seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
from tensorflow.python.framework import ops
def __init__(self, learning_rate=0.001, use_locking=False, name="OMD"):
super(OptimisticMirrorDescentOptimizer, self).__init__(use_locking,
name)
self._lr = learning_rate
# Tensor versions of the constructor arguments, created in _prepare().
self._lr_t = None
def _prepare(self):
self._lr_t = ops.convert_to_tensor(self._lr, name="learning_rate")
def _create_slots(self, var_list):
# Create slots for the first and second moments.
for v in var_list:
self._zeros_slot(v, "g", self._name)
def _apply_dense(self, grad, var):
|
tensorflow.python.framework.ops.convert_to_tensor
| 8,800 |
import tensorflow as tf
loss_loc = _smooth_l1_loss(tf.boolean_mask(loc_true, mask_pos_b),
tf.boolean_mask(loc_pred, mask_pos_b))
loss_loc = tf.reduce_mean(loss_loc)
# classification loss (crossentropy)
# 1. compute max conf across batch for hard negative mining
loss_class = tf.where(mask_neg,
1 - class_pred[:, 0][..., tf.newaxis], 0)
# 2. hard negative mining
loss_class = tf.reshape(loss_class, [num_batch, num_prior])
loss_class_idx = tf.argsort(loss_class, axis=1, direction='DESCENDING')
loss_class_idx_rank = tf.argsort(loss_class_idx, axis=1)
mask_pos_per_batch = tf.reshape(mask_pos, [num_batch, num_prior])
num_pos_per_batch = tf.reduce_sum(
tf.cast(mask_pos_per_batch, tf.float32), 1, keepdims=True)
num_pos_per_batch = tf.maximum(num_pos_per_batch, 1)
num_neg_per_batch = tf.minimum(neg_pos_ratio * num_pos_per_batch,
tf.cast(num_prior, tf.float32) - 1)
mask_hard_neg = tf.reshape(
tf.cast(loss_class_idx_rank, tf.float32) < num_neg_per_batch,
[num_batch * num_prior, 1])
# 3. classification loss including positive and negative examples
|
tensorflow.argsort
| 8,801 |
import tensorflow as tf
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
output = tf.clip_by_value(output, epsilon, 1. - epsilon)
|
tensorflow.clip_by_value
| 8,802 |
import tensorflow as tf
def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder):
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
|
tensorflow.FixedLenFeature
| 8,803 |
import tensorflow as tf
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
if not forCnn:
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
|
tensorflow.shape
| 8,804 |
import tensorflow as tf
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
scores = d_layer_3_all
# Mask
# key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T]
key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
|
tensorflow.where
| 8,805 |
import tensorflow as tf
tf.saved_model.load(
self._sess, [tag_constants.SERVING], self._model_path)
self._image_tensor = self._sess.graph.get_tensor_by_name(
'serving_default_input_1:0')
self._output_tensor = self._sess.graph.get_tensor_by_name(
'StatefulPartitionedCall:0')
self._boxes = tf.placeholder(
tf.float32, shape=(None, None, None, 4))
self._scores = tf.placeholder(
tf.float32, shape=(None, None, self._num_classes))
self._boxes_predi, self._scores_predi, self._classes_predi,\
self._valid_detections_predi = \
tf.image.combined_non_max_suppression(
boxes=self._boxes, scores=self._scores,
|
tensorflow.placeholder
| 8,806 |
import tensorflow as tf
grads, self.grad_norms = tf.clip_by_global_norm(self.gradients, GRAD_CLIP)
# Apply local gradients to global network
global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, GLOBAL_NET_SCOPE+'/qvalues')
self.apply_grads = trainer.apply_gradients(zip(grads, global_vars))
|
tensorflow.get_collection
| 8,807 |
import tensorflow as tf
H1 = tf.add(tf.matmul(H, W1), b)
H2 = tf.matmul(H, W2)
Y = tf.add(H1 * H2, H1)
return Y
def fwd_gradients_0(self, U, x):
g = tf.gradients(U, x, grad_ys=self.dummy_x0_tf)[0]
return tf.gradients(g, self.dummy_x0_tf)[0]
def fwd_gradients_1(self, U, x):
g = tf.gradients(U, x, grad_ys=self.dummy_x1_tf)[0]
return tf.gradients(g, self.dummy_x1_tf)[0]
def net_U0(self, x):
|
tensorflow.gradients
| 8,808 |
import tensorflow as tf
return d.apply(
tf.contrib.data.map_and_batch(
self._decode_tfrecord, batch_size=params["batch_size"], drop_remainder=True
)
)
return input_fn
def _decode_tfrecord(self, record):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, self._name_to_feature_config)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name, tensor in example.items():
if tensor.dtype == tf.int64:
example[name] = tf.cast(tensor, tf.int32)
else:
example[name] = tensor
|
tensorflow.parse_single_example
| 8,809 |
from tensorflow.python.framework import tensor_shape
# NOTE(mrry): Shapes are conditionally set in the Python wrapper.
ops.RegisterShape("Variable")(common_shapes.unknown_shape)
@ops.RegisterShape("TemporaryVariable")
def _TemporaryVariableShape(op):
"""Shape function for the TemporaryVariable op."""
shape = tensor_util.TensorShapeProtoToList(op.get_attr("shape"))
return [tensor_shape.TensorShape(shape)]
@ops.RegisterShape("DestroyTemporaryVariable")
def _DestroyTemporaryVariableShape(op):
"""Shape function for the DestroyTemporaryVariable op."""
return [op.inputs[0].get_shape()]
|
tensorflow.python.framework.tensor_shape.TensorShape
| 8,810 |
import tensorflow as tf
ret_columns_list.append(matrix_shape[-1])
ret_columns = tf.add_n(ret_columns_list)
row_blocks = []
current_column = 0
for matrix in matrices:
matrix_shape = tf.shape(matrix)
row_before_length = current_column
current_column += matrix_shape[-1]
row_after_length = ret_columns - current_column
row_blocks.append(tf.pad(
|
tensorflow.shape
| 8,811 |
import tensorflow as tf
dim_state = int(np.prod(env.observation_space.shape))
dim_action = int(np.prod(env.action_space.shape))
env.verify()
normalizers = Normalizers(dim_action=dim_action, dim_state=dim_state)
normalizers_copy = Normalizers(dim_action=dim_action, dim_state=dim_state)
normalizers_parameters = normalizers.parameters(trainable=False, non_trainable=True)
normalizers_copy_parameters = normalizers_copy.parameters(trainable=False, non_trainable=True)
copy_normalizers = tf.group(*[tf.assign(w_v, p_v) for w_v, p_v in zip(normalizers_copy_parameters, normalizers_parameters)])
revert_normalizers = tf.group(*[tf.assign(w_v, p_v) for w_v, p_v in zip(normalizers_parameters, normalizers_copy_parameters)])
dtype = gen_dtype(env, 'state action next_state reward done timeout')
train_set = Dataset(dtype, FLAGS.rollout.max_buf_size)
dev_set = Dataset(dtype, FLAGS.rollout.max_buf_size)
task_train_sets = [Dataset(dtype, FLAGS.rollout.max_buf_size) for i in range(100)]
task_dev_sets = [Dataset(dtype, FLAGS.rollout.max_buf_size) for i in range(100)]
print ("state and action dim:", dim_state, dim_action)
policy = GaussianMLPPolicy(dim_state, dim_action, normalizer=normalizers.state, **FLAGS.policy.as_dict())
|
tensorflow.assign
| 8,812 |
import tensorflow as tf
idx1 = cell_arch[bi][0]
op1 = cell_arch[bi][1]
idx2 = cell_arch[bi][2]
op2 = cell_arch[bi][3]
with tf.variable_scope('X1'):
X1 = self._add_op_dynamic(cell_inputs, blocks, idx1, op1, w, h, block_ch, is_train=is_train)
X1 = self._add_drop_path(X1, drop_path_keep_prob)
with tf.variable_scope('X2'):
|
tensorflow.variable_scope
| 8,813 |
import tensorflow as tf
unconnected_gradients=tf.UnconnectedGradients.NONE)
emb_grads, other_grads = grads[:len(emb_var)], grads[len(emb_var):]
if "plugin" in args.optimizer:
emb_train_op = emb_opt.apply_gradients(zip(emb_grads, emb_var))
else:
with sok.OptimizerScope(emb_var):
emb_train_op = emb_opt.apply_gradients(zip(emb_grads, emb_var))
with tf.control_dependencies([*emb_grads]):
# in case NCCL runs concurrently via SOK and horovod
other_grads = strategy.reduce("sum", other_grads)
other_train_op = dense_opt.apply_gradients(zip(other_grads, other_var))
with tf.control_dependencies([emb_train_op, other_train_op]):
total_loss = strategy.reduce("sum", loss)
|
tensorflow.control_dependencies
| 8,814 |
import tensorflow as tf
|
tensorflow.contrib.layers.l2_regularizer
| 8,815 |
from tensorflow.python.framework import ops
Returns:
A `Tensor` of the same type as `a`.
