seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
# We now test every codepath within the underlying is_scalar_helper
# function.
# Test case 1, 2.
x = tf.placeholder(dtype=tf.int32, shape=[])
# None would fire an exception were it actually executed.
self.assertTrue(normal._is_scalar_helper(x.get_shape, lambda: None))
self.assertTrue(normal._is_scalar_helper(lambda: tf.TensorShape(None),
lambda: tf.shape(x)))
x = tf.placeholder(dtype=tf.int32, shape=[1])
# None would fire an exception were it actually executed.
self.assertFalse(normal._is_scalar_helper(x.get_shape, lambda: None))
self.assertFalse(normal._is_scalar_helper(lambda: tf.TensorShape(None),
lambda: tf.shape(x)))
# Test case 3.
x = tf.placeholder(dtype=tf.int32)
is_scalar = normal._is_scalar_helper(x.get_shape, lambda: tf.shape(x))
self.assertTrue(is_scalar.eval(feed_dict={x: 1}))
self.assertFalse(is_scalar.eval(feed_dict={x: [1]}))
if __name__ == '__main__':
tf.test.main()
|
tensorflow.TensorShape
| 8,100 |
import tensorflow as tf
inputs = tf.random.uniform(
[100, 8], minval=-10, maxval=10.0, dtype=tf.float32)
centers = tf.random.uniform(
[5, 8], minval=-10, maxval=10.0, dtype=tf.float32)
distances1 = isu.inputs_distances_to_centers(inputs, centers)
num_centers = tf.shape(centers)[0]
inputs_reshaped = tf.tile(tf.expand_dims(inputs, axis=1),
tf.stack([1, num_centers, 1]))
distances2 = tf.reduce_sum(tf.square(inputs_reshaped - centers), axis=2)
self.assertAllClose(distances1.numpy(), distances2.numpy(), atol=0.001)
def test_pairwise_iou_matrix(self):
mask0 = tf.constant([[1, 0],
[0, 1]], dtype=tf.float32)
mask1 = tf.constant([[1, 1],
[0, 1]], dtype=tf.float32)
mask2 = tf.constant([[1, 0],
[1, 1]], dtype=tf.float32)
mask3 = tf.constant([[1, 1],
[1, 1]], dtype=tf.float32)
mask4 = tf.constant([[0, 0],
[0, 0]], dtype=tf.float32)
mask5 = tf.constant([[1, 0],
[1, 0]], dtype=tf.float32)
|
tensorflow.constant
| 8,101 |
import tensorflow as tf
# `attention_mask` = [B, T]
from_shape = get_shape_list(q)
if len(from_shape) == 4:
broadcast_ones = tf.ones([from_shape[0], 1, from_shape[2], 1], tf.float32)
elif len(from_shape) == 5:
# from_shape = [B, N, Block_num, block_size, depth]#
broadcast_ones = tf.ones([from_shape[0], 1, from_shape[2], from_shape[3],
1], tf.float32)
bias = tf.matmul(broadcast_ones,
tf.cast(bias, tf.float32), transpose_b=True)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
adder = (1.0 - bias) * -10000.0
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
logits += adder
|
tensorflow.cast
| 8,102 |
import tensorflow as tf
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
is_real_example=True)
return feature
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
|
tensorflow.python_io.TFRecordWriter
| 8,103 |
import tensorflow as tf
return pt_loss
def log_sum_exp(x):
"""numerically stable log_sum_exp implementation that prevents overflow."""
axis = len(x.get_shape()) - 1
m = tf.reduce_max(x, axis)
m2 = tf.reduce_max(x, axis, keep_dims=True)
return m + tf.log(tf.reduce_sum(tf.exp(x - m2), axis))
def log_prob_from_logits(x):
"""numerically stable log_softmax implementation that prevents overflow."""
axis = len(x.get_shape()) - 1
m = tf.reduce_max(x, axis, keep_dims=True)
return x - m - tf.log(tf.reduce_sum(tf.exp(x - m), axis, keep_dims=True))
def segment_loss(logits, labels, num_classes, head=None):
"""Calculate the loss from the logits and the labels.
Args:
logits: tensor, float - [batch_size * width * height, num_classes].
Use vgg_fcn.up as logits.
labels: Labels tensor, int32 - [batch_size * width * height, num_classes].
The ground truth of your data.
head: numpy array - [num_classes]
Weighting the loss of each class
Optional: Prioritize some classes
|
tensorflow.exp
| 8,104 |
import tensorflow as tf
classification_for_object = tf.gather_nd(classification, indices_for_object)
cls_loss_for_object = keras.backend.binary_crossentropy(labels_for_object, classification_for_object)
# 找出实际上为背景的先验框
indices_for_back = tf.where(keras.backend.equal(anchor_state, 0))
labels_for_back = tf.gather_nd(labels, indices_for_back)
classification_for_back = tf.gather_nd(classification, indices_for_back)
# 计算每一个先验框应该有的权重
cls_loss_for_back = keras.backend.binary_crossentropy(labels_for_back, classification_for_back)
# 标准化,实际上是正样本的数量
normalizer_pos = tf.where(keras.backend.equal(anchor_state, 1))
|
tensorflow.gather_nd
| 8,105 |
from tensorflow.python.ops import array_ops
var = contrib_variables.local_variable(
array_ops.zeros([], dtype=dtypes.float64), name=scope)
|
tensorflow.python.ops.array_ops.zeros
| 8,106 |
import tensorflow as tf
with tf.Graph().as_default():
|
tensorflow.Graph
| 8,107 |
import tensorflow.contrib.slim as slim
def get_gtboxes_and_label(self, gtboxes_and_label_h, gtboxes_and_label_r, num_objects):
return gtboxes_and_label_h[:int(num_objects), :].astype(np.float32), \
gtboxes_and_label_r[:int(num_objects), :].astype(np.float32)
def main(self):
with tf.Graph().as_default() as graph, tf.device('/cpu:0'):
num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
global_step = slim.get_or_create_global_step()
lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu)
tf.summary.scalar('lr', lr)
optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
r3det_gwd = build_whole_network.DetectionNetworkR3DetGWD(cfgs=self.cfgs,
is_training=True)
with tf.name_scope('get_batch'):
|
tensorflow.contrib.slim.get_or_create_global_step
| 8,108 |
import tensorflow as tf
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=filter_list[1],
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
# return int(np.prod(pool2.get_shape().as_list()[1:]))
return pool2.get_shape().as_list()
if __name__ == "__main__":
tf.autograph.set_verbosity(0)
print(get_conv_dimension([32, 64]))
|
tensorflow.layers.max_pooling2d
| 8,109 |
import tensorflow as tf
return update_scale_expr
# Functionality to update the threshold for parameter space noise.
update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0,
lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold))
# Put everything together.
deterministic_actions = tf.argmax(q_values_perturbed, axis=1)
batch_size = tf.shape(observations_ph.get())[0]
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
updates = [
update_eps_expr,
tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])),
tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
update_param_noise_threshold_expr,
|
tensorflow.stack
| 8,110 |
from tensorflow.python.training import summary_io
output_dir: `string`, the directory to save the summaries to. Only used
if no `summary_writer` is supplied.
summary_writer: `SummaryWriter`. If `None` and an `output_dir` was passed,
one will be created accordingly.
scaffold: `Scaffold` to get summary_op if it's not provided.
