text
stringlengths 54
260
|
---|
06-12 01:49 - modeling.trainer - INFO - train - iter 1881950: loss 2.8255, time 7.03s
|
06-12 01:49 - modeling.trainer - INFO - train - iter 1882000: loss 2.8402, time 7.06s
|
06-12 01:49 - modeling.trainer - INFO - train - iter 1882050: loss 2.8420, time 7.01s
|
06-12 01:49 - modeling.trainer - INFO - train - iter 1882100: loss 2.8326, time 7.11s
|
06-12 01:49 - modeling.trainer - INFO - train - iter 1882150: loss 2.8314, time 7.02s
|
06-12 01:49 - modeling.trainer - INFO - train - iter 1882200: loss 2.8431, time 6.97s
|
06-12 01:49 - modeling.trainer - INFO - train - iter 1882250: loss 2.8353, time 7.08s
|
06-12 01:49 - modeling.trainer - INFO - train - iter 1882300: loss 2.8350, time 7.10s
|
06-12 01:50 - modeling.trainer - INFO - train - iter 1882350: loss 2.8334, time 7.16s
|
06-12 01:50 - modeling.trainer - INFO - train - iter 1882400: loss 2.8378, time 7.06s
|
06-12 01:50 - modeling.trainer - INFO - train - iter 1882450: loss 2.8481, time 7.01s
|
06-12 01:50 - modeling.trainer - INFO - train - iter 1882500: loss 2.8355, time 7.05s
|
06-12 01:50 - modeling.trainer - INFO - train - iter 1882550: loss 2.8339, time 7.00s
|
06-12 01:50 - modeling.trainer - INFO - train - iter 1882600: loss 2.8323, time 6.93s
|
06-12 01:50 - modeling.trainer - INFO - train - iter 1882650: loss 2.8329, time 7.01s
|
06-12 01:50 - modeling.trainer - INFO - train - iter 1882700: loss 2.8355, time 7.05s
|
06-12 01:51 - modeling.trainer - INFO - train - iter 1882750: loss 2.8313, time 7.00s
|
06-12 01:51 - modeling.trainer - INFO - train - iter 1882800: loss 2.8344, time 7.00s
|
06-12 01:51 - modeling.trainer - INFO - train - iter 1882850: loss 2.8408, time 7.11s
|
06-12 01:51 - modeling.trainer - INFO - train - iter 1882900: loss 2.8286, time 6.97s
|
06-12 01:51 - modeling.trainer - INFO - train - iter 1882950: loss 2.8303, time 7.05s
|
06-12 01:51 - modeling.trainer - INFO - train - iter 1883000: loss 2.8495, time 6.93s
|
06-12 01:51 - modeling.trainer - INFO - train - iter 1883050: loss 2.8399, time 6.82s
|
06-12 01:51 - modeling.trainer - INFO - train - iter 1883100: loss 2.8271, time 6.87s
|
06-12 01:51 - modeling.trainer - INFO - train - iter 1883150: loss 2.8356, time 6.96s
|
06-12 01:52 - modeling.trainer - INFO - train - iter 1883200: loss 2.8371, time 6.96s
|
06-12 01:52 - modeling.trainer - INFO - train - iter 1883250: loss 2.8301, time 6.98s
|
06-12 01:52 - modeling.trainer - INFO - train - iter 1883300: loss 2.8317, time 6.91s
|
06-12 01:52 - modeling.trainer - INFO - train - iter 1883350: loss 2.8439, time 6.95s
|
06-12 01:52 - modeling.trainer - INFO - train - iter 1883400: loss 2.8477, time 6.90s
|
06-12 01:52 - modeling.trainer - INFO - train - iter 1883450: loss 2.8375, time 7.04s
|
06-12 01:52 - modeling.trainer - INFO - train - iter 1883500: loss 2.8314, time 6.93s
|
06-12 01:52 - modeling.trainer - INFO - train - iter 1883550: loss 2.8364, time 6.93s
|