"""
with ops.op_scope([a, b], name, "MatMul") as name:
a = ops.convert_to_tensor(a, name="a")
b = ops.convert_to_tensor(b, name="b")
if a.dtype == types.float32 and (a_is_sparse or b_is_sparse):
return sparse_matmul(a, b,
transpose_a=transpose_a,
|
tensorflow.python.framework.ops.convert_to_tensor
| 8,816 |
import tensorflow as tf
fast_antecedent_scores += self.get_fast_antecedent_scores(top_span_emb) # [k, k]
_, top_antecedents = tf.nn.top_k(fast_antecedent_scores, c, sorted=False) # [k, c]
top_antecedents_mask = util.batch_gather(antecedents_mask, top_antecedents) # [k, c]
top_fast_antecedent_scores = util.batch_gather(fast_antecedent_scores, top_antecedents) # [k, c]
top_antecedent_offsets = util.batch_gather(antecedent_offsets, top_antecedents) # [k, c]
return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets
def distance_pruning(self, top_span_emb, top_span_mention_scores, c):
k = util.shape(top_span_emb, 0)
top_antecedent_offsets = tf.tile(tf.expand_dims(tf.range(c) + 1, 0), [k, 1]) # [k, c]
raw_top_antecedents = tf.expand_dims(tf.range(k), 1) - top_antecedent_offsets # [k, c]
top_antecedents_mask = raw_top_antecedents >= 0 # [k, c]
top_antecedents = tf.maximum(raw_top_antecedents, 0) # [k, c]
top_fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.gather(top_span_mention_scores, top_antecedents) # [k, c]
top_fast_antecedent_scores += tf.log(tf.to_float(top_antecedents_mask)) # [k, c]
return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets
def get_predictions_and_loss(self, tokens, context_word_emb, head_word_emb, lm_emb, char_index, text_len, speaker_ids, genre, is_training, gold_starts, gold_ends, cluster_ids):
|
tensorflow.range
| 8,817 |
import tensorflow as tf
if not tf.gfile.Exists(eval_file) or not FLAGS.data_converted:
file_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(eval_examples), num_actual_eval_examples,
len(eval_examples) - num_actual_eval_examples)
|
tensorflow.logging.info
| 8,818 |
import tensorflow as tf
# Read the file containing the pairs used for testing
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
# Get the paths for the corresponding images
paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs)
image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')
labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control')
phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
nrof_preprocess_threads = 4
image_size = (args.image_size, args.image_size)
|
tensorflow.placeholder
| 8,819 |
import tensorflow as tf
# Now we construct the copy model.
batch_size = 8
inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)]
with tf.variable_scope("root"):
_, losses = SampleGRUSeq2Seq(inp, out, weights)
updates = []
params = tf.global_variables()
optimizer = tf.train.AdamOptimizer(0.03, epsilon=1e-5)
for i in range(len(buckets)):
full_grads = tf.gradients(losses[i], params)
grads, _ = tf.clip_by_global_norm(full_grads, 30.0)
update = optimizer.apply_gradients(zip(grads, params))
updates.append(update)
sess.run([tf.global_variables_initializer()])
steps = 6
for _ in range(steps):
bucket = random.choice(np.arange(len(buckets)))
length = buckets[bucket][0]
i = [np.array([np.random.randint(9) + 1 for _ in range(batch_size)],
dtype=np.int32) for _ in range(length)]
# 0 is our "GO" symbol here.
|
tensorflow.gradients
| 8,820 |
import tensorflow as tf
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2,
feed_previous=True)
d2, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_symbols=5, embedding_size=2,
feed_previous=True)
res1 = sess.run(d1)
res2 = sess.run(d2)
|
tensorflow.nn.seq2seq.embedding_tied_rnn_seq2seq
| 8,821 |
import tensorflow as tf
else:
covariance_matrix = tf.convert_to_tensor(
covariance_matrix, name="covariance_matrix", dtype=dtype)
if validate_args:
covariance_matrix = control_flow_ops.with_dependencies([
tf.assert_near(
covariance_matrix,
tf.matrix_transpose(covariance_matrix),
message="Matrix was not symmetric")
], covariance_matrix)
# No need to validate that covariance_matrix is non-singular.
# LinearOperatorLowerTriangular has an assert_non_singular method that
# is called by the Bijector.
# However, cholesky() ignores the upper triangular part, so we do need
# to separately assert symmetric.
scale_tril = tf.cholesky(covariance_matrix)
super(MultivariateNormalFullCovariance, self).__init__(
loc=loc,
scale_tril=scale_tril,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
name=name)
self._parameters = parameters
|
tensorflow.cholesky
| 8,822 |
import tensorflow as tf
return (tf.no_op(), tf.no_op())
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
is_training_const = utils.constant_value(is_training)
if is_training_const is None or is_training_const:
update_mean_op, update_variance_op = utils.smart_cond(
is_training,
build_update_ops,
build_no_ops,
)
# Every new connection creates a new op which adds its contribution
# to the running average when ran.
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_variance_op)
def _build_update_ops_second_moment(self, mean, second_moment, is_training):
"""Builds the moving average update ops when using the moving second moment.
Args:
mean: The mean value to update with.
second_moment: The second_moment value to update with.
is_training: Boolean Tensor to indicate if we're currently in
training mode.
"""
def build_update_ops():
|
tensorflow.add_to_collection
| 8,823 |
import tensorflow as tf
isms = input_score_maps_split[i]
igms = input_geo_maps_split[i]
itms = input_training_masks_split[i]
total_loss, model_loss = tower_loss(iis, isms, igms, itms, reuse_variables)
batch_norm_updates_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope))
reuse_variables = True
grads = opt.compute_gradients(total_loss)
tower_grads.append(grads)
grads = average_gradients(tower_grads)
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
summary_op = tf.summary.merge_all()
# save moving average
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# batch norm updates
with tf.control_dependencies([variables_averages_op, apply_gradient_op, batch_norm_updates_op]):
train_op = tf.no_op(name='train_op')
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(FLAGS.checkpoint_path, tf.get_default_graph())
init = tf.global_variables_initializer()
if FLAGS.pretrained_model_path is not None:
variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path, slim.get_trainable_variables(),
ignore_missing_vars=True)
|
tensorflow.train.ExponentialMovingAverage
| 8,824 |
import tensorflow as tf
outputs.append(tf.concat([out_fw, out_bw], axis=2))
if concat_layers:
res = tf.concat(outputs[1:], axis=2)
else:
res = outputs[-1]
res = tf.transpose(res, [1, 0, 2])
return res
class native_gru:
|
tensorflow.transpose
| 8,825 |
import tensorflow as tf
print('attention f flat dims: ' + str(f.get_shape().as_list()))
s = tf.matmul(g, f, transpose_b=True) # # [bs, N, N]
|
tensorflow.matmul
| 8,826 |
import tensorflow as tf
if initial_value is None:
fc_weight = tf.get_variable("weights", shape=[in_dim, out_dim], initializer=tf.random_normal_initializer(mean=0., stddev=0.01))
|
tensorflow.random_normal_initializer
| 8,827 |
import tensorflow as tf
# Now try a restore with the sharded filename.
with tf.Session(
target="",
config=tf.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
v0 = tf.Variable(111, name="v0")
with sess.graph.device("/cpu:1"):
v1 = tf.Variable(222, name="v1")
save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True)
tf.initialize_all_variables().run()
self.assertEqual(111, v0.eval())
self.assertEqual(222, v1.eval())
save_path = os.path.join(self.get_temp_dir(), "sharded")
save.restore(sess, save_path + "-?????-of-?????")
