seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
with self.assertRaisesOpError("not in the support"):
x = tf.placeholder_with_default(input=[2., 2., 5.], shape=[3])
log_prob = pareto.log_prob(x)
|
tensorflow.placeholder_with_default
| 10,300 |
import tensorflow as tf
float32.
Raises:
TypeError: If the type of `x` is not supported.
"""
with tf.compat.v1.name_scope(name, 'tukey_location'):
return _tukey_parameters(x, reduce_instance_dims, output_dtype)[0]
@common.log_api_use(common.ANALYZER_COLLECTION)
|
tensorflow.compat.v1.name_scope
| 10,301 |
import tensorflow as tf
full_video, time_axis=1)
latent = common_video.get_gaussian_tensor(latent_mean, latent_std)
latent = tf.layers.flatten(latent)
latent = tf.expand_dims(latent, axis=1)
latent = tf.expand_dims(latent, axis=1)
latent_mask = tf.layers.dense(latent, filters, name="latent_mask")
|
tensorflow.expand_dims
| 10,302 |
from tensorflow.python.framework import function
def testGraphExtension(self):
self._testGraphExtensionSave()
self._testGraphExtensionRestore()
def testStrippedOpListDef(self):
with self.test_session():
# Creates a graph.
v0 = tf.Variable(0.0)
var = tf.Variable(10.0)
tf.add(v0, var)
@function.Defun(x=tf.float32)
def minus_one(x):
return x - 1
minus_one(tf.identity(v0))
save = tf.train.Saver({"v0": v0})
tf.initialize_all_variables()
# Generates MetaGraphDef.
meta_graph_def = save.export_meta_graph()
ops = [o.name for o in meta_graph_def.meta_info_def.stripped_op_list.op]
|
tensorflow.python.framework.function.Defun
| 10,303 |
import tensorflow as tf
with tf.variable_scope('decoder_{}'.format(decoder.name)):
initial_context, _ = look(0, initial_output, initial_input, pos=initial_pos, prev_weights=initial_weights,
context=zero_context)
initial_data = tf.concat([initial_state, initial_context, tf.expand_dims(initial_pos, axis=1), initial_weights],
axis=1)
context_size = initial_context.shape[1].value
def get_logits(state, ids, time): # for beam-search decoding
with tf.variable_scope('decoder_{}'.format(decoder.name)):
state, context, pos, prev_weights = tf.split(state, [cell_state_size, context_size, 1, -1], axis=1)
input_ = embed(ids)
pos = tf.squeeze(pos, axis=1)
pos = tf.cond(tf.equal(time, 0),
lambda: pos,
lambda: update_pos(pos, ids, encoder_input_length[align_encoder_id]))
if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state:
|
tensorflow.split
| 10,304 |
import tensorflow as tf
result_dict['iou_mean'] = iou_mean
result_dict['iou_min'] = iou_min
elif isinstance(metric, CollisionMetric):
labeled_sdfs = detections['groundtruth_sdfs']
labeled_classes = tf.cast(sample['groundtruth_valid_classes'], tf.int64)
labeled_poses = (sample['rotations_3d'],
sample['translations_3d'],
sample['sizes_3d'])
|
tensorflow.cast
| 10,305 |
import tensorflow as tf
output = f(tf.constant([[1, 3]]), tf.constant([2]))
tf.train.start_queue_runners()
start = datetime.datetime.now()
session.run(output)
duration = datetime.datetime.now() - start
# There should have been a timeout here because only one sample was added
# and the minimum batch size is 2.
self.assertLessEqual(.9, duration.total_seconds())
self.assertGreaterEqual(1.5, duration.total_seconds())
outputs = [
f(tf.constant([[1, 3]]), tf.constant([2])),
f(tf.constant([[1, 3]]), tf.constant([2]))
]
start = datetime.datetime.now()
(_, batch_size), _ = session.run(outputs)
duration = datetime.datetime.now() - start
# The outputs should be executed immediately because two samples are
# added.
self.assertGreaterEqual(.5, duration.total_seconds())
self.assertEqual(2, batch_size)
def test_maximum_batch_size(self):
with self.test_session() as session:
@dynamic_batching.batch_fn_with_options(maximum_batch_size=2)
|
tensorflow.constant
| 10,306 |
import tensorflow as tf
@staticmethod
def layergn(inputdata, name, group_size=32, esp=1e-5):
"""
:param inputdata:
:param name:
:param group_size:
:param esp:
:return:
"""
with tf.variable_scope(name):
inputdata = tf.transpose(inputdata, [0, 3, 1, 2])
n, c, h, w = inputdata.get_shape().as_list()
group_size = min(group_size, c)
inputdata = tf.reshape(inputdata, [-1, group_size, c // group_size, h, w])
mean, var = tf.nn.moments(inputdata, [2, 3, 4], keep_dims=True)
inputdata = (inputdata - mean) / tf.sqrt(var + esp)
# 每个通道的gamma和beta
gamma = tf.Variable(tf.constant(1.0, shape=[c]), dtype=tf.float32, name='gamma')
beta = tf.Variable(tf.constant(0.0, shape=[c]), dtype=tf.float32, name='beta')
gamma = tf.reshape(gamma, [1, c, 1, 1])
beta = tf.reshape(beta, [1, c, 1, 1])
# 根据论文进行转换 [n, c, h, w, c] 到 [n, h, w, c]
output = tf.reshape(inputdata, [-1, c, h, w])
output = output * gamma + beta
output = tf.transpose(output, [0, 2, 3, 1])
|
tensorflow.reshape
| 10,307 |
import tensorflow as tf
if use_bias:
bias = tf.get_variable("bias" + id, [channels], initializer=tf.constant_initializer(0.0))
x = tf.nn.bias_add(x, bias)
return x * update_mask
if padding == "REFLECT":
assert size[0] % 2 == 1 and size[1] % 2 == 1, "REFLECTION PAD ONLY WORKING FOR ODD FILTER SIZE.. " + str(size)
pad_x = size[0] // 2
pad_y = size[1] // 2
input = tf.pad(input, [[0, 0], [pad_x, pad_x], [pad_y, pad_y], [0, 0]], "REFLECT")
padding = "VALID"
return tf.layers.conv2d(input, channels, kernel_size=size, strides=[stride, stride],
padding=padding, kernel_initializer=init, name='conv' + id,
use_bias=use_bias, dilation_rate=(dilation, dilation))
def z_conv(self, id, input, channels, size, stride=1, padding="SAME", use_bias=False, dilation=1):
# zero mean conv
|
tensorflow.pad
| 10,308 |
import tensorflow as tf
with tf.variable_scope(name):
beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.))
gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02))
pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False)
|
tensorflow.random_normal_initializer
| 10,309 |
from tensorflow.python.ops import gen_nn_ops
logits: Unscaled log probabilities.
labels: Each entry `labels[i]` must be an index in `[0, num_classes)`.
name: A name for the operation (optional).
Returns:
A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the
softmax cross entropy loss.
