text
stringlengths
54
260
06-11 12:00 - modeling.trainer - INFO - train - iter 1878400: loss 2.8362, time 6.64s
06-11 12:00 - modeling.trainer - INFO - train - iter 1878450: loss 2.8369, time 6.72s
06-11 12:00 - modeling.trainer - INFO - train - iter 1878500: loss 2.8267, time 6.82s
06-11 12:00 - modeling.trainer - INFO - train - iter 1878550: loss 2.8257, time 6.66s
06-11 12:00 - modeling.trainer - INFO - train - iter 1878600: loss 2.8497, time 6.68s
06-11 12:01 - modeling.trainer - INFO - train - iter 1878650: loss 2.8401, time 6.62s
06-11 12:01 - modeling.trainer - INFO - train - iter 1878700: loss 2.8240, time 6.67s
06-11 12:01 - modeling.trainer - INFO - train - iter 1878750: loss 2.8321, time 6.72s
06-11 12:01 - modeling.trainer - INFO - train - iter 1878800: loss 2.8382, time 6.62s
06-11 12:01 - modeling.trainer - INFO - train - iter 1878850: loss 2.8450, time 6.71s
06-11 12:01 - modeling.trainer - INFO - train - iter 1878900: loss 2.8537, time 6.75s
06-11 12:01 - modeling.trainer - INFO - train - iter 1878950: loss 2.8501, time 6.55s
06-11 12:01 - modeling.trainer - INFO - train - iter 1879000: loss 2.8314, time 6.68s
06-11 12:01 - modeling.trainer - INFO - train - iter 1879050: loss 2.8225, time 6.62s
06-11 12:02 - modeling.trainer - INFO - train - iter 1879100: loss 2.8314, time 6.62s
06-11 12:02 - modeling.trainer - INFO - train - iter 1879150: loss 2.8384, time 6.68s
06-11 12:02 - modeling.trainer - INFO - train - iter 1879200: loss 2.8435, time 6.65s
06-11 12:02 - modeling.trainer - INFO - train - iter 1879250: loss 2.8365, time 6.65s
06-11 12:02 - modeling.trainer - INFO - train - iter 1879300: loss 2.8242, time 6.64s
06-11 12:02 - modeling.trainer - INFO - train - iter 1879350: loss 2.8275, time 7.35s
06-11 12:02 - modeling.trainer - INFO - train - iter 1879400: loss 2.8316, time 6.73s
06-11 12:02 - modeling.trainer - INFO - train - iter 1879450: loss 2.8323, time 6.87s
06-11 12:02 - modeling.trainer - INFO - train - iter 1879500: loss 2.8351, time 6.68s
06-11 12:03 - modeling.trainer - INFO - train - iter 1879550: loss 2.8333, time 6.55s
06-11 12:03 - modeling.trainer - INFO - train - iter 1879600: loss 2.8357, time 6.87s
06-11 12:03 - modeling.trainer - INFO - train - iter 1879650: loss 2.8382, time 6.72s
06-11 12:03 - modeling.trainer - INFO - train - iter 1879700: loss 2.8252, time 6.58s
06-11 12:03 - modeling.trainer - INFO - train - iter 1879750: loss 2.8250, time 6.72s
06-11 12:03 - modeling.trainer - INFO - train - iter 1879800: loss 2.8335, time 6.69s
06-11 12:03 - modeling.trainer - INFO - train - iter 1879850: loss 2.8364, time 6.64s
06-11 12:03 - modeling.trainer - INFO - train - iter 1879900: loss 2.8289, time 6.72s
06-11 12:03 - modeling.trainer - INFO - train - iter 1879950: loss 2.8269, time 6.75s
06-11 12:04 - modeling.trainer - INFO - val - iter 1880000: lm_loss 1.3553, value_loss 0.7340, time_loss 0.6639, loss 2.7533, time 6.95s
06-11 12:04 - modeling.trainer - INFO - new best val loss 2.7533
06-11 12:04 - modeling.trainer - INFO - saved checkpoint to models/medium/best.pt
06-11 12:04 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-11 12:04 - modeling.trainer - INFO - train - iter 1880000: loss 2.8362, time 21.22s
06-11 12:04 - modeling.trainer - INFO - train - iter 1880050: loss 2.8306, time 6.73s
06-11 12:04 - modeling.trainer - INFO - train - iter 1880100: loss 2.8374, time 7.02s
06-11 12:04 - modeling.trainer - INFO - train - iter 1880150: loss 2.8391, time 7.05s
06-11 12:04 - modeling.trainer - INFO - train - iter 1880200: loss 2.8330, time 6.74s
06-11 12:04 - modeling.trainer - INFO - train - iter 1880250: loss 2.8388, time 6.71s
06-11 12:04 - modeling.trainer - INFO - train - iter 1880300: loss 2.8340, time 6.71s
06-11 12:05 - modeling.trainer - INFO - train - iter 1880350: loss 2.8314, time 6.79s
06-11 12:05 - modeling.trainer - INFO - train - iter 1880400: loss 2.8358, time 6.70s
06-11 12:05 - modeling.trainer - INFO - train - iter 1880450: loss 2.8386, time 6.86s
06-11 12:05 - modeling.trainer - INFO - train - iter 1880500: loss 2.8341, time 6.92s
06-11 12:05 - modeling.trainer - INFO - train - iter 1880550: loss 2.8341, time 6.65s
06-11 12:05 - modeling.trainer - INFO - train - iter 1880600: loss 2.8336, time 6.71s
06-11 12:05 - modeling.trainer - INFO - train - iter 1880650: loss 2.8281, time 6.74s
