text
stringlengths
54
260
06-11 11:38 - modeling.trainer - INFO - train - iter 1868500: loss 2.8271, time 6.82s
06-11 11:38 - modeling.trainer - INFO - train - iter 1868550: loss 2.8350, time 6.73s
06-11 11:38 - modeling.trainer - INFO - train - iter 1868600: loss 2.8349, time 6.73s
06-11 11:38 - modeling.trainer - INFO - train - iter 1868650: loss 2.8343, time 6.70s
06-11 11:38 - modeling.trainer - INFO - train - iter 1868700: loss 2.8377, time 6.80s
06-11 11:38 - modeling.trainer - INFO - train - iter 1868750: loss 2.8293, time 6.65s
06-11 11:38 - modeling.trainer - INFO - train - iter 1868800: loss 2.8246, time 6.74s
06-11 11:38 - modeling.trainer - INFO - train - iter 1868850: loss 2.8305, time 6.77s
06-11 11:39 - modeling.trainer - INFO - train - iter 1868900: loss 2.8454, time 7.50s
06-11 11:39 - modeling.trainer - INFO - train - iter 1868950: loss 2.8426, time 6.80s
06-11 11:39 - modeling.trainer - INFO - train - iter 1869000: loss 2.8363, time 6.67s
06-11 11:39 - modeling.trainer - INFO - train - iter 1869050: loss 2.8403, time 6.68s
06-11 11:39 - modeling.trainer - INFO - train - iter 1869100: loss 2.8352, time 6.95s
06-11 11:39 - modeling.trainer - INFO - train - iter 1869150: loss 2.8358, time 6.80s
06-11 11:39 - modeling.trainer - INFO - train - iter 1869200: loss 2.8373, time 6.76s
06-11 11:39 - modeling.trainer - INFO - train - iter 1869250: loss 2.8392, time 6.91s
06-11 11:39 - modeling.trainer - INFO - train - iter 1869300: loss 2.8358, time 6.79s
06-11 11:40 - modeling.trainer - INFO - train - iter 1869350: loss 2.8351, time 6.88s
06-11 11:40 - modeling.trainer - INFO - train - iter 1869400: loss 2.8509, time 6.84s
06-11 11:40 - modeling.trainer - INFO - train - iter 1869450: loss 2.8489, time 6.66s
06-11 11:40 - modeling.trainer - INFO - train - iter 1869500: loss 2.8402, time 6.94s
06-11 11:40 - modeling.trainer - INFO - train - iter 1869550: loss 2.8432, time 6.84s
06-11 11:40 - modeling.trainer - INFO - train - iter 1869600: loss 2.8404, time 6.79s
06-11 11:40 - modeling.trainer - INFO - train - iter 1869650: loss 2.8367, time 6.57s
06-11 11:40 - modeling.trainer - INFO - train - iter 1869700: loss 2.8384, time 6.75s
06-11 11:40 - modeling.trainer - INFO - train - iter 1869750: loss 2.8423, time 6.92s
06-11 11:41 - modeling.trainer - INFO - train - iter 1869800: loss 2.8387, time 6.77s
06-11 11:41 - modeling.trainer - INFO - train - iter 1869850: loss 2.8400, time 6.70s
06-11 11:41 - modeling.trainer - INFO - train - iter 1869900: loss 2.8342, time 6.58s
06-11 11:41 - modeling.trainer - INFO - train - iter 1869950: loss 2.8271, time 6.72s
06-11 11:41 - modeling.trainer - INFO - val - iter 1870000: lm_loss 1.3556, value_loss 0.7343, time_loss 0.6641, loss 2.7539, time 6.83s
06-11 11:41 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-11 11:41 - modeling.trainer - INFO - train - iter 1870000: loss 2.8354, time 17.48s
06-11 11:41 - modeling.trainer - INFO - train - iter 1870050: loss 2.8344, time 6.80s
06-11 11:41 - modeling.trainer - INFO - train - iter 1870100: loss 2.8325, time 6.70s
06-11 11:42 - modeling.trainer - INFO - train - iter 1870150: loss 2.8405, time 6.84s
06-11 11:42 - modeling.trainer - INFO - train - iter 1870200: loss 2.8429, time 6.84s
06-11 11:42 - modeling.trainer - INFO - train - iter 1870250: loss 2.8449, time 6.75s
06-11 11:42 - modeling.trainer - INFO - train - iter 1870300: loss 2.8431, time 6.88s
06-11 11:42 - modeling.trainer - INFO - train - iter 1870350: loss 2.8346, time 6.81s
06-11 11:42 - modeling.trainer - INFO - train - iter 1870400: loss 2.8409, time 6.66s
06-11 11:42 - modeling.trainer - INFO - train - iter 1870450: loss 2.8461, time 6.62s
06-11 11:42 - modeling.trainer - INFO - train - iter 1870500: loss 2.8447, time 6.80s
06-11 11:42 - modeling.trainer - INFO - train - iter 1870550: loss 2.8456, time 6.75s
06-11 11:43 - modeling.trainer - INFO - train - iter 1870600: loss 2.8391, time 7.43s
06-11 11:43 - modeling.trainer - INFO - train - iter 1870650: loss 2.8287, time 6.81s
06-11 11:43 - modeling.trainer - INFO - train - iter 1870700: loss 2.8298, time 6.69s
06-11 11:43 - modeling.trainer - INFO - train - iter 1870750: loss 2.8367, time 6.76s
06-11 11:43 - modeling.trainer - INFO - train - iter 1870800: loss 2.8340, time 6.69s
06-11 11:43 - modeling.trainer - INFO - train - iter 1870850: loss 2.8271, time 6.61s
