text
stringlengths
54
260
06-12 03:27 - modeling.trainer - INFO - train - iter 1931050: loss 2.8410, time 5.33s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931100: loss 2.8310, time 5.37s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931150: loss 2.8287, time 5.34s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931200: loss 2.8346, time 5.33s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931250: loss 2.8435, time 5.36s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931300: loss 2.8327, time 5.36s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931350: loss 2.8219, time 5.31s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931400: loss 2.8310, time 5.34s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931450: loss 2.8328, time 5.38s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931500: loss 2.8332, time 5.35s
06-12 03:28 - modeling.trainer - INFO - train - iter 1931550: loss 2.8414, time 5.33s
06-12 03:28 - modeling.trainer - INFO - train - iter 1931600: loss 2.8333, time 5.34s
06-12 03:28 - modeling.trainer - INFO - train - iter 1931650: loss 2.8268, time 5.37s
06-12 03:28 - modeling.trainer - INFO - train - iter 1931700: loss 2.8292, time 5.32s
06-12 03:28 - modeling.trainer - INFO - train - iter 1931750: loss 2.8288, time 5.38s
06-12 03:28 - modeling.trainer - INFO - train - iter 1931800: loss 2.8338, time 5.35s
06-12 03:28 - modeling.trainer - INFO - train - iter 1931850: loss 2.8333, time 5.34s
06-12 03:28 - modeling.trainer - INFO - train - iter 1931900: loss 2.8320, time 5.32s
06-12 03:28 - modeling.trainer - INFO - train - iter 1931950: loss 2.8324, time 5.37s
06-12 03:28 - modeling.trainer - INFO - train - iter 1932000: loss 2.8290, time 5.38s
06-12 03:28 - modeling.trainer - INFO - train - iter 1932050: loss 2.8288, time 5.34s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932100: loss 2.8288, time 5.31s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932150: loss 2.8273, time 5.34s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932200: loss 2.8411, time 5.37s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932250: loss 2.8410, time 5.33s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932300: loss 2.8273, time 5.33s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932350: loss 2.8245, time 5.34s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932400: loss 2.8253, time 6.02s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932450: loss 2.8287, time 5.32s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932500: loss 2.8286, time 5.33s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932550: loss 2.8298, time 5.34s
06-12 03:29 - modeling.trainer - INFO - train - iter 1932600: loss 2.8317, time 5.31s
06-12 03:30 - modeling.trainer - INFO - train - iter 1932650: loss 2.8358, time 5.36s
06-12 03:30 - modeling.trainer - INFO - train - iter 1932700: loss 2.8414, time 5.34s
06-12 03:30 - modeling.trainer - INFO - train - iter 1932750: loss 2.8374, time 5.32s
06-12 03:30 - modeling.trainer - INFO - train - iter 1932800: loss 2.8363, time 5.31s
06-12 03:30 - modeling.trainer - INFO - train - iter 1932850: loss 2.8388, time 5.31s
06-12 03:30 - modeling.trainer - INFO - train - iter 1932900: loss 2.8310, time 5.31s
06-12 03:30 - modeling.trainer - INFO - train - iter 1932950: loss 2.8275, time 5.35s
06-12 03:30 - modeling.trainer - INFO - train - iter 1933000: loss 2.8353, time 5.34s
06-12 03:30 - modeling.trainer - INFO - train - iter 1933050: loss 2.8437, time 5.35s
06-12 03:30 - modeling.trainer - INFO - train - iter 1933100: loss 2.8379, time 5.33s
06-12 03:30 - modeling.trainer - INFO - train - iter 1933150: loss 2.8305, time 5.34s
06-12 03:30 - modeling.trainer - INFO - train - iter 1933200: loss 2.8331, time 5.32s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933250: loss 2.8343, time 5.34s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933300: loss 2.8308, time 5.34s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933350: loss 2.8314, time 5.31s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933400: loss 2.8313, time 5.35s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933450: loss 2.8248, time 5.35s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933500: loss 2.8278, time 5.29s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933550: loss 2.8269, time 5.36s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933600: loss 2.8271, time 5.32s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933650: loss 2.8344, time 5.30s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933700: loss 2.8348, time 5.31s
06-12 03:31 - modeling.trainer - INFO - train - iter 1933750: loss 2.8294, time 5.33s
06-12 03:32 - modeling.trainer - INFO - train - iter 1933800: loss 2.8382, time 5.32s
06-12 03:32 - modeling.trainer - INFO - train - iter 1933850: loss 2.8390, time 5.31s
06-12 03:32 - modeling.trainer - INFO - train - iter 1933900: loss 2.8324, time 5.37s
06-12 03:32 - modeling.trainer - INFO - train - iter 1933950: loss 2.8421, time 5.34s
06-12 03:32 - modeling.trainer - INFO - train - iter 1934000: loss 2.8398, time 5.29s
06-12 03:32 - modeling.trainer - INFO - train - iter 1934050: loss 2.8343, time 5.34s
06-12 03:32 - modeling.trainer - INFO - train - iter 1934100: loss 2.8339, time 5.31s
06-12 03:32 - modeling.trainer - INFO - train - iter 1934150: loss 2.8360, time 5.94s
06-12 03:32 - modeling.trainer - INFO - train - iter 1934200: loss 2.8376, time 5.32s
06-12 03:32 - modeling.trainer - INFO - train - iter 1934250: loss 2.8312, time 5.33s
06-12 03:32 - modeling.trainer - INFO - train - iter 1934300: loss 2.8243, time 5.30s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934350: loss 2.8330, time 5.33s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934400: loss 2.8352, time 5.29s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934450: loss 2.8312, time 5.31s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934500: loss 2.8341, time 5.34s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934550: loss 2.8322, time 5.31s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934600: loss 2.8304, time 5.29s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934650: loss 2.8338, time 5.29s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934700: loss 2.8401, time 5.29s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934750: loss 2.8310, time 5.31s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934800: loss 2.8306, time 5.31s
06-12 03:33 - modeling.trainer - INFO - train - iter 1934850: loss 2.8293, time 5.28s
06-12 03:34 - modeling.trainer - INFO - train - iter 1934900: loss 2.8279, time 5.33s
06-12 03:34 - modeling.trainer - INFO - train - iter 1934950: loss 2.8366, time 5.30s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935000: loss 2.8328, time 5.29s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935050: loss 2.8277, time 5.40s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935100: loss 2.8320, time 5.29s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935150: loss 2.8402, time 5.30s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935200: loss 2.8441, time 5.29s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935250: loss 2.8357, time 5.31s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935300: loss 2.8274, time 5.29s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935350: loss 2.8310, time 5.27s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935400: loss 2.8321, time 5.35s
06-12 03:34 - modeling.trainer - INFO - train - iter 1935450: loss 2.8360, time 5.31s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935500: loss 2.8270, time 5.33s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935550: loss 2.8273, time 5.29s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935600: loss 2.8261, time 5.28s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935650: loss 2.8250, time 5.28s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935700: loss 2.8312, time 5.29s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935750: loss 2.8391, time 5.30s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935800: loss 2.8414, time 5.30s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935850: loss 2.8204, time 5.32s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935900: loss 2.8223, time 6.01s
06-12 03:35 - modeling.trainer - INFO - train - iter 1935950: loss 2.8349, time 5.32s
06-12 03:35 - modeling.trainer - INFO - train - iter 1936000: loss 2.8325, time 5.33s