seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
self.mu = self.mu * action_bound[1];
self.sigma = self.sigma + 1e-5
self.normal_dist = tf.contrib.distributions.Normal(self.mu, self.sigma)
self.action = tf.squeeze(self.normal_dist.sample(1),axis=0);
|
tensorflow.contrib.distributions.Normal
| 10,200 |
import tensorflow as tf
step=global_step)
tf.contrib.summary.scalar(
'rpn_box_loss', tf.reduce_mean(rpn_box_loss), step=global_step)
tf.contrib.summary.scalar(
'total_fast_rcnn_loss', tf.reduce_mean(total_fast_rcnn_loss),
step=global_step)
tf.contrib.summary.scalar(
'fast_rcnn_class_loss', tf.reduce_mean(fast_rcnn_class_loss),
|
tensorflow.reduce_mean
| 10,201 |
import tensorflow as tf
self.epsilon = epsilon
self.axis = axis
self.center=center
self.scale=scale
with tf.variable_scope(name) as scope:
with tf.variable_scope('bn') :
self.gamma= tf.get_variable('gamma',[dims], initializer=tf.constant_initializer(1.0))
self.beta = tf.get_variable('beta',[dims], initializer=tf.constant_initializer(0.0))
self.moving_mean = tf.get_variable('moving_mean',[dims], initializer=tf.constant_initializer(0.0), trainable=False)
self.moving_variance = tf.get_variable('moving_variance',[dims], initializer=tf.constant_initializer(1.0), trainable=False)
self.scope = scope
|
tensorflow.constant_initializer
| 10,202 |
import tensorflow as tf
normal._is_scalar_helper(tf.TensorShape(None), lambda: tf.shape(x)))
# There's no notion of partially known shapes in eager mode, so exit
# early.
if tf.executing_eagerly():
return
# Test case 3.
x = tf.placeholder_with_default(input=1, shape=None)
is_scalar = normal._is_scalar_helper(x.shape, lambda: tf.shape(x))
self.assertTrue(self.evaluate(is_scalar))
x = tf.placeholder_with_default(input=[1], shape=None)
is_scalar = normal._is_scalar_helper(x.shape, lambda: tf.shape(x))
self.assertFalse(self.evaluate(is_scalar))
def _GetFakeDistribution(self):
class FakeDistribution(tfd.Distribution):
|
tensorflow.shape
| 10,203 |
import tensorflow as tf
coord.join()
def test_get_inputs_cancelled(self):
with tf.Graph().as_default():
@dynamic_batching.batch_fn
def f(a):
return a
f(tf.constant([1]))
# Intentionally using tf.Session() instead of self.test_session() to have
# control over closing the session. test_session() is a cached session.
with tf.Session():
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord)
# Sleep to make sure the queue runner has started the first run call.
time.sleep(_SLEEP_TIME)
# Session closed.
coord.request_stop()
coord.join()
def test_batcher_closed(self):
with tf.Graph().as_default():
@dynamic_batching.batch_fn
|
tensorflow.Session
| 10,204 |
import tensorflow as tf
def get_variable(name, shape, dtype, initializer, trainable=True, regularizer=None):
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape=shape, dtype=dtype,
initializer=initializer, regularizer=regularizer, trainable=trainable,
collections=[tf.GraphKeys.WEIGHTS, tf.GraphKeys.GLOBAL_VARIABLES])
|
tensorflow.get_variable
| 10,205 |
import tensorflow as tf
# (box_limits_x[1][0], box_limits_y[1], box_limits_z[1][0]),
# [self.resolution, self.resolution, self.resolution])
# samples_world = grid.generate(
# (-5.0, -5.0, -5.0),
# (5.0, 5.0, 5.0),
# [self.resolution, self.resolution, self.resolution])
samples_world = tf.reshape(samples_world, [-1, 3])
ious = []
status = False
if status:
_, axs = plt.subplots(labeled_translations.shape[0], 5)
|
tensorflow.reshape
| 10,206 |
import tensorflow as tf
tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode()))
tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev()))
tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf))
self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
# AC net
def build_anet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
|
tensorflow.variable_scope
| 10,207 |
import tensorflow as tf
# Image and Mask must be same dimension by now. Both have dimensions (x, y, 3)
h, w, _ = image.shape
grid = 8
image = image[:h // grid * grid, :w // grid * grid, :]
mask = mask[:h // grid * grid, :w // grid * grid, :]
print('Shape of image: {}'.format(image.shape))
image = np.expand_dims(image, 0)
mask = np.expand_dims(mask, 0)
print(image.shape)
print(mask.shape)
input_image = np.concatenate([image, mask], axis=2)
print(input_image.shape)
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
input_image = tf.constant(input_image, dtype=tf.float32)
output = MODEL.build_server_graph(FLAGS, input_image)
output = (output + 1.) * 127.5
output = tf.reverse(output, [-1])
output = tf.saturate_cast(output, tf.uint8)
# load pretrained model
vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = []
for var in vars_list:
vname = var.name
from_name = vname
var_value = tf.contrib.framework.load_variable(MODEL_DIR, from_name)
|
tensorflow.ConfigProto
| 10,208 |
import tensorflow as tf
resized = tf.nn.conv3d_transpose(
value=x,
filter=kernel,
output_shape=y_size,
strides=[1] + strides + [1],
padding=self.padding,
name='resize_x_to_y')
resized = tf.nn.bias_add(
resized,
bias)
resized = self.ff_nl(resized)
return resized
elif mode == 'replicate_n_transpose':
resized = tf.image.resize_images(
x,
y_size[:-1],
kernel,
align_corners=False)
resized = tf.nn.conv3d_transpose(
value=resized,
filter=kernel,
output_shape=y_size,
strides=[1, 1, 1, 1, 1],
padding='SAME',
name='resize_x_to_y')
resized = tf.nn.bias_add(
|
tensorflow.image.resize_images
| 10,209 |
import tensorflow as tf
# pred1 = tf.slice(batch1, [0, 0], [num_sam, 1])
# pred2 = tf.slice(batch2, [0, 0], [num_sam, 1])
# tgt1 = tf.slice(batch1, [0, 1], [num_sam, 1])
# tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1])
# loss = compute_contra_loss(pred1, pred2, tgt1, tgt2)
# print(loss)
# return loss
i = tf.constant(0)
loss = tf.constant(0.)
final_loss = tf.while_loop(lambda l, i: i < resample, sample_compute, [loss, i])[0]
# final_loss = tf.scan(sample_compute, tf.range(resample), loss)[-1]
# final_loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems= tf.range(resample), dtype=tf.float32, parallel_iterations=1)
# print('final', final_loss)
# final_loss = loss
avg_loss = tf.reduce_mean(final_loss) / divider
# p = tf.print('cur_loss', [final_loss, avg_loss])
# with tf.control_dependencies([p]):
# avg_loss = tf.identity(avg_loss)
# print(final_loss, avg_loss)
# p = tf.print('debug loss ', [final_loss, avg_loss])
# with tf.control_dependencies([p]):
# avg_loss = 1. * avg_loss
# print(avg_loss)
# exit()
return avg_loss
def compute_contra_loss(pred1, pred2, tgt1, tgt2, hard_ratio=1.0):
