seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
dtype=tf.float32)
self.assertAllClose(ious.numpy(), expected_ious.numpy())
def test_instance_non_maximum_suppression_1d_scores(self):
mask0 = tf.constant([[1, 0],
[0, 1]], dtype=tf.float32)
mask1 = tf.constant([[1, 1],
[0, 1]], dtype=tf.float32)
mask2 = tf.constant([[1, 0],
[1, 1]], dtype=tf.float32)
mask3 = tf.constant([[1, 1],
[1, 1]], dtype=tf.float32)
mask4 = tf.constant([[0, 0],
[0, 0]], dtype=tf.float32)
mask5 = tf.constant([[1, 0],
[1, 0]], dtype=tf.float32)
masks = tf.stack([mask0, mask1, mask2, mask3, mask4, mask5])
classes = tf.constant([1, 2, 3, 1, 2, 3], dtype=tf.int32)
scores = tf.constant([1.0, 0.9, 0.8, 0.95, 0.85, 0.6], dtype=tf.float32)
(nms_masks1,
|
tensorflow.constant
| 8,400 |
import tensorflow as tf
trg_len = tf.shape(attention_weights)[1]
src_indices = tf.tile(tf.reshape(tf.range(src_len), shape=[1, 1, src_len]), [batch_size, trg_len, 1])
trg_indices = tf.tile(tf.reshape(tf.range(trg_len), shape=[1, trg_len, 1]), [batch_size, 1, src_len])
source_length = encoder_input_length[0]
target_length = tf.to_int32(tf.reduce_sum(trg_mask, axis=1))
true_src_len = tf.reshape(source_length, shape=[batch_size, 1, 1]) - 1
true_trg_len = tf.reshape(target_length, shape=[batch_size, 1, 1]) - 1
src_mask = tf.to_float(tf.sequence_mask(source_length, maxlen=src_len))
mask = tf.matmul(tf.expand_dims(trg_mask, axis=2), tf.expand_dims(src_mask, axis=1))
monotonous = tf.sqrt(((true_trg_len * src_indices - true_src_len * trg_indices) ** 2)
/ (true_trg_len**2 + true_src_len**2))
monotonous = tf.to_float(monotonous < monotonicity_dist)
non_monotonous = (1 - monotonous) * mask
attn_loss = tf.reduce_sum(attention_weights * tf.stop_gradient(non_monotonous)) / tf.to_float(batch_size)
if monotonicity_decay:
|
tensorflow.sequence_mask
| 8,401 |
import tensorflow as tf
values = tf.argmax(values,axis=2)
x = tf.cast(values, dtype=tf.int32)
y = tf.cast(answers, dtype=tf.int32)
res = tf.equal(x, y)
res = tf.cast(res, dtype=tf.float32)
res = tf.multiply(res, loss_weights)
|
tensorflow.equal
| 8,402 |
from tensorflow.python.training import moving_averages
def moving_average_update(variable, value, momentum):
try:
return moving_averages.assign_moving_average(
variable, value, momentum, zero_debias=False)
|
tensorflow.python.training.moving_averages.assign_moving_average
| 8,403 |
import tensorflow as tf
return example
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
tensorflow.logging.set_verbosity
| 8,404 |
import tensorflow as tf
self.kernel = self.gaussian_kernel(size,mean,std)
self.kernel = tf.tile(self.kernel[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1])
self.paddings = tf.convert_to_tensor([[size,size],[size,size],[0,0]])
x_aug = tf.nn.separable_conv2d(tf.expand_dims(tf.pad(x,self.paddings,'SYMMETRIC'), 0), self.kernel, self.pointwise_filter,strides=[1, 1, 1, 1], padding='VALID')
x_aug = tf.squeeze(x_aug)
return tf.concat([x, x_aug],axis=2)
|
tensorflow.squeeze
| 8,405 |
from tensorflow.python.ops import math_ops
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
predictions, normalizer = tensor_util.remove_squeezable_dimensions(
predictions, normalizer)
predictions.get_shape().assert_is_compatible_with(normalizer.get_shape())
relative_errors = math_ops.select(
math_ops.equal(normalizer, 0.0),
array_ops.zeros_like(labels),
math_ops.div(math_ops.abs(labels - predictions), normalizer))
return streaming_mean(relative_errors, weights, metrics_collections,
updates_collections, name or 'mean_relative_error')
def streaming_mean_squared_error(predictions, labels, weights=None,
metrics_collections=None,
updates_collections=None,
|
tensorflow.python.ops.math_ops.abs
| 8,406 |
import tensorflow as tf
def test_get_inputs_cancelled(self):
with tf.Graph().as_default():
@dynamic_batching.batch_fn
def f(a):
return a
f(tf.constant([1]))
# Intentionally using tf.Session() instead of self.test_session() to have
# control over closing the session. test_session() is a cached session.
with tf.Session():
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord)
|
tensorflow.constant
| 8,407 |
import tensorflow as tf
[tf.placeholder(name=t.name,
dtype=t.dtype,
shape=[self.batch_size // self.total_core_num] + list(t.shape))
for t in nest.flatten(self.tensor_structure)])
for tensor in nest.flatten(tensors):
tf.get_default_graph().clear_collection(tensor.name)
tf.add_to_collection(tensor.name, self)
self._original_tensors = tensors
self._tensors = tensors
if not self.has_batch:
self._tensors = nest.pack_sequence_as(self.tensor_structure,
|
tensorflow.add_to_collection
| 8,408 |
import tensorflow as tf
self.graph = graph
with self.graph.as_default():
with tf.device('/cpu:0'):
embedding = tf.get_variable(
'embedding', [vocab_size, hidden_size], dtype=tf.float32)
inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
output, state = self._build_rnn_graph(inputs, config, is_training)
softmax_w = tf.get_variable(
'softmax_w', [hidden_size, vocab_size], dtype=tf.float32)
softmax_b = tf.get_variable('softmax_b', [vocab_size], dtype=tf.float32)
logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size])
|
tensorflow.nn.dropout
| 8,409 |
import tensorflow as tf
return outputs
# 这个就是在tensorboard上可视化的时候的区别:
# 使用with tf.name_scope('inputs')可以将xs和ys包含进来
# 形成一个大的图层,图层的名字就是with tf.name_scope()方法里的参数。
with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32, [None, 1], name='x_input') # 这个name的属性,也是为了使用tensorboard,添加上来的
ys = tf.placeholder(tf.float32, [None, 1], name='y_input') # 同上
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu,nameScope="layerTest1")
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None,nameScope="layerTest2")
|
tensorflow.placeholder
| 8,410 |
import tensorflow as tf
checkpoints = list(set(checkpoints) - set(ys) - set(xs))
# check that we have some nodes to checkpoint
if not checkpoints:
raise Exception('no checkpoints nodes found or given as input! ')
# disconnect dependencies between checkpointed tensors
checkpoints_disconnected = {}
for x in checkpoints:
if x.op and x.op.name is not None:
grad_node = tf.stop_gradient(x, name=x.op.name+"_sg")
else:
grad_node = tf.stop_gradient(x)
checkpoints_disconnected[x] = grad_node
# partial derivatives to the checkpointed tensors and xs
ops_to_copy = fast_backward_ops(seed_ops=[y.op for y in ys],
stop_at_ts=checkpoints, within_ops=fwd_ops)
debug_print("Found %s ops to copy within fwd_ops %s, seed %s, stop_at %s",
len(ops_to_copy), fwd_ops, [r.op for r in ys], checkpoints)
debug_print("ops_to_copy = %s", ops_to_copy)
debug_print("Processing list %s", ys)
copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {})
for origin_op, op in info._transformed_ops.items():
|
tensorflow.stop_gradient
| 8,411 |
import tensorflow as tf
res = sess.run([mem])
self.assertEqual((2, 2), res[0].c.shape)
self.assertEqual((2, 2), res[0].h.shape)
# Test with state_is_tuple=False.
with tf.variable_scope("no_tuple"):
cell1 = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
dec, mem = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell1, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2)
|
tensorflow.variable_scope
| 8,412 |
import tensorflow as tf
"""
Batch normalization on convolutional maps.
