text
stringlengths
54
260
06-11 11:49 - modeling.trainer - INFO - train - iter 1873400: loss 2.8345, time 6.69s
06-11 11:49 - modeling.trainer - INFO - train - iter 1873450: loss 2.8247, time 6.65s
06-11 11:49 - modeling.trainer - INFO - train - iter 1873500: loss 2.8427, time 6.69s
06-11 11:49 - modeling.trainer - INFO - train - iter 1873550: loss 2.8499, time 6.65s
06-11 11:49 - modeling.trainer - INFO - train - iter 1873600: loss 2.8459, time 6.70s
06-11 11:49 - modeling.trainer - INFO - train - iter 1873650: loss 2.8415, time 6.58s
06-11 11:50 - modeling.trainer - INFO - train - iter 1873700: loss 2.8296, time 6.61s
06-11 11:50 - modeling.trainer - INFO - train - iter 1873750: loss 2.8278, time 6.74s
06-11 11:50 - modeling.trainer - INFO - train - iter 1873800: loss 2.8336, time 6.70s
06-11 11:50 - modeling.trainer - INFO - train - iter 1873850: loss 2.8305, time 6.66s
06-11 11:50 - modeling.trainer - INFO - train - iter 1873900: loss 2.8309, time 6.65s
06-11 11:50 - modeling.trainer - INFO - train - iter 1873950: loss 2.8302, time 6.71s
06-11 11:50 - modeling.trainer - INFO - train - iter 1874000: loss 2.8344, time 6.74s
06-11 11:50 - modeling.trainer - INFO - train - iter 1874050: loss 2.8401, time 6.72s
06-11 11:50 - modeling.trainer - INFO - train - iter 1874100: loss 2.8235, time 7.48s
06-11 11:51 - modeling.trainer - INFO - train - iter 1874150: loss 2.8197, time 6.72s
06-11 11:51 - modeling.trainer - INFO - train - iter 1874200: loss 2.8347, time 6.68s
06-11 11:51 - modeling.trainer - INFO - train - iter 1874250: loss 2.8449, time 6.66s
06-11 11:51 - modeling.trainer - INFO - train - iter 1874300: loss 2.8377, time 6.63s
06-11 11:51 - modeling.trainer - INFO - train - iter 1874350: loss 2.8362, time 6.70s
06-11 11:51 - modeling.trainer - INFO - train - iter 1874400: loss 2.8360, time 6.90s
06-11 11:51 - modeling.trainer - INFO - train - iter 1874450: loss 2.8284, time 6.62s
06-11 11:51 - modeling.trainer - INFO - train - iter 1874500: loss 2.8312, time 6.63s
06-11 11:51 - modeling.trainer - INFO - train - iter 1874550: loss 2.8448, time 6.64s
06-11 11:52 - modeling.trainer - INFO - train - iter 1874600: loss 2.8508, time 6.62s
06-11 11:52 - modeling.trainer - INFO - train - iter 1874650: loss 2.8398, time 6.58s
06-11 11:52 - modeling.trainer - INFO - train - iter 1874700: loss 2.8313, time 6.60s
06-11 11:52 - modeling.trainer - INFO - train - iter 1874750: loss 2.8364, time 6.60s
06-11 11:52 - modeling.trainer - INFO - train - iter 1874800: loss 2.8427, time 6.47s
06-11 11:52 - modeling.trainer - INFO - train - iter 1874850: loss 2.8318, time 6.74s
06-11 11:52 - modeling.trainer - INFO - train - iter 1874900: loss 2.8337, time 6.66s
06-11 11:52 - modeling.trainer - INFO - train - iter 1874950: loss 2.8426, time 6.62s
06-11 11:52 - modeling.trainer - INFO - train - iter 1875000: loss 2.8451, time 6.65s
06-11 11:53 - modeling.trainer - INFO - train - iter 1875050: loss 2.8384, time 6.59s
06-11 11:53 - modeling.trainer - INFO - train - iter 1875100: loss 2.8322, time 6.65s
06-11 11:53 - modeling.trainer - INFO - train - iter 1875150: loss 2.8366, time 6.69s
06-11 11:53 - modeling.trainer - INFO - train - iter 1875200: loss 2.8374, time 6.56s
06-11 11:53 - modeling.trainer - INFO - train - iter 1875250: loss 2.8420, time 6.67s
06-11 11:53 - modeling.trainer - INFO - train - iter 1875300: loss 2.8339, time 6.66s
06-11 11:53 - modeling.trainer - INFO - train - iter 1875350: loss 2.8344, time 6.56s
06-11 11:53 - modeling.trainer - INFO - train - iter 1875400: loss 2.8417, time 6.66s
06-11 11:53 - modeling.trainer - INFO - train - iter 1875450: loss 2.8376, time 6.55s
06-11 11:54 - modeling.trainer - INFO - train - iter 1875500: loss 2.8467, time 6.57s
06-11 11:54 - modeling.trainer - INFO - train - iter 1875550: loss 2.8510, time 6.65s
06-11 11:54 - modeling.trainer - INFO - train - iter 1875600: loss 2.8391, time 6.57s
06-11 11:54 - modeling.trainer - INFO - train - iter 1875650: loss 2.8321, time 6.65s
06-11 11:54 - modeling.trainer - INFO - train - iter 1875700: loss 2.8314, time 6.63s
06-11 11:54 - modeling.trainer - INFO - train - iter 1875750: loss 2.8277, time 6.57s
06-11 11:54 - modeling.trainer - INFO - train - iter 1875800: loss 2.8247, time 6.51s
06-11 11:54 - modeling.trainer - INFO - train - iter 1875850: loss 2.8254, time 7.27s
