seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf values_per_ex = sum(values_per_step)/dec_lens # shape (batch_size); normalized value for each batch member return tf.reduce_mean(values_per_ex) # overall average
tensorflow.reduce_mean
8,700
import tensorflow as tf # padding pred_scores = padding(pred_scores, n_cands) true_scores = padding(tf.reshape(cand_scores, (1, -1)), n_cands) true_bestscore = tf.reduce_max(true_scores, axis=-1, keepdims=True) assert all(true_bestscore.numpy() == np.take_along_axis(true_scores.numpy(), best_cands.numpy().reshape((-1, 1)), axis=1)) kacc = [] for k in top_k: pred_top_k = tf.nn.top_k(pred_scores, k=k)[1].numpy() pred_top_k_true_scores = np.take_along_axis(true_scores.numpy(), pred_top_k, axis=1) kacc.append(np.mean(np.any(pred_top_k_true_scores == true_bestscore.numpy(), axis=1))) kacc = np.asarray(kacc) batch_size = int(n_cands.shape[0]) mean_kacc += kacc * batch_size n_samples_processed += batch_size mean_kacc /= n_samples_processed
tensorflow.nn.top_k
8,701
import tensorflow as tf GLOBAL_STEP = tf.Variable(0, trainable=False) INCREASE_GS = GLOBAL_STEP.assign(tf.add(GLOBAL_STEP, 1))
tensorflow.add
8,702
import tensorflow as tf dtype=tf.float32, shape=[len(vocab), size_layers], initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.01), ) lookup_table = tf.concat((tf.zeros(shape=[1, size_layers]), lookup_table[1:, :]), 0) forward = tf.nn.embedding_lookup(lookup_table, self.X) self.Y = tf.placeholder(tf.float32, (None, None, n_mels * resampled)) self.decoder_inputs = tf.concat((tf.zeros_like(self.Y[:, :1, :]), self.Y[:, :-1, :]), 1) self.decoder_inputs = self.decoder_inputs[:, :, -n_mels:] self.Z = tf.placeholder(tf.float32, (None, None, fourier_window_size // 2 + 1)) batch_size = tf.shape(self.X)[0]
tensorflow.placeholder
8,703
import tensorflow as tf name: A string used as the name for this variable scope. Returns: (tf.Tensor) A single value tensor containing the loss. (tf.Tensor) A tensor containing the propensity weights. """ loss = None with tf.name_scope(name, "click_weighted_pairwise_loss",[output]): sliced_output = tf.unstack(output, axis=1) sliced_label = tf.unstack(labels, axis=1) sliced_propensity = tf.unstack(propensity_weights, axis=1) for i in range(len(sliced_output)): for j in range(i+1, len(sliced_output)): cur_label_weight = tf.math.sign(sliced_label[i] - sliced_label[j]) cur_propensity = sliced_propensity[i] * sliced_label[i] + sliced_propensity[j] * sliced_label[j] cur_pair_loss = -tf.exp(sliced_output[i]) / (tf.exp(sliced_output[i]) + tf.exp(sliced_output[j])) if loss == None: loss = cur_label_weight * cur_pair_loss * cur_propensity
tensorflow.unstack
8,704
import tensorflow as tf file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples))
tensorflow.logging.info
8,705
import tensorflow.contrib.graph_editor as ge with tf.name_scope(scope_name): yield op_list g = tf.get_default_graph() op_list.extend(ge.select_ops(scope_name+"/.*", graph=g)) def _to_op(tensor_or_op): if hasattr(tensor_or_op, "op"):
tensorflow.contrib.graph_editor.select_ops
8,706
import tensorflow as tf # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1_trans_shine' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, facts_size, activation=tf.nn.sigmoid, name='f1_shine_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, facts_size, activation=tf.nn.sigmoid, name='f2_shine_att' + stag) d_layer_2_all = tf.reshape(d_layer_2_all, tf.shape(facts)) output = d_layer_2_all return output
tensorflow.shape
8,707
import tensorflow as tf def no_attention(state, hidden_states, *args, **kwargs): batch_size = tf.shape(state)[0] weighted_average = tf.zeros(shape=tf.stack([batch_size, 0])) weights = tf.zeros(shape=[batch_size, tf.shape(hidden_states)[1]]) return weighted_average, weights def average_attention(hidden_states, encoder_input_length, *args, **kwargs): # attention with fixed weights (average of all hidden states) lengths = tf.to_float(tf.expand_dims(encoder_input_length, axis=1)) mask = tf.sequence_mask(encoder_input_length, maxlen=tf.shape(hidden_states)[1]) weights = tf.to_float(mask) / lengths weighted_average = tf.reduce_sum(hidden_states * tf.expand_dims(weights, axis=2), axis=1) return weighted_average, weights def last_state_attention(hidden_states, encoder_input_length, *args, **kwargs): weights = tf.one_hot(encoder_input_length - 1, tf.shape(hidden_states)[1]) weights = tf.to_float(weights) weighted_average = tf.reduce_sum(hidden_states * tf.expand_dims(weights, axis=2), axis=1) return weighted_average, weights
tensorflow.to_float
8,708
import tensorflow.contrib.slim as slim method=1) tf.summary.image('Compare/final_detection_gpu:%d' % i, detections_in_img) loss_dict = outputs[-1] total_loss_dict, total_losses = self.loss_dict(loss_dict, num_gpu) if i == num_gpu - 1: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses()) total_losses = total_losses + tf.add_n(regularization_losses) tf.get_variable_scope().reuse_variables() grads = optimizer.compute_gradients(total_losses) if cfgs.GRADIENT_CLIPPING_BY_NORM is not None: grads = slim.learning.clip_gradient_norms(grads, cfgs.GRADIENT_CLIPPING_BY_NORM) tower_grads.append(grads) self.log_printer(r3det_gwd, optimizer, global_step, tower_grads, total_loss_dict, num_gpu, graph) if __name__ == '__main__': trainer = TrainR3DetGWD(cfgs) trainer.main()
tensorflow.contrib.slim.learning.clip_gradient_norms
8,709
import tensorflow as tf weight_decay, tf.float32, [], 'weight_decay' ) trainable_vars = tf.trainable_variables() kernels = [ v for v in trainable_vars if ('weights' in v.name or 'kernel' in v.name) and 'depthwise_weights' not in v.name ] for K in kernels: x = tf.multiply(weight_decay, tf.nn.l2_loss(K)) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, x) class RestoreMovingAverageHook(tf.train.SessionRunHook): def __init__(self, model_dir): super(RestoreMovingAverageHook, self).__init__() self.model_dir = model_dir
tensorflow.nn.l2_loss
8,710
import tensorflow as tf else: term2 = 0.5 * (param_eta + param_omega) * tf.log(tf.matrix_determinant(2 * np.pi * (param_eta + param_omega) * HaaInv)) dual = param_eta * self.epsilon - param_omega * beta + \ term1 + term2 + tf.reduce_mean( 0.5 * (tf.reduce_sum(tf.matmul(ha, HaaInv) * ha, axis=1) - hss)) # Symbolic dual gradient dual_grad = tf.gradients(xs=[param_eta, param_omega], ys=dual)
tensorflow.matmul
8,711
from tensorflow.python.ops import state_ops def _apply_dense(self, grad, var): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) g_t = grad g_t_1 = self.get_slot(var, "g") g_t = g_t_1.assign(g_t) var_update = state_ops.assign_sub(var, 2. * lr_t * g_t - lr_t * g_t_1) # Adam would be lr_t * g_t return control_flow_ops.group(*[var_update, g_t]) def _apply_sparse(self, grad, var): raise NotImplementedError("Sparse gradient updates are not supported.")
