text
stringlengths 54
260
|
---|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936050: loss 2.8283, time 5.28s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936100: loss 2.8173, time 5.29s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936150: loss 2.8293, time 5.30s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936200: loss 2.8430, time 5.31s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936250: loss 2.8346, time 5.29s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936300: loss 2.8337, time 5.29s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936350: loss 2.8431, time 5.34s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936400: loss 2.8425, time 5.31s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936450: loss 2.8272, time 5.33s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936500: loss 2.8377, time 5.27s
|
06-12 03:36 - modeling.trainer - INFO - train - iter 1936550: loss 2.8437, time 5.30s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1936600: loss 2.8394, time 5.29s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1936650: loss 2.8372, time 5.34s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1936700: loss 2.8302, time 5.26s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1936750: loss 2.8310, time 5.28s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1936800: loss 2.8316, time 5.27s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1936850: loss 2.8259, time 5.33s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1936900: loss 2.8277, time 5.29s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1936950: loss 2.8380, time 5.27s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1937000: loss 2.8384, time 5.28s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1937050: loss 2.8304, time 5.31s
|
06-12 03:37 - modeling.trainer - INFO - train - iter 1937100: loss 2.8302, time 5.37s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937150: loss 2.8396, time 5.30s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937200: loss 2.8467, time 5.30s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937250: loss 2.8434, time 5.36s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937300: loss 2.8257, time 5.28s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937350: loss 2.8159, time 5.27s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937400: loss 2.8249, time 5.44s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937450: loss 2.8337, time 5.30s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937500: loss 2.8350, time 5.26s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937550: loss 2.8413, time 5.26s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937600: loss 2.8430, time 5.26s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937650: loss 2.8346, time 5.94s
|
06-12 03:38 - modeling.trainer - INFO - train - iter 1937700: loss 2.8325, time 5.29s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1937750: loss 2.8303, time 5.32s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1937800: loss 2.8273, time 5.30s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1937850: loss 2.8355, time 5.28s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1937900: loss 2.8387, time 5.27s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1937950: loss 2.8334, time 5.29s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1938000: loss 2.8323, time 5.27s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1938050: loss 2.8273, time 5.26s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1938100: loss 2.8237, time 5.35s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1938150: loss 2.8334, time 5.28s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1938200: loss 2.8433, time 5.27s
|
06-12 03:39 - modeling.trainer - INFO - train - iter 1938250: loss 2.8386, time 5.31s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938300: loss 2.8418, time 5.31s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938350: loss 2.8459, time 5.29s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938400: loss 2.8416, time 5.30s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938450: loss 2.8373, time 5.29s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938500: loss 2.8315, time 5.29s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938550: loss 2.8348, time 5.28s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938600: loss 2.8350, time 5.32s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938650: loss 2.8372, time 5.30s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938700: loss 2.8458, time 5.29s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938750: loss 2.8410, time 5.31s
|
06-12 03:40 - modeling.trainer - INFO - train - iter 1938800: loss 2.8241, time 5.37s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1938850: loss 2.8281, time 5.28s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1938900: loss 2.8352, time 5.30s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1938950: loss 2.8272, time 5.28s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1939000: loss 2.8305, time 5.29s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1939050: loss 2.8336, time 5.29s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1939100: loss 2.8256, time 5.33s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1939150: loss 2.8314, time 5.24s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1939200: loss 2.8352, time 5.24s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1939250: loss 2.8325, time 5.29s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1939300: loss 2.8352, time 5.30s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1939350: loss 2.8244, time 5.29s
|
06-12 03:41 - modeling.trainer - INFO - train - iter 1939400: loss 2.8240, time 5.91s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939450: loss 2.8249, time 5.28s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939500: loss 2.8277, time 5.29s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939550: loss 2.8273, time 5.30s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939600: loss 2.8238, time 5.29s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939650: loss 2.8341, time 5.30s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939700: loss 2.8390, time 5.28s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939750: loss 2.8355, time 5.27s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939800: loss 2.8292, time 5.26s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939850: loss 2.8259, time 5.29s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939900: loss 2.8344, time 5.30s
|
06-12 03:42 - modeling.trainer - INFO - train - iter 1939950: loss 2.8372, time 5.30s
|
06-12 03:43 - modeling.trainer - INFO - val - iter 1940000: lm_loss 1.3540, value_loss 0.7347, time_loss 0.6633, loss 2.7520, time 4.41s
|
06-12 03:43 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940000: loss 2.8354, time 13.65s
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940050: loss 2.8360, time 5.28s
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940100: loss 2.8324, time 5.29s
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940150: loss 2.8379, time 5.28s
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940200: loss 2.8371, time 5.28s
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940250: loss 2.8318, time 5.29s
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940300: loss 2.8298, time 5.27s
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940350: loss 2.8288, time 5.27s
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940400: loss 2.8308, time 5.30s
|
06-12 03:43 - modeling.trainer - INFO - train - iter 1940450: loss 2.8333, time 5.27s
|
06-12 03:44 - modeling.trainer - INFO - train - iter 1940500: loss 2.8352, time 5.25s
|
06-12 03:44 - modeling.trainer - INFO - train - iter 1940550: loss 2.8313, time 5.25s
|
06-12 03:44 - modeling.trainer - INFO - train - iter 1940600: loss 2.8297, time 5.29s
|
06-12 03:44 - modeling.trainer - INFO - train - iter 1940650: loss 2.8271, time 5.28s
|
06-12 03:44 - modeling.trainer - INFO - train - iter 1940700: loss 2.8203, time 5.23s
|
06-12 03:44 - modeling.trainer - INFO - train - iter 1940750: loss 2.8246, time 5.27s
|
06-12 03:44 - modeling.trainer - INFO - train - iter 1940800: loss 2.8293, time 5.26s
|
06-12 03:44 - modeling.trainer - INFO - train - iter 1940850: loss 2.8333, time 5.26s
|
06-12 03:44 - modeling.trainer - INFO - train - iter 1940900: loss 2.8378, time 5.27s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.