seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf 'data_dir', '../PASCAL/VOC_TF/VOC0712TF/', 'The directory where the dataset input data is stored.') tf.app.flags.DEFINE_string( 'dataset_name', 'pascalvoc_0712', 'The name of the dataset to load.') tf.app.flags.DEFINE_integer( 'num_classes', 21, 'Number of classes to use in the dataset.') tf.app.flags.DEFINE_string( 'dataset_split_name', 'train', 'The name of the train/test split.') tf.app.flags.DEFINE_string( 'model_dir', './logs_v3/', 'The directory where the model will be stored.') tf.app.flags.DEFINE_integer( 'log_every_n_steps', 10, 'The frequency with which logs are print.') tf.app.flags.DEFINE_integer( 'save_summary_steps', 500, 'The frequency with which summaries are saved, in seconds.') tf.app.flags.DEFINE_integer( 'save_checkpoints_secs', 7200, 'The frequency with which the model is saved, in seconds.') # model related configuration tf.app.flags.DEFINE_integer( 'train_image_size', 352, 'The size of the input image for the model to use.') tf.app.flags.DEFINE_integer( 'resnet_size', 50, 'The size of the ResNet model to use.') tf.app.flags.DEFINE_integer(
tensorflow.app.flags.DEFINE_integer
8,300
import tensorflow as tf bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1] nin = x.get_shape()[channel_ax].value wshape = [rf, rf, nin, nf] with tf.variable_scope(scope): w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale)) b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0))
tensorflow.variable_scope
8,301
import tensorflow as tf label_weights = tf.reshape(label_weights, [-1]) one_hot_labels = tf.one_hot( label_ids, depth=bert_config.vocab_size, dtype=tf.float32) # The `positions` tensor might be zero-padded (if the sequence is too # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions. per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator return (loss, per_example_loss, log_probs) def get_next_sentence_output(bert_config, input_tensor, labels, clip):
tensorflow.reduce_sum
8,302
import tensorflow as tf self.assertEqual((2, 2), res[0].shape) def testDynamicAttentionDecoder1(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.GRUCell(2) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.dynamic_rnn(cell, inp, dtype=tf.float32) attn_states = enc_outputs dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testDynamicAttentionDecoder2(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.GRUCell(2) inp = tf.constant(0.5, shape=[2, 2, 2])
tensorflow.global_variables_initializer
8,303
import tensorflow as tf def bad(): image = tf.image.decode_jpeg( tf.reshape(byte, shape=[]), 3, **JPEG_OPT) image = resize_shortest_edge(image, jpeg_shape, 224) image = center_crop(image, 224) return image image = tf.cond(is_bad, bad, good) # TODO other imgproc image = lighting(image, 0.1, eigval=np.array([0.2175, 0.0188, 0.0045], dtype='float32') * 255.0, eigvec=np.array([[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]], dtype='float32')) image = tf.image.random_flip_left_right(image) image = tf.reverse(image, axis=[2]) # to BGR return image return training_mapper if isTrain else validation_mapper """ ====== Model & Evaluation ======= """ def eval_on_ILSVRC12(model, sessinit, dataflow): pred_config = PredictConfig( model=model, session_init=sessinit,
tensorflow.reverse
8,304
import tensorflow as tf else: init = tf.truncated_normal_initializer(stddev=init_stddev) X = tf.layers.conv2d(X, out_channels, kernel_size=filtersize, strides=(stride, stride), padding="valid", kernel_initializer=init) if norm == 'I': X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse, epsilon=0.001) elif norm == 'B': X = tf.layers.batch_normalization(X, reuse=reuse, training=True) elif norm == 'G': X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse) if nonlin: X = tf.nn.leaky_relu(X, 0.2) return X with tf.variable_scope('discriminator') as scope: if reuse: scope.reuse_variables() print('D in:', X.get_shape().as_list()) X = self.conv('DZ1', X, 512, 1, 1) X = tf.nn.leaky_relu(X, 0.2)
tensorflow.nn.leaky_relu
8,305
import tensorflow as tf one = tf.Variable(1.0) twos = tf.Variable([2.0, 2.0, 2.0]) init = tf.initialize_all_variables() save = tf.train.Saver(tf.all_variables()) init.run() save.save(sess, save_path) with tf.Session("", graph=tf.Graph()) as sess: one = tf.Variable(0.0) twos = tf.Variable([0.0, 0.0, 0.0]) # Saver with no arg, defaults to 'all variables'. save = tf.train.Saver() save.restore(sess, save_path) self.assertAllClose(1.0, one.eval())
tensorflow.Graph
8,306
import tensorflow as tf wvs = tf.pack(self._inputs) wvs_weighted = tf.mul(tf.reshape(tf.transpose(self.cs), [-1, 1]),
tensorflow.transpose
8,307
import tensorflow as tf actions[name] = tf.gather(params=self.actions_memory[name], indices=indices) terminal = tf.gather(params=self.terminal_memory, indices=indices) reward = tf.gather(params=self.reward_memory, indices=indices) if self.include_next_states:
tensorflow.gather
8,308
import tensorflow as tf raw_output = -tf.reduce_sum(tf.abs(diff_vec), 1) elif self.dist == 'euclidean': # +eps because gradients can misbehave for small values in sqrt raw_output = -tf.sqrt(tf.reduce_sum(tf.square(diff_vec), 1) + self.EPS) elif self.dist == 'sqeuclidean': raw_output = -tf.reduce_sum(tf.square(diff_vec), 1) else: raise Exception('Unknown distance type') # Model output self.output, self.loss = ranking_margin_objective(raw_output, self.margin)
tensorflow.square
8,309
import tensorflow as tf nodes_list = [nodes] adj_list = [] for hop_edge_types in edge_types: neighbor, weight, _ = get_full_neighbor(nodes, hop_edge_types) next_nodes, next_idx = tf.unique(neighbor.values, out_idx=tf.int64) next_indices = tf.stack([neighbor.indices[:, 0], next_idx], 1) next_values = weight.values next_shape = tf.stack([tf.size(nodes), tf.size(next_nodes)]) next_shape = tf.cast(next_shape, tf.int64) next_adj = tf.SparseTensor(next_indices, next_values, next_shape) next_adj = tf.sparse_reorder(next_adj) nodes_list.append(next_nodes) adj_list.append(next_adj) nodes = next_nodes
tensorflow.size
8,310
import tensorflow as tf # Set shape to remove ambiguity for dense layer. height, width = params["generator_projection_dims"][0:2] valid_kernel_size = ( params["discriminator_base_conv_blocks"][0][-1][0] ) block_conv.set_shape( [ block_conv.get_shape()[0], height - valid_kernel_size + 1, width - valid_kernel_size + 1, block_conv.get_shape()[-1]] ) print_obj("use_discriminator_logits_layer", "block_conv", block_conv) with tf.variable_scope(name_or_scope=self.name, reuse=tf.AUTO_REUSE): # Flatten final block conv tensor. block_conv_flat = self.flatten_layer(inputs=block_conv) print_obj( "use_discriminator_logits_layer", "block_conv_flat", block_conv_flat ) # Final linear layer for logits. logits = self.logits_layer(inputs=block_conv_flat) print_obj("use_discriminator_logits_layer", "logits", logits) return logits
tensorflow.variable_scope
8,311
import tensorflow as tf elif norm == 'B': X = tf.layers.batch_normalization(X, reuse=reuse, training=is_train, name=name) elif norm == 'G': X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse) if dropout > 0.0: X = tf.layers.dropout(X, dropout, training=is_train) if slope < 1.0: X = tf.nn.leaky_relu(X, slope) if slope > 0.0 else tf.nn.relu(X) return X
tensorflow.layers.dropout
8,312