tensorflow.python.ops.state_ops.assign_sub
8,712
from tensorflow.python.ops import math_ops Returns: mean_average_precision: Scalar `float64` `Tensor` with the mean average precision values. update: `Operation` that increments variables appropriately, and whose value matches `metric`. """ default_name = _at_k_name('average_precision', k) with ops.name_scope(name, default_name, (predictions, labels)) as scope: # Calculate per-example average precision, and apply weights. average_precision = sparse_average_precision_at_k( predictions=predictions, labels=labels, k=k) if weights is not None: weights = math_ops.to_double(weights) average_precision = math_ops.mul(average_precision, weights) # Create accumulation variables and update ops for max average precision and # total average precision. with ops.name_scope(None, 'max', (average_precision,)) as max_scope: # `max` is the max possible precision. Since max for any row is 1.0: # - For the unweighted case, this is just the number of rows. # - For the weighted case, it's the sum of the weights broadcast across # `average_precision` rows. max_var = contrib_variables.local_variable( array_ops.zeros([], dtype=dtypes.float64), name=max_scope) if weights is None: batch_max = math_ops.to_double( array_ops.size(average_precision, name='batch_max'))
tensorflow.python.ops.math_ops.mul
8,713
import tensorflow as tf generator_inputs = features real_data = labels gan_model = tf.contrib.gan.gan_model(generator_fn, discriminator_fn, real_data, generator_inputs) predictions = gan_model.generated_data loss = None train_op = None if mode == tf.estimator.ModeKeys.TRAIN: # define loss gan_loss = tf.contrib.gan.gan_loss(gan_model, add_summaries=False) loss = gan_loss.generator_loss # define train_op gen_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05) dis_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05) # wrapper to make the optimizer work with TPUs if params['use_tpu']: gen_optimizer = tf.contrib.tpu.CrossShardOptimizer(gen_optimizer) dis_optimizer = tf.contrib.tpu.CrossShardOptimizer(dis_optimizer)
tensorflow.contrib.gan.gan_loss
8,714
import tensorflow as tf n_h_mixer: integer """ agent_qs_reshaped = tf.reshape(agent_qs, [-1, 1, n_agents]) # n_h_mixer * n_agents because result will be reshaped into matrix hyper_w_1 = get_variable('hyper_w_1', [state_dim, n_h_mixer*n_agents]) hyper_w_final = get_variable('hyper_w_final', [state_dim, n_h_mixer]) hyper_b_1 = tf.get_variable('hyper_b_1', [state_dim, n_h_mixer]) hyper_b_final_l1 = tf.layers.dense(inputs=state, units=n_h_mixer, activation=tf.nn.relu, use_bias=False, name='hyper_b_final_l1') hyper_b_final = tf.layers.dense(inputs=hyper_b_final_l1, units=1, activation=None, use_bias=False, name='hyper_b_final') # First layer w1 = tf.abs(tf.matmul(state, hyper_w_1)) b1 = tf.matmul(state, hyper_b_1) w1_reshaped = tf.reshape(w1, [-1, n_agents, n_h_mixer]) # reshape into batch of matrices b1_reshaped = tf.reshape(b1, [-1, 1, n_h_mixer]) # [batch, 1, n_h_mixer] hidden = tf.nn.elu(tf.matmul(agent_qs_reshaped, w1_reshaped) + b1_reshaped) # Second layer
tensorflow.layers.dense
8,715
import tensorflow as tf C = tf.tile(tf.expand_dims(self.c_embed_encoding, 2), [1, 1, self.max_q_len, 1]) Q = tf.tile(tf.expand_dims(self.q_embed_encoding, 1), [1, self.max_p_len, 1, 1]) S = trilinear([C, Q, C * Q], input_keep_prob=1.0 - self.dropout) mask_q = tf.expand_dims(self.q_mask, 1) S_ = tf.nn.softmax(mask_logits(S, mask=mask_q)) mask_c = tf.expand_dims(self.c_mask, 2) S_T = tf.transpose(tf.nn.softmax(mask_logits(S, mask=mask_c), dim=1), (0, 2, 1)) self.c2q = tf.matmul(S_, self.q_embed_encoding) self.q2c = tf.matmul(tf.matmul(S_, S_T), self.c_embed_encoding) self.attention_outputs = [self.c_embed_encoding, self.c2q, self.c_embed_encoding * self.c2q, self.c_embed_encoding * self.q2c] N, PL, QL, CL, d, dc, nh = self._params() if self.config.fix_pretrained_vector: dc = self.char_mat.get_shape()[-1] with tf.variable_scope("Model_Encoder_Layer"):
tensorflow.matmul
8,716
import tensorflow as tf sl_indices = tf.range(block_len, dtype=tf.int32) sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices) if direction == 'forward': direct_mask = tf.greater(sl_row, sl_col) # bl,bl else: direct_mask = tf.greater(sl_col, sl_row) # bl,bl direct_mask_tile = tf.tile( tf.expand_dims(tf.expand_dims(direct_mask, 0), 0), [bs, bn, 1, 1]) # bs,bn,bl,bl rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2), [1, 1, bl, 1]) # bs,bn,bl,bl rep_mask_tile_2 = tf.tile(tf.expand_dims(rep_mask_split, 3), [1, 1, 1, bl]) # bs,bn,bl,bl rep_mask_tile = tf.logical_and(rep_mask_tile_1, rep_mask_tile_2) attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile, name='attn_mask') # bs,bn,bl,bl # attention
tensorflow.expand_dims
8,717
from tensorflow.python.ops import math_ops `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ is_below_threshold = math_ops.to_float(math_ops.less(values, threshold)) return streaming_mean(is_below_threshold, _mask_weights(ignore_mask, weights), metrics_collections,
tensorflow.python.ops.math_ops.less
8,718
import tensorflow as tf n_bits_x = self.hparams.n_bits_x n_bins = 2**n_bits_x x = tf.cast(x, dtype=tf.float32) if n_bits_x < 8: x = tf.floor(x / 2 ** (8 - n_bits_x)) x = x / n_bins - 0.5 return x
tensorflow.floor
8,719
import tensorflow as tf Returns: Corresponding number expressed in base. """ x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1)) x_labels = [] for i in range(num_bits): x_labels.append( tf.floormod( tf.floordiv(tf.to_int32(x_l), tf.to_int32(base)**i), tf.to_int32(base))) res = tf.concat(x_labels, axis=-1) return tf.to_float(res) def embed(self, x): """Embedding function that takes discrete latent and returns embedding. Args: x: Input to the discretization bottleneck. Returns:
tensorflow.to_int32
8,720
from tensorflow.python.framework import ops """ super(LoggingTrainable, self).__init__(every_n, first_n) self._scope = scope def every_n_step_begin(self, step): super(LoggingTrainable, self).every_n_step_begin(step) # Get a list of trainable variables at the begining of every N steps. # We cannot get this in __init__ because train_op has not been generated. trainables = ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES, scope=self._scope) self._names = {} for var in trainables: self._names[var.name] = var.value().name return list(self._names.values()) def every_n_step_end(self, step, outputs):
tensorflow.python.framework.ops.get_collection
8,721
import tensorflow as tf token_type_table = tf.get_variable( name=token_type_embedding_name, shape=[token_type_vocab_size, width], initializer=create_initializer(initializer_range)) # This vocab will be small so we always do one-hot here, since it is always # faster for a small vocabulary. flat_token_type_ids = tf.reshape(token_type_ids, [-1]) one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size) token_type_embeddings = tf.matmul(one_hot_ids, token_type_table) token_type_embeddings = tf.reshape(token_type_embeddings, [batch_size, seq_length, width]) output += token_type_embeddings if use_position_embeddings: assert_op = tf.assert_less_equal(seq_length, max_position_embeddings) with tf.control_dependencies([assert_op]): full_position_embeddings = tf.get_variable( name=position_embedding_name,
tensorflow.reshape
8,722
from tensorflow.python.ops import array_ops if predictions_rank > 1: predictions = array_ops.reshape(predictions, [-1]) labels_rank = labels.get_shape().ndims if labels_rank > 1: labels = array_ops.reshape(labels, [-1]) weights = _mask_weights(ignore_mask, weights) if weights is not None: weights_rank = weights.get_shape().ndims
tensorflow.python.ops.array_ops.reshape
8,723
import tensorflow as tf name: Optional scope/name for op_scope. Returns: A tensor with the clipped kappa log loss. """ with tf.name_scope(name): num_classes = labels.get_shape()[-1].value labels = tf.cast(labels, predictions.dtype) if label_smoothing > 0: smooth_positives = 1.0 - label_smoothing
tensorflow.name_scope
8,724
import tensorflow as tf output_ta = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True, element_shape=(facts[:, 0, :].get_shape())) _, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0]) self_attention = output_op.stack() self_attention = tf.transpose(self_attention, perm = [1, 0, 2]) return self_attention def din_fcn_shine(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
tensorflow.transpose
8,725