"""
# The second output tensor contains the gradients. We use it in
# _CrossEntropyGrad() in nn_grad but not here.
cost, unused_backprop = gen_nn_ops._sparse_softmax_cross_entropy_with_logits(
logits, labels, name=name)
return cost
@ops.RegisterShape("SparseSoftmaxCrossEntropyWithLogits")
def _SparseSoftmaxCrossEntropyWithLogitsShape(op):
"""Shape function for SparseSoftmaxCrossEntropyWithLogits op."""
logits_shape = op.inputs[0].get_shape()
input_shape = logits_shape.with_rank(2)
|
tensorflow.python.ops.gen_nn_ops._sparse_softmax_cross_entropy_with_logits
| 10,310 |
import tensorflow as tf
test_true = tf.argmax(test_labels, 1)
valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum)
valid_inf=work.valid_inference(valid_image_batch)
valid_labels=tf.one_hot(valid_label_batch,classnum)
#train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
valid_pre = tf.reshape(valid_inf, [validnum, classnum])
valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1))
valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32))
valid_pre = tf.argmax(valid_pre, 1)
valid_true = tf.argmax(valid_labels, 1)
target_names = ['class sg', 'class bm', 'class wd', 'class wt', 'class wj', 'class wo', 'class ym', 'class shq', 'class shj',
'class no', 'class yh', 'class fb']
init = tf.initialize_all_variables()
config=tf.ConfigProto()
config.gpu_options.allow_growth=True
#init=tf.initialize_all_variables()
|
tensorflow.argmax
| 10,311 |
import tensorflow as tf
import numpy as np
import random
import TensorflowUtils as utils
import read_MITSceneParsingDataParis as scene_parsing
import datetime
import BatchDatsetReader as dataset
from six.moves import xrange
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer("batch_size", "50", "batch size for training")
tf.flags.DEFINE_string("logs_dir", "/scratch1/ram095/nips20/logs_mnist128/", "path to logs directory")
tf.flags.DEFINE_string("data_dir", "/scratch1/ram095/nips20/paris_street", "path to dataset")
tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer")
tf.flags.DEFINE_string("model_dir", "Model_zoo/", "Path to vgg model mat")
tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False")
tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize")
MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat'
MAX_ITERATION = int(1e5 + 1)
|
tensorflow.flags.DEFINE_string
| 10,312 |
import tensorflow as tf
dtype=tf.float32):
"""Returns a input_receiver_fn for raw images during serving."""
def _preprocess_image(encoded_image):
"""Preprocess a single raw image."""
image = tf.image.decode_image(encoded_image, channels=shape[-1])
image.set_shape(shape)
return tf.cast(image, dtype)
def serving_input_receiver_fn():
|
tensorflow.image.decode_image
| 10,313 |
import tensorflow as tf
self.load_size = 64
self.fine_size = 64
self.checkpoint_dir = 'checkpoint'
self.sample_dir = 'sample'
self.print_freq = 5
self.save_freq = 10
self.pool = ImagePool()
return None
def build_generator(self,image,reuse=False,name='generator'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
"""U-Net Generator"""
def lrelu(x, alpha,name='lrelu'):
with tf.variable_scope(name):
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def instance_norm(x,name='instance_norm'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
|
tensorflow.get_variable_scope
| 10,314 |
import tensorflow as tf
prev_x = layer_out
# output layers
layer_name = 'layer_last'
with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
weights = tf.get_variable('weights', [prev_node, output_node],
initializer=tf.truncated_normal_initializer(stddev=0.1))
|
tensorflow.variable_scope
| 10,315 |
import tensorflow as tf
if FLAGS.save_path:
print("Saving model to %s." % FLAGS.save_path)
sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step)
if __name__ == "__main__":
tf.app.run()
|
tensorflow.app.run
| 10,316 |
import tensorflow as tf
Returns:
a Tensor of timing signals [batch, seq_len, channels]
"""
num_timescales = channels // 2
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.to_float(num_timescales) - 1))
inv_timescales = min_timescale * tf.exp(
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = (
tf.expand_dims(tf.to_float(position), 2) * tf.expand_dims(
tf.expand_dims(inv_timescales, 0), 0))
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=2)
signal = tf.pad(signal, [[0, 0], [0, 0], [0, tf.mod(channels, 2)]])
return signal
def embedding_lookup(input_ids,
vocab_size,
embedding_size=128,
initializer_range=0.02,
word_embedding_name="word_embeddings",
use_one_hot_embeddings=False):
"""Looks up words embeddings for id tensor.
Args:
input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
|
tensorflow.mod
| 10,317 |
import tensorflow as tf
# Transform A x (x_t', y_t', 1, d_t)^T -> (x_s, y_s, z_s, 1).
t_g = tf.matmul(theta, grid)
z_s = tf.slice(t_g, [0, 0, 0], [-1, 1, -1])
y_s = tf.slice(t_g, [0, 1, 0], [-1, 1, -1])
x_s = tf.slice(t_g, [0, 2, 0], [-1, 1, -1])
z_s_flat = tf.reshape(z_s, [-1])
y_s_flat = tf.reshape(y_s, [-1])
x_s_flat = tf.reshape(x_s, [-1])
input_transformed = _interpolate(input_dim, x_s_flat, y_s_flat, z_s_flat,
out_size)
|
tensorflow.reshape
| 10,318 |
import tensorflow as tf
Optimization, use Gradient Descent as default
'''
with tf.name_scope('optimizer'):
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss, global_step=global_step)
|
tensorflow.train.GradientDescentOptimizer
| 10,319 |
from tensorflow.python.framework import ops
from tensorflow_metadata.proto.v0 import schema_pb2
def _get_tensor_value(tensor_or_eager_tensor: tf.Tensor) -> Any:
if ops.executing_eagerly_outside_functions():
return np.asarray(tensor_or_eager_tensor)
else:
with tf.compat.v1.Session():
|
tensorflow.python.framework.ops.executing_eagerly_outside_functions
| 10,320 |
import tensorflow as tf
with tf.variable_scope("Context_to_Query_Attention_Layer"):
# C = tf.tile(tf.expand_dims(c,2),[1,1,self.q_maxlen,1])
# Q = tf.tile(tf.expand_dims(q,1),[1,self.c_maxlen,1,1])
# S = trilinear([C, Q, C*Q], input_keep_prob = 1.0 - self.dropout)
S = optimized_trilinear_for_attention([c, q], self.c_maxlen, self.q_maxlen, input_keep_prob = 1.0 - self.dropout)
mask_q = tf.expand_dims(self.q_mask, 1)
S_ = tf.nn.softmax(mask_logits(S, mask = mask_q))
mask_c = tf.expand_dims(self.c_mask, 2)
S_T = tf.transpose(tf.nn.softmax(mask_logits(S, mask = mask_c), dim = 1),(0,2,1))
self.c2q = tf.matmul(S_, q)
self.q2c = tf.matmul(tf.matmul(S_, S_T), c)
attention_outputs = [c, self.c2q, c * self.c2q, c * self.q2c]
with tf.variable_scope("Model_Encoder_Layer"):
inputs = tf.concat(attention_outputs, axis = -1)
self.enc = [conv(inputs, d, name = "input_projection")]
for i in range(3):
if i % 2 == 0: # dropout every 2 blocks
self.enc[i] = tf.nn.dropout(self.enc[i], 1.0 - self.dropout)
|
tensorflow.matmul
| 10,321 |
import tensorflow as tf
# create localization and classification losses
losses = ssd.loss(labels, params)
tf.losses.add_loss(params['localization_loss_weight'] * losses['localization_loss'])
tf.losses.add_loss(params['classification_loss_weight'] * losses['classification_loss'])
|
tensorflow.losses.add_loss
| 10,322 |
import tensorflow as tf
truncated_words = words[:max_seq_len]
tokens = table.lookup(truncated_words) + 1
tokens = tf.cond(
tf.less(tf.size(tokens), max_seq_len),
lambda: tf.concat([tokens, [eos]], 0), lambda: tokens)
return tf.concat([[bos], tokens], 0)
|
tensorflow.concat
| 10,323 |
import tensorflow as tf
Return:
A tuple of list: (nodes, adjcents)
nodes: A list of N + 1 `tf.Tensor` of `int64`, N is the number of
hops. Specify node set of each hop, including the root.
adjcents: A list of N `tf.SparseTensor` of `int64`. Specify adjacent
matrix between hops.