import tensorflow as tf h1 = lrelu(deconv2d(tf.concat([h0, skip_h3], 3), [self.batch_size, s_h2, s_w2, nf2], name='d_h1', d_h=ns3, d_w=ns3)) h2 = lrelu(deconv2d(tf.concat([h1, skip_h2], 3), [self.batch_size, s_h1, s_w1, nf1], name='d_h2', d_h=ns2, d_w=ns2)) h3 = lrelu(deconv2d(tf.concat([h2, skip_h1], 3), [self.batch_size, s_h0, s_w0, nf0], name='d_h3', d_h=ns1, d_w=ns1)) print(h3.get_shape()) h4 = deconv2d(tf.concat([h3, skip_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4', d_h=ns0, d_w=ns0) return h4 with tf.variable_scope("deconv") as scope: output_h4 = decode(trans_z, tgtctx_h3, tgtctx_h2, tgtctx_h1, tgtctx_h0) scope.reuse_variables() truthoutput_h4 = decode(tgtimg_z, tgtctx_h3, tgtctx_h2, tgtctx_h1, tgtctx_h0) self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3 print(tgtimg_z.get_shape()) self.out = output_h4 self.out2 = truthoutput_h4 print(self.out.get_shape()) self.recon1 = tf.nn.l2_loss(tgtimg - self.out) self.recon2 = tf.nn.l2_loss(tgtimg - self.out2) if ablation_type == "None": self.loss = self.recon1 + self.recon2 + self.simloss elif ablation_type == "L2": self.loss = self.recon1 + self.recon2 elif ablation_type == "L2L3": self.loss = self.recon1 elif ablation_type == "L1": self.loss = self.recon2 + self.simloss
tensorflow.reduce_mean
8,313
import tensorflow as tf print('feats_other: {}'.format(feats_other_nunroll.get_shape())) if mode != 'gen': targets_nunroll = tf.placeholder(dtype, shape=[batch_size, rnn_nunroll]) # TODO: tf.ones acts as an overridable placeholder but this is still awkward target_weights_nunroll = tf.ones([batch_size, rnn_nunroll], dtype) # Reshape input tensors to remove nunroll dim; will briefly restore later during RNN if necessary if cnn_rnn_zack: feats_audio = tf.reshape(feats_audio_nunroll, shape=[batch_size, rnn_nunroll + zack_hack, audio_nbands, audio_nchannels]) else: feats_audio = tf.reshape(feats_audio_nunroll, shape=[batch_size * rnn_nunroll, audio_context_len, audio_nbands, audio_nchannels]) feats_other = tf.reshape(feats_other_nunroll, shape=[batch_size * rnn_nunroll, nfeats]) if mode != 'gen': targets = tf.reshape(targets_nunroll, shape=[batch_size * rnn_nunroll]) target_weights = tf.reshape(target_weights_nunroll, shape=[batch_size * rnn_nunroll]) # CNN cnn_output = feats_audio if do_cnn: layer_last = feats_audio nfilt_last = audio_nchannels
tensorflow.reshape
8,314
import tensorflow as tf #im_loss2 = tf.square(self.actions_ph - self.deterministic_actions_ph)*Q_filter_2*self.is_demo_ph #actor_loss_di1 = tf.reduce_mean(im_loss1) #actor_loss_di2 = tf.reduce_mean(im_loss2) self.actor_loss_di = tf.reduce_mean(im_loss1) imitation_for_priority = tf.reduce_mean(im_loss1,axis=1) regularizerpi = tf.contrib.layers.l1_l2_regularizer(scale_l1=0.0, scale_l2=1e-5, scope="model/pi")
tensorflow.reduce_mean
8,315
from tensorflow.python.ops import gen_math_ops def tanh(x, name=None): """Computes hyperbolic tangent of `x` element-wise. Args: x: A Tensor with type `float`, `double`, `int32`, `complex64`, `int64`, or `qint32`. name: A name for the operation (optional). Returns: A Tensor with the same type as `x` if `x.dtype != qint32` otherwise the return type is `quint8`. """ with ops.op_scope([x], name, "Tanh") as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops._tanh(x, name=name) ops.RegisterShape("Abs")(common_shapes.unchanged_shape) ops.RegisterShape("Ceil")(common_shapes.unchanged_shape) ops.RegisterShape("Conj")(common_shapes.unchanged_shape) ops.RegisterShape("Cos")(common_shapes.unchanged_shape) ops.RegisterShape("Exp")(common_shapes.unchanged_shape) ops.RegisterShape("Floor")(common_shapes.unchanged_shape) ops.RegisterShape("Imag")(common_shapes.unchanged_shape) ops.RegisterShape("Inv")(common_shapes.unchanged_shape) ops.RegisterShape("IsFinite")(common_shapes.unchanged_shape) ops.RegisterShape("IsInf")(common_shapes.unchanged_shape) ops.RegisterShape("IsNan")(common_shapes.unchanged_shape)
tensorflow.python.ops.gen_math_ops._tanh
8,316
import tensorflow as tf labels: (tf.Tensor) A tensor of the same shape as `output`. A value >= 1 means a relevant example. propensity_weights: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element. name: A string used as the name for this variable scope. Returns: (tf.Tensor) A single value tensor containing the loss. (tf.Tensor) A tensor containing the propensity weights. """ loss = None with tf.name_scope(name, "click_weighted_pairwise_loss",[output]): sliced_output = tf.unstack(output, axis=1) sliced_label = tf.unstack(labels, axis=1) sliced_propensity = tf.unstack(propensity_weights, axis=1) for i in range(len(sliced_output)): for j in range(i+1, len(sliced_output)): cur_label_weight = tf.math.sign(sliced_label[i] - sliced_label[j]) cur_propensity = sliced_propensity[i] * sliced_label[i] + sliced_propensity[j] * sliced_label[j] cur_pair_loss = -tf.exp(sliced_output[i]) / (tf.exp(sliced_output[i]) + tf.exp(sliced_output[j])) if loss == None: loss = cur_label_weight * cur_pair_loss * cur_propensity loss += cur_label_weight * cur_pair_loss * cur_propensity
tensorflow.unstack
8,317
from tensorflow.python.framework import ops ids, math_ops.equal(ids.values, selected_id)) # TODO(ptucker): Make this more efficient, maybe add a sparse version of # tf.equal and tf.reduce_any? # Shape of filled IDs is the same as `ids` with the last dim collapsed to 1. ids_shape = array_ops.shape(ids, out_type=dtypes.int64) ids_last_dim = array_ops.size(ids_shape) - 1 filled_selected_id_shape = math_ops.reduced_shape( ids_shape, array_ops.reshape(ids_last_dim, [1])) # Intersect `ids` with the selected ID. filled_selected_id = array_ops.fill( filled_selected_id_shape, math_ops.to_int64(selected_id)) result = set_ops.set_intersection(filled_selected_id, ids) return ops.SparseTensor( indices=result.indices, values=result.values, shape=ids_shape) def _maybe_select_class_id(labels, predictions_idx, selected_id=None): """If class ID is specified, filter all other classes. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and `predictions_idx` has shape
tensorflow.python.framework.ops.SparseTensor
8,318
import tensorflow as tf tf.flags.DEFINE_string( 'variable_update', 'parameter_server', ('The method for managing variables: ' 'parameter_server, replicated, distributed_replicated, independent')) tf.flags.DEFINE_boolean( 'use_nccl', True, 'Whether to use nccl all-reduce primitives where possible') # Distributed training flags. tf.flags.DEFINE_string('job_name', '', 'One of "ps", "worker", "". Empty for local training') tf.flags.DEFINE_string('ps_hosts', '', 'Comma-separated list of target hosts') tf.flags.DEFINE_string('worker_hosts', '', 'Comma-separated list of target hosts') tf.flags.DEFINE_integer('task_index', 0, 'Index of task within the job') tf.flags.DEFINE_string('server_protocol', 'grpc', 'protocol for servers') tf.flags.DEFINE_boolean('cross_replica_sync', True, '')
tensorflow.flags.DEFINE_string
8,319
import tensorflow as tf if FLAGS.use_tpu: output_spec = tf.contrib.tpu.TPUEstimatorSpec(
tensorflow.contrib.tpu.TPUEstimatorSpec
8,320
from tensorflow.python.framework import ops def logical_xor(x, y, name="LogicalXor"): """x ^ y = (x | y) & ~(x & y).""" # TODO(alemi) Make this a cwise op if people end up relying on it. return logical_and(logical_or(x, y), logical_not(logical_and(x, y)), name=name) _OverrideBinaryOperatorHelper(logical_and, "and") _OverrideBinaryOperatorHelper(logical_or, "or") _OverrideBinaryOperatorHelper(logical_xor, "xor") ops.Tensor._override_operator("__lt__", less) ops.Tensor._override_operator("__le__", less_equal) ops.Tensor._override_operator("__gt__", greater) ops.Tensor._override_operator("__ge__", greater_equal) def range(start, limit, delta=1, name="range"): """Creates a sequence of integers. This operation creates a sequence of integers that begins at `start` and extends by increments of `delta` up to but not including `limit`. For example: ``` # 'start' is 3
tensorflow.python.framework.ops.Tensor._override_operator
8,321
import tensorflow as tf ratios: (height, width) features_height: features_width: offset: (height, width) Returns: """ with tf.variable_scope('anchor_generator'): if offset is None: offset = [stride[0]/2, stride[1]/2] features_width = tf.cast(features_width, tf.int32) features_height = tf.cast(features_height, tf.int32) scales = tf.convert_to_tensor(scales, dtype=tf.float32) ratios = tf.convert_to_tensor(ratios, dtype=tf.float32) offset = tf.convert_to_tensor(offset, dtype=tf.float32) scales_grid, ratios_grid = tf.meshgrid(scales, ratios) scales_grid = tf.reshape(scales_grid, [-1, 1]) ratios_grid = tf.reshape(ratios_grid, [-1, 1]) ratio_sqrts = tf.sqrt(ratios_grid) heights = scales_grid / ratio_sqrts * base_size[1]