|
tensorflow.Variable
| 8,828 |
import tensorflow as tf
return pooling_result
def scaled_tanh(x, scale=5.):
return scale * tf.nn.tanh(1./scale * x)
|
tensorflow.nn.tanh
| 8,829 |
from tensorflow.contrib.eager.python.examples.spinn import data
logdir=os.path.join(self._temp_data_dir, "logdir"),
inference_sentences=("( foo ( bar . ) )", None))
with self.assertRaises(ValueError):
spinn.train_or_infer_spinn(embed, word2index, None, None, None, config)
def testTrainSpinn(self):
"""Test with fake toy SNLI data and GloVe vectors."""
# 1. Create and load a fake SNLI data file and a fake GloVe embedding file.
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
fake_train_file = self._create_test_data(snli_1_0_dir)
vocab = data.load_vocabulary(self._temp_data_dir)
word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab)
train_data = data.SnliData(fake_train_file, word2index)
dev_data = data.SnliData(fake_train_file, word2index)
test_data = data.SnliData(fake_train_file, word2index)
# 2. Create a fake config.
config = _test_spinn_config(
data.WORD_VECTOR_LEN, 4,
logdir=os.path.join(self._temp_data_dir, "logdir"))
# 3. Test training of a SPINN model.
trainer = spinn.train_or_infer_spinn(
|
tensorflow.contrib.eager.python.examples.spinn.data.load_word_vectors
| 8,830 |
import tensorflow as tf
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
|
tensorflow.matmul
| 8,831 |
from tensorflow.python.framework import ops
ops.RegisterShape("Conv2D")(common_shapes.conv2d_shape)
ops.RegisterShape("DepthwiseConv2dNative")(
common_shapes.depthwise_conv2d_native_shape)
ops.RegisterShape("AvgPool")(common_shapes.avg_pool_shape)
ops.RegisterShape("MaxPool")(common_shapes.max_pool_shape)
@ops.RegisterShape("MaxPoolWithArgmax")
def _MaxPoolWithArgMaxShape(op):
"""Shape function for MaxPoolWithArgmax op."""
return common_shapes.max_pool_shape(op) * 2
@ops.RegisterShape("AvgPoolGrad")
def _AvgPoolGradShape(op):
"""Shape function for the AvgPoolGrad op."""
orig_input_shape = tensor_util.constant_value(op.inputs[0])
if orig_input_shape is not None:
return [tensor_shape.TensorShape(orig_input_shape.tolist())]
else:
# NOTE(mrry): We could in principle work out the shape from the
# gradients and the attrs, but if we do not know orig_input_shape
# statically, then we are unlikely to know the shape of the
# gradients either.
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("Conv2DBackpropFilter")
|
tensorflow.python.framework.ops.RegisterShape
| 8,832 |
import tensorflow as tf
if len(self.env.observation_space.shape) == 1:
# This means we are running on low-dimensional observations (e.g. RAM)
input_shape = self.env.observation_space.shape
else:
img_h, img_w, img_c = self.env.observation_space.shape
input_shape = (img_h, img_w, frame_history_len * img_c)
self.num_actions = self.env.action_space.n
# set up placeholders
# placeholder for current observation (or state)
self.obs_t_ph = tf.placeholder(
tf.float32 if lander else tf.uint8, [None] + list(input_shape))
# placeholder for current action
self.act_t_ph = tf.placeholder(tf.int32, [None])
# placeholder for current reward
self.rew_t_ph = tf.placeholder(tf.float32, [None])
# placeholder for next observation (or state)
self.obs_tp1_ph = tf.placeholder(
tf.float32 if lander else tf.uint8, [None] + list(input_shape))
# placeholder for end of episode mask
# this value is 1 if the next state corresponds to the end of an episode,
# in which case there is no Q-value at the next state; at the end of an
# episode, only the current state reward contributes to the target, not the
# next state Q-value (i.e. target is just rew_t_ph, not rew_t_ph + gamma * q_tp1)
self.done_mask_ph = tf.placeholder(tf.float32, [None])
|
tensorflow.placeholder
| 8,833 |
from tensorflow.python.summary import summary
if grad_values is not None:
var_name = variable.name.replace(":", "_")
if "gradients" in summaries:
summary.histogram("gradients/%s" % var_name, grad_values)
if "gradient_norm" in summaries:
summary.scalar("gradient_norm/%s" % var_name,
clip_ops.global_norm([grad_values]))
|
tensorflow.python.summary.summary.histogram
| 8,834 |
import tensorflow as tf
self.lstm_state_sizes[direction].append(lstm_cell.state_size)
self.lstm_init_states[direction].append(init_states)
self.lstm_final_states[direction].append(final_state)
if direction == 'forward':
self.lstm_outputs[direction].append(layer_output)
else:
self.lstm_outputs[direction].append(
tf.reverse_sequence(
layer_output,
sequence_lengths,
seq_axis=1,
batch_axis=0
)
)
with tf.control_dependencies([layer_output]):
# update the initial states
for i in range(2):
new_state = tf.concat(
[final_state[i][:batch_size, :],
init_states[i][batch_size:, :]], axis=0)
state_update_op = tf.assign(init_states[i], new_state)
update_ops.append(state_update_op)
layer_input = layer_output
self.mask = mask
self.sequence_lengths = sequence_lengths
self.update_state_op = tf.group(*update_ops)
|
tensorflow.control_dependencies
| 8,835 |
import tensorflow as tf
def get_conv_var(self, filter_size, in_channels, out_channels, name):
initial_value = tf.truncated_normal([filter_size, filter_size, in_channels, out_channels], 0.0, stddev = 1 / math.sqrt(float(filter_size * filter_size)))
filters = self.get_var(initial_value = initial_value, name = name, idx = 'weights', var_name = "_filters")
initial_value = tf.truncated_normal([out_channels], 0.0, 1.0)
biases = self.get_var(initial_value = initial_value, name = name, idx = 'biases', var_name = "_biases")
return filters, biases
def get_fc_var(self, in_size, out_size, name):
|
tensorflow.truncated_normal
| 8,836 |
import tensorflow as tf
self.batch_size = imgshape[1]
featsize = 1024
srcimg = image[0]
tgtimg = image[2]
tgtctx = image[1]
with tf.variable_scope("conv_context") as scope:
tgtctx_h0 = lrelu(conv2d(tgtctx, self.df_dim, name='h0_conv'))
tgtctx_h1 = lrelu(conv2d(tgtctx_h0, self.df_dim*2, name='h1_conv'))
tgtctx_h2 = lrelu(conv2d(tgtctx_h1, self.df_dim*4, name='h2_conv'))
tgtctx_h3 = lrelu(conv2d(tgtctx_h2, self.df_dim*8, name='h3_conv'))
tgtctx_h4 = lrelu(linear(tf.reshape(tgtctx_h3, [self.batch_size, -1]), featsize, 'h4_lin'))
|
tensorflow.variable_scope
| 8,837 |
import tensorflow as tf
loss = None
train_op = None
eval_metric_ops = None
# 3. Create predictions
predictions_dict = {"predicted": predictions}
# 4. Create export outputs
export_outputs = {"predict_export_outputs": tf.estimator.export.PredictOutput(outputs = predictions)}
# 4. Return EstimatorSpec
return tf.estimator.EstimatorSpec(
mode = mode,
predictions = predictions_dict,
loss = loss,
train_op = train_op,
|
tensorflow.estimator.export.PredictOutput
| 8,838 |
import tensorflow as tf
logging.warn('The following variables in the checkpoint were not loaded:')
for varname_not_loaded in not_loaded:
logging.info('%s', varname_not_loaded)
else: # just get model vars.
