|
--- |
|
viewer: false |
|
tags: [uv-script, classification, vllm, structured-outputs, gpu-required] |
|
--- |
|
|
|
# Dataset Classification with vLLM |
|
|
|
Efficient text classification for Hugging Face datasets using vLLM with structured outputs. This script provides GPU-accelerated classification with guaranteed valid outputs through guided decoding. |
|
|
|
## π Quick Start |
|
|
|
```bash |
|
# Classify IMDB reviews |
|
uv run classify-dataset.py \ |
|
--input-dataset stanfordnlp/imdb \ |
|
--column text \ |
|
--labels "positive,negative" \ |
|
--output-dataset user/imdb-classified |
|
``` |
|
|
|
That's it! No installation, no setup - just `uv run`. |
|
|
|
## π Requirements |
|
|
|
- **GPU Required**: This script uses vLLM for efficient inference |
|
- Python 3.10+ |
|
- UV (will handle all dependencies automatically) |
|
- vLLM >= 0.6.6 (for guided decoding support) |
|
|
|
## π― Features |
|
|
|
- **Guaranteed valid outputs** using vLLM's guided decoding with outlines |
|
- **Zero-shot classification** with structured generation |
|
- **GPU-optimized** with vLLM's automatic batching for maximum efficiency |
|
- **Robust text handling** with preprocessing and validation |
|
- **Three prompt styles** for different use cases |
|
- **Automatic progress tracking** and detailed statistics |
|
- **Direct Hub integration** - read and write datasets seamlessly |
|
|
|
## π» Usage |
|
|
|
### Basic Classification |
|
|
|
```bash |
|
uv run classify-dataset.py \ |
|
--input-dataset <dataset-id> \ |
|
--column <text-column> \ |
|
--labels <comma-separated-labels> \ |
|
--output-dataset <output-id> |
|
``` |
|
|
|
### Arguments |
|
|
|
**Required:** |
|
- `--input-dataset`: Hugging Face dataset ID (e.g., `stanfordnlp/imdb`, `user/my-dataset`) |
|
- `--column`: Name of the text column to classify |
|
- `--labels`: Comma-separated classification labels (e.g., `"spam,ham"`) |
|
- `--output-dataset`: Where to save the classified dataset |
|
|
|
**Optional:** |
|
- `--model`: Model to use (default: `HuggingFaceTB/SmolLM3-3B`) |
|
- `--prompt-style`: Choose from `simple`, `detailed`, or `reasoning` (default: `simple`) |
|
- `--split`: Dataset split to process (default: `train`) |
|
- `--max-samples`: Limit samples for testing |
|
- `--temperature`: Generation temperature (default: 0.1) |
|
- `--guided-backend`: Backend for guided decoding (default: `outlines`) |
|
- `--hf-token`: Hugging Face token (or use `HF_TOKEN` env var) |
|
|
|
### Prompt Styles |
|
|
|
- **simple**: Direct classification prompt |
|
- **detailed**: Emphasizes exact category matching |
|
- **reasoning**: Includes brief analysis before classification |
|
|
|
All styles benefit from structured output guarantees - the model can only output valid labels! |
|
|
|
## π Examples |
|
|
|
### Sentiment Analysis |
|
```bash |
|
uv run classify-dataset.py \ |
|
--input-dataset stanfordnlp/imdb \ |
|
--column text \ |
|
--labels "positive,negative" \ |
|
--output-dataset user/imdb-sentiment |
|
``` |
|
|
|
### Support Ticket Classification |
|
```bash |
|
uv run classify-dataset.py \ |
|
--input-dataset user/support-tickets \ |
|
--column content \ |
|
--labels "bug,feature_request,question,other" \ |
|
--output-dataset user/tickets-classified \ |
|
--prompt-style reasoning |
|
``` |
|
|
|
### News Categorization |
|
```bash |
|
uv run classify-dataset.py \ |
|
--input-dataset ag_news \ |
|
--column text \ |
|
--labels "world,sports,business,tech" \ |
|
--output-dataset user/ag-news-categorized \ |
|
--model meta-llama/Llama-3.2-3B-Instruct |
|
``` |
|
|
|
## π Running on HF Jobs |
|
|
|