tensorflow.cast
8,322
import tensorflow as tf def benchmark_batching_large(self): with tf.Session() as session: @dynamic_batching.batch_fn def f(a, b): return a + b outputs = [] for _ in xrange(1000): outputs.append(f(tf.ones([1, 100000]), tf.ones([1, 100000]))) op_to_benchmark = tf.group(*outputs) tf.train.start_queue_runners() self.run_op_benchmark( name='batching_many_large', sess=session, op_or_tensor=op_to_benchmark, burn_iters=10, min_iters=50)
tensorflow.group
8,323
import tensorflow as tf anchor_match_negative_indicator_matrix, use_semi_hard=use_semi_hard, anchor_positive_mining_distances=anchor_positive_mining_distances, anchor_match_mining_distance_matrix=( anchor_match_mining_distance_matrix))) def compute_triplet_loss(positive_distances, negative_distances): losses = tf.nn.relu(positive_distances + margin - negative_distances) losses = tf.where( tf.stop_gradient(losses < losses.dtype.max), losses, tf.zeros_like(losses)) num_nonzero_losses = tf.math.count_nonzero(losses) loss = tf.math.reduce_mean(losses) return loss, num_nonzero_losses loss, num_active_triplets = compute_triplet_loss(anchor_positive_distances, anchor_negative_distances) mining_loss, num_active_mining_triplets = compute_triplet_loss( anchor_positive_mining_distances, anchor_negative_mining_distances) return (loss, num_active_triplets, anchor_negative_distances, mining_loss, num_active_mining_triplets, anchor_negative_mining_distances)
tensorflow.math.reduce_mean
8,324
import tensorflow as tf h_fc1 = tf.nn.relu(tf.add(tf.matmul(h_conv3_flat, W_fc1), b_fc1, 'h_fc1')) readout = tf.add(tf.matmul(h_fc1, W_fc2), b_fc2, 'h_fc2') return s, readout, h_fc1 def creat_optimizer(self,readout): action = tf.placeholder(tf.float32,[None,self.ACTIONS]) y = tf.placeholder(tf.float32,[None]) readout_action = tf.reduce_sum(tf.multiply(readout,action),reduction_indices=1) cost =tf.reduce_mean(tf.square(y-readout_action)) train_step = tf.train.AdamOptimizer(1e-6).minimize(cost) return train_step,y,action #输入一个初始状态s_t,时间为t,之后进行游戏
tensorflow.placeholder
8,325
from tensorflow.python.framework import ops @ops.RegisterShape("NotEqual") @ops.RegisterShape("Pow") @ops.RegisterShape("Sub") def _BroadcastShape(op):
tensorflow.python.framework.ops.RegisterShape
8,326
from tensorflow.python.ops import math_ops metric_ops.streaming_recall_at_thresholds, threshold) return metrics def _float_weights_or_none(weights): if weights is None: return None return math_ops.to_float(weights) def _labels_streaming_mean(unused_predictions, labels, weights=None): return metric_ops.streaming_mean(labels, weights=weights) def _predictions_streaming_mean(predictions, unused_labels, weights=None):
tensorflow.python.ops.math_ops.to_float
8,327
import tensorflow as tf initial_state = dense(initial_state, cell_state_size, use_bias=True, name='initial_state_projection', activation=activation_fn) if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state: initial_output = initial_state else: # Last layer's state is the right-most part. Output is the left-most part of an LSTM's state. initial_output = initial_state[:, -cell_output_size:] time = tf.constant(0, dtype=tf.int32, name='time') outputs = tf.TensorArray(dtype=tf.float32, size=time_steps) samples = tf.TensorArray(dtype=tf.int64, size=time_steps) inputs = tf.TensorArray(dtype=tf.int64, size=time_steps).unstack(tf.to_int64(tf.transpose(decoder_inputs))) states = tf.TensorArray(dtype=tf.float32, size=time_steps) weights = tf.TensorArray(dtype=tf.float32, size=time_steps) attns = tf.TensorArray(dtype=tf.float32, size=time_steps) initial_symbol = inputs.read(0) # first symbol is BOS initial_input = embed(initial_symbol)
tensorflow.TensorArray
8,328
import tensorflow as tf tf.set_random_seed(0)
tensorflow.set_random_seed
8,329
import tensorflow as tf pi_loaded.append(load_pi_ckpt(pi_ckpt_path, agent)) return pi_loaded def create_default_writer_and_save_dir(root_dir): """Creates default directories.""" base_dir = osp.expanduser(root_dir) if not tf.io.gfile.exists(base_dir): tf.io.gfile.makedirs(base_dir) tag = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S') tb_logdir = osp.join(base_dir, tag, 'tb') save_dir = osp.join(base_dir, tag, 'train') tf.io.gfile.makedirs(tb_logdir) tf.io.gfile.makedirs(save_dir) writer = tf.contrib.summary.create_file_writer(tb_logdir) writer.set_as_default()
tensorflow.io.gfile.makedirs
8,330
import tensorflow as tf def nin(x, num_units, **kwargs): s = tf.shape(x) sh = x.get_shape().as_list() x = tf.reshape(x, [tf.reduce_prod(s[:-1]), sh[-1]]) x = dense(x, num_units, **kwargs) return tf.reshape(x, [-1] + sh[1:-1] + [num_units]) def dense(x, num_units, scope="dense", training=True, ema=None, init=False, bias_initializer=tf.constant_initializer(0.)): with tf.variable_scope(scope):
tensorflow.reshape
8,331
import tensorflow as tf """Build dynamic graph""" rnn_outputs, final_state = tf.nn.dynamic_rnn(cell=cell, inputs=rnn_inputs,initial_state=init_state)
tensorflow.nn.dynamic_rnn
8,332
import tensorflow as tf # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32),
tensorflow.constant
8,333
import tensorflow as tf return roc_sc, auprc_score,accuracy,precision,recall,f ,apk_sc def construct_placeholders(edge_types): placeholders = { 'batch': tf.placeholder(tf.int32, name='batch'), 'batch_neg': tf.placeholder(tf.int32, name='batch_neg'), 'batch_node':tf.placeholder(tf.int32,name = 'batch_node'), 'adj_min_batch': tf.placeholder(tf.float32,name='adj_min_batch'), 'sim_min_batch': tf.placeholder(tf.float32,name='sim_min_batch'), 'batch_edge_type_idx': tf.placeholder(tf.int32, shape=(), name='batch_edge_type_idx'), 'batch_row_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_row_edge_type'), 'batch_col_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_col_edge_type'), 'degrees': tf.placeholder(tf.int32), 'dropout': tf.placeholder_with_default(0., shape=()), } placeholders.update({ 'adj_mats_%d,%d,%d' % (i, j, k): tf.sparse_placeholder(tf.float32) for i, j in edge_types for k in range(edge_types[i,j])}) placeholders.update({ 'feat_%d' % i: tf.sparse_placeholder(tf.float32) for i, _ in edge_types}) return placeholders
tensorflow.placeholder
8,334
import tensorflow as tf outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0) out_bw, _ = tf.nn.dynamic_rnn( gru_bw, inputs_bw, seq_len, initial_state=init_bw, dtype=tf.float32) out_bw = tf.reverse_sequence( out_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0) outputs.append(tf.concat([out_fw, out_bw], axis=2)) if concat_layers: res = tf.concat(outputs[1:], axis=2) else: res = outputs[-1] return res class ptr_net:
tensorflow.concat
8,335
import tensorflow as tf enc_inp, dec_inp_dict, cell, 2, dec_symbols_dict, embedding_size=2, feed_previous=True) outputs_dict2, _ = tf.nn.seq2seq.one2many_rnn_seq2seq( enc_inp, dec_inp_dict2, cell, 2, dec_symbols_dict, embedding_size=2, feed_previous=True) res1 = sess.run(outputs_dict1["0"]) res2 = sess.run(outputs_dict2["0"]) res3 = sess.run(outputs_dict3["0"]) self.assertAllClose(res1, res2) self.assertAllClose(res1, res3) def testSequenceLoss(self): with self.test_session() as sess: logits = [tf.constant(i + 0.5, shape=[2, 5]) for i in range(3)] targets = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] weights = [tf.constant(1.0, shape=[2]) for i in range(3)] average_loss_per_example = tf.nn.seq2seq.sequence_loss( logits, targets, weights, average_across_timesteps=True, average_across_batch=True) res = sess.run(average_loss_per_example) self.assertAllClose(1.60944, res) average_loss_per_sequence = tf.nn.seq2seq.sequence_loss( logits, targets, weights, average_across_timesteps=False, average_across_batch=True) res = sess.run(average_loss_per_sequence) self.assertAllClose(4.828314, res)