"""
# TODO(ipolosukhin): Implement every N seconds.
super(SummarySaver, self).__init__(every_n_steps=save_steps)
self._summary_op = summary_op
self._summary_writer = summary_writer
if summary_writer is None and output_dir:
self._summary_writer = summary_io.SummaryWriter(output_dir)
self._scaffold = scaffold
# TODO(mdan): Throw an error if output_dir and summary_writer are None.
def set_estimator(self, estimator):
super(SummarySaver, self).set_estimator(estimator)
# TODO(mdan): This line looks redundant.
if self._summary_writer is None:
self._summary_writer = summary_io.SummaryWriter(estimator.model_dir)
def every_n_step_begin(self, step):
|
tensorflow.python.training.summary_io.SummaryWriter
| 8,111 |
import tensorflow as tf
test.build(tfinput, args.ablation_type)
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
learning_rate = tf.placeholder(tf.float32, shape=[])
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(test.loss)
sess.run(tf.global_variables_initializer())
allloss = []
validloss = []
itr = 0
saver = tf.train.Saver()
|
tensorflow.placeholder
| 8,112 |
import tensorflow as tf
for i in range(new_w):
weights[i:i + h, i] = 1.0
weights_list += [weights]
weights_tensors = tf.stack([tf.convert_to_tensor(weights, dtype=tf.float32) for weights in weights_list])
rand_horizon = tf.random_uniform((), 0, horizon, dtype=tf.int32)
new_w = epi_len - rand_horizon
cur_weights = tf.slice(weights_tensors[tf.cast(rand_horizon, tf.int32)], [0, 0], [epi_len, new_w])
# cur_weights = tf.slice(weights_tensors, [tf.cast(rand_horizon, tf.int32), 0, 0], [1, epi_len, new_w])
horizon_pred = tf.matmul(pred, cur_weights)
horizon_tgt = tf.matmul(tgt, cur_weights)
return horizon_pred, horizon_tgt
|
tensorflow.cast
| 8,113 |
from tensorflow.python.framework import ops
if input_shape is not None:
return [tensor_shape.TensorShape(input_shape.tolist())]
else:
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("MaxPoolGrad")
@ops.RegisterShape("MaxPoolGradWithArgmax")
def _MaxPoolGradShape(op):
"""Shape function for the MaxPoolGrad op."""
orig_input_shape = op.inputs[0].get_shape().with_rank(4)
return [orig_input_shape]
|
tensorflow.python.framework.ops.RegisterShape
| 8,114 |
import tensorflow as tf
gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6])
if cfgs.ANGLE_RANGE == 180:
gtboxes_and_label_r_ = tf.py_func(coordinate_present_convert,
inp=[gtboxes_and_label_r, -1],
Tout=tf.float32)
|
tensorflow.py_func
| 8,115 |
import tensorflow as tf
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.contrib.framework.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
def _build_rnn_graph(self, inputs, config, is_training):
if config.rnn_mode == CUDNN:
return self._build_rnn_graph_cudnn(inputs, config, is_training)
else:
return self._build_rnn_graph_lstm(inputs, config, is_training)
def _build_rnn_graph_cudnn(self, inputs, config, is_training):
|
tensorflow.placeholder
| 8,116 |
import tensorflow as tf
# TODO(zoyahav): Use register_keras_serializable directly once we no longer support
# TF<2.1.
def _maybe_register_keras_serializable(package):
if hasattr(tf.keras.utils, 'register_keras_serializable'):
return tf.keras.utils.register_keras_serializable(package=package)
else:
return lambda cls: cls
def _check_tensorflow_version():
|
tensorflow.keras.utils.register_keras_serializable
| 8,117 |
import tensorflow as tf
features_nonzero)
else:
raise ValueError('Undefined model!')
# Optimizer
pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0]
- adj.sum()) * 2)
with tf.name_scope('optimizer'):
# Optimizer for Non-Variational Autoencoders
if model_name in ('gcn_ae', 'linear_ae', 'deep_gcn_ae'):
opt = OptimizerAE(preds = model.reconstructions,
labels = tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'],
validate_indices = False), [-1]),
pos_weight = pos_weight,
norm = norm)
|
tensorflow.name_scope
| 8,118 |
import tensorflow as tf
for x in checkpoints:
if x.op and x.op.name is not None:
grad_node = tf.stop_gradient(x, name=x.op.name+"_sg")
else:
|
tensorflow.stop_gradient
| 8,119 |
import tensorflow as tf
loss_entropy = - 0.01 * tf.reduce_mean(pi.entropy())
loss = loss_pg + loss_vf + loss_entropy
opt = tf.train.AdamOptimizer(self.LR)
self.train_op = opt.minimize(loss, global_step=self.global_step, var_list=pi_params + vf_params)
self.pi_new_params = [oldp.assign(p) for p, oldp in zip(pi_params, pi_old_params)]
self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)]
self.sess.run(tf.global_variables_initializer())
# Tensorboard
if summary_dir is not None:
self.writer = tf.summary.FileWriter(summary_dir)
tf.summary.scalar('Loss/Policy', loss_pg)
tf.summary.scalar('Loss/Value', loss_vf)
|
tensorflow.global_variables_initializer
| 8,120 |
from tensorflow.python.platform import gfile
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s1)))
self.assertEqual(2, len(gfile.Glob(s2)))
|
tensorflow.python.platform.gfile.Glob
| 8,121 |
import tensorflow as tf
#print(image.shape)
#print(label.shape)
images,labels=tf.train.shuffle_batch([image,label],
batch_size=batch_size,num_threads=10,capacity=10000,min_after_dequeue=200)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
def get_test_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
def get_valid_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
class trainwork(object):
def __init__(self):
with tf.variable_scope('scop'):
self.w1=tf.get_variable('w1', [4096,2048],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w2=tf.get_variable('w2', [2048,3072],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w3=tf.get_variable('w3', [3072,512],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w4=tf.get_variable('w4', [512,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.b1 = tf.get_variable('b1', [2048],initializer=tf.constant_initializer(0.0))
self.b2 = tf.get_variable('b2', [3072],initializer=tf.constant_initializer(0.0))
self.b3 = tf.get_variable('b3', [512],initializer=tf.constant_initializer(0.0))
|
tensorflow.reshape
| 8,122 |
import tensorflow as tf
stddev=np.sqrt(1.0 / (width * char_embed_dim))
)
w = tf.get_variable(
"W_cnn_%s" % i,
[1, width, char_embed_dim, num],
initializer=w_init,
dtype=DTYPE)
b = tf.get_variable(
"b_cnn_%s" % i, [num], dtype=DTYPE,
initializer=tf.constant_initializer(0.0))
conv = tf.nn.conv2d(
inp, w,
strides=[1, 1, 1, 1],
padding="VALID") + b
# now max pool
conv = tf.nn.max_pool(
conv, [1, 1, max_chars-width+1, 1],
|
tensorflow.constant_initializer
| 8,123 |
import tensorflow as tf
candidate_starts = tf.tile(tf.expand_dims(tf.range(num_words), 1), [1, self.max_span_width]) # [num_words, max_span_width]
|
tensorflow.range
| 8,124 |
import tensorflow as tf
[None, None, 3])
def test_images_and_additional_channels(self):
input_tensor_dict = {
fields.InputDataFields.image:
tf.placeholder(tf.float32, [None, None, 5]),
fields.InputDataFields.image_additional_channels:
tf.placeholder(tf.float32, [None, None, 2]),
}
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
spatial_image_shape=[5, 6])
|
tensorflow.placeholder
| 8,125 |
import tensorflow as tf
pred_posi_dif = tf.where(geq, pred_dif, -pred_dif)
loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif)
cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32)
final_loss = tf.reduce_mean(loss)
return final_loss, cstr_pct
def contra_traj_lossV7(pred, tgt, horizon=12, temp=100):
horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon)
# horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1])
tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1])
tgt_dif = tgt_flat1 - tgt_flat2
pred_dif = pred_flat1 - pred_flat2
geq = tf.cast(tgt_dif > 0, tf.bool)
tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif)
pred_posi_dif = tf.where(geq, pred_dif, -pred_dif)
loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif)
cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32)
unorm_w = tf.exp((tgt_flat1 + tgt_flat2)/temp)
loss = unorm_w * loss / (tf.reduce_sum(unorm_w))
a = tf.print(tf.reduce_sum(unorm_w))
with tf.control_dependencies([a]):
final_loss = tf.reduce_sum(loss)
return final_loss, cstr_pct
def contra_traj_lossV8(pred, tgt, horizon=12):
|
tensorflow.cast
| 8,126 |
import tensorflow as tf
return tf.reduce_mean(tf.square(uP))
def conv2d(img, w, b, strides=[1, 1, 1, 1], is_dilated=False):
if is_dilated:
layer = tf.nn.atrous_conv2d(img, w, rate=2, padding='SAME') + b
else:
layer = tf.nn.conv2d(img, w, strides=strides, padding='SAME') + b
return layer
def dropout(layer, keep_prob=0.9, is_training=True, name=None, selu=False):
if selu:
return dropout_selu(layer, 1.0 - keep_prob, name=name, training=is_training)
if is_training:
return tf.nn.dropout(layer, keep_prob=keep_prob, name=name)
else:
return tf.add(layer, 0, name=name)
def norm(layer, norm_type='batch_norm', decay=0.9, id=0, is_training=True, activation_fn=tf.nn.relu, prefix='conv_'):
if norm_type != 'batch_norm' and norm_type != 'layer_norm':
return tf.nn.relu(layer)
with tf.variable_scope('norm_layer_%s%d' % (prefix, id)) as vs:
if norm_type == 'batch_norm':
if is_training:
try:
layer = tf.contrib.layers.batch_norm(layer, is_training=True, center=True,
scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs) # updates_collections=None
except ValueError:
layer = tf.contrib.layers.batch_norm(layer, is_training=True, center=True,
scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs, reuse=True) # updates_collections=None
else:
|
tensorflow.add
| 8,127 |
import tensorflow as tf
m.ph.train_images: np.zeros((1, w, h, in_ch)),
m.ph.train_classes: np.zeros((1,)),
m.ph.pred_images: np.zeros((1, w, h, in_ch)),
m.ph.pred_classes: np.zeros((1,))
})
def _make_session(self):
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
return sess
def _feed_dataset_to_model(self, images, classes=None, is_train=False):
m = self._model
utils.logger.log('Feeding dataset to model...')
