text
stringlengths 54
260
|
---|
06-12 04:28 - modeling.trainer - INFO - train - iter 1965750: loss 2.8297, time 5.22s
|
06-12 04:28 - modeling.trainer - INFO - train - iter 1965800: loss 2.8350, time 5.22s
|
06-12 04:28 - modeling.trainer - INFO - train - iter 1965850: loss 2.8363, time 5.21s
|
06-12 04:28 - modeling.trainer - INFO - train - iter 1965900: loss 2.8370, time 5.24s
|
06-12 04:28 - modeling.trainer - INFO - train - iter 1965950: loss 2.8360, time 5.23s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966000: loss 2.8375, time 5.22s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966050: loss 2.8309, time 5.21s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966100: loss 2.8213, time 5.22s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966150: loss 2.8247, time 5.25s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966200: loss 2.8319, time 5.19s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966250: loss 2.8370, time 5.21s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966300: loss 2.8442, time 5.20s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966350: loss 2.8382, time 5.20s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966400: loss 2.8299, time 5.19s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966450: loss 2.8333, time 5.19s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966500: loss 2.8371, time 5.21s
|
06-12 04:29 - modeling.trainer - INFO - train - iter 1966550: loss 2.8360, time 5.21s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1966600: loss 2.8431, time 5.19s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1966650: loss 2.8414, time 5.20s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1966700: loss 2.8281, time 5.23s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1966750: loss 2.8298, time 5.21s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1966800: loss 2.8334, time 5.21s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1966850: loss 2.8361, time 5.19s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1966900: loss 2.8387, time 5.19s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1966950: loss 2.8339, time 5.20s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1967000: loss 2.8385, time 5.19s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1967050: loss 2.8364, time 5.21s
|
06-12 04:30 - modeling.trainer - INFO - train - iter 1967100: loss 2.8304, time 5.19s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967150: loss 2.8275, time 5.21s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967200: loss 2.8329, time 5.20s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967250: loss 2.8373, time 5.21s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967300: loss 2.8369, time 5.87s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967350: loss 2.8388, time 5.20s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967400: loss 2.8378, time 5.20s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967450: loss 2.8395, time 5.19s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967500: loss 2.8428, time 5.20s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967550: loss 2.8377, time 5.20s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967600: loss 2.8265, time 5.20s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967650: loss 2.8352, time 5.21s
|
06-12 04:31 - modeling.trainer - INFO - train - iter 1967700: loss 2.8383, time 5.19s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1967750: loss 2.8301, time 5.19s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1967800: loss 2.8281, time 5.20s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1967850: loss 2.8240, time 5.20s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1967900: loss 2.8287, time 5.19s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1967950: loss 2.8332, time 5.20s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1968000: loss 2.8304, time 5.21s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1968050: loss 2.8310, time 5.19s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1968100: loss 2.8261, time 5.20s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1968150: loss 2.8323, time 5.20s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1968200: loss 2.8336, time 5.20s
|
06-12 04:32 - modeling.trainer - INFO - train - iter 1968250: loss 2.8235, time 5.19s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968300: loss 2.8286, time 5.21s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968350: loss 2.8280, time 5.20s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968400: loss 2.8258, time 5.20s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968450: loss 2.8348, time 5.21s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968500: loss 2.8335, time 5.19s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968550: loss 2.8204, time 5.20s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968600: loss 2.8227, time 5.19s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968650: loss 2.8270, time 5.18s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968700: loss 2.8274, time 5.19s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968750: loss 2.8294, time 5.19s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968800: loss 2.8301, time 5.22s
|
06-12 04:33 - modeling.trainer - INFO - train - iter 1968850: loss 2.8384, time 5.22s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1968900: loss 2.8435, time 5.20s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1968950: loss 2.8387, time 5.35s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1969000: loss 2.8315, time 5.90s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1969050: loss 2.8239, time 5.24s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1969100: loss 2.8231, time 5.19s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1969150: loss 2.8310, time 5.19s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1969200: loss 2.8367, time 5.19s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1969250: loss 2.8373, time 5.18s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1969300: loss 2.8367, time 5.19s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1969350: loss 2.8302, time 5.20s
|
06-12 04:34 - modeling.trainer - INFO - train - iter 1969400: loss 2.8294, time 5.20s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969450: loss 2.8411, time 5.20s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969500: loss 2.8352, time 5.20s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969550: loss 2.8290, time 5.22s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969600: loss 2.8321, time 5.19s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969650: loss 2.8431, time 5.20s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969700: loss 2.8492, time 5.19s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969750: loss 2.8396, time 5.19s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969800: loss 2.8379, time 5.19s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969850: loss 2.8395, time 5.19s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969900: loss 2.8373, time 5.19s
|
06-12 04:35 - modeling.trainer - INFO - train - iter 1969950: loss 2.8306, time 5.19s
|
06-12 04:36 - modeling.trainer - INFO - val - iter 1970000: lm_loss 1.3539, value_loss 0.7345, time_loss 0.6632, loss 2.7516, time 4.55s
|
06-12 04:36 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970000: loss 2.8337, time 13.60s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970050: loss 2.8353, time 5.19s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970100: loss 2.8351, time 5.19s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970150: loss 2.8334, time 5.19s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970200: loss 2.8286, time 5.20s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970250: loss 2.8334, time 5.19s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970300: loss 2.8321, time 5.20s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970350: loss 2.8278, time 5.20s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970400: loss 2.8293, time 5.21s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970450: loss 2.8360, time 5.19s
|
06-12 04:36 - modeling.trainer - INFO - train - iter 1970500: loss 2.8400, time 5.22s
|
06-12 04:37 - modeling.trainer - INFO - train - iter 1970550: loss 2.8385, time 5.21s
|
06-12 04:37 - modeling.trainer - INFO - train - iter 1970600: loss 2.8345, time 5.25s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.