tensorflow.constant
8,336
import tensorflow as tf rnnout, _, _ = tf.nn.bidirectional_rnn(cell_fw, cell_bw, self._inputs, dtype=tf.float32, sequence_length=self.seq_lens) if proj_size: out_size = 2 * proj_size else: out_size = 2 * hidden_size self._DoPredictions(out_size, rnnout, self.weights) self.cost = tf.reduce_mean(self.example_weights * self._xent) def _DoPredictions(self, in_size, mats, class_weights=None): """Takes in an array of states and calculates predictions. Get the cross-entropy for each example in the vector self._xent. Args: in_size: size of the hidden state vectors mats: list of hidden state vectors
tensorflow.reduce_mean
8,337
import tensorflow as tf batch_size=FLAGS.eval_batch_size, use_hvd=FLAGS.use_hvd) if FLAGS.auto_recover: hooks.append(tf.data.experimental.CheckpointInputPipelineHook(estimator)) train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps, hooks=hooks) eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, steps=FLAGS.max_eval_steps) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) if __name__ == "__main__": # flags.mark_flag_as_required("input_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") tf.app.run()
tensorflow.app.run
8,338
from tensorflow.python.ops import array_ops predictions, labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) count = _create_local('count', []) mean_prediction = _create_local('mean_prediction', []) mean_label = _create_local('mean_label', []) comoment = _create_local('comoment', []) # C_A in update equation if weights is None: batch_count = math_ops.to_float(array_ops.size(labels)) # n_B in eqn weighted_predictions = predictions weighted_labels = labels else: batch_count = math_ops.reduce_sum( _broadcast_weights(weights, labels)) # n_B in eqn weighted_predictions = predictions * weights weighted_labels = labels * weights
tensorflow.python.ops.array_ops.size
8,339
import tensorflow as tf ent_coef_op = entropy_optimizer.minimize(ent_coef_loss, var_list=self.log_ent_coef) self.infos_names += ['ent_coef_loss', 'ent_coef'] self.step_ops += [ent_coef_op, ent_coef_loss, self.ent_coef] # Monitor losses and entropy in tensorboard tf.summary.scalar('policy_loss', policy_loss) tf.summary.scalar('qf1_loss', qf1_loss) tf.summary.scalar('qf2_loss', qf2_loss) tf.summary.scalar('value_loss', value_loss) tf.summary.scalar("Imitation_loss",self.actor_loss_di) tf.summary.scalar('entropy', self.entropy) tf.summary.scalar('importance weight',tf.reduce_mean(self.weight_ph)) if ent_coef_loss is not None: tf.summary.scalar('ent_coef_loss', ent_coef_loss) tf.summary.scalar('ent_coef', self.ent_coef) tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph)) # Retrieve parameters that must be saved self.params = tf_util.get_trainable_vars("model")
tensorflow.summary.scalar
8,340
import tensorflow as tf b_out_initializer = tf.constant_initializer(0.0) else: print("Loading Weights") weights = np.load(self.load_weights_path) init_state_initializer = tf.constant_initializer(weights['init_state']) W_in_initializer = tf.constant_initializer(weights['W_in']) W_rec_initializer = tf.constant_initializer(weights['W_rec']) W_out_initializer = tf.constant_initializer(weights['W_out']) b_rec_initializer = tf.constant_initializer(weights['b_rec']) b_out_initializer = tf.constant_initializer(weights['b_out']) self.input_connectivity_mask = weights['input_Connectivity'] self.recurrent_connectivity_mask = weights['rec_Connectivity'] self.output_connectivity_mask = weights['output_Connectivity'] self.init_state = tf.get_variable('init_state', [N_batch, N_rec],
tensorflow.constant_initializer
8,341
import tensorflow as tf return a + b, tf.tile([batch_size], [batch_size]) outputs = [ f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), ] tf.train.start_queue_runners() results = session.run(outputs)
tensorflow.constant
8,342
import tensorflow as tf cls_preds: Unscaled log probabilities alpha: The hyperparameter for adjusting biased samples, default is 0.25 gamma: The hyperparameter for penalizing the easy labeled samples name: A name for the operation (optional) Returns: A 1-D tensor of length batch_size of same type as logits with softmax focal loss """ with tf.name_scope(scope, 'focal_loss', [cls_preds, onehot_labels]) as sc: logits = tf.convert_to_tensor(cls_preds) onehot_labels = tf.convert_to_tensor(onehot_labels) precise_logits = tf.cast(logits, tf.float32) if ( logits.dtype == tf.float16) else logits onehot_labels = tf.cast(onehot_labels, precise_logits.dtype) predictions = tf.nn.sigmoid(logits) predictions_pt = tf.where(tf.equal(onehot_labels, 1), predictions, 1.-predictions)
tensorflow.convert_to_tensor
8,343
import tensorflow as tf (=False) examples. - *positive_fraction*: desired fraction of positive examples (scalar in [0,1]) in the batch. Returns: A boolean tensor of shape [M, N], True for entries which are sampled. """ def _minibatch_subsample_fn(inputs): indicators, targets = inputs return sample_balanced_positive_negative(tf.cast(indicators, tf.bool), sample_size, tf.cast(targets, tf.bool), positive_fraction=positive_fraction) return tf.cast(tf.map_fn(_minibatch_subsample_fn, [indicators, labels], dtype=tf.bool, parallel_iterations=16, back_prop=True), dtype=dtype)
tensorflow.cast
8,344
import tensorflow as tf if not reduce_instance_dims: raise NotImplementedError('Per-key elementwise reduction not supported') with tf.compat.v1.name_scope('mean_and_var_per_key'): x = tf.cast(x, output_dtype) key_vocab, key_counts, key_means, key_variances = ( tf_utils.reduce_batch_count_mean_and_var_per_key(
tensorflow.cast
8,345
import tensorflow as tf def _SparseTensorPlaceholder(self, dtype=None): if dtype is None: dtype = tf.int32 return tf.SparseTensor( tf.placeholder(tf.int64), tf.placeholder(dtype), tf.placeholder(tf.int64))
tensorflow.placeholder
8,346
import tensorflow as tf input_image = tf.image.resize(datapoint['image'], (512, 512)) input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
tensorflow.image.resize
8,347
import tensorflow as tf width: an int32 scalar tensor indicating the current width. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: new_height: an int32 scalar tensor indicating the new height. new_width: and int32 scalar tensor indicating the new width. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) height = tf.to_float(height) width = tf.to_float(width) smallest_side = tf.to_float(smallest_side) scale = tf.cond(tf.greater(height, width), lambda: smallest_side / width, lambda: smallest_side / height) new_height = tf.to_int32(height * scale) new_width = tf.to_int32(width * scale) return new_height, new_width def _aspect_preserving_resize(image, smallest_side): """Resize images preserving the original aspect ratio. Args: image: A 3-D image `Tensor`. smallest_side: A python integer or scalar `Tensor` indicating the size of
tensorflow.greater
8,348
import tensorflow as tf for name in sorted(actions): assignments.append(tf.scatter_update( ref=self.actions_memory[name], indices=indices, updates=actions[name] )) assignments.append(tf.scatter_update(ref=self.terminal_memory, indices=indices, updates=terminal)) assignments.append(tf.scatter_update(ref=self.reward_memory, indices=indices, updates=reward)) # Add episode indices. with tf.control_dependencies(control_inputs=assignments): num_episodes = tf.count_nonzero(input_tensor=terminal, axis=0, dtype=util.tf_dtype('int')) assignment = tf.assign( ref=self.episode_indices[self.episode_count: self.episode_count + num_episodes], value=tf.boolean_mask(tensor=indices, mask=terminal) ) # Increment episode count. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign_add(ref=self.episode_count, value=num_episodes) # Increment memory index. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign( ref=self.episode_indices[-1], value=tf.where(self.memory_index + num_instances > self.capacity, self.episode_indices[self.episode_count - 1], self.capacity - 1) )
