text
stringlengths
54
260
06-12 02:41 - modeling.trainer - INFO - train - iter 1906650: loss 2.8406, time 5.75s
06-12 02:41 - modeling.trainer - INFO - train - iter 1906700: loss 2.8419, time 5.81s
06-12 02:41 - modeling.trainer - INFO - train - iter 1906750: loss 2.8336, time 5.78s
06-12 02:41 - modeling.trainer - INFO - train - iter 1906800: loss 2.8283, time 5.79s
06-12 02:41 - modeling.trainer - INFO - train - iter 1906850: loss 2.8395, time 5.80s
06-12 02:42 - modeling.trainer - INFO - train - iter 1906900: loss 2.8434, time 5.77s
06-12 02:42 - modeling.trainer - INFO - train - iter 1906950: loss 2.8411, time 5.84s
06-12 02:42 - modeling.trainer - INFO - train - iter 1907000: loss 2.8304, time 5.83s
06-12 02:42 - modeling.trainer - INFO - train - iter 1907050: loss 2.8322, time 5.82s
06-12 02:42 - modeling.trainer - INFO - train - iter 1907100: loss 2.8374, time 5.69s
06-12 02:42 - modeling.trainer - INFO - train - iter 1907150: loss 2.8326, time 5.75s
06-12 02:42 - modeling.trainer - INFO - train - iter 1907200: loss 2.8369, time 5.75s
06-12 02:42 - modeling.trainer - INFO - train - iter 1907250: loss 2.8362, time 5.77s
06-12 02:42 - modeling.trainer - INFO - train - iter 1907300: loss 2.8318, time 5.78s
06-12 02:42 - modeling.trainer - INFO - train - iter 1907350: loss 2.8357, time 5.78s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907400: loss 2.8344, time 5.71s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907450: loss 2.8310, time 5.78s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907500: loss 2.8404, time 5.77s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907550: loss 2.8458, time 5.77s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907600: loss 2.8403, time 5.79s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907650: loss 2.8474, time 5.69s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907700: loss 2.8428, time 5.71s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907750: loss 2.8323, time 5.69s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907800: loss 2.8333, time 5.70s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907850: loss 2.8380, time 5.76s
06-12 02:43 - modeling.trainer - INFO - train - iter 1907900: loss 2.8379, time 5.64s
06-12 02:44 - modeling.trainer - INFO - train - iter 1907950: loss 2.8339, time 5.77s
06-12 02:44 - modeling.trainer - INFO - train - iter 1908000: loss 2.8349, time 6.42s
06-12 02:44 - modeling.trainer - INFO - train - iter 1908050: loss 2.8449, time 5.64s
06-12 02:44 - modeling.trainer - INFO - train - iter 1908100: loss 2.8463, time 5.70s
06-12 02:44 - modeling.trainer - INFO - train - iter 1908150: loss 2.8356, time 5.78s
06-12 02:44 - modeling.trainer - INFO - train - iter 1908200: loss 2.8337, time 5.69s
06-12 02:44 - modeling.trainer - INFO - train - iter 1908250: loss 2.8329, time 5.79s
06-12 02:44 - modeling.trainer - INFO - train - iter 1908300: loss 2.8388, time 5.66s
06-12 02:44 - modeling.trainer - INFO - train - iter 1908350: loss 2.8439, time 5.66s
06-12 02:44 - modeling.trainer - INFO - train - iter 1908400: loss 2.8401, time 5.70s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908450: loss 2.8260, time 5.77s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908500: loss 2.8231, time 5.69s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908550: loss 2.8318, time 5.66s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908600: loss 2.8336, time 5.77s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908650: loss 2.8355, time 5.71s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908700: loss 2.8308, time 5.75s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908750: loss 2.8317, time 5.68s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908800: loss 2.8338, time 5.70s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908850: loss 2.8258, time 5.64s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908900: loss 2.8308, time 5.66s