import tensorflow as tf tf.constant( all_masked_lm_positions, shape=[num_examples, max_predictions_per_seq], dtype=tf.int32), "masked_lm_ids": tf.constant( all_masked_lm_ids, shape=[num_examples, max_predictions_per_seq], dtype=tf.int32) })
tensorflow.constant
8,726
import tensorflow as tf sp_returns = base._LIB_OP.get_full_neighbor(nodes, edge_types) return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \
tensorflow.SparseTensor
8,727
import tensorflow as tf return tf.identity(batch_mean), tf.identity(batch_var) mean, var = tf.cond(b_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3) return normed
tensorflow.nn.batch_normalization
8,728
import tensorflow as tf output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0
tensorflow.gfile.GFile
8,729
import tensorflow as tf if var is not None: tf.summary.scalar(name, var, [collection])
tensorflow.summary.scalar
8,730
import tensorflow as tf [seq_len, 1, 1, 1]) end_input = tf.concat([end_input, start_features], axis=-1) end_logits = tf.layers.dense( end_input, xlnet_config.d_model, kernel_initializer=initializer, activation=tf.tanh, name="dense_0") end_logits = tf.contrib.layers.layer_norm(end_logits, begin_norm_axis=-1) end_logits = tf.layers.dense( end_logits, 1, kernel_initializer=initializer, name="dense_1") end_logits = tf.reshape(end_logits, [seq_len, -1, FLAGS.start_n_top]) end_logits = tf.transpose(end_logits, [1, 2, 0]) end_logits_masked = end_logits * ( 1 - p_mask[:, None]) - 1e30 * p_mask[:, None] end_log_probs = tf.nn.log_softmax(end_logits_masked, -1) end_top_log_probs, end_top_index = tf.nn.top_k( end_log_probs, k=FLAGS.end_n_top) end_top_log_probs = tf.reshape( end_top_log_probs, [-1, FLAGS.start_n_top * FLAGS.end_n_top]) end_top_index = tf.reshape( end_top_index, [-1, FLAGS.start_n_top * FLAGS.end_n_top]) if is_training:
tensorflow.reshape
8,731
import tensorflow as tf train_input = PTBInput(config=config, data=train_data, name="TrainInput") with tf.variable_scope("Model", reuse=None, initializer=initializer): m = PTBModel(is_training=True, config=config, input_=train_input) tf.summary.scalar("Training Loss", m.cost) tf.summary.scalar("Learning Rate", m.lr) with tf.name_scope("Valid"): valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
tensorflow.summary.scalar
8,732
import tensorflow as tf """ adjusted_probs = tf.clip_by_value(probs, eps, 1.0 - eps) xent_mat = -y * tf.log(adjusted_probs) if class_weights is not None: xent_mat *= class_weights return tf.reduce_sum(xent_mat, sumd) def _SafeNegEntropy(probs, batch_size, eps=0.0001): """Computes negative entropy in a way that will not overflow.""" adjusted_probs = tf.clip_by_value(probs, eps, 1.0 - eps) entropy = tf.mul(probs, tf.log(adjusted_probs)) return tf.reduce_sum(entropy) / batch_size
tensorflow.clip_by_value
8,733
import tensorflow as tf if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state: initial_output = initial_state else: # Last layer's state is the right-most part. Output is the left-most part of an LSTM's state. initial_output = initial_state[:, -cell_output_size:] time = tf.constant(0, dtype=tf.int32, name='time') outputs = tf.TensorArray(dtype=tf.float32, size=time_steps) samples = tf.TensorArray(dtype=tf.int64, size=time_steps) inputs = tf.TensorArray(dtype=tf.int64, size=time_steps).unstack(tf.to_int64(tf.transpose(decoder_inputs))) states = tf.TensorArray(dtype=tf.float32, size=time_steps) weights = tf.TensorArray(dtype=tf.float32, size=time_steps) attns = tf.TensorArray(dtype=tf.float32, size=time_steps) initial_symbol = inputs.read(0) # first symbol is BOS initial_input = embed(initial_symbol) initial_pos = tf.zeros([batch_size], tf.float32) initial_weights = tf.zeros(tf.shape(attention_states[align_encoder_id])[:2]) zero_context = tf.zeros(shape=tf.shape(attention_states[align_encoder_id][:,0])) # FIXME with tf.variable_scope('decoder_{}'.format(decoder.name)): initial_context, _ = look(0, initial_output, initial_input, pos=initial_pos, prev_weights=initial_weights, context=zero_context) initial_data = tf.concat([initial_state, initial_context, tf.expand_dims(initial_pos, axis=1), initial_weights],
tensorflow.TensorArray
8,734
import tensorflow as tf print(args) return args if __name__ == "__main__": args = parse_args() if args.gpu==1: os.environ['CUDA_VISIBLE_DEVICES']="0" else: os.environ['CUDA_VISIBLE_DEVICES']="" config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 1.0 config.gpu_options.allow_growth = True config.log_device_placement=True sess = tf.Session(config=config) if args.command == "compress": rootdir, filename = os.path.split(args.input) if not args.output: args.output = filename.split('.')[0] print(args.output)
tensorflow.ConfigProto
8,735
import tensorflow as tf self.logits = [mask_logits(start_logits, mask = self.c_mask), mask_logits(end_logits, mask = self.c_mask)] logits1, logits2 = [l for l in self.logits] outer = tf.matmul(tf.expand_dims(tf.nn.softmax(logits1), axis=2), tf.expand_dims(tf.nn.softmax(logits2), axis=1)) outer = tf.matrix_band_part(outer, 0, config.ans_limit) self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1) self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1) losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits1, labels=self.y1) losses2 = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits2, labels=self.y2) self.loss = tf.reduce_mean(losses + losses2) if config.l2_norm is not None: variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) l2_loss = tf.contrib.layers.apply_regularization(regularizer, variables) self.loss += l2_loss
tensorflow.nn.sparse_softmax_cross_entropy_with_logits
8,736
import tensorflow as tf return h def minibatch_discrimination(x, n_kernels, dim_per_kernel, name): with tf.variable_scope(name): batch_size, nf = x.get_shape().as_list() h = linear(x, [nf, n_kernels*dim_per_kernel], 'h1') activation = tf.reshape(h, (batch_size, n_kernels, dim_per_kernel)) big = tf.eye(batch_size) big = tf.expand_dims(big, 1) abs_dif = tf.reduce_sum(tf.abs(tf.expand_dims(activation, 3) - tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)), 2) mask = 1. - big masked = tf.exp(-abs_dif) * mask def half(tens, second): m, n, _ = tens.get_shape().as_list() return tf.slice(tens, [0, 0, second*(batch_size/2)], [m, n, batch_size/2]) f1 = tf.reduce_sum(half(masked, 0), 2) / tf.reduce_sum(half(mask, 0)) f2 = tf.reduce_sum(half(masked, 1), 2) / tf.reduce_sum(half(mask, 1)) return tf.concat([x, f1, f2], 1)
tensorflow.expand_dims
8,737
import tensorflow as tf c = tf.to_int32(tf.reshape(c, shape=new_shape)) h1_shape = shape_x h1_shape.append(self.hparams.hidden_size) h1 = tf.zeros(dtype=tf.float32, shape=h1_shape) c_int = self.bit_to_int( c, num_bits=int(self.hparams.z_size / self.hparams.num_blocks), base=2)
tensorflow.zeros
8,738
import tensorflow as tf # Select only unused blocks with tf.variable_scope('select'): stacked_blocks = tf.stack(cell_inputs + blocks) out_blocks = tf.gather(stacked_blocks, unused_indices, axis=0) out_blocks = tf.transpose(out_blocks, (1, 2, 3, 0, 4)) # Combine to constant channels with tf.variable_scope('combine'): W = self._make_var('W', (ni, block_ch * block_ch)) W = tf.gather(W, unused_indices, axis=0) W = tf.reshape(W, (1, 1, num_out_blocks * block_ch, block_ch)) X = tf.reshape(out_blocks, (-1, w, h, num_out_blocks * block_ch)) X = tf.nn.relu(X) X = tf.nn.conv2d(X, W, (1, 1, 1, 1), padding='SAME') X = self._add_batch_norm(X, block_ch, is_train=is_train) return (X, block_ch) def _add_op(self, cell_inputs, blocks, input_idx, op, w, h, ch, is_reduction=False, is_train=False): ni = len(cell_inputs + blocks) inputs = cell_inputs + blocks op_map = self._get_op_map() # Just build output for select operation X = inputs[input_idx] op_no = OPS[op]
tensorflow.nn.conv2d
8,739
import tensorflow as tf batch_size = tf.shape(policy.obs_ph)[0] n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps perturbed_stochastic_actions = tf.where(chose_random, random_actions, perturbed_deterministic_actions) stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) perturbed_output_actions = tf.cond(stochastic_ph, lambda: perturbed_stochastic_actions, lambda: deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
tensorflow.where
8,740
