text
stringlengths
54
260
06-11 11:27 - modeling.trainer - INFO - train - iter 1863500: loss 2.8353, time 6.61s
06-11 11:27 - modeling.trainer - INFO - train - iter 1863550: loss 2.8359, time 6.54s
06-11 11:27 - modeling.trainer - INFO - train - iter 1863600: loss 2.8262, time 6.74s
06-11 11:27 - modeling.trainer - INFO - train - iter 1863650: loss 2.8296, time 6.69s
06-11 11:27 - modeling.trainer - INFO - train - iter 1863700: loss 2.8286, time 7.35s
06-11 11:27 - modeling.trainer - INFO - train - iter 1863750: loss 2.8279, time 6.61s
06-11 11:27 - modeling.trainer - INFO - train - iter 1863800: loss 2.8331, time 6.61s
06-11 11:27 - modeling.trainer - INFO - train - iter 1863850: loss 2.8441, time 6.67s
06-11 11:27 - modeling.trainer - INFO - train - iter 1863900: loss 2.8391, time 6.71s
06-11 11:28 - modeling.trainer - INFO - train - iter 1863950: loss 2.8318, time 6.69s
06-11 11:28 - modeling.trainer - INFO - train - iter 1864000: loss 2.8347, time 6.62s
06-11 11:28 - modeling.trainer - INFO - train - iter 1864050: loss 2.8378, time 6.61s
06-11 11:28 - modeling.trainer - INFO - train - iter 1864100: loss 2.8320, time 6.59s
06-11 11:28 - modeling.trainer - INFO - train - iter 1864150: loss 2.8325, time 6.52s
06-11 11:28 - modeling.trainer - INFO - train - iter 1864200: loss 2.8367, time 6.59s
06-11 11:28 - modeling.trainer - INFO - train - iter 1864250: loss 2.8346, time 6.67s
06-11 11:28 - modeling.trainer - INFO - train - iter 1864300: loss 2.8338, time 6.60s
06-11 11:28 - modeling.trainer - INFO - train - iter 1864350: loss 2.8304, time 6.55s
06-11 11:29 - modeling.trainer - INFO - train - iter 1864400: loss 2.8324, time 6.55s
06-11 11:29 - modeling.trainer - INFO - train - iter 1864450: loss 2.8293, time 6.60s
06-11 11:29 - modeling.trainer - INFO - train - iter 1864500: loss 2.8317, time 6.60s
06-11 11:29 - modeling.trainer - INFO - train - iter 1864550: loss 2.8402, time 6.54s
06-11 11:29 - modeling.trainer - INFO - train - iter 1864600: loss 2.8324, time 6.55s
06-11 11:29 - modeling.trainer - INFO - train - iter 1864650: loss 2.8368, time 6.53s
06-11 11:29 - modeling.trainer - INFO - train - iter 1864700: loss 2.8488, time 6.55s
06-11 11:29 - modeling.trainer - INFO - train - iter 1864750: loss 2.8340, time 6.53s
06-11 11:29 - modeling.trainer - INFO - train - iter 1864800: loss 2.8315, time 6.57s
06-11 11:30 - modeling.trainer - INFO - train - iter 1864850: loss 2.8469, time 6.57s
06-11 11:30 - modeling.trainer - INFO - train - iter 1864900: loss 2.8446, time 6.69s
06-11 11:30 - modeling.trainer - INFO - train - iter 1864950: loss 2.8393, time 6.58s
06-11 11:30 - modeling.trainer - INFO - train - iter 1865000: loss 2.8434, time 6.65s
06-11 11:30 - modeling.trainer - INFO - train - iter 1865050: loss 2.8429, time 6.63s
06-11 11:30 - modeling.trainer - INFO - train - iter 1865100: loss 2.8322, time 6.67s
06-11 11:30 - modeling.trainer - INFO - train - iter 1865150: loss 2.8392, time 6.59s
06-11 11:30 - modeling.trainer - INFO - train - iter 1865200: loss 2.8458, time 6.59s
06-11 11:30 - modeling.trainer - INFO - train - iter 1865250: loss 2.8397, time 6.70s
06-11 11:31 - modeling.trainer - INFO - train - iter 1865300: loss 2.8314, time 6.60s
06-11 11:31 - modeling.trainer - INFO - train - iter 1865350: loss 2.8283, time 6.65s
06-11 11:31 - modeling.trainer - INFO - train - iter 1865400: loss 2.8317, time 7.18s
06-11 11:31 - modeling.trainer - INFO - train - iter 1865450: loss 2.8332, time 6.59s
06-11 11:31 - modeling.trainer - INFO - train - iter 1865500: loss 2.8425, time 6.68s
06-11 11:31 - modeling.trainer - INFO - train - iter 1865550: loss 2.8449, time 6.66s
06-11 11:31 - modeling.trainer - INFO - train - iter 1865600: loss 2.8346, time 6.55s
06-11 11:31 - modeling.trainer - INFO - train - iter 1865650: loss 2.8242, time 6.59s
06-11 11:31 - modeling.trainer - INFO - train - iter 1865700: loss 2.8313, time 6.55s
06-11 11:32 - modeling.trainer - INFO - train - iter 1865750: loss 2.8349, time 6.65s
06-11 11:32 - modeling.trainer - INFO - train - iter 1865800: loss 2.8382, time 6.74s
06-11 11:32 - modeling.trainer - INFO - train - iter 1865850: loss 2.8420, time 6.68s
06-11 11:32 - modeling.trainer - INFO - train - iter 1865900: loss 2.8364, time 6.60s
06-11 11:32 - modeling.trainer - INFO - train - iter 1865950: loss 2.8283, time 6.63s