This script is optimized for [Hugging Face Jobs](https://huggingface.co/docs/hub/spaces-gpu-jobs) (requires Pro subscription or Team/Enterprise organization): |
|
|
|
```bash |
|
# Run on L4 GPU with vLLM image |
|
hf jobs uv run \ |
|
--flavor l4x1 \ |
|
--image vllm/vllm-openai:latest \ |
|
classify-dataset.py \ |
|
--input-dataset stanfordnlp/imdb \ |
|
--column text \ |
|
--labels "positive,negative" \ |
|
--output-dataset user/imdb-classified |
|
|
|
# Run on A10 GPU with custom model |
|
hf jobs uv run \ |
|
--flavor a10g-large \ |
|
--image vllm/vllm-openai:latest \ |
|
classify-dataset.py \ |
|
--input-dataset user/reviews \ |
|
--column review_text \ |
|
--labels "1,2,3,4,5" \ |
|
--output-dataset user/reviews-rated \ |
|
--model mistralai/Mistral-7B-Instruct-v0.3 \ |
|
--prompt-style detailed |
|
``` |
|
|
|
### GPU Flavors |
|
- `t4-small`: Budget option for smaller models |
|
- `l4x1`: Good balance for 7B models |
|
- `a10g-small`: Fast inference for 3B models |
|
- `a10g-large`: More memory for larger models |
|
- `a100-large`: Maximum performance |
|
|
|
## π§ Advanced Usage |
|
|
|
### Using Different Models |
|
|
|
The default model is SmolLM3-3B, but you can use any instruction-tuned model: |
|
|
|
```bash |
|
# Larger model for complex classification |
|
uv run classify-dataset.py \ |
|
--input-dataset user/legal-docs \ |
|
--column text \ |
|
--labels "contract,patent,brief,memo,other" \ |
|
--output-dataset user/legal-classified \ |
|
--model Qwen/Qwen2.5-7B-Instruct |
|
``` |
|
|
|
### Large Datasets |
|
|
|
vLLM automatically handles batching for optimal performance. For very large datasets, it will process efficiently without manual intervention: |
|
|
|
```bash |
|
uv run classify-dataset.py \ |
|
--input-dataset user/huge-dataset \ |
|
--column text \ |
|
--labels "A,B,C" \ |
|
--output-dataset user/huge-classified |
|
``` |
|
|
|
## π Performance |
|
|
|
- **SmolLM3-3B**: ~50-100 texts/second on A10 |
|
- **7B models**: ~20-50 texts/second on A10 |
|
- vLLM automatically optimizes batching for best throughput |
|
|
|
## π€ How It Works |
|
|
|
1. **vLLM**: Provides efficient GPU batch inference |
|
2. **Guided Decoding**: Uses outlines to guarantee valid label outputs |
|
3. **Structured Generation**: Constrains model outputs to exact label choices |
|
4. **UV**: Handles all dependencies automatically |
|
|
|
The script loads your dataset, preprocesses texts, classifies each one using guided decoding to ensure only valid labels are generated, then saves the results as a new column in the output dataset. |
|
|
|
## π Troubleshooting |
|
|
|
### CUDA Not Available |
|
This script requires a GPU. Run it on: |
|
- A machine with NVIDIA GPU |
|
- HF Jobs (recommended) |
|
- Cloud GPU instances |
|
|
|
### Out of Memory |
|
- Use a smaller model |
|
- Use a larger GPU (e.g., a100-large) |
|
|
|
### Invalid/Skipped Texts |
|
- Texts shorter than 3 characters are skipped |
|
- Empty or None values are marked as invalid |
|
- Very long texts are truncated to 4000 characters |
|
|
|
### Classification Quality |
|
- With guided decoding, outputs are guaranteed to be valid labels |
|
- For better results, use clear and distinct label names |
|
- Try the `reasoning` prompt style for complex classifications |
|
- Use a larger model for nuanced tasks |
|
|
|
### vLLM Version Issues |
|
If you see `ImportError: cannot import name 'GuidedDecodingParams'`: |
|
- Your vLLM version is too old (requires >= 0.6.6) |
|
- The script specifies the correct version in its dependencies |
|
- UV should automatically install the correct version |
|
|
|
## π License |
|
|
|
This script is provided as-is for use with the UV Scripts organization. |