"""
nodes = tf.reshape(nodes, [-1])
nodes_list = [nodes]
adj_list = []
for hop_edge_types in edge_types:
neighbor, weight, _ = get_full_neighbor(nodes, hop_edge_types)
next_nodes, next_idx = tf.unique(neighbor.values, out_idx=tf.int64)
next_indices = tf.stack([neighbor.indices[:, 0], next_idx], 1)
|
tensorflow.reshape
| 10,324 |
import tensorflow as tf
update_mu = mu.assign_sub(update * (mu - batch_mean))
update_sigma = sigma.assign_sub(update * (sigma - batch_var))
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mu)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_sigma)
|
tensorflow.add_to_collection
| 10,325 |
import tensorflow as tf
assert(len(shape) > 1)
nh = h[0].get_shape()[-1].value
return tf.reshape(tf.concat(axis=1, values=h), [-1, nh])
else:
return tf.reshape(tf.stack(values=h, axis=1), [-1])
def lstm(xs, s, scope, nh, init_scale=1.0):
|
tensorflow.stack
| 10,326 |
import tensorflow as tf
with tf.control_dependencies([p]):
return tf.reduce_mean(loss)
loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems=tf.range(resample), dtype=tf.float32,
parallel_iterations=32)
final_loss = tf.reduce_mean(loss)
return final_loss
|
tensorflow.reduce_mean
| 10,327 |
import tensorflow as tf
np.ndarray.astype( # TODO(b/64987151): # pytype: disable=attribute-error
expected_cross_terms - np.outer(expected_terms, expected_terms),
self._numpy_dtype)
]
def output_tensor_infos(self):
return [
analyzer_nodes.TensorInfo(
tf.as_dtype(self._numpy_dtype), self._output_shape, None)
]
@common.log_api_use(common.ANALYZER_COLLECTION)
def covariance(x: tf.Tensor,
dtype: tf.DType,
name: Optional[str] = None) -> tf.Tensor:
|
tensorflow.as_dtype
| 10,328 |
import tensorflow as tf
# The CNN architecture = conv/poo layers + flatten layer + connected layers
with tf.name_scope("cnn"):
# a. Create convolution/pooling layers = conv + drop + pool + conv + drop + pool + conv + pool + conv + drop
self.conv1 = tf.layers.conv2d(self.X,
self.config.cifar10_cnn["num_filters"],
self.config.cifar10_cnn["filter_size"],
padding='same', activation=tf.nn.relu)
self.drop1 = tf.layers.dropout(self.conv1, self.config.cifar10_cnn["keep_prob"], training=self.train)
self.pool1 = tf.layers.max_pooling2d(self.drop1, 2, 2)
self.conv2 = tf.layers.conv2d(self.pool1,
self.config.cifar10_cnn["num_filters"],
self.config.cifar10_cnn["filter_size"],
padding='same', activation=tf.nn.relu)
self.drop2 = tf.layers.dropout(self.conv2, self.config.cifar10_cnn["keep_prob"], training=self.train)
|
tensorflow.layers.dropout
| 10,329 |
import tensorflow as tf
facts = tf.expand_dims(facts, 1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
if not forCnn:
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
|
tensorflow.layers.dense
| 10,330 |
import tensorflow as tf
if self.preserve_sparsity and not tf.reduce_any(weights == 0):
self.preserve_sparsity = False
logging.warning(
'Input layer does not contain zero weights, so apply CQAT instead.')
centroids_mask = None
centroids, lookup = get_unique(weights)
num_centroids = tf.size(centroids)
if self.preserve_sparsity:
sparsity_mask = tf.math.divide_no_nan(weights, weights)
zero_idx = tf.argmin(tf.abs(centroids), axis=-1)
centroids_mask = 1.0 - tf.one_hot(zero_idx, num_centroids)
result = {SPARSITY_MASK: sparsity_mask}
# Prepare clustering variables for the Keras graph when clusters
# exist, assuming we do not use number_of_clusters larger than 1024
if num_centroids > 1024:
return result
else:
clst_centroids_tf = layer.add_weight(
CLUSTER_CENTROIDS,
shape=centroids.shape,
|
tensorflow.one_hot
| 10,331 |
import tensorflow as tf
return self_attention
def self_all_attention(facts, ATTENTION_SIZE, mask, stag='null'):
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
def cond(batch, output, i):
return tf.less(i, tf.shape(batch)[1])
def body(batch, output, i):
self_attention_tmp = din_fcn_attention(batch[:, i, :], batch,
ATTENTION_SIZE, mask, softmax_stag=1, stag=stag,
mode='LIST')
self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1)
|
tensorflow.shape
| 10,332 |
import tensorflow as tf
im_flat = tf.reshape(im, tf.stack([-1, channels]))
im_flat = tf.to_float(im_flat)
i_z0_y0_x0 = tf.gather(im_flat, idx_z0_y0_x0)
i_z0_y0_x1 = tf.gather(im_flat, idx_z0_y0_x1)
|
tensorflow.gather
| 10,333 |
from tensorflow.python.training import server_lib
# distributed jobs, such as "/job:ps" which are not present.
config._cluster_spec = server_lib.ClusterSpec({})
|
tensorflow.python.training.server_lib.ClusterSpec
| 10,334 |
import tensorflow as tf
#Local logits
(predict_ADV,logits_part_adv) = sess.run(
[predict_adv, tsne_logit_adv],feed_dict={adv_image:adv_img}
)
#Local entropy and confidence for nor_img
(entropy_test_nor_help,labels_nor_help,confidence_test_nor_help) = sess.run(
[entropy,tf.argmax(predict,axis=1),tf.reduce_max(predict, axis=1)],feed_dict={predict:predict_NOR}
)
# Local entropy and confidence for adv_img
(entropy_test_adv_help, labels_adv_help, confidence_test_adv_help) = sess.run(
[entropy, tf.argmax(predict, axis=1), tf.reduce_max(predict, axis=1)], feed_dict={predict: predict_ADV}
)
if FLAGS.attack_method == 'carliniL2_specific' or FLAGS.attack_method == 'carliniL2_highden':
print('Log-density-ratio in attacking function of nor/adv is %f'%np.sum(log_density_ratio))
m_tsne_logits_adv = (copy.copy(logits_part_adv)).reshape((1, 64))
m_tsne_logits_adv = np.repeat(m_tsne_logits_adv,100,axis=0)
kernel_train = (copy.copy(e_kernel_train[:,:,np.argmax(target_lab)])).reshape((100,64))
log_density_ratio2 = -np.log(1e-30+np.mean(np.exp(-np.sum(np.square(m_tsne_logits_adv
- kernel_train), axis=1) / sigma2),
axis=0)) + np.log(e_median[np.argmax(target_lab)])
# m_tsne_logits_adv = (copy.copy(logits_part_adv-e_mean[np.argmax(target_lab)])).reshape((64,1))
|
tensorflow.reduce_max
| 10,335 |
import tensorflow as tf
sample_shape = tf.convert_to_tensor([6, 7], dtype=tf.int32)
y = dist._set_sample_static_shape(x, sample_shape)
self.assertAllEqual([6, 7, None, 3, 5], y.shape.as_list())
x = tf.placeholder_with_default(
input=np.ones((6, 7, 2, 3, 5), dtype=np.float32), shape=None)
dist = fake_distribution(batch_shape=[None, 3], event_shape=[None])
sample_shape = tf.convert_to_tensor([6, 7], dtype=tf.int32)
y = dist._set_sample_static_shape(x, sample_shape)
self.assertAllEqual([6, 7, None, 3, None], y.shape.as_list())
x = tf.placeholder_with_default(
input=np.ones((6, 7, 2, 3, 5), dtype=np.float32), shape=None)
dist = fake_distribution(batch_shape=None, event_shape=None)
