text
stringlengths
54
260
06-12 04:45 - modeling.trainer - INFO - train - iter 1975650: loss 2.8126, time 5.20s
06-12 04:46 - modeling.trainer - INFO - train - iter 1975700: loss 2.8322, time 5.20s
06-12 04:46 - modeling.trainer - INFO - train - iter 1975750: loss 2.8425, time 5.21s
06-12 04:46 - modeling.trainer - INFO - train - iter 1975800: loss 2.8242, time 5.21s
06-12 04:46 - modeling.trainer - INFO - train - iter 1975850: loss 2.8165, time 5.23s
06-12 04:46 - modeling.trainer - INFO - train - iter 1975900: loss 2.8170, time 5.20s
06-12 04:46 - modeling.trainer - INFO - train - iter 1975950: loss 2.8225, time 5.20s
06-12 04:46 - modeling.trainer - INFO - train - iter 1976000: loss 2.8383, time 5.97s
06-12 04:46 - modeling.trainer - INFO - train - iter 1976050: loss 2.8432, time 5.22s
06-12 04:46 - modeling.trainer - INFO - train - iter 1976100: loss 2.8281, time 5.21s
06-12 04:46 - modeling.trainer - INFO - train - iter 1976150: loss 2.8202, time 5.22s
06-12 04:46 - modeling.trainer - INFO - train - iter 1976200: loss 2.8186, time 5.21s
06-12 04:46 - modeling.trainer - INFO - train - iter 1976250: loss 2.8217, time 5.22s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976300: loss 2.8353, time 5.22s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976350: loss 2.8342, time 5.23s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976400: loss 2.8321, time 5.22s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976450: loss 2.8372, time 5.22s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976500: loss 2.8335, time 5.26s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976550: loss 2.8337, time 5.23s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976600: loss 2.8307, time 5.20s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976650: loss 2.8294, time 5.18s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976700: loss 2.8291, time 5.18s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976750: loss 2.8283, time 5.19s
06-12 04:47 - modeling.trainer - INFO - train - iter 1976800: loss 2.8426, time 5.19s
06-12 04:48 - modeling.trainer - INFO - train - iter 1976850: loss 2.8415, time 5.18s
06-12 04:48 - modeling.trainer - INFO - train - iter 1976900: loss 2.8425, time 5.18s
06-12 04:48 - modeling.trainer - INFO - train - iter 1976950: loss 2.8439, time 5.19s
06-12 04:48 - modeling.trainer - INFO - train - iter 1977000: loss 2.8346, time 5.20s
06-12 04:48 - modeling.trainer - INFO - train - iter 1977050: loss 2.8318, time 5.23s
06-12 04:48 - modeling.trainer - INFO - train - iter 1977100: loss 2.8298, time 5.20s
06-12 04:48 - modeling.trainer - INFO - train - iter 1977150: loss 2.8352, time 5.22s
06-12 04:48 - modeling.trainer - INFO - train - iter 1977200: loss 2.8379, time 5.21s
06-12 04:48 - modeling.trainer - INFO - train - iter 1977250: loss 2.8337, time 5.19s
06-12 04:48 - modeling.trainer - INFO - train - iter 1977300: loss 2.8309, time 5.19s
06-12 04:48 - modeling.trainer - INFO - train - iter 1977350: loss 2.8322, time 5.20s
06-12 04:48 - modeling.trainer - INFO - train - iter 1977400: loss 2.8338, time 5.21s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977450: loss 2.8226, time 5.18s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977500: loss 2.8175, time 5.19s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977550: loss 2.8237, time 5.20s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977600: loss 2.8238, time 5.19s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977650: loss 2.8224, time 5.19s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977700: loss 2.8288, time 5.19s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977750: loss 2.8365, time 5.82s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977800: loss 2.8377, time 5.21s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977850: loss 2.8267, time 5.26s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977900: loss 2.8191, time 5.23s