tensorflow.boolean_mask
8,349
import tensorflow as tf d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) if not forCnn: scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5) # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T]
tensorflow.where
8,350
from tensorflow.python.framework import ops @ops.RegisterShape("BatchNormWithGlobalNormalization") def _BatchNormShape(op): """Shape function for BatchNormWithGlobalNormalization op.""" input_shape = op.inputs[0].get_shape().with_rank(4) mean_shape = op.inputs[1].get_shape().with_rank(1) var_shape = op.inputs[2].get_shape().with_rank(1) beta_shape = op.inputs[3].get_shape().with_rank(1) gamma_shape = op.inputs[4].get_shape().with_rank(1) mean_shape[0].merge_with(input_shape[3]) var_shape[0].merge_with(input_shape[3]) beta_shape[0].merge_with(input_shape[3]) gamma_shape[0].merge_with(input_shape[3]) return [input_shape] @ops.RegisterShape("BatchNormWithGlobalNormalizationGrad") def _BatchNormGradShape(op): """Shape function for BatchNormWithGlobalNormalizationGrad op.""" input_shape = op.inputs[0].get_shape().with_rank(4) mean_shape = op.inputs[1].get_shape().with_rank(1) var_shape = op.inputs[2].get_shape().with_rank(1) beta_shape = op.inputs[3].get_shape().with_rank(1) out_backprop_shape = op.inputs[4].get_shape().with_rank(4) input_shape = input_shape.merge_with(out_backprop_shape) vector_dim = input_shape[3] vector_dim = vector_dim.merge_with(mean_shape[0]) vector_dim = vector_dim.merge_with(var_shape[0]) vector_dim = vector_dim.merge_with(beta_shape[0]) return [input_shape] + ([tensor_shape.vector(vector_dim)] * 4)
tensorflow.python.framework.ops.RegisterShape
8,351
import tensorflow as tf _, (c, h) = lstm_cell(inputs=tf.concat(axis=1, values=[x[:,t,:], context]), state=[c, h]) logits = self._decode_lstm(x[:,t,:], h, context, dropout=self.dropout, reuse=(t!=0)) loss += tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=captions_out[:, t]) * mask[:, t]) if self.alpha_c > 0: alphas = tf.transpose(tf.stack(alpha_list), (1, 0, 2)) # (N, T, L) alphas_all = tf.reduce_sum(alphas, 1) # (N, L) alpha_reg = self.alpha_c * tf.reduce_sum((16./196 - alphas_all) ** 2) loss += alpha_reg return loss / tf.to_float(batch_size) def build_sampler(self, max_len=20):
tensorflow.reduce_sum
8,352
import tensorflow as tf sess.run(tf.global_variables_initializer()) ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) # Choose dir according to rt tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
tensorflow.train.get_checkpoint_state
8,353
import tensorflow as tf last_layer_size = layer_size print('{}: {}'.format(layer_name, last_layer.get_shape())) export_feat_tensors[layer_name] = last_layer dnn_output = last_layer dnn_output_size = last_layer_size # Logistic regression with tf.variable_scope('logit') as scope: logit_w = tf.get_variable('W', shape=[dnn_output_size, 1], initializer=tf.truncated_normal_initializer(stddev=1.0 / dnn_output_size, dtype=dtype), dtype=dtype) logit_b = tf.get_variable('b', shape=[1], initializer=tf.constant_initializer(0.0), dtype=dtype) logits = tf.squeeze(tf.nn.bias_add(tf.matmul(dnn_output, logit_w), logit_b), squeeze_dims=[1]) prediction = tf.nn.sigmoid(logits) prediction_inspect = tf.reshape(prediction, [batch_size, rnn_nunroll]) prediction_final = tf.squeeze(tf.slice(prediction_inspect, [0, rnn_nunroll - 1], [-1, 1]), squeeze_dims=[1]) print('logit: {}'.format(logits.get_shape())) # Compute loss if mode != 'gen': neg_log_lhoods = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets) if target_weight_strategy == 'rect': avg_neg_log_lhood = tf.reduce_mean(neg_log_lhoods) else:
tensorflow.matmul
8,354
from tensorflow.python.ops import state_ops predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_tp = math_ops.to_double(math_ops.reduce_sum(tp)) var = contrib_variables.local_variable( array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_tp, name='update') def _sparse_false_positive_at_k(predictions_idx, labels, class_id=None,
tensorflow.python.ops.state_ops.assign_add
8,355
import tensorflow as tf combine_inputs = _WeightedMeanAndVarAccumulator( count=x_count, mean=x_mean, variance=x_variance, weight=tf.zeros([], tf.float32)) output_shape = () if not reduce_instance_dims: # We need to use tf.expand_dims to artificially add a batch dimension. output_shape = _get_output_shape_from_input( tf.expand_dims(x_count, axis=0)) x_mean, x_var = _apply_cacheable_combiner( WeightedMeanAndVarCombiner(output_dtype.as_numpy_dtype, output_shape), *combine_inputs) return x_mean, x_var @common.log_api_use(common.ANALYZER_COLLECTION) def tukey_location(x: common_types.TensorType,
tensorflow.expand_dims
8,356
import tensorflow as tf c = tf.nn.tanh(tf.matmul(features_mean, w_c) + b_c) return c, h def _word_embedding(self, inputs, reuse=False): with tf.variable_scope('word_embedding', reuse=reuse): w = tf.get_variable('w', [self.V, self.M], initializer=self.emb_initializer) x = tf.nn.embedding_lookup(w, inputs, name='word_vector') # (N, T, M) or (N, M) return x def _project_features(self, features): with tf.variable_scope('project_features'): w = tf.get_variable('w', [self.D, self.D], initializer=self.weight_initializer) features_flat = tf.reshape(features, [-1, self.D]) features_proj = tf.matmul(features_flat, w) features_proj = tf.reshape(features_proj, [-1, self.L, self.D]) return features_proj def _attention_layer(self, features, features_proj, h, reuse=False): with tf.variable_scope('attention_layer', reuse=reuse): w = tf.get_variable('w', [self.H, self.D], initializer=self.weight_initializer) b = tf.get_variable('b', [self.D], initializer=self.const_initializer) w_att = tf.get_variable('w_att', [self.D, 1], initializer=self.weight_initializer) h_att = tf.nn.relu(features_proj + tf.expand_dims(tf.matmul(h, w), 1) + b) # (N, L, D) out_att = tf.reshape(tf.matmul(tf.reshape(h_att, [-1, self.D]), w_att), [-1, self.L]) # (N, L) alpha = tf.nn.softmax(out_att) context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D) return context, alpha
tensorflow.reshape
8,357
import tensorflow as tf
tensorflow.reshape
8,358
from tensorflow.python.ops import math_ops true_positives = _create_local('true_positives', shape=[num_thresholds]) false_negatives = _create_local('false_negatives', shape=[num_thresholds]) true_negatives = _create_local('true_negatives', shape=[num_thresholds]) false_positives = _create_local('false_positives', shape=[num_thresholds]) is_true_positive = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_pos)) is_false_negative = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_neg)) is_false_positive = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_pos)) is_true_negative = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_neg)) if weights is not None: weights = math_ops.to_float(weights)
tensorflow.python.ops.math_ops.logical_and
8,359
import tensorflow as tf def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, next_sentence_example_loss, next_sentence_log_probs, next_sentence_labels): """Computes the loss and accuracy of the model.""" masked_lm_log_probs = tf.reshape(masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]]) masked_lm_predictions = tf.argmax( masked_lm_log_probs, axis=-1, output_type=tf.int32) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) next_sentence_log_probs = tf.reshape( next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32) next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy( labels=next_sentence_labels, predictions=next_sentence_predictions) next_sentence_mean_loss = tf.metrics.mean( values=next_sentence_example_loss) return { "masked_lm_accuracy": masked_lm_accuracy,
tensorflow.metrics.mean
8,360