|
tensorflow.convert_to_tensor
| 10,336 |
import tensorflow as tf
# Maybe create label_priors.
label_priors = maybe_create_label_priors(label_priors, labels, weights, variables_collections)
# Calculate weighted loss and other outputs. The log(2.0) term corrects for
# logloss not being an upper bound on the indicator function.
weighted_loss = weights * losses_utils.weighted_surrogate_loss(
labels,
logits,
surrogate_type=surrogate_type,
positive_weights=1.0 + lambdas * (1.0 - target_precision),
negative_weights=lambdas * target_precision)
maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
lambda_term = lambdas * (1.0 - target_precision) * label_priors * maybe_log2
loss = tf.reshape(weighted_loss - lambda_term, original_shape)
other_outputs = {
'lambdas':
lambdas_variable,
'label_priors':
label_priors,
'true_positives_lower_bound':
true_positives_lower_bound(labels, logits, weights, surrogate_type),
'false_positives_upper_bound':
false_positives_upper_bound(labels, logits, weights, surrogate_type)
}
return loss, other_outputs
|
tensorflow.reshape
| 10,337 |
import tensorflow as tf
# create variables
with tf.variable_scope(name) as scope:
if reuse:
scope.reuse_variables()
var = variable_on_cpu(
"var", [dim], tf.constant_initializer(1.), trainable=False)
mean = variable_on_cpu(
"mean", [dim], tf.constant_initializer(0.), trainable=False)
step = variable_on_cpu("step", [], tf.constant_initializer(0.), trainable=False)
# choose the appropriate moments
|
tensorflow.constant_initializer
| 10,338 |
import tensorflow as tf
w_greater = tf.greater(image_shape[0], image_shape[1])
shape = tf.cond(w_greater,
lambda: tf.cast([shape[0] / shape[1] * size, size], tf.int32),
lambda: tf.cast([size, shape[1] / shape[0] * size], tf.int32))
return uint8_resize_bicubic(image, shape)
def center_crop(image, size):
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
offset_height = (image_height - size) // 2
offset_width = (image_width - size) // 2
image = tf.slice(image, [offset_height, offset_width, 0], [size, size, -1])
return image
def lighting(image, std, eigval, eigvec):
v = tf.random_normal(shape=[3], stddev=std) * eigval
inc = tf.matmul(eigvec, tf.reshape(v, [3, 1]))
image = tf.cast(tf.cast(image, tf.float32) + tf.reshape(inc, [3]), image.dtype)
return image
def validation_mapper(byte):
image = tf.image.decode_jpeg(
tf.reshape(byte, shape=[]), 3, **JPEG_OPT)
image = resize_shortest_edge(image, tf.shape(image), 256)
|
tensorflow.slice
| 10,339 |
import tensorflow as tf
self.rewards_ph = tf.placeholder(tf.float32, shape=(None, 1), name='rewards')
self.is_demo_ph = tf.placeholder(tf.float32, shape=(None, 1), name='is_demonstrations')
self.weight_ph = tf.placeholder(tf.float32, shape=(None, 1), name='importance_weight')
self.actions_ph = tf.placeholder(tf.float32, shape=(None,) + self.action_space.shape,
name='actions')
self.learning_rate_ph = tf.placeholder(tf.float32, [], name="learning_rate_ph")
if self.n_step:
self.next_observations_ph_n = self.target_policy.obs_ph
self.processed_next_obs_ph_n = self.target_policy.processed_obs
self.rewards_ph_n = tf.placeholder(tf.float32, shape=(None, 1), name='n_step_rewards')
self.terminals_ph_n = tf.placeholder(tf.float32, shape=(None, 1), name='n_step_terminals')
with tf.variable_scope("model", reuse=False):
# Create the policy
# first return value corresponds to deterministic actions
# policy_out corresponds to stochastic actions, used for training
|
tensorflow.placeholder
| 10,340 |
import tensorflow as tf
tf.summary.image("input_image", image, max_outputs=2)
tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2)
tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
# loss0 = tf.reduce_mean(tf.abs(z))
loss = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square((image - logits)),[1,2,3])))
# loss2 = tf.reduce_mean(tf.square((image - logits)*mask2))
# loss = loss1 + loss2 + loss0
# loss = tf.reduce_mean(tf.squared_difference(logits ,annotation ))
loss_summary = tf.summary.scalar("entropy", loss)
|
tensorflow.square
| 10,341 |
import tensorflow as tf
# Text-Vocab Embedding
x_embed = tf.nn.embedding_lookup(identity_mat, x_data)
x_col_sums = tf.reduce_sum(x_embed, 0)
# Declare model operations
x_col_sums_2D = tf.expand_dims(x_col_sums, 0)
model_output = tf.add(tf.matmul(x_col_sums_2D, A), b)
# Declare loss function (Cross Entropy loss)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target))
|
tensorflow.expand_dims
| 10,342 |
from tensorflow.contrib import learn
# Setup vocabulary processor
vocab_processor = learn.preprocessing.VocabularyProcessor(sentence_size, min_frequency=min_word_freq)
|
tensorflow.contrib.learn.preprocessing.VocabularyProcessor
| 10,343 |
import tensorflow as tf
if ent_coef_loss is not None:
tf.summary.scalar('ent_coef_loss', ent_coef_loss)
tf.summary.scalar('ent_coef', self.ent_coef)
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph))
# Retrieve parameters that must be saved
self.params = tf_util.get_trainable_vars("model")
self.target_params = tf_util.get_trainable_vars("target/values_fn/vf")
# Initialize Variables and target network
with self.sess.as_default():
self.sess.run(tf.global_variables_initializer())
self.sess.run(target_init_op)
self.summary = tf.summary.merge_all()
def pretrain_sac(self,pretrain_steps):
print("=====SAC Pretraining=====")
for step in range(pretrain_steps):
# Compute current learning_rate
frac = 1.0 - step / pretrain_steps
current_lr = self.learning_rate(frac)
# Update policy and critics (q functions)
|
tensorflow.global_variables_initializer
| 10,344 |
import tensorflow as tf
0))
groundtruth_labels = tf.expand_dims(groundtruth_labels, -1)
shape_assert = tf.assert_equal(tf.shape(groundtruth_labels)[1:],
tf.shape(self._unmatched_cls_target))
with tf.control_dependencies([shape_assert]):
match_quality_matrix = self._similarity_calc.compare(groundtruth_boxes,
anchors)
match = self._matcher.match(match_quality_matrix, **params)
reg_targets = self._create_regression_targets(anchors,
|
tensorflow.control_dependencies
| 10,345 |
import tensorflow as tf
product1 = tf.matmul(inverted_rgb2lms, self.color_matrix)
product2 = tf.matmul(product1, self.rgb2lms)
original_image_shape = image.shape
simulated_image = tf.transpose(tf.matmul(product2, tf.reshape(tf.transpose(image, perm=[2, 0, 1]), (image.shape[2], image.shape[0] * image.shape[1]))), perm=[1, 0])
return tf.reshape(simulated_image, original_image_shape)
|
tensorflow.reshape
| 10,346 |
import tensorflow as tf
for l in range(1, L):
parameters['w' + str(l)] = tf.get_variable('w' + str(l), [layers[l], layers[l-1]],dtype= 'float64' , initializer= tf.contrib.layers.xavier_initializer(seed=1) )
parameters['b' + str(l)] = tf.get_variable('b' + str(l), [layers[l], 1],dtype= 'float64', initializer = tf.zeros_initializer())
parameters['beta' + str(l)] = tf.get_variable('beta'+ str(l), [layers[l], 1], dtype= 'float64', initializer = init, trainable= train )
|
tensorflow.contrib.layers.xavier_initializer
| 10,347 |
import tensorflow as tf
# Apply the gradients to adjust the shared variables.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
for var in tf.trainable_variables():
summaries.append(tf.summary.histogram(var.op.name, var))
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# Group all updates to into a single train op.
