text
stringlengths
54
260
06-12 03:18 - modeling.trainer - INFO - train - iter 1926250: loss 2.8433, time 5.35s
06-12 03:18 - modeling.trainer - INFO - train - iter 1926300: loss 2.8397, time 5.38s
06-12 03:18 - modeling.trainer - INFO - train - iter 1926350: loss 2.8346, time 5.40s
06-12 03:18 - modeling.trainer - INFO - train - iter 1926400: loss 2.8382, time 5.35s
06-12 03:18 - modeling.trainer - INFO - train - iter 1926450: loss 2.8313, time 5.39s
06-12 03:18 - modeling.trainer - INFO - train - iter 1926500: loss 2.8249, time 5.38s
06-12 03:18 - modeling.trainer - INFO - train - iter 1926550: loss 2.8267, time 5.35s
06-12 03:18 - modeling.trainer - INFO - train - iter 1926600: loss 2.8221, time 5.39s
06-12 03:19 - modeling.trainer - INFO - train - iter 1926650: loss 2.8242, time 5.34s
06-12 03:19 - modeling.trainer - INFO - train - iter 1926700: loss 2.8358, time 5.35s
06-12 03:19 - modeling.trainer - INFO - train - iter 1926750: loss 2.8392, time 5.36s
06-12 03:19 - modeling.trainer - INFO - train - iter 1926800: loss 2.8364, time 5.35s
06-12 03:19 - modeling.trainer - INFO - train - iter 1926850: loss 2.8281, time 5.37s
06-12 03:19 - modeling.trainer - INFO - train - iter 1926900: loss 2.8297, time 5.37s
06-12 03:19 - modeling.trainer - INFO - train - iter 1926950: loss 2.8318, time 5.38s
06-12 03:19 - modeling.trainer - INFO - train - iter 1927000: loss 2.8302, time 5.36s
06-12 03:19 - modeling.trainer - INFO - train - iter 1927050: loss 2.8317, time 5.38s
06-12 03:19 - modeling.trainer - INFO - train - iter 1927100: loss 2.8320, time 5.32s
06-12 03:19 - modeling.trainer - INFO - train - iter 1927150: loss 2.8372, time 5.34s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927200: loss 2.8317, time 6.06s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927250: loss 2.8276, time 5.38s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927300: loss 2.8349, time 5.42s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927350: loss 2.8350, time 5.36s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927400: loss 2.8365, time 5.34s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927450: loss 2.8438, time 5.32s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927500: loss 2.8341, time 5.32s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927550: loss 2.8302, time 5.36s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927600: loss 2.8418, time 5.35s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927650: loss 2.8377, time 5.32s
06-12 03:20 - modeling.trainer - INFO - train - iter 1927700: loss 2.8387, time 5.38s
06-12 03:21 - modeling.trainer - INFO - train - iter 1927750: loss 2.8438, time 5.41s
06-12 03:21 - modeling.trainer - INFO - train - iter 1927800: loss 2.8371, time 5.37s
06-12 03:21 - modeling.trainer - INFO - train - iter 1927850: loss 2.8317, time 5.39s
06-12 03:21 - modeling.trainer - INFO - train - iter 1927900: loss 2.8365, time 5.33s
06-12 03:21 - modeling.trainer - INFO - train - iter 1927950: loss 2.8343, time 5.36s
06-12 03:21 - modeling.trainer - INFO - train - iter 1928000: loss 2.8273, time 5.40s
06-12 03:21 - modeling.trainer - INFO - train - iter 1928050: loss 2.8221, time 5.33s
06-12 03:21 - modeling.trainer - INFO - train - iter 1928100: loss 2.8246, time 5.34s
06-12 03:21 - modeling.trainer - INFO - train - iter 1928150: loss 2.8274, time 5.31s
06-12 03:21 - modeling.trainer - INFO - train - iter 1928200: loss 2.8246, time 5.35s
06-12 03:21 - modeling.trainer - INFO - train - iter 1928250: loss 2.8284, time 5.33s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928300: loss 2.8305, time 5.29s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928350: loss 2.8312, time 5.32s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928400: loss 2.8368, time 5.32s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928450: loss 2.8405, time 5.33s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928500: loss 2.8339, time 5.34s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928550: loss 2.8213, time 5.33s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928600: loss 2.8297, time 5.32s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928650: loss 2.8481, time 5.33s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928700: loss 2.8411, time 5.35s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928750: loss 2.8339, time 5.31s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928800: loss 2.8326, time 5.31s
