text
stringlengths
54
260
06-12 04:11 - modeling.trainer - INFO - train - iter 1955850: loss 2.8354, time 5.22s
06-12 04:11 - modeling.trainer - INFO - train - iter 1955900: loss 2.8365, time 5.21s
06-12 04:11 - modeling.trainer - INFO - train - iter 1955950: loss 2.8306, time 5.23s
06-12 04:11 - modeling.trainer - INFO - train - iter 1956000: loss 2.8297, time 5.27s
06-12 04:11 - modeling.trainer - INFO - train - iter 1956050: loss 2.8401, time 5.21s
06-12 04:11 - modeling.trainer - INFO - train - iter 1956100: loss 2.8312, time 5.20s
06-12 04:11 - modeling.trainer - INFO - train - iter 1956150: loss 2.8241, time 5.22s
06-12 04:11 - modeling.trainer - INFO - train - iter 1956200: loss 2.8322, time 5.24s
06-12 04:11 - modeling.trainer - INFO - train - iter 1956250: loss 2.8331, time 5.23s
06-12 04:11 - modeling.trainer - INFO - train - iter 1956300: loss 2.8366, time 5.22s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956350: loss 2.8220, time 5.19s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956400: loss 2.8193, time 5.22s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956450: loss 2.8309, time 5.21s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956500: loss 2.8314, time 5.21s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956550: loss 2.8321, time 5.22s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956600: loss 2.8381, time 5.20s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956650: loss 2.8331, time 5.21s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956700: loss 2.8234, time 5.24s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956750: loss 2.8370, time 5.26s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956800: loss 2.8364, time 5.95s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956850: loss 2.8278, time 5.25s
06-12 04:12 - modeling.trainer - INFO - train - iter 1956900: loss 2.8323, time 5.23s
06-12 04:13 - modeling.trainer - INFO - train - iter 1956950: loss 2.8341, time 5.25s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957000: loss 2.8309, time 5.23s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957050: loss 2.8315, time 5.25s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957100: loss 2.8311, time 5.23s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957150: loss 2.8210, time 5.21s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957200: loss 2.8211, time 5.22s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957250: loss 2.8360, time 5.21s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957300: loss 2.8409, time 5.22s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957350: loss 2.8401, time 5.20s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957400: loss 2.8363, time 5.22s
06-12 04:13 - modeling.trainer - INFO - train - iter 1957450: loss 2.8306, time 5.21s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957500: loss 2.8277, time 5.20s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957550: loss 2.8262, time 5.20s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957600: loss 2.8238, time 5.23s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957650: loss 2.8269, time 5.21s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957700: loss 2.8334, time 5.21s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957750: loss 2.8218, time 5.25s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957800: loss 2.8191, time 5.22s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957850: loss 2.8260, time 5.23s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957900: loss 2.8259, time 5.21s
06-12 04:14 - modeling.trainer - INFO - train - iter 1957950: loss 2.8314, time 5.23s
06-12 04:14 - modeling.trainer - INFO - train - iter 1958000: loss 2.8282, time 5.22s
06-12 04:14 - modeling.trainer - INFO - train - iter 1958050: loss 2.8276, time 5.24s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958100: loss 2.8315, time 5.24s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958150: loss 2.8222, time 5.23s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958200: loss 2.8243, time 5.23s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958250: loss 2.8356, time 5.25s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958300: loss 2.8325, time 5.24s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958350: loss 2.8331, time 5.24s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958400: loss 2.8423, time 5.27s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958450: loss 2.8370, time 5.26s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958500: loss 2.8306, time 5.25s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958550: loss 2.8299, time 5.84s
06-12 04:15 - modeling.trainer - INFO - train - iter 1958600: loss 2.8343, time 5.25s
06-12 04:16 - modeling.trainer - INFO - train - iter 1958650: loss 2.8359, time 5.24s
06-12 04:16 - modeling.trainer - INFO - train - iter 1958700: loss 2.8304, time 5.22s
06-12 04:16 - modeling.trainer - INFO - train - iter 1958750: loss 2.8291, time 5.22s
06-12 04:16 - modeling.trainer - INFO - train - iter 1958800: loss 2.8303, time 5.22s
06-12 04:16 - modeling.trainer - INFO - train - iter 1958850: loss 2.8409, time 5.22s
06-12 04:16 - modeling.trainer - INFO - train - iter 1958900: loss 2.8405, time 5.23s
06-12 04:16 - modeling.trainer - INFO - train - iter 1958950: loss 2.8328, time 5.23s
06-12 04:16 - modeling.trainer - INFO - train - iter 1959000: loss 2.8271, time 5.24s
06-12 04:16 - modeling.trainer - INFO - train - iter 1959050: loss 2.8220, time 5.22s
06-12 04:16 - modeling.trainer - INFO - train - iter 1959100: loss 2.8308, time 5.23s
06-12 04:16 - modeling.trainer - INFO - train - iter 1959150: loss 2.8376, time 5.25s
06-12 04:16 - modeling.trainer - INFO - train - iter 1959200: loss 2.8412, time 5.24s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959250: loss 2.8395, time 5.24s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959300: loss 2.8270, time 5.22s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959350: loss 2.8204, time 5.22s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959400: loss 2.8315, time 5.20s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959450: loss 2.8361, time 5.20s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959500: loss 2.8270, time 5.23s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959550: loss 2.8167, time 5.24s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959600: loss 2.8194, time 5.25s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959650: loss 2.8252, time 5.21s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959700: loss 2.8244, time 5.23s
06-12 04:17 - modeling.trainer - INFO - train - iter 1959750: loss 2.8286, time 5.21s
06-12 04:18 - modeling.trainer - INFO - train - iter 1959800: loss 2.8308, time 5.22s
06-12 04:18 - modeling.trainer - INFO - train - iter 1959850: loss 2.8359, time 5.23s
06-12 04:18 - modeling.trainer - INFO - train - iter 1959900: loss 2.8431, time 5.24s
06-12 04:18 - modeling.trainer - INFO - train - iter 1959950: loss 2.8404, time 5.20s
06-12 04:18 - modeling.trainer - INFO - val - iter 1960000: lm_loss 1.3539, value_loss 0.7352, time_loss 0.6632, loss 2.7523, time 4.51s
06-12 04:18 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 04:18 - modeling.trainer - INFO - train - iter 1960000: loss 2.8365, time 14.64s
06-12 04:18 - modeling.trainer - INFO - train - iter 1960050: loss 2.8385, time 5.21s
06-12 04:18 - modeling.trainer - INFO - train - iter 1960100: loss 2.8449, time 5.22s
06-12 04:18 - modeling.trainer - INFO - train - iter 1960150: loss 2.8441, time 5.23s
06-12 04:18 - modeling.trainer - INFO - train - iter 1960200: loss 2.8425, time 5.24s
06-12 04:18 - modeling.trainer - INFO - train - iter 1960250: loss 2.8448, time 5.23s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960300: loss 2.8307, time 5.97s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960350: loss 2.8264, time 5.24s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960400: loss 2.8279, time 5.22s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960450: loss 2.8236, time 5.22s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960500: loss 2.8292, time 5.22s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960550: loss 2.8348, time 5.22s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960600: loss 2.8234, time 5.21s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960650: loss 2.8250, time 5.22s
06-12 04:19 - modeling.trainer - INFO - train - iter 1960700: loss 2.8303, time 5.21s