text
stringlengths 54
260
|
---|
06-07 07:17 - modeling.trainer - INFO - train - iter 86000: loss 3.1414, time 5.09s
|
06-07 07:17 - modeling.trainer - INFO - train - iter 86050: loss 3.1397, time 5.08s
|
06-07 07:17 - modeling.trainer - INFO - train - iter 86100: loss 3.1369, time 5.07s
|
06-07 07:17 - modeling.trainer - INFO - train - iter 86150: loss 3.1333, time 5.08s
|
06-07 07:17 - modeling.trainer - INFO - train - iter 86200: loss 3.1335, time 5.10s
|
06-07 07:17 - modeling.trainer - INFO - train - iter 86250: loss 3.1327, time 5.10s
|
06-07 07:17 - modeling.trainer - INFO - train - iter 86300: loss 3.1419, time 5.09s
|
06-07 07:17 - modeling.trainer - INFO - train - iter 86350: loss 3.1541, time 5.09s
|
06-07 07:17 - modeling.trainer - INFO - train - iter 86400: loss 3.1414, time 5.09s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86450: loss 3.1382, time 5.09s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86500: loss 3.1332, time 5.08s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86550: loss 3.1296, time 5.08s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86600: loss 3.1388, time 5.09s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86650: loss 3.1361, time 5.08s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86700: loss 3.1387, time 5.73s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86750: loss 3.1459, time 5.09s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86800: loss 3.1505, time 5.09s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86850: loss 3.1450, time 5.08s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86900: loss 3.1373, time 5.09s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 86950: loss 3.1387, time 5.09s
|
06-07 07:18 - modeling.trainer - INFO - train - iter 87000: loss 3.1317, time 5.08s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87050: loss 3.1245, time 5.09s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87100: loss 3.1333, time 5.09s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87150: loss 3.1400, time 5.09s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87200: loss 3.1397, time 5.09s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87250: loss 3.1374, time 5.08s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87300: loss 3.1326, time 5.09s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87350: loss 3.1372, time 5.10s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87400: loss 3.1447, time 5.08s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87450: loss 3.1528, time 5.07s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87500: loss 3.1530, time 5.08s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87550: loss 3.1468, time 5.07s
|
06-07 07:19 - modeling.trainer - INFO - train - iter 87600: loss 3.1462, time 5.08s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 87650: loss 3.1456, time 5.07s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 87700: loss 3.1409, time 5.08s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 87750: loss 3.1385, time 5.09s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 87800: loss 3.1378, time 5.08s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 87850: loss 3.1373, time 5.07s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 87900: loss 3.1366, time 5.09s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 87950: loss 3.1389, time 5.08s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 88000: loss 3.1432, time 5.10s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 88050: loss 3.1405, time 5.08s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 88100: loss 3.1328, time 5.08s
|
06-07 07:20 - modeling.trainer - INFO - train - iter 88150: loss 3.1309, time 5.08s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88200: loss 3.1380, time 5.08s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88250: loss 3.1350, time 5.08s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88300: loss 3.1218, time 5.08s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88350: loss 3.1286, time 5.08s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88400: loss 3.1364, time 5.07s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88450: loss 3.1336, time 6.16s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88500: loss 3.1371, time 5.08s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88550: loss 3.1419, time 5.07s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88600: loss 3.1491, time 5.07s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88650: loss 3.1373, time 5.08s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88700: loss 3.1346, time 5.07s
|
06-07 07:21 - modeling.trainer - INFO - train - iter 88750: loss 3.1382, time 5.08s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 88800: loss 3.1326, time 5.07s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 88850: loss 3.1378, time 5.08s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 88900: loss 3.1400, time 5.08s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 88950: loss 3.1437, time 5.08s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 89000: loss 3.1392, time 5.09s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 89050: loss 3.1336, time 5.08s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 89100: loss 3.1346, time 5.08s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 89150: loss 3.1285, time 5.08s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 89200: loss 3.1260, time 5.08s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 89250: loss 3.1319, time 5.07s
|
06-07 07:22 - modeling.trainer - INFO - train - iter 89300: loss 3.1426, time 5.13s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89350: loss 3.1412, time 8.33s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89400: loss 3.1338, time 5.22s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89450: loss 3.1390, time 5.19s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89500: loss 3.1381, time 5.18s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89550: loss 3.1342, time 5.16s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89600: loss 3.1355, time 5.17s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89650: loss 3.1345, time 5.18s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89700: loss 3.1360, time 5.14s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89750: loss 3.1365, time 5.13s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89800: loss 3.1344, time 5.15s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89850: loss 3.1372, time 5.14s
|
06-07 07:23 - modeling.trainer - INFO - train - iter 89900: loss 3.1330, time 5.13s
|
06-07 07:24 - modeling.trainer - INFO - train - iter 89950: loss 3.1276, time 5.12s
|
06-07 07:24 - modeling.trainer - INFO - val - iter 90000: lm_loss 1.5573, value_loss 0.7633, time_loss 0.7075, loss 3.0281, time 4.04s
|
06-07 07:24 - modeling.trainer - INFO - new best val loss 3.0281
|
06-07 07:24 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
|
06-07 07:24 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
|
06-07 07:24 - modeling.trainer - INFO - train - iter 90000: loss 3.1264, time 16.90s
|
06-07 07:24 - modeling.trainer - INFO - train - iter 90050: loss 3.1246, time 5.13s
|
06-07 07:24 - modeling.trainer - INFO - train - iter 90100: loss 3.1343, time 5.13s
|
06-07 07:24 - modeling.trainer - INFO - train - iter 90150: loss 3.1385, time 5.80s
|
06-07 07:24 - modeling.trainer - INFO - train - iter 90200: loss 3.1290, time 5.12s
|
06-07 07:24 - modeling.trainer - INFO - train - iter 90250: loss 3.1313, time 5.11s
|
06-07 07:24 - modeling.trainer - INFO - train - iter 90300: loss 3.1316, time 5.11s
|
06-07 07:24 - modeling.trainer - INFO - train - iter 90350: loss 3.1238, time 5.11s
|
06-07 07:25 - modeling.trainer - INFO - train - iter 90400: loss 3.1268, time 5.12s
|
06-07 07:25 - modeling.trainer - INFO - train - iter 90450: loss 3.1298, time 5.11s
|
06-07 07:25 - modeling.trainer - INFO - train - iter 90500: loss 3.1305, time 5.11s
|
06-07 07:25 - modeling.trainer - INFO - train - iter 90550: loss 3.1284, time 5.12s
|
06-07 07:25 - modeling.trainer - INFO - train - iter 90600: loss 3.1345, time 5.09s
|
06-07 07:25 - modeling.trainer - INFO - train - iter 90650: loss 3.1453, time 5.10s
|
06-07 07:25 - modeling.trainer - INFO - train - iter 90700: loss 3.1408, time 5.12s
|
06-07 07:25 - modeling.trainer - INFO - train - iter 90750: loss 3.1321, time 5.11s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.