Args:
x: Tensor, 4D BHWD input maps
n_out: integer, depth of input maps
phase_train: boolean tf.Variable, true indicates training phase
scope: string, variable scope
affn: whether to affn-transform outputs
Return:
normed: batch-normalized maps
Ref: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow/33950177
"""
name = 'batch_norm'
with tf.variable_scope(name):
phase_train = tf.convert_to_tensor(phase_train, dtype=tf.bool)
n_out = int(x.get_shape()[3])
beta = tf.Variable(tf.constant(0.0, shape=[n_out], dtype=x.dtype),
name=name+'/beta', trainable=True, dtype=x.dtype)
gamma = tf.Variable(tf.constant(1.0, shape=[n_out], dtype=x.dtype),
name=name+'/gamma', trainable=True, dtype=x.dtype)
batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
|
tensorflow.variable_scope
| 8,413 |
import tensorflow as tf
for i in six.moves.range(FLAGS.eval_batch_count):
time_start = time.time()
(nor_img,true_label) = sess.run([images,labels])
adv_img = sess.run(adv_image_craft,feed_dict={image:nor_img})
# Local logits
(predict_NOR, predict_ADV, logits_part_nor, logits_part_adv) = sess.run(
[predict_nor, predict_adv, tsne_logit_nor, tsne_logit_adv],
feed_dict={image: nor_img, adv_image: adv_img}
)
# Local entropy and confidence for nor_img
(entropy_test_nor_help, labels_nor_help, confidence_test_nor_help) = sess.run(
[entropy, tf.argmax(predict, axis=1), tf.reduce_max(predict, axis=1)], feed_dict={predict: predict_NOR}
)
# Local entropy and confidence for adv_img
(entropy_test_adv_help, labels_adv_help, confidence_test_adv_help) = sess.run(
[entropy, tf.argmax(predict, axis=1), tf.reduce_max(predict, axis=1)], feed_dict={predict: predict_ADV}
)
entropy_test_adv_all = np.concatenate((entropy_test_adv_all, entropy_test_adv_help), axis=0)
confidence_test_adv_all = np.concatenate((confidence_test_adv_all, confidence_test_adv_help), axis=0)
entropy_test_nor_all = np.concatenate((entropy_test_nor_all, entropy_test_nor_help), axis=0)
confidence_test_nor_all = np.concatenate((confidence_test_nor_all, confidence_test_nor_help), axis=0)
logits_nor_all = np.concatenate((logits_nor_all, logits_part_nor), axis=0)
labels_nor_all = np.concatenate((labels_nor_all, labels_nor_help), axis=0)
|
tensorflow.argmax
| 8,414 |
import tensorflow as tf
x = tf.concat([tf.squeeze(v, 1) for v in x], 3)
return tf.reshape(x, (batch_size, d*r, h*r, w*r, 1))
|
tensorflow.reshape
| 8,415 |
import tensorflow as tf
if mode != 'gen':
targets_nunroll = tf.placeholder(dtype, shape=[batch_size, rnn_nunroll])
# TODO: tf.ones acts as an overridable placeholder but this is still awkward
target_weights_nunroll = tf.ones([batch_size, rnn_nunroll], dtype)
# Reshape input tensors to remove nunroll dim; will briefly restore later during RNN if necessary
if cnn_rnn_zack:
feats_audio = tf.reshape(feats_audio_nunroll, shape=[batch_size, rnn_nunroll + zack_hack, audio_nbands, audio_nchannels])
else:
feats_audio = tf.reshape(feats_audio_nunroll, shape=[batch_size * rnn_nunroll, audio_context_len, audio_nbands, audio_nchannels])
feats_other = tf.reshape(feats_other_nunroll, shape=[batch_size * rnn_nunroll, nfeats])
if mode != 'gen':
targets = tf.reshape(targets_nunroll, shape=[batch_size * rnn_nunroll])
target_weights = tf.reshape(target_weights_nunroll, shape=[batch_size * rnn_nunroll])
# CNN
cnn_output = feats_audio
if do_cnn:
layer_last = feats_audio
nfilt_last = audio_nchannels
for i, ((ntime, nband, nfilt), (ptime, pband)) in enumerate(zip(cnn_filter_shapes, cnn_pool)):
layer_name = 'cnn_{}'.format(i)
with tf.variable_scope(layer_name):
filters = tf.get_variable('filters', [ntime, nband, nfilt_last, nfilt], initializer=cnn_init, dtype=dtype)
biases = tf.get_variable('biases', [nfilt], initializer=tf.constant_initializer(0.1), dtype=dtype)
if cnn_rnn_zack:
|
tensorflow.reshape
| 8,416 |
import tensorflow as tf
reader = tf.TFRecordReader
# Features in Pascal VOC TFRecords.
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/height': tf.FixedLenFeature([1], tf.int64),
'image/width': tf.FixedLenFeature([1], tf.int64),
'image/channels': tf.FixedLenFeature([1], tf.int64),
'image/shape': tf.FixedLenFeature([3], tf.int64),
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
|
tensorflow.FixedLenFeature
| 8,417 |
import tensorflow as tf
name="squared_difference"
)
print_obj(func_name, "squared_difference", squared_difference)
# Get gradient penalty scalar.
gradient_penalty = tf.reduce_mean(
input_tensor=squared_difference, name="gradient_penalty"
)
print_obj(func_name, "gradient_penalty", gradient_penalty)
# Multiply with lambda to get gradient penalty loss.
gradient_penalty_loss = tf.multiply(
x=params["discriminator_gradient_penalty_coefficient"],
y=gradient_penalty,
name="gradient_penalty_loss"
)
return gradient_penalty_loss
def get_discriminator_loss(
self,
cur_batch_size,
|
tensorflow.multiply
| 8,418 |
import tensorflow as tf
# Mean-square-error i.e. quadratic-cost
mse = tf.reduce_sum(tf.squared_difference(y, x_recon), 1)
mse = tf.reduce_mean(mse) # in theano: mse = ((y - x) ** 2 ).sum(axis=1).mean()
|
tensorflow.squared_difference
| 8,419 |
import tensorflow as tf
self.a = a
self.q = self._build_net(S, self.a, 'eval_net', trainable=True)
# Input (s_, a_), output q_ for q_target
self.q_ = self._build_net(S_, a_, 'target_net', trainable=False) # target_q is based on a_ from Actor's target_net
self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/eval_net')
self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/target_net')
with tf.variable_scope('target_q'):
self.target_q = R + self.gamma * self.q_
with tf.variable_scope('abs_TD'):
self.abs_td = tf.abs(self.target_q - self.q)
self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights')
with tf.variable_scope('TD_error'):
self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.target_q, self.q))
with tf.variable_scope('C_train'):
self.train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss, global_step=GLOBAL_STEP)
with tf.variable_scope('a_grad'):
self.a_grads = tf.gradients(self.q, a)[0] # tensor of gradients of each sample (None, a_dim)
|
tensorflow.variable_scope
| 8,420 |
import tensorflow as tf
qh_emb = tf.reduce_max(qh_emb, axis=1)
ch_emb = tf.reshape(ch_emb, [N * self.max_p_num, PL, -1])
qh_emb = tf.reshape(qh_emb, [N * self.max_p_num, QL, -1])
c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout)
q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout)
c_emb = tf.concat([c_emb, ch_emb], axis=2)
q_emb = tf.concat([q_emb, qh_emb], axis=2)
self.c_emb = highway(c_emb, size=d, scope="highway", dropout=self.dropout, reuse=None)
|
tensorflow.nn.embedding_lookup
| 8,421 |
import tensorflow as tf
print('\ntranspose(D)=')
print(sess.run(tf.transpose(D)))
print('\ninverse(D)=')
print(sess.run(tf.matrix_inverse(D)))
print('\ndeterminant(D)={:.1f}'.format(sess.run(tf.matrix_determinant(D))))
print('\ncholesky(D):')
print(sess.run(tf.cholesky(identity_matrix)))
print('\nselfAdjointEig(D):')
print(sess.run(tf.self_adjoint_eig(D)))
print(sess.run(tf.div(13, 4)))
print(sess.run(tf.truediv(13, 4)))
print(sess.run(tf.floordiv(13, 4)))
print(sess.run(tf.mod(13.2, 4)))
|
tensorflow.cholesky
| 8,422 |
import tensorflow as tf
(predicted_classes, predicted_sdfs, predicted_poses)]):
for i in range(classes.shape[0]):
if class_id == classes[i]:
sdf = tf.expand_dims(sdfs[i], -1)
sdf = sdf * -1.0 # inside positive, outside zero
samples_object = centernet_utils.transform_pointcloud(
tf.reshape(samples_world, [1, 1, -1, 3]),
tf.reshape(poses[2][i], [1, 1, 3]),
tf.reshape(poses[0][i], [1, 1, 3, 3]),
tf.reshape(poses[1][i], [1, 1, 3]), inverse=True) * 2.0
samples_object = \
(samples_object * (29.0/32.0) / 2.0 + 0.5) * 32.0 - 0.5
samples = tf.squeeze(samples_object)
interpolated = trilinear.interpolate(sdf, samples)
sdf_values += tf.math.sign(tf.nn.relu(interpolated + self.tol))
status2 = False