# Mock classes if required
classes = classes or [0 for _ in range(len(images))]
|
tensorflow.Session
| 8,128 |
from tensorflow.python.ops import gradients_impl
inputs = seq_length * [
array_ops.zeros([batch_size, num_units], dtypes.float32)
]
cell = lambda: lstm_ops.LSTMBlockCell(num_units=num_units) # pylint: disable=cell-var-from-loop
multi_cell = rnn_cell.MultiRNNCell(
[cell() for _ in range(num_layers)])
outputs, final_state = core_rnn.static_rnn(
multi_cell, inputs, dtype=dtypes.float32)
trainable_variables = ops.get_collection(
ops.GraphKeys.TRAINABLE_VARIABLES)
gradients = gradients_impl.gradients([outputs, final_state],
trainable_variables)
training_op = control_flow_ops.group(*gradients)
self._BenchmarkOp(training_op, "tf_rnn_lstm_block_cell %s %s" %
(config_name, self._GetConfigDesc(config)))
if __name__ == "__main__":
test.main()
|
tensorflow.python.ops.gradients_impl.gradients
| 8,129 |
import tensorflow as tf
"student_label":tf.ones_like(label_ids, dtype=tf.int32),
"teacher_label":tf.zeros_like(label_ids, dtype=tf.int32),
|
tensorflow.zeros_like
| 8,130 |
import tensorflow as tf
self.sample_action = tf.squeeze(pi_eval.sample(1), axis=0)
self.eval_action = pi_eval.mode()
self.global_step = tf.train.get_or_create_global_step()
self.saver = tf.train.Saver()
# Loss functions and training
loss_pg = - tf.reduce_mean(pi.log_prob(batch['actions']) * batch['advantage']) - 0.01 * tf.reduce_mean(pi.entropy())
loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf))
self.a_grads = tf.gradients(loss_pg, self.pi_params)
self.c_grads = tf.gradients(loss_vf, self.vf_params)
self.a_grads, _ = tf.clip_by_global_norm(self.a_grads, 20.0)
self.c_grads, _ = tf.clip_by_global_norm(self.c_grads, 20.0)
opt = tf.train.AdamOptimizer(self.LR)
self.update_a_op = opt.apply_gradients(zip(self.a_grads, self.pi_params))
|
tensorflow.square
| 8,131 |
import tensorflow as tf
mean, var = tf.nn.moments(inputdata, list(range(1, len(shape))), keep_dims=True)
if data_format == 'NCHW':
channnel = shape[1]
new_shape = [1, channnel, 1, 1]
else:
channnel = shape[-1]
new_shape = [1, 1, 1, channnel]
if ndims == 2:
new_shape = [1, channnel]
if use_bias:
beta = tf.get_variable('beta', [channnel], initializer=tf.constant_initializer())
beta = tf.reshape(beta, new_shape)
else:
beta = tf.zeros([1] * ndims, name='beta')
if use_scale:
gamma = tf.get_variable('gamma', [channnel], initializer=tf.constant_initializer(1.0))
gamma = tf.reshape(gamma, new_shape)
else:
gamma = tf.ones([1] * ndims, name='gamma')
return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name)
@staticmethod
|
tensorflow.constant_initializer
| 8,132 |
import tensorflow as tf
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU
# implementations.
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement))
sess.run(init)
# Start the queue runners.
tf.train.start_queue_runners(sess=sess)
summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)
for step in xrange(FLAGS.max_steps):
start_time = time.time()
_, loss_value = sess.run([train_op, loss])
duration = time.time() - start_time
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
if step % 10 == 0:
|
tensorflow.train.start_queue_runners
| 8,133 |
import tensorflow as tf
input_size = inputs.get_shape()[2].value
dtype = inputs.dtype
x = inputs
x0 = tf.transpose(x, perm=[1, 2,0]) # (num_nodes, total_arg_size, batch_size)
x0 = tf.reshape(x0, shape=[self._num_nodes, input_size * batch_size])
x = tf.expand_dims(x0, axis=0)
|
tensorflow.transpose
| 8,134 |
import tensorflow as tf
@pytest.fixture
def sqrt(session_tf):
return tf.convert_to_tensor(Datum.sqrt_data)
@pytest.fixture()
def I(session_tf):
return tf.convert_to_tensor(Datum.I)
@pytest.mark.parametrize('white', [True, False])
def test_diags(session_tf, white, mu, sqrt_diag, K):
"""
The covariance of q(x) can be Cholesky matrices or diagonal matrices.
Here we make sure the behaviours overlap.
|
tensorflow.convert_to_tensor
| 8,135 |
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
# Block 3
conv3a = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(pool2)
conv3b = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv3a)
conv3c = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv3b)
pool3 = MaxPool2D(pool_size=[2,2])(conv3c)
# final convolutional layer
|
tensorflow.keras.layers.Conv2D
| 8,136 |
import tensorflow as tf
scores = d_layer_3_all
# Mask
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
|
tensorflow.ones_like
| 8,137 |
import tensorflow as tf
import numpy as np
from datetime import datetime
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
slim = tf.contrib.slim
global first
first = True
classnum=12
testnum = tf.placeholder(tf.int32)
trainnum = tf.placeholder(tf.int32)
validnum = tf.placeholder(tf.int32)
learnrate = tf.placeholder(tf.float32)
def getinputs(path):
filename_queue=tf.train.string_input_producer([path])
reader=tf.TFRecordReader()
_,serialized_example=reader.read(filename_queue)
features=tf.parse_single_example(serialized_example,
features={
'label':tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})
image=tf.decode_raw(features['img_raw'],tf.uint8)
label=tf.cast(features['label'],tf.int32)
image=tf.reshape(image,[4096,1])
|
tensorflow.placeholder
| 8,138 |
import tensorflow as tf
def make_cell():
cell = self._get_lstm_cell(config, is_training)
if is_training and config.keep_prob < 1:
cell = tf.contrib.rnn.DropoutWrapper(
cell, output_keep_prob=config.keep_prob)
return cell
|
tensorflow.contrib.rnn.DropoutWrapper
| 8,139 |
import tensorflow as tf
img = tf.expand_dims(img_batch[i], axis=0)
pretrain_zoo = PretrainModelZoo()
if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo:
img = img / tf.constant([cfgs.PIXEL_STD])
gtboxes_and_label_r = tf.py_func(backward_convert,
inp=[gtboxes_and_label_batch[i]],
Tout=tf.float32)
gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6])
gtboxes_and_label_h = get_horizen_minAreaRectangle(gtboxes_and_label_batch[i])
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5])
num_objects = num_objects_batch[i]
num_objects = tf.cast(tf.reshape(num_objects, [-1, ]), tf.float32)
img_h = img_h_batch[i]
img_w = img_w_batch[i]
inputs_list.append([img, gtboxes_and_label_h, gtboxes_and_label_r, num_objects, img_h, img_w])
tower_grads = []
|
tensorflow.reshape
| 8,140 |
import tensorflow as tf
# Concat both halves across channels
X = tf.concat([X_half_1, X_half_2], axis=3)
# Apply batch normalization
X = self._add_batch_norm(X, out_ch, is_train=is_train)
X = tf.reshape(X, (-1, in_w // 2, in_h // 2, out_ch)) # Sanity shape check
return X
def _add_batch_norm(self, X, in_ch, decay=0.9, epsilon=1e-5, offset=None, scale=None, is_train=False,
no_moving_average=False):
with tf.variable_scope('batch_norm'):
|
tensorflow.reshape
| 8,141 |
import tensorflow as tf
result = estimator.predict(
input_fn=predict_input_fn,
checkpoint_path=checkpoint_path)
output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
output_submit_file = os.path.join(FLAGS.output_dir, "submit_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as pred_writer,\
tf.gfile.GFile(output_submit_file, "w") as sub_writer:
sub_writer.write("index" + "\t" + "prediction\n")
num_written_lines = 0
tf.logging.info("***** Predict results *****")
for (i, (example, prediction)) in\
enumerate(zip(predict_examples, result)):
probabilities = prediction["probabilities"]
if i >= num_actual_predict_examples:
break
output_line = "\t".join(
str(class_probability)
for class_probability in probabilities) + "\n"
pred_writer.write(output_line)
|
tensorflow.logging.info
| 8,142 |
from tensorflow.python.ops import math_ops
@distribution_util.AppendDocstring(
"""This is defined to be
```
entropy = alpha - log(beta) + log(Gamma(alpha))
+ (1-alpha)digamma(alpha)
```
where digamma(alpha) is the digamma function.""")