for v in model_vars:
mapping[v.op.name] = v
return mapping
def get_imagenet_vars_to_restore(imagenet_ckpt):
"""Returns dict of variables to restore from ImageNet-checkpoint."""
vars_to_restore_imagenet = {}
ckpt_var_names = tf.contrib.framework.list_variables(imagenet_ckpt)
ckpt_var_names = [name for (name, unused_shape) in ckpt_var_names]
model_vars = tf.global_variables()
for v in model_vars:
if 'global_step' in v.op.name: continue
mvname_noprefix = v.op.name.replace('depth_prediction/', '')
mvname_noprefix = mvname_noprefix.replace('moving_mean', 'mu')
mvname_noprefix = mvname_noprefix.replace('moving_variance', 'sigma')
if mvname_noprefix in ckpt_var_names:
vars_to_restore_imagenet[mvname_noprefix] = v
else:
logging.info('The following variable will not be restored from '
|
tensorflow.contrib.framework.list_variables
| 8,839 |
import tensorflow as tf
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small) + margin)
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV4(pred, tgt):
# 50*50
# Step-wise contrastive loss
even = [2 * i for i in range(25)]
odd = [2 * i + 1 for i in range(25)]
pred1 = tf.gather(pred, even)
pred2 = tf.gather(pred, odd)
tgt1 = tf.gather(tgt, even)
tgt2 = tf.gather(tgt, odd)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
|
tensorflow.gather
| 8,840 |
import tensorflow as tf
for class_id in range(self.max_num_classes):
# Do the same for the ground truth and predictions
sdf_values = tf.zeros_like(samples_world)[:, 0:1]
for mtype, (classes, sdfs, poses) in enumerate([
(labeled_classes, labeled_sdfs, labeled_poses),
(predicted_classes, predicted_sdfs, predicted_poses)]):
for i in range(classes.shape[0]):
if class_id == classes[i]:
sdf = tf.expand_dims(sdfs[i], -1)
sdf = sdf * -1.0 # inside positive, outside zero
samples_object = centernet_utils.transform_pointcloud(
tf.reshape(samples_world, [1, 1, -1, 3]),
tf.reshape(poses[2][i], [1, 1, 3]),
tf.reshape(poses[0][i], [1, 1, 3, 3]),
tf.reshape(poses[1][i], [1, 1, 3]), inverse=True) * 2.0
samples_object = \
(samples_object * (29.0/32.0) / 2.0 + 0.5) * 32.0 - 0.5
samples = tf.squeeze(samples_object)
interpolated = trilinear.interpolate(sdf, samples)
sdf_values += tf.math.sign(tf.nn.relu(interpolated + self.tol))
status2 = False
if status2:
a = 2
values = interpolated
inter = tf.reshape(values, [self.resolution,
self.resolution,
self.resolution])
|
tensorflow.reshape
| 8,841 |
import tensorflow as tf
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
loss = tf.reshape(per_example_loss, [-1, tf.shape(positions)[1]])
# TODO: dynamic gather from per_example_loss
return loss
|
tensorflow.nn.bias_add
| 8,842 |
import tensorflow as tf
tf.app.flags.DEFINE_integer(
'tf_random_seed', 20180417, 'Random seed for TensorFlow initializers.')
tf.app.flags.DEFINE_float(
'weight_decay', 1e-5, 'The weight decay on the model weights.')
|
tensorflow.app.flags.DEFINE_float
| 8,843 |
import tensorflow as tf
gtboxes_and_label_h = get_horizen_minAreaRectangle(
tf.reshape(gtboxes_and_label_batch[start:end], [-1, 9]))
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [cfgs.BATCH_SIZE, -1, 5])
|
tensorflow.reshape
| 8,844 |
import tensorflow as tf
tf.int32)
a = tf.assign_sub(p, tf.fill([1024, 1024], 0))
with self.assertRaisesOpError("use uninitialized"):
a.op.run()
# NOTE(mrry): See also
# dense_update_ops_no_tsan_test.AssignOpTest, which contains a benign
# data race and must run without TSAN.
def testParallelUpdateWithLocking(self):
with self.test_session() as sess:
zeros_t = tf.fill([1024, 1024], 0.0)
ones_t = tf.fill([1024, 1024], 1.0)
p = tf.Variable(zeros_t)
adds = [tf.assign_add(p, ones_t, use_locking=True)
for _ in range(20)]
p.initializer.run()
def run_add(add_op):
sess.run(add_op)
threads = [
self.checkedThread(target=run_add, args=(add_op,)) for add_op in adds]
for t in threads:
t.start()
for t in threads:
|
tensorflow.Variable
| 8,845 |
from tensorflow.python.framework import tensor_shape
filter_shape = tensor_util.constant_value(op.inputs[1])
if filter_shape is not None:
return [tensor_shape.TensorShape(filter_shape.tolist())]
else:
# NOTE(mrry): We could in principle work out the shape from the
# gradients and the attrs, but if we do not know filter_shape
# statically, then we are unlikely to know the shape of the
# gradients either.
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("Conv2DBackpropInput")
def _Conv2DBackpropInputShape(op):
"""Shape function for the Conv2DBackpropInput op."""
input_shape = tensor_util.constant_value(op.inputs[0])
if input_shape is not None:
|
tensorflow.python.framework.tensor_shape.unknown_shape
| 8,846 |
import tensorflow as tf
(1 - self.terminals_ph_n) *( self.gamma**self.n_step_length ) * self.value_target_n)
qf1_loss_n = 0.5 * tf.reduce_mean(((q_backup_n - qf1) ** 2)*self.weight_ph)
qf1_loss_n_col = tf.reduce_mean(((q_backup_n - qf1) ** 2),1)
qf2_loss_n = 0.5 * tf.reduce_mean(((q_backup_n - qf2) ** 2)*self.weight_ph)
if self.n_step:
value_for_priority = qf1_loss_col + qf1_loss_n_col
else:
value_for_priority = qf1_loss_col
# Compute the entropy temperature loss
# it is used when the entropy coefficient is learned
ent_coef_loss, entropy_optimizer = None, None
if not isinstance(self.ent_coef, float):
ent_coef_loss = -tf.reduce_mean(
self.log_ent_coef * tf.stop_gradient(logp_pi + self.target_entropy)*self.weight_ph)
entropy_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph)
# Compute the policy loss
# Alternative: policy_kl_loss = tf.reduce_mean(logp_pi - min_qf_pi)
policy_kl_loss = tf.reduce_mean((self.ent_coef * logp_pi - min_qf_pi)*self.weight_ph)
actor_for_priority = tf.reduce_mean(self.ent_coef * logp_pi - min_qf_pi,1)
# NOTE: in the original implementation, they have an additional
# regularization loss for the Gaussian parameters
# this is not used for now
# policy_loss = (policy_kl_loss + policy_regularization_loss)
min_q = tf.minimum(dtm_qf1,dtm_qf2)
|
tensorflow.stop_gradient
| 8,847 |
import tensorflow as tf
commitment loss, embedding training loss.
"""
x_means_hot = self.nearest_neighbor(x, means)
x_means_hot_flat = tf.reshape(
x_means_hot, [-1, self.hparams.num_blocks, self.hparams.block_v_size])
x_means = tf.matmul(tf.transpose(x_means_hot_flat, perm=[1, 0, 2]), means)
x_means = tf.transpose(x_means, [1, 0, 2])
q_loss = tf.reduce_mean(
tf.squared_difference(tf.stop_gradient(x), x_means))
e_loss = tf.reduce_mean(
tf.squared_difference(x, tf.stop_gradient(x_means)))
return x_means_hot, x_means, q_loss, e_loss
def bit_to_int(self, x_bit, num_bits, base=2):
"""Turn x_bit representing numbers bitwise (lower-endian) to int tensor.