if status2:
a = 2
values = interpolated
inter = tf.reshape(values, [self.resolution,
self.resolution,
self.resolution])
inter = tf.transpose(tf.reduce_max(inter, axis=a))
im = axs[fig_obj_count, mtype * 2 + 0].matshow(inter.numpy())
plt.colorbar(im, ax=axs[fig_obj_count, mtype * 2 + 0])
print(mtype, fig_obj_count, 0)
values = tf.math.sign(tf.nn.relu(interpolated + self.tol))
inter = tf.reshape(values, [self.resolution,
|
tensorflow.nn.relu
| 8,423 |
import tensorflow as tf
std = tf.random.uniform(shape=[],minval=5,maxval=10,dtype=tf.float32) # std [5-10]
size = tf.random.uniform(shape=[],minval=3,maxval=7,dtype=tf.int32) # size [7-15]
self.kernel = self.gaussian_kernel(size,mean,std)
self.kernel = tf.tile(self.kernel[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1])
self.paddings = tf.convert_to_tensor([[size,size],[size,size],[0,0]])
x_aug = tf.nn.separable_conv2d(tf.expand_dims(tf.pad(x,self.paddings,'SYMMETRIC'), 0), self.kernel, self.pointwise_filter,strides=[1, 1, 1, 1], padding='VALID')
x_aug = tf.squeeze(x_aug)
return tf.concat([x, x_aug],axis=2)
|
tensorflow.convert_to_tensor
| 8,424 |
import tensorflow as tf
s= len(tensor) #number of tensors in the list
for i in range(s):
dl = tensor[i] #take one element of the gradient list (hence the zero)
d1, d2 = dl.get_shape() #Obtain tensor dimensions
fl = tf.reshape(dl,[-1, d1*d2]) #reshape the tensor to a (1, d1*d2) tensor
#concatenate over all the elemets in the list
if i==0: flattened = fl # the first time
else: flattened = tf.concat([flattened, fl], axis=1)
return flattened
#Hessian
def hessian(grads, par):
'''
Evaluates the exact Hessian matrix.
This function uses the same convention of the Autograd package.
Inputs:
|
tensorflow.concat
| 8,425 |
import tensorflow as tf
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
"label_ids":
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
})
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
return d
return input_fn
|
tensorflow.constant
| 8,426 |
import tensorflow as tf
if proposal_type == "smoothing":
assert rev_rnn_cell, "Must provide rev_rnn_cell for smoothing proposal."
def zero_state(self, batch_size, dtype):
super_state = super(TrainableVRNN, self).zero_state(batch_size, dtype)
return TrainableVRNNState(
rnn_out=tf.zeros([batch_size, self.rnn_cell.output_size], dtype=dtype),
**super_state._asdict())
def set_observations(self, observations, seq_lengths):
"""Stores the model's observations.
|
tensorflow.zeros
| 8,427 |
import tensorflow as tf
batch_size = tf.shape(observations_ph.get())[0]
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
updates = [
update_eps_expr,
tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])),
tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
update_param_noise_threshold_expr,
|
tensorflow.cond
| 8,428 |
import tensorflow as tf
channels = im.get_shape().as_list()[4]
x = tf.to_float(x)
y = tf.to_float(y)
z = tf.to_float(z)
depth_f = tf.to_float(depth)
height_f = tf.to_float(height)
width_f = tf.to_float(width)
# Number of disparity interpolated.
out_depth = out_size[0]
out_height = out_size[1]
out_width = out_size[2]
zero = tf.zeros([], dtype='int32')
# 0 <= z < depth, 0 <= y < height & 0 <= x < width.
|
tensorflow.to_float
| 8,429 |
import tensorflow as tf
if len(variables) == 0:
return []
if semver.match(tf.__version__, '<1.0.0'):
init_flag = sess.run(
tf.pack([tf.is_variable_initialized(v) for v in variables]))
else:
init_flag = sess.run(
tf.stack([tf.is_variable_initialized(v) for v in variables]))
return [v for v, f in zip(variables, init_flag) if not f]
|
tensorflow.is_variable_initialized
| 8,430 |
from tensorflow.contrib.framework import deprecated_args
ValueError: If `ignore_mask` is not `None` and its shape doesn't match
`values`, or if `weights` is not `None` and its shape doesn't match
`values`, or if either `metrics_collections` or `updates_collections` are
not a list or tuple.
"""
is_below_threshold = math_ops.to_float(math_ops.less(values, threshold))
return streaming_mean(is_below_threshold, _mask_weights(ignore_mask, weights),
metrics_collections,
updates_collections,
name or 'percentage_below_threshold')
@deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask')
def streaming_mean_iou(predictions,
labels,
num_classes,
ignore_mask=None,
weights=None,
metrics_collections=None,
updates_collections=None,
name=None):
"""Calculate per-step mean Intersection-Over-Union (mIOU).
Mean Intersection-Over-Union is a common evaluation metric for
|
tensorflow.contrib.framework.deprecated_args
| 8,431 |
import tensorflow as tf
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
|
tensorflow.shape
| 8,432 |
import tensorflow as tf
tf.app.flags.DEFINE_float('beta', 0.0005, 'Reconstruction from noisy data loss weight')
tf.app.flags.DEFINE_float('epsilon', 0.000001,
'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5')
tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances')
tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance')
tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective')
|
tensorflow.app.flags.DEFINE_float
| 8,433 |
import tensorflow as tf
warmup_steps = tf.to_float(params.warmup_steps)
multiplier = params.hidden_size ** -0.5
decay = params.r0 * multiplier * tf.minimum((step + 1) * (warmup_steps ** -1.0) * (warmup_steps ** -0.5),
(step + 1) ** -0.5)
return learning_rate * decay
elif params.learning_rate_decay == "rnnplus_warmup_decay":
step = tf.to_float(global_step)
n = float(len(params.device_list))
warmup_steps = tf.to_float(params.warmup_steps)
decay = tf.minimum(1 + step * (n - 1) / (n * warmup_steps), tf.minimum(n, n * ((2*n) ** ((params.s - n * step) / (params.e - params.s)))))
return tf.maximum(learning_rate * decay, 5e-6)
elif params.learning_rate_decay == "piecewise_constant":
return tf.train.piecewise_constant(tf.to_int32(global_step),
params.learning_rate_boundaries,
params.learning_rate_values)
elif params.learning_rate_decay == "none":
return learning_rate
else:
|
tensorflow.minimum
| 8,434 |
import tensorflow as tf
def main(unused_argv):
tf.set_random_seed(FLAGS.random_seed)
run_config_args = {
'model_dir': FLAGS.model_dir,
'save_checkpoints_steps': FLAGS.save_checkpoints_steps,
'log_step_count_steps': FLAGS.log_step_count_steps,
'keep_checkpoint_max': 100,
}
config = tf.contrib.tpu.RunConfig(**run_config_args)
if FLAGS.warm_start_ckpt_path:
var_names = []
checkpoint_path = FLAGS.warm_start_ckpt_path
reader = tf.train.NewCheckpointReader(checkpoint_path)
for key in reader.get_variable_to_shape_map():
keep_str = 'Momentum|global_step|finetune_global_step'
if not re.findall('({})'.format(keep_str,), key):
var_names.append(key)
|
tensorflow.contrib.tpu.RunConfig
| 8,435 |
import tensorflow as tf
tf.initialize_all_variables().run()
self.assertEqual(111, v0.eval())
save.restore(sess, save_path + "-00000-of-00002")
self.assertEqual(10, v0.eval())
# Restore a different "v1" from shard 1 of the saved files.
with tf.Session(
target="",
config=tf.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
v1 = tf.Variable(222)
save = tf.train.Saver({"v1": v1}, sharded=True)
tf.initialize_all_variables().run()
self.assertEqual(222, v1.eval())
save.restore(sess, save_path + "-00001-of-00002")
self.assertEqual(20, v1.eval())
|
tensorflow.ConfigProto
| 8,436 |
import tensorflow as tf
"""
summaries = []
for grad, var in grads_and_vars:
if grad is not None:
if isinstance(grad, tf.IndexedSlices):
grad_values = grad.values
else:
grad_values = grad
summaries.append(tf.histogram_summary(var.op.name + ':gradient',
grad_values))
summaries.append(tf.histogram_summary(var.op.name + ':gradient_norm',
tf.global_norm([grad_values])))
else:
tf.logging.info('Var %s has no gradient', var.op.name)
return summaries
class DeploymentConfig(object):
"""Configuration for deploying a model with `deploy()`.
