text
stringlengths
54
260
06-12 05:20 - modeling.trainer - INFO - train - iter 1995450: loss 2.8311, time 5.21s
06-12 05:20 - modeling.trainer - INFO - train - iter 1995500: loss 2.8228, time 5.18s
06-12 05:20 - modeling.trainer - INFO - train - iter 1995550: loss 2.8206, time 5.20s
06-12 05:20 - modeling.trainer - INFO - train - iter 1995600: loss 2.8283, time 5.17s
06-12 05:21 - modeling.trainer - INFO - train - iter 1995650: loss 2.8347, time 5.19s
06-12 05:21 - modeling.trainer - INFO - train - iter 1995700: loss 2.8401, time 5.17s
06-12 05:21 - modeling.trainer - INFO - train - iter 1995750: loss 2.8352, time 5.18s
06-12 05:21 - modeling.trainer - INFO - train - iter 1995800: loss 2.8207, time 5.19s
06-12 05:21 - modeling.trainer - INFO - train - iter 1995850: loss 2.8236, time 5.18s
06-12 05:21 - modeling.trainer - INFO - train - iter 1995900: loss 2.8199, time 5.18s
06-12 05:21 - modeling.trainer - INFO - train - iter 1995950: loss 2.8201, time 5.18s
06-12 05:21 - modeling.trainer - INFO - train - iter 1996000: loss 2.8313, time 5.19s
06-12 05:21 - modeling.trainer - INFO - train - iter 1996050: loss 2.8418, time 5.19s
06-12 05:21 - modeling.trainer - INFO - train - iter 1996100: loss 2.8388, time 5.20s
06-12 05:21 - modeling.trainer - INFO - train - iter 1996150: loss 2.8263, time 5.18s
06-12 05:21 - modeling.trainer - INFO - train - iter 1996200: loss 2.8319, time 5.18s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996250: loss 2.8306, time 5.16s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996300: loss 2.8271, time 5.17s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996350: loss 2.8316, time 5.16s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996400: loss 2.8311, time 5.18s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996450: loss 2.8319, time 5.18s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996500: loss 2.8321, time 5.18s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996550: loss 2.8330, time 5.18s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996600: loss 2.8355, time 5.20s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996650: loss 2.8349, time 5.20s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996700: loss 2.8370, time 5.18s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996750: loss 2.8353, time 5.18s
06-12 05:22 - modeling.trainer - INFO - train - iter 1996800: loss 2.8318, time 5.18s
06-12 05:23 - modeling.trainer - INFO - train - iter 1996850: loss 2.8298, time 5.81s
06-12 05:23 - modeling.trainer - INFO - train - iter 1996900: loss 2.8284, time 5.19s
06-12 05:23 - modeling.trainer - INFO - train - iter 1996950: loss 2.8352, time 5.19s
06-12 05:23 - modeling.trainer - INFO - train - iter 1997000: loss 2.8301, time 5.18s
06-12 05:23 - modeling.trainer - INFO - train - iter 1997050: loss 2.8230, time 5.19s
06-12 05:23 - modeling.trainer - INFO - train - iter 1997100: loss 2.8252, time 5.18s
06-12 05:23 - modeling.trainer - INFO - train - iter 1997150: loss 2.8277, time 5.18s
06-12 05:23 - modeling.trainer - INFO - train - iter 1997200: loss 2.8316, time 5.19s
06-12 05:23 - modeling.trainer - INFO - train - iter 1997250: loss 2.8360, time 5.20s
06-12 05:23 - modeling.trainer - INFO - train - iter 1997300: loss 2.8341, time 5.19s
06-12 05:23 - modeling.trainer - INFO - train - iter 1997350: loss 2.8271, time 5.19s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997400: loss 2.8386, time 5.20s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997450: loss 2.8336, time 5.18s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997500: loss 2.8246, time 5.17s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997550: loss 2.8290, time 5.19s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997600: loss 2.8283, time 5.17s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997650: loss 2.8359, time 5.16s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997700: loss 2.8366, time 5.18s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997750: loss 2.8227, time 5.24s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997800: loss 2.8237, time 5.21s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997850: loss 2.8298, time 5.17s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997900: loss 2.8352, time 5.21s