Args:
x_bit: Tensor containing numbers in a particular base to be
converted to
int.
|
tensorflow.stop_gradient
| 8,848 |
import tensorflow as tf
Returns:
prediction_dict: a dictionary holding prediction tensors to be
passed to the Loss or Postprocess functions.
"""
flattened_inputs = tf.contrib.layers.flatten(preprocessed_inputs)
class_prediction = tf.contrib.layers.fully_connected(
flattened_inputs, self._num_classes)
box_prediction = tf.contrib.layers.fully_connected(flattened_inputs, 4)
return {
'class_predictions_with_background': tf.reshape(
class_prediction, [-1, 1, self._num_classes]),
'box_encodings': tf.reshape(box_prediction, [-1, 1, 4])
}
|
tensorflow.contrib.layers.fully_connected
| 8,849 |
import tensorflow as tf
if self.trust_region:
# [n_envs * n_steps, n_act]
grad = tf.gradients(- (loss_policy - self.ent_coef * entropy) * self.n_steps * self.n_envs,
phi_i)
# [n_envs * n_steps, n_act] # Directly computed gradient of KL divergence wrt f
kl_grad = - f_polyak_i / (f_i_ + eps)
k_dot_g = tf.reduce_sum(kl_grad * grad, axis=-1)
adj = tf.maximum(0.0, (tf.reduce_sum(kl_grad * grad, axis=-1) - self.delta) / (
tf.reduce_sum(tf.square(kl_grad), axis=-1) + eps)) # [n_envs * n_steps]
# Calculate stats (before doing adjustment) for logging.
avg_norm_k = avg_norm(kl_grad)
avg_norm_g = avg_norm(grad)
avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g))
avg_norm_adj = tf.reduce_mean(tf.abs(adj))
|
tensorflow.square
| 8,850 |
import tensorflow as tf
name='rightmost_transposed_ndims')
rightmost_transposed_ndims_ = tf.get_static_value(
rightmost_transposed_ndims)
with tf.control_dependencies(_maybe_validate_rightmost_transposed_ndims(
rightmost_transposed_ndims, validate_args)):
rightmost_transposed_ndims = tf.identity(rightmost_transposed_ndims)
perm = tf.range(
start=rightmost_transposed_ndims - 1,
limit=-1,
delta=-1,
name='perm')
else: # perm is not None:
perm = tf.convert_to_tensor(value=perm, dtype=np.int32, name='perm')
rightmost_transposed_ndims = tf.size(
input=perm, name='rightmost_transposed_ndims')
rightmost_transposed_ndims_ = tf.get_static_value(
rightmost_transposed_ndims)
with tf.control_dependencies(_maybe_validate_perm(perm, validate_args)):
perm = tf.identity(perm)
# TODO(b/110828604): If bijector base class ever supports dynamic
# `min_event_ndims`, then this class already works dynamically and the
# following five lines can be removed.
if rightmost_transposed_ndims_ is None:
|
tensorflow.convert_to_tensor
| 8,851 |
import tensorflow as tf
def max_pool(self, bottom, name):
return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def conv_layer(self, bottom, name):
with tf.variable_scope(name):
filt = self.get_conv_filter(name)
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name)
bias = tf.nn.bias_add(conv, conv_biases)
relu = tf.nn.relu(bias)
return relu
def fc_layer(self, bottom, name):
with tf.variable_scope(name):
shape = bottom.get_shape().as_list()
dim = 1
for d in shape[1:]:
dim *= d
x = tf.reshape(bottom, [-1, dim])
weights = self.get_fc_weight(name)
biases = self.get_bias(name)
|
tensorflow.nn.relu
| 8,852 |
import tensorflow as tf
-------
A tensor.
"""
if axis < 0:
dims = get_ndim(tensors[0])
if dims:
axis = axis % dims
else:
axis = 0
try:
return tf.concat_v2([x for x in tensors], axis)
except AttributeError:
return tf.concat(axis=axis, values=[x for x in tensors])
def _normalize_axis(axis, ndim):
if isinstance(axis, tuple):
axis = list(axis)
if isinstance(axis, list):
for i, a in enumerate(axis):
if a is not None and a < 0:
axis[i] = a % ndim
else:
if axis is not None and axis < 0:
axis = axis % ndim
|
tensorflow.concat
| 8,853 |
import tensorflow as tf
FLAGS.enable_check_numerics = False
with self.session():
tf.global_variables_initializer().run()
self.assertFalse(has_nan_or_inf.eval())
self.assertEqual(1.0, grad_scale.eval())
# The final gradient must be finite.
self.assertFalse(tf.is_nan(final_var_grads.a[1]).eval())
self.assertTrue(tf.is_finite(final_var_grads.a[1]).eval())
def testScaleGradientsInf(self):
FLAGS.enable_check_numerics = False
p = self.TestParams()
p.input = base_input_generator.BaseSequenceInputGenerator.Params()
|
tensorflow.is_nan
| 8,854 |
import tensorflow as tf
tf.flags.DEFINE_integer('batch_size', 0, 'batch size per compute device')
tf.flags.DEFINE_integer('num_batches', 100,
'number of batches to run, excluding warmup')
tf.flags.DEFINE_integer('num_warmup_batches', None,
'number of batches to run before timing')
tf.flags.DEFINE_integer('autotune_threshold', None,
'The autotune threshold for the models')
tf.flags.DEFINE_integer('num_gpus', 1, 'the number of GPUs to run on')
tf.flags.DEFINE_integer('display_every', 10,
"""Number of local steps after which progress is printed
out""")
tf.flags.DEFINE_string('data_dir', None, """Path to dataset in TFRecord format
(aka Example protobufs). If not specified,
synthetic data will be used.""")
tf.flags.DEFINE_string('data_name', None,
"""Name of dataset: imagenet or flowers.