You can pass an instance of this class to `deploy()` to specify exactly
how to deploy the model to build. If you do not pass one, an instance built
|
tensorflow.global_norm
| 8,437 |
import tensorflow as tf
net = {}
current = image
for i, name in enumerate(layers):
kind = name[:4]
if kind == 'conv':
kernels, bias = weights[i][0][0][0][0]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [height, width, in_channels, out_channels]
kernels = utils.get_variable(np.transpose(kernels, (1, 0, 2, 3)), name=name + "_w")
bias = utils.get_variable(bias.reshape(-1), name=name + "_b")
current = utils.conv2d_basic(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current, name=name)
if FLAGS.debug:
utils.add_activation_summary(current)
elif kind == 'pool':
current = utils.avg_pool_2x2(current)
net[name] = current
return net
'''
def decoder(image):
model_data = utils.get_model_data(FLAGS.model_dir, MODEL_URL)
|
tensorflow.nn.relu
| 8,438 |
import tensorflow as tf
p.input_modality["inputs_position"] = identity
p.input_modality["targets_segmentation"] = identity
p.input_modality["targets_position"] = identity
def example_reading_spec(self):
data_fields = {"targets": tf.VarLenFeature(tf.int64)}
if self.has_inputs:
data_fields["inputs"] = tf.VarLenFeature(tf.int64)
if self.packed_length:
if self.has_inputs:
data_fields["inputs_segmentation"] = tf.VarLenFeature(tf.int64)
data_fields["inputs_position"] = tf.VarLenFeature(tf.int64)
data_fields["targets_segmentation"] = tf.VarLenFeature(tf.int64)
data_fields["targets_position"] = tf.VarLenFeature(tf.int64)
data_items_to_decoders = None
return (data_fields, data_items_to_decoders)
def eval_metrics(self):
return [
metrics.Metrics.ACC, metrics.Metrics.ACC_TOP5,
|
tensorflow.VarLenFeature
| 8,439 |
import tensorflow as tf
loss = tf.maximum(0.0, loss - float(config.free_nats))
objectives.append(Objective('divergence', loss, min, include, exclude))
elif name == 'overshooting':
shape = tools.shape(graph.data['action'])
length = tf.tile(tf.constant(shape[1])[None], [shape[0]])
_, priors, posteriors, mask = tools.overshooting(
graph.cell, {}, graph.embedded, graph.data['action'], length,
config.overshooting_distance, posterior)
posteriors, priors, mask = tools.nested.map(
|
tensorflow.constant
| 8,440 |
import tensorflow as tf
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
|
tensorflow.reshape
| 8,441 |
import tensorflow as tf
"How many steps to make in each estimator call.")
flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
|
tensorflow.flags.DEFINE_string
| 8,442 |
import tensorflow as tf
|
tensorflow.GradientTape
| 8,443 |
import tensorflow as tf
tf.logging.info("%s\tshape %s", v.name[:-2].ljust(80),
str(v.shape).ljust(20))
v_size = np.prod(np.array(v.shape.as_list())).tolist() # mutiple all dimension size
total_size += v_size
tf.logging.info("Total trainable variables size: %d", total_size)
learning_rate = get_learning_rate_decay(params.learning_rate,
global_step, params)
learning_rate = tf.convert_to_tensor(learning_rate, dtype=tf.float32)
tf.summary.scalar("learning_rate", learning_rate)
# Create optimizer
opt = tf.train.AdamOptimizer(learning_rate,
beta1=params.adam_beta1,
beta2=params.adam_beta2,
epsilon=params.adam_epsilon)
|
tensorflow.convert_to_tensor
| 8,444 |
import tensorflow as tf
if self.temperature is not None:
logits /= self.temperature
if self.tanh_constant is not None:
logits = self.tanh_constant * tf.tanh(logits)
index = tf.multinomial(logits, 1)
index = tf.to_int32(index)
index = tf.reshape(index, [1])
arc_seq = arc_seq.write(start_id + 2 * i, index)
curr_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=index)
log_prob += curr_log_prob
curr_ent = tf.stop_gradient(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=tf.nn.softmax(logits)))
entropy += curr_ent
prev_layers.append(anchors.read(tf.reduce_sum(index)))
inputs = prev_layers[-1]
for i in range(2): # op_1, op_2
next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm)
prev_c, prev_h = next_c, next_h
logits = tf.matmul(next_h[-1], self.w_soft) + self.b_soft
if self.temperature is not None:
logits /= self.temperature
if self.tanh_constant is not None:
|
tensorflow.nn.softmax
| 8,445 |
import tensorflow as tf
cropped_shape = control_flow_ops.with_dependencies(
[rank_assertion],
tf.pack([crop_height, crop_width, original_shape[2]]))
size_assertion = tf.Assert(
tf.logical_and(
tf.greater_equal(original_shape[0], crop_height),
tf.greater_equal(original_shape[1], crop_width)),
['Crop size greater than the image size.'])
offsets = tf.to_int32(tf.pack([offset_height, offset_width, 0]))
# Use tf.slice instead of crop_to_bounding box as it accepts tensors to
# define the crop size.
image = control_flow_ops.with_dependencies(
[size_assertion],
tf.slice(image, offsets, cropped_shape))
return tf.reshape(image, cropped_shape)
|
tensorflow.pack
| 8,446 |
from tensorflow.python.framework import dtypes
one_hot=False,
dtype=dtypes.float32,
reshape=True):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = dtypes.as_dtype(dtype).base_dtype
if dtype not in (dtypes.uint8, dtypes.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
|
tensorflow.python.framework.dtypes.as_dtype
| 8,447 |
import tensorflow as tf
self.assertEqual((2, 2), res[0].shape)
def testTiedRNNSeq2Seq(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
cell = tf.nn.rnn_cell.OutputProjectionWrapper(
tf.nn.rnn_cell.GRUCell(2), 4)
dec, mem = tf.nn.seq2seq.tied_rnn_seq2seq(inp, dec_inp, cell)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
|
tensorflow.nn.rnn_cell.GRUCell
| 8,448 |
import tensorflow as tf
features = tf.parse_single_example(
serialized_example,
features={
'wav_raw': tf.FixedLenFeature([], tf.string),
'noisy_raw': tf.FixedLenFeature([], tf.string),
})
wave = tf.decode_raw(features['wav_raw'], tf.int32)
wave.set_shape(canvas_size)
wave = (2./65535.) * tf.cast((wave - 32767), tf.float32) + 1.
noisy = tf.decode_raw(features['noisy_raw'], tf.int32)
noisy.set_shape(canvas_size)
noisy = (2./65535.) * tf.cast((noisy - 32767), tf.float32) + 1.
