text
stringlengths
54
260
06-12 04:19 - modeling.trainer - INFO - train - iter 1960750: loss 2.8238, time 5.21s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960800: loss 2.8299, time 5.22s
06-12 04:20 - modeling.trainer - INFO - train - iter 1960850: loss 2.8328, time 5.22s
06-12 04:20 - modeling.trainer - INFO - train - iter 1960900: loss 2.8307, time 5.22s
06-12 04:20 - modeling.trainer - INFO - train - iter 1960950: loss 2.8303, time 5.22s
06-12 04:20 - modeling.trainer - INFO - train - iter 1961000: loss 2.8321, time 5.22s
06-12 04:20 - modeling.trainer - INFO - train - iter 1961050: loss 2.8351, time 5.22s
06-12 04:20 - modeling.trainer - INFO - train - iter 1961100: loss 2.8401, time 5.21s
06-12 04:20 - modeling.trainer - INFO - train - iter 1961150: loss 2.8360, time 5.23s
06-12 04:20 - modeling.trainer - INFO - train - iter 1961200: loss 2.8293, time 5.21s
06-12 04:20 - modeling.trainer - INFO - train - iter 1961250: loss 2.8345, time 5.23s
06-12 04:20 - modeling.trainer - INFO - train - iter 1961300: loss 2.8287, time 5.22s
06-12 04:20 - modeling.trainer - INFO - train - iter 1961350: loss 2.8271, time 5.21s
06-12 04:20 - modeling.trainer - INFO - train - iter 1961400: loss 2.8390, time 5.20s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961450: loss 2.8370, time 5.23s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961500: loss 2.8316, time 5.25s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961550: loss 2.8364, time 5.25s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961600: loss 2.8391, time 5.19s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961650: loss 2.8403, time 5.20s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961700: loss 2.8403, time 5.18s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961750: loss 2.8330, time 5.18s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961800: loss 2.8301, time 5.19s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961850: loss 2.8329, time 5.19s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961900: loss 2.8373, time 5.19s
06-12 04:21 - modeling.trainer - INFO - train - iter 1961950: loss 2.8411, time 5.24s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962000: loss 2.8375, time 5.21s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962050: loss 2.8322, time 5.93s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962100: loss 2.8347, time 5.22s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962150: loss 2.8400, time 5.20s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962200: loss 2.8438, time 5.20s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962250: loss 2.8394, time 5.21s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962300: loss 2.8393, time 5.20s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962350: loss 2.8365, time 5.21s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962400: loss 2.8372, time 5.20s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962450: loss 2.8461, time 5.21s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962500: loss 2.8393, time 5.20s
06-12 04:22 - modeling.trainer - INFO - train - iter 1962550: loss 2.8234, time 5.21s
06-12 04:23 - modeling.trainer - INFO - train - iter 1962600: loss 2.8232, time 5.19s
06-12 04:23 - modeling.trainer - INFO - train - iter 1962650: loss 2.8273, time 5.19s
06-12 04:23 - modeling.trainer - INFO - train - iter 1962700: loss 2.8366, time 5.19s
06-12 04:23 - modeling.trainer - INFO - train - iter 1962750: loss 2.8384, time 5.20s
06-12 04:23 - modeling.trainer - INFO - train - iter 1962800: loss 2.8292, time 5.20s
06-12 04:23 - modeling.trainer - INFO - train - iter 1962850: loss 2.8372, time 5.21s
06-12 04:23 - modeling.trainer - INFO - train - iter 1962900: loss 2.8320, time 5.21s
06-12 04:23 - modeling.trainer - INFO - train - iter 1962950: loss 2.8220, time 5.20s
06-12 04:23 - modeling.trainer - INFO - train - iter 1963000: loss 2.8285, time 5.23s
06-12 04:23 - modeling.trainer - INFO - train - iter 1963050: loss 2.8357, time 5.22s
