text
stringlengths
54
260
06-12 02:00 - modeling.trainer - INFO - train - iter 1886950: loss 2.8395, time 6.73s
06-12 02:00 - modeling.trainer - INFO - train - iter 1887000: loss 2.8321, time 6.77s
06-12 02:00 - modeling.trainer - INFO - train - iter 1887050: loss 2.8338, time 6.71s
06-12 02:00 - modeling.trainer - INFO - train - iter 1887100: loss 2.8382, time 6.81s
06-12 02:01 - modeling.trainer - INFO - train - iter 1887150: loss 2.8347, time 7.49s
06-12 02:01 - modeling.trainer - INFO - train - iter 1887200: loss 2.8360, time 6.91s
06-12 02:01 - modeling.trainer - INFO - train - iter 1887250: loss 2.8367, time 6.58s
06-12 02:01 - modeling.trainer - INFO - train - iter 1887300: loss 2.8354, time 6.72s
06-12 02:01 - modeling.trainer - INFO - train - iter 1887350: loss 2.8359, time 6.63s
06-12 02:01 - modeling.trainer - INFO - train - iter 1887400: loss 2.8394, time 6.70s
06-12 02:01 - modeling.trainer - INFO - train - iter 1887450: loss 2.8365, time 6.67s
06-12 02:01 - modeling.trainer - INFO - train - iter 1887500: loss 2.8309, time 6.70s
06-12 02:02 - modeling.trainer - INFO - train - iter 1887550: loss 2.8263, time 6.76s
06-12 02:02 - modeling.trainer - INFO - train - iter 1887600: loss 2.8366, time 6.75s
06-12 02:02 - modeling.trainer - INFO - train - iter 1887650: loss 2.8421, time 6.83s
06-12 02:02 - modeling.trainer - INFO - train - iter 1887700: loss 2.8331, time 6.73s
06-12 02:02 - modeling.trainer - INFO - train - iter 1887750: loss 2.8363, time 6.60s
06-12 02:02 - modeling.trainer - INFO - train - iter 1887800: loss 2.8332, time 6.66s
06-12 02:02 - modeling.trainer - INFO - train - iter 1887850: loss 2.8296, time 6.65s
06-12 02:02 - modeling.trainer - INFO - train - iter 1887900: loss 2.8308, time 6.73s
06-12 02:02 - modeling.trainer - INFO - train - iter 1887950: loss 2.8326, time 6.67s
06-12 02:03 - modeling.trainer - INFO - train - iter 1888000: loss 2.8312, time 6.58s
06-12 02:03 - modeling.trainer - INFO - train - iter 1888050: loss 2.8268, time 6.73s
06-12 02:03 - modeling.trainer - INFO - train - iter 1888100: loss 2.8312, time 6.55s
06-12 02:03 - modeling.trainer - INFO - train - iter 1888150: loss 2.8255, time 6.69s
06-12 02:03 - modeling.trainer - INFO - train - iter 1888200: loss 2.8335, time 6.67s
06-12 02:03 - modeling.trainer - INFO - train - iter 1888250: loss 2.8424, time 6.68s
06-12 02:03 - modeling.trainer - INFO - train - iter 1888300: loss 2.8373, time 6.69s
06-12 02:03 - modeling.trainer - INFO - train - iter 1888350: loss 2.8341, time 6.57s
06-12 02:03 - modeling.trainer - INFO - train - iter 1888400: loss 2.8302, time 6.72s
06-12 02:04 - modeling.trainer - INFO - train - iter 1888450: loss 2.8385, time 6.56s
06-12 02:04 - modeling.trainer - INFO - train - iter 1888500: loss 2.8319, time 6.85s
06-12 02:04 - modeling.trainer - INFO - train - iter 1888550: loss 2.8220, time 6.58s
06-12 02:04 - modeling.trainer - INFO - train - iter 1888600: loss 2.8306, time 6.55s
06-12 02:04 - modeling.trainer - INFO - train - iter 1888650: loss 2.8333, time 6.55s
06-12 02:04 - modeling.trainer - INFO - train - iter 1888700: loss 2.8389, time 6.58s
06-12 02:04 - modeling.trainer - INFO - train - iter 1888750: loss 2.8317, time 6.54s
06-12 02:04 - modeling.trainer - INFO - train - iter 1888800: loss 2.8344, time 6.60s
06-12 02:04 - modeling.trainer - INFO - train - iter 1888850: loss 2.8450, time 6.55s
06-12 02:05 - modeling.trainer - INFO - train - iter 1888900: loss 2.8334, time 7.32s
06-12 02:05 - modeling.trainer - INFO - train - iter 1888950: loss 2.8399, time 6.56s
06-12 02:05 - modeling.trainer - INFO - train - iter 1889000: loss 2.8435, time 6.65s
06-12 02:05 - modeling.trainer - INFO - train - iter 1889050: loss 2.8403, time 6.51s
06-12 02:05 - modeling.trainer - INFO - train - iter 1889100: loss 2.8416, time 6.54s
06-12 02:05 - modeling.trainer - INFO - train - iter 1889150: loss 2.8327, time 6.67s
06-12 02:05 - modeling.trainer - INFO - train - iter 1889200: loss 2.8304, time 6.52s
06-12 02:05 - modeling.trainer - INFO - train - iter 1889250: loss 2.8269, time 6.49s
06-12 02:05 - modeling.trainer - INFO - train - iter 1889300: loss 2.8258, time 6.47s
06-12 02:05 - modeling.trainer - INFO - train - iter 1889350: loss 2.8411, time 6.55s
06-12 02:06 - modeling.trainer - INFO - train - iter 1889400: loss 2.8427, time 6.52s