import tensorflow as tf if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5) # Activation if softmax_stag:
tensorflow.shape
8,361
import tensorflow as tf h_att = tf.nn.relu(features_proj + tf.expand_dims(tf.matmul(h, w), 1) + b) # (N, L, D) out_att = tf.reshape(tf.matmul(tf.reshape(h_att, [-1, self.D]), w_att), [-1, self.L]) # (N, L) alpha = tf.nn.softmax(out_att) context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D) return context, alpha def _selector(self, context, h, reuse=False): with tf.variable_scope('selector', reuse=reuse): w = tf.get_variable('w', [self.H, 1], initializer=self.weight_initializer) b = tf.get_variable('b', [1], initializer=self.const_initializer) beta = tf.nn.sigmoid(tf.matmul(h, w) + b, 'beta') # (N, 1) context = tf.multiply(beta, context, name='selected_context') return context, beta def _decode_lstm(self, x, h, context, dropout=False, reuse=False): with tf.variable_scope('logits', reuse=reuse): w_h = tf.get_variable('w_h', [self.H, self.M], initializer=self.weight_initializer) b_h = tf.get_variable('b_h', [self.M], initializer=self.const_initializer) w_out = tf.get_variable('w_out', [self.M, self.V], initializer=self.weight_initializer) b_out = tf.get_variable('b_out', [self.V], initializer=self.const_initializer)
tensorflow.matmul
8,362
from tensorflow.python.framework import ops Args: ignore_ops: `list` of `string`. Names of ops to ignore. If None, `GraphDump.IGNORE_OPS` is used. """ super(GraphDump, self).__init__() self._ignore_ops = ignore_ops or GraphDump.IGNORE_OPS self._data = {} def begin(self, max_steps=None): super(GraphDump, self).begin(max_steps=max_steps) self._tensors = [] graph = ops.get_default_graph() graph_def = graph.as_graph_def() for node in graph_def.node: if node.op in self._ignore_ops: continue logging.info("op=%s name=%s.", node.op, node.name) try: self._tensors.append(graph.get_tensor_by_name(node.name + ":0")) except KeyError: pass def step_begin(self, step):
tensorflow.python.framework.ops.get_default_graph
8,363
import tensorflow as tf scales = tf.maximum(scales, lower_bound) print("Hyper Decoder") z_strings, z_min_v, z_max_v = entropy_bottleneck.compress(zs) z_shape = tf.shape(zs)[:] print("Entropy Encode (Hyper)") y_strings, y_min_v, y_max_v = conditional_entropy_model.compress(ys, locs, scales)
tensorflow.shape
8,364
import tensorflow as tf indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3) indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3] indices = tf.cast(indices, tf.int64) shape = [batch_size, passage_length, extended_vsize] shape = tf.cast(shape, tf.int64) attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length] one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize]
tensorflow.cast
8,365
import tensorflow as tf assert (len(filter_dims) == 3) # height, width and num_channels out assert (len(stride_dims) == 2) # stride height and width input_dims = [b_size, input_dims[1], input_dims[2], input_dims[3]] num_channels_in = input_dims[-1] filter_h, filter_w, num_channels_out = filter_dims stride_h, stride_w = stride_dims output_dims = get_deconv2d_output_dims(input_dims, filter_dims, stride_dims, padding) with tf.variable_scope(scope): deconv_weight = tf.Variable( tf.random_normal([filter_h, filter_w, num_channels_out, num_channels_in], stddev=0.1, dtype=tf.float32)) deconv_bias = tf.Variable(tf.zeros([num_channels_out], dtype=tf.float32)) map = tf.nn.conv2d_transpose(input_data, deconv_weight, output_dims, strides=[1, stride_h, stride_w, 1], padding=padding) map = tf.nn.bias_add(map, deconv_bias) activation = non_linear_fn(map) # print(scope, 'out', activation.get_shape().as_list()) return activation
tensorflow.random_normal
8,366
import tensorflow as tf import numpy as np import tvm from tvm import relay from tvm.contrib import graph_runtime from tvm.relay.testing.config import ctx_list import keras import tensorflow as tf from tensorflow import keras as tf_keras # prevent Keras from using up all gpu memory if tf.executing_eagerly(): gpus = tf.config.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) else: from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 set_session(tf.Session(config=config)) def pytest_generate_tests(metafunc):
tensorflow.config.list_physical_devices
8,367
import tensorflow as tf fields.InputDataFields.image: tf.placeholder(tf.float32, [None, None, 3]),
tensorflow.placeholder
8,368
import tensorflow as tf stride=[2, 2, 2], padding='VALID'): """ 3D avg pooling. Args: inputs: 5-D tensor BxDxHxWxC kernel_size: a list of 3 ints stride: a list of 3 ints Returns: Variable tensor """ with tf.variable_scope(scope) as sc: kernel_d, kernel_h, kernel_w = kernel_size stride_d, stride_h, stride_w = stride outputs = tf.nn.avg_pool3d(inputs, ksize=[1, kernel_d, kernel_h, kernel_w, 1], strides=[1, stride_d, stride_h, stride_w, 1], padding=padding, name=sc.name) return outputs def batch_norm_template(inputs, is_training, scope, moments_dims, bn_decay):
tensorflow.variable_scope
8,369
import tensorflow as tf rpn_loss_box = self._smooth_l1_loss(rpn_bbox_pred, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights, sigma=sigma_rpn, dim=[1, 2, 3]) # RCNN, class loss cls_score = self._predictions["cls_score"] label = tf.reshape(self._proposal_targets["labels"], [-1]) cross_entropy = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=tf.reshape(cls_score, [-1, self._num_classes]), labels=label)) # logits仍然是向量,label只含正确答案
tensorflow.reshape
8,370
import tensorflow as tf # 定義變數 # self.tfs = tf.placeholder(tf.float32, [None, image_features], 'state') self.tfdc_r = tf.placeholder(tf.float32, [None, 1], 'discounted_r') # 建立網路層 l1 = tf.layers.dense( inputs=pre_s, units=100, # number of hidden units activation=tf.nn.relu, name='l1' ) self.v = tf.layers.dense( inputs=l1, units=1, # output units activation=None, name='V' ) # 計算損益 self.advantage = self.tfdc_r - self.v self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = tf.train.AdamOptimizer(C_LR).minimize(self.closs)
tensorflow.layers.dense
8,371
import tensorflow as tf 'The sigma of Gaussian which generate the target heatmap.') tf.app.flags.DEFINE_float( 'bbox_border', 25., 'The nearest distance of the crop border to al keypoints.') tf.app.flags.DEFINE_integer( 'train_epochs', 50, 'The number of epochs to use for training.') tf.app.flags.DEFINE_integer( 'epochs_per_eval', 20, 'The number of training epochs to run between evaluations.') tf.app.flags.DEFINE_integer( 'batch_size', 10, 'Batch size for training and evaluation.') tf.app.flags.DEFINE_integer(
tensorflow.app.flags.DEFINE_integer
8,372
import tensorflow as tf for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s
tensorflow.nn.sigmoid
8,373
import tensorflow as tf 'epochs_per_eval', 20, 'The number of training epochs to run between evaluations.') tf.app.flags.DEFINE_integer( 'batch_size', 10, 'Batch size for training and evaluation.') tf.app.flags.DEFINE_integer( 'xt_batch_size', 10, 'Batch size for training and evaluation.') tf.app.flags.DEFINE_boolean( 'use_ohkm', True,
tensorflow.app.flags.DEFINE_integer
8,374
import tensorflow as tf initializer=tf.constant_initializer(0), trainable=False) with tf.colocate_with(self.means): self.ema_means = tf.get_variable(
tensorflow.colocate_with
8,375
import tensorflow as tf self.baseline = tf.Variable(0.0, dtype=tf.float32, trainable=False) baseline_update = tf.assign_sub( self.baseline, (1 - self.bl_dec) * (self.baseline - self.reward)) with tf.control_dependencies([baseline_update]): self.reward = tf.identity(self.reward) self.loss = self.sample_log_prob * (self.reward - self.baseline) self.train_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="train_step")
tensorflow.identity
8,376