import tensorflow as tf if a.operation == "edges" and a.crop: try: if not tf.io.gfile.exists(a.crop_dir): tf.io.gfile.makedirs(a.crop_dir) except Exception as e: raise Exception("invalid crop_dir: {:s}".format(e)) src_paths = [] dst_paths = [] skipped = 0 for src_path in im.find(a.input_dir): name, _ = os.path.splitext(os.path.basename(src_path)) dst_path = os.path.join(a.output_dir, name + ".png") if tf.io.gfile.exists(dst_path): skipped += 1 else: src_paths.append(src_path) dst_paths.append(dst_path) print("skipping %d files that already exist" % skipped) global total total = len(src_paths) print("processing %d files" % total) global start
tensorflow.io.gfile.exists
8,741
import tensorflow as tf with tf.variable_scope('mixing_net'): # [batch, n_agents] self.q_concat = tf.reshape(self.q_selected, [-1, self.n_agents]) self.q_concat_ =tf.reshape(self.q_m_, [-1, self.n_agents]) with tf.variable_scope('eval_hyper'): self.Q_tot = Qmix_mixer(self.q_concat, self.S, self.num_global_s, self.n_agents, 32) with tf.variable_scope('target_hyper'): self.Q_tot_ = Qmix_mixer(self.q_concat_, self.S_, self.num_global_s, self.n_agents, 32)
tensorflow.variable_scope
8,742
import tensorflow as tf mvalid = PTBModel(is_training=False, config=config, input_=valid_input) tf.summary.scalar("Validation Loss", mvalid.cost) with tf.name_scope("Test"): test_input = PTBInput( config=eval_config, data=test_data, name="TestInput") with tf.variable_scope("Model", reuse=True, initializer=initializer): mtest = PTBModel(is_training=False, config=eval_config, input_=test_input) models = {"Train": m, "Valid": mvalid, "Test": mtest} for name, model in models.iteritems(): model.export_ops(name) metagraph = tf.train.export_meta_graph() if tf.__version__ < "1.1.0" and FLAGS.num_gpus > 1: raise ValueError("num_gpus > 1 is not supported for TensorFlow versions " "below 1.1.0") soft_placement = False if FLAGS.num_gpus > 1: soft_placement = True util.auto_parallel(metagraph, m) with tf.Graph().as_default(): tf.train.import_meta_graph(metagraph) for model in models.values(): model.import_ops()
tensorflow.train.export_meta_graph
8,743
import tensorflow as tf # sum.fitTo(*data,"Extended") ; # convert to tf constants, otherwise you'll get complaints about float32s... constraint_tf = {} for key in constraint.keys(): low = constraint[key][0] high = constraint[key][1] constraint_tf[key] = (tf.constant(low, dtype=tf.float64), tf.constant(high, dtype=tf.float64)) print("N.B.: using direct data entry") likelihood = sum_pdf(data, nsig, sigmean, sigwidth, nbkg, m0, argpar, constraint_tf['mes'][0], constraint_tf['mes'][1]) nll = tf.neg(tf.reduce_sum(tf.log(likelihood)), name="nll")
tensorflow.constant
8,744
import tensorflow as tf "masked_lm_positions": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_ids": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_weights": tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
tensorflow.FixedLenFeature
8,745
import tensorflow as tf in_loss_box = tf.pow(in_box_diff, 2) * (sigma_2 / 2.) * smoothL1_sign + (abs_in_box_diff - (0.5 / sigma_2)) * (1. - smoothL1_sign) out_loss_box = bbox_outside_weights * in_loss_box loss_box = tf.reduce_mean(tf.reduce_sum( out_loss_box, axis=dim )) return loss_box def _add_losses(self, sigma_rpn=3.0): with tf.variable_scope('loss_' + self._tag): # RPN, class loss rpn_cls_score = tf.reshape(self._predictions['rpn_cls_score_reshape'], [-1, 2]) rpn_label = tf.reshape(self._anchor_targets['rpn_labels'], [-1]) # 得到前景和背景anchor的index rpn_select = tf.where(tf.not_equal(rpn_label, -1)) rpn_cls_score = tf.reshape(tf.gather(rpn_cls_score, rpn_select), [-1, 2]) rpn_label = tf.reshape(tf.gather(rpn_label, rpn_select), [-1])
tensorflow.variable_scope
8,746
import tensorflow as tf # y_true [batch_size, num_anchor, num_classes+1] # y_pred [batch_size, num_anchor, num_classes] labels = y_true anchor_state = y_true[:, :, -1] # -1 是需要忽略的, 0 是背景, 1 是存在目标 classification = y_pred # 找出存在目标的先验框 indices_for_object = tf.where(keras.backend.equal(anchor_state, 1)) labels_for_object = tf.gather_nd(labels, indices_for_object) classification_for_object = tf.gather_nd(classification, indices_for_object) cls_loss_for_object = keras.backend.binary_crossentropy(labels_for_object, classification_for_object) # 找出实际上为背景的先验框 indices_for_back = tf.where(keras.backend.equal(anchor_state, 0)) labels_for_back = tf.gather_nd(labels, indices_for_back) classification_for_back = tf.gather_nd(classification, indices_for_back) # 计算每一个先验框应该有的权重 cls_loss_for_back = keras.backend.binary_crossentropy(labels_for_back, classification_for_back) # 标准化,实际上是正样本的数量 normalizer_pos = tf.where(keras.backend.equal(anchor_state, 1)) normalizer_pos = keras.backend.cast(keras.backend.shape(normalizer_pos)[0], keras.backend.floatx()) normalizer_pos = keras.backend.maximum(keras.backend.cast_to_floatx(1.0), normalizer_pos) normalizer_neg = tf.where(keras.backend.equal(anchor_state, 0)) normalizer_neg = keras.backend.cast(keras.backend.shape(normalizer_neg)[0], keras.backend.floatx()) normalizer_neg = keras.backend.maximum(keras.backend.cast_to_floatx(1.0), normalizer_neg)
tensorflow.gather_nd
8,747
import tensorflow as tf import numpy as np import tensorflow as tf from collections import deque def sample(logits): noise = tf.random_uniform(tf.shape(logits)) return tf.argmax(logits - tf.log(-tf.log(noise)), 1) def cat_entropy(logits): a0 = logits - tf.reduce_max(logits, 1, keepdims=True) ea0 = tf.exp(a0) z0 = tf.reduce_sum(ea0, 1, keepdims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (tf.log(z0) - a0), 1) def cat_entropy_softmax(p0): return - tf.reduce_sum(p0 * tf.log(p0 + 1e-6), axis = 1)
tensorflow.reduce_max
8,748
import tensorflow as tf dtype=tf.float32, input_size=input_size) return cell batch_size = tf.shape(encoder_inputs_)[0] time_steps = tf.shape(encoder_inputs_)[1] if embeddings is not None: flat_inputs = tf.reshape(encoder_inputs_, [tf.multiply(batch_size, time_steps)]) flat_inputs = tf.nn.embedding_lookup(embeddings, flat_inputs) encoder_inputs_ = tf.reshape(flat_inputs, tf.stack([batch_size, time_steps, flat_inputs.get_shape()[1].value])) if pos_embeddings is not None: pos_inputs_ = tf.range(time_steps, dtype=tf.int32) pos_inputs_ = tf.nn.embedding_lookup(pos_embeddings, pos_inputs_) pos_inputs_ = tf.tile(tf.expand_dims(pos_inputs_, axis=0), [batch_size, 1, 1]) encoder_inputs_ = tf.concat([encoder_inputs_, pos_inputs_], axis=2) if other_inputs is not None: encoder_inputs_ = tf.concat([encoder_inputs_, other_inputs], axis=2) if encoder.use_dropout: noise_shape = [1, time_steps, 1] if encoder.pervasive_dropout else [batch_size, time_steps, 1] encoder_inputs_ = tf.nn.dropout(encoder_inputs_, keep_prob=encoder.word_keep_prob, noise_shape=noise_shape) size = tf.shape(encoder_inputs_)[2]
tensorflow.nn.embedding_lookup
8,749
import tensorflow as tf filters = tf.get_variable('zero_conv_weights' + id, initializer=init, shape=[size[0], size[1], in_ch, channels]) filters = filters - tf.reduce_mean(filters, axis=[0, 1, 2], keepdims=True) if padding == "PARTIAL": with tf.variable_scope('mask'): _, h, w, _ = input.get_shape().as_list() slide_window = size[0] * size[1] mask = tf.ones(shape=[1, h, w, 1]) update_mask = tf.layers.conv2d(mask, filters=1, name='mask' + id, kernel_size=size, kernel_initializer=tf.constant_initializer(1.0), strides=stride, padding="SAME", use_bias=False, trainable=False, dilation_rate=(dilation, dilation)) mask_ratio = slide_window / (update_mask + 1e-8) update_mask = tf.clip_by_value(update_mask, 0.0, 1.0) mask_ratio = mask_ratio * update_mask with tf.variable_scope('parconv'): x = tf.nn.conv2d(input, filters, strides=[1, stride, stride, 1], padding="SAME", name='zero-conv_' + id, dilations=(1, dilation, dilation, 1)) x = x * mask_ratio if use_bias: bias = tf.get_variable("bias" + id, [channels], initializer=tf.constant_initializer(0.0)) x = tf.nn.bias_add(x, bias) return x * update_mask x = tf.nn.conv2d(input, filters, strides=[1, stride, stride, 1], padding=padding, name='zero-conv_' + id, dilations=(1, dilation, dilation, 1))
tensorflow.clip_by_value
8,750
import tensorflow as tf 1, ]) src_features = tf.gather(src_features, indices, axis=0) src_features = tf.stop_gradient(src_features) src_labels = tf.gather(src_labels, indices) inst_weights = bs * inst_weights / tf.reduce_sum(inst_weights) src_one_hot_labels = tf.one_hot(tf.cast(src_labels, tf.int64), num_classes) src_logits, dst_logits = get_model_logits(src_features, finetune_features, mode, num_classes, target_num_classes) loss, _, _ = get_final_loss(src_logits, src_one_hot_labels, dst_logits, finetune_one_hot_labels, global_step, loss_weights, inst_weights)
tensorflow.cast
8,751
import tensorflow as tf tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False
