|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Classify text columns in Hugging Face datasets using vLLM with structured outputs. |
|
|
|
This script provides efficient GPU-based classification with guaranteed valid outputs, |
|
optimized for running on HF Jobs. |
|
|
|
Example: |
|
uv run classify-dataset.py \\ |
|
--input-dataset imdb \\ |
|
--column text \\ |
|
--labels "positive,negative" \\ |
|
--output-dataset user/imdb-classified |
|
|
|
HF Jobs example: |
|
hfjobs run --flavor a10 uv run classify-dataset.py \\ |
|
--input-dataset user/emails \\ |
|
--column content \\ |
|
--labels "spam,ham" \\ |
|
--output-dataset user/emails-classified \\ |
|
--prompt-style reasoning |
|
""" |
|
|
|
import argparse |
|
import logging |
|
import os |
|
import sys |
|
from typing import List, Dict, Any, Optional |
|
|
|
import torch |
|
from datasets import load_dataset, Dataset |
|
from huggingface_hub import HfApi |
|
from vllm import LLM, SamplingParams |
|
from vllm.sampling_params import GuidedDecodingParams |
|
|
|
|
|
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B" |
|
|
|
|
|
PROMPT_STYLES = { |
|
"simple": """Classify this text as one of: {labels} |
|
|
|
Text: {text} |
|
|
|
Label:""", |
|
|
|
"detailed": """Task: Classify the following text into EXACTLY ONE of these categories. |
|
Available categories: {labels} |
|
|
|
Text to classify: |
|
{text} |
|
|
|
Category:""", |
|
|
|
"reasoning": """Analyze the following text and determine which category it belongs to. |
|
Available categories: {labels} |
|
|
|
Text to analyze: |
|
{text} |
|
|
|
Brief analysis: Let me examine the key aspects of this text. |
|
Category:""", |
|
} |
|
|
|
|
|
MIN_TEXT_LENGTH = 3 |
|
|
|
|
|
MAX_TEXT_LENGTH = 4000 |
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description="Classify text in HuggingFace datasets using vLLM with structured outputs", |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
epilog=__doc__ |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--input-dataset", |
|
type=str, |
|
required=True, |
|
help="Input dataset ID on Hugging Face Hub" |
|
) |
|
parser.add_argument( |
|
"--column", |
|
type=str, |
|
required=True, |
|
help="Name of the text column to classify" |
|
) |
|
parser.add_argument( |
|
"--labels", |
|
type=str, |
|
required=True, |
|
help="Comma-separated list of classification labels (e.g., 'positive,negative')" |
|
) |
|
parser.add_argument( |
|
"--output-dataset", |
|
type=str, |
|
required=True, |
|
help="Output dataset ID on Hugging Face Hub" |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--model", |
|
type=str, |
|
default=DEFAULT_MODEL, |
|
help=f"Model to use for classification (default: {DEFAULT_MODEL})" |
|
) |
|
|
|
parser.add_argument( |
|
"--prompt-style", |
|
type=str, |
|
choices=list(PROMPT_STYLES.keys()), |
|
default="simple", |
|
help="Prompt style to use (default: simple)" |
|
) |
|
parser.add_argument( |
|
"--max-samples", |
|
type=int, |
|
default=None, |
|
help="Maximum number of samples to process (for testing)" |
|
) |
|
parser.add_argument( |
|
"--hf-token", |
|
type=str, |
|
default=os.environ.get("HF_TOKEN"), |
|
help="Hugging Face API token (default: HF_TOKEN env var)" |
|
) |
|
parser.add_argument( |
|
"--split", |
|
type=str, |
|
default="train", |
|
help="Dataset split to process (default: train)" |
|
) |
|
parser.add_argument( |
|
"--temperature", |
|
type=float, |
|
default=0.1, |
|
help="Temperature for generation (default: 0.1)" |
|
) |
|
parser.add_argument( |
|
"--max-tokens", |
|
type=int, |
|
default=50, |
|
help="Maximum tokens to generate (default: 50)" |
|
) |
|
parser.add_argument( |
|
"--guided-backend", |
|
type=str, |
|
default="outlines", |
|
help="Guided decoding backend (default: outlines)" |
|
) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
def preprocess_text(text: str) -> str: |
|
"""Preprocess text for classification.""" |
|
if not text or not isinstance(text, str): |
|
return "" |
|
|
|
|
|
text = text.strip() |
|
|
|
|
|
if len(text) > MAX_TEXT_LENGTH: |
|
text = text[:MAX_TEXT_LENGTH] + "..." |
|
|
|
return text |
|
|
|
|
|
def validate_text(text: str) -> bool: |
|
"""Check if text is valid for classification.""" |
|
if not text or len(text) < MIN_TEXT_LENGTH: |
|
return False |
|
return True |
|
|
|
|
|
def prepare_prompts( |
|
texts: List[str], |
|
labels: List[str], |
|
prompt_template: str |
|
) -> tuple[List[str], List[int]]: |
|
"""Prepare prompts for classification, filtering invalid texts.""" |
|
prompts = [] |
|
valid_indices = [] |
|
|
|
for i, text in enumerate(texts): |
|
processed_text = preprocess_text(text) |
|
if validate_text(processed_text): |
|
prompt = prompt_template.format( |
|
labels=", ".join(labels), |
|
text=processed_text |
|
) |
|
prompts.append(prompt) |
|
valid_indices.append(i) |
|