|
tensorflow.flags.DEFINE_integer
| 8,855 |
import tensorflow as tf
used_var -= (1 - bn_lag) * (used_var - tf.stop_gradient(var))
used_mean /= (1. - bn_lag**(step + 1))
used_var /= (1. - bn_lag**(step + 1))
else:
used_mean, used_var = mean, var
cur_mean, cur_var = used_mean, used_var
# normalize
res = (input_ - used_mean) / tf.sqrt(used_var + epsilon)
# de-normalize
if scale:
res *= gamma
res += beta
# update variables
if train:
|
tensorflow.sqrt
| 8,856 |
import tensorflow as tf
# [batch*n_agents, 1]
self.q_selected = tf.reduce_sum(tf.multiply(self.q_eval, self.a), axis=1)
# ------------------ build mixing_net ------------------
with tf.variable_scope('mixing_net'):
# [batch, n_agents]
self.q_concat = tf.reshape(self.q_selected, [-1, self.n_agents])
self.q_concat_ =tf.reshape(self.q_m_, [-1, self.n_agents])
with tf.variable_scope('eval_hyper'):
self.Q_tot = Qmix_mixer(self.q_concat, self.S, self.num_global_s, self.n_agents, 32)
with tf.variable_scope('target_hyper'):
self.Q_tot_ = Qmix_mixer(self.q_concat_, self.S_, self.num_global_s, self.n_agents, 32)
# with tf.variable_scope('layer_mix_eval'):
# lin1 = tf.matmul(tf.reshape(self.q_concat, shape=[-1, 1, self.n_agents]), self.w1) + tf.reshape(self.b1, shape=[-1, 1, 32])
# a1 = tf.nn.elu(lin1, name='a1')
# self.Q_tot = tf.reshape(tf.matmul(a1, self.w2), shape=[-1, 1]) + self.b2
# with tf.variable_scope('layer_mix_target'):
# lin1_ = tf.matmul(tf.reshape(self.q_concat_, shape=[-1, 1, self.n_agents]), self.w1_) + tf.reshape(self.b1_, shape=[-1, 1, 32])
# a1_ = tf.nn.elu(lin1_, name='a1_')
# self.Q_tot_ = tf.reshape(tf.matmul(a1_, self.w2_), shape=[-1, 1]) + self.b2_
|
tensorflow.variable_scope
| 8,857 |
import tensorflow as tf
def testAttentionDecoder1(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
cell = tf.nn.rnn_cell.GRUCell(2)
inp = [tf.constant(0.5, shape=[2, 2])] * 2
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
for e in enc_outputs])
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
dec, mem = tf.nn.seq2seq.attention_decoder(
dec_inp, enc_state,
attn_states, cell, output_size=4)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].shape)
|
tensorflow.nn.seq2seq.attention_decoder
| 8,858 |
import tensorflow as tf
rnd_pred_cri_in_dim = rnd_pred_cri_in_ph.shape.as_list()[1]
rnd_pred_cri_dropout_mask_generator = DropoutMaskGenerator(rnd_pred_cri_in_dim,
hidden_sizes, model_prob=1.0 - dropout_rate)
rnd_pred_cri_dropout_mask_phs = rnd_pred_cri_dropout_mask_generator.generate_dropout_mask_placeholders()
rnd_pred_cri, rnd_pred_cri_reg = mlp_variational(rnd_pred_cri_in_ph, rnd_pred_cri_dropout_mask_phs,
list(hidden_sizes) + [1],
activation, None, dropout_rate)
rnd_pred_cri = tf.squeeze(rnd_pred_cri, axis=2)
return rnd_targ_act,\
rnd_pred_act, rnd_pred_act_reg, rnd_pred_act_dropout_mask_generator, rnd_pred_act_dropout_mask_phs,\
rnd_targ_cri,\
rnd_pred_cri, rnd_pred_cri_reg, rnd_pred_cri_dropout_mask_generator, rnd_pred_cri_dropout_mask_phs
"""
Actor-Critics
|
tensorflow.squeeze
| 8,859 |
import tensorflow as tf
train_file, task_name)
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", len(train_examples))
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", FLAGS.train_step)
train_input_fn = classifier_utils.file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
|
tensorflow.logging.info
| 8,860 |
from tensorflow.python.client import graph_util
"""Calculates the on-disk weight parameters for BiasAdd."""
bias_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[1])
|
tensorflow.python.client.graph_util.tensor_shape_from_node_def_name
| 8,861 |
import tensorflow as tf
# HACK: inputs to concatenate have to be in list (not tuple) format
# see "tensorflow_core/python/keras/layers/merge.py", line 378
@gin.configurable
def merge_obs_w_ac_layer():
def f(layer_input):
return tf.keras.layers.concatenate(list(layer_input), axis=-1)
return tf.keras.layers.Lambda(f)
@gin.configurable
def extract_observation_layer():
return tf.keras.layers.Lambda(lambda obs: obs['observation'])
|
tensorflow.keras.layers.Lambda
| 8,862 |
import tensorflow as tf
weights, states, attns, initial_weights, samples, initial_context),
parallel_iterations=decoder.parallel_iterations,
swap_memory=decoder.swap_memory)
outputs = outputs.stack()
weights = weights.stack() # batch_size, encoders, output time, input time
states = states.stack()
attns = attns.stack()
samples = samples.stack()
# put batch_size as first dimension
outputs = tf.transpose(outputs, perm=(1, 0, 2))
weights = tf.transpose(weights, perm=(1, 0, 2))
states = tf.transpose(states, perm=(1, 0, 2))
attns = tf.transpose(attns, perm=(1, 0, 2))
samples = tf.transpose(samples)
return outputs, weights, states, attns, samples, get_logits, initial_data
def encoder_decoder(encoders, decoders, encoder_inputs, targets, feed_previous, align_encoder_id=0,
encoder_input_length=None, feed_argmax=True, rewards=None, use_baseline=True,
training=True, global_step=None,
monotonicity_weight=None, monotonicity_dist=None, monotonicity_decay=None, **kwargs):
decoder = decoders[0]
targets = targets[0] # single decoder
|
tensorflow.transpose
| 8,863 |
import tensorflow as tf
out = s(buffers, transitions, training=True)
self.assertEqual(tf.float32, out.dtype)
self.assertEqual((1, embedding_dims), out.shape)
def testSNLIClassifierAndTrainer(self):
with tf.device(self._test_device):
vocab_size = 40
batch_size = 2
d_embed = 10
sequence_length = 15
|
tensorflow.device
| 8,864 |
import tensorflow as tf
horizon_tgt1, horizon_tgt2 = tf.split(horizon_tgt, 2, axis=0)
pred_flat1, pred_flat2 = tf.reshape(horizon_pred1, [-1, 1]), tf.reshape(horizon_pred2, [1, -1])
tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt1, [-1, 1]), tf.reshape(horizon_tgt2, [1, -1])
tgt_dif = tgt_flat1 - tgt_flat2
|
tensorflow.reshape
| 8,865 |
from tensorflow.python.framework import ops
with ops.control_dependencies([total_compute_op, count_compute_op]):
update_op = _safe_div(total, count, 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, mean)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
|
tensorflow.python.framework.ops.add_to_collections
| 8,866 |
import tensorflow as tf
prem_trans = tf.constant(np.array(
[[3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3,
2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2,
3, 2, 2]] * batch_size, dtype=np.int64).T)
hypo = tf.random_uniform(
(sequence_length, batch_size), maxval=vocab_size, dtype=tf.int64)
hypo_trans = tf.constant(np.array(
[[3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3,
|
tensorflow.random_uniform
| 8,867 |
import tensorflow as tf
with tf.name_scope(name):
tt_cores = [None] * num_dims
for i in range(num_dims):
curr_core_shape = (1, shape[0][i], shape[1][i], 1)
tt_cores[i] = tf.ones(curr_core_shape, dtype=dtype)
return TensorTrain(tt_cores, shape, tt_rank)
|
tensorflow.ones
| 8,868 |
import tensorflow as tf
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
|
tensorflow.VarLenFeature
| 8,869 |
import tensorflow as tf
tokens = tf.concat([[self.prepend_token], tokens], 0)
# Optionally append a special token
if self.append_token is not None:
tokens = tf.concat([tokens, [self.append_token]], 0)
sequence[self.tokens_feature_name] = tokens
# Merge context and sequence features
example = {}
|
tensorflow.concat
| 8,870 |
import tensorflow as tf
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small))
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV3(pred, tgt, margin=1.0):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small) + margin)
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV4(pred, tgt):
# 50*50
# Step-wise contrastive loss
even = [2 * i for i in range(25)]
odd = [2 * i + 1 for i in range(25)]
pred1 = tf.gather(pred, even)
pred2 = tf.gather(pred, odd)
tgt1 = tf.gather(tgt, even)
|
tensorflow.where
| 8,871 |
import tensorflow as tf
"""Calculates the per-example cross-entropy loss for a sequence of logits and
masks out all losses passed the sequence length.
Args:
logits: Logits of shape `[T, B, vocab_size]`
targets: Target classes of shape `[T, B]`
sequence_length: An int32 tensor of shape `[B]` corresponding
to the length of each input
Returns:
A tensor of shape [T, B] that contains the loss per example, per time step.