def _entropy(self):
return (self.alpha +
math_ops.log(self.beta) +
math_ops.lgamma(self.alpha) -
(1. + self.alpha) * math_ops.digamma(self.alpha))
@distribution_util.AppendDocstring(
"""The mean of an inverse gamma distribution is `beta / (alpha - 1)`,
when `alpha > 1`, and `NaN` otherwise. If `self.allow_nan_stats` is
`False`, an exception will be raised rather than returning `NaN`""")
def _mean(self):
mean = self.beta / (self.alpha - 1.)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
|
tensorflow.python.ops.math_ops.lgamma
| 8,143 |
import tensorflow as tf
gsum = tf.reduce_sum(gstack, axis=1)
phi = tf.get_variable("phi", (self.g_dim, self.k))
w = tf.matmul(gsum, phi)
w = tf.expand_dims(w, [2])
# Calculate policy and sample
logits = tf.reshape(tf.matmul(U, w), [-1, num_acts])
self.pi = tf.nn.softmax(logits)
self.log_pi = tf.nn.log_softmax(logits)
self.sample = policy_utils.categorical_sample(
tf.reshape(logits, [-1, num_acts]), num_acts)[0, :]
def build_value(self, _input):
with tf.variable_scope('VF'):
hidden = tf.layers.dense(inputs=_input,
units=self.vf_hidden_size,
activation=tf.nn.elu)
w = tf.get_variable("weights", (self.vf_hidden_size, 1))
|
tensorflow.reshape
| 8,144 |
import tensorflow as tf
import os.path as osp
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer("batch_size", "2", "batch size for training")
tf.flags.DEFINE_string("logs_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\logs", "path to logs directory")
tf.flags.DEFINE_string("data_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Data_zoo\STEM", "path to dataset")
tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer")
tf.flags.DEFINE_string("model_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Model_zoo", "Path to vgg model mat")
tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False")
tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize")
MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat'
MAX_ITERATION = 100 #最大步数
|
tensorflow.flags.DEFINE_string
| 8,145 |
import tensorflow as tf
qh_emb = tf.reshape(tf.nn.embedding_lookup(
self.char_mat, self.qh), [N * QL * self.max_p_num, CL, dc])
ch_emb = tf.nn.dropout(ch_emb, 1.0 - 0.5 * self.dropout)
qh_emb = tf.nn.dropout(qh_emb, 1.0 - 0.5 * self.dropout)
|
tensorflow.nn.dropout
| 8,146 |
import tensorflow as tf
pooling_result = tf.cond(
tf.equal(sl_unhead, 0),
lambda: tf.zeros([bs, 0, hn], tf.float32),
lambda: mean_pooling_for_unselected_head(
unhead_org_idx, sl_unhead, rep_unhead_mask,
input_idx, sl, rep_mask, rep_map, None) # todo: point !
)
with tf.variable_scope('output'):
if keep_unselected:
range_head = tf.tile(tf.expand_dims(tf.range(bs), -1), [1, sl_head])
scatter_attn = tf.cond(
tf.equal(sl_head, 0),
lambda: tf.zeros([bs, sl+1, hn], tf.float32),
lambda: tf.scatter_nd(
tf.stack([range_head, head_org_idx], -1), attn_result, [bs, sl+1, hn])
|
tensorflow.variable_scope
| 8,147 |
from tensorflow.contrib import metrics as metrics_lib
label_name=label_name,
weight_column_name=weight_column_name)
def logits_to_predictions(self, logits, proba=False):
if self.num_label_columns == 1:
return array_ops.squeeze(logits, squeeze_dims=[1])
return logits
def get_eval_ops(self, features, logits, targets, metrics=None):
loss = self.loss(logits, targets, features)
result = {"loss": metrics_lib.streaming_mean(loss)}
if metrics:
predictions = self.logits_to_predictions(logits, proba=False)
result.update(_run_metrics(predictions, targets, metrics,
self.get_weight_tensor(features)))
return result
class _MultiClassTargetColumn(_TargetColumn):
"""_TargetColumn for classification."""
|
tensorflow.contrib.metrics.streaming_mean
| 8,148 |
import tensorflow as tf
labels=label_ids, predictions=predictions, weights=is_real_example)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
|
tensorflow.metrics.mean
| 8,149 |
import tensorflow as tf
max_output = K.max(layer_output, axis=3)
saliency = K.gradients(K.sum(max_output), input_img)[0]
return K.function([input_img, K.learning_phase()], [saliency])
def modify_backprop(model, name):
g = tf.get_default_graph()
with g.gradient_override_map({'Relu': name}):
# get layers that have an activation
layer_dict = [layer for layer in model.layers[1:]
|
tensorflow.get_default_graph
| 8,150 |
import tensorflow as tf
print("-"*20)
print("Convolutional Block", str(num_filters), name)
print("-"*20)
with tf.variable_scope("conv_block_" + str(num_filters) + "_" + name):
for i in range(2):
with tf.variable_scope("conv1d_%s" % str(i)):
filter_shape = [3, inputs.get_shape()[2], num_filters]
W = tf.get_variable(name='W', shape=filter_shape,
initializer=he_normal,
regularizer=regularizer)
inputs = tf.nn.conv1d(inputs, W, stride=1, padding="SAME")
inputs = tf.layers.batch_normalization(inputs=inputs, momentum=0.997, epsilon=1e-5,
center=True, scale=True, training=is_training)
inputs = tf.nn.relu(inputs)
print("Conv1D:", inputs.get_shape())
print("-"*20)
if shortcut is not None:
print("-"*5)
print("Optional Shortcut:", shortcut.get_shape())
print("-"*5)
return inputs + shortcut
return inputs
# Three types of downsampling methods described by paper
def downsampling(inputs, downsampling_type, name, optional_shortcut=False, shortcut=None):
# k-maxpooling
|
tensorflow.nn.relu
| 8,151 |
import tensorflow as tf
https://arxiv.org/abs/1712.04851.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from nets import i3d_utils
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)
