viewer: false
tags:
- uv-script
- classification
- vllm
- structured-outputs
- gpu-required
Dataset Classification with vLLM
Efficient text classification for Hugging Face datasets using vLLM with structured outputs. This script provides GPU-accelerated classification with guaranteed valid outputs through guided decoding.
π Quick Start
# Classify IMDB reviews
uv run classify-dataset.py \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--output-dataset user/imdb-classified
That's it! No installation, no setup - just uv run
.
π Requirements
- GPU Required: This script uses vLLM for efficient inference
- Python 3.10+
- UV (will handle all dependencies automatically)
- vLLM >= 0.6.6 (for guided decoding support)
π― Features
- Guaranteed valid outputs using vLLM's guided decoding with outlines
- Zero-shot classification with structured generation
- GPU-optimized with vLLM's automatic batching for maximum efficiency
- Robust text handling with preprocessing and validation
- Three prompt styles for different use cases
- Automatic progress tracking and detailed statistics
- Direct Hub integration - read and write datasets seamlessly
π» Usage
Basic Classification
uv run classify-dataset.py \
--input-dataset <dataset-id> \
--column <text-column> \
--labels <comma-separated-labels> \
--output-dataset <output-id>
Arguments
Required:
--input-dataset
: Hugging Face dataset ID (e.g.,stanfordnlp/imdb
,user/my-dataset
)--column
: Name of the text column to classify--labels
: Comma-separated classification labels (e.g.,"spam,ham"
)--output-dataset
: Where to save the classified dataset
Optional:
--model
: Model to use (default:HuggingFaceTB/SmolLM3-3B
)--prompt-style
: Choose fromsimple
,detailed
, orreasoning
(default:simple
)--split
: Dataset split to process (default:train
)--max-samples
: Limit samples for testing--temperature
: Generation temperature (default: 0.1)--guided-backend
: Backend for guided decoding (default:outlines
)--hf-token
: Hugging Face token (or useHF_TOKEN
env var)
Prompt Styles
- simple: Direct classification prompt
- detailed: Emphasizes exact category matching
- reasoning: Includes brief analysis before classification
All styles benefit from structured output guarantees - the model can only output valid labels!
π Examples
Sentiment Analysis
uv run classify-dataset.py \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--output-dataset user/imdb-sentiment
Support Ticket Classification
uv run classify-dataset.py \
--input-dataset user/support-tickets \
--column content \
--labels "bug,feature_request,question,other" \
--output-dataset user/tickets-classified \
--prompt-style reasoning
News Categorization
uv run classify-dataset.py \
--input-dataset ag_news \
--column text \
--labels "world,sports,business,tech" \
--output-dataset user/ag-news-categorized \
--model meta-llama/Llama-3.2-3B-Instruct
π Running on HF Jobs
This script is optimized for Hugging Face Jobs (requires Pro subscription or Team/Enterprise organization):
# Run on L4 GPU with vLLM image
hf jobs uv run \
--flavor l4x1 \
--image vllm/vllm-openai:latest \
classify-dataset.py \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--output-dataset user/imdb-classified
# Run on A10 GPU with custom model
hf jobs uv run \
--flavor a10g-large \
--image vllm/vllm-openai:latest \
classify-dataset.py \
--input-dataset user/reviews \
--column review_text \
--labels "1,2,3,4,5" \
--output-dataset user/reviews-rated \
--model mistralai/Mistral-7B-Instruct-v0.3 \
--prompt-style detailed
GPU Flavors
t4-small
: Budget option for smaller modelsl4x1
: Good balance for 7B modelsa10g-small
: Fast inference for 3B modelsa10g-large
: More memory for larger modelsa100-large
: Maximum performance
π§ Advanced Usage
Using Different Models
The default model is SmolLM3-3B, but you can use any instruction-tuned model:
# Larger model for complex classification
uv run classify-dataset.py \
--input-dataset user/legal-docs \
--column text \
--labels "contract,patent,brief,memo,other" \
--output-dataset user/legal-classified \
--model Qwen/Qwen2.5-7B-Instruct
Large Datasets
vLLM automatically handles batching for optimal performance. For very large datasets, it will process efficiently without manual intervention:
uv run classify-dataset.py \
--input-dataset user/huge-dataset \
--column text \
--labels "A,B,C" \
--output-dataset user/huge-classified
π Performance
- SmolLM3-3B: ~50-100 texts/second on A10
- 7B models: ~20-50 texts/second on A10
- vLLM automatically optimizes batching for best throughput
π€ How It Works
- vLLM: Provides efficient GPU batch inference
- Guided Decoding: Uses outlines to guarantee valid label outputs
- Structured Generation: Constrains model outputs to exact label choices
- UV: Handles all dependencies automatically
The script loads your dataset, preprocesses texts, classifies each one using guided decoding to ensure only valid labels are generated, then saves the results as a new column in the output dataset.
π Troubleshooting
CUDA Not Available
This script requires a GPU. Run it on:
- A machine with NVIDIA GPU
- HF Jobs (recommended)
- Cloud GPU instances
Out of Memory
- Use a smaller model
- Use a larger GPU (e.g., a100-large)
Invalid/Skipped Texts
- Texts shorter than 3 characters are skipped
- Empty or None values are marked as invalid
- Very long texts are truncated to 4000 characters
Classification Quality
- With guided decoding, outputs are guaranteed to be valid labels
- For better results, use clear and distinct label names
- Try the
reasoning
prompt style for complex classifications - Use a larger model for nuanced tasks
vLLM Version Issues
If you see ImportError: cannot import name 'GuidedDecodingParams'
:
- Your vLLM version is too old (requires >= 0.6.6)
- The script specifies the correct version in its dependencies
- UV should automatically install the correct version
π License
This script is provided as-is for use with the UV Scripts organization.