tensorflow.get_variable_scope
8,752
from tensorflow.python.ops import array_ops def _move_tensors(tensors, device): """Moves a list of tensors to a device by concatenating/splitting them.""" # Reset the device setting to avoid weird interactions with device merging # logic. with ops.device(None): if all(tensor.shape == tensor_shape.scalar() for tensor in tensors): with ops.device(tensors[0].device): values = array_ops.stack(tensors) with ops.device(device): return array_ops.unstack(values) else: with ops.device(tensors[0].device): sizes = array_ops.stack( [array_ops.shape(tensor)[0] for tensor in tensors]) values = array_ops.concat(tensors, axis=0)
tensorflow.python.ops.array_ops.stack
8,753
from tensorflow.contrib import metrics as contrib_metrics def metric_fn(per_example_loss, label_ids, logits, is_real_example): """Compute Pearson correlations for STS-B.""" # Display labels and predictions concat1 = contrib_metrics.streaming_concat(logits) concat2 = contrib_metrics.streaming_concat(label_ids)
tensorflow.contrib.metrics.streaming_concat
8,754
import tensorflow as tf with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_c = tf.nn.rnn_cell.LSTMCell(num_units=256) lstm_c = tf.nn.rnn_cell.DropoutWrapper(lstm_c, output_keep_prob=self.keep_prob) state_init_c = lstm_c.zero_state(batch_size=batch_size, dtype=tf.float32) lstm_cin = tf.expand_dims(layer_c2, axis=1) out_c, state_final_c = tf.nn.dynamic_rnn(cell=lstm_c, inputs=lstm_cin, initial_state=state_init_c) cell_out_c = tf.reshape(out_c, [-1, 256]) vf = tf.layers.dense(cell_out_c, 1, kernel_regularizer=reg) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return vf, params, state_init_c, state_final_c # Update the network
tensorflow.nn.dynamic_rnn
8,755
import tensorflow as tf sess.run(v0) with self.assertRaisesOpError("uninitialized value v1"): sess.run(v1) save = tf.train.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) save.restore(sess, save_path) # Check that the parameter nodes have been restored.
tensorflow.train.Saver
8,756
import tensorflow as tf from __future__ import print_function import tensorflow as tf import numpy as np import TensorflowUtils as utils import read_MITSceneParsingData as scene_parsing import datetime import BatchDatsetReader as dataset from six.moves import xrange import os.path as osp FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer("batch_size", "2", "batch size for training") tf.flags.DEFINE_string("logs_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\logs", "path to logs directory") tf.flags.DEFINE_string("data_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Data_zoo\STEM", "path to dataset") tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer") tf.flags.DEFINE_string("model_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Model_zoo", "Path to vgg model mat") tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False") tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize") MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat' MAX_ITERATION = 100 #最大步数 NUM_OF_CLASSESS = 3 #分类数目 IMAGE_SIZE = 2048 #图像大小
tensorflow.flags.DEFINE_string
8,757
import tensorflow as tf for i in range(len(pw_list)): tf.summary.scalar('Inverse Propensity weights %d' % i, tf.reduce_mean(pw_list[i]), collections=['train']) tf.summary.scalar('Rank Loss', tf.reduce_mean(self.rank_loss), collections=['train']) # Compute examination loss self.relevance_weights = self.get_normalized_weights(self.logits_to_prob(train_output)) self.exam_loss = self.loss_func(self.propensity, reshaped_train_labels, self.relevance_weights) rw_list = tf.unstack(self.relevance_weights, axis=1) # Compute propensity weights for i in range(len(rw_list)): tf.summary.scalar('Relevance weights %d' % i, tf.reduce_mean(rw_list[i]), collections=['train']) tf.summary.scalar('Exam Loss', tf.reduce_mean(self.exam_loss), collections=['train']) # Gradients and SGD update operation for training the model. self.loss = self.exam_loss + self.hparams.ranker_loss_weight * self.rank_loss # Select optimizer self.optimizer_func = tf.train.AdagradOptimizer if self.hparams.grad_strategy == 'sgd':
tensorflow.reduce_mean
8,758
import tensorflow as tf return DummyVariableStore() def scheduled_sampling(hparams, problem_hparams, dp, sharded_logits, losses, sharded_features, transformed_features, model): """Scheduled sampling.""" target_modality = problem_hparams.target_modality def sample(x): """Multinomial sampling from a n-dimensional tensor.""" vocab_size = target_modality.top_dimensionality samples = tf.multinomial(tf.reshape(x, [-1, vocab_size]), 1) reshaped_samples = tf.reshape(samples, common_layers.shape_list(x)[:-1]) return tf.to_int32(reshaped_samples) def mix_gold_sampled(gold_targets, sampled_targets): return tf.where( tf.less( tf.random_uniform(common_layers.shape_list(sampled_targets)), hparams.scheduled_sampling_gold_mixin_prob), gold_targets, sampled_targets) def sampled_results(): """Generate scheduled sampling results.""" sampled_targets = dp(sample, sharded_logits) new_targets = dp(mix_gold_sampled, sharded_features["targets"],
tensorflow.to_int32
8,759
import tensorflow as tf export_outputs = {"predict_export_outputs": tf.estimator.export.PredictOutput(outputs = predictions)} # 4. Return EstimatorSpec return tf.estimator.EstimatorSpec( mode = mode, predictions = predictions_dict, loss = loss, train_op = train_op, eval_metric_ops = eval_metric_ops, export_outputs = export_outputs) # Create serving input function def serving_input_fn(): feature_placeholders = { TIMESERIES_COL: tf.placeholder(tf.float32, [None, N_INPUTS]) } features = { key: tf.expand_dims(tensor, -1) for key, tensor in feature_placeholders.items() } features[TIMESERIES_COL] = tf.squeeze(features[TIMESERIES_COL], axis = [2]) return tf.estimator.export.ServingInputReceiver(features, feature_placeholders) # Create custom estimator's train and evaluate function def train_and_evaluate(output_dir, use_keras): if use_keras:
tensorflow.placeholder
8,760
import tensorflow as tf result = estimator.evaluate( input_fn=eval_input_fn, steps=FLAGS.max_eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_train_eval: tf.logging.info("***** Running training *****") tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) train_input_fn = input_fn_builder( input_files=input_files, max_seq_length=FLAGS.max_seq_length, max_predictions_per_seq=FLAGS.max_predictions_per_seq, is_training=True, batch_size=FLAGS.train_batch_size, use_hvd=FLAGS.use_hvd) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) eval_input_fn = input_fn_builder( input_files=validation_input_files,
tensorflow.logging.info
8,761
import tensorflow as tf with g.gradient_override_map({'Conv3D': 'SymmetricConv3D'}): activities = tf.nn.conv3d(
tensorflow.nn.conv3d
8,762
import tensorflow as tf vx = tf.contrib.lookup.MutableHashTable(key_dtype=tf.string, value_dtype=tf.int64, default_value=-1) vz = tf.contrib.lookup.MutableHashTable(key_dtype=tf.string, value_dtype=tf.int64, default_value=-1) vx_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1))
tensorflow.contrib.lookup.MutableHashTable
8,763
import tensorflow as tf lambda: self_attention_for_selected_head( head_selection, head_org_idx, sl_head, rep_head_mask, dep_selection, dep_org_idx, sl_dep, rep_dep_mask, rep_map, rep_dep_tensor, keep_prob, is_train, direction, ivec ) ) if keep_unselected: input_idx = tf.tile(tf.expand_dims(tf.range(sl), 0), [bs, 1]) pooling_result = tf.cond( tf.equal(sl_unhead, 0), lambda: tf.zeros([bs, 0, hn], tf.float32), lambda: mean_pooling_for_unselected_head( unhead_org_idx, sl_unhead, rep_unhead_mask, input_idx, sl, rep_mask, rep_map, None) # todo: point ! )
tensorflow.range
8,764
import tensorflow as tf def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([seq_length], tf.int64), } def _decode_record(record, name_to_features): example = tf.parse_single_example(record, name_to_features) for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): batch_size = params["batch_size"] d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply(tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder
tensorflow.to_int32
8,765