|
|
return prompts, valid_indices |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
|
|
if not torch.cuda.is_available(): |
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
logger.error("Please run on a machine with GPU support or use HF Jobs.") |
|
sys.exit(1) |
|
|
|
logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}") |
|
|
|
|
|
labels = [label.strip() for label in args.labels.split(",")] |
|
if len(labels) < 2: |
|
logger.error("At least two labels are required for classification.") |
|
sys.exit(1) |
|
logger.info(f"Classification labels: {labels}") |
|
|
|
|
|
logger.info(f"Loading dataset: {args.input_dataset}") |
|
try: |
|
dataset = load_dataset(args.input_dataset, split=args.split) |
|
|
|
|
|
if args.max_samples: |
|
dataset = dataset.select(range(min(args.max_samples, len(dataset)))) |
|
logger.info(f"Limited dataset to {len(dataset)} samples") |
|
|
|
logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'") |
|
except Exception as e: |
|
logger.error(f"Failed to load dataset: {e}") |
|
sys.exit(1) |
|
|
|
|
|
if args.column not in dataset.column_names: |
|
logger.error(f"Column '{args.column}' not found in dataset.") |
|
logger.error(f"Available columns: {dataset.column_names}") |
|
sys.exit(1) |
|
|
|
|
|
texts = dataset[args.column] |
|
|
|
|
|
logger.info(f"Initializing vLLM with model: {args.model}") |
|
logger.info(f"Using guided decoding backend: {args.guided_backend}") |
|
try: |
|
llm = LLM( |
|
model=args.model, |
|
trust_remote_code=True, |
|
dtype="auto", |
|
gpu_memory_utilization=0.95, |
|
guided_decoding_backend=args.guided_backend, |
|
) |
|
except Exception as e: |
|
logger.error(f"Failed to initialize vLLM: {e}") |
|
sys.exit(1) |
|
|
|
|
|
guided_params = GuidedDecodingParams(choice=labels) |
|
|
|
|
|
sampling_params = SamplingParams( |
|
guided_decoding=guided_params, |
|
temperature=args.temperature, |
|
max_tokens=args.max_tokens, |
|
) |
|
|
|
|
|
prompt_template = PROMPT_STYLES[args.prompt_style] |
|
logger.info(f"Using prompt style '{args.prompt_style}'") |
|
logger.info("Using structured output with guided_choice - outputs guaranteed to be valid labels") |
|
|
|
|
|
logger.info("Preparing prompts for classification...") |
|
all_prompts, valid_indices = prepare_prompts(texts, labels, prompt_template) |
|
|
|
if not all_prompts: |
|
logger.error("No valid texts found for classification.") |
|
sys.exit(1) |
|
|
|
logger.info(f"Prepared {len(all_prompts)} valid prompts out of {len(texts)} texts") |
|
|
|
|
|
logger.info("Starting classification (vLLM will handle batching internally)...") |
|
|
|
try: |
|
|
|
outputs = llm.generate(all_prompts, sampling_params) |
|
|
|
|
|
all_classifications = [None] * len(texts) |
|
for idx, output in enumerate(outputs): |
|
original_idx = valid_indices[idx] |
|
generated_text = output.outputs[0].text.strip() |
|
all_classifications[original_idx] = generated_text |
|
|
|
|
|
valid_texts = len(valid_indices) |
|
total_texts = len(texts) |
|
|
|
except Exception as e: |
|
logger.error(f"Classification failed: {e}") |
|
sys.exit(1) |
|
|
|
|
|
dataset = dataset.add_column("classification", all_classifications) |
|
|
|
|
|
none_count = total_texts - valid_texts |
|
if none_count > 0: |
|
logger.warning(f"{none_count} texts were too short or invalid for classification") |
|
|
|
|
|
label_counts = {label: all_classifications.count(label) for label in labels} |
|
logger.info("Classification distribution:") |
|
for label, count in label_counts.items(): |
|
percentage = count / total_texts * 100 if total_texts > 0 else 0 |
|
logger.info(f" {label}: {count} ({percentage:.1f}%)") |
|
if none_count > 0: |
|
none_percentage = none_count / total_texts * 100 |
|
logger.info(f" Invalid/Skipped: {none_count} ({none_percentage:.1f}%)") |
|
|
|
|
|
success_rate = (valid_texts / total_texts * 100) if total_texts > 0 else 0 |
|
logger.info(f"Classification success rate: {success_rate:.1f}%") |
|
|
|
|
|
logger.info(f"Pushing dataset to Hub: {args.output_dataset}") |
|
try: |
|
dataset.push_to_hub( |
|
args.output_dataset, |
|
token=args.hf_token, |
|
commit_message=f"Add classifications using {args.model} with structured outputs" |
|
) |
|
logger.info(f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}") |
|
except Exception as e: |
|
logger.error(f"Failed to push to Hub: {e}") |
|
sys.exit(1) |
|
|
|
|
|
if __name__ == "__main__": |
|
if len(sys.argv) == 1: |
|
print("Example HF Jobs command:") |
|
print("hf jobs uv run \\") |
|
print(" --flavor l4x1 \\") |
|
print(" --image vllm/vllm-openai:latest \\") |
|
print(" classify-dataset.py \\") |
|
print(" --input-dataset stanfordnlp/imdb \\") |
|
print(" --column text \\") |
|
print(" --labels 'positive,negative' \\") |
|
print(" --output-dataset user/imdb-classified") |
|
sys.exit(0) |
|
|
|
main() |