text
stringlengths
54
260
06-12 03:00 - modeling.trainer - INFO - train - iter 1916450: loss 2.8273, time 5.51s
06-12 03:00 - modeling.trainer - INFO - train - iter 1916500: loss 2.8255, time 5.51s
06-12 03:00 - modeling.trainer - INFO - train - iter 1916550: loss 2.8331, time 5.58s
06-12 03:00 - modeling.trainer - INFO - train - iter 1916600: loss 2.8375, time 5.50s
06-12 03:00 - modeling.trainer - INFO - train - iter 1916650: loss 2.8369, time 5.50s
06-12 03:00 - modeling.trainer - INFO - train - iter 1916700: loss 2.8412, time 5.50s
06-12 03:00 - modeling.trainer - INFO - train - iter 1916750: loss 2.8348, time 6.30s
06-12 03:00 - modeling.trainer - INFO - train - iter 1916800: loss 2.8284, time 5.57s
06-12 03:00 - modeling.trainer - INFO - train - iter 1916850: loss 2.8335, time 5.60s
06-12 03:01 - modeling.trainer - INFO - train - iter 1916900: loss 2.8399, time 5.53s
06-12 03:01 - modeling.trainer - INFO - train - iter 1916950: loss 2.8412, time 5.53s
06-12 03:01 - modeling.trainer - INFO - train - iter 1917000: loss 2.8349, time 5.60s
06-12 03:01 - modeling.trainer - INFO - train - iter 1917050: loss 2.8326, time 5.53s
06-12 03:01 - modeling.trainer - INFO - train - iter 1917100: loss 2.8341, time 5.51s
06-12 03:01 - modeling.trainer - INFO - train - iter 1917150: loss 2.8392, time 5.50s
06-12 03:01 - modeling.trainer - INFO - train - iter 1917200: loss 2.8439, time 5.48s
06-12 03:01 - modeling.trainer - INFO - train - iter 1917250: loss 2.8368, time 5.43s
06-12 03:01 - modeling.trainer - INFO - train - iter 1917300: loss 2.8375, time 5.53s
06-12 03:01 - modeling.trainer - INFO - train - iter 1917350: loss 2.8367, time 5.50s
06-12 03:01 - modeling.trainer - INFO - train - iter 1917400: loss 2.8306, time 5.50s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917450: loss 2.8318, time 5.54s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917500: loss 2.8436, time 5.57s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917550: loss 2.8478, time 5.49s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917600: loss 2.8360, time 5.56s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917650: loss 2.8379, time 5.51s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917700: loss 2.8392, time 5.61s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917750: loss 2.8299, time 5.54s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917800: loss 2.8282, time 5.54s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917850: loss 2.8364, time 5.50s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917900: loss 2.8387, time 5.48s
06-12 03:02 - modeling.trainer - INFO - train - iter 1917950: loss 2.8379, time 5.63s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918000: loss 2.8370, time 5.54s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918050: loss 2.8414, time 5.50s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918100: loss 2.8368, time 5.48s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918150: loss 2.8278, time 5.52s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918200: loss 2.8344, time 5.51s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918250: loss 2.8304, time 5.52s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918300: loss 2.8330, time 5.57s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918350: loss 2.8396, time 5.62s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918400: loss 2.8344, time 5.50s
06-12 03:03 - modeling.trainer - INFO - train - iter 1918450: loss 2.8338, time 5.49s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918500: loss 2.8402, time 6.14s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918550: loss 2.8387, time 5.58s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918600: loss 2.8306, time 5.51s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918650: loss 2.8294, time 5.55s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918700: loss 2.8302, time 5.50s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918750: loss 2.8365, time 5.51s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918800: loss 2.8442, time 5.60s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918850: loss 2.8420, time 5.51s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918900: loss 2.8408, time 5.56s
