text
stringlengths
54
260
06-12 02:21 - modeling.trainer - INFO - train - iter 1896750: loss 2.8220, time 6.04s
06-12 02:21 - modeling.trainer - INFO - train - iter 1896800: loss 2.8142, time 6.06s
06-12 02:22 - modeling.trainer - INFO - train - iter 1896850: loss 2.8239, time 6.14s
06-12 02:22 - modeling.trainer - INFO - train - iter 1896900: loss 2.8372, time 6.14s
06-12 02:22 - modeling.trainer - INFO - train - iter 1896950: loss 2.8357, time 6.14s
06-12 02:22 - modeling.trainer - INFO - train - iter 1897000: loss 2.8380, time 6.09s
06-12 02:22 - modeling.trainer - INFO - train - iter 1897050: loss 2.8383, time 6.06s
06-12 02:22 - modeling.trainer - INFO - train - iter 1897100: loss 2.8348, time 6.04s
06-12 02:22 - modeling.trainer - INFO - train - iter 1897150: loss 2.8349, time 6.05s
06-12 02:22 - modeling.trainer - INFO - train - iter 1897200: loss 2.8289, time 6.11s
06-12 02:22 - modeling.trainer - INFO - train - iter 1897250: loss 2.8328, time 6.07s
06-12 02:22 - modeling.trainer - INFO - train - iter 1897300: loss 2.8383, time 6.18s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897350: loss 2.8372, time 6.05s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897400: loss 2.8345, time 6.06s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897450: loss 2.8298, time 6.05s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897500: loss 2.8342, time 6.08s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897550: loss 2.8302, time 6.75s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897600: loss 2.8298, time 6.04s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897650: loss 2.8341, time 5.99s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897700: loss 2.8324, time 6.01s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897750: loss 2.8271, time 6.02s
06-12 02:23 - modeling.trainer - INFO - train - iter 1897800: loss 2.8299, time 6.00s
06-12 02:24 - modeling.trainer - INFO - train - iter 1897850: loss 2.8284, time 6.07s
06-12 02:24 - modeling.trainer - INFO - train - iter 1897900: loss 2.8177, time 5.99s
06-12 02:24 - modeling.trainer - INFO - train - iter 1897950: loss 2.8318, time 6.06s
06-12 02:24 - modeling.trainer - INFO - train - iter 1898000: loss 2.8461, time 5.98s
06-12 02:24 - modeling.trainer - INFO - train - iter 1898050: loss 2.8415, time 5.94s
06-12 02:24 - modeling.trainer - INFO - train - iter 1898100: loss 2.8317, time 5.98s
06-12 02:24 - modeling.trainer - INFO - train - iter 1898150: loss 2.8326, time 6.02s
06-12 02:24 - modeling.trainer - INFO - train - iter 1898200: loss 2.8320, time 6.02s
06-12 02:24 - modeling.trainer - INFO - train - iter 1898250: loss 2.8344, time 5.99s
06-12 02:24 - modeling.trainer - INFO - train - iter 1898300: loss 2.8440, time 5.98s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898350: loss 2.8395, time 6.03s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898400: loss 2.8352, time 6.01s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898450: loss 2.8386, time 5.97s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898500: loss 2.8419, time 5.93s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898550: loss 2.8402, time 6.05s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898600: loss 2.8286, time 6.02s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898650: loss 2.8310, time 5.98s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898700: loss 2.8423, time 5.94s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898750: loss 2.8379, time 6.02s
06-12 02:25 - modeling.trainer - INFO - train - iter 1898800: loss 2.8441, time 6.00s
06-12 02:26 - modeling.trainer - INFO - train - iter 1898850: loss 2.8404, time 6.08s
06-12 02:26 - modeling.trainer - INFO - train - iter 1898900: loss 2.8278, time 5.97s
06-12 02:26 - modeling.trainer - INFO - train - iter 1898950: loss 2.8325, time 6.00s
06-12 02:26 - modeling.trainer - INFO - train - iter 1899000: loss 2.8406, time 5.90s
06-12 02:26 - modeling.trainer - INFO - train - iter 1899050: loss 2.8428, time 5.95s
06-12 02:26 - modeling.trainer - INFO - train - iter 1899100: loss 2.8373, time 6.04s
06-12 02:26 - modeling.trainer - INFO - train - iter 1899150: loss 2.8194, time 5.97s
06-12 02:26 - modeling.trainer - INFO - train - iter 1899200: loss 2.8239, time 5.95s