conv3d_spatiotemporal = i3d_utils.conv3d_spatiotemporal
inception_block_v1_3d = i3d_utils.inception_block_v1_3d
# Orignaly, arg_scope = slim.arg_scope and layers = slim, now switch to more
# update-to-date tf.contrib.* API.
arg_scope = tf.contrib.framework.arg_scope
layers = tf.contrib.layers
def s3dg_arg_scope(weight_decay=1e-7,
|
tensorflow.truncated_normal_initializer
| 8,152 |
import tensorflow as tf
if add_flipped_images:
scales_to_logits_reversed = (
outputs_to_scales_to_logits_reversed[output])
logits_reversed = _resize_bilinear(
tf.reverse_v2(scales_to_logits_reversed[MERGED_LOGITS_SCOPE], [2]),
tf.shape(images)[1:3],
scales_to_logits_reversed[MERGED_LOGITS_SCOPE].dtype)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits_reversed), 4))
|
tensorflow.shape
| 8,153 |
import tensorflow as tf
tf.summary.scalar('lr', lr)
optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
fcos = build_whole_network_batch_quad.DetectionNetworkFCOS(cfgs=self.cfgs,
is_training=True)
with tf.name_scope('get_batch'):
if cfgs.IMAGE_PYRAMID:
shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN)
shortside_len = tf.random_shuffle(shortside_len_list)[0]
else:
shortside_len = cfgs.IMG_SHORT_SIDE_LEN
img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \
self.reader.next_batch(dataset_name=cfgs.DATASET_NAME,
|
tensorflow.constant
| 8,154 |
import tensorflow as tf
# Check that the parameter nodes have been initialized.
self.assertEqual(10.0, v0.eval())
self.assertEqual(20.0, v1.eval())
# Save the initialized values in the file at "save_path"
val = save.save(sess, save_path)
self.assertTrue(isinstance(val, six.string_types))
self.assertEqual(save_path, val)
# Start a second session. In that session the variables
# have not been initialized either.
with self.test_session(graph=tf.Graph()) as sess:
v0 = tf.Variable(-1.0, name="v0")
v1 = tf.Variable(-1.0, name="v1")
save = tf.train.Saver([v0, v1])
with self.assertRaisesWithPredicateMatch(
tf.OpError, lambda e: "uninitialized value v0" in e.message):
sess.run(v0)
with self.assertRaisesWithPredicateMatch(
tf.OpError, lambda e: "uninitialized value v1" in e.message):
sess.run(v1)
# Restore the saved values in the parameter nodes.
save.restore(sess, save_path)
# Check that the parameter nodes have been restored.
|
tensorflow.Variable
| 8,155 |
import tensorflow as tf
"""Layers used during upsampling"""
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
u = tf.contrib.layers.conv2d_transpose(layer_input,filters,f_size,stride=stride,padding=padding)
if dropout_rate:
u = tf.contrib.layers.dropout(u,keep_prob=dropout_rate)
u = tf.contrib.layers.batch_norm(u)
u = tf.nn.relu(u)
# u = tf.contrib.keras.layers.concatenate([skip_input,u])
return u
# Downsampling
dwn1 = common_conv2d(image,self.gf,stride=2,norm=False,name='dwn1') # 64x64 -> 32x32
#print('dwn1',np.shape(dwn1))
|
tensorflow.contrib.layers.dropout
| 8,156 |
import tensorflow as tf
if FLAGS.do_train:
tf.logging.info("***** Running training *****")
|
tensorflow.logging.info
| 8,157 |
import tensorflow as tf
if lm_coef > 0:
train_loss = tf.reduce_mean(clf_losses) + lm_coef*tf.reduce_mean(lm_losses)
else:
train_loss = tf.reduce_mean(clf_losses)
params = find_trainable_variables("model")
grads = tf.gradients(train_loss, params)
grads = list(zip(grads, params))
gpu_grads.append(grads)
gpu_ops.append([clf_logits, clf_losses, lm_losses])
ops = [tf.concat(op, 0) for op in zip(*gpu_ops)]
grads = average_grads(gpu_grads)
grads = [g for g, p in grads]
train = opt_fns[opt](params, grads, lr, partial(lr_schedules[lr_schedule], warmup=lr_warmup), n_updates_total, l2=l2, max_grad_norm=max_grad_norm, vector_l2=vector_l2, b1=b1, b2=b2, e=e)
return [train]+ops
def mgpu_predict(*xs):
gpu_ops = []
xs = (tf.split(x, n_gpu, 0) for x in xs)
|
tensorflow.concat
| 8,158 |
import tensorflow as tf
def train_right_length(example, target):
l = tf.maximum(tf.shape(example['inputs'])[0], tf.shape(target)[0])
return tf.less(l, max_length + 1)
|
tensorflow.shape
| 8,159 |
import tensorflow as tf
self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
# AC net
def build_anet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
def build_cnet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
|
tensorflow.constant_initializer
| 8,160 |
import tensorflow as tf
model = revnet.RevNet(config=config)
if defun:
# TODO(apassos): reenable after cond lets you return None
model.call = tfe.defun(model.call)
batch_size = 64
num_burn = 5
num_iters = 10
with tf.device(device):
images, _ = random_batch(batch_size, config)
for _ in range(num_burn):
model(images, training=False)
if execution_mode:
tfe.async_wait()
gc.collect()
|
tensorflow.device
| 8,161 |
import tensorflow as tf
# logit of the end position
with tf.variable_scope("end_logits"):
if is_training:
# during training, compute the end logits based on the
# ground truth of the start position
start_positions = tf.reshape(features["start_positions"], [-1])
start_index = tf.one_hot(start_positions, depth=seq_len, axis=-1,
dtype=tf.float32)
start_features = tf.einsum("lbh,bl->bh", output, start_index)
start_features = tf.tile(start_features[None], [seq_len, 1, 1])
end_logits = tf.layers.dense(
tf.concat([output, start_features], axis=-1), xlnet_config.d_model,
kernel_initializer=initializer, activation=tf.tanh, name="dense_0")
end_logits = tf.contrib.layers.layer_norm(
end_logits, begin_norm_axis=-1)
end_logits = tf.layers.dense(
|
tensorflow.einsum
| 8,162 |
import tensorflow as tf
improvement = (mean_dist-mean_pred_error)/mean_dist
pairwise_improvement = tf.nn.relu(dists[1:] - pred_error)
pairwise_improvement_bool = tf.cast(pairwise_improvement > 0, pairwise_improvement.dtype)
self.pairwise_improvement_bool = pairwise_improvement_bool
metrics.append(tf.summary.scalar('training/avg_dist', mean_dist))
metrics.append(tf.summary.scalar('training/pred_dist', mean_pred_error))
metrics.append(tf.summary.scalar('training/improvement', improvement))
metrics.append(tf.summary.scalar('training/improvement_abs', tf.nn.relu(improvement)))
metrics.append(tf.summary.histogram('training/improvement_abs_hist', nut.nan_to_zero(improvement)))
metrics.append(tf.summary.scalar('training/improvement_pairwise', tf.reduce_mean(pairwise_improvement_bool)))
metrics.append(tf.summary.histogram('training/improvement_pairwise_hist', pairwise_improvement_bool))
self.eval_summs = tf.summary.merge(metrics)
def _build_embedding_saver(self, sess):
"""To use embedding visualizer data has to be stored in variable
|
tensorflow.nn.relu
| 8,163 |
import tensorflow as tf
tf.gfile.MakeDirs(FLAGS.output_dir)
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Input Files ***")
for input_file in input_files:
tf.logging.info(" %s" % input_file)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project
)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
if FLAGS.use_tpu:
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
|
tensorflow.contrib.cluster_resolver.TPUClusterResolver
| 8,164 |
import tensorflow as tf
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.keras import backend as K
def dice(_x, axis=-1, epsilon=0.000000001, name=''):
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
alphas = tf.get_variable('alpha'+name, _x.get_shape()[-1],
initializer=tf.constant_initializer(0.0),
dtype=_x.dtype)
input_shape = list(_x.get_shape())
|
tensorflow.variable_scope
| 8,165 |
import tensorflow as tf
def __init__(self,name,input_dim,output_dim,k_t=2,k_h=3,k_w=3,d_t=2,d_h=1,d_w=1,
stddev=0.02, data_format='NDHWC') :
with tf.variable_scope(name) :
assert(data_format == 'NDHWC')
self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0))
self.strides = [1,1,1]
self.dilates = [d_t, d_h, d_w]
def __call__(self,input_var,name=None) :
k_t,k_h,k_w,_,_ = self.w.get_shape().as_list()
_t = tf.pad(input_var, [[0,0],[0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0]], "SYMMETRIC")
return tf.nn.bias_add(
tf.nn.convolution(_t, self.w,
strides=self.strides, dilation_rate=self.dilates,
padding='VALID'),
self.b,name=name)
class Linear(object) :
def __init__(self,name,input_dim,output_dim,stddev=0.02) :
with tf.variable_scope(name) :
self.w = tf.get_variable('w',[input_dim, output_dim],
initializer=tf.random_normal_initializer(stddev=stddev))
self.b = tf.get_variable('b',[output_dim],
initializer=tf.constant_initializer(0.0))
|
tensorflow.nn.convolution
| 8,166 |
import tensorflow as tf
pattern = files[0].name[:pos] + 'AB%sDEF.GH*'
self.assertEqual(set(tf.matching_files(pattern % 'z').eval()),
self._subset(files, [1]))
self.assertEqual(set(tf.matching_files(pattern % '?').eval()),
self._subset(files, [0, 1, 3, 4]))
self.assertEqual(set(tf.matching_files(pattern % '*').eval()),
self._subset(files, [0, 1, 2, 3, 4, 5]))
self.assertEqual(set(tf.matching_files(pattern % '[cxz]').eval()),
self._subset(files, [0, 1]))
self.assertEqual(set(tf.matching_files(pattern % '[0-9]').eval()),
self._subset(files, [3, 4]))
|
tensorflow.matching_files
| 8,167 |
from tensorflow.python.framework import ops
mean,
tf.check_numerics(
decay * (mean - cur_mean), "NaN in moving mean."))