06-12 03:04 - modeling.trainer - INFO - train - iter 1918950: loss 2.8303, time 5.57s
06-12 03:04 - modeling.trainer - INFO - train - iter 1919000: loss 2.8253, time 5.53s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919050: loss 2.8292, time 5.45s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919100: loss 2.8275, time 5.62s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919150: loss 2.8296, time 5.47s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919200: loss 2.8353, time 5.52s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919250: loss 2.8359, time 5.48s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919300: loss 2.8386, time 5.47s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919350: loss 2.8321, time 5.62s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919400: loss 2.8193, time 5.50s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919450: loss 2.8311, time 5.46s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919500: loss 2.8382, time 5.45s
06-12 03:05 - modeling.trainer - INFO - train - iter 1919550: loss 2.8290, time 5.51s
06-12 03:06 - modeling.trainer - INFO - train - iter 1919600: loss 2.8289, time 5.52s
06-12 03:06 - modeling.trainer - INFO - train - iter 1919650: loss 2.8401, time 5.58s
06-12 03:06 - modeling.trainer - INFO - train - iter 1919700: loss 2.8498, time 5.59s
06-12 03:06 - modeling.trainer - INFO - train - iter 1919750: loss 2.8439, time 5.62s
06-12 03:06 - modeling.trainer - INFO - train - iter 1919800: loss 2.8348, time 5.51s
06-12 03:06 - modeling.trainer - INFO - train - iter 1919850: loss 2.8356, time 5.52s
06-12 03:06 - modeling.trainer - INFO - train - iter 1919900: loss 2.8247, time 5.44s
06-12 03:06 - modeling.trainer - INFO - train - iter 1919950: loss 2.8234, time 5.53s
06-12 03:06 - modeling.trainer - INFO - val - iter 1920000: lm_loss 1.3543, value_loss 0.7343, time_loss 0.6634, loss 2.7520, time 4.45s
06-12 03:06 - modeling.trainer - INFO - new best val loss 2.7520
06-12 03:06 - modeling.trainer - INFO - saved checkpoint to models/medium/best.pt
06-12 03:06 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 03:06 - modeling.trainer - INFO - train - iter 1920000: loss 2.8342, time 17.74s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920050: loss 2.8398, time 5.50s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920100: loss 2.8380, time 5.55s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920150: loss 2.8283, time 5.52s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920200: loss 2.8329, time 6.23s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920250: loss 2.8431, time 5.48s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920300: loss 2.8415, time 5.55s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920350: loss 2.8444, time 5.61s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920400: loss 2.8366, time 5.50s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920450: loss 2.8316, time 5.56s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920500: loss 2.8316, time 5.50s
06-12 03:07 - modeling.trainer - INFO - train - iter 1920550: loss 2.8245, time 5.51s
06-12 03:08 - modeling.trainer - INFO - train - iter 1920600: loss 2.8348, time 5.55s
06-12 03:08 - modeling.trainer - INFO - train - iter 1920650: loss 2.8324, time 5.56s
06-12 03:08 - modeling.trainer - INFO - train - iter 1920700: loss 2.8354, time 5.44s
06-12 03:08 - modeling.trainer - INFO - train - iter 1920750: loss 2.8444, time 5.48s
06-12 03:08 - modeling.trainer - INFO - train - iter 1920800: loss 2.8304, time 5.53s
06-12 03:08 - modeling.trainer - INFO - train - iter 1920850: loss 2.8354, time 5.45s
06-12 03:08 - modeling.trainer - INFO - train - iter 1920900: loss 2.8410, time 5.52s
06-12 03:08 - modeling.trainer - INFO - train - iter 1920950: loss 2.8346, time 5.52s
06-12 03:08 - modeling.trainer - INFO - train - iter 1921000: loss 2.8353, time 5.47s
06-12 03:08 - modeling.trainer - INFO - train - iter 1921050: loss 2.8329, time 5.46s
06-12 03:09 - modeling.trainer - INFO - train - iter 1921100: loss 2.8326, time 5.51s
06-12 03:09 - modeling.trainer - INFO - train - iter 1921150: loss 2.8297, time 5.46s
06-12 03:09 - modeling.trainer - INFO - train - iter 1921200: loss 2.8343, time 5.45s