train_op = tf.group(apply_gradient_op, variables_averages_op)
# Create a saver.
saver = tf.train.Saver(tf.global_variables())
# Build the summary operation from the last tower summaries.
summary_op = tf.summary.merge(summaries)
|
tensorflow.trainable_variables
| 10,348 |
from tensorflow.python.ops import math_ops
predictions, labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
weights = _mask_weights(ignore_mask, weights)
true_positives, true_positives_update_op = _streaming_true_positives(
predictions, labels, weights, metrics_collections=None,
updates_collections=None, name=None)
false_negatives, false_negatives_update_op = _streaming_false_negatives(
predictions, labels, weights, metrics_collections=None,
updates_collections=None, name=None)
def compute_recall(true_positives, false_negatives, name):
return math_ops.select(
math_ops.greater(true_positives + false_negatives, 0),
math_ops.div(true_positives, true_positives + false_negatives),
0,
name)
recall = compute_recall(true_positives, false_negatives, 'value')
with ops.control_dependencies([true_positives_update_op,
false_negatives_update_op]):
update_op = compute_recall(true_positives, false_negatives, 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, recall)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
|
tensorflow.python.ops.math_ops.div
| 10,349 |
import tensorflow as tf
next_sentence_log_probs, next_sentence_labels):
"""Computes the loss and accuracy of the model."""
masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
[-1, masked_lm_log_probs.shape[-1]])
masked_lm_predictions = tf.argmax(
masked_lm_log_probs, axis=-1, output_type=tf.int32)
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
masked_lm_accuracy = tf.metrics.accuracy(
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights)
masked_lm_mean_loss = tf.metrics.mean(
|
tensorflow.reshape
| 10,350 |
import tensorflow as tf
with tf.name_scope(name):
degree_l = tf.convert_to_tensor(value=degree_l)
order_m = tf.convert_to_tensor(value=order_m)
theta = tf.convert_to_tensor(value=theta)
phi = tf.convert_to_tensor(value=phi)
var_type = theta.dtype
sign_m = tf.math.sign(order_m)
order_m = tf.abs(order_m)
zeros = tf.zeros_like(order_m)
result_m_zero = _spherical_harmonics_normalization(
degree_l, zeros, var_type) * evaluate_legendre_polynomial(
degree_l, zeros, tf.cos(theta))
result_branch = _evaluate_spherical_harmonics_branch(
degree_l, order_m, theta, phi, sign_m, var_type)
|
tensorflow.math.sign
| 10,351 |
import tensorflow as tf
pi = act_limit * mlp(x, list(hidden_sizes) + [act_dim], activation, output_activation)
with tf.variable_scope('q1'):
q1 = tf.squeeze(mlp(tf.concat([x, a], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1)
with tf.variable_scope('q2'):
q2 = tf.squeeze(mlp(tf.concat([x, a], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1)
with tf.variable_scope('q1', reuse=True):
q1_pi = tf.squeeze(mlp(tf.concat([x, pi], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1)
elif nn_type == 'mlp_dropout':
with tf.variable_scope('pi'):
pi = act_limit * mlp_dropout(x, list(hidden_sizes)+[act_dim], activation, output_activation)
|
tensorflow.variable_scope
| 10,352 |
import tensorflow as tf
average_across_timesteps=False,
average_across_batch=True)
# Update the cost
self._cost = tf.reduce_sum(loss)
self._final_state = state
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.contrib.framework.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
def _build_rnn_graph(self, inputs, config, is_training):
|
tensorflow.gradients
| 10,353 |
import tensorflow as tf
print("Entropy Decoder")
def loop_synthesis(element):
y = tf.expand_dims(element[0], 0)
x_coori = tf.expand_dims(element[1], 0)
x_coori= tf.cast(x_coori,tf.float32)
x = synthesis_transform(x_coori,y)
return tf.squeeze(x, [0])
element=[ys,x_coori]
xs = tf.map_fn(loop_synthesis, element, dtype=tf.float32, parallel_iterations=1, back_prop=False)
print("Synthesis Transform")
return xs
|
tensorflow.squeeze
| 10,354 |
import tensorflow as tf
prev_layer,
keep=0.5,
n_units=100,
act=tf.identity,
W_init=tf.truncated_normal_initializer(stddev=0.1),
b_init=tf.constant_initializer(value=0.0),
W_init_args=None,
b_init_args=None,
name='dropconnect_layer',
):
|
tensorflow.constant_initializer
| 10,355 |
import tensorflow as tf
enc_inp, dec_inp, cell, num_decoder_symbols, embedding_size=2,
feed_previous=feed_previous)
def EmbeddingTiedRNNSeq2SeqNoTuple(enc_inp, dec_inp, feed_previous):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
return tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_decoder_symbols, embedding_size=2,
feed_previous=feed_previous)
def EmbeddingAttentionSeq2Seq(enc_inp, dec_inp, feed_previous):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
return tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols,
num_decoder_symbols, embedding_size=2, feed_previous=feed_previous)
def EmbeddingAttentionSeq2SeqNoTuple(enc_inp, dec_inp, feed_previous):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
return tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols,
num_decoder_symbols, embedding_size=2, feed_previous=feed_previous)
for model in (EmbeddingRNNSeq2SeqF, EmbeddingRNNSeq2SeqNoTupleF,
|
tensorflow.nn.seq2seq.embedding_attention_seq2seq
| 10,356 |
import tensorflow as tf
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
|
tensorflow.contrib.tpu.TPUEstimatorSpec
| 10,357 |
import tensorflow as tf
parameters = initialize_parameters(network, activation, stdbeta)
betan = tf.identity(parameters['beta'+str(L)], name="betan") #add the output noise to the graph for later retrieval
an, hn, _ , _ = FW_prop(X, parameters, activation) #post and pre-activation output of the last layer
an = tf.identity(an, name= "an") #add the output post-activation value to the graph for later retrieval
hn = tf.identity(hn, name='hn') #add the output pre-activation value to the graph for later retrieval
#Create a saver for the Model
if save_model == True:
saver = tf.train.Saver()
#-----------------Initialize the cost and gradients---------------------------------------------------------
|
tensorflow.identity
| 10,358 |
import tensorflow as tf
nms_masks_expected2 = tf.stack([mask0, mask1, mask4, mask2])
nms_scores_expected2 = tf.constant([1.0, 0.9, 0.85, 0.8], dtype=tf.float32)
nms_classes_expected2 = tf.constant([1, 2, 2, 3], dtype=tf.int32)
self.assertAllEqual(nms_masks1.numpy(), nms_masks_expected1.numpy())
self.assertAllClose(nms_scores1.numpy(), nms_scores_expected1.numpy())
self.assertAllEqual(nms_classes1.numpy(), nms_classes_expected1.numpy())
