text
stringlengths
54
260
06-12 03:53 - modeling.trainer - INFO - train - iter 1945950: loss 2.8426, time 5.26s
06-12 03:53 - modeling.trainer - INFO - train - iter 1946000: loss 2.8324, time 5.26s
06-12 03:53 - modeling.trainer - INFO - train - iter 1946050: loss 2.8267, time 5.22s
06-12 03:53 - modeling.trainer - INFO - train - iter 1946100: loss 2.8301, time 5.27s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946150: loss 2.8322, time 5.24s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946200: loss 2.8259, time 5.24s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946250: loss 2.8265, time 5.24s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946300: loss 2.8337, time 5.24s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946350: loss 2.8308, time 5.96s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946400: loss 2.8308, time 5.26s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946450: loss 2.8317, time 5.26s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946500: loss 2.8327, time 5.26s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946550: loss 2.8295, time 5.27s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946600: loss 2.8334, time 5.23s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946650: loss 2.8292, time 5.22s
06-12 03:54 - modeling.trainer - INFO - train - iter 1946700: loss 2.8220, time 5.24s
06-12 03:55 - modeling.trainer - INFO - train - iter 1946750: loss 2.8377, time 5.25s
06-12 03:55 - modeling.trainer - INFO - train - iter 1946800: loss 2.8439, time 5.25s
06-12 03:55 - modeling.trainer - INFO - train - iter 1946850: loss 2.8294, time 5.23s
06-12 03:55 - modeling.trainer - INFO - train - iter 1946900: loss 2.8225, time 5.25s
06-12 03:55 - modeling.trainer - INFO - train - iter 1946950: loss 2.8236, time 5.24s
06-12 03:55 - modeling.trainer - INFO - train - iter 1947000: loss 2.8204, time 5.23s
06-12 03:55 - modeling.trainer - INFO - train - iter 1947050: loss 2.8245, time 5.29s
06-12 03:55 - modeling.trainer - INFO - train - iter 1947100: loss 2.8329, time 5.25s
06-12 03:55 - modeling.trainer - INFO - train - iter 1947150: loss 2.8359, time 5.25s
06-12 03:55 - modeling.trainer - INFO - train - iter 1947200: loss 2.8282, time 5.22s
06-12 03:55 - modeling.trainer - INFO - train - iter 1947250: loss 2.8319, time 5.24s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947300: loss 2.8447, time 5.26s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947350: loss 2.8261, time 5.23s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947400: loss 2.8200, time 5.25s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947450: loss 2.8279, time 5.25s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947500: loss 2.8333, time 5.24s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947550: loss 2.8447, time 5.27s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947600: loss 2.8340, time 5.24s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947650: loss 2.8209, time 5.25s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947700: loss 2.8282, time 5.23s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947750: loss 2.8334, time 5.23s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947800: loss 2.8280, time 5.23s
06-12 03:56 - modeling.trainer - INFO - train - iter 1947850: loss 2.8314, time 5.23s
06-12 03:57 - modeling.trainer - INFO - train - iter 1947900: loss 2.8338, time 5.24s
06-12 03:57 - modeling.trainer - INFO - train - iter 1947950: loss 2.8253, time 5.23s
06-12 03:57 - modeling.trainer - INFO - train - iter 1948000: loss 2.8257, time 5.22s
06-12 03:57 - modeling.trainer - INFO - train - iter 1948050: loss 2.8262, time 5.21s
06-12 03:57 - modeling.trainer - INFO - train - iter 1948100: loss 2.8232, time 5.86s
06-12 03:57 - modeling.trainer - INFO - train - iter 1948150: loss 2.8293, time 5.21s
06-12 03:57 - modeling.trainer - INFO - train - iter 1948200: loss 2.8377, time 5.22s
06-12 03:57 - modeling.trainer - INFO - train - iter 1948250: loss 2.8368, time 5.21s
06-12 03:57 - modeling.trainer - INFO - train - iter 1948300: loss 2.8275, time 5.23s
06-12 03:57 - modeling.trainer - INFO - train - iter 1948350: loss 2.8263, time 5.26s