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
|
tensorflow.reduce_mean
| 10,210 |
import tensorflow as tf
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
# Since we evaluate for a fixed number of steps we don't want to encounter
# out-of-range exceptions.
d = d.repeat()
# We must `drop_remainder` on training because the TPU requires fixed
|
tensorflow.data.TFRecordDataset
| 10,211 |
import tensorflow as tf
if activation_function == "elu":
conv = tf.nn.elu(conv, name = 'elu')
return conv
def general_deconv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm = True, relu_factor = 0, name="deconv2d"):
with tf.variable_scope(name):
deconv = tf.layers.conv2d_transpose(input_data, filters, kernel_size, (stride, stride), padding, activation = None)
if do_norm:
deconv = tf.layers.batch_normalization(deconv, momentum = 0.9)
if activation_function == "relu":
deconv = tf.nn.relu(deconv, name = 'relu')
if activation_function == "leakyrelu":
deconv = tf.nn.leaky_relu(deconv, alpha=relu_factor)
if activation_function == "elu":
deconv = tf.nn.elu(deconv, name = 'elu')
return deconv
|
tensorflow.nn.relu
| 10,212 |
import tensorflow as tf
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
if task_name != "sts-b":
probabilities = tf.nn.softmax(logits, axis=-1)
predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32)
|
tensorflow.variable_scope
| 10,213 |
import tensorflow as tf
pool += shortcut
pool = fixed_padding(inputs=pool)
return tf.layers.conv1d(inputs=pool, filters=pool.get_shape()[2]*2, kernel_size=1,
strides=1, padding='valid', use_bias=False)
def fixed_padding(inputs, kernel_size=3):
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end], [0, 0]])
return padded_inputs
class VDCNN():
def __init__(self, num_classes, sequence_max_length=20, num_quantized_chars=50000, tags_vocab_size=44,
deps_vocab_size=47, embedding_size=300,
depth=9, downsampling_type='maxpool', use_he_uniform=True, optional_shortcut=False):
# Depth to No. Layers
|
tensorflow.pad
| 10,214 |
import tensorflow as tf
y = analysis_transform(x_coori,x)
return tf.squeeze(y,axis=0)
element = [x,x_coori]
ys = tf.map_fn(loop_analysis, element, dtype=tf.float32, parallel_iterations=1, back_prop=False)
print("Analysis Transform")
def loop_hyper_encoder(y):
y = tf.expand_dims(y, 0)
z = hyper_encoder(y)
return tf.squeeze(z,axis=0)
zs = tf.map_fn(loop_hyper_encoder, ys, dtype=tf.float32, parallel_iterations=1, back_prop=False)
print("Hyper Encoder")
z_hats, _ = entropy_bottleneck(zs, False)
print("Quantize hyperprior")
def loop_hyper_deocder(z):
z = tf.expand_dims(z, 0)
loc, scale = hyper_decoder(z)
return tf.squeeze(loc, [0]), tf.squeeze(scale, [0])
locs, scales = tf.map_fn(loop_hyper_deocder, z_hats, dtype=(tf.float32, tf.float32),
|
tensorflow.map_fn
| 10,215 |
import tensorflow as tf
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import test_case
FLAGS = tf.flags.FLAGS
def _get_configs_for_model(model_name):
"""Returns configurations for model."""
fname = os.path.join(tf.resource_loader.get_data_files_path(),
'samples/configs/' + model_name + '.config')
label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
'data/pet_label_map.pbtxt')
data_path = os.path.join(tf.resource_loader.get_data_files_path(),
'test_data/pets_examples.record')
configs = config_util.get_configs_from_pipeline_file(fname)
override_dict = {
'train_input_path': data_path,
'eval_input_path': data_path,
|
tensorflow.resource_loader.get_data_files_path
| 10,216 |
import tensorflow as tf
init_sd = 1.0 / np.sqrt(self.embedding_size)
# Embedding matrices for entities and relationship types
head_init = tf.truncated_normal([head_cnt, self.embedding_size], stddev=init_sd)
rel_init = tf.truncated_normal([rel_cnt, self.embedding_size], stddev=init_sd)
|
tensorflow.truncated_normal
| 10,217 |
import tensorflow as tf
def decode_binary(data_bytes):
# tf.decode_raw does not support bool as a decode type. As a result it is
# necessary to decode to int8 (7 of the bits will be ignored) and then
# cast to bool.
return tf.reshape(tf.cast(tf.decode_raw(data_bytes, tf.int8), tf.bool),
(batch_size,))
if self._is_training:
mask_start_index = tf.decode_raw(
|
tensorflow.decode_raw
| 10,218 |
import tensorflow as tf
config=tf.ConfigProto()
config.gpu_options.allow_growth=True
#init=tf.initialize_all_variables()
def train(train_num=64,test_num=32,lr=1e-4,loop_count=10000,report_step=100,save_step=1000,restore=False):
with tf.Session(config=config) as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
if restore:
tf.train.Saver().restore(sess,path)
feed_dict={
testnum: test_num,
trainnum: train_num,
learnrate:lr
}
for i in range(loop_count):
loss_np, _, label_np, image_np, inf_np = sess.run(
[loss, opti, batch_label, batch_image, inf],feed_dict=feed_dict)
if i > 0 and i % report_step == 0:
|
tensorflow.train.Saver
| 10,219 |
import tensorflow as tf
scores = d_layer_3_all
if mask is not None:
mask = tf.equal(mask, tf.ones_like(mask))
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
|
tensorflow.where
| 10,220 |
import tensorflow as tf
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
|
tensorflow.python_io.TFRecordWriter
| 10,221 |
import tensorflow as tf
else:
probabilities = logits
logits = tf.squeeze(logits, [-1])
predictions = logits
per_example_loss = tf.square(logits - labels)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, probabilities, logits, predictions)
|
tensorflow.square
| 10,222 |
import tensorflow as tf
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length,
)
)
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
# Since we evaluate for a fixed number of steps we don't want to encounter
# out-of-range exceptions.
d = d.repeat()
# We must `drop_remainder` on training because the TPU requires fixed
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU
# and we *don't* want to drop the remainder, otherwise we wont cover
|
tensorflow.data.TFRecordDataset
| 10,223 |
import tensorflow as tf
tf.random.categorical(
logits[None], num_samples=self._sample_batch_size))
mask = tf.cast(mask, tf.float32)[:, None]
relabelled_tasks = mask * orig_tasks + (1 - mask) * relabelled_tasks
|
tensorflow.cast
| 10,224 |
import tensorflow as tf
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def instance_norm(x,name='instance_norm'):
|
tensorflow.nn.relu
| 10,225 |
import tensorflow as tf
def add_train_stats(model, hparams):
with tf.variable_scope("stats") as scope:
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i])
tf.summary.scalar("before_loss", model.before_loss)
tf.summary.scalar("after_loss", model.after_loss)
if hparams.predict_linear:
tf.summary.scalar("linear_loss", model.linear_loss)
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i])
tf.summary.scalar("regularization_loss", model.regularization_loss)
tf.summary.scalar("stop_token_loss", model.stop_token_loss)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed
if hparams.tacotron_teacher_forcing_mode == "scheduled":
tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing
# ratio decay when mode = "scheduled"
gradient_norms = [tf.norm(grad) for grad in model.gradients]
|
tensorflow.summary.histogram
| 10,226 |
import tensorflow as tf
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
data_format=data_format)
inputs = batch_norm(inputs, training, data_format)
inputs += shortcut
inputs = tf.nn.relu(inputs)
return inputs
def _bottleneck_block_v2(inputs, filters, training, projection_shortcut,
strides, data_format):
"""A single block for ResNet v2, without a bottleneck.
Similar to _building_block_v2(), except using the "bottleneck" blocks
described in:
Convolution then batch normalization then ReLU as described by:
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385.pdf
|
tensorflow.nn.relu
| 10,227 |
import tensorflow as tf
in_shape = inputdata.get_shape().as_list()
channel_axis = 3 if data_format == 'channels_last' else 1
in_channel = in_shape[channel_axis]
assert in_channel is not None, "[Deconv2D] Input cannot have unknown channel!"
padding = padding.upper()
if w_init is None:
w_init = tf.contrib.layers.variance_scaling_initializer()
if b_init is None:
b_init = tf.constant_initializer()
ret = tf.layers.conv2d_transpose(inputs=inputdata, filters=out_channel,
kernel_size=kernel_size,
strides=stride, padding=padding,
data_format=data_format,
|
tensorflow.contrib.layers.variance_scaling_initializer
| 10,228 |
import tensorflow as tf
@layer
def relu_layer(tensor):
out = tf.nn.relu(tensor)
return out
@layer
def tanh_layer(tensor):
out = tf.nn.tanh(tensor)
return out
@layer
def softmax_layer(tensor, softmax_func=None, **opts):
if softmax_func is None:
softmax_func = tf.nn.softmax
out = softmax_func(tensor)
|
tensorflow.nn.tanh
| 10,229 |
import tensorflow as tf
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
|
tensorflow.matmul
| 10,230 |
import tensorflow as tf
tf.flags.DEFINE_boolean(
'use_nccl', True,
'Whether to use nccl all-reduce primitives where possible')
# Distributed training flags.
tf.flags.DEFINE_string('job_name', '',
'One of "ps", "worker", "". Empty for local training')
tf.flags.DEFINE_string('ps_hosts', '', 'Comma-separated list of target hosts')
tf.flags.DEFINE_string('worker_hosts', '',
'Comma-separated list of target hosts')
tf.flags.DEFINE_integer('task_index', 0, 'Index of task within the job')
tf.flags.DEFINE_string('server_protocol', 'grpc', 'protocol for servers')
tf.flags.DEFINE_boolean('cross_replica_sync', True, '')