06-11 12:05 - modeling.trainer - INFO - train - iter 1880700: loss 2.8281, time 6.69s
06-11 12:05 - modeling.trainer - INFO - train - iter 1880750: loss 2.8307, time 6.86s
06-11 12:06 - modeling.trainer - INFO - train - iter 1880800: loss 2.8344, time 6.67s
06-11 12:06 - modeling.trainer - INFO - train - iter 1880850: loss 2.8438, time 6.86s
06-11 12:06 - modeling.trainer - INFO - train - iter 1880900: loss 2.8446, time 6.66s
06-11 12:06 - modeling.trainer - INFO - train - iter 1880950: loss 2.8436, time 6.79s
06-11 12:06 - modeling.trainer - INFO - train - iter 1881000: loss 2.8479, time 6.69s
06-11 12:06 - modeling.trainer - INFO - train - iter 1881050: loss 2.8360, time 7.34s
06-11 12:06 - modeling.trainer - INFO - train - iter 1881100: loss 2.8261, time 6.68s
06-11 12:06 - modeling.trainer - INFO - train - iter 1881150: loss 2.8280, time 6.68s
06-11 12:07 - modeling.trainer - INFO - train - iter 1881200: loss 2.8362, time 6.76s
06-11 12:07 - modeling.trainer - INFO - train - iter 1881250: loss 2.8370, time 6.70s
06-11 12:07 - modeling.trainer - INFO - train - iter 1881300: loss 2.8280, time 6.74s
06-11 12:07 - modeling.trainer - INFO - train - iter 1881350: loss 2.8284, time 6.68s
06-11 12:07 - modeling.trainer - INFO - train - iter 1881400: loss 2.8311, time 6.60s
06-11 12:07 - modeling.trainer - INFO - train - iter 1881450: loss 2.8355, time 6.89s
06-11 12:07 - modeling.trainer - INFO - train - iter 1881500: loss 2.8360, time 6.65s
06-11 12:07 - modeling.trainer - INFO - train - iter 1881550: loss 2.8371, time 6.73s
06-11 12:07 - modeling.trainer - INFO - train - iter 1881600: loss 2.8379, time 6.66s
06-11 12:08 - modeling.trainer - INFO - train - iter 1881650: loss 2.8367, time 6.70s
06-11 12:08 - modeling.trainer - INFO - train - iter 1881700: loss 2.8405, time 6.68s
06-11 12:08 - modeling.trainer - INFO - train - iter 1881750: loss 2.8408, time 6.55s
06-11 12:08 - modeling.trainer - INFO - train - iter 1881800: loss 2.8333, time 6.64s
06-11 12:08 - modeling.trainer - INFO - train - iter 1881850: loss 2.8297, time 6.75s
06-11 12:08 - modeling.trainer - INFO - train - iter 1881900: loss 2.8348, time 6.75s
06-11 12:08 - modeling.trainer - INFO - train - iter 1881950: loss 2.8363, time 6.61s
06-11 12:08 - modeling.trainer - INFO - train - iter 1882000: loss 2.8352, time 6.66s
06-11 12:08 - modeling.trainer - INFO - train - iter 1882050: loss 2.8275, time 6.78s
06-11 12:09 - modeling.trainer - INFO - train - iter 1882100: loss 2.8328, time 6.71s
06-11 12:09 - modeling.trainer - INFO - train - iter 1882150: loss 2.8381, time 6.67s
06-11 12:09 - modeling.trainer - INFO - train - iter 1882200: loss 2.8423, time 6.75s
06-11 12:09 - modeling.trainer - INFO - train - iter 1882250: loss 2.8489, time 6.75s
06-11 12:09 - modeling.trainer - INFO - train - iter 1882300: loss 2.8387, time 6.71s
06-11 12:09 - modeling.trainer - INFO - train - iter 1882350: loss 2.8351, time 6.66s
06-11 12:09 - modeling.trainer - INFO - train - iter 1882400: loss 2.8287, time 6.75s
06-11 12:09 - modeling.trainer - INFO - train - iter 1882450: loss 2.8288, time 6.58s
06-11 12:09 - modeling.trainer - INFO - train - iter 1882500: loss 2.8362, time 6.61s
06-11 12:10 - modeling.trainer - INFO - train - iter 1882550: loss 2.8375, time 6.62s
06-11 12:10 - modeling.trainer - INFO - train - iter 1882600: loss 2.8341, time 6.73s
06-11 12:10 - modeling.trainer - INFO - train - iter 1882650: loss 2.8310, time 6.60s
06-11 12:10 - modeling.trainer - INFO - train - iter 1882700: loss 2.8395, time 6.70s
06-11 12:10 - modeling.trainer - INFO - train - iter 1882750: loss 2.8419, time 6.79s
06-11 12:10 - modeling.trainer - INFO - train - iter 1882800: loss 2.8340, time 7.31s
06-11 12:10 - modeling.trainer - INFO - train - iter 1882850: loss 2.8354, time 6.65s
06-11 12:10 - modeling.trainer - INFO - train - iter 1882900: loss 2.8414, time 6.71s
06-11 12:10 - modeling.trainer - INFO - train - iter 1882950: loss 2.8345, time 6.67s
06-11 12:11 - modeling.trainer - INFO - train - iter 1883000: loss 2.8351, time 6.72s
06-11 12:11 - modeling.trainer - INFO - train - iter 1883050: loss 2.8375, time 6.69s
06-11 12:11 - modeling.trainer - INFO - train - iter 1883100: loss 2.8371, time 6.74s
06-11 12:11 - modeling.trainer - INFO - train - iter 1883150: loss 2.8337, time 6.68s