text
stringlengths
54
260
06-12 05:03 - modeling.trainer - INFO - train - iter 1985550: loss 2.8319, time 5.20s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985600: loss 2.8292, time 5.20s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985650: loss 2.8388, time 5.19s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985700: loss 2.8385, time 5.19s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985750: loss 2.8278, time 5.19s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985800: loss 2.8260, time 5.19s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985850: loss 2.8248, time 5.20s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985900: loss 2.8383, time 5.21s
06-12 05:04 - modeling.trainer - INFO - train - iter 1985950: loss 2.8388, time 5.19s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986000: loss 2.8281, time 5.20s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986050: loss 2.8256, time 5.22s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986100: loss 2.8313, time 5.21s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986150: loss 2.8368, time 5.19s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986200: loss 2.8303, time 5.19s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986250: loss 2.8218, time 5.19s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986300: loss 2.8185, time 5.20s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986350: loss 2.8305, time 5.20s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986400: loss 2.8428, time 5.99s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986450: loss 2.8383, time 5.20s
06-12 05:04 - modeling.trainer - INFO - train - iter 1986500: loss 2.8254, time 5.22s
06-12 05:05 - modeling.trainer - INFO - train - iter 1986550: loss 2.8278, time 5.20s
06-12 05:05 - modeling.trainer - INFO - train - iter 1986600: loss 2.8346, time 5.21s
06-12 05:05 - modeling.trainer - INFO - train - iter 1986650: loss 2.8338, time 5.18s
06-12 05:05 - modeling.trainer - INFO - train - iter 1986700: loss 2.8333, time 5.18s
06-12 05:05 - modeling.trainer - INFO - train - iter 1986750: loss 2.8263, time 5.20s
06-12 05:05 - modeling.trainer - INFO - train - iter 1986800: loss 2.8247, time 5.19s
06-12 05:05 - modeling.trainer - INFO - train - iter 1986850: loss 2.8337, time 5.19s
06-12 05:05 - modeling.trainer - INFO - train - iter 1986900: loss 2.8367, time 5.17s
06-12 05:05 - modeling.trainer - INFO - train - iter 1986950: loss 2.8353, time 5.19s
06-12 05:05 - modeling.trainer - INFO - train - iter 1987000: loss 2.8331, time 5.19s
06-12 05:05 - modeling.trainer - INFO - train - iter 1987050: loss 2.8311, time 5.18s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987100: loss 2.8303, time 5.17s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987150: loss 2.8278, time 5.19s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987200: loss 2.8296, time 5.19s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987250: loss 2.8295, time 5.19s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987300: loss 2.8281, time 5.19s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987350: loss 2.8285, time 5.20s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987400: loss 2.8350, time 5.19s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987450: loss 2.8274, time 5.19s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987500: loss 2.8108, time 5.18s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987550: loss 2.8211, time 5.19s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987600: loss 2.8407, time 5.20s
06-12 05:06 - modeling.trainer - INFO - train - iter 1987650: loss 2.8425, time 5.18s
06-12 05:07 - modeling.trainer - INFO - train - iter 1987700: loss 2.8388, time 5.19s
06-12 05:07 - modeling.trainer - INFO - train - iter 1987750: loss 2.8388, time 5.18s
06-12 05:07 - modeling.trainer - INFO - train - iter 1987800: loss 2.8299, time 5.19s
06-12 05:07 - modeling.trainer - INFO - train - iter 1987850: loss 2.8364, time 5.17s
06-12 05:07 - modeling.trainer - INFO - train - iter 1987900: loss 2.8390, time 5.18s
06-12 05:07 - modeling.trainer - INFO - train - iter 1987950: loss 2.8213, time 5.19s
06-12 05:07 - modeling.trainer - INFO - train - iter 1988000: loss 2.8217, time 5.19s