06-12 02:45 - modeling.trainer - INFO - train - iter 1908950: loss 2.8348, time 5.66s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909000: loss 2.8311, time 5.69s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909050: loss 2.8316, time 5.67s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909100: loss 2.8396, time 5.72s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909150: loss 2.8406, time 5.59s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909200: loss 2.8213, time 5.63s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909250: loss 2.8203, time 5.66s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909300: loss 2.8333, time 5.67s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909350: loss 2.8314, time 5.67s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909400: loss 2.8257, time 5.70s
06-12 02:46 - modeling.trainer - INFO - train - iter 1909450: loss 2.8272, time 5.69s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909500: loss 2.8361, time 5.66s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909550: loss 2.8404, time 5.65s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909600: loss 2.8361, time 5.73s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909650: loss 2.8332, time 5.75s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909700: loss 2.8286, time 5.68s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909750: loss 2.8186, time 5.63s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909800: loss 2.8276, time 6.32s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909850: loss 2.8361, time 5.60s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909900: loss 2.8272, time 5.64s
06-12 02:47 - modeling.trainer - INFO - train - iter 1909950: loss 2.8269, time 5.64s
06-12 02:48 - modeling.trainer - INFO - val - iter 1910000: lm_loss 1.3545, value_loss 0.7337, time_loss 0.6638, loss 2.7520, time 4.43s
06-12 02:48 - modeling.trainer - INFO - new best val loss 2.7520
06-12 02:48 - modeling.trainer - INFO - saved checkpoint to models/medium/best.pt
06-12 02:48 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 02:48 - modeling.trainer - INFO - train - iter 1910000: loss 2.8372, time 18.95s
06-12 02:48 - modeling.trainer - INFO - train - iter 1910050: loss 2.8496, time 5.65s
06-12 02:48 - modeling.trainer - INFO - train - iter 1910100: loss 2.8459, time 5.63s
06-12 02:48 - modeling.trainer - INFO - train - iter 1910150: loss 2.8315, time 5.72s
06-12 02:48 - modeling.trainer - INFO - train - iter 1910200: loss 2.8326, time 5.65s
06-12 02:48 - modeling.trainer - INFO - train - iter 1910250: loss 2.8378, time 5.63s
06-12 02:48 - modeling.trainer - INFO - train - iter 1910300: loss 2.8333, time 5.64s
06-12 02:48 - modeling.trainer - INFO - train - iter 1910350: loss 2.8330, time 5.62s
06-12 02:48 - modeling.trainer - INFO - train - iter 1910400: loss 2.8317, time 5.73s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910450: loss 2.8264, time 5.68s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910500: loss 2.8375, time 5.60s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910550: loss 2.8410, time 5.65s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910600: loss 2.8367, time 5.63s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910650: loss 2.8333, time 5.58s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910700: loss 2.8276, time 5.61s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910750: loss 2.8331, time 5.62s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910800: loss 2.8279, time 5.68s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910850: loss 2.8251, time 5.61s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910900: loss 2.8369, time 5.61s
06-12 02:49 - modeling.trainer - INFO - train - iter 1910950: loss 2.8332, time 5.64s
06-12 02:50 - modeling.trainer - INFO - train - iter 1911000: loss 2.8177, time 5.62s
06-12 02:50 - modeling.trainer - INFO - train - iter 1911050: loss 2.8188, time 5.64s
06-12 02:50 - modeling.trainer - INFO - train - iter 1911100: loss 2.8337, time 5.63s
06-12 02:50 - modeling.trainer - INFO - train - iter 1911150: loss 2.8424, time 5.64s
06-12 02:50 - modeling.trainer - INFO - train - iter 1911200: loss 2.8435, time 5.57s
06-12 02:50 - modeling.trainer - INFO - train - iter 1911250: loss 2.8422, time 5.61s
06-12 02:50 - modeling.trainer - INFO - train - iter 1911300: loss 2.8432, time 5.60s
06-12 02:50 - modeling.trainer - INFO - train - iter 1911350: loss 2.8438, time 5.57s
06-12 02:50 - modeling.trainer - INFO - train - iter 1911400: loss 2.8252, time 5.60s