06-12 03:22 - modeling.trainer - INFO - train - iter 1928850: loss 2.8349, time 5.34s
06-12 03:23 - modeling.trainer - INFO - train - iter 1928900: loss 2.8367, time 5.33s
06-12 03:23 - modeling.trainer - INFO - train - iter 1928950: loss 2.8374, time 6.04s
06-12 03:23 - modeling.trainer - INFO - train - iter 1929000: loss 2.8402, time 5.36s
06-12 03:23 - modeling.trainer - INFO - train - iter 1929050: loss 2.8329, time 5.32s
06-12 03:23 - modeling.trainer - INFO - train - iter 1929100: loss 2.8361, time 5.35s
06-12 03:23 - modeling.trainer - INFO - train - iter 1929150: loss 2.8320, time 5.37s
06-12 03:23 - modeling.trainer - INFO - train - iter 1929200: loss 2.8247, time 5.34s
06-12 03:23 - modeling.trainer - INFO - train - iter 1929250: loss 2.8274, time 5.34s
06-12 03:23 - modeling.trainer - INFO - train - iter 1929300: loss 2.8277, time 5.34s
06-12 03:23 - modeling.trainer - INFO - train - iter 1929350: loss 2.8350, time 5.32s
06-12 03:23 - modeling.trainer - INFO - train - iter 1929400: loss 2.8303, time 5.37s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929450: loss 2.8234, time 5.36s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929500: loss 2.8323, time 5.37s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929550: loss 2.8399, time 5.37s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929600: loss 2.8399, time 5.37s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929650: loss 2.8365, time 5.33s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929700: loss 2.8353, time 5.37s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929750: loss 2.8340, time 5.36s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929800: loss 2.8374, time 5.35s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929850: loss 2.8377, time 5.36s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929900: loss 2.8360, time 5.33s
06-12 03:24 - modeling.trainer - INFO - train - iter 1929950: loss 2.8343, time 5.35s
06-12 03:25 - modeling.trainer - INFO - val - iter 1930000: lm_loss 1.3542, value_loss 0.7341, time_loss 0.6631, loss 2.7514, time 4.50s
06-12 03:25 - modeling.trainer - INFO - new best val loss 2.7514
06-12 03:25 - modeling.trainer - INFO - saved checkpoint to models/medium/best.pt
06-12 03:25 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 03:25 - modeling.trainer - INFO - train - iter 1930000: loss 2.8369, time 17.76s
06-12 03:25 - modeling.trainer - INFO - train - iter 1930050: loss 2.8441, time 5.35s
06-12 03:25 - modeling.trainer - INFO - train - iter 1930100: loss 2.8372, time 5.33s
06-12 03:25 - modeling.trainer - INFO - train - iter 1930150: loss 2.8308, time 5.35s
06-12 03:25 - modeling.trainer - INFO - train - iter 1930200: loss 2.8339, time 5.35s
06-12 03:25 - modeling.trainer - INFO - train - iter 1930250: loss 2.8349, time 5.30s
06-12 03:25 - modeling.trainer - INFO - train - iter 1930300: loss 2.8308, time 5.33s
06-12 03:25 - modeling.trainer - INFO - train - iter 1930350: loss 2.8353, time 5.37s
06-12 03:25 - modeling.trainer - INFO - train - iter 1930400: loss 2.8333, time 5.38s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930450: loss 2.8380, time 5.33s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930500: loss 2.8436, time 5.37s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930550: loss 2.8372, time 5.37s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930600: loss 2.8362, time 5.35s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930650: loss 2.8316, time 5.97s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930700: loss 2.8250, time 5.34s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930750: loss 2.8251, time 5.32s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930800: loss 2.8300, time 5.36s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930850: loss 2.8372, time 5.34s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930900: loss 2.8345, time 5.35s
06-12 03:26 - modeling.trainer - INFO - train - iter 1930950: loss 2.8321, time 5.40s
06-12 03:27 - modeling.trainer - INFO - train - iter 1931000: loss 2.8438, time 5.38s