text
stringlengths
54
260
06-12 04:54 - modeling.trainer - INFO - train - iter 1980550: loss 2.8263, time 5.22s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980600: loss 2.8191, time 5.20s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980650: loss 2.8286, time 5.21s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980700: loss 2.8312, time 5.22s
06-12 04:54 - modeling.trainer - INFO - train - iter 1980750: loss 2.8270, time 5.20s
06-12 04:55 - modeling.trainer - INFO - train - iter 1980800: loss 2.8267, time 5.19s
06-12 04:55 - modeling.trainer - INFO - train - iter 1980850: loss 2.8276, time 5.20s
06-12 04:55 - modeling.trainer - INFO - train - iter 1980900: loss 2.8381, time 5.20s
06-12 04:55 - modeling.trainer - INFO - train - iter 1980950: loss 2.8394, time 5.21s
06-12 04:55 - modeling.trainer - INFO - train - iter 1981000: loss 2.8299, time 5.19s
06-12 04:55 - modeling.trainer - INFO - train - iter 1981050: loss 2.8285, time 5.20s
06-12 04:55 - modeling.trainer - INFO - train - iter 1981100: loss 2.8271, time 5.23s
06-12 04:55 - modeling.trainer - INFO - train - iter 1981150: loss 2.8267, time 5.20s
06-12 04:55 - modeling.trainer - INFO - train - iter 1981200: loss 2.8304, time 6.02s
06-12 04:55 - modeling.trainer - INFO - train - iter 1981250: loss 2.8347, time 5.21s
06-12 04:55 - modeling.trainer - INFO - train - iter 1981300: loss 2.8428, time 5.20s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981350: loss 2.8423, time 5.21s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981400: loss 2.8288, time 5.19s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981450: loss 2.8225, time 5.20s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981500: loss 2.8309, time 5.21s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981550: loss 2.8364, time 5.20s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981600: loss 2.8314, time 5.20s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981650: loss 2.8295, time 5.20s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981700: loss 2.8302, time 5.22s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981750: loss 2.8306, time 5.20s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981800: loss 2.8386, time 5.22s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981850: loss 2.8409, time 5.21s
06-12 04:56 - modeling.trainer - INFO - train - iter 1981900: loss 2.8298, time 5.20s
06-12 04:57 - modeling.trainer - INFO - train - iter 1981950: loss 2.8179, time 5.20s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982000: loss 2.8217, time 5.21s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982050: loss 2.8375, time 5.20s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982100: loss 2.8381, time 5.19s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982150: loss 2.8369, time 5.21s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982200: loss 2.8427, time 5.21s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982250: loss 2.8316, time 5.21s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982300: loss 2.8219, time 5.21s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982350: loss 2.8329, time 5.20s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982400: loss 2.8456, time 5.20s
06-12 04:57 - modeling.trainer - INFO - train - iter 1982450: loss 2.8413, time 5.21s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982500: loss 2.8310, time 5.20s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982550: loss 2.8407, time 5.20s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982600: loss 2.8389, time 5.20s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982650: loss 2.8227, time 5.23s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982700: loss 2.8321, time 5.19s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982750: loss 2.8268, time 5.18s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982800: loss 2.8178, time 5.20s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982850: loss 2.8224, time 5.19s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982900: loss 2.8187, time 5.83s
06-12 04:58 - modeling.trainer - INFO - train - iter 1982950: loss 2.8271, time 5.19s
06-12 04:58 - modeling.trainer - INFO - train - iter 1983000: loss 2.8331, time 5.19s
06-12 04:58 - modeling.trainer - INFO - train - iter 1983050: loss 2.8293, time 5.19s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983100: loss 2.8280, time 5.30s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983150: loss 2.8278, time 5.19s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983200: loss 2.8244, time 5.19s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983250: loss 2.8199, time 5.19s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983300: loss 2.8358, time 5.18s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983350: loss 2.8452, time 5.18s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983400: loss 2.8424, time 5.19s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983450: loss 2.8318, time 5.19s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983500: loss 2.8276, time 5.17s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983550: loss 2.8306, time 5.17s
06-12 04:59 - modeling.trainer - INFO - train - iter 1983600: loss 2.8226, time 5.21s
06-12 05:00 - modeling.trainer - INFO - train - iter 1983650: loss 2.8237, time 5.18s
06-12 05:00 - modeling.trainer - INFO - train - iter 1983700: loss 2.8260, time 5.19s
06-12 05:00 - modeling.trainer - INFO - train - iter 1983750: loss 2.8251, time 5.18s
06-12 05:00 - modeling.trainer - INFO - train - iter 1983800: loss 2.8311, time 5.18s
06-12 05:00 - modeling.trainer - INFO - train - iter 1983850: loss 2.8348, time 5.19s
06-12 05:00 - modeling.trainer - INFO - train - iter 1983900: loss 2.8329, time 5.19s
06-12 05:00 - modeling.trainer - INFO - train - iter 1983950: loss 2.8335, time 5.18s
06-12 05:00 - modeling.trainer - INFO - train - iter 1984000: loss 2.8345, time 5.19s
06-12 05:00 - modeling.trainer - INFO - train - iter 1984050: loss 2.8302, time 5.21s
06-12 05:00 - modeling.trainer - INFO - train - iter 1984100: loss 2.8264, time 5.23s
06-12 05:00 - modeling.trainer - INFO - train - iter 1984150: loss 2.8265, time 5.21s
06-12 05:00 - modeling.trainer - INFO - train - iter 1984200: loss 2.8276, time 5.21s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984250: loss 2.8318, time 5.19s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984300: loss 2.8220, time 5.21s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984350: loss 2.8166, time 5.21s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984400: loss 2.8356, time 5.20s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984450: loss 2.8332, time 5.21s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984500: loss 2.8268, time 5.20s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984550: loss 2.8275, time 5.20s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984600: loss 2.8250, time 5.20s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984650: loss 2.8344, time 5.20s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984700: loss 2.8349, time 5.87s
06-12 05:01 - modeling.trainer - INFO - train - iter 1984750: loss 2.8330, time 5.19s
06-12 05:02 - modeling.trainer - INFO - train - iter 1984800: loss 2.8310, time 5.19s
06-12 05:02 - modeling.trainer - INFO - train - iter 1984850: loss 2.8298, time 5.19s
06-12 05:02 - modeling.trainer - INFO - train - iter 1984900: loss 2.8282, time 5.21s
06-12 05:02 - modeling.trainer - INFO - train - iter 1984950: loss 2.8286, time 5.20s
06-12 05:02 - modeling.trainer - INFO - train - iter 1985000: loss 2.8367, time 5.18s
06-12 05:02 - modeling.trainer - INFO - train - iter 1985050: loss 2.8412, time 5.19s
06-12 05:02 - modeling.trainer - INFO - train - iter 1985100: loss 2.8315, time 5.19s
06-12 05:02 - modeling.trainer - INFO - train - iter 1985150: loss 2.8233, time 5.18s
06-12 05:02 - modeling.trainer - INFO - train - iter 1985200: loss 2.8197, time 5.18s
06-12 05:02 - modeling.trainer - INFO - train - iter 1985250: loss 2.8296, time 5.19s
06-12 05:02 - modeling.trainer - INFO - train - iter 1985300: loss 2.8385, time 5.22s
06-12 05:02 - modeling.trainer - INFO - train - iter 1985350: loss 2.8330, time 5.19s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985400: loss 2.8330, time 5.19s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985450: loss 2.8354, time 5.20s
06-12 05:03 - modeling.trainer - INFO - train - iter 1985500: loss 2.8363, time 5.18s