with tf.name_scope(name, "AssignMovingAvg", [var, cur_var, decay]):
with ops.colocate_with(var):
new_var = tf.assign_sub(
var,
tf.check_numerics(decay * (var - cur_var),
"NaN in moving variance."))
with tf.name_scope(name, "IncrementTime", [step]):
with ops.colocate_with(step):
new_step = tf.assign_add(step, 1.)
used_var += 0. * new_mean * new_var * new_step
used_var += epsilon
return used_mean, used_var
def convnet(input_,
dim_in,
|
tensorflow.python.framework.ops.colocate_with
| 8,168 |
import tensorflow as tf
def _evaluate_spherical_harmonics_branch(degree,
order,
theta,
phi,
sign_order,
var_type=tf.float64):
sqrt_2 = tf.constant(1.41421356237, dtype=var_type)
order_float = tf.cast(order, dtype=var_type)
tmp = sqrt_2 * _spherical_harmonics_normalization(
degree, order, var_type) * evaluate_legendre_polynomial(
degree, order, tf.cos(theta))
positive = tmp * tf.cos(order_float * phi)
negative = tmp * tf.sin(order_float * phi)
return tf.where(tf.greater(sign_order, 0), positive, negative)
def evaluate_spherical_harmonics(
degree_l: TensorLike,
order_m: TensorLike,
theta: TensorLike,
phi: TensorLike,
name: str = "spherical_harmonics_evaluate_spherical_harmonics") -> TensorLike: # pylint: disable=line-too-long
with tf.name_scope(name):
|
tensorflow.sin
| 8,169 |
from tensorflow.python.framework import ops
* `optimizer` has the wrong type.
* `clip_gradients` is neither float nor callable.
* `learning_rate` and `learning_rate_decay_fn` are supplied, but no
`global_step` is available.
* `gradients` is empty.
"""
loss = ops.convert_to_tensor(loss)
contrib_framework.assert_scalar(loss)
if global_step is None:
global_step = train.get_global_step()
else:
train.assert_global_step(global_step)
with vs.variable_scope(name, "OptimizeLoss", [loss, global_step]):
# Update ops take UPDATE_OPS collection if not provided.
if update_ops is None:
update_ops = set(ops.get_collection(ops.GraphKeys.UPDATE_OPS))
# Make sure update ops are ran before computing loss.
if update_ops:
loss = control_flow_ops.with_dependencies(list(update_ops), loss)
# Learning rate variable, with possible decay.
lr = None
if learning_rate is not None:
if (isinstance(learning_rate, ops.Tensor) and
learning_rate.get_shape().ndims == 0):
lr = learning_rate
elif isinstance(learning_rate, float):
if learning_rate < 0.0:
raise ValueError("Invalid learning_rate %s.", learning_rate)
lr = vs.get_variable(
|
tensorflow.python.framework.ops.get_collection
| 8,170 |
import tensorflow as tf
dxt = tf.stack(dxt_list)
xt = tf.stack(states)
num = (1 - self.alpha) * dxt + tf.tensordot(self.alpha * dxt ,
tf.transpose(
tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity,self.Dale_rec)),
axes=1) * \
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
denom = dxt
# sum over hidden units
num = tf.reduce_sum(tf.square(num), axis=2)
denom = tf.reduce_sum(tf.square(denom), axis=2)
bounded = tf.where(tf.greater(denom, 1e-20), tf.div(num, 1.0 * denom), tf.ones_like(num))
nelems = tf.reduce_mean(tf.where(tf.greater(denom, 1e-20), 1.0 * tf.ones_like(num), 1.0 * tf.zeros_like(num)), axis=1)
# sum mean over each batch by time steps
Omega = tf.square(bounded - 1.0)
Omega = tf.reduce_sum(tf.reduce_mean(Omega, axis=1)) / (1.0 * tf.reduce_sum(nelems))
out = tf.gradients(Omega, self.W_rec)
out[0] = tf.Print(out[0], [out[0], self.W_rec, Omega], "omega grads")
|
tensorflow.square
| 8,171 |
import tensorflow as tf
q_vals, _ = self._critic(critic_input, training=False)
q_vals_vec = tf.reshape(q_vals, (batch_size, num_tasks))
rewards, dones = self._task_distribution.evaluate(states_tiled,
actions_tiled,
tasks_tiled)
dones = tf.cast(dones, tf.float32)
rewards_vec = tf.reshape(rewards, (batch_size, num_tasks))
dones_vec = tf.reshape(dones, (batch_size, num_tasks))
relabelled_obs = self._task_distribution.combine(states_tiled, tasks_tiled)
action_distribution = self._actor(
relabelled_obs, step_type=(), network_state=())[0]
log_pi = common.log_probability(action_distribution, actions_tiled,
|
tensorflow.reshape
| 8,172 |
import tensorflow as tf
weights_list = []
type_list = []
for hop_edge_types, count in zip(edge_types, counts):
neighbors, weights, types = sample_neighbor(
neighbors_list[-1], hop_edge_types, count, default_node=default_node)
neighbors_list.append(tf.reshape(neighbors, [-1]))
weights_list.append(tf.reshape(weights, [-1]))
type_list.append(tf.reshape(types, [-1]))
return neighbors_list, weights_list, type_list
def get_multi_hop_neighbor(nodes, edge_types):
"""
Get multi-hop neighbors with adjacent matrix.
|
tensorflow.reshape
| 8,173 |
import tensorflow as tf
def _tf_multi_index(t, indices):
"""Partial TensorFlow implementation of Theano t[indices]."""
