5d1
|
Data Augmentation
|
AI Data Usages
|
Jun 22, 2021
|
Alan Jo
|
Alan Jo
|
Jun 7, 2023
|
### Flip, Scale, Crop, Rotation
Jitter, Shear, Stretch, Lens Distortion
### Data Augmentation Tools
|Title|
|:-:|
|[AI Data Generator](https://texonom.com/ai-data-generator-dd7e73ff30db4c0f89580aff9fb7df56)|
|[AugLy](https://texonom.com/augly-0cbb390ff79642d1846f50f79ea9ed91)|
### Data Augmentation Notion
|Title|
|:-:|
|[color jitter](https://texonom.com/color-jitter-08229f0a960c43acb65cedad8e7fb14a)|
|
fd2918b94bd54726a8c91e26af129545
|
|
Data Labeling
|
AI Data Usages
|
May 13, 2021
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
### Data Labelings
|Title|
|:-:|
|[Image Labeling](https://texonom.com/image-labeling-dca8afabd8a14dc495545f414883d7b4)|
### Cheap Africa human power
> [Africa: The Hidden Workforce Behind AI](https://www.mantralabsglobal.com/blog/ai-in-africa-artificial-intelligence-africa/)
|
dda48db348de44a9bafa1ae69ca18133
|
|
Data Testing
|
AI Data Usages
|
Mar 21, 2023
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
### Data Testing Tools
|Title|
|:-:|
|[Pandera](https://texonom.com/pandera-632fbdee7cc847359bcc61bc9c67bf01)|
|
bda06f8a3b0349ac8cb78d960f24bf46
|
|
Experiment Management
|
AI Data Usages
|
Jun 13, 2021
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
### Experiment Management Tools
|Title|
|:-:|
|[Neptune.ai](https://texonom.com/neptuneai-c61383aff215447a979fd6d446be277d)|
|[Weights & Biases](https://texonom.com/weights-biases-51d1cbfc87324d1f8dd43a8978ea5f68)|
|[TensorBoard](https://texonom.com/tensorboard-6af2721a16bd4dcdb172affcdf055d91)|
|
cbea3983015346a6bd81c98d2d65252d
|
|
Temporal Sequence
|
AI Data Usages
|
Apr 30, 2023
|
Alan Jo
|
Alan Jo
|
May 11, 2023
|
[TSDB](https://texonom.com/tsdb-e2b5383c82d040ab981de62b970cc2ea)
|
### Temporal Sequence Notion
|Title|
|:-:|
|[DTW](https://texonom.com/dtw-ee045ba3b84e40b3b4e04d2257ed8814)|
|
a2558b4ef95c4c37bee54056c1804c8d
|
Clearnlab
|
AI Data Tools
|
Jan 18, 2023
|
Alan Jo
|
Alan Jo
|
Jan 18, 2023
|
[cleanlab](https://github.com/cleanlab/cleanlab)
|
479203d2d2cf4ad2999da2d1fcad12ff
|
|
Eva db
|
AI Data Tools
|
May 2, 2023
|
Alan Jo
|
Alan Jo
|
May 2, 2023
|
[eva](https://github.com/georgia-tech-db/eva)
|
### Eva db Usages
|Title|
|:-:|
```typeSELECT id, data FROM TrafficVideo WHERE ['car'] <@ YoloV5(data).labels;```
> [EVA AI-Relational Database System documentation](https://evadb.readthedocs.io/)
|
17a183f2967d455fbe7631ea89172e49
|
C4 Data
|
NLP Datasets
|
Apr 18, 2023
|
Alan Jo
|
Alan Jo
|
Apr 18, 2023
|
Common Crawl์ ์น ํฌ๋กค๋ง ์ฝํผ์ค์ ๊ฑฐ๋ํ๊ณ ๊นจ๋ํ ๋ฒ์
|
5e19c38f6e034c92857f71cb820dae89
|
|
Code Data
|
NLP Datasets
|
Apr 21, 2023
|
Alan Jo
|
Alan Jo
|
Apr 21, 2023
|
### Code Datas
|Title|
|:-:|
|[BigCode](https://texonom.com/bigcode-7c4e3d53d63d4f9a923910cfd999367b)|
|[The Stack](https://texonom.com/the-stack-f5e306b910ae43de882a3bcd39981b6a)|
|
071b31dcf1ee4073ad458f1ac781cd5f
|
|
CommonCrawl
|
NLP Datasets
|
Apr 18, 2023
|
Alan Jo
|
Alan Jo
|
Apr 18, 2023
|
e34ff04c04e14260a1ef19e3baa035c8
|
||
RedPajama Data
|
NLP Datasets
|
May 1, 2023
|
Alan Jo
|
Alan Jo
|
Jun 13, 2023
|
[MPT](https://texonom.com/mpt-bf2abacce4b14fe99929c1fb19ea2c71)
|
[RedPajama-Data](https://github.com/togethercomputer/RedPajama-Data)
> [togethercomputer/RedPajama-Data-1T ยท Datasets at Hugging Face](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
> [RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens โ TOGETHER](https://www.together.xyz/blog/redpajama)
|
ab8489ee6448474899c4b8e49b6faaac
|
BigCode
|
Code Datas
|
Apr 21, 2023
|
Alan Jo
|
Alan Jo
|
Apr 21, 2023
|
> [Open and responsible development of LLMs for code](https://www.bigcode-project.org/)
> [The Stack: 3 TB of permissively licensed source code](https://arxiv.org/abs/2211.15533)
|
7c4e3d53d63d4f9a923910cfd999367b
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.