import tensorflow as tf def gaussian_kernel(self,size,mean,std): """Makes 2D gaussian Kernel for convolution.""" d = tfp.distributions.Normal(mean, std) vals = d.prob(tf.range(start = -size, limit = size + 1, dtype = tf.float32)) gauss_kernel = tf.einsum('i,j->ij',vals,vals) return gauss_kernel / tf.reduce_sum(gauss_kernel) def get_random_patch_size(self): return np.random.choice([1,2,4,8]) def scramble(self,x): # assume square patch n_row,n_col,n_channel = x.shape n_patch = n_row*n_col // (self.size**2) patches = tf.image.extract_patches(tf.expand_dims(x,0),sizes=[1,self.size,self.size,1],strides=[1,self.size,self.size,1],rates=[1, 1, 1, 1],padding='VALID') patches = tf.reshape(patches,[n_patch,self.size,self.size,n_channel]) patches = tf.random.shuffle(patches) # rand_idx = tf.reshape(tf.random.shuffle(tf.range(0,n_patch)),[n_patch]) # patches = tf.gather(patches, rand_idx, axis=0) rows = tf.split(patches,n_col//self.size,axis=0) rows = [tf.concat(tf.unstack(x),axis=1) for x in rows] x_aug = tf.concat(rows,axis=0) x_aug = tf.convert_to_tensor(x_aug) return tf.concat([x, x_aug],axis=2) def mix_scramble(self,x): # assume square patch # sizes = tf.convert_to_tensor([1,2,4,8])
tensorflow.expand_dims
8,377
import tensorflow as tf _, top_antecedents = tf.nn.top_k(fast_antecedent_scores, c, sorted=False) # [k, c] top_antecedents_mask = util.batch_gather(antecedents_mask, top_antecedents) # [k, c] top_fast_antecedent_scores = util.batch_gather(fast_antecedent_scores, top_antecedents) # [k, c] top_antecedent_offsets = util.batch_gather(antecedent_offsets, top_antecedents) # [k, c] return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets def distance_pruning(self, top_span_emb, top_span_mention_scores, c): k = util.shape(top_span_emb, 0) top_antecedent_offsets = tf.tile(tf.expand_dims(tf.range(c) + 1, 0), [k, 1]) # [k, c] raw_top_antecedents = tf.expand_dims(tf.range(k), 1) - top_antecedent_offsets # [k, c] top_antecedents_mask = raw_top_antecedents >= 0 # [k, c] top_antecedents = tf.maximum(raw_top_antecedents, 0) # [k, c] top_fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.gather(top_span_mention_scores, top_antecedents) # [k, c] top_fast_antecedent_scores += tf.log(tf.to_float(top_antecedents_mask)) # [k, c] return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets def get_predictions_and_loss(self, tokens, context_word_emb, head_word_emb, lm_emb, char_index, text_len, speaker_ids, genre, is_training, gold_starts, gold_ends, cluster_ids): self.dropout = self.get_dropout(self.config["dropout_rate"], is_training) self.lexical_dropout = self.get_dropout(self.config["lexical_dropout_rate"], is_training) self.lstm_dropout = self.get_dropout(self.config["lstm_dropout_rate"], is_training) num_sentences = tf.shape(context_word_emb)[0]
tensorflow.maximum
8,378
import tensorflow as tf FLAGS.cl_num_layers) + 2 self.assertEqual(len(tf.trainable_variables()), expected_num_vars) def testEvalGraph(self): _, _ = graphs.VatxtModel().eval_graph() def testBidirEvalGraph(self): _, _ = graphs.VatxtBidirModel().eval_graph() if __name__ == '__main__': tf.test.main()
tensorflow.test.main
8,379
import tensorflow as tf features = sp.identity(features.shape[0]) # featureless # Some preprocessing adj_norm = preprocess_graph(adj) # Define placeholders placeholders = { 'features': tf.sparse_placeholder(tf.float32), 'adj': tf.sparse_placeholder(tf.float32), 'adj_orig': tf.sparse_placeholder(tf.float32), 'dropout': tf.placeholder_with_default(0., shape=()) } num_nodes = adj.shape[0] features = sparse_to_tuple(features.tocoo())
tensorflow.sparse_placeholder
8,380
import tensorflow as tf tf.add_to_collection(self._initial_state_name, state_tuple.c) tf.add_to_collection(self._initial_state_name, state_tuple.h) for state_tuple in self._final_state: tf.add_to_collection(self._final_state_name, state_tuple.c) tf.add_to_collection(self._final_state_name, state_tuple.h) def import_state_tuples(self, state_tuples, name, num_replicas): restored = [] for i in range(len(state_tuples) * num_replicas): c = tf.get_collection_ref(name)[2 * i + 0] h = tf.get_collection_ref(name)[2 * i + 1] restored.append(tf.contrib.rnn.LSTMStateTuple(c, h)) return tuple(restored) def import_ops(self): if self._is_training: self._train_op = tf.get_collection_ref('train_op')[0] self._lr = tf.get_collection_ref('lr')[0] self._new_lr = tf.get_collection_ref('new_lr')[0] self._lr_update = tf.get_collection_ref('lr_update')[0] rnn_params = tf.get_collection_ref('rnn_params') if self._cell and rnn_params:
tensorflow.contrib.rnn.LSTMStateTuple
8,381
import tensorflow as tf cell_fw = util.CustomLSTMCell(self.config["contextualization_size"], num_sentences, self.lstm_dropout) with tf.variable_scope("bw_cell"): cell_bw = util.CustomLSTMCell(self.config["contextualization_size"], num_sentences, self.lstm_dropout) state_fw = tf.contrib.rnn.LSTMStateTuple(tf.tile(cell_fw.initial_state.c, [num_sentences, 1]), tf.tile(cell_fw.initial_state.h, [num_sentences, 1])) state_bw = tf.contrib.rnn.LSTMStateTuple(tf.tile(cell_bw.initial_state.c, [num_sentences, 1]), tf.tile(cell_bw.initial_state.h, [num_sentences, 1])) (fw_outputs, bw_outputs), _ = tf.nn.bidirectional_dynamic_rnn( cell_fw=cell_fw,
tensorflow.tile
8,382
import tensorflow as tf of this model under a given target distribution. Parameters: y_true: tensor, observations. y_pred: tensor, output of network. Returns: loss value, means negative log-likelihood. """ logL = 0 # pre-calculate cumsum cumsum_y_pred = tf.cumsum(y_pred) hazard_ratio = tf.exp(y_pred) cumsum_hazard_ratio = tf.cumsum(hazard_ratio) if self.train_data['ties'] == 'noties': log_risk = tf.log(cumsum_hazard_ratio) likelihood = y_pred - log_risk # dimension for E: np.array -> [None, 1] uncensored_likelihood = likelihood * y_true logL = -tf.reduce_sum(uncensored_likelihood) else: # Loop for death times for t in self.train_data['failures']: tfail = self.train_data['failures'][t] trisk = self.train_data['atrisk'][t] d = len(tfail)
tensorflow.cumsum
8,383
import tensorflow as tf :param before_padding: [batch_size] tensor of before_padding values. :param window_size: scalar window size. :return: [batch_size, window_size] boolean tensor mask. """ return tf.logical_not(tf.sequence_mask(before_padding, maxlen=window_size)) def _right_mask(after_padding, window_size):
tensorflow.sequence_mask
8,384
import tensorflow as tf output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if task_name != "sts-b": probabilities = tf.nn.softmax(logits, axis=-1) predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) else: probabilities = logits logits = tf.squeeze(logits, [-1]) predictions = logits per_example_loss = tf.square(logits - labels) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, probabilities, logits, predictions)
tensorflow.nn.log_softmax
8,385
import tensorflow as tf output_shape=shapes, strides=self.strides, padding='SAME', data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops):
tensorflow.assign
8,386
import tensorflow as tf Shape [batch_size, embeddings_dim] Return: pull away term loss """ with tf.name_scope(name): norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm similarity = tf.matmul(normalized_embeddings, normalized_embeddings, transpose_b=True) batch_size = tf.cast(tf.shape(embeddings)[0], tf.float32) pt_loss = (tf.reduce_sum(similarity) - batch_size) / \ (batch_size * (batch_size - 1)) return pt_loss def log_sum_exp(x): """numerically stable log_sum_exp implementation that prevents overflow.""" axis = len(x.get_shape()) - 1 m = tf.reduce_max(x, axis)
tensorflow.reduce_sum
8,387
import tensorflow as tf def next_num(num): # This creates a cycle of length 136. return tf.mod((num * 13), 137) num = tf.reshape(tf.mod(seed, 136) + 1, (1,)) result = num for _ in range(num_elements - 1): num = next_num(num) result = tf.concat([result, num], 0) return tf.to_float(result) @encoding_stage.tf_style_encoding_stage class PlusRandomNumEncodingStage(encoding_stage.EncodingStageInterface): """[Example] encoding stage, adding random values given a random seed.