# Summary and Save & load checkpoints.
tf.flags.DEFINE_integer('summary_verbosity', 0,
|
tensorflow.flags.DEFINE_string
| 10,231 |
import tensorflow as tf
# Placeholders
self.sess = tf.Session(config=config)
self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0]
self.a_bound = (env.action_space.high - env.action_space.low) / 2
self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action')
self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state')
self.advantage = tf.placeholder(tf.float32, [None, 1], 'advantage')
self.rewards = tf.placeholder(tf.float32, [None, 1], 'discounted_r')
# Dateset with experiennce replay
self.dataset = tf.data.Dataset.from_tensor_slices({'state': self.state, 'actions': self.actions,
|
tensorflow.placeholder
| 10,232 |
import tensorflow as tf
tf.set_random_seed(93820985)
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
decoder_theta = mdl._MakeDecoderTheta(theta=mdl.theta, input_batch=None)
mdl.BProp()
self.assertEqual(decoder_theta, mdl.theta.decoder)
def testFProp(self):
with self.session(use_gpu=False):
tf.set_random_seed(93820985)
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
tf.global_variables_initializer().run()
test_utils.CompareToGoldenSingleFloat(self, 4.472597, mdl.loss.eval())
actual_var_names = [_.name for _ in tf.all_variables()]
print('all vars \n', '\n'.join(actual_var_names))
expected_var_names = [
'global_step:0', 'test_mdl/enc/conv_L0/w/var:0',
'test_mdl/enc/conv_L0/beta/var:0', 'test_mdl/enc/conv_L0/gamma/var:0',
'test_mdl/enc/conv_L0/moving_mean/var:0',
'test_mdl/enc/conv_L0/moving_variance/var:0',
'test_mdl/enc/conv_L1/w/var:0', 'test_mdl/enc/conv_L1/beta/var:0',
'test_mdl/enc/conv_L1/gamma/var:0',
'test_mdl/enc/conv_L1/moving_mean/var:0',
'test_mdl/enc/conv_L1/moving_variance/var:0',
|
tensorflow.global_variables_initializer
| 10,233 |
from tensorflow.python.ops import math_ops
def _cdf(self, x):
x = self._assert_valid_sample(x, check_integer=False)
return math_ops.igammac(math_ops.floor(x + 1), self.rate)
|
tensorflow.python.ops.math_ops.floor
| 10,234 |
from tensorflow.python.ops import common_shapes
"""Shape function for LRNGrad op."""
in_grads_shape = op.inputs[0].get_shape().with_rank(4)
in_image_shape = op.inputs[1].get_shape().with_rank(4)
out_image_shape = op.inputs[2].get_shape().with_rank(4)
return [in_grads_shape.merge_with(in_image_shape).merge_with(out_image_shape)]
ops.RegisterShape("Softmax")(
common_shapes.unchanged_shape_with_rank(2))
@ops.RegisterShape("InTopK")
def _InTopKShape(op):
"""Shape function for InTopK op."""
predictions_shape = op.inputs[0].get_shape().with_rank(2)
targets_shape = op.inputs[1].get_shape().with_rank(1)
|
tensorflow.python.ops.common_shapes.unchanged_shape_with_rank
| 10,235 |
import tensorflow as tf
double_obs_ph = target_policy.obs_ph
if double_q:
with tf.variable_scope("double_q", reuse=True, custom_getter=tf_util.outer_scope_getter("double_q")):
double_policy = q_func(sess, ob_space, ac_space, 1, 1, None, reuse=True, layers=layers)
double_q_values = double_policy.q_values
double_obs_ph = double_policy.obs_ph
with tf.variable_scope("loss", reuse=reuse):
# set up placeholders
act_t_ph = tf.placeholder(tf.int32, [None], name="action")
rew_t_ph = tf.placeholder(tf.float32, [None], name="reward")
done_mask_ph = tf.placeholder(tf.float32, [None], name="done")
importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight")
# q scores for actions which we know were selected in the given state.
q_t_selected = tf.reduce_sum(step_model.q_values * tf.one_hot(act_t_ph, n_actions), axis=1)
# compute estimate of best possible value starting from state at t + 1
if double_q:
q_tp1_best_using_online_net = tf.argmax(double_q_values, axis=1)
q_tp1_best = tf.reduce_sum(target_policy.q_values * tf.one_hot(q_tp1_best_using_online_net, n_actions), axis=1)
else:
q_tp1_best = tf.reduce_max(target_policy.q_values, axis=1)
q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best
|
tensorflow.placeholder
| 10,236 |
import tensorflow as tf
tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev()))
tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf))
self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
# AC net
def build_anet(self, state_in, name, reuse=False, batch_size=64):
reg = None
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
lstm_a = tf.nn.rnn_cell.LSTMCell(num_units=256)
lstm_a = tf.nn.rnn_cell.DropoutWrapper(lstm_a, output_keep_prob=self.keep_prob)
state_init_a = lstm_a.zero_state(batch_size=batch_size, dtype=tf.float32)
lstm_ain = tf.expand_dims(layer_a2, axis=1)
out_a, state_final_a = tf.nn.dynamic_rnn(cell=lstm_a, inputs=lstm_ain, initial_state=state_init_a)
cell_out_a = tf.reshape(out_a, [-1, 256])
mu = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
sigma = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
# sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params, state_init_a, state_final_a
def build_cnet(self, state_in, name, reuse=False, batch_size=64):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg)
lstm_c = tf.nn.rnn_cell.LSTMCell(num_units=256)
|
tensorflow.reshape
| 10,237 |
import tensorflow as tf
def unsqueeze_2x2(input_):
"""Unsqueezing operation: reshape to convert channels into space."""
if isinstance(input_, (float, int)):
return input_
shape = input_.get_shape().as_list()
batch_size = shape[0]
height = shape[1]
width = shape[2]
channels = shape[3]
if channels % 4 != 0:
raise ValueError("Number of channels not divisible by 4.")
res = tf.reshape(input_, [batch_size, height, width, channels // 4, 2, 2])
res = tf.transpose(res, [0, 1, 4, 2, 5, 3])
res = tf.reshape(res, [batch_size, 2 * height, 2 * width, channels // 4])
return res
# batch norm
def batch_norm(input_,
dim,
name,
scale=True,
train=True,
epsilon=1e-8,
decay=.1,
|
tensorflow.reshape
| 10,238 |
import tensorflow as tf
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
|
tensorflow.train.Scaffold
| 10,239 |
import tensorflow as tf
#print(np.shape(up1))
up2 = common_deconv2d(up1,self.gf*4,name='up2') # 16x16 -> 32x32
up3 = common_deconv2d(up2,self.gf*2,name='up3') # 32x32 -> 64x64
up4 = common_deconv2d(up3,self.gf,name='up4') # 64x64 -> 128x128
out_img = tf.contrib.layers.conv2d_transpose(up4,self.channels,kernel_size=4,stride=2,padding='SAME',activation_fn=tf.nn.tanh) # 128x128 -> 256x256
#print('out_img',(np.shape(out_img)))
return out_img
def build_discriminator(self,image,reuse=False,name='discriminator'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
def lrelu(x, alpha,name='lrelu'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
|
tensorflow.variable_scope
| 10,240 |
import tensorflow as tf
offset_width: a scalar tensor indicating the width offset.
crop_height: the height of the cropped image.
crop_width: the width of the cropped image.
Returns:
the cropped (and resized) image.
Raises:
InvalidArgumentError: if the rank is not 3 or if the image dimensions are
less than the crop size.