06-12 05:07 - modeling.trainer - INFO - train - iter 1988050: loss 2.8327, time 5.22s
06-12 05:07 - modeling.trainer - INFO - train - iter 1988100: loss 2.8386, time 5.18s
06-12 05:07 - modeling.trainer - INFO - train - iter 1988150: loss 2.8413, time 5.88s
06-12 05:07 - modeling.trainer - INFO - train - iter 1988200: loss 2.8331, time 5.19s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988250: loss 2.8357, time 5.20s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988300: loss 2.8383, time 5.18s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988350: loss 2.8334, time 5.17s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988400: loss 2.8347, time 5.19s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988450: loss 2.8283, time 5.21s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988500: loss 2.8241, time 5.17s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988550: loss 2.8242, time 5.18s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988600: loss 2.8200, time 5.19s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988650: loss 2.8230, time 5.18s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988700: loss 2.8218, time 5.21s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988750: loss 2.8235, time 5.17s
06-12 05:08 - modeling.trainer - INFO - train - iter 1988800: loss 2.8281, time 5.18s
06-12 05:09 - modeling.trainer - INFO - train - iter 1988850: loss 2.8310, time 5.18s
06-12 05:09 - modeling.trainer - INFO - train - iter 1988900: loss 2.8380, time 5.19s
06-12 05:09 - modeling.trainer - INFO - train - iter 1988950: loss 2.8397, time 5.18s
06-12 05:09 - modeling.trainer - INFO - train - iter 1989000: loss 2.8357, time 5.18s
06-12 05:09 - modeling.trainer - INFO - train - iter 1989050: loss 2.8334, time 5.19s
06-12 05:09 - modeling.trainer - INFO - train - iter 1989100: loss 2.8298, time 5.17s
06-12 05:09 - modeling.trainer - INFO - train - iter 1989150: loss 2.8244, time 5.18s
06-12 05:09 - modeling.trainer - INFO - train - iter 1989200: loss 2.8337, time 5.18s
06-12 05:09 - modeling.trainer - INFO - train - iter 1989250: loss 2.8465, time 5.18s
06-12 05:09 - modeling.trainer - INFO - train - iter 1989300: loss 2.8467, time 5.18s
06-12 05:09 - modeling.trainer - INFO - train - iter 1989350: loss 2.8421, time 5.17s
06-12 05:09 - modeling.trainer - INFO - train - iter 1989400: loss 2.8406, time 5.17s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989450: loss 2.8344, time 5.18s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989500: loss 2.8270, time 5.17s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989550: loss 2.8343, time 5.20s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989600: loss 2.8399, time 5.18s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989650: loss 2.8337, time 5.19s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989700: loss 2.8294, time 5.19s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989750: loss 2.8215, time 5.20s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989800: loss 2.8240, time 5.20s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989850: loss 2.8368, time 5.19s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989900: loss 2.8325, time 5.84s
06-12 05:10 - modeling.trainer - INFO - train - iter 1989950: loss 2.8266, time 5.19s
06-12 05:11 - modeling.trainer - INFO - val - iter 1990000: lm_loss 1.3538, value_loss 0.7354, time_loss 0.6633, loss 2.7525, time 4.62s
06-12 05:11 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 05:11 - modeling.trainer - INFO - train - iter 1990000: loss 2.8319, time 14.18s
06-12 05:11 - modeling.trainer - INFO - train - iter 1990050: loss 2.8311, time 5.20s
06-12 05:11 - modeling.trainer - INFO - train - iter 1990100: loss 2.8287, time 5.18s
06-12 05:11 - modeling.trainer - INFO - train - iter 1990150: loss 2.8204, time 5.18s
06-12 05:11 - modeling.trainer - INFO - train - iter 1990200: loss 2.8213, time 5.20s
06-12 05:11 - modeling.trainer - INFO - train - iter 1990250: loss 2.8326, time 5.20s
06-12 05:11 - modeling.trainer - INFO - train - iter 1990300: loss 2.8325, time 5.17s
06-12 05:11 - modeling.trainer - INFO - train - iter 1990350: loss 2.8398, time 5.18s
06-12 05:11 - modeling.trainer - INFO - train - iter 1990400: loss 2.8409, time 5.18s