06-12 01:53 - modeling.trainer - INFO - train - iter 1883600: loss 2.8336, time 6.89s
|
06-12 01:53 - modeling.trainer - INFO - train - iter 1883650: loss 2.8367, time 7.57s
|
06-12 01:53 - modeling.trainer - INFO - train - iter 1883700: loss 2.8374, time 6.95s
|
06-12 01:53 - modeling.trainer - INFO - train - iter 1883750: loss 2.8305, time 6.92s
|
06-12 01:53 - modeling.trainer - INFO - train - iter 1883800: loss 2.8340, time 6.93s
|
06-12 01:53 - modeling.trainer - INFO - train - iter 1883850: loss 2.8344, time 6.93s
|
06-12 01:53 - modeling.trainer - INFO - train - iter 1883900: loss 2.8407, time 6.83s
|
06-12 01:53 - modeling.trainer - INFO - train - iter 1883950: loss 2.8381, time 6.83s
|
06-12 01:53 - modeling.trainer - INFO - train - iter 1884000: loss 2.8384, time 6.84s
|
06-12 01:54 - modeling.trainer - INFO - train - iter 1884050: loss 2.8394, time 6.83s
|
06-12 01:54 - modeling.trainer - INFO - train - iter 1884100: loss 2.8377, time 6.80s
|
06-12 01:54 - modeling.trainer - INFO - train - iter 1884150: loss 2.8372, time 6.88s
|
06-12 01:54 - modeling.trainer - INFO - train - iter 1884200: loss 2.8282, time 6.76s
|
06-12 01:54 - modeling.trainer - INFO - train - iter 1884250: loss 2.8323, time 6.90s
|
06-12 01:54 - modeling.trainer - INFO - train - iter 1884300: loss 2.8392, time 6.91s
|
06-12 01:54 - modeling.trainer - INFO - train - iter 1884350: loss 2.8380, time 6.90s
|
06-12 01:54 - modeling.trainer - INFO - train - iter 1884400: loss 2.8339, time 6.89s
|
06-12 01:54 - modeling.trainer - INFO - train - iter 1884450: loss 2.8344, time 6.93s
|
06-12 01:55 - modeling.trainer - INFO - train - iter 1884500: loss 2.8301, time 6.83s
|
06-12 01:55 - modeling.trainer - INFO - train - iter 1884550: loss 2.8175, time 6.75s
|
06-12 01:55 - modeling.trainer - INFO - train - iter 1884600: loss 2.8216, time 6.93s
|
06-12 01:55 - modeling.trainer - INFO - train - iter 1884650: loss 2.8354, time 6.85s
|
06-12 01:55 - modeling.trainer - INFO - train - iter 1884700: loss 2.8409, time 6.86s
|
06-12 01:55 - modeling.trainer - INFO - train - iter 1884750: loss 2.8422, time 6.93s
|
06-12 01:55 - modeling.trainer - INFO - train - iter 1884800: loss 2.8403, time 6.68s
|
06-12 01:55 - modeling.trainer - INFO - train - iter 1884850: loss 2.8371, time 6.85s
|
06-12 01:55 - modeling.trainer - INFO - train - iter 1884900: loss 2.8294, time 6.79s
|
06-12 01:56 - modeling.trainer - INFO - train - iter 1884950: loss 2.8299, time 6.74s
|
06-12 01:56 - modeling.trainer - INFO - train - iter 1885000: loss 2.8373, time 6.88s
|
06-12 01:56 - modeling.trainer - INFO - train - iter 1885050: loss 2.8329, time 6.86s
|
06-12 01:56 - modeling.trainer - INFO - train - iter 1885100: loss 2.8250, time 6.77s
|
06-12 01:56 - modeling.trainer - INFO - train - iter 1885150: loss 2.8208, time 6.82s
|
06-12 01:56 - modeling.trainer - INFO - train - iter 1885200: loss 2.8233, time 6.78s
|
06-12 01:56 - modeling.trainer - INFO - train - iter 1885250: loss 2.8293, time 6.86s