"""
original_shape = tf.shape(image)
rank_assertion = tf.Assert(
tf.equal(tf.rank(image), 3),
['Rank of image must be equal to 3.'])
cropped_shape = control_flow_ops.with_dependencies(
[rank_assertion],
tf.pack([crop_height, crop_width, original_shape[2]]))
size_assertion = tf.Assert(
tf.logical_and(
|
tensorflow.shape
| 10,241 |
import tensorflow as tf
'image_size': dataset.image_size,
'K': dataset.classes,
'norm_mean': norm_mean,
'norm_std': norm_std
}
return (images, classes, train_params)
def _build_model(self, **knobs):
use_dynamic_arch = knobs['downscale']
# Create graph
graph = tf.Graph()
with graph.as_default():
# Define input placeholders to graph
ph = self._make_placeholders()
# Use fixed archs if specified, otherwise use placeholders'
(normal_arch, reduction_arch) = self._get_fixed_cell_archs(**knobs)
normal_arch = normal_arch if not use_dynamic_arch else ph.normal_arch
reduction_arch = reduction_arch if not use_dynamic_arch else ph.reduction_arch
# Initialize steps variable
|
tensorflow.Graph
| 10,242 |
import tensorflow as tf
k_h=3,k_w=3,stddev=0.02) :
assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size'
with tf.variable_scope(name) :
self.w = tf.get_variable('w', [k_h, k_w, input_dim, output_dim],
initializer=tf.random_normal_initializer(stddev=stddev))
self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0))
self.padding = [ [0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0] ]
|
tensorflow.random_normal_initializer
| 10,243 |
import tensorflow as tf
@registry.register_model
class FeedForwardCnnSmallCategoricalPolicy(PolicyBase):
"""Small cnn network with categorical output."""
def body(self, features):
observations = features["inputs_raw"]
# Axis 0 - Batch.
# Axis 1 - Input Frames, 4 frames.
# Axis 2, 3 - Height & Width.
# Axis 4 - Channels RGB, 3 colours.
x = tf.transpose(observations, [0, 2, 3, 1, 4])
x_shape = common_layers.shape_list(x)
x = tf.reshape(x, x_shape[:-2] + [-1])
dropout = getattr(self.hparams, "dropout_ppo", 0.0)
with tf.variable_scope("feed_forward_cnn_small"):
x = tf.cast(x, tf.float32) / 255.0
x = tf.layers.conv2d(x, 32, (5, 5), strides=(2, 2),
activation=tf.nn.relu, padding="same")
x = tf.layers.conv2d(x, 32, (5, 5), strides=(2, 2),
activation=tf.nn.relu, padding="same")
flat_x = tf.layers.flatten(x)
if self.use_epochs:
epoch = features["epoch"] + tf.zeros([x_shape[0]], dtype=tf.int32)
# Randomly set epoch to 0 in some cases as that's the inference value.
rand = tf.random.uniform([x_shape[0]])
|
tensorflow.reshape
| 10,244 |
import tensorflow as tf
h5f.close()
if len(timestamps_batch) > 0:
yield np.array(data_batch), np.array(timestamps_batch), np.array(label_batch)
def cnn_bi_lstm_model(x, amp_factor, bil_lstm_win_size, num_classes):
logits = cnn_model(x, amp_factor=amp_factor)
logits = tf.reshape(logits, [-1, bil_lstm_win_size, 256*amp_factor])
forward_cell = tf.nn.rnn_cell.LSTMCell(128)
backward_cell = tf.nn.rnn_cell.LSTMCell(128)
encoder_outputs,_ = tf.nn.bidirectional_dynamic_rnn(
forward_cell,
backward_cell,
logits,
dtype=tf.float32
)
encoder_outputs = tf.concat(encoder_outputs, axis=2)
logits = tf.reshape(tf.layers.dense(encoder_outputs, units=num_classes), [-1, bil_lstm_win_size, num_classes])
return logits
|
tensorflow.nn.rnn_cell.LSTMCell
| 10,245 |
import tensorflow as tf
return dataset
@gin.configurable(module='trax.data', denylist=['dataset', 'training'])
def wmt_concat_preprocess(dataset, training, max_length=-1, max_eval_length=-1):
"""Preprocessing for WMT: filter exceeding maximum length and concatenate."""
dataset = wmt_preprocess(dataset, training, max_length, max_eval_length)
def concat_and_add_mask(features, targets):
inp = features['inputs']
pad = tf.expand_dims(tf.zeros_like(inp[0]), axis=0)
concat = tf.concat([inp, pad, targets], axis=0)
mask = tf.concat([tf.zeros_like(inp), pad, tf.ones_like(targets)], axis=0)
features['inputs'] = concat
features['mask'] = mask
return features, concat
dataset = dataset.map(concat_and_add_mask)
return dataset
@gin.configurable(module='trax.data', denylist=['dataset', 'training'])
|
tensorflow.concat
| 10,246 |
import tensorflow as tf
for k, v in six.iteritems(features):
v = tf.convert_to_tensor(v)
v_shape = common_layers.shape_list(v)
if not v_shape:
v = tf.expand_dims(v, axis=-1)
v_shape = [1]
if v_shape == [1]:
v = tf.tile(v, [self._num_datashards])
sharded_features[k] = self._data_parallelism(tf.identity,
tf.split(
v, self._num_datashards,
0))
return sharded_features
|
tensorflow.tile
| 10,247 |
from tensorflow.contrib.eager.python.examples.spinn import data
inference_sentences=("( foo ( bar . ) )", None))
with self.assertRaises(ValueError):
spinn.train_or_infer_spinn(embed, word2index, None, None, None, config)
def testTrainSpinn(self):
"""Test with fake toy SNLI data and GloVe vectors."""
# 1. Create and load a fake SNLI data file and a fake GloVe embedding file.
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
fake_train_file = self._create_test_data(snli_1_0_dir)
vocab = data.load_vocabulary(self._temp_data_dir)
word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab)
train_data = data.SnliData(fake_train_file, word2index)
dev_data = data.SnliData(fake_train_file, word2index)
test_data = data.SnliData(fake_train_file, word2index)
# 2. Create a fake config.
config = _test_spinn_config(
data.WORD_VECTOR_LEN, 4,
logdir=os.path.join(self._temp_data_dir, "logdir"))
# 3. Test training of a SPINN model.
trainer = spinn.train_or_infer_spinn(
embed, word2index, train_data, dev_data, test_data, config)
# 4. Load train loss values from the summary files and verify that they
# decrease with training.
summary_file = glob.glob(os.path.join(config.logdir, "events.out.*"))[0]
|
tensorflow.contrib.eager.python.examples.spinn.data.SnliData
| 10,248 |
import tensorflow as tf
# this creates an operation to add to all trainable variables a white noise of param
# std = tf.sqrt(variance)/10
def create_random_update_op(self):
vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
update_opts = []
for var in vars:
_, variance = tf.nn.moments(tf.reshape(var,[-1]),axes=[0])
normal = tf.distributions.Normal(loc=0.0, scale=tf.sqrt(variance)/10)
white_noise = normal.sample(var.get_shape())
update_opts.append(var.assign(var + white_noise))
self.random_update_op = tf.group(update_opts)
#apply clipping
|
tensorflow.reshape
| 10,249 |
import tensorflow as tf
stn = (LinearWrap(image)
.AvgPooling('downsample', 2)
.Conv2D('conv0', 20, 5, padding='VALID')
.MaxPooling('pool0', 2)
.Conv2D('conv1', 20, 5, padding='VALID')
.FullyConnected('fc1', out_dim=32)
.FullyConnected('fct', out_dim=6, nl=tf.identity,
W_init=tf.constant_initializer(),
b_init=tf.constant_initializer([1, 0, HALF_DIFF, 0, 1, HALF_DIFF]))())
# output 6 parameters for affine transformation
stn = tf.reshape(stn, [-1, 2, 3], name='affine') # bx2x3
stn = tf.reshape(tf.transpose(stn, [2, 0, 1]), [3, -1]) # 3 x (bx2)
coor = tf.reshape(tf.matmul(xys, stn),
[WARP_TARGET_SIZE, WARP_TARGET_SIZE, -1, 2])
coor = tf.transpose(coor, [2, 0, 1, 3], 'sampled_coords') # b h w 2
sampled = ImageSample('warp', [image, coor], borderMode='constant')
return sampled
with argscope([Conv2D, FullyConnected], nl=tf.nn.relu):
with tf.variable_scope('STN1'):
sampled1 = get_stn(image)
with tf.variable_scope('STN2'):
sampled2 = get_stn(image)
# For visualization in tensorboard
with tf.name_scope('visualization'):
padded1 = tf.pad(sampled1, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