"""
with tf.name_scope("cross_entropy_sequence_loss"):
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets)
loss_mask = tf.sequence_mask(tf.to_int32(sequence_length), tf.to_int32(tf.shape(targets)[0]))
losses = losses * tf.transpose(tf.to_float(loss_mask), [1, 0])
return losses
def dice_loss(predictions, targets, weights=1., name='dice_loss'):
with tf.name_scope(name):
# predictions = tf.to_float(predictions)
targets = tf.to_float(targets)
intersection = 2 * tf.reduce_sum(predictions * targets) + weights
union = weights + tf.reduce_sum(predictions) + tf.reduce_sum(targets)
loss = -(intersection / (union))
return loss
|
tensorflow.to_float
| 8,872 |
import tensorflow as tf
import tensorflow as tf
def make_parallel(model, gpu_count):
def get_slice(data, idx, parts):
shape = tf.shape(data)
size = tf.concat(0, [shape[:1] // parts, shape[1:]])
stride = tf.concat(0, [shape[:1] // parts, shape[1:] * 0])
start = stride * idx
return tf.slice(data, start, size)
outputs_all = []
|
tensorflow.concat
| 8,873 |
from tensorflow.python.framework import ops
@ops.RegisterShape("LogicalOr")
@ops.RegisterShape("Maximum")
@ops.RegisterShape("Minimum")
@ops.RegisterShape("Mod")
@ops.RegisterShape("Mul")
@ops.RegisterShape("NotEqual")
@ops.RegisterShape("Pow")
@ops.RegisterShape("Sub")
def _BroadcastShape(op):
"""Common shape function for binary operators that broadcast their inputs."""
shape_x = op.inputs[0].get_shape()
shape_y = op.inputs[1].get_shape()
|
tensorflow.python.framework.ops.RegisterShape
| 8,874 |
import tensorflow as tf
def data_map(self, img_path):
n_bits = config.model.data.n_bits
n_bins = 2**n_bits
rgb = tf.image.decode_png(tf.read_file(img_path), channels=3, dtype=tf.uint8)
h = config.model.data.dimensions.h
w = config.model.data.dimensions.w
c = config.model.data.dimensions.c
# rgb.set_shape([h,w,c]) # don't set because going to crop anyway
# crop for lsun 96, see realnvp and glow for specifics
rgb = tf.image.random_crop(rgb,size=[h,w,c])
# crop for patch training
crop_h = h//self.crop_factor
crop_w = w//self.crop_factor
rgb = tf.image.random_crop(rgb,size=[crop_h,crop_w,c])
# random left-right flops
rgb = tf.image.random_flip_left_right(rgb)
# cast, bit conversion, compress domain, center
rgb = tf.cast(rgb, tf.float32)
|
tensorflow.image.random_crop
| 8,875 |
import tensorflow as tf
'gpu_memory_fraction', 1., 'GPU memory fraction to use.')
# scaffold related configuration
tf.app.flags.DEFINE_string(
'data_dir', '../Datasets/tfrecords',#'/media/rs/0E06CD1706CD0127/Kapok/Chi/Datasets/tfrecords',
'The directory where the dataset input data is stored.')
tf.app.flags.DEFINE_string(
'dataset_name', '{}_????', 'The pattern of the dataset name to load.')
tf.app.flags.DEFINE_string(
'model_dir', './logs_sext_cpn/',
'The parent directory where the model will be stored.')
tf.app.flags.DEFINE_integer(
'log_every_n_steps', 10,
'The frequency with which logs are print.')
tf.app.flags.DEFINE_integer(
'save_summary_steps', 100,
'The frequency with which summaries are saved, in seconds.')
tf.app.flags.DEFINE_integer(
'save_checkpoints_secs', 3600,
'The frequency with which the model is saved, in seconds.')
# model related configuration
|
tensorflow.app.flags.DEFINE_integer
| 8,876 |
import tensorflow as tf
def deconv3d(x, shape, output_shape, name, bias=False, stride=2, padding='SAME'):
with tf.variable_scope(name):
W = weight_variable(shape)
|
tensorflow.variable_scope
| 8,877 |
import tensorflow as tf
tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif)
pred_posi_dif = tf.where(geq, pred_dif, -pred_dif)
loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif)
cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32)
final_loss = tf.reduce_mean(loss)
return final_loss, cstr_pct
|
tensorflow.math.count_nonzero
| 8,878 |
from tensorflow.python.framework import ops
return self._saved_model_loader_value
def _init_batch_counters(self, *args, **kwargs): # pylint: disable=g-doc-args
"""Overriding this method because Model's implementation creates variables.
These Variables are not needed for TransformFeaturesLayer.
"""
pass
def call(
self, inputs: Mapping[str, common_types.TensorType]
) -> Dict[str, common_types.TensorType]:
if self._exported_as_v1 and not ops.executing_eagerly_outside_functions():
tf.compat.v1.logging.warning('Falling back to transform_raw_features...')
return self._tft_output._transform_raw_features_compat_v1( # pylint: disable=protected-access
inputs,
drop_unused_features=True)
else:
return self._saved_model_loader.apply_transform_model(inputs)
def _make_method_override(name):
@doc_controls.do_not_generate_docs
def method_override(*args, **kwargs):
|
tensorflow.python.framework.ops.executing_eagerly_outside_functions
| 8,879 |
import tensorflow as tf
epsilon = 1e-5
mean, var = tf.nn.moments(x, [1, 2], keep_dims=True)
scale = tf.get_variable('scale',[x.get_shape()[-1]],
initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02))
offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0))
out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset
return out
|
tensorflow.constant_initializer
| 8,880 |
import tensorflow as tf
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
|
tensorflow.FixedLenFeature
| 8,881 |
import tensorflow as tf
unused_indices = tf.reshape(tf.cast(tf.where(tf.equal(block_uses, 0)), tf.int32), [-1])
num_out_blocks = tf.size(unused_indices)
# Select only unused blocks
with tf.variable_scope('select'):
stacked_blocks = tf.stack(cell_inputs + blocks)
out_blocks = tf.gather(stacked_blocks, unused_indices, axis=0)
out_blocks = tf.transpose(out_blocks, (1, 2, 3, 0, 4))
# Combine to constant channels
with tf.variable_scope('combine'):
W = self._make_var('W', (ni, block_ch * block_ch))
W = tf.gather(W, unused_indices, axis=0)
W = tf.reshape(W, (1, 1, num_out_blocks * block_ch, block_ch))
X = tf.reshape(out_blocks, (-1, w, h, num_out_blocks * block_ch))
X = tf.nn.relu(X)
X = tf.nn.conv2d(X, W, (1, 1, 1, 1), padding='SAME')
X = self._add_batch_norm(X, block_ch, is_train=is_train)
return (X, block_ch)
def _add_op(self, cell_inputs, blocks, input_idx, op, w, h, ch, is_reduction=False, is_train=False):
ni = len(cell_inputs + blocks)
inputs = cell_inputs + blocks
op_map = self._get_op_map()
# Just build output for select operation
X = inputs[input_idx]
op_no = OPS[op]
op_method = op_map[op_no]
|
tensorflow.nn.relu
| 8,882 |
import tensorflow as tf
Treats each document (tweet) as a single "word," which is fed through c2v,
and the output "embedding" sized to be a vector of language predictions.
"""
def __init__(self, out_vocab_size=None,
batch_size=10, model_params=None, c2v=None,
max_sequence_len=None,
dropout_keep_prob=None,
weights=None):
self.params = model_params
self._out_vocab_size = out_vocab_size # num. of languages
self.weights = tf.constant(weights, dtype=tf.float32, name='class_weights')
with tf.variable_scope("tweetff"):
hidden = tf.get_variable("ff_hidden",
[c2v.embedding_dims, out_vocab_size])
bias = tf.get_variable('ff_bias', [out_vocab_size])
#probably useless. at least I don't want to use it
self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens')
self.x = tf.placeholder(tf.int32, [batch_size, max_sequence_len],
name='x')
self.y = tf.placeholder(tf.float32, [batch_size, out_vocab_size],
name='y')
|
tensorflow.variable_scope
| 8,883 |
import tensorflow as tf
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
train_examples = None
num_train_steps = None
num_warmup_steps = None
if FLAGS.do_train:
|
tensorflow.contrib.tpu.TPUConfig
| 8,884 |
from tensorflow.python.ops import array_ops
if isinstance(x, ops.IndexedSlices):
return x
x_shape = array_ops.shape(x)
return ops.IndexedSlices(x, range(0, x_shape[0]), x_shape)
|
tensorflow.python.ops.array_ops.shape
| 8,885 |
import tensorflow as tf
pred2 = tf.slice(batch2, [0, 0], [num_sam, 1])
tgt1 = tf.slice(batch1, [0, 1], [num_sam, 1])
tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1])
loss = cur_loss + compute_contra_loss(pred1, pred2, tgt1, tgt2)
|
tensorflow.slice
| 8,886 |
import tensorflow as tf
|
tensorflow.zeros
| 8,887 |
import tensorflow as tf
def spc_tokenize(tokenizer, features, targets):
del targets
tokenized_text = tokenizer.tokenize(features['text'])
features['targets'] = tf.cast(tokenized_text, tf.int64)
features['inputs'] = features['targets']
return features, features['targets']
|
tensorflow.cast
| 8,888 |
import tensorflow as tf
return test_acc, test_loss, summary
def resnet_model_fn(inputs, training):
"""Our model_fn for ResNet to be used with our Estimator."""