06-11 11:43 - modeling.trainer - INFO - train - iter 1870900: loss 2.8253, time 6.81s
06-11 11:43 - modeling.trainer - INFO - train - iter 1870950: loss 2.8343, time 6.67s
06-11 11:43 - modeling.trainer - INFO - train - iter 1871000: loss 2.8406, time 6.59s
06-11 11:44 - modeling.trainer - INFO - train - iter 1871050: loss 2.8325, time 6.79s
06-11 11:44 - modeling.trainer - INFO - train - iter 1871100: loss 2.8338, time 6.67s
06-11 11:44 - modeling.trainer - INFO - train - iter 1871150: loss 2.8395, time 6.59s
06-11 11:44 - modeling.trainer - INFO - train - iter 1871200: loss 2.8383, time 6.87s
06-11 11:44 - modeling.trainer - INFO - train - iter 1871250: loss 2.8361, time 6.74s
06-11 11:44 - modeling.trainer - INFO - train - iter 1871300: loss 2.8383, time 6.77s
06-11 11:44 - modeling.trainer - INFO - train - iter 1871350: loss 2.8367, time 6.60s
06-11 11:44 - modeling.trainer - INFO - train - iter 1871400: loss 2.8365, time 6.73s
06-11 11:44 - modeling.trainer - INFO - train - iter 1871450: loss 2.8353, time 6.77s
06-11 11:45 - modeling.trainer - INFO - train - iter 1871500: loss 2.8311, time 6.76s
06-11 11:45 - modeling.trainer - INFO - train - iter 1871550: loss 2.8312, time 6.65s
06-11 11:45 - modeling.trainer - INFO - train - iter 1871600: loss 2.8305, time 6.57s
06-11 11:45 - modeling.trainer - INFO - train - iter 1871650: loss 2.8283, time 7.06s
06-11 11:45 - modeling.trainer - INFO - train - iter 1871700: loss 2.8282, time 6.77s
06-11 11:45 - modeling.trainer - INFO - train - iter 1871750: loss 2.8343, time 6.75s
06-11 11:45 - modeling.trainer - INFO - train - iter 1871800: loss 2.8386, time 6.67s
06-11 11:45 - modeling.trainer - INFO - train - iter 1871850: loss 2.8422, time 6.60s
06-11 11:46 - modeling.trainer - INFO - train - iter 1871900: loss 2.8410, time 6.67s
06-11 11:46 - modeling.trainer - INFO - train - iter 1871950: loss 2.8356, time 6.65s
06-11 11:46 - modeling.trainer - INFO - train - iter 1872000: loss 2.8361, time 6.75s
06-11 11:46 - modeling.trainer - INFO - train - iter 1872050: loss 2.8438, time 6.66s
06-11 11:46 - modeling.trainer - INFO - train - iter 1872100: loss 2.8460, time 6.56s
06-11 11:46 - modeling.trainer - INFO - train - iter 1872150: loss 2.8392, time 6.79s
06-11 11:46 - modeling.trainer - INFO - train - iter 1872200: loss 2.8347, time 6.64s
06-11 11:46 - modeling.trainer - INFO - train - iter 1872250: loss 2.8391, time 6.73s
06-11 11:46 - modeling.trainer - INFO - train - iter 1872300: loss 2.8387, time 6.67s
06-11 11:47 - modeling.trainer - INFO - train - iter 1872350: loss 2.8437, time 7.40s
06-11 11:47 - modeling.trainer - INFO - train - iter 1872400: loss 2.8419, time 6.60s
06-11 11:47 - modeling.trainer - INFO - train - iter 1872450: loss 2.8354, time 6.72s
06-11 11:47 - modeling.trainer - INFO - train - iter 1872500: loss 2.8334, time 6.68s
06-11 11:47 - modeling.trainer - INFO - train - iter 1872550: loss 2.8261, time 6.79s
06-11 11:47 - modeling.trainer - INFO - train - iter 1872600: loss 2.8319, time 6.71s
06-11 11:47 - modeling.trainer - INFO - train - iter 1872650: loss 2.8407, time 6.69s
06-11 11:47 - modeling.trainer - INFO - train - iter 1872700: loss 2.8460, time 6.68s
06-11 11:47 - modeling.trainer - INFO - train - iter 1872750: loss 2.8412, time 6.74s
06-11 11:48 - modeling.trainer - INFO - train - iter 1872800: loss 2.8290, time 6.75s
06-11 11:48 - modeling.trainer - INFO - train - iter 1872850: loss 2.8323, time 6.73s
06-11 11:48 - modeling.trainer - INFO - train - iter 1872900: loss 2.8343, time 6.60s
06-11 11:48 - modeling.trainer - INFO - train - iter 1872950: loss 2.8398, time 6.65s
06-11 11:48 - modeling.trainer - INFO - train - iter 1873000: loss 2.8396, time 6.71s
06-11 11:48 - modeling.trainer - INFO - train - iter 1873050: loss 2.8295, time 6.65s
06-11 11:48 - modeling.trainer - INFO - train - iter 1873100: loss 2.8300, time 6.74s
06-11 11:48 - modeling.trainer - INFO - train - iter 1873150: loss 2.8304, time 6.72s
06-11 11:48 - modeling.trainer - INFO - train - iter 1873200: loss 2.8299, time 6.62s
06-11 11:49 - modeling.trainer - INFO - train - iter 1873250: loss 2.8313, time 6.69s
06-11 11:49 - modeling.trainer - INFO - train - iter 1873300: loss 2.8339, time 6.73s
06-11 11:49 - modeling.trainer - INFO - train - iter 1873350: loss 2.8409, time 6.57s