# Note: this is far from a full implementation of Theano fancy
# indexing, use with care.
assert K._BACKEND == 'tensorflow'
from collections import Sequence
import tensorflow as tf
if not isinstance(indices, Sequence):
raise ValueError(indices)
if len(indices) == 1:
return tf.gather(t, indices[0]) # gather() suffices for 1d
if K.ndim(t) == len(indices):
# Index n-dimensional tensor with n indices: pack the indices
# from e.g. [[i_0, i_1, ...] [j_0, j_1, ...]] to [[i_0, j_0],
# [i_1, j_1], ...] and use gather_nd()
# (https://www.tensorflow.org/api_docs/python/array_ops.html#gather_nd)
# TODO: check that all i in indices have ndim n-1
# TODO: support broadcasting for numpy arrays with np.broadcast_to()
#indices = tf.pack(list(indices), axis=len(indices)-1)
indices = tf.pack(list(indices), axis=-1)
# indices = tf.Print(indices, [indices], 'indices', summarize=100)
return tf.gather_nd(t, indices)
else:
|
tensorflow.gather
| 8,174 |
import tensorflow as tf
Q_filter = tf.cast((qf1 > min_q)|(qf2 > min_q),tf.float32)
#Q_filter_1 = tf.cast(qf1 > min_q,tf.float32)
#Q_filter_2 = tf.cast(qf2 > min_q,tf.float32)
im_loss1 = tf.square(self.actions_ph - self.deterministic_actions_ph)*Q_filter*self.is_demo_ph
#im_loss2 = tf.square(self.actions_ph - self.deterministic_actions_ph)*Q_filter_2*self.is_demo_ph
#actor_loss_di1 = tf.reduce_mean(im_loss1)
#actor_loss_di2 = tf.reduce_mean(im_loss2)
self.actor_loss_di = tf.reduce_mean(im_loss1)
imitation_for_priority = tf.reduce_mean(im_loss1,axis=1)
regularizerpi = tf.contrib.layers.l1_l2_regularizer(scale_l1=0.0, scale_l2=1e-5, scope="model/pi")
all_trainable_weights_pi = tf.trainable_variables('model/pi')
regularization_penalty_pi = tf.contrib.layers.apply_regularization(regularizerpi, all_trainable_weights_pi)
policy_loss = policy_kl_loss + regularization_penalty_pi + self.actor_loss_di
|
tensorflow.reduce_mean
| 8,175 |
import tensorflow as tf
rnn_outputs, final_state = tf.nn.dynamic_rnn(cell, rnn_inputs, initial_state=init_state)
'''预测,损失,优化'''
with tf.variable_scope('softmax'):
W = tf.get_variable('W', [state_size, num_classes])
b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0))
'''因为rnn_outputs是三维的,这里需要将其转成2维的,
矩阵运算后再转换回来[batch_size, num_steps, num_classes]'''
logits = tf.reshape(tf.matmul(tf.reshape(rnn_outputs, [-1, state_size]), W) +b, \
shape=[batch_size, num_steps, num_classes])
predictions = tf.nn.softmax(logits)
y_as_list = tf.unstack(y, num=num_steps, axis=1)
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits)
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(learning_rate).minimize(total_loss)
'''训练网络'''
def train_rnn(num_epochs, num_steps, state_size=4, verbose=True):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#sess = tf_debug.LocalCLIDebugWrapperSession(sess)
training_losses = []
|
tensorflow.unstack
| 8,176 |
import tensorflow as tf
feature_emb = tf.concat(feature_emb_list, 2) # [k, c, emb]
feature_emb = tf.nn.dropout(feature_emb, self.dropout) # [k, c, emb]
target_emb = tf.expand_dims(top_span_emb, 1) # [k, 1, emb]
similarity_emb = top_antecedent_emb * target_emb # [k, c, emb]
target_emb = tf.tile(target_emb, [1, c, 1]) # [k, c, emb]
pair_emb = tf.concat([target_emb, top_antecedent_emb, similarity_emb, feature_emb], 2) # [k, c, emb]
with tf.variable_scope("slow_antecedent_scores"):
slow_antecedent_scores = util.ffnn(pair_emb, self.config["ffnn_depth"], self.config["ffnn_size"], 1, self.dropout) # [k, c, 1]
slow_antecedent_scores = tf.squeeze(slow_antecedent_scores, 2) # [k, c]
return slow_antecedent_scores # [k, c]
|
tensorflow.concat
| 8,177 |
import tensorflow as tf
# channels dim
im_flat = tf.reshape(im, tf.stack([-1, channels]))
im_flat = tf.to_float(im_flat)
i_z0_y0_x0 = tf.gather(im_flat, idx_z0_y0_x0)
i_z0_y0_x1 = tf.gather(im_flat, idx_z0_y0_x1)
i_z0_y1_x0 = tf.gather(im_flat, idx_z0_y1_x0)
i_z0_y1_x1 = tf.gather(im_flat, idx_z0_y1_x1)
i_z1_y0_x0 = tf.gather(im_flat, idx_z1_y0_x0)
i_z1_y0_x1 = tf.gather(im_flat, idx_z1_y0_x1)
i_z1_y1_x0 = tf.gather(im_flat, idx_z1_y1_x0)
i_z1_y1_x1 = tf.gather(im_flat, idx_z1_y1_x1)
# Finally calculate interpolated values.
x0_f = tf.to_float(x0)
x1_f = tf.to_float(x1)
y0_f = tf.to_float(y0)
y1_f = tf.to_float(y1)
z0_f = tf.to_float(z0)
z1_f = tf.to_float(z1)
# Check the out-of-boundary case.
x0_valid = tf.to_float(
tf.less_equal(x0, max_x) & tf.greater_equal(x0, 0))
x1_valid = tf.to_float(
tf.less_equal(x1, max_x) & tf.greater_equal(x1, 0))
y0_valid = tf.to_float(
tf.less_equal(y0, max_y) & tf.greater_equal(y0, 0))
|
tensorflow.to_float
| 8,178 |
import tensorflow as tf
# Set up optional scale and offset factors.
if self._offset:
self._set_default_initializer(self.BETA)
self._beta = tf.get_variable(
self.BETA,
shape=self._mean_shape,
initializer=self._initializers[self.BETA])
|
tensorflow.get_variable
| 8,179 |
import tensorflow as tf
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
|
tensorflow.contrib.tpu.TPUEstimatorSpec
| 8,180 |
import tensorflow as tf
generator_target_prob)
self.g_loss = tf.reduce_mean(self.g_loss)
|
tensorflow.reduce_mean
| 8,181 |
import tensorflow as tf
# Compute the policy loss
# Alternative: policy_kl_loss = tf.reduce_mean(logp_pi - min_qf_pi)
policy_kl_loss = tf.reduce_mean((self.ent_coef * logp_pi - min_qf_pi)*self.weight_ph)
actor_for_priority = tf.reduce_mean(self.ent_coef * logp_pi - min_qf_pi,1)
# NOTE: in the original implementation, they have an additional
# regularization loss for the Gaussian parameters
# this is not used for now
# policy_loss = (policy_kl_loss + policy_regularization_loss)
min_q = tf.minimum(dtm_qf1,dtm_qf2)
Q_filter = tf.cast((qf1 > min_q)|(qf2 > min_q),tf.float32)
#Q_filter_1 = tf.cast(qf1 > min_q,tf.float32)
#Q_filter_2 = tf.cast(qf2 > min_q,tf.float32)
im_loss1 = tf.square(self.actions_ph - self.deterministic_actions_ph)*Q_filter*self.is_demo_ph
#im_loss2 = tf.square(self.actions_ph - self.deterministic_actions_ph)*Q_filter_2*self.is_demo_ph
#actor_loss_di1 = tf.reduce_mean(im_loss1)
#actor_loss_di2 = tf.reduce_mean(im_loss2)
self.actor_loss_di = tf.reduce_mean(im_loss1)
imitation_for_priority = tf.reduce_mean(im_loss1,axis=1)
regularizerpi = tf.contrib.layers.l1_l2_regularizer(scale_l1=0.0, scale_l2=1e-5, scope="model/pi")
all_trainable_weights_pi = tf.trainable_variables('model/pi')
|
tensorflow.cast
| 8,182 |
import tensorflow as tf
print()
net = []
with tf.variable_scope(name):
with tf.variable_scope('branch1_1x1'):
if o1s>0:
conv1 = conv(inp, inSize, o1s, 1, 1, 1, 1, 'SAME', 'conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm, weight_decay=weight_decay)
net.append(conv1)
|
tensorflow.variable_scope
| 8,183 |
from tensorflow.python.framework import ops
grad,
use_locking=self._use_locking).op
def _apply_sparse(self, grad, var):
delta = ops.IndexedSlices(grad.values * self._learning_rate_tensor,
grad.indices, grad.dense_shape)
return var.scatter_sub(delta, use_locking=self._use_locking)
|
tensorflow.python.framework.ops.IndexedSlices
| 8,184 |
from tensorflow.contrib.distributions.python.ops import distribution_util
new_shape = array_ops.concat(0, ((-1,), batch_shape, event_shape))
x = array_ops.reshape(x, shape=new_shape)
x = distribution_util.rotate_transpose(x, shift=-1)
return x, sample_shape
|
tensorflow.contrib.distributions.python.ops.distribution_util.rotate_transpose