padded2 = tf.pad(sampled2, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
|
tensorflow.transpose
| 10,250 |
import tensorflow as tf
eval_steps = FLAGS.num_eval_images // FLAGS.eval_batch_size
iterations_per_loop = (eval_steps if FLAGS.mode == 'eval'
else FLAGS.iterations_per_loop)
save_checkpoints_steps = FLAGS.save_checkpoints_steps or iterations_per_loop
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=FLAGS.model_dir,
save_checkpoints_steps=save_checkpoints_steps,
keep_checkpoint_max=None,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=iterations_per_loop,
num_shards=FLAGS.num_shards,
per_host_input_for_training=tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
))
return run_config
def build_image_serving_input_receiver_fn(shape,
dtype=tf.float32):
|
tensorflow.contrib.tpu.TPUConfig
| 10,251 |
import tensorflow as tf
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(label_ids.shape[0], dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, probabilities) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
num_labels, use_one_hot_embeddings)
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
|
tensorflow.trainable_variables
| 10,252 |
import tensorflow as tf
y_net = net(x)
if use_pretrained or pretrained_model_file_path:
from .tensorflowcv.model_provider import init_variables_from_state_dict
with tf.Session() as sess:
from .tensorflowcv.model_provider import load_state_dict
if pretrained_model_file_path:
init_variables_from_state_dict(
|
tensorflow.Session
| 10,253 |
import tensorflow as tf
eKuf = tf.transpose(expectation(pXnew, (kern, feat))) # M x N (psi1)
if Luu is None:
Kuu = feat.Kuu(kern, jitter=settings.numerics.jitter_level) # M x M
Luu = tf.cholesky(Kuu) # M x M
if not white:
q_mu = tf.matrix_triangular_solve(Luu, q_mu, lower=True)
Luu_tiled = tf.tile(Luu[None, :, :], [num_func, 1, 1]) # remove line once issue 216 is fixed
q_sqrt_r = tf.matrix_triangular_solve(Luu_tiled, q_sqrt_r, lower=True)
Li_eKuf = tf.matrix_triangular_solve(Luu, eKuf, lower=True) # M x N
fmean = tf.matmul(Li_eKuf, q_mu, transpose_a=True)
eKff = expectation(pXnew, kern) # N (psi0)
eKuffu = expectation(pXnew, (kern, feat), (kern, feat)) # N x M x M (psi2)
Luu_tiled = tf.tile(Luu[None, :, :], [num_data, 1, 1]) # remove this line, once issue 216 is fixed
Li_eKuffu = tf.matrix_triangular_solve(Luu_tiled, eKuffu, lower=True)
Li_eKuffu_Lit = tf.matrix_triangular_solve(Luu_tiled, tf.matrix_transpose(Li_eKuffu), lower=True) # N x M x M
cov = tf.matmul(q_sqrt_r, q_sqrt_r, transpose_b=True) # D x M x M
if mean_function is None or isinstance(mean_function, mean_functions.Zero):
e_related_to_mean = tf.zeros((num_data, num_func, num_func), dtype=settings.float_type)
else:
|
tensorflow.matmul
| 10,254 |
import tensorflow as tf
# [batch, 1, 1]
y = tf.matmul(hidden, w_final_reshaped) + b_final_reshaped
|
tensorflow.matmul
| 10,255 |
import tensorflow as tf
def conv(self, id, input, channels, size=3, stride=1, use_bias=True, padding="SAME", init_stddev=-1.0, dilation=1):
assert padding in ["SAME", "VALID", "REFLECT", "PARTIAL"], 'valid paddings: "SAME", "VALID", "REFLECT", "PARTIAL"'
if type(size) == int: size = [size, size]
if init_stddev <= 0.0:
init = tf.contrib.layers.variance_scaling_initializer(dtype=tf.float32)
else:
init = tf.truncated_normal_initializer(stddev=init_stddev)
if padding == "PARTIAL":
with tf.variable_scope('mask'):
_, h, w, _ = input.get_shape().as_list()
slide_window = size[0] * size[1]
mask = tf.ones(shape=[1, h, w, 1])
update_mask = tf.layers.conv2d(mask, filters=1, dilation_rate=(dilation, dilation), name='mask' + id,
kernel_size=size, kernel_initializer=tf.constant_initializer(1.0),
strides=stride, padding="SAME", use_bias=False, trainable=False)
mask_ratio = slide_window / (update_mask + 1e-8)
update_mask = tf.clip_by_value(update_mask, 0.0, 1.0)
mask_ratio = mask_ratio * update_mask
|
tensorflow.variable_scope
| 10,256 |
import tensorflow as tf
input_image = np.concatenate([image, mask], axis=2)
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
input_image = tf.constant(input_image, dtype=tf.float32)
output = model.build_server_graph(FLAGS, input_image)
output = (output + 1.) * 127.5
|
tensorflow.Session
| 10,257 |
import tensorflow as tf
def get_predictions_and_loss(self, tokens, context_word_emb, head_word_emb, lm_emb, char_index, text_len, speaker_ids, genre, is_training, gold_starts, gold_ends, cluster_ids):
self.dropout = self.get_dropout(self.config["dropout_rate"], is_training)
self.lexical_dropout = self.get_dropout(self.config["lexical_dropout_rate"], is_training)
self.lstm_dropout = self.get_dropout(self.config["lstm_dropout_rate"], is_training)
num_sentences = tf.shape(context_word_emb)[0]
max_sentence_length = tf.shape(context_word_emb)[1]
context_emb_list = [context_word_emb]
head_emb_list = [head_word_emb]
if self.config["char_embedding_size"] > 0:
char_emb = tf.gather(tf.get_variable("char_embeddings", [len(self.char_dict), self.config["char_embedding_size"]]), char_index) # [num_sentences, max_sentence_length, max_word_length, emb]
|
tensorflow.shape
| 10,258 |
import tensorflow as tf
# to all be the same size along the batch dimension.
for elem_shape in elem_shapes:
if (not elem_shape or not elem_shape[0]
or elem_shape[0] != elem_shapes[0][0]):
return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop)
arg_tuples = zip(*[tf.unstack(elem) for elem in elems])
outputs = [fn(arg_tuple) for arg_tuple in arg_tuples]
else:
if not isinstance(elems, tf.Tensor):
raise ValueError('`elems` must be a Tensor or list of Tensors.')
|
tensorflow.unstack
| 10,259 |
import tensorflow as tf
inputs.append(inputs_)
encoder_inputs_ = tf.concat(inputs, axis=2)
# if encoder.convolution_activation.lower() == 'relu':
encoder_inputs_ = tf.nn.relu(encoder_inputs_)
if encoder.maxout_stride:
if encoder.binary:
raise NotImplementedError
stride = encoder.maxout_stride
k = tf.to_int32(tf.ceil(time_steps / stride) * stride) - time_steps # TODO: simpler
pad = tf.zeros([batch_size, k, tf.shape(encoder_inputs_)[2]])
encoder_inputs_ = tf.concat([encoder_inputs_, pad], axis=1)
encoder_inputs_ = tf.nn.pool(encoder_inputs_, window_shape=[stride], pooling_type='MAX',
padding='VALID', strides=[stride])
encoder_input_length_ = tf.to_int32(tf.ceil(encoder_input_length_ / stride))
if encoder.highway_layers:
x = encoder_inputs_
for j in range(encoder.highway_layers):
size = x.shape[2].value
with tf.variable_scope('highway_{}'.format(j + 1)):
|
tensorflow.shape
| 10,260 |
import tensorflow as tf
top_antecedent_scores = top_fast_antecedent_scores + self.get_slow_antecedent_scores(top_span_emb, top_antecedents, top_antecedent_emb, top_antecedent_offsets, top_span_speaker_ids, genre_emb) # [k, c]
top_antecedent_weights = tf.nn.softmax(tf.concat([dummy_scores, top_antecedent_scores], 1)) # [k, c + 1]
top_antecedent_emb = tf.concat([tf.expand_dims(top_span_emb, 1), top_antecedent_emb], 1) # [k, c + 1, emb]
attended_span_emb = tf.reduce_sum(tf.expand_dims(top_antecedent_weights, 2) * top_antecedent_emb, 1) # [k, emb]
with tf.variable_scope("f"):
f = tf.sigmoid(util.projection(tf.concat([top_span_emb, attended_span_emb], 1), util.shape(top_span_emb, -1))) # [k, emb]
top_span_emb = f * attended_span_emb + (1 - f) * top_span_emb # [k, emb]
top_antecedent_scores = tf.concat([dummy_scores, top_antecedent_scores], 1) # [k, c + 1]
top_antecedent_cluster_ids = tf.gather(top_span_cluster_ids, top_antecedents) # [k, c]
