text
stringlengths 54
260
|
---|
06-12 05:11 - modeling.trainer - INFO - train - iter 1990450: loss 2.8329, time 5.18s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990500: loss 2.8318, time 5.17s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990550: loss 2.8340, time 5.17s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990600: loss 2.8312, time 5.17s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990650: loss 2.8326, time 5.16s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990700: loss 2.8356, time 5.17s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990750: loss 2.8323, time 5.18s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990800: loss 2.8343, time 5.17s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990850: loss 2.8253, time 5.20s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990900: loss 2.8296, time 5.18s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1990950: loss 2.8433, time 5.18s
|
06-12 05:12 - modeling.trainer - INFO - train - iter 1991000: loss 2.8350, time 5.17s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991050: loss 2.8274, time 5.17s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991100: loss 2.8289, time 5.17s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991150: loss 2.8273, time 5.19s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991200: loss 2.8252, time 5.24s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991250: loss 2.8308, time 5.20s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991300: loss 2.8264, time 5.21s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991350: loss 2.8157, time 5.21s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991400: loss 2.8178, time 5.21s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991450: loss 2.8280, time 5.21s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991500: loss 2.8356, time 5.21s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991550: loss 2.8371, time 5.18s
|
06-12 05:13 - modeling.trainer - INFO - train - iter 1991600: loss 2.8417, time 5.89s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1991650: loss 2.8433, time 5.19s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1991700: loss 2.8410, time 5.17s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1991750: loss 2.8421, time 5.19s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1991800: loss 2.8370, time 5.20s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1991850: loss 2.8426, time 5.21s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1991900: loss 2.8380, time 5.20s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1991950: loss 2.8320, time 5.20s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1992000: loss 2.8407, time 5.20s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1992050: loss 2.8345, time 5.20s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1992100: loss 2.8294, time 5.22s
|
06-12 05:14 - modeling.trainer - INFO - train - iter 1992150: loss 2.8328, time 5.20s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992200: loss 2.8294, time 5.19s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992250: loss 2.8265, time 5.20s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992300: loss 2.8344, time 5.20s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992350: loss 2.8344, time 5.19s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992400: loss 2.8290, time 5.21s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992450: loss 2.8337, time 5.18s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992500: loss 2.8326, time 5.19s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992550: loss 2.8354, time 5.19s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992600: loss 2.8388, time 5.20s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992650: loss 2.8348, time 5.20s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992700: loss 2.8314, time 5.21s
|
06-12 05:15 - modeling.trainer - INFO - train - iter 1992750: loss 2.8273, time 5.22s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1992800: loss 2.8313, time 5.21s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1992850: loss 2.8358, time 5.19s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1992900: loss 2.8278, time 5.18s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1992950: loss 2.8264, time 5.19s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1993000: loss 2.8350, time 5.19s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1993050: loss 2.8261, time 5.20s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1993100: loss 2.8233, time 5.19s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1993150: loss 2.8276, time 5.20s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1993200: loss 2.8257, time 5.21s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1993250: loss 2.8233, time 5.24s
|
06-12 05:16 - modeling.trainer - INFO - train - iter 1993300: loss 2.8361, time 5.19s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993350: loss 2.8408, time 5.80s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993400: loss 2.8245, time 5.17s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993450: loss 2.8244, time 5.19s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993500: loss 2.8400, time 5.20s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993550: loss 2.8346, time 5.20s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993600: loss 2.8261, time 5.18s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993650: loss 2.8353, time 5.18s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993700: loss 2.8285, time 5.17s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993750: loss 2.8200, time 5.18s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993800: loss 2.8307, time 5.18s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993850: loss 2.8435, time 5.18s
|
06-12 05:17 - modeling.trainer - INFO - train - iter 1993900: loss 2.8393, time 5.18s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1993950: loss 2.8313, time 5.18s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994000: loss 2.8261, time 5.19s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994050: loss 2.8235, time 5.19s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994100: loss 2.8245, time 5.19s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994150: loss 2.8329, time 5.18s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994200: loss 2.8445, time 5.18s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994250: loss 2.8344, time 5.17s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994300: loss 2.8196, time 5.17s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994350: loss 2.8256, time 5.18s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994400: loss 2.8302, time 5.17s
|
06-12 05:18 - modeling.trainer - INFO - train - iter 1994450: loss 2.8252, time 5.19s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994500: loss 2.8257, time 5.17s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994550: loss 2.8309, time 5.18s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994600: loss 2.8337, time 5.18s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994650: loss 2.8269, time 5.20s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994700: loss 2.8345, time 5.19s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994750: loss 2.8321, time 5.19s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994800: loss 2.8324, time 5.20s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994850: loss 2.8364, time 5.18s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994900: loss 2.8275, time 5.17s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1994950: loss 2.8409, time 5.18s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1995000: loss 2.8409, time 5.17s
|
06-12 05:19 - modeling.trainer - INFO - train - iter 1995050: loss 2.8342, time 5.18s
|
06-12 05:20 - modeling.trainer - INFO - train - iter 1995100: loss 2.8317, time 5.87s
|
06-12 05:20 - modeling.trainer - INFO - train - iter 1995150: loss 2.8255, time 5.18s
|
06-12 05:20 - modeling.trainer - INFO - train - iter 1995200: loss 2.8267, time 5.18s
|
06-12 05:20 - modeling.trainer - INFO - train - iter 1995250: loss 2.8224, time 5.18s
|
06-12 05:20 - modeling.trainer - INFO - train - iter 1995300: loss 2.8276, time 5.19s
|
06-12 05:20 - modeling.trainer - INFO - train - iter 1995350: loss 2.8367, time 5.25s
|
06-12 05:20 - modeling.trainer - INFO - train - iter 1995400: loss 2.8351, time 5.23s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.