network = resnet_model.imagenet_resnet_v2(
resnet_size=18, num_classes=class_num, mode='se', data_format=None)
inputs= network(inputs=inputs, is_training=training)
feat = tf.nn.l2_normalize(inputs, 1, 1e-10, name='feat')
inputs = tf.layers.dense(inputs=inputs, units=class_num)
# inputs = tf.layers.dense(inputs=feat, units=class_num)
inputs = tf.identity(inputs, 'final_dense')
return inputs, feat
# image_size = 32, img_channels = 3, class_num = 10 in cifar10
x = tf.placeholder(tf.float32, shape=[None, image_size, image_size, img_channels])
label = tf.placeholder(tf.float32, shape=[None,])
one_hot_labels = tf.one_hot(indices=tf.cast(label, tf.int32), depth=class_num)
training_flag = tf.placeholder(tf.bool)
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
|
tensorflow.identity
| 8,889 |
import tensorflow as tf
hidden_size = output_layer.shape[-1].value
output_weight = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02)
)
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer()
)
with tf.variable_scope("loss"):
if is_training:
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
output_layer = tf.reshape(output_layer, [-1, hidden_size])
logits = tf.matmul(output_layer, output_weight, transpose_b=True)
|
tensorflow.zeros_initializer
| 8,890 |
import tensorflow as tf
@gin.configurable(module='trax.data', denylist=['dataset', 'training'])
def lm_token_preprocessing(dataset, training):
"""Concatenates inputs, 0, targets, with masking only for targets."""
del training
def concat_and_add_mask(x):
inp = x['inputs']
targets = x['targets']
pad = tf.expand_dims(tf.zeros_like(inp[0]), axis=0)
concat = tf.concat([inp, pad, targets], axis=0)
mask = tf.concat([tf.zeros_like(inp), pad, tf.ones_like(targets)], axis=0)
x['inputs'] = concat
x['targets'] = concat
x['mask'] = mask
return x
dataset = dataset.map(concat_and_add_mask)
return dataset
|
tensorflow.zeros_like
| 8,891 |
import tensorflow as tf
key_vocabulary_filename=key_vocabulary_filename)
if key_vocabulary_filename is not None:
return key_values
key, minus_x_min, x_max = key_values
return (
key,
tf.cast(0 - minus_x_min, output_dtype),
tf.cast(x_max, output_dtype))
def _sum_combine_fn_and_dtype(
input_dtype: tf.DType
) -> Tuple[tf.DType, Callable[[np.ndarray], np.ndarray]]:
output_dtype = _SUM_OUTPUT_DTYPE_MAP.get(input_dtype)
if output_dtype is None:
raise TypeError('Tensor type %r is not supported' % input_dtype)
|
tensorflow.cast
| 8,892 |
import tensorflow as tf
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i])
tf.summary.scalar("regularization_loss", model.regularization_loss)
tf.summary.scalar("stop_token_loss", model.stop_token_loss)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed
if hparams.tacotron_teacher_forcing_mode == "scheduled":
tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing
# ratio decay when mode = "scheduled"
gradient_norms = [tf.norm(grad) for grad in model.gradients]
tf.summary.histogram("gradient_norm", gradient_norms)
tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize
|
tensorflow.summary.scalar
| 8,893 |
from tensorflow.python.ops import variable_scope as vs
r_state = r * state
if self._candidate_linear is None:
with vs.variable_scope("candidate"):
self._candidate_linear = _Linear(
[inputs, r_state],
|
tensorflow.python.ops.variable_scope.variable_scope
| 8,894 |
import tensorflow as tf
src_logits, dst_logits = get_model_logits(src_features, finetune_features,
mode, num_classes,
target_num_classes)
loss, _, _ = get_final_loss(src_logits, src_one_hot_labels, dst_logits,
finetune_one_hot_labels, global_step,
loss_weights, inst_weights)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
src_train_op, _ = get_src_train_op(loss)
with tf.control_dependencies([src_train_op]):
target_avg_pool = get_logits(
target_features, mode, FLAGS.target_dataset, reuse=True)
target_logits = do_cls(
|
tensorflow.get_collection
| 8,895 |
import tensorflow as tf
rnn_output = tf.reshape(tf.concat(outputs, axis=1), [batch_size * rnn_nunroll, rnn_size])
|
tensorflow.concat
| 8,896 |
from tensorflow.python.framework import constant_op
])
expected_out = self._sparse_tensor([['11_X_batch1-FC2-F1'], [
'333_X_batch2-FC2-F1', '333_X_batch2-FC2-F2', '55555_X_batch2-FC2-F1',
'55555_X_batch2-FC2-F2'
]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_integer_mixed_string_dense(self):
"""Tests mixed dense inputs.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
constant_op.constant([[11, 333], [55555, 999999]], dtypes.int64),
constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'],
['batch2-FC2-F1', 'batch2-FC2-F2']],
dtypes.string),
])
expected_out = self._sparse_tensor([[
'11_X_batch1-FC2-F1', '11_X_batch1-FC2-F2', '333_X_batch1-FC2-F1',
'333_X_batch1-FC2-F2'
], [
'55555_X_batch2-FC2-F1', '55555_X_batch2-FC2-F2',
'999999_X_batch2-FC2-F1', '999999_X_batch2-FC2-F2'
]])
|
tensorflow.python.framework.constant_op.constant
| 8,897 |
import tensorflow as tf
filters *= 2
x = common_attention.add_timing_signal_nd(x)
x = tf.layers.conv2d(x, filters, kernel,
activation=common_layers.belu,
strides=(2, 2), padding="SAME")
x = common_layers.layer_norm(x)
else:
x = common_layers.double_discriminator(x)
x = tf.expand_dims(tf.expand_dims(x, axis=1), axis=1)
x = tf.tanh(tf.layers.dense(x, hparams.bottleneck_bits, name="bottleneck"))
d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x)
if hparams.mode == tf.estimator.ModeKeys.TRAIN:
noise = tf.random_uniform(common_layers.shape_list(x))
noise = 2.0 * tf.to_float(tf.less(hparams.bottleneck_noise, noise)) - 1.0
d *= noise
z = tf.layers.dense(d, final_filters, name="unbottleneck")
return layer + z, 0.0
@registry.register_hparams
def next_frame_basic_stochastic():
"""Basic 2-frame conv model with stochastic tower."""
hparams = basic_deterministic_params.next_frame_basic_deterministic()
hparams.stochastic_model = True
hparams.add_hparam("latent_channels", 1)
|
tensorflow.less
| 8,898 |
import tensorflow as tf
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
loss = tf.losses.mean_squared_error(labels, predictions)
train_op = tf.contrib.layers.optimize_loss(
loss = loss,
global_step = tf.train.get_global_step(),
learning_rate = 0.01,
optimizer = "SGD")
eval_metric_ops = {
"rmse": tf.metrics.root_mean_squared_error(labels, predictions)
}
else:
loss = None
train_op = None
eval_metric_ops = None
# 3. Create predictions
|
tensorflow.metrics.root_mean_squared_error
| 8,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.