text
stringlengths
54
260
06-12 03:44 - modeling.trainer - INFO - train - iter 1940950: loss 2.8364, time 5.25s
06-12 03:44 - modeling.trainer - INFO - train - iter 1941000: loss 2.8378, time 5.26s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941050: loss 2.8417, time 5.28s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941100: loss 2.8379, time 6.00s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941150: loss 2.8333, time 5.28s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941200: loss 2.8341, time 5.30s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941250: loss 2.8307, time 5.27s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941300: loss 2.8363, time 5.27s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941350: loss 2.8404, time 5.26s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941400: loss 2.8286, time 5.27s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941450: loss 2.8251, time 5.28s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941500: loss 2.8323, time 5.29s
06-12 03:45 - modeling.trainer - INFO - train - iter 1941550: loss 2.8397, time 5.31s
06-12 03:46 - modeling.trainer - INFO - train - iter 1941600: loss 2.8322, time 5.28s
06-12 03:46 - modeling.trainer - INFO - train - iter 1941650: loss 2.8289, time 5.26s
06-12 03:46 - modeling.trainer - INFO - train - iter 1941700: loss 2.8360, time 5.26s
06-12 03:46 - modeling.trainer - INFO - train - iter 1941750: loss 2.8309, time 5.26s
06-12 03:46 - modeling.trainer - INFO - train - iter 1941800: loss 2.8315, time 5.26s
06-12 03:46 - modeling.trainer - INFO - train - iter 1941850: loss 2.8285, time 5.27s
06-12 03:46 - modeling.trainer - INFO - train - iter 1941900: loss 2.8120, time 5.29s
06-12 03:46 - modeling.trainer - INFO - train - iter 1941950: loss 2.8197, time 5.28s
06-12 03:46 - modeling.trainer - INFO - train - iter 1942000: loss 2.8394, time 5.27s
06-12 03:46 - modeling.trainer - INFO - train - iter 1942050: loss 2.8291, time 5.27s
06-12 03:46 - modeling.trainer - INFO - train - iter 1942100: loss 2.8321, time 5.24s
06-12 03:46 - modeling.trainer - INFO - train - iter 1942150: loss 2.8337, time 5.28s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942200: loss 2.8255, time 5.33s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942250: loss 2.8285, time 5.29s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942300: loss 2.8244, time 5.29s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942350: loss 2.8345, time 5.29s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942400: loss 2.8358, time 5.29s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942450: loss 2.8242, time 5.25s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942500: loss 2.8276, time 5.30s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942550: loss 2.8317, time 5.27s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942600: loss 2.8272, time 5.25s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942650: loss 2.8265, time 5.26s
06-12 03:47 - modeling.trainer - INFO - train - iter 1942700: loss 2.8303, time 5.27s
06-12 03:48 - modeling.trainer - INFO - train - iter 1942750: loss 2.8353, time 5.28s
06-12 03:48 - modeling.trainer - INFO - train - iter 1942800: loss 2.8368, time 5.27s
06-12 03:48 - modeling.trainer - INFO - train - iter 1942850: loss 2.8268, time 6.04s
06-12 03:48 - modeling.trainer - INFO - train - iter 1942900: loss 2.8276, time 5.24s
06-12 03:48 - modeling.trainer - INFO - train - iter 1942950: loss 2.8390, time 5.25s
06-12 03:48 - modeling.trainer - INFO - train - iter 1943000: loss 2.8354, time 5.25s
06-12 03:48 - modeling.trainer - INFO - train - iter 1943050: loss 2.8319, time 5.26s
06-12 03:48 - modeling.trainer - INFO - train - iter 1943100: loss 2.8396, time 5.26s
06-12 03:48 - modeling.trainer - INFO - train - iter 1943150: loss 2.8344, time 5.29s
06-12 03:48 - modeling.trainer - INFO - train - iter 1943200: loss 2.8285, time 5.26s