self.assertAllEqual(nms_masks2.numpy(), nms_masks_expected2.numpy())
self.assertAllClose(nms_scores2.numpy(), nms_scores_expected2.numpy())
self.assertAllEqual(nms_classes2.numpy(), nms_classes_expected2.numpy())
def test_instance_non_maximum_suppression_1d_scores_empty_inputs(self):
masks = tf.constant(1.0, shape=[0, 2, 2], dtype=tf.float32)
scores = tf.constant([], dtype=tf.float32)
classes = tf.constant([], dtype=tf.int32)
(nms_masks1,
nms_scores1,
nms_classes1,
_) = isu.instance_non_maximum_suppression_1d_scores(
masks,
scores,
classes,
min_score_thresh=0.65,
min_iou_thresh=0.5,
is_class_agnostic=True)
|
tensorflow.constant
| 10,359 |
import tensorflow as tf
# a. Create convolution/pooling layers = conv + drop + pool + conv + drop + pool + conv + pool + conv + drop
self.conv1 = tf.layers.conv2d(self.X,
self.config.cifar10_cnn["num_filters"],
self.config.cifar10_cnn["filter_size"],
padding='same', activation=tf.nn.relu)
self.drop1 = tf.layers.dropout(self.conv1, self.config.cifar10_cnn["keep_prob"], training=self.train)
self.pool1 = tf.layers.max_pooling2d(self.drop1, 2, 2)
self.conv2 = tf.layers.conv2d(self.pool1,
self.config.cifar10_cnn["num_filters"],
self.config.cifar10_cnn["filter_size"],
padding='same', activation=tf.nn.relu)
|
tensorflow.layers.max_pooling2d
| 10,360 |
import tensorflow as tf
return tf.less(i, tf.shape(batch)[1])
def body(batch, output, i):
self_attention_tmp = din_fcn_attention(batch[:, i, :], batch,
ATTENTION_SIZE, mask, softmax_stag=1, stag=stag,
mode='LIST')
self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1)
output = output.write(i, self_attention_tmp)
return batch, output, i + 1
output_ta = tf.TensorArray(dtype=tf.float32,
size=0,
|
tensorflow.reduce_sum
| 10,361 |
import tensorflow as tf
if use_coverage and coverage is not None:
coverage_features = tf.expand_dims(coverage, axis=-1) * w_c # [batch_size, passage_len, attention_vec_size]
all_features += coverage_features
e = tf.reduce_sum(v * tf.tanh(all_features), axis=-1) # [batch_size, passage_len]
attn_dist = nn_ops.softmax(e) # [batch_size, passage_len]
attn_dist *= passage_mask
|
tensorflow.tanh
| 10,362 |
import tensorflow as tf
trisk = self.train_data['atrisk'][t]
d = len(tfail)
dr = len(trisk)
logL += -cumsum_y_pred[tfail[-1]] + (0 if tfail[0] == 0 else cumsum_y_pred[tfail[0]-1])
if self.train_data['ties'] == 'breslow':
s = cumsum_hazard_ratio[trisk[-1]]
logL += tf.log(s) * d
elif self.train_data['ties'] == 'efron':
s = cumsum_hazard_ratio[trisk[-1]]
r = cumsum_hazard_ratio[tfail[-1]] - (0 if tfail[0] == 0 else cumsum_hazard_ratio[tfail[0]-1])
for j in range(d):
logL += tf.log(s - j * r / d)
else:
raise NotImplementedError('tie breaking method not recognized')
|
tensorflow.log
| 10,363 |
import tensorflow as tf
if self.task_index == 0 and FLAGS.summary_verbosity > 0:
tf.summary.scalar('learning_rate', learning_rate)
tf.summary.scalar('total_loss', total_loss)
for grad, var in avg_grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad)
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
fetches = [train_op, total_loss] + enqueue_ops
return (enqueue_ops, fetches)
def add_forward_pass_and_gradients(
|
tensorflow.trainable_variables
| 10,364 |
import tensorflow as tf
self.assertEqual(save_path, val)
# Start a second session. In that session the parameter nodes
# have not been initialized either.
with self.test_session() as sess:
v0 = tf.Variable(-1.0, name="v0")
v1 = tf.Variable(-1.0, name="v1")
save = tf.train.Saver({"v0": v0, "v1": v1})
with self.assertRaisesWithPredicateMatch(
|
tensorflow.Variable
| 10,365 |
from tensorflow.contrib.distributions.python.ops import distribution_util
return math_ops.igammac(math_ops.floor(x + 1), self.rate)
def _log_normalization(self):
return self.rate
def _log_unnormalized_prob(self, x):
x = self._assert_valid_sample(x, check_integer=True)
return x * math_ops.log(self.rate) - math_ops.lgamma(x + 1)
def _mean(self):
return array_ops.identity(self.rate)
def _variance(self):
return array_ops.identity(self.rate)
@distribution_util.AppendDocstring(
"""Note: when `rate` is an integer, there are actually two modes: `rate`
and `rate - 1`. In this case we return the larger, i.e., `rate`.""")
def _mode(self):
return math_ops.floor(self.rate)
def _assert_valid_sample(self, x, check_integer=True):
if not self.validate_args:
return x
dependencies = [check_ops.assert_non_negative(x)]
if check_integer:
dependencies += [distribution_util.assert_integer_form(
x, message="x has non-integer components.")]
return control_flow_ops.with_dependencies(dependencies, x)
|
tensorflow.contrib.distributions.python.ops.distribution_util.AppendDocstring
| 10,366 |
import tensorflow as tf
tf.expand_dims(candidate_starts, 0),
tf.expand_dims(candidate_ends, 0),
tf.expand_dims(k, 0),
util.shape(context_outputs, 0),
True) # [1, k]
top_span_indices.set_shape([1, None])
top_span_indices = tf.squeeze(top_span_indices, 0) # [k]
top_span_starts = tf.gather(candidate_starts, top_span_indices) # [k]
top_span_ends = tf.gather(candidate_ends, top_span_indices) # [k]
top_span_emb = tf.gather(candidate_span_emb, top_span_indices) # [k, emb]
top_span_cluster_ids = tf.gather(candidate_cluster_ids, top_span_indices) # [k]
top_span_mention_scores = tf.gather(candidate_mention_scores, top_span_indices) # [k]
top_span_sentence_indices = tf.gather(candidate_sentence_indices, top_span_indices) # [k]
top_span_speaker_ids = tf.gather(speaker_ids, top_span_starts) # [k]
c = tf.minimum(self.config["max_top_antecedents"], k)
if self.config["coarse_to_fine"]:
top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets = self.coarse_to_fine_pruning(top_span_emb, top_span_mention_scores, c)
else:
top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets = self.distance_pruning(top_span_emb, top_span_mention_scores, c)
|
tensorflow.gather
| 10,367 |
import tensorflow as tf
h = x_shape[1] + pad_h0 + pad_h1
w = x_shape[2] + pad_w0 + pad_w1
pad_h1 += tf.mod(-h + bsize[1], bstrides[1])
pad_w1 += tf.mod(-w + bsize[2], bstrides[2])
return tf.pad(x, [[0, 0], [pad_h0, pad_h1], [pad_w0, pad_w1], [0, 0]])
else:
if bstrides is not None:
assert bsize is not None, 'Must pass in bsize and bstrides together.'
h = x_shape[1]
w = x_shape[2]
pad_h1 = tf.mod(-h + bsize[1], bstrides[1])
pad_w1 = tf.mod(-w + bsize[2], bstrides[2])
return tf.cond(
tf.logical_or(tf.greater(pad_h1, 0), tf.greater(pad_w1, 0)),
lambda: tf.pad(x, [[0, 0], [0, pad_h1], [0, pad_w1], [0, 0]]), lambda: x)
else:
return x
def _get_offset_array_tf(shape):
"""
Computes the offset array used to upsample indices with TensorFlow.
:param shape: [list] Window shape.