top_antecedent_cluster_ids += tf.to_int32(tf.log(tf.to_float(top_antecedents_mask))) # [k, c]
same_cluster_indicator = tf.equal(top_antecedent_cluster_ids, tf.expand_dims(top_span_cluster_ids, 1)) # [k, c]
non_dummy_indicator = tf.expand_dims(top_span_cluster_ids > 0, 1) # [k, 1]
pairwise_labels = tf.logical_and(same_cluster_indicator, non_dummy_indicator) # [k, c]
dummy_labels = tf.logical_not(tf.reduce_any(pairwise_labels, 1, keepdims=True)) # [k, 1]
top_antecedent_labels = tf.concat([dummy_labels, pairwise_labels], 1) # [k, c + 1]
loss = self.softmax_loss(top_antecedent_scores, top_antecedent_labels) # [k]
loss = tf.reduce_sum(loss) # []
return [candidate_starts, candidate_ends, candidate_mention_scores, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores], loss
def get_span_emb(self, head_emb, context_outputs, span_starts, span_ends):
span_emb_list = []
span_start_emb = tf.gather(context_outputs, span_starts) # [k, emb]
span_emb_list.append(span_start_emb)
|
tensorflow.logical_and
| 10,261 |
import tensorflow as tf
# ul_u_eval_train = random_sphere(ul_images_eval_train.shape)
# ul_u_eval_test = random_sphere(images_eval_test.shape)
ul_u = placeholder_like(ul_images, "ul_u")
ul_u_eval_train = placeholder_like(ul_images_eval_train, "ul_u_eval_train")
ul_u_eval_test = placeholder_like(images_eval_test, "ul_u_eval_test")
with tf.device(FLAGS.device):
lr = tf.placeholder(tf.float32, shape=[], name="learning_rate")
mom = tf.placeholder(tf.float32, shape=[], name="momentum")
with tf.variable_scope("CNN") as scope:
# Build training graph
loss, train_op, global_step, ul_u_updated = build_training_graph(
images, labels, ul_images, ul_u, lr, mom)
scope.reuse_variables()
|
tensorflow.placeholder
| 10,262 |
import tensorflow as tf
data_items_to_decoders = {
"inputs": tf.contrib.slim.tfexample_decoder.Tensor("inputs"),
"targets": tf.contrib.slim.tfexample_decoder.Tensor("dist_targets"),
}
|
tensorflow.contrib.slim.tfexample_decoder.Tensor
| 10,263 |
import tensorflow as tf
else:
bottom = out # l (not l + 1) because from previous layer
W = weight_variable([1, FLAGS.conv_kernel, FLAGS.conv_kernel, FLAGS.feats_per_layer, FLAGS.feats_per_layer])
b = bias_variable([FLAGS.feats_per_layer])
Wx_b = tf.nn.conv3d(bottom, W, strides=[1,1,1,1,1], padding='VALID') + b
out = tf.nn.relu(Wx_b)
shape = out.get_shape()
print('conv{}'.format(l+1))
print('\t{} --> {}'.format(bottom.name, out.name))
print('\t{} --> {}'.format(bottom.get_shape(), out.get_shape()))
with tf.variable_scope('pool'):
bottom = out
if l == num_layers - 1 and FLAGS.total_pool:
kernel_size = bottom.get_shape()[2]
out = tf.nn.max_pool3d(bottom, ksize=[1,1, kernel_size, kernel_size,1], strides=[1,1,1,1,1], padding='VALID')
else:
out = tf.nn.max_pool3d(bottom, ksize=[1,1, FLAGS.pool_kernel, FLAGS.pool_kernel,1], strides=[1,1,FLAGS.pool_stride,FLAGS.pool_stride,1], padding='VALID')
shape = out.get_shape()
print('pool{}'.format(l + 1))
print('\t{} --> {}'.format(bottom.name, out.name))
print('\t{} --> {}'.format(bottom.get_shape(), out.get_shape()))
with tf.variable_scope('scale'):
bottom = out
if FLAGS.pm[l + 1] == FLAGS.pm[l]:
kernel_size = 1 # useless 1x1 pooling
elif int(FLAGS.pm[l + 1]) < int(FLAGS.pm[l]):
num_scales_prev = int(FLAGS.pm[l])
num_scales_current = int(FLAGS.pm[l + 1])
kernel_size = (num_scales_prev - num_scales_current) + 1
|
tensorflow.nn.max_pool3d
| 10,264 |
import tensorflow as tf
out = tf.reshape(out, [self.out_modes[i], -1])
out = tf.transpose(out, [1, 0])
out = tf.reshape(out, [-1, np.prod(self.out_modes)])
# self.image_max_size = max(self.image_max_size, np.prod([val.value for val in out.get_shape()[1:]]))
if self.use_bias:
out = tf.add(out, self.bias, name='out')
if self.activation is not None:
out = self.activation(out)
return out
|
tensorflow.add
| 10,265 |
import tensorflow as tf
if not no_moving_average:
moving_mean = self._make_var('moving_mean', (in_ch,), trainable=False, init_constant=0)
moving_variance = self._make_var('moving_variance', (in_ch,), trainable=False, init_constant=1)
if is_train:
# For training, do batch norm with batch mean & variance
# Update moving averages if training
(X, mean, variance) = tf.nn.fused_batch_norm(X, scale, offset, epsilon=epsilon, is_training=True)
update_mean = moving_averages.assign_moving_average(moving_mean, mean, decay)
update_variance = moving_averages.assign_moving_average(moving_variance, variance, decay)
with tf.control_dependencies([update_mean, update_variance]):
X = tf.identity(X)
else:
# For prediction, do batch norm with computed moving mean & variance from training
# Don't update moving averages if predicting
(X, _, _) = tf.nn.fused_batch_norm(X, scale, offset, mean=moving_mean, variance=moving_variance,
epsilon=epsilon, is_training=False)
else:
(X, _, _) = tf.nn.fused_batch_norm(X, scale, offset, epsilon=epsilon, is_training=True)
return X
|
tensorflow.identity
| 10,266 |
import tensorflow as tf
self.updates = tf.group(denoise_updates, ranker_updates)
def DenoisingNet(self, list_size, forward_only=False, scope=None):
with tf.variable_scope(scope or "denoising_model"):
# If we are in testing, do not compute propensity
if forward_only:
return tf.ones_like(self.output)#, tf.ones_like(self.output)
input_vec_size = list_size*4
def propensity_network(input_data, index):
reuse = None if index < 1 else True
propensity_initializer = tf.constant_initializer(0.001) if self.hparams.constant_propensity_initialization else None
with tf.variable_scope("propensity_network", initializer=propensity_initializer,
reuse=reuse):
output_data = input_data
current_size = input_vec_size
output_sizes = [
int((list_size+1)/2) + 1,
int((list_size+1)/4) + 1,
1
]
for i in range(len(output_sizes)):
expand_W = tf.get_variable("W_%d" % i, [current_size, output_sizes[i]])
expand_b = tf.get_variable("b_%d" % i, [output_sizes[i]])
output_data = tf.nn.bias_add(tf.matmul(output_data, expand_W), expand_b)
|
tensorflow.variable_scope
| 10,267 |
import tensorflow as tf
def init_bias(shape, name=None):
return safe_get(name, initializer=tf.zeros(shape, dtype=tf.float32))
|
tensorflow.zeros
| 10,268 |
from tensorflow.python.ops import math_ops
with variable_scope.variable_scope(name, 'mean', [values, weights]):
values = math_ops.to_float(values)
total = _create_local('total', shape=[])
count = _create_local('count', shape=[])
if weights is not None:
weights = math_ops.to_float(weights)
values = math_ops.mul(values, weights)
num_values = math_ops.reduce_sum(_broadcast_weights(weights, values))
else:
num_values = math_ops.to_float(array_ops.size(values))
total_compute_op = state_ops.assign_add(total, math_ops.reduce_sum(values))
count_compute_op = state_ops.assign_add(count, num_values)
mean = _safe_div(total, count, 'value')
with ops.control_dependencies([total_compute_op, count_compute_op]):
update_op = _safe_div(total, count, 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, mean)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
|
tensorflow.python.ops.math_ops.reduce_sum
| 10,269 |
import tensorflow as tf
" dtype=float64>")
# There's no notion of partially known shapes in eager mode, so exit
# early.
if tf.executing_eagerly():
return
mvn_dynamic = tfd.MultivariateNormalDiag(
|
tensorflow.executing_eagerly
| 10,270 |
from tensorflow.python.ops import array_ops
return math_ops.argmax(logits, 1)
# TODO(zakaria): use contrib losses.
def _mean_squared_loss(logits, target):