06-11 11:32 - modeling.trainer - INFO - train - iter 1866000: loss 2.8257, time 6.75s
06-11 11:32 - modeling.trainer - INFO - train - iter 1866050: loss 2.8347, time 6.65s
06-11 11:32 - modeling.trainer - INFO - train - iter 1866100: loss 2.8341, time 6.65s
06-11 11:32 - modeling.trainer - INFO - train - iter 1866150: loss 2.8363, time 6.69s
06-11 11:33 - modeling.trainer - INFO - train - iter 1866200: loss 2.8358, time 6.60s
06-11 11:33 - modeling.trainer - INFO - train - iter 1866250: loss 2.8296, time 6.62s
06-11 11:33 - modeling.trainer - INFO - train - iter 1866300: loss 2.8308, time 6.58s
06-11 11:33 - modeling.trainer - INFO - train - iter 1866350: loss 2.8318, time 6.60s
06-11 11:33 - modeling.trainer - INFO - train - iter 1866400: loss 2.8319, time 6.62s
06-11 11:33 - modeling.trainer - INFO - train - iter 1866450: loss 2.8412, time 6.72s
06-11 11:33 - modeling.trainer - INFO - train - iter 1866500: loss 2.8487, time 6.76s
06-11 11:33 - modeling.trainer - INFO - train - iter 1866550: loss 2.8392, time 6.73s
06-11 11:33 - modeling.trainer - INFO - train - iter 1866600: loss 2.8384, time 6.68s
06-11 11:34 - modeling.trainer - INFO - train - iter 1866650: loss 2.8451, time 6.60s
06-11 11:34 - modeling.trainer - INFO - train - iter 1866700: loss 2.8364, time 6.76s
06-11 11:34 - modeling.trainer - INFO - train - iter 1866750: loss 2.8309, time 6.66s
06-11 11:34 - modeling.trainer - INFO - train - iter 1866800: loss 2.8358, time 6.66s
06-11 11:34 - modeling.trainer - INFO - train - iter 1866850: loss 2.8386, time 6.59s
06-11 11:34 - modeling.trainer - INFO - train - iter 1866900: loss 2.8359, time 6.65s
06-11 11:34 - modeling.trainer - INFO - train - iter 1866950: loss 2.8405, time 6.65s
06-11 11:34 - modeling.trainer - INFO - train - iter 1867000: loss 2.8438, time 6.61s
06-11 11:34 - modeling.trainer - INFO - train - iter 1867050: loss 2.8393, time 6.66s
06-11 11:35 - modeling.trainer - INFO - train - iter 1867100: loss 2.8449, time 6.66s
06-11 11:35 - modeling.trainer - INFO - train - iter 1867150: loss 2.8395, time 7.42s
06-11 11:35 - modeling.trainer - INFO - train - iter 1867200: loss 2.8301, time 6.75s
06-11 11:35 - modeling.trainer - INFO - train - iter 1867250: loss 2.8337, time 6.74s
06-11 11:35 - modeling.trainer - INFO - train - iter 1867300: loss 2.8373, time 6.66s
06-11 11:35 - modeling.trainer - INFO - train - iter 1867350: loss 2.8334, time 6.63s
06-11 11:35 - modeling.trainer - INFO - train - iter 1867400: loss 2.8291, time 6.68s
06-11 11:35 - modeling.trainer - INFO - train - iter 1867450: loss 2.8339, time 6.64s
06-11 11:35 - modeling.trainer - INFO - train - iter 1867500: loss 2.8454, time 6.79s
06-11 11:36 - modeling.trainer - INFO - train - iter 1867550: loss 2.8454, time 6.76s
06-11 11:36 - modeling.trainer - INFO - train - iter 1867600: loss 2.8382, time 6.80s
06-11 11:36 - modeling.trainer - INFO - train - iter 1867650: loss 2.8296, time 6.68s
06-11 11:36 - modeling.trainer - INFO - train - iter 1867700: loss 2.8275, time 6.67s
06-11 11:36 - modeling.trainer - INFO - train - iter 1867750: loss 2.8308, time 6.75s
06-11 11:36 - modeling.trainer - INFO - train - iter 1867800: loss 2.8242, time 6.94s
06-11 11:36 - modeling.trainer - INFO - train - iter 1867850: loss 2.8263, time 6.63s
06-11 11:36 - modeling.trainer - INFO - train - iter 1867900: loss 2.8393, time 6.63s
06-11 11:36 - modeling.trainer - INFO - train - iter 1867950: loss 2.8475, time 6.64s
06-11 11:37 - modeling.trainer - INFO - train - iter 1868000: loss 2.8365, time 6.70s
06-11 11:37 - modeling.trainer - INFO - train - iter 1868050: loss 2.8304, time 6.78s
06-11 11:37 - modeling.trainer - INFO - train - iter 1868100: loss 2.8364, time 7.03s
06-11 11:37 - modeling.trainer - INFO - train - iter 1868150: loss 2.8376, time 6.60s
06-11 11:37 - modeling.trainer - INFO - train - iter 1868200: loss 2.8378, time 6.74s
06-11 11:37 - modeling.trainer - INFO - train - iter 1868250: loss 2.8420, time 6.76s
06-11 11:37 - modeling.trainer - INFO - train - iter 1868300: loss 2.8438, time 6.73s
06-11 11:37 - modeling.trainer - INFO - train - iter 1868350: loss 2.8362, time 6.60s
06-11 11:37 - modeling.trainer - INFO - train - iter 1868400: loss 2.8323, time 6.86s
06-11 11:38 - modeling.trainer - INFO - train - iter 1868450: loss 2.8300, time 6.64s