import tensorflow as tf for stride in encoder.time_pooling[:encoder.layers - 1]: encoder_input_length_ = (encoder_input_length_ + stride - 1) // stride # rounding up last_backward = encoder_outputs_[:, 0, cell_output_size:] indices = tf.stack([tf.range(batch_size), encoder_input_length_ - 1], axis=1) last_forward = tf.gather_nd(encoder_outputs_[:, :, :cell_output_size], indices) last_forward.set_shape([None, cell_output_size]) if encoder.final_state == 'concat_last': # concats last states of all backward layers (full LSTM states) encoder_state_ = tf.concat(encoder_states_, axis=1) elif encoder.final_state == 'average': mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_outputs_)[1], dtype=tf.float32) mask = tf.expand_dims(mask, axis=2) encoder_state_ = tf.reduce_sum(mask * encoder_outputs_, axis=1) / tf.reduce_sum(mask, axis=1) elif encoder.final_state == 'average_inputs': mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_inputs_)[1], dtype=tf.float32) mask = tf.expand_dims(mask, axis=2) encoder_state_ = tf.reduce_sum(mask * encoder_inputs_, axis=1) / tf.reduce_sum(mask, axis=1) elif encoder.bidir and encoder.final_state == 'last_both': encoder_state_ = tf.concat([last_forward, last_backward], axis=1) elif encoder.final_state == 'none': encoder_state_ = tf.zeros(shape=[batch_size, 0]) elif encoder.bidir and not encoder.final_state == 'last_forward': # last backward hidden state encoder_state_ = last_backward else: # last forward hidden state encoder_state_ = last_forward if encoder.bidir and encoder.bidir_projection: encoder_outputs_ = dense(encoder_outputs_, cell_output_size, use_bias=False, name='bidir_projection')
tensorflow.shape
8,766
import tensorflow as tf ): with tf.name_scope('pooling_for_un_head'): undep_idxs = tf.tile(tf.expand_dims(dep_org_idx, 1), [1, sl_unhead, 1]) # [bs, sluh, sld] unhead_idxs = tf.tile(tf.expand_dims(unhead_org_idx, 2), [1, 1, sl_dep]) # [bs, sluh, sld] if direction is None: direct_mask_un = tf.not_equal(unhead_idxs, undep_idxs) # [bs, sluh, sld] else: if direction == 'forward': direct_mask_un = tf.greater(unhead_idxs, undep_idxs) # [bs, sluh, sld] else: direct_mask_un = tf.less(unhead_idxs, undep_idxs) # [bs, sluh, sld] # [bs, sluh, sld] rep_mask_tile_un = tf.logical_and(tf.expand_dims(rep_dep_mask, 1), tf.expand_dims(rep_unhead_mask, 2)) pooling_mask = tf.logical_and(direct_mask_un, rep_mask_tile_un) # [bs, sluh, sld] # data for pooling pooling_data = tf.tile(tf.expand_dims(rep_dep_tensor, 1), [1, sl_unhead, 1, 1]) # bs,sluh,sld,hn # execute mean pooling based on pooling_mask[bs, sluh, sld] and pooling_data[bs,sluh,sld,hn] pooling_data = mask_for_high_rank(pooling_data, pooling_mask) # [bs,sluh,sld,hn]
tensorflow.less
8,767
import tensorflow as tf "precision for calculating sufficient statistics.") self._mean_shape = input_batch.get_shape().as_list() for index in reduction_indices: self._mean_shape[index] = 1 use_batch_stats = is_training | test_local_stats # Use the legacy moving second moment if the flag is set. if self._use_legacy_moving_second_moment: tf.logging.warning( "nn.BatchNorm `use_legacy_second_moment=True` is deprecated.") mean, variance, second_moment = self._build_statistics_second_moment( input_batch, reduction_indices, use_batch_stats) self._build_update_ops_second_moment(mean, second_moment, is_training) else:
tensorflow.logging.warning
8,768
import tensorflow as tf returns_post_warmup = testeval(policy, runners['collect']) if test: test_returns.append(returns_post_warmup) test_summary['warmup'].append(returns_post_warmup) print ("warmupprocess:", test_summary['warmupprocess'][TEST_TASK_NUM]) logger.info('Sync warmup policy and vfn and model') tf.get_default_session().run([sync_warmup_policy, sync_warmup_vfn, sync_warmup_model]) for p in warmup_policy.parameters(): p.invalidate() for p in warmup_vfn.parameters(): p.invalidate() for p in warmup_model.parameters(): p.invalidate() for p in policy.parameters(): p.invalidate() task.parameters().invalidate() pol_params, warm_params = tf.get_default_session().run([nn.utils.parameters_to_vector(policy.parameters()), nn.utils.parameters_to_vector(warmup_policy.parameters())]) print ("After WARMUP, pol_params_norm:", np.linalg.norm(pol_params), "warm_params_norm:", np.linalg.norm(warm_params)) mod, warm_mod = tf.get_default_session().run([nn.utils.parameters_to_vector(model.parameters()), nn.utils.parameters_to_vector(warmup_model.parameters())]) print ("mod_norm:", np.linalg.norm(mod), "warm_mod_norm:", np.linalg.norm(warm_mod)) eval_rollout(runners['train'], warmup_policy, 'Use warmup policy to collect data from virtual env') warmup_collect_virt = [] eval_rollout(runners['train'], policy, 'Use policy to collect data from virtual env') warmup_collect_real = [] logger.info('--------------------------------------------- SLBO for %d outer stages -----------------------------------------' % slbo_n_stages) for T in range(slbo_n_stages): logger.info('-------- Starting Stage %d ---------', T)
tensorflow.get_default_session
8,769
import tensorflow as tf tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_real_example = None if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) else: is_real_example = tf.ones(label_ids.shape[0], dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, logits, probabilities) = create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
tensorflow.cast
8,770
import tensorflow as tf with tf.variable_scope('input_{}_conv'.format(i)): inp = self._do_conv(inp, w_inp_last, h_inp_last, block_ch, block_ch, is_train=is_train) cell_inputs[i] = inp blocks = [] for bi in range(b): with tf.variable_scope('block_{}'.format(bi)): idx1 = cell_arch[bi][0] op1 = cell_arch[bi][1] idx2 = cell_arch[bi][2] op2 = cell_arch[bi][3] with tf.variable_scope('X1'): X1 = self._add_op(cell_inputs, blocks, idx1, op1, w, h, block_ch, is_reduction=is_reduction, is_train=is_train) X1 = self._add_drop_path(X1, drop_path_keep_prob) with tf.variable_scope('X2'): X2 = self._add_op(cell_inputs, blocks, idx2, op2, w, h, block_ch, is_reduction=is_reduction, is_train=is_train) X2 = self._add_drop_path(X2, drop_path_keep_prob) X = tf.add_n([X1, X2]) blocks.append(X)
tensorflow.variable_scope
8,771
import tensorflow as tf update_op = tf.group(update_op, *ops, name=name) return update_op @contextmanager def _maybe_colocate(self, var): G = tf.get_default_graph() if self._colocate: with G.colocate_with(var): yield else:
tensorflow.get_default_graph
8,772
import tensorflow as tf if parallel is None: parallel = min(40, multiprocessing.cpu_count() // 2) # assuming hyperthreading imglist = get_imglist(datadir, name) N = len(imglist) filenames = tf.constant([k[0] for k in imglist], name='filenames') labels = tf.constant([k[1] for k in imglist], dtype=tf.int32, name='labels') ds = tf.data.Dataset.from_tensor_slices((filenames, labels)) if isTrain: ds = ds.shuffle(N, reshuffle_each_iteration=True).repeat()
tensorflow.constant
8,773
import tensorflow as tf def _MergeRight(): return tf.concat( [_MergeOneToken(tokens, best_id), candidates[best_id + 2:]], axis=0) right_candidates = tf.cond( tf.greater_equal(best_id, tf.size(tokens) - 1), lambda: empty, _MergeRight) candidates = tf.concat([left_candidates, right_candidates], axis=0) return tokens, candidates return tf.while_loop( _ShouldMerge, _MergeCandidates, (tokens, candidates), parallel_iterations=1, back_prop=False)[0] def Encode(self, text): """Converts string `text` to integer ids and the encoded string. Encoding includes prefixing the beginning-of-word token to each word. Returns:
tensorflow.while_loop
8,774
import tensorflow as tf def __init__(self, args, embedding_init): self.learning_rate = args.learning_rate self.num_hidden = args.num_hidden self.num_classes = args.num_classes self.dropout_output = args.dropout_output self.dropout_input = args.dropout_input self.clip_norm = args.clip_norm self.embedding_init = embedding_init self.x = tf.placeholder(tf.int32, [None, None], 'input') self.y = tf.placeholder(tf.int32, [None, self.num_classes], 'labels') self.seq_len = tf.placeholder(tf.int64, [None], 'input_length') def inference(self, forward_only=None): embed_inputs = tf.nn.embedding_lookup(self.embedding_init, self.x) ## (batch_size, seq_len, 100) with tf.variable_scope('hidden', reuse=forward_only): with tf.variable_scope('lstm_cell'): lstm_cell = tf.nn.rnn_cell.LSTMCell(num_units=self.num_hidden, use_peepholes=False,
tensorflow.placeholder
8,775
from tensorflow.python.layers import core as core_layers if input_layer is None: input_layer = self.top_layer else: self.top_size = None name = 'dropout' + str(self.counts['dropout']) with tf.variable_scope(name): if not self.phase_train: keep_prob = 1.0 dropout = core_layers.dropout(input_layer, keep_prob) self.top_layer = dropout return dropout def batch_norm(self, input_layer=None, **kwargs): """Adds a Batch Normalization layer.""" if input_layer is None: input_layer = self.top_layer