06-12 04:49 - modeling.trainer - INFO - train - iter 1977950: loss 2.8308, time 5.20s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978000: loss 2.8444, time 5.19s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978050: loss 2.8375, time 5.19s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978100: loss 2.8274, time 5.21s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978150: loss 2.8339, time 5.19s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978200: loss 2.8395, time 5.19s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978250: loss 2.8332, time 5.20s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978300: loss 2.8323, time 5.21s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978350: loss 2.8362, time 5.19s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978400: loss 2.8236, time 5.20s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978450: loss 2.8191, time 5.20s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978500: loss 2.8301, time 5.20s
06-12 04:50 - modeling.trainer - INFO - train - iter 1978550: loss 2.8299, time 5.21s
06-12 04:51 - modeling.trainer - INFO - train - iter 1978600: loss 2.8222, time 5.21s
06-12 04:51 - modeling.trainer - INFO - train - iter 1978650: loss 2.8165, time 5.22s
06-12 04:51 - modeling.trainer - INFO - train - iter 1978700: loss 2.8241, time 5.20s
06-12 04:51 - modeling.trainer - INFO - train - iter 1978750: loss 2.8318, time 5.20s
06-12 04:51 - modeling.trainer - INFO - train - iter 1978800: loss 2.8357, time 5.20s
06-12 04:51 - modeling.trainer - INFO - train - iter 1978850: loss 2.8382, time 5.21s
06-12 04:51 - modeling.trainer - INFO - train - iter 1978900: loss 2.8298, time 5.19s
06-12 04:51 - modeling.trainer - INFO - train - iter 1978950: loss 2.8245, time 5.19s
06-12 04:51 - modeling.trainer - INFO - train - iter 1979000: loss 2.8223, time 5.20s
06-12 04:51 - modeling.trainer - INFO - train - iter 1979050: loss 2.8283, time 5.19s
06-12 04:51 - modeling.trainer - INFO - train - iter 1979100: loss 2.8361, time 5.20s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979150: loss 2.8368, time 5.21s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979200: loss 2.8369, time 5.19s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979250: loss 2.8274, time 5.19s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979300: loss 2.8313, time 5.19s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979350: loss 2.8351, time 5.18s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979400: loss 2.8215, time 5.18s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979450: loss 2.8198, time 5.84s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979500: loss 2.8166, time 5.20s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979550: loss 2.8201, time 5.22s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979600: loss 2.8344, time 5.23s
06-12 04:52 - modeling.trainer - INFO - train - iter 1979650: loss 2.8363, time 5.21s
06-12 04:53 - modeling.trainer - INFO - train - iter 1979700: loss 2.8359, time 5.22s
06-12 04:53 - modeling.trainer - INFO - train - iter 1979750: loss 2.8344, time 5.21s
06-12 04:53 - modeling.trainer - INFO - train - iter 1979800: loss 2.8331, time 5.19s
06-12 04:53 - modeling.trainer - INFO - train - iter 1979850: loss 2.8325, time 5.21s
06-12 04:53 - modeling.trainer - INFO - train - iter 1979900: loss 2.8277, time 5.20s
06-12 04:53 - modeling.trainer - INFO - train - iter 1979950: loss 2.8311, time 5.18s
06-12 04:53 - modeling.trainer - INFO - val - iter 1980000: lm_loss 1.3537, value_loss 0.7347, time_loss 0.6631, loss 2.7516, time 4.51s
06-12 04:53 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 04:53 - modeling.trainer - INFO - train - iter 1980000: loss 2.8342, time 13.57s
06-12 04:53 - modeling.trainer - INFO - train - iter 1980050: loss 2.8361, time 5.20s
06-12 04:53 - modeling.trainer - INFO - train - iter 1980100: loss 2.8371, time 5.21s
06-12 04:53 - modeling.trainer - INFO - train - iter 1980150: loss 2.8329, time 5.18s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980200: loss 2.8309, time 5.17s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980250: loss 2.8311, time 5.18s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980300: loss 2.8314, time 5.20s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980350: loss 2.8313, time 5.18s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980400: loss 2.8417, time 5.19s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980450: loss 2.8457, time 5.20s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980500: loss 2.8362, time 5.19s