06-12 03:57 - modeling.trainer - INFO - train - iter 1948400: loss 2.8351, time 5.24s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948450: loss 2.8436, time 5.25s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948500: loss 2.8384, time 5.29s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948550: loss 2.8263, time 5.27s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948600: loss 2.8289, time 5.24s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948650: loss 2.8351, time 5.25s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948700: loss 2.8304, time 5.22s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948750: loss 2.8330, time 5.21s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948800: loss 2.8359, time 5.23s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948850: loss 2.8334, time 5.26s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948900: loss 2.8325, time 5.22s
06-12 03:58 - modeling.trainer - INFO - train - iter 1948950: loss 2.8274, time 5.23s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949000: loss 2.8280, time 5.23s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949050: loss 2.8296, time 5.24s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949100: loss 2.8351, time 5.24s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949150: loss 2.8347, time 5.23s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949200: loss 2.8329, time 5.25s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949250: loss 2.8371, time 5.23s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949300: loss 2.8343, time 5.22s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949350: loss 2.8344, time 5.21s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949400: loss 2.8359, time 5.21s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949450: loss 2.8333, time 5.24s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949500: loss 2.8408, time 5.23s
06-12 03:59 - modeling.trainer - INFO - train - iter 1949550: loss 2.8452, time 5.26s
06-12 04:00 - modeling.trainer - INFO - train - iter 1949600: loss 2.8420, time 5.25s
06-12 04:00 - modeling.trainer - INFO - train - iter 1949650: loss 2.8395, time 5.23s
06-12 04:00 - modeling.trainer - INFO - train - iter 1949700: loss 2.8367, time 5.24s
06-12 04:00 - modeling.trainer - INFO - train - iter 1949750: loss 2.8427, time 5.26s
06-12 04:00 - modeling.trainer - INFO - train - iter 1949800: loss 2.8400, time 5.24s
06-12 04:00 - modeling.trainer - INFO - train - iter 1949850: loss 2.8348, time 6.07s
06-12 04:00 - modeling.trainer - INFO - train - iter 1949900: loss 2.8316, time 5.22s
06-12 04:00 - modeling.trainer - INFO - train - iter 1949950: loss 2.8320, time 5.21s
06-12 04:00 - modeling.trainer - INFO - val - iter 1950000: lm_loss 1.3538, value_loss 0.7345, time_loss 0.6633, loss 2.7517, time 4.46s
06-12 04:00 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 04:00 - modeling.trainer - INFO - train - iter 1950000: loss 2.8382, time 13.41s
06-12 04:00 - modeling.trainer - INFO - train - iter 1950050: loss 2.8373, time 5.25s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950100: loss 2.8322, time 5.24s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950150: loss 2.8378, time 5.45s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950200: loss 2.8392, time 5.25s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950250: loss 2.8383, time 5.24s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950300: loss 2.8368, time 5.23s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950350: loss 2.8286, time 5.23s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950400: loss 2.8217, time 5.23s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950450: loss 2.8177, time 5.23s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950500: loss 2.8228, time 5.20s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950550: loss 2.8272, time 5.23s
06-12 04:01 - modeling.trainer - INFO - train - iter 1950600: loss 2.8273, time 5.23s
06-12 04:02 - modeling.trainer - INFO - train - iter 1950650: loss 2.8299, time 5.23s
06-12 04:02 - modeling.trainer - INFO - train - iter 1950700: loss 2.8281, time 5.23s
06-12 04:02 - modeling.trainer - INFO - train - iter 1950750: loss 2.8322, time 5.25s
06-12 04:02 - modeling.trainer - INFO - train - iter 1950800: loss 2.8346, time 5.22s