tensorflow.python.layers.core.dropout
8,776
import tensorflow as tf with tf.variable_scope("input", reuse=False): # Create policy and target TF objects self.policy_tf = self.policy(self.sess, self.observation_space, self.action_space, **self.policy_kwargs) self.target_policy = self.policy(self.sess, self.observation_space, self.action_space, **self.policy_kwargs) # Initialize Placeholders self.observations_ph = self.policy_tf.obs_ph # Normalized observation for pixels self.processed_obs_ph = self.policy_tf.processed_obs self.next_observations_ph = self.target_policy.obs_ph self.processed_next_obs_ph = self.target_policy.processed_obs self.action_target = self.target_policy.action_ph self.terminals_ph = tf.placeholder(tf.float32, shape=(None, 1), name='terminals') self.rewards_ph = tf.placeholder(tf.float32, shape=(None, 1), name='rewards') self.is_demo_ph = tf.placeholder(tf.float32, shape=(None, 1), name='is_demonstrations') self.weight_ph = tf.placeholder(tf.float32, shape=(None, 1), name='importance_weight') self.actions_ph = tf.placeholder(tf.float32, shape=(None,) + self.action_space.shape, name='actions') self.learning_rate_ph = tf.placeholder(tf.float32, [], name="learning_rate_ph") if self.n_step: self.next_observations_ph_n = self.target_policy.obs_ph self.processed_next_obs_ph_n = self.target_policy.processed_obs self.rewards_ph_n = tf.placeholder(tf.float32, shape=(None, 1), name='n_step_rewards') self.terminals_ph_n = tf.placeholder(tf.float32, shape=(None, 1), name='n_step_terminals')
tensorflow.placeholder
8,777
import tensorflow as tf targets = x['targets'] pad = tf.expand_dims(tf.zeros_like(inp[0]), axis=0) concat = tf.concat([inp, pad, targets], axis=0) mask = tf.concat([tf.zeros_like(inp), pad, tf.ones_like(targets)], axis=0) x['inputs'] = concat x['targets'] = concat
tensorflow.ones_like
8,778
import tensorflow as tf def input_fn(params): """The actual input function.""" # batch_size = params["batch_size"] name_to_features = { "input_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "input_mask": tf.FixedLenFeature([max_seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "masked_lm_positions": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_ids": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_weights": tf.FixedLenFeature([max_predictions_per_seq], tf.float32), "next_sentence_labels": tf.FixedLenFeature([1], tf.int64), } # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. if is_training: d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
tensorflow.FixedLenFeature
8,779
import tensorflow as tf dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] dec, mem = tf.nn.seq2seq.embedding_attention_decoder( dec_inp, enc_state, attn_states, cell, num_symbols=4, embedding_size=2, output_size=3) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 3), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testEmbeddingAttentionSeq2Seq(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)] dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) dec, mem = tf.nn.seq2seq.embedding_attention_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols=2, num_decoder_symbols=5, embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 5), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].c.shape) self.assertEqual((2, 2), res[0].h.shape)
tensorflow.constant
8,780
import tensorflow as tf if clip_at_zero: pred_x, pred_y = pred_x * tf.cast(pred_max>0, tf.float32), pred_y * tf.cast(pred_max>0, tf.float32) pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.) pred_y = pred_y * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (height / 2.) if config.PRED_DEBUG: pred_indices_ = tf.squeeze(pred_indices) image_ = tf.squeeze(image) * 255. pred_heatmap = tf.one_hot(pred_indices_, heatmap_size*heatmap_size, on_value=1., off_value=0., axis=-1, dtype=tf.float32) pred_heatmap = tf.reshape(pred_heatmap, [-1, heatmap_size, heatmap_size]) if data_format == 'channels_first': image_ = tf.transpose(image_, perm=(1, 2, 0)) save_image_op = tf.py_func(save_image_with_heatmap, [image_, height, width, heatmap_size, tf.reshape(pred_heatmap * 255., [-1, heatmap_size, heatmap_size]), tf.reshape(predictions, [-1, heatmap_size, heatmap_size]), config.left_right_group_map[category][0], config.left_right_group_map[category][1], config.left_right_group_map[category][2]],
tensorflow.reshape
8,781
import tensorflow as tf ''' if isinstance(ob_space, Discrete): input_x = tf.placeholder(shape=(batch_size,), dtype=tf.int32, name=name) processed_x = tf.to_float(tf.one_hot(input_x, ob_space.n)) return input_x, processed_x elif isinstance(ob_space, Box): input_shape = (batch_size,) + ob_space.shape input_x = tf.placeholder(shape=input_shape, dtype=ob_space.dtype, name=name) processed_x = tf.to_float(input_x) return input_x, processed_x else: raise NotImplementedError
tensorflow.placeholder
8,782
import tensorflow as tf global first first = True classnum=12 testnum = tf.placeholder(tf.int32) trainnum = tf.placeholder(tf.int32) validnum = tf.placeholder(tf.int32) learnrate = tf.placeholder(tf.float32) def getinputs(path): filename_queue=tf.train.string_input_producer([path])
tensorflow.placeholder
8,783
import tensorflow as tf stddev=1e-2, strides=[1, 1, 1, 1], padding="SAME", nonlinearity=None, bias=False, weight_norm=False, scale=False): """Convolutional layer.""" with tf.variable_scope(name) as scope: weights = variable_on_cpu( "weights", filter_size + [dim_in, dim_out], tf.random_uniform_initializer( minval=-stddev, maxval=stddev)) # weight normalization if weight_norm:
tensorflow.variable_scope
8,784
import tensorflow as tf def contra_traj_lossV7(pred, tgt, horizon=12, temp=100): horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon) # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1]) tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1]) tgt_dif = tgt_flat1 - tgt_flat2 pred_dif = pred_flat1 - pred_flat2 geq = tf.cast(tgt_dif > 0, tf.bool) tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) unorm_w = tf.exp((tgt_flat1 + tgt_flat2)/temp) loss = unorm_w * loss / (tf.reduce_sum(unorm_w)) a = tf.print(tf.reduce_sum(unorm_w)) with tf.control_dependencies([a]): final_loss = tf.reduce_sum(loss) return final_loss, cstr_pct def contra_traj_lossV8(pred, tgt, horizon=12): horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon) # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
tensorflow.math.count_nonzero
8,785
import tensorflow.contrib.graph_editor as ge xs = [xs] bwd_ops = ge.get_backward_walk_ops([y.op for y in ys], inclusive=True) debug_print("bwd_ops: %s", bwd_ops) # forward ops are all ops that are candidates for recomputation fwd_ops = ge.get_forward_walk_ops([x.op for x in xs], inclusive=True, within_ops=bwd_ops) debug_print("fwd_ops: %s", fwd_ops) # exclude ops with no inputs fwd_ops = [op for op in fwd_ops if op.inputs]
tensorflow.contrib.graph_editor.get_forward_walk_ops
8,786
import tensorflow as tf @classmethod def from_tfrecord_files(cls, input_files, **kwargs) -> tf.data.Dataset: dataset = utils.read_tfrecord_files(input_files, **kwargs) d = cls(examples=None, **kwargs) # parse example features = { d.input_ids: tf.io.VarLenFeature(tf.int64), d.token_type_ids: tf.io.VarLenFeature(tf.int64), d.attention_mask: tf.io.VarLenFeature(tf.int64), d.labels: tf.io.VarLenFeature(tf.int64), } dataset = dataset.map( lambda x: tf.io.parse_example(x, features), num_parallel_calls=utils.AUTOTUNE, ).prefetch(utils.AUTOTUNE) dataset = dataset.map(
tensorflow.io.VarLenFeature
8,787
import tensorflow as tf 1.0, dtype=tf.float32, shape=[len(self.groundtruth_lists(fields.BoxListFields.boxes)), 1]) location_losses = self._localization_loss( prediction_dict['box_encodings'], batch_reg_targets, weights=weights) cls_losses = self._classification_loss( prediction_dict['class_predictions_with_background'], batch_cls_targets, weights=weights) loss_dict = { 'localization_loss': tf.reduce_sum(location_losses), 'classification_loss': tf.reduce_sum(cls_losses), } return loss_dict def regularization_losses(self): """Returns a list of regularization losses for this model. Returns a list of regularization losses for this model that the estimator needs to use during training/optimization. Returns: A list of regularization loss tensors.