if preemph > 0:
wave = tf.cast(pre_emph(wave, preemph), tf.float32)
noisy = tf.cast(pre_emph(noisy, preemph), tf.float32)
return wave, noisy
|
tensorflow.decode_raw
| 8,449 |
import tensorflow as tf
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(
|
tensorflow.data.TFRecordDataset
| 8,450 |
import tensorflow as tf
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, mu)
tf.add_to_collection('mu_sigma_bn', mu)
sigma = tf.get_variable('sigma', batch_var.shape, dtype=tf.float32,
initializer=tf.ones_initializer(), trainable=False)
tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, sigma)
tf.add_to_collection('mu_sigma_bn', sigma)
beta = tf.get_variable('beta', batch_mean.shape, dtype=tf.float32,
initializer=tf.zeros_initializer())
|
tensorflow.add_to_collection
| 8,451 |
import tensorflow as tf
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
|
tensorflow.train.init_from_checkpoint
| 8,452 |
import tensorflow as tf
encoder_state = tuple(encoder_state[-1] for _ in range(num_layers))
decoder_cell = attention(encoder_out, seq_lens)
dense_layer = tf.layers.Dense(n_mels * resampled)
|
tensorflow.layers.Dense
| 8,453 |
import tensorflow as tf
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
|
tensorflow.nn.log_softmax
| 8,454 |
import tensorflow as tf
if not white:
q_mu = tf.matrix_triangular_solve(Luu, q_mu, lower=True)
Luu_tiled = tf.tile(Luu[None, :, :], [num_func, 1, 1]) # remove line once issue 216 is fixed
q_sqrt_r = tf.matrix_triangular_solve(Luu_tiled, q_sqrt_r, lower=True)
Li_eKuf = tf.matrix_triangular_solve(Luu, eKuf, lower=True) # M x N
fmean = tf.matmul(Li_eKuf, q_mu, transpose_a=True)
|
tensorflow.matrix_triangular_solve
| 8,455 |
import tensorflow as tf
self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens')
self.example_weights = tf.placeholder(tf.float32, [batch_size],
name='example_weights')
embeddings = c2v.GetEmbeddings(self.x)
self._inputs = [tf.squeeze(input_, [1]) for input_ in
tf.split(1, max_sequence_len, embeddings)]
# Need to prepare a mask to zero out the padding symbols.
# Make a batch_size x max_sequence_len matrix where each
# row contains the length repeated max_sequence_len times.
lengths_transposed = tf.expand_dims(tf.to_int32(self.seq_lens), 1)
lengths_tiled = tf.tile(lengths_transposed, [1, max_sequence_len])
# Make a matrix where each row contains [0, 1, ..., max_sequence_len]
r = tf.range(0, max_sequence_len, 1)
range_row = tf.expand_dims(r, 0)
range_tiled = tf.tile(range_row, [batch_size, 1])
self.lengths_transposed = lengths_transposed
self.lengths_tiled = lengths_tiled
self.range_row = range_row
self.range_tiled = range_tiled
|
tensorflow.to_int32
| 8,456 |
import tensorflow as tf
out = tf.nn.embedding_lookup(embedding_matrix, tensor)
return out
@layer
def recurrent_layer(tensor, cell=None, hidden_dims=128, sequence_length=None, decoder_fn=None,
activation=tf.nn.tanh, initializer=tf.orthogonal_initializer(), initial_state=None,
keep_prob=1.0,
return_final_state=False, return_next_cell_input=True, **opts):
if cell is None:
cell = tf.contrib.rnn.BasicRNNCell(hidden_dims, activation=activation)
# cell = tf.contrib.rnn.LSTMCell(hidden_dims, activation=activation)
if keep_prob < 1.0:
keep_prob = _global_keep_prob(keep_prob)
cell = tf.contrib.rnn.DropoutWrapper(cell, keep_prob, keep_prob)
if opts.get("name"):
tf.add_to_collection(opts.get("name"), cell)
if decoder_fn is None:
outputs, final_state = tf.nn.dynamic_rnn(cell, tensor,
sequence_length=sequence_length, initial_state=initial_state, dtype=tf.float32)
final_context_state = None
else:
# TODO: turn off sequence_length?
outputs, final_state, final_context_state = seq2seq.dynamic_rnn_decoder(
cell, decoder_fn, inputs=None, sequence_length=sequence_length)
if return_final_state:
|
tensorflow.contrib.rnn.DropoutWrapper
| 8,457 |
from tensorflow.python.ops import math_ops
# whether we should use the first or last index in case of ties.
min_val = math_ops.reduce_min(math_ops.abs(sensitivities - sensitivity))
indices_at_minval = math_ops.equal(
math_ops.abs(sensitivities - sensitivity), min_val)
indices_at_minval = math_ops.to_int64(indices_at_minval)
indices_at_minval = math_ops.cumsum(indices_at_minval)
tf_index = math_ops.argmax(indices_at_minval, 0)
tf_index = math_ops.cast(tf_index, dtypes.int32)
# Now, we have the implicit threshold, so compute the specificity:
return math_ops.div(tn[tf_index],
tn[tf_index] + fp[tf_index] + kepsilon,
|
tensorflow.python.ops.math_ops.argmax
| 8,458 |
import tensorflow as tf
scores = d_layer_3_all
if mask is not None:
mask = tf.equal(mask, tf.ones_like(mask))
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
if return_alphas:
return output, scores
return output
class VecAttGRUCell(RNNCell):
|
tensorflow.matmul
| 8,459 |
import tensorflow as tf
dec_inp, enc_state, cell, num_symbols=4, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
res = sess.run([mem])
self.assertEqual(1, len(res))
self.assertEqual((2, 2), res[0].c.shape)
self.assertEqual((2, 2), res[0].h.shape)
def testEmbeddingRNNSeq2Seq(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)]
dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
dec, mem = tf.nn.seq2seq.embedding_rnn_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].c.shape)
self.assertEqual((2, 2), res[0].h.shape)
# Test with state_is_tuple=False.
|
tensorflow.constant
| 8,460 |
import tensorflow as tf
def deconv2d(x, dim=(32, [3, 3], [1, 1]), pad='SAME', scope="deconv2d", training=True, ema=None, init=False, bias_initializer=tf.constant_initializer(0.)):
num_filters, filter_size, stride = dim
xs = x.get_shape().as_list()
if pad=='SAME':
target_shape = [tf.shape(x)[0], xs[1]*stride[0], xs[2]*stride[1], num_filters]
else:
target_shape = [tf.shape(x)[0], xs[1]*stride[0] + filter_size[0]-1, xs[2]*stride[1] + filter_size[1]-1, num_filters]
with tf.variable_scope(scope):
V = tf.get_variable("V", shape=list(filter_size) + [num_filters, int(x.get_shape()[-1])], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
g = tf.get_variable("g", shape=[num_filters], dtype=tf.float32, initializer=tf.constant_initializer(1.), trainable=True)
b = tf.get_variable("b", shape=[num_filters], dtype=tf.float32, initializer=bias_initializer, trainable=True)
def maybe_avg(v):
if ema is not None and not init:
v = tf.cond(training, lambda: v, lambda: ema.average(v))
return v
if init:
|
tensorflow.random_normal_initializer
| 8,461 |
import tensorflow as tf
def buildLstmLayer(self):
return tf.keras.layers.StackedRNNCells([
tf.lite.experimental.nn.TFLiteLSTMCell(
self.num_units, use_peepholes=True, forget_bias=1.0, name="rnn1"),
tf.lite.experimental.nn.TFLiteLSTMCell(
self.num_units, num_proj=8, forget_bias=1.0, name="rnn2"),
tf.lite.experimental.nn.TFLiteLSTMCell(
self.num_units // 2,
use_peepholes=True,
num_proj=8,
forget_bias=0,
name="rnn3"),
tf.lite.experimental.nn.TFLiteLSTMCell(
self.num_units, forget_bias=1.0, name="rnn4")
])
def buildModel(self, lstm_layer, is_dynamic_rnn):
"""Build Mnist recognition model.
Args:
lstm_layer: The lstm layer either a single lstm cell or a multi lstm cell.
is_dynamic_rnn: Use dynamic_rnn or not.