06-12 05:24 - modeling.trainer - INFO - train - iter 1997950: loss 2.8349, time 5.21s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998000: loss 2.8263, time 5.18s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998050: loss 2.8222, time 5.17s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998100: loss 2.8279, time 5.17s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998150: loss 2.8405, time 5.16s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998200: loss 2.8314, time 5.15s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998250: loss 2.8228, time 5.20s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998300: loss 2.8356, time 5.18s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998350: loss 2.8421, time 5.16s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998400: loss 2.8403, time 5.15s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998450: loss 2.8373, time 5.15s
06-12 05:25 - modeling.trainer - INFO - train - iter 1998500: loss 2.8277, time 5.15s
06-12 05:26 - modeling.trainer - INFO - train - iter 1998550: loss 2.8205, time 5.16s
06-12 05:26 - modeling.trainer - INFO - train - iter 1998600: loss 2.8241, time 5.80s
06-12 05:26 - modeling.trainer - INFO - train - iter 1998650: loss 2.8386, time 5.16s
06-12 05:26 - modeling.trainer - INFO - train - iter 1998700: loss 2.8402, time 5.17s
06-12 05:26 - modeling.trainer - INFO - train - iter 1998750: loss 2.8360, time 5.18s
06-12 05:26 - modeling.trainer - INFO - train - iter 1998800: loss 2.8439, time 5.17s
06-12 05:26 - modeling.trainer - INFO - train - iter 1998850: loss 2.8440, time 5.17s
06-12 05:26 - modeling.trainer - INFO - train - iter 1998900: loss 2.8317, time 5.17s
06-12 05:26 - modeling.trainer - INFO - train - iter 1998950: loss 2.8327, time 5.17s
06-12 05:26 - modeling.trainer - INFO - train - iter 1999000: loss 2.8298, time 5.16s
06-12 05:26 - modeling.trainer - INFO - train - iter 1999050: loss 2.8222, time 5.17s
06-12 05:26 - modeling.trainer - INFO - train - iter 1999100: loss 2.8257, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999150: loss 2.8257, time 5.19s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999200: loss 2.8305, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999250: loss 2.8292, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999300: loss 2.8275, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999350: loss 2.8313, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999400: loss 2.8298, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999450: loss 2.8309, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999500: loss 2.8306, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999550: loss 2.8212, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999600: loss 2.8150, time 5.18s
06-12 05:27 - modeling.trainer - INFO - train - iter 1999650: loss 2.8276, time 5.18s
06-12 05:28 - modeling.trainer - INFO - train - iter 1999700: loss 2.8372, time 5.19s
06-12 05:28 - modeling.trainer - INFO - train - iter 1999750: loss 2.8366, time 5.18s
06-12 05:28 - modeling.trainer - INFO - train - iter 1999800: loss 2.8393, time 5.18s
06-12 05:28 - modeling.trainer - INFO - train - iter 1999850: loss 2.8433, time 5.19s
06-12 05:28 - modeling.trainer - INFO - train - iter 1999900: loss 2.8424, time 5.18s
06-12 05:28 - modeling.trainer - INFO - train - iter 1999950: loss 2.8283, time 5.19s
06-12 05:28 - modeling.trainer - INFO - val - iter 2000000: lm_loss 1.3535, value_loss 0.7341, time_loss 0.6631, loss 2.7507, time 4.04s
06-12 05:28 - modeling.trainer - INFO - new best val loss 2.7507
06-12 05:28 - modeling.trainer - INFO - saved checkpoint to models/medium/best.pt
06-12 05:28 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 05:28 - modeling.trainer - INFO - train - iter 2000000: loss 2.8247, time 18.04s
06-12 05:28 - modeling.trainer - INFO - training complete! total time 13714.54s
06-12 05:28 - modeling.trainer - INFO - loading best checkpoint from iter 2000000: best_val_loss 2.7507444335896776
06-12 05:28 - modeling.trainer - INFO - test: loss 2.7685, time 7.95s
06-12 05:28 - modeling.trainer - INFO - all done! exiting gracefully...