06-12 02:26 - modeling.trainer - INFO - train - iter 1899250: loss 2.8389, time 5.98s
06-12 02:26 - modeling.trainer - INFO - train - iter 1899300: loss 2.8346, time 6.63s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899350: loss 2.8313, time 5.98s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899400: loss 2.8333, time 5.93s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899450: loss 2.8348, time 6.01s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899500: loss 2.8297, time 5.93s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899550: loss 2.8270, time 6.03s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899600: loss 2.8354, time 5.99s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899650: loss 2.8344, time 5.96s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899700: loss 2.8241, time 5.99s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899750: loss 2.8291, time 5.91s
06-12 02:27 - modeling.trainer - INFO - train - iter 1899800: loss 2.8397, time 5.95s
06-12 02:28 - modeling.trainer - INFO - train - iter 1899850: loss 2.8480, time 5.96s
06-12 02:28 - modeling.trainer - INFO - train - iter 1899900: loss 2.8437, time 5.99s
06-12 02:28 - modeling.trainer - INFO - train - iter 1899950: loss 2.8364, time 6.04s
06-12 02:28 - modeling.trainer - INFO - val - iter 1900000: lm_loss 1.3548, value_loss 0.7351, time_loss 0.6638, loss 2.7537, time 4.40s
06-12 02:28 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 02:28 - modeling.trainer - INFO - train - iter 1900000: loss 2.8412, time 14.43s
06-12 02:28 - modeling.trainer - INFO - train - iter 1900050: loss 2.8390, time 5.94s
06-12 02:28 - modeling.trainer - INFO - train - iter 1900100: loss 2.8339, time 5.96s
06-12 02:28 - modeling.trainer - INFO - train - iter 1900150: loss 2.8327, time 6.01s
06-12 02:28 - modeling.trainer - INFO - train - iter 1900200: loss 2.8306, time 5.89s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900250: loss 2.8320, time 5.96s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900300: loss 2.8301, time 5.94s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900350: loss 2.8335, time 5.91s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900400: loss 2.8446, time 5.93s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900450: loss 2.8453, time 5.90s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900500: loss 2.8331, time 5.96s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900550: loss 2.8290, time 5.91s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900600: loss 2.8412, time 5.87s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900650: loss 2.8442, time 5.94s
06-12 02:29 - modeling.trainer - INFO - train - iter 1900700: loss 2.8369, time 5.94s
06-12 02:30 - modeling.trainer - INFO - train - iter 1900750: loss 2.8336, time 5.94s
06-12 02:30 - modeling.trainer - INFO - train - iter 1900800: loss 2.8349, time 5.98s
06-12 02:30 - modeling.trainer - INFO - train - iter 1900850: loss 2.8308, time 5.90s
06-12 02:30 - modeling.trainer - INFO - train - iter 1900900: loss 2.8235, time 5.93s
06-12 02:30 - modeling.trainer - INFO - train - iter 1900950: loss 2.8321, time 5.91s
06-12 02:30 - modeling.trainer - INFO - train - iter 1901000: loss 2.8429, time 5.95s
06-12 02:30 - modeling.trainer - INFO - train - iter 1901050: loss 2.8340, time 6.60s
06-12 02:30 - modeling.trainer - INFO - train - iter 1901100: loss 2.8230, time 5.91s
06-12 02:30 - modeling.trainer - INFO - train - iter 1901150: loss 2.8203, time 5.88s
06-12 02:30 - modeling.trainer - INFO - train - iter 1901200: loss 2.8245, time 5.86s
06-12 02:31 - modeling.trainer - INFO - train - iter 1901250: loss 2.8282, time 6.02s
06-12 02:31 - modeling.trainer - INFO - train - iter 1901300: loss 2.8321, time 5.92s
06-12 02:31 - modeling.trainer - INFO - train - iter 1901350: loss 2.8344, time 5.91s
06-12 02:31 - modeling.trainer - INFO - train - iter 1901400: loss 2.8338, time 5.90s
06-12 02:31 - modeling.trainer - INFO - train - iter 1901450: loss 2.8469, time 6.00s
06-12 02:31 - modeling.trainer - INFO - train - iter 1901500: loss 2.8519, time 5.94s
06-12 02:31 - modeling.trainer - INFO - train - iter 1901550: loss 2.8357, time 5.91s
06-12 02:31 - modeling.trainer - INFO - train - iter 1901600: loss 2.8274, time 5.95s