tensorflow.reduce_sum
8,788
import tensorflow as tf self.assertEqual(3, len(res)) self.assertEqual((2, 2), res[0].shape) # Test that previous-feeding model ignores inputs after the first. dec_inp2 = [tf.constant(0, tf.int32, shape=[2]) for _ in range(3)] with tf.variable_scope("other"): d3, _ = tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp2, cell, num_encoder_symbols=2, num_decoder_symbols=5, embedding_size=2, feed_previous=tf.constant(True)) sess.run([tf.global_variables_initializer()]) tf.get_variable_scope().reuse_variables() d1, _ = tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols=2, num_decoder_symbols=5, embedding_size=2, feed_previous=True) d2, _ = tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp2, cell, num_encoder_symbols=2, num_decoder_symbols=5, embedding_size=2, feed_previous=True) res1 = sess.run(d1) res2 = sess.run(d2) res3 = sess.run(d3) self.assertAllClose(res1, res2)
tensorflow.get_variable_scope
8,789
from tensorflow.contrib import slim [slim.conv2d, slim.separable_conv2d], weights_initializer=weights_init, activation_fn=tf.nn.relu6, normalizer_fn=normalizer_fn, ): with slim.arg_scope([slim.batch_norm], **batch_norm_params): with slim.arg_scope([slim.conv2d], weights_regularizer=regularizer): with slim.arg_scope( [slim.separable_conv2d], weights_regularizer=depthwise_regularizer ) as sc:
tensorflow.contrib.slim.arg_scope
8,790
import tensorflow as tf reg += self.L2_out * tf.reduce_mean(tf.square(tf.abs(self.W_out) * self.output_Connectivity)) # L2 firing rate regularization reg += self.L2_firing_rate * tf.reduce_mean(tf.square(tf.nn.relu(self.states))) # susillo regularization
tensorflow.nn.relu
8,791
import tensorflow as tf ep_reward += sum(reward_n) obs_glob = [obs[0] + obs[1]] obs_glob_next = [obs_n[0] + obs_n[1]] self.store(obs_glob + obs + action + [sum(reward_n)] + obs_glob_next + obs_n + [all(done_n)]) obs = obs_n self.learn() self.write_summary_scalar("ep_reward", ep_reward, self.learn_step_cnt) def write_summary_scalar(self, tag, value, iteration): self.summary_writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]), iteration) env = gym.make('Switch2-v0') alg = QMix(env, env.observation_space[0].shape[0], env.action_space[0].n) # alg = QMix(env, env.observation_space.shape[0], env.action_space.n) alg.train()
tensorflow.Summary.Value
8,792
import tensorflow as tf gh_w = gh_w.reshape(-1, 1) / np.sqrt(np.pi) shape = tf.shape(Fmu) Fmu, Fvar = [tf.reshape(e, (-1, 1)) for e in (Fmu, Fvar)] X = gh_x * tf.sqrt(2.0 * Fvar) + Fmu logp = phi(X) return tf.reshape(tf.matmul(logp, gh_w), shape) import tensorflow as tf
tensorflow.matmul
8,793
from tensorflow.python.framework import ops self.graph = None self.feed_tensors = None self.fetch_tensors = None def process(self, inputs): # Create a session for every worker only once. The session is not # pickleable, so it can't be created at the DoFn constructor. if not self.session: self.graph = ops.Graph() with self.graph.as_default(): self.session = tf.Session() metagraph_def = loader.load( self.session, {self.meta_tag}, self.model_dir) signature_def = metagraph_def.signature_def[self.meta_signature] # inputs
tensorflow.python.framework.ops.Graph
8,794
import tensorflow as tf return with tf.Graph().as_default(): if FLAGS.eval: self._eval_cnn() else: self._benchmark_cnn() def _eval_cnn(self): """Evaluate the model from a checkpoint using validation dataset.""" (enqueue_ops, fetches) = self._build_model() saver = tf.train.Saver(tf.global_variables()) summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, tf.get_default_graph()) target = '' with tf.Session(target=target, config=create_config_proto()) as sess: for i in xrange(len(enqueue_ops)): sess.run(enqueue_ops[:(i+1)]) if FLAGS.train_dir is None: raise ValueError('Trained model directory not specified') global_step = load_checkpoint(saver, sess, FLAGS.train_dir) start_time = time.time() count_top_1 = 0.0 count_top_5 = 0.0 total_eval_count = self.num_batches * self.batch_size
tensorflow.get_default_graph
8,795
import tensorflow as tf interpreter.allocate_tensors() except ValueError: assert False input_index = (interpreter.get_input_details()[0]["index"]) interpreter.set_tensor(input_index, test_inputs) interpreter.invoke() output_index = (interpreter.get_output_details()[0]["index"]) result = interpreter.get_tensor(output_index) # Reset all variables so it will not pollute other inferences. interpreter.reset_all_variables() return result def testStaticRnnMultiRnnCell(self): sess = tf.compat.v1.Session(config=CONFIG) x, prediction, output_class = self.buildModel( self.buildLstmLayer(), is_dynamic_rnn=False) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildLstmLayer(), sess, saver, is_dynamic_rnn=False) test_inputs, expected_output = self.getInferenceResult( x, output_class, new_sess) # Test Toco-converted model.
tensorflow.compat.v1.Session
8,796
from tensorflow.python.framework import ops cov, math_ops.mul(math_ops.sqrt(var_predictions), math_ops.sqrt(var_labels)), 'pearson_r') with ops.control_dependencies( [update_cov, update_var_predictions, update_var_labels]): update_op = _safe_div(update_cov, math_ops.mul( math_ops.sqrt(update_var_predictions), math_ops.sqrt(update_var_labels)), 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, pearson_r) if updates_collections: ops.add_to_collections(updates_collections, update_op) return pearson_r, update_op # TODO(nsilberman): add a 'normalized' flag so that the user can request # normalization if the inputs are not normalized. def streaming_mean_cosine_distance(predictions, labels, dim, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the cosine distance between the labels and predictions.
tensorflow.python.framework.ops.add_to_collections
8,797
import tensorflow as tf next_sentence_log_probs = tf.reshape( next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32) next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy( labels=next_sentence_labels, predictions=next_sentence_predictions) next_sentence_mean_loss = tf.metrics.mean( values=next_sentence_example_loss) return { "masked_lm_accuracy": masked_lm_accuracy, "masked_lm_loss": masked_lm_mean_loss, "next_sentence_accuracy": next_sentence_accuracy, "next_sentence_loss": next_sentence_mean_loss,
tensorflow.metrics.mean
8,798
import tensorflow as tf # (1, height, width, A * 4) # (1, height, width, A * 4) rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights = tf.py_func( anchor_target_layer, [rpn_cls_score, self._gt_boxes, self._im_info, self._feat_stride, self._anchors, self._num_anchors], [tf.float32, tf.float32, tf.float32, tf.float32]) #self._gt_boxes = tf.placeholder(tf.float32, shape=[None, 5]) #gt_boxes缩放之后的坐标以及所属类别的标号 rpn_labels.set_shape([1, 1, None, None]) rpn_bbox_targets.set_shape([1, None, None, self._num_anchors * 4]) rpn_bbox_inside_weights.set_shape([1, None, None, self._num_anchors * 4]) rpn_bbox_outside_weights.set_shape([1, None, None, self._num_anchors * 4]) rpn_labels = tf.to_int32(rpn_labels, name="to_int32") self._anchor_targets['rpn_labels'] = rpn_labels self._anchor_targets['rpn_bbox_targets'] = rpn_bbox_targets self._anchor_targets['rpn_bbox_inside_weights'] = rpn_bbox_inside_weights self._anchor_targets['rpn_bbox_outside_weights'] = rpn_bbox_outside_weights self._score_summaries.update(self._anchor_targets) return rpn_labels def _proposal_target_layer(self, rois, roi_scores, name): with tf.variable_scope(name): # 这里的index是对于cfg.FLAGS.batch_size=256 而言
tensorflow.to_int32
8,799