06-12 02:06 - modeling.trainer - INFO - train - iter 1889450: loss 2.8379, time 6.41s
06-12 02:06 - modeling.trainer - INFO - train - iter 1889500: loss 2.8373, time 6.46s
06-12 02:06 - modeling.trainer - INFO - train - iter 1889550: loss 2.8234, time 6.64s
06-12 02:06 - modeling.trainer - INFO - train - iter 1889600: loss 2.8307, time 6.63s
06-12 02:06 - modeling.trainer - INFO - train - iter 1889650: loss 2.8479, time 6.54s
06-12 02:06 - modeling.trainer - INFO - train - iter 1889700: loss 2.8434, time 6.56s
06-12 02:06 - modeling.trainer - INFO - train - iter 1889750: loss 2.8368, time 6.55s
06-12 02:06 - modeling.trainer - INFO - train - iter 1889800: loss 2.8286, time 6.56s
06-12 02:07 - modeling.trainer - INFO - train - iter 1889850: loss 2.8204, time 6.52s
06-12 02:07 - modeling.trainer - INFO - train - iter 1889900: loss 2.8227, time 6.55s
06-12 02:07 - modeling.trainer - INFO - train - iter 1889950: loss 2.8330, time 6.59s
06-12 02:07 - modeling.trainer - INFO - val - iter 1890000: lm_loss 1.3550, value_loss 0.7346, time_loss 0.6636, loss 2.7532, time 4.20s
06-12 02:07 - modeling.trainer - INFO - new best val loss 2.7532
06-12 02:07 - modeling.trainer - INFO - saved checkpoint to models/medium/best.pt
06-12 02:07 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-12 02:07 - modeling.trainer - INFO - train - iter 1890000: loss 2.8363, time 18.36s
06-12 02:07 - modeling.trainer - INFO - train - iter 1890050: loss 2.8303, time 6.57s
06-12 02:07 - modeling.trainer - INFO - train - iter 1890100: loss 2.8318, time 6.61s
06-12 02:07 - modeling.trainer - INFO - train - iter 1890150: loss 2.8335, time 6.52s
06-12 02:08 - modeling.trainer - INFO - train - iter 1890200: loss 2.8422, time 6.63s
06-12 02:08 - modeling.trainer - INFO - train - iter 1890250: loss 2.8469, time 6.52s
06-12 02:08 - modeling.trainer - INFO - train - iter 1890300: loss 2.8343, time 6.49s
06-12 02:08 - modeling.trainer - INFO - train - iter 1890350: loss 2.8305, time 6.53s
06-12 02:08 - modeling.trainer - INFO - train - iter 1890400: loss 2.8329, time 6.79s
06-12 02:08 - modeling.trainer - INFO - train - iter 1890450: loss 2.8399, time 6.54s
06-12 02:08 - modeling.trainer - INFO - train - iter 1890500: loss 2.8429, time 6.53s
06-12 02:08 - modeling.trainer - INFO - train - iter 1890550: loss 2.8394, time 6.57s
06-12 02:08 - modeling.trainer - INFO - train - iter 1890600: loss 2.8400, time 7.09s
06-12 02:09 - modeling.trainer - INFO - train - iter 1890650: loss 2.8332, time 6.53s
06-12 02:09 - modeling.trainer - INFO - train - iter 1890700: loss 2.8252, time 6.55s
06-12 02:09 - modeling.trainer - INFO - train - iter 1890750: loss 2.8309, time 6.46s
06-12 02:09 - modeling.trainer - INFO - train - iter 1890800: loss 2.8317, time 6.45s
06-12 02:09 - modeling.trainer - INFO - train - iter 1890850: loss 2.8321, time 6.42s
06-12 02:09 - modeling.trainer - INFO - train - iter 1890900: loss 2.8314, time 6.58s
06-12 02:09 - modeling.trainer - INFO - train - iter 1890950: loss 2.8311, time 6.43s
06-12 02:09 - modeling.trainer - INFO - train - iter 1891000: loss 2.8369, time 6.76s
06-12 02:09 - modeling.trainer - INFO - train - iter 1891050: loss 2.8351, time 6.50s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891100: loss 2.8347, time 6.42s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891150: loss 2.8369, time 6.52s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891200: loss 2.8344, time 6.36s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891250: loss 2.8289, time 6.41s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891300: loss 2.8261, time 6.49s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891350: loss 2.8294, time 6.63s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891400: loss 2.8357, time 6.45s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891450: loss 2.8377, time 6.48s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891500: loss 2.8346, time 6.42s
06-12 02:10 - modeling.trainer - INFO - train - iter 1891550: loss 2.8374, time 6.39s
06-12 02:11 - modeling.trainer - INFO - train - iter 1891600: loss 2.8408, time 6.44s
06-12 02:11 - modeling.trainer - INFO - train - iter 1891650: loss 2.8376, time 6.39s
06-12 02:11 - modeling.trainer - INFO - train - iter 1891700: loss 2.8306, time 6.39s