"""
center = [(ss - 1) // 2 for ss in shape]
|
tensorflow.greater
| 10,368 |
import tensorflow as tf
foo = base_model.StatsCounter('foo')
val = foo.Value()
params = base_layer.BaseLayer.Params()
inc = foo.IncBy(params, 100)
tf.global_variables_initializer().run()
self.assertAllEqual(0, val.eval())
self.assertAllEqual(100, sess.run(inc))
self.assertAllEqual(100, val.eval())
self.assertAllEqual([100, 200], sess.run([val, inc]))
|
tensorflow.global_variables_initializer
| 10,369 |
import tensorflow as tf
logger.debug("base conditional")
# compute kernel stuff
num_func = tf.shape(f)[1] # R
Lm = tf.cholesky(Kmm)
# Compute the projection matrix A
A = tf.matrix_triangular_solve(Lm, Kmn, lower=True)
# compute the covariance due to the conditioning
if full_cov:
fvar = Knn - tf.matmul(A, A, transpose_a=True)
fvar = tf.tile(fvar[None, :, :], [num_func, 1, 1]) # R x N x N
else:
fvar = Knn - tf.reduce_sum(tf.square(A), 0)
fvar = tf.tile(fvar[None, :], [num_func, 1]) # R x N
# another backsubstitution in the unwhitened case
if not white:
A = tf.matrix_triangular_solve(tf.transpose(Lm), A, lower=False)
|
tensorflow.matmul
| 10,370 |
import tensorflow as tf
class Conv3d(object) :
def __init__(self,name,input_dim,output_dim,k_t=2,k_h=4,k_w=4,d_t=1,d_h=1,d_w=1,
stddev=0.02, data_format='NDHWC') :
with tf.variable_scope(name) :
assert(data_format == 'NDHWC')
self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
|
tensorflow.variable_scope
| 10,371 |
import tensorflow as tf
parser.add_argument('--bpe_path', type=str, default='model/vocab_40000.bpe')
parser.add_argument('--n_transfer', type=int, default=12)
parser.add_argument('--lm_coef', type=float, default=0.5)
parser.add_argument('--b1', type=float, default=0.9)
parser.add_argument('--b2', type=float, default=0.999)
parser.add_argument('--e', type=float, default=1e-8)
args = parser.parse_args()
print(args)
globals().update(args.__dict__)
random.seed(seed)
np.random.seed(seed)
tf.set_random_seed(seed)
logger = ResultLogger(path=os.path.join(log_dir, '{}.jsonl'.format(desc)), **args.__dict__)
text_encoder = TextEncoder(encoder_path, bpe_path)
encoder = text_encoder.encoder
n_vocab = len(text_encoder.encoder)
(trX1, trX2, trX3, trY), (vaX1, vaX2, vaX3, vaY), (teX1, teX2, teX3) = encode_dataset(rocstories(data_dir), encoder=text_encoder)
n_y = 2
encoder['_start_'] = len(encoder)
encoder['_delimiter_'] = len(encoder)
encoder['_classify_'] = len(encoder)
|
tensorflow.set_random_seed
| 10,372 |
import tensorflow as tf
# Wittich design
def VNET_16L(self, I, is_train, reuse_unet=False, reuse_ada=False, adaption_net=False):
def encoder_conf(name, X, filter, f_size, scale, norm, reuse, is_train, dropout=0.0, stddev=-1.0, slope=0.00,
use_bias=True):
with tf.variable_scope(name) as scope:
if scale > 1:
X = self.conv(name + '_downsample', X, filter, scale, scale, (not norm) and use_bias, "VALID", stddev)
else:
X = self.conv(name + '_conf', X, filter, f_size, 1, (not norm) and use_bias, "VALID", stddev)
if norm == 'I':
|
tensorflow.variable_scope
| 10,373 |
import tensorflow as tf
count=key_counts,
mean=key_means,
variance=key_variances,
weight=tf.zeros_like(key_means, tf.float32))
combiner = WeightedMeanAndVarCombiner(output_dtype.as_numpy_dtype,
|
tensorflow.zeros_like
| 10,374 |
import tensorflow as tf
def lstm(xs, ms, s, scope, nh, init_scale=1.0):
nbatch, nin = [v.value for v in xs[0].get_shape()]
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0))
c, h = tf.split(axis=1, num_or_size_splits=2, value=s)
for idx, (x, m) in enumerate(zip(xs, ms)):
c = c*(1-m)
h = h*(1-m)
z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(c)
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
|
tensorflow.matmul
| 10,375 |
import tensorflow as tf
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
|
tensorflow.logging.info
| 10,376 |
import tensorflow as tf
num_warmup_steps=num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu,
do_serve=FLAGS.do_serve
)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.predict_batch_size)
|
tensorflow.contrib.tpu.TPUEstimator
| 10,377 |
import tensorflow as tf
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].shape)
def testAttentionDecoder2(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
cell = tf.nn.rnn_cell.GRUCell(2)
inp = [tf.constant(0.5, shape=[2, 2])] * 2
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
for e in enc_outputs])
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
dec, mem = tf.nn.seq2seq.attention_decoder(
dec_inp, enc_state,
attn_states, cell, output_size=4,
num_heads=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].shape)
|
tensorflow.reshape
| 10,378 |
import tensorflow as tf
def main(unused_argv):
tf.compat.v1.enable_v2_behavior() # The trainer only runs with V2 enabled.
|
tensorflow.compat.v1.enable_v2_behavior
| 10,379 |
import tensorflow as tf
if self.activation is not None:
output = self.activation(output)
return output
nan2zeroLayer = Lambda(lambda x: tf.where(tf.is_nan(x), tf.zeros_like(x), x))
ColWiseMultLayer = lambda name: Lambda(lambda l: l[0]*(tf.matmul(tf.reshape(l[1], (-1,1)),
tf.ones((1, l[0].get_shape()[1]),
dtype=l[1].dtype))),
name=name)
|
tensorflow.zeros_like
| 10,380 |
import tensorflow as tf
'a',
py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0)))
var_a = task.theta.a
# Make a NaN gradient.
var_grads = py_utils.NestedMap(a=(var_a, 0. * tf.log(0.)))
has_nan_or_inf, grad_scale, final_var_grads = task.ScaleGradients(var_grads)
with self.session():
tf.global_variables_initializer().run()
self.assertTrue(has_nan_or_inf.eval())
self.assertEqual(0., grad_scale.eval())
# The final gradient must be finite.
self.assertFalse(tf.is_nan(final_var_grads.a[1]).eval())
self.assertTrue(tf.is_finite(final_var_grads.a[1]).eval())
def testScaleGradientsCheckNumerics(self):
"""ScaleGradients when enable_check_numerics=True."""