06-11 11:54 - modeling.trainer - INFO - train - iter 1875900: loss 2.8308, time 6.72s
06-11 11:55 - modeling.trainer - INFO - train - iter 1875950: loss 2.8284, time 6.69s
06-11 11:55 - modeling.trainer - INFO - train - iter 1876000: loss 2.8317, time 6.72s
06-11 11:55 - modeling.trainer - INFO - train - iter 1876050: loss 2.8356, time 6.66s
06-11 11:55 - modeling.trainer - INFO - train - iter 1876100: loss 2.8363, time 6.77s
06-11 11:55 - modeling.trainer - INFO - train - iter 1876150: loss 2.8420, time 6.66s
06-11 11:55 - modeling.trainer - INFO - train - iter 1876200: loss 2.8377, time 6.81s
06-11 11:55 - modeling.trainer - INFO - train - iter 1876250: loss 2.8418, time 6.62s
06-11 11:55 - modeling.trainer - INFO - train - iter 1876300: loss 2.8442, time 6.53s
06-11 11:55 - modeling.trainer - INFO - train - iter 1876350: loss 2.8334, time 6.67s
06-11 11:56 - modeling.trainer - INFO - train - iter 1876400: loss 2.8321, time 6.65s
06-11 11:56 - modeling.trainer - INFO - train - iter 1876450: loss 2.8339, time 6.58s
06-11 11:56 - modeling.trainer - INFO - train - iter 1876500: loss 2.8294, time 6.57s
06-11 11:56 - modeling.trainer - INFO - train - iter 1876550: loss 2.8355, time 6.65s
06-11 11:56 - modeling.trainer - INFO - train - iter 1876600: loss 2.8421, time 6.62s
06-11 11:56 - modeling.trainer - INFO - train - iter 1876650: loss 2.8345, time 6.50s
06-11 11:56 - modeling.trainer - INFO - train - iter 1876700: loss 2.8267, time 6.66s
06-11 11:56 - modeling.trainer - INFO - train - iter 1876750: loss 2.8318, time 6.53s
06-11 11:56 - modeling.trainer - INFO - train - iter 1876800: loss 2.8366, time 6.57s
06-11 11:57 - modeling.trainer - INFO - train - iter 1876850: loss 2.8325, time 6.67s
06-11 11:57 - modeling.trainer - INFO - train - iter 1876900: loss 2.8361, time 6.64s
06-11 11:57 - modeling.trainer - INFO - train - iter 1876950: loss 2.8349, time 7.07s
06-11 11:57 - modeling.trainer - INFO - train - iter 1877000: loss 2.8367, time 6.53s
06-11 11:57 - modeling.trainer - INFO - train - iter 1877050: loss 2.8390, time 6.55s
06-11 11:57 - modeling.trainer - INFO - train - iter 1877100: loss 2.8367, time 6.70s
06-11 11:57 - modeling.trainer - INFO - train - iter 1877150: loss 2.8386, time 6.62s
06-11 11:57 - modeling.trainer - INFO - train - iter 1877200: loss 2.8375, time 6.69s
06-11 11:57 - modeling.trainer - INFO - train - iter 1877250: loss 2.8363, time 6.75s
06-11 11:58 - modeling.trainer - INFO - train - iter 1877300: loss 2.8389, time 6.69s
06-11 11:58 - modeling.trainer - INFO - train - iter 1877350: loss 2.8358, time 6.66s
06-11 11:58 - modeling.trainer - INFO - train - iter 1877400: loss 2.8271, time 6.58s
06-11 11:58 - modeling.trainer - INFO - train - iter 1877450: loss 2.8309, time 6.64s
06-11 11:58 - modeling.trainer - INFO - train - iter 1877500: loss 2.8393, time 6.60s
06-11 11:58 - modeling.trainer - INFO - train - iter 1877550: loss 2.8409, time 6.66s
06-11 11:58 - modeling.trainer - INFO - train - iter 1877600: loss 2.8301, time 7.38s
06-11 11:58 - modeling.trainer - INFO - train - iter 1877650: loss 2.8299, time 6.64s
06-11 11:58 - modeling.trainer - INFO - train - iter 1877700: loss 2.8468, time 6.74s
06-11 11:59 - modeling.trainer - INFO - train - iter 1877750: loss 2.8496, time 6.65s
06-11 11:59 - modeling.trainer - INFO - train - iter 1877800: loss 2.8437, time 6.59s
06-11 11:59 - modeling.trainer - INFO - train - iter 1877850: loss 2.8401, time 6.70s
06-11 11:59 - modeling.trainer - INFO - train - iter 1877900: loss 2.8297, time 6.56s
06-11 11:59 - modeling.trainer - INFO - train - iter 1877950: loss 2.8261, time 6.67s
06-11 11:59 - modeling.trainer - INFO - train - iter 1878000: loss 2.8262, time 6.68s
06-11 11:59 - modeling.trainer - INFO - train - iter 1878050: loss 2.8307, time 6.59s
06-11 11:59 - modeling.trainer - INFO - train - iter 1878100: loss 2.8387, time 6.68s
06-11 11:59 - modeling.trainer - INFO - train - iter 1878150: loss 2.8308, time 6.77s
06-11 12:00 - modeling.trainer - INFO - train - iter 1878200: loss 2.8321, time 6.66s
06-11 12:00 - modeling.trainer - INFO - train - iter 1878250: loss 2.8380, time 6.77s
06-11 12:00 - modeling.trainer - INFO - train - iter 1878300: loss 2.8342, time 6.63s
06-11 12:00 - modeling.trainer - INFO - train - iter 1878350: loss 2.8358, time 6.64s