text
stringlengths 54
260
|
---|
06-12 02:31 - modeling.trainer - INFO - train - iter 1901650: loss 2.8260, time 5.91s
|
06-12 02:31 - modeling.trainer - INFO - train - iter 1901700: loss 2.8197, time 5.96s
|
06-12 02:31 - modeling.trainer - INFO - train - iter 1901750: loss 2.8343, time 5.88s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1901800: loss 2.8468, time 5.92s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1901850: loss 2.8317, time 5.93s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1901900: loss 2.8266, time 5.86s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1901950: loss 2.8358, time 5.84s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1902000: loss 2.8363, time 5.87s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1902050: loss 2.8318, time 5.85s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1902100: loss 2.8322, time 5.83s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1902150: loss 2.8336, time 5.84s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1902200: loss 2.8336, time 5.85s
|
06-12 02:32 - modeling.trainer - INFO - train - iter 1902250: loss 2.8399, time 5.94s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902300: loss 2.8359, time 5.94s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902350: loss 2.8315, time 5.90s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902400: loss 2.8347, time 5.85s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902450: loss 2.8299, time 5.85s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902500: loss 2.8361, time 5.80s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902550: loss 2.8353, time 5.91s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902600: loss 2.8265, time 5.91s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902650: loss 2.8273, time 5.93s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902700: loss 2.8303, time 5.97s
|
06-12 02:33 - modeling.trainer - INFO - train - iter 1902750: loss 2.8359, time 5.86s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1902800: loss 2.8338, time 6.53s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1902850: loss 2.8316, time 5.84s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1902900: loss 2.8366, time 5.84s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1902950: loss 2.8318, time 5.89s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1903000: loss 2.8233, time 5.95s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1903050: loss 2.8290, time 5.80s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1903100: loss 2.8354, time 5.85s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1903150: loss 2.8387, time 5.85s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1903200: loss 2.8394, time 5.90s
|
06-12 02:34 - modeling.trainer - INFO - train - iter 1903250: loss 2.8372, time 5.90s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903300: loss 2.8420, time 5.84s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903350: loss 2.8445, time 5.87s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903400: loss 2.8411, time 5.87s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903450: loss 2.8416, time 5.88s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903500: loss 2.8442, time 5.83s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903550: loss 2.8354, time 5.82s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903600: loss 2.8290, time 5.83s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903650: loss 2.8289, time 5.87s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903700: loss 2.8280, time 5.87s
|
06-12 02:35 - modeling.trainer - INFO - train - iter 1903750: loss 2.8337, time 5.83s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1903800: loss 2.8375, time 5.87s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1903850: loss 2.8363, time 5.79s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1903900: loss 2.8377, time 5.88s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1903950: loss 2.8384, time 5.89s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1904000: loss 2.8348, time 5.91s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1904050: loss 2.8284, time 6.02s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1904100: loss 2.8253, time 5.90s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1904150: loss 2.8323, time 5.85s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1904200: loss 2.8428, time 5.81s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1904250: loss 2.8453, time 5.86s
|
06-12 02:36 - modeling.trainer - INFO - train - iter 1904300: loss 2.8379, time 5.78s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904350: loss 2.8334, time 5.85s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904400: loss 2.8375, time 5.83s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904450: loss 2.8419, time 5.83s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904500: loss 2.8356, time 5.78s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904550: loss 2.8338, time 6.55s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904600: loss 2.8296, time 5.82s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904650: loss 2.8307, time 5.93s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904700: loss 2.8311, time 5.87s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904750: loss 2.8295, time 5.84s
|
06-12 02:37 - modeling.trainer - INFO - train - iter 1904800: loss 2.8313, time 5.85s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1904850: loss 2.8230, time 5.94s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1904900: loss 2.8302, time 5.88s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1904950: loss 2.8411, time 5.89s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1905000: loss 2.8455, time 5.81s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1905050: loss 2.8399, time 5.81s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1905100: loss 2.8367, time 5.85s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1905150: loss 2.8407, time 5.83s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1905200: loss 2.8387, time 5.79s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1905250: loss 2.8354, time 5.82s
|
06-12 02:38 - modeling.trainer - INFO - train - iter 1905300: loss 2.8405, time 5.74s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905350: loss 2.8456, time 5.85s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905400: loss 2.8397, time 5.78s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905450: loss 2.8306, time 5.76s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905500: loss 2.8290, time 5.84s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905550: loss 2.8376, time 5.85s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905600: loss 2.8349, time 5.88s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905650: loss 2.8260, time 5.86s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905700: loss 2.8340, time 5.81s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905750: loss 2.8465, time 5.78s
|
06-12 02:39 - modeling.trainer - INFO - train - iter 1905800: loss 2.8435, time 5.75s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1905850: loss 2.8345, time 5.85s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1905900: loss 2.8352, time 5.87s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1905950: loss 2.8321, time 5.82s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1906000: loss 2.8296, time 5.79s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1906050: loss 2.8292, time 5.79s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1906100: loss 2.8322, time 5.80s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1906150: loss 2.8358, time 5.84s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1906200: loss 2.8357, time 5.85s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1906250: loss 2.8261, time 5.79s
|
06-12 02:40 - modeling.trainer - INFO - train - iter 1906300: loss 2.8236, time 6.45s
|
06-12 02:41 - modeling.trainer - INFO - train - iter 1906350: loss 2.8379, time 5.75s
|
06-12 02:41 - modeling.trainer - INFO - train - iter 1906400: loss 2.8406, time 5.83s
|
06-12 02:41 - modeling.trainer - INFO - train - iter 1906450: loss 2.8358, time 5.77s
|
06-12 02:41 - modeling.trainer - INFO - train - iter 1906500: loss 2.8365, time 5.83s
|
06-12 02:41 - modeling.trainer - INFO - train - iter 1906550: loss 2.8378, time 5.82s
|
06-12 02:41 - modeling.trainer - INFO - train - iter 1906600: loss 2.8397, time 5.68s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.