tensorflow.concat
8,388
from tensorflow.python.ops import array_ops # Flatten the input if its rank > 1. predictions_rank = predictions.get_shape().ndims if predictions_rank > 1: predictions = array_ops.reshape(predictions, [-1]) labels_rank = labels.get_shape().ndims if labels_rank > 1: labels = array_ops.reshape(labels, [-1]) weights = _mask_weights(ignore_mask, weights) if weights is not None: weights_rank = weights.get_shape().ndims if weights_rank > 1: weights = array_ops.reshape(weights, [-1]) # Accumulate the prediction to current confusion matrix. current_cm = confusion_matrix_ops.confusion_matrix( predictions, labels, num_classes, weights=weights, dtype=cm_dtype) update_op = state_ops.assign_add(total_cm, current_cm) def compute_mean_iou(name): """Compute the mean intersection-over-union via the confusion matrix.""" sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0)) sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1)) cm_diag = math_ops.to_float(array_ops.diag_part(total_cm)) denominator = sum_over_row + sum_over_col - cm_diag
tensorflow.python.ops.array_ops.reshape
8,389
import tensorflow as tf # Compute the gradients for the clones. total_loss, clones_gradients = optimize_clones(clones, optimizer) if clones_gradients: if summarize_gradients: # Add summaries to the gradients. summaries |= set(_add_gradients_summaries(clones_gradients)) # Create gradient updates. grad_updates = optimizer.apply_gradients(clones_gradients, global_step=global_step) update_ops.append(grad_updates) update_op = tf.group(*update_ops) train_op = control_flow_ops.with_dependencies([update_op], total_loss, name='train_op') else: clones_losses = [] regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) for clone in clones: with tf.name_scope(clone.scope): clone_loss = _gather_clone_loss(clone, len(clones), regularization_losses) if clone_loss is not None: clones_losses.append(clone_loss) # Only use regularization_losses for the first clone
tensorflow.group
8,390
import tensorflow as tf dialogue_state_size + action_templates_embedding_size ) # condition on the dialogue state and the decoded template projection = linear( input=dialogue_state_action_template, input_size=dialogue_state_action_template_size, output_size=dialogue_state_action_template_size, name='linear_projection_1_predictions_arguments' ) projection = batch_norm_lin(projection, dialogue_state_action_template_size, self.phase_train, name='linear_projection_1_predictions_arguments_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_action_template_size, output_size=dialogue_state_action_template_size, name='linear_projection_2_predictions_arguments' ) projection = batch_norm_lin(projection, dialogue_state_action_template_size, self.phase_train, name='linear_projection_2_predictions_arguments_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob)
tensorflow.nn.relu
8,391
import tensorflow as tf d = d.batch(self.config['eval_batch_size']*self.n_gpus) self.dataset_iterators[n] = d.make_initializable_iterator() output_types = d.output_types output_shapes = d.output_shapes self.datasets[n] = d # Perform compatibility checks with the inputs of the child model for i, spec in self.input_spec.items(): assert i in output_shapes tf.TensorShape(output_shapes[i]).assert_is_compatible_with( tf.TensorShape(spec['shape'])) # Used for input shapes of the prediction network if self.data_shape is None: self.data_shape = output_shapes # Handle for the feedable iterator self.handle = tf.placeholder(tf.string, shape=[])
tensorflow.TensorShape
8,392
import tensorflow as tf reward = tf.zeros_like(indices, tf.float32) done = tf.zeros_like(indices, tf.bool) with tf.control_dependencies([ tf.scatter_update(self._observ, indices, observ), tf.scatter_update(self._reward, indices, reward), tf.scatter_update(self._done, indices, done)]):
tensorflow.scatter_update
8,393
import tensorflow as tf 'image/channels': tf.FixedLenFeature([1], tf.int64), 'image/shape': tf.FixedLenFeature([3], tf.int64), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64), 'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64), 'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64), } items_to_handlers = { 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'shape': slim.tfexample_decoder.Tensor('image/shape'), 'object/bbox': slim.tfexample_decoder.BoundingBox( ['xmin', 'ymin', 'xmax', 'ymax'], 'image/object/bbox/'), 'object/label': slim.tfexample_decoder.Tensor('image/object/bbox/label'),
tensorflow.VarLenFeature
8,394
import tensorflow as tf def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids,
tensorflow.constant
8,395
import tensorflow as tf # Number of steps to train model. TRAIN_STEPS = 1 CONFIG = tf.ConfigProto(device_count={"GPU": 0})
tensorflow.ConfigProto
8,396
import tensorflow as tf # if src_enc is not None: # assert self.is_decoder # assert src_enc.size(0) == bs # generate masks mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) # if self.is_decoder and src_enc is not None: # src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] # position_ids if position_ids is None: position_ids = tf.expand_dims(tf.range(slen), axis=0) else: # assert shape_list(position_ids) == [bs, slen] # (slen, bs) tf.debugging.assert_equal( shape_list(position_ids), [bs, slen] ), f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched" # position_ids = position_ids.transpose(0, 1) # langs if langs is not None: # assert shape_list(langs) == [bs, slen] # (slen, bs)
tensorflow.range
8,397
from tensorflow.python.ops import state_ops for v in var_list: self._zeros_slot(v, "vstar", self._name) self._zeros_slot(v, "gold", self._name) def _apply_dense(self, grad, var): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype) vstar = self.get_slot(var, "vstar") gold = self.get_slot(var, "gold") var_update = state_ops.assign_sub(var, lr_t*(grad + gold + mu_t*(var-vstar))) #Update 'ref' by subtracting 'value #Create an op that groups multiple operations. #When this op finishes, all ops in input have finished return control_flow_ops.group(*[var_update,]) def _apply_sparse_shared(self, grad, var, indices, scatter_add): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype) vstar = self.get_slot(var, "vstar") gold = self.get_slot(var, "gold") # glod is not sparse
tensorflow.python.ops.state_ops.assign_sub
8,398
import tensorflow as tf def _generate_synthetic_snli_data_batch(sequence_length, batch_size, vocab_size): """Generate a fake batch of SNLI data for testing.""" with tf.device("cpu:0"): labels = tf.random_uniform([batch_size], minval=1, maxval=4, dtype=tf.int64) prem = tf.random_uniform( (sequence_length, batch_size), maxval=vocab_size, dtype=tf.int64)
tensorflow.device
8,399