FLAGS.enable_check_numerics = True
p = self.TestParams()
p.input = base_input_generator.BaseSequenceInputGenerator.Params()
task = p.cls(p)
task.CreateVariable(
'a',
py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0)))
var_a = task.theta.a
# Make a NaN gradient.
|
tensorflow.is_finite
| 10,381 |
import tensorflow as tf
n_row,n_col,n_channel = x.shape
n_patch = n_row*n_col // (patch_size**2)
patches = tf.image.extract_patches(tf.expand_dims(x,0),sizes=window,strides=window,rates=[1, 1, 1, 1],padding='VALID')
patches = tf.reshape(patches,[n_patch,patch_size,patch_size,n_channel])
patches = tf.random.shuffle(patches)
rows = tf.split(patches,n_col//patch_size,axis=0)
rows = [tf.concat(tf.unstack(x),axis=1) for x in rows]
x_aug = tf.concat(rows,axis=0)
x_aug = tf.convert_to_tensor(x_aug)
|
tensorflow.split
| 10,382 |
import tensorflow as tf
policy['batch_datatypes'] = [tf.float32, tf.int32, tf.int32, tf.float32]
policy['batch_fun'] = lambda x: load_batch_flat(x, feat_specs['type'], feat_specs['augment'], feat_specs['qbnorm'])
test_data = tf.data.Dataset.from_tensor_slices(test_files)
test_data = test_data.batch(test_batch_size)
test_data = test_data.map(lambda x: tf.py_func(
policy['batch_fun'], [x], policy['batch_datatypes']))
|
tensorflow.data.Dataset.from_tensor_slices
| 10,383 |
import tensorflow as tf
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
|
tensorflow.one_hot
| 10,384 |
import tensorflow as tf
entropy_bottleneck = EntropyBottleneck()
conditional_entropy_model = SymmetricConditional()
checkpoint = tf.train.Checkpoint(analysis_transform=analysis_transform,
hyper_encoder=hyper_encoder,
hyper_decoder=hyper_decoder,
|
tensorflow.train.Checkpoint
| 10,385 |
import tensorflow as tf
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
|
tensorflow.logging.info
| 10,386 |
import tensorflow as tf
return tf.where(
tf.less(
tf.random_uniform(common_layers.shape_list(sampled_targets)),
hparams.scheduled_sampling_gold_mixin_prob), gold_targets,
sampled_targets)
def sampled_results():
"""Generate scheduled sampling results."""
sampled_targets = dp(sample, sharded_logits)
new_targets = dp(mix_gold_sampled, sharded_features["targets"],
sampled_targets)
new_features = transformed_features
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
with tf.variable_scope(target_modality.name):
new_features["targets"] = target_modality.targets_bottom_sharded(
new_targets, dp)
with tf.variable_scope("body"):
body_outputs, losses = model.model_fn_sharded(new_features)
if not isinstance(losses, dict): # If it's a single extra loss.
losses = {"extra": losses}
with tf.variable_scope(target_modality.name):
new_sharded_logits = target_modality.top_sharded(
body_outputs, sharded_features["targets"], dp)
if "training" not in losses:
training_loss = target_modality.loss_sharded(
sharded_logits, sharded_features["targets"], dp)
|
tensorflow.variable_scope
| 10,387 |
import tensorflow as tf
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.train.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
|
tensorflow.train.GradientDescentOptimizer
| 10,388 |
import tensorflow as tf
tf.app.flags.DEFINE_string('input_path', '../data/tmp/grid03.14.c.tar.gz', 'input folder')
tf.app.flags.DEFINE_string('input_name', '', 'input folder')
tf.app.flags.DEFINE_string('test_path', '', 'test set folder')
tf.app.flags.DEFINE_string('net', 'f100-f3', 'model configuration')
tf.app.flags.DEFINE_string('model', 'noise', 'Type of the model to use: Autoencoder (ae)'
'WhatWhereAe (ww) U-netAe (u)')
tf.app.flags.DEFINE_string('postfix', '', 'Postfix for the training folder')
tf.app.flags.DEFINE_float('alpha', 10, 'Predictive reconstruction loss weight')
tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight')
tf.app.flags.DEFINE_float('epsilon', 0.000001,
'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5')
tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances')
tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance')
tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective')
tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model')
|
tensorflow.app.flags.DEFINE_float
| 10,389 |
import tensorflow as tf
def get_test_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
|
tensorflow.train.batch
| 10,390 |
import tensorflow as tf
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
label_ids):
"""Get loss and log probs for the masked LM."""
input_tensor = gather_indexes(input_tensor, positions)
with tf.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.variable_scope("transform"):
input_tensor = tf.layers.dense(
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
|
tensorflow.variable_scope
| 10,391 |
import tensorflow as tf
cv2.imwrite('generated_image.jpg', G[0, :, :, :] * 50 + 128)
if self.is_summary:
train_writer.close()
validation_writer.close()
def _feature_matching_loss(self, real_data_features, fake_data_features):
real_data_mean = tf.reduce_mean(real_data_features, axis=0)
fake_data_mean = tf.reduce_mean(fake_data_features, axis=0)
feature_loss = tf.reduce_mean(tf.abs(tf.subtract(real_data_mean, fake_data_mean)))
return feature_loss
def _tower_loss_semi_supervised(self, inputs, targets, gpu_idx=0, num_classes=11,
|
tensorflow.reduce_mean
| 10,392 |
import tensorflow as tf
with tf.name_scope(scope, 'focal_loss', [cls_preds, onehot_labels]) as sc:
logits = tf.convert_to_tensor(cls_preds)
onehot_labels = tf.convert_to_tensor(onehot_labels)
precise_logits = tf.cast(logits, tf.float32) if (
logits.dtype == tf.float16) else logits
onehot_labels = tf.cast(onehot_labels, precise_logits.dtype)
predictions = tf.nn.sigmoid(logits)
predictions_pt = tf.where(tf.equal(onehot_labels, 1), predictions, 1.-predictions)
# add small value to avoid 0
epsilon = 1e-8
alpha_t = tf.scalar_mul(alpha, tf.ones_like(onehot_labels, dtype=tf.float32))
alpha_t = tf.where(tf.equal(onehot_labels, 1.0), alpha_t, 1-alpha_t)
losses = tf.reduce_sum(-alpha_t * tf.pow(1. - predictions_pt, gamma) * tf.log(predictions_pt+epsilon),
name=name, axis=1)
return losses
|
tensorflow.equal
| 10,393 |
import tensorflow as tf
mask_loss_t, learning_rate_t])
else:
train_op = None
scaffold_fn = None
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
host_call=host_call,
|
tensorflow.contrib.tpu.TPUEstimatorSpec
| 10,394 |
import tensorflow as tf
self.loss_d_sum = tf.summary.scalar("d_loss",self.discriminator_loss)
self.db_loss_real_sum = tf.summary.scalar("db_loss_real", self.D_B_loss_real)
self.db_loss_fake_sum = tf.summary.scalar("db_loss_fake", self.D_B_loss_fake)
self.da_loss_real_sum = tf.summary.scalar("da_loss_real", self.D_A_loss_real)
self.da_loss_fake_sum = tf.summary.scalar("da_loss_fake", self.D_A_loss_fake)
self.d_sum = tf.summary.merge(
[self.loss_da_sum, self.da_loss_real_sum, self.da_loss_fake_sum,
self.loss_db_sum, self.db_loss_real_sum, self.db_loss_fake_sum,
self.loss_d_sum]
|
tensorflow.summary.scalar
| 10,395 |
import tensorflow as tf
x = flat_observations
for size in self.hparams.policy_layers:
x = tf.layers.dense(x, size, activation=tf.nn.relu)
logits = tf.layers.dense(x, self.hparams.problem.num_actions)
|
tensorflow.layers.dense
| 10,396 |
import tensorflow as tf
batch_size = tf.shape(observations_ph.get())[0]
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
|
tensorflow.stack
| 10,397 |
import tensorflow as tf
# Create initial candidate list.
candidates = tf.map_fn(
self._MergeTokens, (tokens[:-1], tokens[1:]), dtype=tokens.dtype)
def _ShouldMerge(unused_tokens, candidates):
"""Merge until not possible, or we abort early according to merge_prob."""
return tf.logical_and(
tf.reduce_any(tf.not_equal(candidates, NO_TOKEN)),
tf.random.uniform([]) < self._merge_prob)
def _MergeOneToken(tokens, i):
return tf.expand_dims(
self._MergeTokens((tokens[i], tokens[i + 1])), axis=-1)
|
tensorflow.not_equal
| 10,398 |
import tensorflow as tf
def testTracker(self):
with tf.device(self._test_device):
batch_size = 2
|
tensorflow.device
| 10,399 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.