06-12 04:23 - modeling.trainer - INFO - train - iter 1963100: loss 2.8325, time 5.22s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963150: loss 2.8205, time 5.24s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963200: loss 2.8252, time 5.23s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963250: loss 2.8338, time 5.20s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963300: loss 2.8297, time 5.22s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963350: loss 2.8357, time 5.22s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963400: loss 2.8284, time 5.20s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963450: loss 2.8188, time 5.21s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963500: loss 2.8259, time 5.20s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963550: loss 2.8343, time 5.21s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963600: loss 2.8378, time 5.21s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963650: loss 2.8360, time 5.23s
06-12 04:24 - modeling.trainer - INFO - train - iter 1963700: loss 2.8306, time 5.22s
06-12 04:25 - modeling.trainer - INFO - train - iter 1963750: loss 2.8244, time 5.23s
06-12 04:25 - modeling.trainer - INFO - train - iter 1963800: loss 2.8239, time 5.94s
06-12 04:25 - modeling.trainer - INFO - train - iter 1963850: loss 2.8297, time 5.22s
06-12 04:25 - modeling.trainer - INFO - train - iter 1963900: loss 2.8269, time 5.20s
06-12 04:25 - modeling.trainer - INFO - train - iter 1963950: loss 2.8260, time 5.25s
06-12 04:25 - modeling.trainer - INFO - train - iter 1964000: loss 2.8347, time 5.22s
06-12 04:25 - modeling.trainer - INFO - train - iter 1964050: loss 2.8402, time 5.21s
06-12 04:25 - modeling.trainer - INFO - train - iter 1964100: loss 2.8417, time 5.22s
06-12 04:25 - modeling.trainer - INFO - train - iter 1964150: loss 2.8371, time 5.23s
06-12 04:25 - modeling.trainer - INFO - train - iter 1964200: loss 2.8249, time 5.25s
06-12 04:25 - modeling.trainer - INFO - train - iter 1964250: loss 2.8242, time 5.22s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964300: loss 2.8392, time 5.22s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964350: loss 2.8372, time 5.22s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964400: loss 2.8277, time 5.22s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964450: loss 2.8221, time 5.20s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964500: loss 2.8248, time 5.21s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964550: loss 2.8374, time 5.21s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964600: loss 2.8313, time 5.22s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964650: loss 2.8266, time 5.22s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964700: loss 2.8313, time 5.20s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964750: loss 2.8295, time 5.20s
06-12 04:26 - modeling.trainer - INFO - train - iter 1964800: loss 2.8247, time 5.23s
06-12 04:27 - modeling.trainer - INFO - train - iter 1964850: loss 2.8198, time 5.21s
06-12 04:27 - modeling.trainer - INFO - train - iter 1964900: loss 2.8268, time 5.20s
06-12 04:27 - modeling.trainer - INFO - train - iter 1964950: loss 2.8268, time 5.23s
06-12 04:27 - modeling.trainer - INFO - train - iter 1965000: loss 2.8246, time 5.19s
06-12 04:27 - modeling.trainer - INFO - train - iter 1965050: loss 2.8334, time 5.19s
06-12 04:27 - modeling.trainer - INFO - train - iter 1965100: loss 2.8311, time 5.18s
06-12 04:27 - modeling.trainer - INFO - train - iter 1965150: loss 2.8263, time 5.19s
06-12 04:27 - modeling.trainer - INFO - train - iter 1965200: loss 2.8180, time 5.19s
06-12 04:27 - modeling.trainer - INFO - train - iter 1965250: loss 2.8218, time 5.20s
06-12 04:27 - modeling.trainer - INFO - train - iter 1965300: loss 2.8371, time 5.20s
06-12 04:27 - modeling.trainer - INFO - train - iter 1965350: loss 2.8407, time 5.18s
06-12 04:27 - modeling.trainer - INFO - train - iter 1965400: loss 2.8301, time 5.20s
06-12 04:28 - modeling.trainer - INFO - train - iter 1965450: loss 2.8140, time 5.19s
06-12 04:28 - modeling.trainer - INFO - train - iter 1965500: loss 2.8160, time 5.21s
06-12 04:28 - modeling.trainer - INFO - train - iter 1965550: loss 2.8231, time 5.82s
06-12 04:28 - modeling.trainer - INFO - train - iter 1965600: loss 2.8296, time 5.21s
06-12 04:28 - modeling.trainer - INFO - train - iter 1965650: loss 2.8314, time 5.23s
06-12 04:28 - modeling.trainer - INFO - train - iter 1965700: loss 2.8235, time 5.21s