| 8,185 |
from tensorflow.python.ops import variables
update_op = clip_opt.apply_gradients(
list(zip([grads, grads], [var0, var1])))
variables.global_variables_initializer().run()
return var0, var1, update_op
|
tensorflow.python.ops.variables.global_variables_initializer
| 8,186 |
import tensorflow as tf
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
|
tensorflow.logging.info
| 8,187 |
import tensorflow as tf
def attention(query, facts, attention_size, mask, stag='null', mode='LIST', softmax_stag=1, time_major=False, return_alphas=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if time_major:
|
tensorflow.concat
| 8,188 |
import tensorflow as tf
self.batch_pos_cnt = batch_pos_cnt
self.max_iter = max_iter
self.model_type = model_type
self.add_bias = add_bias
if opt is None:
opt = tf.train.AdagradOptimizer(1.0)
self.opt = opt
self.sess = None
self.train_step = None
self.post_step = None
self.graph = tf.Graph()
with self.graph.as_default():
self.head_input = tf.placeholder(tf.int32, shape=[None])
self.rel_input = tf.placeholder(tf.int32, shape=[None])
self.tail_input = tf.placeholder(tf.int32, shape=[None])
self.target = tf.placeholder(tf.float32, shape=[None])
def _create_model(self, train_triples):
''' Subclasses must build Graph and set self.train_step '''
raise Exception('subclass must implement')
def _create_batch_provider(self, train_triples):
''' Default implementation '''
return ContrastiveTrainingProvider(train_triples, self.batch_pos_cnt)
def _create_output_and_loss(self, raw_output):
|
tensorflow.placeholder
| 8,189 |
import tensorflow as tf
soft_placement = True
util.auto_parallel(metagraph, m)
with tf.Graph().as_default():
tf.train.import_meta_graph(metagraph)
for model in models.values():
model.import_ops()
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
config_proto = tf.ConfigProto(allow_soft_placement=soft_placement)
with sv.managed_session(config=config_proto) as session:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
|
tensorflow.train.Supervisor
| 8,190 |
import tensorflow as tf
self.param_initializer = {
'moving_mean': tf.constant_initializer(0., dtype=self.dtype),
'moving_variance': tf.constant_initializer(1., dtype=self.dtype),
'gamma': tf.constant_initializer(0.1, dtype=self.dtype)
}
self.param_trainable = {
|
tensorflow.constant_initializer
| 8,191 |
import tensorflow as tf
conv2_bn = tf.nn.relu(tf.layers.batch_normalization(conv2, training=train))
pool2 = tf.layers.max_pooling2d(
inputs=conv2_bn,
pool_size=[2, 2],
strides=2,
name='pool2'
)
v = tf.reshape(pool2, [-1, 4096])
fc1 = tf.layers.dense(
inputs=v,
units=1024,
activation=tf.nn.relu,
use_bias=True,
name='fc1'
)
fc2 = tf.layers.dense(
inputs=fc1,
|
tensorflow.layers.dense
| 8,192 |
import tensorflow as tf
metrics.append(tf.summary.histogram('point_distance', dists))
metrics.append(tf.summary.scalar('training/trajectory_length', tf.reduce_sum(dists)))
self.blur_ph = tf.placeholder(dtype=tf.float32)
metrics.append(tf.summary.scalar('training/blur_sigma', self.blur_ph))
pred = self.embedding_test[1:-1]*2 - self.embedding_test[0:-2]
pred_error = l2(pred - self.embedding_test[2:])
mean_dist, mean_pred_error = tf.reduce_mean(dists), tf.reduce_mean(pred_error)
improvement = (mean_dist-mean_pred_error)/mean_dist
pairwise_improvement = tf.nn.relu(dists[1:] - pred_error)
pairwise_improvement_bool = tf.cast(pairwise_improvement > 0, pairwise_improvement.dtype)
self.pairwise_improvement_bool = pairwise_improvement_bool
metrics.append(tf.summary.scalar('training/avg_dist', mean_dist))
|
tensorflow.reduce_mean
| 8,193 |
import tensorflow as tf
x_batch_minus_min, x_batch_max = tf_utils.reduce_batch_minus_min_and_max(
x, reduce_instance_dims)
minus_x_min, x_max = _numeric_combine( # pylint: disable=unbalanced-tuple-unpacking
inputs=[x_batch_minus_min, x_batch_max],
fn=combine_fn,
default_accumulator_value=default_accumulator_value,
reduce_instance_dims=reduce_instance_dims)
return tf.cast(0 - minus_x_min, output_dtype), tf.cast(x_max, output_dtype)
def _min_and_max_per_key(
x: common_types.TensorType,
key: common_types.TensorType,
reduce_instance_dims: bool = True,
key_vocabulary_filename: Optional[str] = None,
|
tensorflow.cast
| 8,194 |
import tensorflow as tf
sigma2 = 1.0 / 0.26
f1 = 'CE'
def models(hps, images, RCE_train, logits=False, tsne_logits=False):
model = model_name.ResNet(hps, images, FLAGS.mode, Reuse=True)
model.build_graph()
op = model.predictions.op
logit, = op.inputs
if RCE_train==True:
logit = -logit
if tsne_logits==True:
return tf.nn.softmax(logit), model.t_SNE_logits
if logits==True:
return tf.nn.softmax(logit), logit
return tf.nn.softmax(logit)
class models_carlini:
def __init__(self,hps):
self.image_size = image_size
self.num_channels = num_channel############MNIST and CIFAR10 are different ar here
self.num_labels = num_classes
self.hps = hps
|
tensorflow.nn.softmax
| 8,195 |
import tensorflow as tf
to_seq = mask.shape.dims + [1] * (sequence.shape.ndims - mask.shape.ndims)
sequence *= tf.reshape(mask, to_seq)
to_decay = mask.shape.dims + [1] * (decay.shape.ndims - mask.shape.ndims)
decay *= tf.reshape(mask, to_decay)
sequences = [sequence, decay]
|
tensorflow.reshape
| 8,196 |
import tensorflow as tf
if self.mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(
self.mode, loss=loss, eval_metric_ops=metrics
)
elif self.mode == tf.estimator.ModeKeys.TRAIN:
optimizer_params = self.params.get("optimizer_params", {})
global_step = tf.train.get_or_create_global_step()
# apply learning rate decay if it's setup already.
lr_decay_params = optimizer_params.pop("learning_rate_exp_decay", {})
# learning_rate = tf.train.exponential_decay(
# self.params["learning_rate"],
# global_step,
# decay_steps=self.params["lr_decay_steps"],
|
tensorflow.train.get_or_create_global_step
| 8,197 |
import tensorflow as tf
def testParetoPDFGradientZeroOutsideSupport(self):
scale = tf.constant(1.)
concentration = tf.constant(3.)
# Check the gradient on the undefined portion.
x = scale - 1
pareto = tfd.Pareto(concentration, scale)
compute_pdf = lambda x: pareto.prob(x) # pylint:disable=unnecessary-lambda
self.assertAlmostEqual(self.compute_gradients(
compute_pdf, args=[x])[0], 0.)
def testParetoCDFGradientZeroOutsideSupport(self):
scale = tf.constant(1.)
concentration = tf.constant(3.)
# Check the gradient on the undefined portion.
x = scale - 1
pareto = tfd.Pareto(concentration, scale)
compute_cdf = lambda x: pareto.cdf(x) # pylint:disable=unnecessary-lambda
self.assertAlmostEqual(
self.compute_gradients(
compute_cdf, args=[x])[0], 0.)
def testParetoMean(self):
scale = [1.4, 2., 2.5]
concentration = [2., 3., 2.5]
pareto = tfd.Pareto(concentration, scale)
|
tensorflow.constant
| 8,198 |
import tensorflow as tf
# The `positions` tensor might be zero-padded (if the sequence is too
# short to have the maximum number of predictions). The `label_weights`
# tensor has a value of 1.0 for every real prediction and 0.0 for the
# padding predictions.
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
numerator = tf.reduce_sum(label_weights * per_example_loss)
denominator = tf.reduce_sum(label_weights) + 1e-5
loss = numerator / denominator
|
tensorflow.reduce_sum
| 8,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.