# To prevent broadcasting inside "-".
if len(target.get_shape()) == 1:
target = array_ops.expand_dims(target, dim=[1])
logits.get_shape().assert_is_compatible_with(target.get_shape())
return math_ops.square(logits - math_ops.to_float(target))
def _log_loss_with_two_classes(logits, target):
|
tensorflow.python.ops.array_ops.expand_dims
| 10,271 |
import tensorflow as tf
def _proposal_top_layer(self, rpn_cls_prob, rpn_bbox_pred, name):
with tf.variable_scope(name):
rois, rpn_scores = tf.py_func(proposal_top_layer,
[rpn_cls_prob, rpn_bbox_pred, self._im_info,
self._feat_stride, self._anchors, self._num_anchors],
[tf.float32, tf.float32])
rois.set_shape([cfg.FLAGS.rpn_top_n, 5])
rpn_scores.set_shape([cfg.FLAGS.rpn_top_n, 1])
return rois, rpn_scores
def _proposal_layer(self, rpn_cls_prob, rpn_bbox_pred, name):
with tf.variable_scope(name):
# 返回的rois中多加了一列0在第一列
rois, rpn_scores = tf.py_func(proposal_layer,
[rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode,
self._feat_stride, self._anchors, self._num_anchors],
[tf.float32, tf.float32])
rois.set_shape([None, 5])
rpn_scores.set_shape([None, 1])
return rois, rpn_scores
def _crop_pool_layer(self, bottom, rois, name):
with tf.variable_scope(name):
# tf.squeeze()返回一个张量,这个张量是将原始input中所有维度中为1的那些维都删掉的结果
batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1])
# Get the normalized coordinates of bboxes
|
tensorflow.py_func
| 10,272 |
import tensorflow as tf
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
|
tensorflow.logging.info
| 10,273 |
import tensorflow as tf
else:
assert tf.get_variable_scope().reuse is False
"""U-Net Generator"""
def lrelu(x, alpha,name='lrelu'):
with tf.variable_scope(name):
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def instance_norm(x,name='instance_norm'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
epsilon = 1e-5
mean, var = tf.nn.moments(x, [1, 2], keep_dims=True)
scale = tf.get_variable('scale',[x.get_shape()[-1]],
|
tensorflow.variable_scope
| 10,274 |
import tensorflow as tf
self.resolution,
self.resolution])
inter = tf.transpose(tf.reduce_max(inter, axis=a))
im = axs[fig_obj_count, mtype * 2 + 1].matshow(inter.numpy())
plt.colorbar(im, ax=axs[fig_obj_count, mtype * 2 + 1])
print(mtype, fig_obj_count, 1)
if mtype == 1:
values = sdf_values
inter = tf.reshape(values, [self.resolution,
self.resolution,
self.resolution])
inter = tf.transpose(tf.reduce_max(inter, axis=a))
im = axs[fig_obj_count, 4].matshow(inter.numpy())
plt.colorbar(im, ax=axs[fig_obj_count, 4])
print(mtype, fig_obj_count, 2)
fig_obj_count += 1
intersection = tf.reduce_sum(tf.math.sign(tf.nn.relu(sdf_values - 1)))
union = tf.reduce_sum(tf.math.sign(sdf_values))
iou = intersection / union
if not tf.math.is_nan(iou):
ious.append(iou)
status3 = False
|
tensorflow.reduce_max
| 10,275 |
import tensorflow as tf
int(maximum_lower_multiple(x // num_replicas_in_sync, 8) * num_replicas_in_sync)
for x in bucket_batch_sizes]
else:
bucket_batch_sizes = int(maximum_lower_multiple(
bucket_batch_sizes // num_replicas_in_sync, 8) * num_replicas_in_sync)
return dataset_utils.batch_examples_by_token(
dataset,
bucket_boundaries=bucket_boundaries,
bucket_batch_sizes=bucket_batch_sizes,
padding_values=padding_values,
example_length_func=lambda x: {"feature": tf.size(x["feature"]),
"label": tf.size(x["label"])},
extra_padded_shapes={"src_lang": [], "trg_lang": []}
)
def build_metric_layer(self):
return [SequenceTokenMetricLayer("src"), SequenceTokenMetricLayer("trg"),
BatchCountMetricLayer("src")]
def get_eval_metric(self, args, name="metric", ds=None):
""" Returns a neurst.metrics.metric.Metric object for evaluation."""
if ds is None or not hasattr(ds, "trg_lang") or ds.trg_lang is None:
|
tensorflow.size
| 10,276 |
import tensorflow as tf
beta_list.append(beta)
with tf.variable_scope('lstm', reuse=(t!=0)):
_, (c, h) = lstm_cell(inputs=tf.concat(axis=1, values=[x, context]), state=[c, h])
logits = self._decode_lstm(x, h, context, reuse=(t!=0))
sampled_word = tf.argmax(logits, 1)
sampled_word_list.append(sampled_word)
alphas = tf.transpose(tf.stack(alpha_list), (1, 0, 2)) # (N, T, L)
betas = tf.transpose(tf.squeeze(beta_list), (1, 0)) # (N, T)
sampled_captions = tf.transpose(tf.stack(sampled_word_list), (1, 0)) # (N, max_len)
return alphas, betas, sampled_captions
|
tensorflow.squeeze
| 10,277 |
import tensorflow as tf
with self.test_session():
# Creates a graph.
v0 = tf.Variable(10.0, name="v0")
var = tf.Variable(tf.constant(0, dtype=tf.int64))
count_up_to = var.count_up_to(3)
input_queue = tf.FIFOQueue(30, tf.float32, shared_name="collection_queue")
qr = tf.train.QueueRunner(input_queue, [count_up_to])
tf.initialize_all_variables()
# Creates a saver.
save = tf.train.Saver({"v0": v0})
# Adds a set of collections.
tf.add_to_collection("int_collection", 3)
tf.add_to_collection("float_collection", 3.5)
tf.add_to_collection("string_collection", "hello")
|
tensorflow.initialize_all_variables
| 10,278 |
import tensorflow as tf
top_span_starts = tf.gather(candidate_starts, top_span_indices) # [k]
top_span_ends = tf.gather(candidate_ends, top_span_indices) # [k]
top_span_emb = tf.gather(candidate_span_emb, top_span_indices) # [k, emb]
top_span_cluster_ids = tf.gather(candidate_cluster_ids, top_span_indices) # [k]
top_span_mention_scores = tf.gather(candidate_mention_scores, top_span_indices) # [k]
top_span_sentence_indices = tf.gather(candidate_sentence_indices, top_span_indices) # [k]
top_span_speaker_ids = tf.gather(speaker_ids, top_span_starts) # [k]
|
tensorflow.gather
| 10,279 |
import tensorflow as tf
with tf.Session() as sess:
with tf.device("/cpu:0"):
indices = tf.Variable(indices)
values = tf.Variable(values)
shape = tf.Variable(shape)
st = tf.SparseTensor(indices, values, shape)
st_handles = add_many_sparse_to_tensors_map(st)
|
tensorflow.Variable
| 10,280 |
import tensorflow as tf
from tensorflow.python.framework import ops
DEFAULT_BN_LAG = .0
def stable_var(input_, mean=None, axes=[0]):
"""Numerically more stable variance computation."""
if mean is None:
mean = tf.reduce_mean(input_, axes)
res = tf.square(input_ - mean)
max_sqr = tf.reduce_max(res, axes)
res /= max_sqr
res = tf.reduce_mean(res, axes)
res *= max_sqr
return res
def variable_on_cpu(name, shape, initializer, trainable=True):
"""Helper to create a Variable stored on CPU memory.