Returns:
|
tensorflow.lite.experimental.nn.TFLiteLSTMCell
| 8,462 |
import tensorflow as tf
search_space = Box([0, 0], [1, 1])
num_initial_points = 3
initial_query_points = search_space.sample(num_initial_points)
initial_observations = objective(initial_query_points.numpy(), sleep=False)
initial_data = Dataset(
query_points=initial_query_points,
observations=tf.constant(initial_observations, dtype=tf.float64),
)
import gpflow
from trieste.models.gpflow import GaussianProcessRegression
def build_model(data):
variance = tf.math.reduce_variance(data.observations)
kernel = gpflow.kernels.RBF(variance=variance)
gpr = gpflow.models.GPR(data.astuple(), kernel, noise_variance=1e-5)
gpflow.set_trainable(gpr.likelihood, False)
return GaussianProcessRegression(gpr)
# these imports will be used later for optimization
from trieste.acquisition import LocalPenalizationAcquisitionFunction
from trieste.acquisition.rule import AsynchronousGreedy, EfficientGlobalOptimization
from trieste.ask_tell_optimization import AskTellOptimizer
# %% [markdown]
# ## Multiprocessing setup
#
|
tensorflow.math.reduce_variance
| 8,463 |
import tensorflow as tf
def testEmbeddingRNNSeq2Seq(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)]
dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
|
tensorflow.constant_initializer
| 8,464 |
import tensorflow as tf
# The return value.
sum_loss = None
# Individual components of the loss that will need summaries.
clone_loss = None
regularization_loss = None
# Compute and aggregate losses on the clone device.
with tf.device(clone.device):
all_losses = []
clone_losses = tf.get_collection(tf.GraphKeys.LOSSES, clone.scope)
if clone_losses:
clone_loss = tf.add_n(clone_losses, name='clone_loss')
if num_clones > 1:
clone_loss = tf.div(clone_loss, 1.0 * num_clones,
name='scaled_clone_loss')
all_losses.append(clone_loss)
if regularization_losses:
regularization_loss = tf.add_n(regularization_losses,
name='regularization_loss')
all_losses.append(regularization_loss)
if all_losses:
|
tensorflow.add_n
| 8,465 |
import tensorflow as tf
self.v = tf.get_variable('v', [k_h, k_w, input_dim, output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
self.g = tf.get_variable('g',[output_dim],
initializer=tf.constant_initializer(float('nan')))
self.b = tf.get_variable('b',[output_dim],
initializer=tf.constant_initializer(float('nan')))
self.strides = [1, d_h, d_w, 1]
self.padding = padding
self.epsilon = epsilon
def __call__(self,input_var,name=None,**kwargs) :
def _init():
v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,2])
t = tf.nn.conv2d(input_var,v_norm,self.strides,self.padding,data_format='NHWC')
mu,var = tf.nn.moments(t,axes=[0,1,2])
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
require_init = tf.reduce_any(tf.is_nan(self.g))
init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b])
with tf.control_dependencies(init_ops):
w = tf.reshape(self.g,[1,1,1,tf.shape(self.v)[-1]]) * tf.nn.l2_normalize(self.v,axis=[0,1,2])
return tf.nn.bias_add(
tf.nn.conv2d(input_var, w,data_format='NHWC',
strides=self.strides, padding=self.padding),
|
tensorflow.nn.l2_normalize
| 8,466 |
import tensorflow as tf
A namedtuple of input and target data.
"""
input_text = tf.map_fn(lambda x: x[:-1], chunk)
target_text = tf.map_fn(lambda x: x[1:], chunk)
return (input_text, target_text)
def build_to_ids_fn(vocab, max_seq_len):
"""Constructs function mapping examples to sequences of token indices."""
_, _, bos, eos = get_special_tokens(len(vocab))
table_values = np.arange(len(vocab), dtype=np.int64)
table = tf.lookup.StaticVocabularyTable(
tf.lookup.KeyValueTensorInitializer(vocab, table_values),
num_oov_buckets=1)
def to_ids(example):
sentence = tf.reshape(example['tokens'], shape=[1])
words = tf.strings.split(sentence, sep=' ').values
truncated_words = words[:max_seq_len]
tokens = table.lookup(truncated_words) + 1
tokens = tf.cond(
tf.less(tf.size(tokens), max_seq_len),
lambda: tf.concat([tokens, [eos]], 0), lambda: tokens)
return tf.concat([[bos], tokens], 0)
|
tensorflow.lookup.KeyValueTensorInitializer
| 8,467 |
import tensorflow as tf
# check_shape([rho, distribution_f, q_value], [[self.n_envs * self.n_steps, self.n_act]] * 2)
# Truncated importance sampling
adv = qret - value
log_f = tf.log(f_i + eps)
# [n_envs * n_steps]
gain_f = log_f * tf.stop_gradient(adv * tf.minimum(self.correction_term, rho_i))
loss_f = -tf.reduce_mean(gain_f)
# Bias correction for the truncation
adv_bc = (q_value - tf.reshape(value, [self.n_envs * self.n_steps, 1])) # [n_envs * n_steps, n_act]
# check_shape([adv_bc, log_f_bc], [[self.n_envs * self.n_steps, self.n_act]] * 2)
if continuous:
|
tensorflow.reduce_mean
| 8,468 |
import tensorflow as tf
with self.assertRaisesRegexp(
tf.errors.InvalidArgumentError,
'Output shape must have the same batch dimension as the input batch '
'size. Expected: 1 Observed: 4'):
coord.join()
def test_get_inputs_cancelled(self):
with tf.Graph().as_default():
@dynamic_batching.batch_fn
def f(a):
return a
f(tf.constant([1]))
|
tensorflow.Graph
| 8,469 |
from tensorflow.python.framework import ops
"""Computes hyperbolic tangent of `x` element-wise.
Args:
x: A Tensor with type `float`, `double`, `int32`, `complex64`, `int64`,
or `qint32`.
name: A name for the operation (optional).
Returns:
A Tensor with the same type as `x` if `x.dtype != qint32` otherwise
the return type is `quint8`.
"""
with ops.op_scope([x], name, "Tanh") as name:
x = ops.convert_to_tensor(x, name="x")
return gen_math_ops._tanh(x, name=name)
ops.RegisterShape("Abs")(common_shapes.unchanged_shape)
ops.RegisterShape("Ceil")(common_shapes.unchanged_shape)
ops.RegisterShape("Conj")(common_shapes.unchanged_shape)
ops.RegisterShape("Cos")(common_shapes.unchanged_shape)
ops.RegisterShape("Exp")(common_shapes.unchanged_shape)
ops.RegisterShape("Floor")(common_shapes.unchanged_shape)
ops.RegisterShape("Imag")(common_shapes.unchanged_shape)
ops.RegisterShape("Inv")(common_shapes.unchanged_shape)
|
tensorflow.python.framework.ops.convert_to_tensor
| 8,470 |
import tensorflow as tf
self.assertAllEqual(x + y, var_value)
self.assertAllEqual(x + y, op_value)
var_value, op_value = self._initAssignSubFetch(x, y, use_gpu=False)
self.assertAllEqual(x - y, var_value)
self.assertAllEqual(x - y, op_value)
def testBasic(self):
self._testTypes(np.arange(0, 20).reshape([4, 5]))
def testAssignNonStrictShapeChecking(self):
with self.test_session():
data = tf.fill([1024, 1024], 0)
p = tf.Variable([1])
a = tf.assign(p, data, validate_shape=False)
a.op.run()
self.assertAllEqual(p.eval(), data.eval())
# Assign to yet another shape
data2 = tf.fill([10, 10], 1)
a2 = tf.assign(p, data2, validate_shape=False)
a2.op.run()
self.assertAllEqual(p.eval(), data2.eval())
def testInitRequiredAssignAdd(self):
with self.test_session():
p = tf.Variable(tf.fill([1024, 1024], 1),
|
tensorflow.assign
| 8,471 |
import tensorflow as tf
masks1 = tf.constant([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 0, 1, 0, 1],
[0, 1, 0, 1, 0]], dtype=tf.int32)
masks2 = tf.constant([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 0],
[1, 0, 1, 1, 1]], dtype=tf.int32)
|
tensorflow.constant
| 8,472 |
import tensorflow as tf
# character sequences in this batch were padded to the same fixed length so
# that they could be easily fed through the above RNN loop. The
# `sequence_length` vector tells us the true lengths of the character
# sequences, letting us obtain for each sequence the hidden state that was
# generated by its non-padding characters.
batch_range = [i for i in range(batch_size)]
indices = tf.stack([sequence_length - 1, batch_range], axis=1)
hidden_states = tf.gather_nd(chars, indices)
return self.relu(hidden_states)
def loss(labels, predictions):
"""Computes mean squared loss."""
return tf.reduce_mean(tf.squared_difference(predictions, labels))
def test(model, eval_data):
"""Computes the average loss on eval_data, which should be a Dataset."""
avg_loss = tfe.metrics.Mean("loss")
for (labels, chars, sequence_length) in tfe.Iterator(eval_data):
predictions = model((chars, sequence_length), training=False)
avg_loss(loss(labels, predictions))
print("eval/loss: %.6f\n" % avg_loss.result())
with tf.contrib.summary.always_record_summaries():
tf.contrib.summary.scalar("loss", avg_loss.result())
|
tensorflow.squared_difference
| 8,473 |
import tensorflow as tf
activation=common_layers.belu, padding="SAME")
flat_x = tf.layers.flatten(x)
flat_x = tf.nn.dropout(flat_x, rate=dropout)
|
tensorflow.layers.flatten
| 8,474 |
import tensorflow as tf
tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed
if hparams.tacotron_teacher_forcing_mode == "scheduled":
tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing
# ratio decay when mode = "scheduled"
gradient_norms = [tf.norm(grad) for grad in model.gradients]
tf.summary.histogram("gradient_norm", gradient_norms)
tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize
# gradients (in case of explosion)
return tf.summary.merge_all()
def add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss,
|
tensorflow.reduce_max
| 8,475 |
from tensorflow.python.ops import nn
`false_negatives` variables appropriately, and whose value matches
`recall`.