06-12 03:48 - modeling.trainer - INFO - train - iter 1943250: loss 2.8331, time 5.27s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943300: loss 2.8273, time 5.27s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943350: loss 2.8299, time 5.26s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943400: loss 2.8427, time 5.27s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943450: loss 2.8395, time 5.27s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943500: loss 2.8326, time 5.26s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943550: loss 2.8340, time 5.27s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943600: loss 2.8351, time 5.28s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943650: loss 2.8351, time 5.24s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943700: loss 2.8330, time 5.35s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943750: loss 2.8272, time 5.28s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943800: loss 2.8292, time 5.24s
06-12 03:49 - modeling.trainer - INFO - train - iter 1943850: loss 2.8362, time 5.25s
06-12 03:50 - modeling.trainer - INFO - train - iter 1943900: loss 2.8269, time 5.24s
06-12 03:50 - modeling.trainer - INFO - train - iter 1943950: loss 2.8233, time 5.27s
06-12 03:50 - modeling.trainer - INFO - train - iter 1944000: loss 2.8355, time 5.26s
06-12 03:50 - modeling.trainer - INFO - train - iter 1944050: loss 2.8291, time 5.25s
06-12 03:50 - modeling.trainer - INFO - train - iter 1944100: loss 2.8240, time 5.28s
06-12 03:50 - modeling.trainer - INFO - train - iter 1944150: loss 2.8335, time 5.27s
06-12 03:50 - modeling.trainer - INFO - train - iter 1944200: loss 2.8336, time 5.30s
06-12 03:50 - modeling.trainer - INFO - train - iter 1944250: loss 2.8332, time 5.23s
06-12 03:50 - modeling.trainer - INFO - train - iter 1944300: loss 2.8340, time 5.26s
06-12 03:50 - modeling.trainer - INFO - train - iter 1944350: loss 2.8363, time 5.22s
06-12 03:50 - modeling.trainer - INFO - train - iter 1944400: loss 2.8338, time 5.26s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944450: loss 2.8303, time 5.28s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944500: loss 2.8329, time 5.26s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944550: loss 2.8312, time 5.23s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944600: loss 2.8337, time 5.88s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944650: loss 2.8343, time 5.23s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944700: loss 2.8265, time 5.24s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944750: loss 2.8353, time 5.24s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944800: loss 2.8389, time 5.24s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944850: loss 2.8363, time 5.21s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944900: loss 2.8386, time 5.23s
06-12 03:51 - modeling.trainer - INFO - train - iter 1944950: loss 2.8328, time 5.25s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945000: loss 2.8364, time 5.23s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945050: loss 2.8420, time 5.23s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945100: loss 2.8400, time 5.23s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945150: loss 2.8329, time 5.22s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945200: loss 2.8271, time 5.23s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945250: loss 2.8206, time 5.24s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945300: loss 2.8221, time 5.24s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945350: loss 2.8310, time 5.22s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945400: loss 2.8438, time 5.25s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945450: loss 2.8484, time 5.23s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945500: loss 2.8433, time 5.23s
06-12 03:52 - modeling.trainer - INFO - train - iter 1945550: loss 2.8313, time 5.23s
06-12 03:53 - modeling.trainer - INFO - train - iter 1945600: loss 2.8265, time 5.21s
06-12 03:53 - modeling.trainer - INFO - train - iter 1945650: loss 2.8398, time 5.25s
06-12 03:53 - modeling.trainer - INFO - train - iter 1945700: loss 2.8341, time 5.23s
06-12 03:53 - modeling.trainer - INFO - train - iter 1945750: loss 2.8304, time 5.28s
06-12 03:53 - modeling.trainer - INFO - train - iter 1945800: loss 2.8452, time 5.25s
06-12 03:53 - modeling.trainer - INFO - train - iter 1945850: loss 2.8407, time 5.24s
06-12 03:53 - modeling.trainer - INFO - train - iter 1945900: loss 2.8365, time 5.24s