|
tensorflow.reduce_max
| 10,281 |
import tensorflow as tf
tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize
# gradients (in case of explosion)
return tf.summary.merge_all()
def add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss,
loss):
values = [
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_before_loss",
simple_value=before_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_after_loss",
simple_value=after_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/stop_token_loss",
simple_value=stop_token_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_loss", simple_value=loss),
]
if linear_loss is not None:
values.append(tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_linear_loss",
simple_value=linear_loss))
test_summary = tf.Summary(value=values)
|
tensorflow.Summary.Value
| 10,282 |
import tensorflow as tf
average_loss_per_example = tf.nn.seq2seq.sequence_loss_by_example(
|
tensorflow.nn.seq2seq.sequence_loss_by_example
| 10,283 |
import tensorflow as tf
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
|
tensorflow.logging.info
| 10,284 |
import tensorflow as tf
passage_word_idx, passage_mask, v, w_c, word_vocab)
vocab_scores = tf.log(output_t)
greedy_prediction = tf.reshape(tf.argmax(output_t, 1),[-1]) # calcualte greedy
multinomial_prediction = tf.reshape(tf.multinomial(vocab_scores, 1),[-1]) # calculate multinomial
|
tensorflow.argmax
| 10,285 |
import tensorflow as tf
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])
# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))),
reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.compat.v1.Session() as sess:
# Run the initializer
sess.run(init)
# Add the fault injection code here to instrument the graph
# We start injecting the fault right away here unlike earlier
fi = ti.TensorFI(sess, name="NearestNeighbor", logLevel=50)
# loop over test data
|
tensorflow.global_variables_initializer
| 10,286 |
import tensorflow as tf
def conv2d(input_, output_dim,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="conv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
# print("c", w.get_shape())
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
|
tensorflow.truncated_normal_initializer
| 10,287 |
import tensorflow as tf
all_layer_outputs = []
if input_width != hidden_size:
prev_output = dense_layer_2d(
input_tensor, hidden_size, create_initializer(initializer_range),
None, name="embedding_hidden_mapping_in")
else:
prev_output = input_tensor
with tf.variable_scope("transformer", reuse=tf.AUTO_REUSE):
for layer_idx in range(num_hidden_layers):
group_idx = int(layer_idx / num_hidden_layers * num_hidden_groups)
with tf.variable_scope("group_%d" % group_idx):
with tf.name_scope("layer_%d" % layer_idx):
layer_output = prev_output
for inner_group_idx in range(inner_group_num):
with tf.variable_scope("inner_group_%d" % inner_group_idx):
layer_output = attention_ffn_block(
layer_output, hidden_size, attention_mask,
num_attention_heads, attention_head_size,
attention_probs_dropout_prob, intermediate_size,
intermediate_act_fn, initializer_range, hidden_dropout_prob)
prev_output = layer_output
all_layer_outputs.append(layer_output)
if do_return_all_layers:
return all_layer_outputs
else:
return all_layer_outputs[-1]
|
tensorflow.variable_scope
| 10,288 |
import tensorflow as tf
average_across_timesteps=False,
average_across_batch=True)
self._cost = tf.reduce_sum(loss)
self._final_state = state
if not is_training:
return
self._lr = tf.Variable(0., trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.train.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name='new_learning_rate')
|
tensorflow.trainable_variables
| 10,289 |
import tensorflow as tf
import imageio
import argparse
def transform(image, resize_height=36, resize_width=64):
cropped_image = scipy.misc.imresize(image, [resize_height, resize_width])
return np.array(cropped_image)/127.5 - 1.
def inverse_transform(images):
return (images+1.)/2.
def lrelu(x, leak=0.2, name="lrelu"):
return tf.maximum(x, leak*x)
def conv2d(input_, output_dim,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="conv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
# print("c", w.get_shape())
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
|
tensorflow.maximum
| 10,290 |
import tensorflow as tf
"""
Build the custom CNN for the CIFAR-10 dataset.
"""
# The input data holders (cf. shapes after prepa)
self.X = tf.compat.v1.placeholder(tf.float32, shape = (None,
self.config.data["image_size"],
self.config.data["image_size"],
self.config.data["num_channels"]), name="X") # ex. (50000, 32, 32, 3)
self.y = tf.compat.v1.placeholder(tf.int32, shape = (None, self.config.data["num_categories"]), name="y") # ex. (50000, 10)
self.train = tf.compat.v1.placeholder(tf.bool)
# The CNN architecture = conv/poo layers + flatten layer + connected layers
with tf.name_scope("cnn"):
# a. Create convolution/pooling layers = conv + drop + pool + conv + drop + pool + conv + pool + conv + drop
self.conv1 = tf.layers.conv2d(self.X,
self.config.cifar10_cnn["num_filters"],
|
tensorflow.compat.v1.placeholder
| 10,291 |
import tensorflow as tf
output = tf.layers.conv1d(inputs, embed_size // 2, k, padding="SAME")
outputs = tf.concat((outputs, output), -1)
outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=is_training))
return outputs
class Model:
def __init__(self, num_layers, size_layers, learning_rate=1e-3, dropout=1.0):
self.X = tf.placeholder(tf.int32, (None, None))
self.training = tf.placeholder(tf.bool, None)
lookup_table = tf.get_variable(
"lookup_table",
dtype=tf.float32,
shape=[len(vocab), size_layers],
initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.01),
)
lookup_table = tf.concat((tf.zeros(shape=[1, size_layers]), lookup_table[1:, :]), 0)
forward = tf.nn.embedding_lookup(lookup_table, self.X)
self.Y = tf.placeholder(tf.float32, (None, None, n_mels * resampled))
self.decoder_inputs = tf.concat((tf.zeros_like(self.Y[:, :1, :]), self.Y[:, :-1, :]), 1)
self.decoder_inputs = self.decoder_inputs[:, :, -n_mels:]
self.Z = tf.placeholder(tf.float32, (None, None, fourier_window_size // 2 + 1))
batch_size = tf.shape(self.X)[0]
seq_lens = tf.count_nonzero(tf.reduce_sum(self.decoder_inputs, -1), 1, dtype=tf.int32) + 1
def cells(reuse=False):
return tf.contrib.rnn.DropoutWrapper(
|
tensorflow.truncated_normal_initializer
| 10,292 |
import tensorflow as tf
# Classification accuracy of encoder
correct_pred = tf.equal(tf.argmax(encoder_output_label_, 1), tf.argmax(y_input, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Autoencoder loss
autoencoder_loss = tf.reduce_mean(tf.square(x_target - decoder_output))
# Gaussian Discriminator Loss
dc_g_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_g_real), logits=d_g_real))
dc_g_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_g_fake), logits=d_g_fake))
dc_g_loss = dc_g_loss_fake + dc_g_loss_real
# Categorical Discrimminator Loss
dc_c_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_c_real), logits=d_c_real))
dc_c_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_c_fake), logits=d_c_fake))
|
tensorflow.ones_like
| 10,293 |
from tensorflow.python.ops import array_ops
# Shape of filled IDs is the same as `ids` with the last dim collapsed to 1.
ids_shape = array_ops.shape(ids, out_type=dtypes.int64)
ids_last_dim = array_ops.size(ids_shape) - 1
filled_selected_id_shape = math_ops.reduced_shape(
|
tensorflow.python.ops.array_ops.size
| 10,294 |
import tensorflow as tf
with tf.device(device):
total_loss = tf.reduce_mean(losses)
avg_grads = self.variable_mgr.get_gradients_to_apply(d, gradient_state)
gradient_clip = FLAGS.gradient_clip
learning_rate = self.model_conf.get_learning_rate()
if self.dataset and FLAGS.num_epochs_per_decay > 0:
num_batches_per_epoch = (
self.dataset.num_examples_per_epoch() / self.batch_size)
decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay)
# Decay the learning rate exponentially based on the number of steps.
learning_rate = tf.train.exponential_decay(
FLAGS.learning_rate, global_step,
decay_steps, FLAGS.learning_rate_decay_factor, staircase=True)
if gradient_clip is not None:
clipped_grads = [
(tf.clip_by_value(grad, -gradient_clip, +gradient_clip), var)
for grad, var in avg_grads
]
else:
clipped_grads = avg_grads
|
tensorflow.train.exponential_decay
| 10,295 |
import tensorflow as tf
print(f"Obs_phs space: {obs_phs}")
#assert 5 == 1
#######################
for var in tf.all_variables():
print(var)
batch_size = tf.shape(policy.obs_ph)[0]
n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
_act = tf_util.function(inputs=[policy.obs_ph, stochastic_ph, update_eps_ph],
outputs=output_actions,
|
tensorflow.stack
| 10,296 |
import tensorflow as tf
|
tensorflow.train.ExponentialMovingAverage
| 10,297 |
from tensorflow.python.framework import ops
return math_ops.select(
math_ops.greater(true_positives + false_positives, 0),
math_ops.div(true_positives, true_positives + false_positives),
0,
name)
precision = compute_precision('value')
with ops.control_dependencies([true_positives_update_op,
false_positives_update_op]):
update_op = compute_precision('update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, precision)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return precision, update_op
@deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask')
def streaming_recall(predictions, labels, ignore_mask=None, weights=None,
metrics_collections=None, updates_collections=None,
name=None):
|
tensorflow.python.framework.ops.add_to_collections
| 10,298 |
import tensorflow as tf
biases = tf.Variable(tf.zeros([32]),
name="biases")
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope("softmax_linear"):
weights = tf.Variable(
tf.truncated_normal([32, 10],
stddev=1.0 / math.sqrt(float(32))),
name="weights")
biases = tf.Variable(tf.zeros([10]),
name="biases")
logits = tf.matmul(hidden2, weights) + biases
tf.add_to_collection("logits", logits)
# Runs to logit.
tf.initialize_all_variables().run()
sess.run(logits)
# Creates a saver.
saver0 = tf.train.Saver()
saver0.save(sess, saver0_ckpt)
# Generates MetaGraphDef.
saver0.export_meta_graph(filename)
|
tensorflow.matmul
| 10,299 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.