Raises:
ValueError: If `ignore_mask` is not `None` and its shape doesn't match
`predictions`, or if `weights` is not `None` and its shape doesn't match
`predictions`, or if either `metrics_collections` or `updates_collections`
are not a list or tuple.
"""
default_name = _at_k_name('recall', k, class_id=class_id)
with ops.name_scope(name, default_name, (predictions, labels)) as scope:
_, top_k_idx = nn.top_k(predictions, k)
top_k_idx = math_ops.to_int64(top_k_idx)
weights = _mask_weights(ignore_mask, weights)
tp, tp_update = _streaming_sparse_true_positive_at_k(
predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id,
weights=weights)
fn, fn_update = _streaming_sparse_false_negative_at_k(
predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id,
weights=weights)
metric = math_ops.div(tp, math_ops.add(tp, fn), name=scope)
|
tensorflow.python.ops.nn.top_k
| 8,476 |
import tensorflow as tf
def _add_score_summary(self, key, tensor):
tf.summary.histogram('SCORE/' + tensor.op.name + '/' + key + '/scores', tensor)
def _add_train_summary(self, var):
tf.summary.histogram('TRAIN/' + var.op.name, var)
# Custom Layers #
def _reshape_layer(self, bottom, num_dim, name):
input_shape = tf.shape(bottom)
with tf.variable_scope(name):
# change the channel to the caffe format
# 18个通道[,18,none,none],分别显示得分,前9个为前景得分,后9个为背景得分
# 第二次[1,2,none,none]
to_caffe = tf.transpose(bottom, [0, 3, 1, 2])
# then force it to have channel 2
#[1,2,none.none],将9个anchor的前景得分和背景得分分开
# 第二次[1,18,none,none]
reshaped = tf.reshape(to_caffe, tf.concat(axis=0, values=[[self._batch_size], [num_dim, -1], [input_shape[2]]]))
# then swap the channel back
|
tensorflow.variable_scope
| 8,477 |
import tensorflow as tf
mode,
data_parallelism=data_parallelism,
decode_hparams=decode_hparams)
global_step = tf.train.get_global_step()
mesh_shape = mtf.convert_to_shape(hparams.mesh_shape)
layout_rules = mtf.convert_to_layout_rules(hparams.layout)
|
tensorflow.train.get_global_step
| 8,478 |
import tensorflow as tf
tf.float32, size=self.num_cells + 2, clear_after_read=False)
arc_seq = tf.TensorArray(tf.int32, size=self.num_cells * 4)
|
tensorflow.TensorArray
| 8,479 |
import tensorflow as tf
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
"""U-Net Generator"""
def lrelu(x, alpha,name='lrelu'):
with tf.variable_scope(name):
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def instance_norm(x,name='instance_norm'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
|
tensorflow.nn.relu
| 8,480 |
import tensorflow as tf
for i in range(self.config["coref_depth"]):
with tf.variable_scope("coref_layer", reuse=(i > 0)):
|
tensorflow.variable_scope
| 8,481 |
import tensorflow as tf
"""
with tf.name_scope(name):
|
tensorflow.name_scope
| 8,482 |
import tensorflow as tf
# 2. hard negative mining
loss_class = tf.reshape(loss_class, [num_batch, num_prior])
loss_class_idx = tf.argsort(loss_class, axis=1, direction='DESCENDING')
loss_class_idx_rank = tf.argsort(loss_class_idx, axis=1)
mask_pos_per_batch = tf.reshape(mask_pos, [num_batch, num_prior])
num_pos_per_batch = tf.reduce_sum(
tf.cast(mask_pos_per_batch, tf.float32), 1, keepdims=True)
num_pos_per_batch = tf.maximum(num_pos_per_batch, 1)
num_neg_per_batch = tf.minimum(neg_pos_ratio * num_pos_per_batch,
tf.cast(num_prior, tf.float32) - 1)
mask_hard_neg = tf.reshape(
tf.cast(loss_class_idx_rank, tf.float32) < num_neg_per_batch,
|
tensorflow.cast
| 8,483 |
import tensorflow as tf
initializer = tf.random_uniform_initializer(minval=-0.1, maxval=0.1)
with tf.variable_scope(self.name, initializer=initializer):
with tf.variable_scope("lstm"):
self.w_lstm = []
for layer_id in range(self.lstm_num_layers):
with tf.variable_scope("layer_{}".format(layer_id)):
w = tf.get_variable("w", [2 * self.lstm_size, 4 * self.lstm_size])
self.w_lstm.append(w)
self.g_emb = tf.get_variable("g_emb", [1, self.lstm_size])
with tf.variable_scope("emb"):
self.w_emb = tf.get_variable("w", [self.num_branches, self.lstm_size])
with tf.variable_scope("softmax"):
self.w_soft = tf.get_variable("w", [self.lstm_size, self.num_branches])
b_init = np.array([10.0, 10.0] + [0] * (self.num_branches - 2),
dtype=np.float32)
self.b_soft = tf.get_variable(
"b", [1, self.num_branches],
initializer=tf.constant_initializer(b_init))
b_soft_no_learn = np.array(
[0.25, 0.25] + [-0.25] * (self.num_branches - 2), dtype=np.float32)
|
tensorflow.get_variable
| 8,484 |
import tensorflow as tf
pred_label = tf.argmax(distillation_loss["st_logits"], axis=-1, output_type=tf.int32)
correct = tf.equal(
tf.cast(tf.ones_like(label_ids, dtype=tf.int32), tf.int32),
tf.cast(pred_label, tf.int32)
)
st_accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
pred_label = tf.argmax(distillation_loss["te_logits"], axis=-1, output_type=tf.int32)
correct = tf.equal(
tf.cast(tf.zeros_like(label_ids, dtype=tf.int32), tf.int32),
tf.cast(pred_label, tf.int32)
)
te_accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
except:
te_accuracy = tf.constant(0.0)
st_accuracy = tf.constant(0.0)
try:
|
tensorflow.zeros_like
| 8,485 |
import tensorflow as tf
self_attn_result = tf.reduce_sum(attn_score * rep_map_tile, 3) # bs,bn,bl,vec
with tf.variable_scope('source2token_self_attn'):
inter_block_logits = bn_dense_layer(self_attn_result, ivec, True, 0., 'bn_dense_map', 'linear',
|
tensorflow.variable_scope
| 8,486 |
import tensorflow as tf
Returns:
A boolean tensor with the same shape as input (indicator) tensor
"""
indices = tf.where(indicator)
indices = tf.random.shuffle(indices)
indices = tf.reshape(indices, [-1])
num_samples = tf.minimum(tf.size(indices), num_samples)
selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1]))
selected_indicator = ops.indices_to_dense_vector(selected_indices, tf.shape(indicator)[0])
return tf.equal(selected_indicator, 1)
def sample_balanced_positive_negative(indicator, sample_size, labels, positive_fraction=0.5):
"""Subsamples minibatches to a desired balance of positives and negatives.
Arguments:
- *indicator*: boolean tensor of shape [N] whose True entries can be sampled.