|
06-12 01:56 - modeling.trainer - INFO - train - iter 1885300: loss 2.8345, time 6.89s
|
06-12 01:57 - modeling.trainer - INFO - train - iter 1885350: loss 2.8359, time 6.86s
|
06-12 01:57 - modeling.trainer - INFO - train - iter 1885400: loss 2.8332, time 7.55s
|
06-12 01:57 - modeling.trainer - INFO - train - iter 1885450: loss 2.8333, time 6.87s
|
06-12 01:57 - modeling.trainer - INFO - train - iter 1885500: loss 2.8404, time 6.92s
|
06-12 01:57 - modeling.trainer - INFO - train - iter 1885550: loss 2.8381, time 6.89s
|
06-12 01:57 - modeling.trainer - INFO - train - iter 1885600: loss 2.8349, time 6.76s
|
06-12 01:57 - modeling.trainer - INFO - train - iter 1885650: loss 2.8471, time 6.96s
|
06-12 01:57 - modeling.trainer - INFO - train - iter 1885700: loss 2.8423, time 6.83s
|
06-12 01:57 - modeling.trainer - INFO - train - iter 1885750: loss 2.8365, time 6.79s
|
06-12 01:58 - modeling.trainer - INFO - train - iter 1885800: loss 2.8410, time 6.83s
|
06-12 01:58 - modeling.trainer - INFO - train - iter 1885850: loss 2.8366, time 6.80s
|
06-12 01:58 - modeling.trainer - INFO - train - iter 1885900: loss 2.8377, time 6.78s
|
06-12 01:58 - modeling.trainer - INFO - train - iter 1885950: loss 2.8359, time 6.87s
|
06-12 01:58 - modeling.trainer - INFO - train - iter 1886000: loss 2.8262, time 6.89s
|
06-12 01:58 - modeling.trainer - INFO - train - iter 1886050: loss 2.8262, time 6.72s
|
06-12 01:58 - modeling.trainer - INFO - train - iter 1886100: loss 2.8352, time 6.61s
|
06-12 01:58 - modeling.trainer - INFO - train - iter 1886150: loss 2.8360, time 6.83s
|
06-12 01:58 - modeling.trainer - INFO - train - iter 1886200: loss 2.8337, time 6.70s
|
06-12 01:59 - modeling.trainer - INFO - train - iter 1886250: loss 2.8312, time 6.74s
|
06-12 01:59 - modeling.trainer - INFO - train - iter 1886300: loss 2.8320, time 6.75s
|
06-12 01:59 - modeling.trainer - INFO - train - iter 1886350: loss 2.8379, time 6.83s
|
06-12 01:59 - modeling.trainer - INFO - train - iter 1886400: loss 2.8388, time 6.69s
|
06-12 01:59 - modeling.trainer - INFO - train - iter 1886450: loss 2.8353, time 6.70s
|
06-12 01:59 - modeling.trainer - INFO - train - iter 1886500: loss 2.8306, time 6.64s
|
06-12 01:59 - modeling.trainer - INFO - train - iter 1886550: loss 2.8258, time 6.93s
|
06-12 01:59 - modeling.trainer - INFO - train - iter 1886600: loss 2.8237, time 6.71s
|
06-12 01:59 - modeling.trainer - INFO - train - iter 1886650: loss 2.8221, time 6.67s
|
06-12 02:00 - modeling.trainer - INFO - train - iter 1886700: loss 2.8289, time 6.82s
|
06-12 02:00 - modeling.trainer - INFO - train - iter 1886750: loss 2.8291, time 6.73s
|
06-12 02:00 - modeling.trainer - INFO - train - iter 1886800: loss 2.8305, time 6.73s
|
06-12 02:00 - modeling.trainer - INFO - train - iter 1886850: loss 2.8363, time 6.72s
|
06-12 02:00 - modeling.trainer - INFO - train - iter 1886900: loss 2.8342, time 6.59s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.