- *sample_size*: desired batch size. If None, keeps all positive samples and
|
tensorflow.shape
| 8,487 |
import tensorflow as tf
v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,3])
t = tf.nn.conv2d_transpose(input_var,v_norm,
|
tensorflow.nn.conv2d_transpose
| 8,488 |
import tensorflow as tf
# Reshape immages to display them
input_images = tf.reshape(x_input, [-1, 28, 28, 1])
generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1])
# Tensorboard visualization
tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss)
tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss)
tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss)
tf.summary.scalar(name='Generator Loss', tensor=generator_loss)
tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss)
tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent)
tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution)
tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label)
tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution)
tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10)
tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
|
tensorflow.summary.scalar
| 8,489 |
import tensorflow as tf
import tensorflow as tf
import memory_util
memory_util.vlog(1)
sess = tf.Session()
with sess.as_default():
tensor = tf.range(10)
print_op = tf.print("tensors:", tensor, {'2': tensor * 2}, output_stream=sys.stderr)
with tf.control_dependencies([print_op]):
tripled_tensor = tensor * 3
with memory_util.capture_stderr() as stderr:
print(sess.run(tripled_tensor))
print(stderr.getvalue())
|
tensorflow.control_dependencies
| 8,490 |
from tensorflow.contrib.metrics.python.ops import set_ops
return sparse_ops.sparse_retain(
ids, math_ops.equal(ids.values, selected_id))
# TODO(ptucker): Make this more efficient, maybe add a sparse version of
# tf.equal and tf.reduce_any?
# Shape of filled IDs is the same as `ids` with the last dim collapsed to 1.
ids_shape = array_ops.shape(ids, out_type=dtypes.int64)
ids_last_dim = array_ops.size(ids_shape) - 1
filled_selected_id_shape = math_ops.reduced_shape(
ids_shape, array_ops.reshape(ids_last_dim, [1]))
# Intersect `ids` with the selected ID.
filled_selected_id = array_ops.fill(
filled_selected_id_shape, math_ops.to_int64(selected_id))
result = set_ops.set_intersection(filled_selected_id, ids)
return ops.SparseTensor(
indices=result.indices, values=result.values, shape=ids_shape)
def _maybe_select_class_id(labels, predictions_idx, selected_id=None):
"""If class ID is specified, filter all other classes.
Args:
labels: `int64` `Tensor` or `SparseTensor` with shape
[D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
target classes for the associated prediction. Commonly, N=1 and `labels`
has shape [batch_size, num_labels]. [D1, ... DN] must match
`predictions_idx`.
predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k]
|
tensorflow.contrib.metrics.python.ops.set_ops.set_intersection
| 8,491 |
import tensorflow as tf
# Saving the model
saver = tf.train.Saver()
step = 0
with tf.Session() as sess:
if train_model:
tensorboard_path, saved_model_path, log_path = form_results()
sess.run(init)
writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph)
x_l, y_l = mnist.test.next_batch(n_labeled)
for i in range(n_epochs):
n_batches = int(n_labeled / batch_size)
print("------------------Epoch {}/{}------------------".format(i, n_epochs))
for b in range(1, n_batches + 1):
z_real_dist = np.random.randn(batch_size, z_dim) * 5.
real_cat_dist = np.random.randint(low=0, high=10, size=batch_size)
|
tensorflow.summary.FileWriter
| 8,492 |
import tensorflow as tf
scope=self.name)
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias
def deconv2d(input_, output_shape,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="deconv2d", with_w=False):
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
|
tensorflow.matmul
| 8,493 |
import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
from tensorflow.python.ops import data_flow_ops
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate
import time
def main(args):
with tf.Graph().as_default():
config = tf.ConfigProto(inter_op_parallelism_threads=args.num_inter_threads,
intra_op_parallelism_threads=args.num_intra_threads)
with tf.Session(config = config) as sess:
# Read the file containing the pairs used for testing
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
# Get the paths for the corresponding images
paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs)
image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')
labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
|
tensorflow.Graph
| 8,494 |
import tensorflow as tf
rel_embedding_shape = [rel_cnt, self.embedding_size * self.embedding_size]
entity_init = tf.truncated_normal(entity_embedding_shape, stddev=init_sd)
rel_init = tf.truncated_normal(rel_embedding_shape, stddev=init_sd)
if self.maxnorm is not None:
# Ensure maxnorm constraints are initially satisfied
entity_init = dense_maxnorm(entity_init, self.maxnorm)
rel_init = dense_maxnorm(rel_init, self.maxnorm)
self.entity_embedding_vars = tf.Variable(entity_init)
self.rel_embedding_vars = tf.Variable(rel_init)
# Embedding layer for each (head, rel, tail) triple being fed in as input
head_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.head_input)
tail_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.tail_input)
rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input)
# Reshape rel_embed into square D x D matrices
rel_embed_square = tf.reshape(rel_embed, (-1, self.embedding_size, self.embedding_size))
# Reshape head_embed and tail_embed to be suitable for the matrix multiplication
head_embed_row = tf.expand_dims(head_embed, 1) # embeddings as row vectors
tail_embed_col = tf.expand_dims(tail_embed, 2) # embeddings as column vectors
head_rel_mult = tf.batch_matmul(head_embed_row, rel_embed_square)
# Output needs a squeeze into a 1d vector
raw_output = tf.squeeze(tf.batch_matmul(head_rel_mult, tail_embed_col))
self.output, self.loss = self._create_output_and_loss(raw_output)
# Optimization
self.train_step = self.opt.minimize(self.loss)
|
tensorflow.nn.embedding_lookup
| 8,495 |
import tensorflow as tf
def true_positive_rate_at_false_positive_rate_loss(labels,
logits,
target_rate,
weights=1.0,
dual_rate_factor=0.1,
label_priors=None,
surrogate_type='xent',
lambdas_initializer=tf.constant_initializer(1.0),
reuse=None,
variables_collections=None,
trainable=True,
scope=None):
"""Computes true positive rate at false positive rate loss.
The loss is based on a surrogate of the form
wt * loss(+) + lambdas * (wt * loss(-) - r * (1 - pi))
|
tensorflow.constant_initializer
| 8,496 |
import tensorflow as tf
inf=work.inference(batch_image)
loss=work.softmax_loss(inf,batch_label)
opti=work.optimer(loss,learnrate)
test_image_batch,test_label_batch=get_test_batch(test_image,test_label,testnum)
test_inf=work.test_inference(test_image_batch)
test_labels=tf.one_hot(test_label_batch,classnum)
test_pre = tf.reshape(test_inf, [testnum, classnum])
correct_prediction=tf.equal(tf.argmax(test_inf,1),tf.argmax(test_labels,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
test_pre = tf.argmax(test_pre, 1)
test_true = tf.argmax(test_labels, 1)
valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum)
|
tensorflow.reshape
| 8,497 |
import tensorflow as tf
# now to upscale to actual image size
deconv_shape1 = image_net["pool4"].get_shape()
W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSESS], name="W_t1")
b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"]))
fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")
deconv_shape2 = image_net["pool3"].get_shape()
W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2")
conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"]))
|
tensorflow.add
| 8,498 |
import tensorflow as tf
self.manager_lstm.state_out[1]
]
# for v in self.var_list:
# print v
def build_placeholders(self):
# standard for all policies
self.obs = tf.placeholder(tf.float32, [None,
self.obs_space]) # ! self.obs = tf.placeholder(tf.float32, [None] + list(self.obs_space))
# ! self.obs_space = env.observation_space.shape
self.r = tf.placeholder(tf.float32, (None,1))
self.ac = tf.placeholder(tf.float32, (None, self.act_space))
self.adv = tf.placeholder(tf.float32, [None]) # unused
# specific to FeUdal
self.prev_g = tf.placeholder(tf.float32, (None, None, self.g_dim))
self.ri = tf.placeholder(tf.float32, (None,))
self.s_diff = tf.placeholder(tf.float32, (None, self.g_dim))
def build_perception(self):
self._obs = tf.expand_dims(self.obs, -1) # !
self._obs = tf.expand_dims(self._obs, -1) # !
conv1 = tf.layers.conv2d(inputs=self._obs,
filters=16,
kernel_size=[2, 1], # ! kernel_size = [8,8]
activation=tf.nn.elu,
strides=1) # ! strides = 4
conv2 = tf.layers.conv2d(inputs=conv1,
filters=32,
kernel_size=[2, 1], # ! kernel_size = [4,4]
|
tensorflow.placeholder
| 8,499 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.