text
stringlengths
54
260
06-11 11:15 - modeling.trainer - INFO - train - iter 1858600: loss 2.8329, time 7.05s
06-11 11:16 - modeling.trainer - INFO - train - iter 1858650: loss 2.8337, time 6.86s
06-11 11:16 - modeling.trainer - INFO - train - iter 1858700: loss 2.8321, time 6.76s
06-11 11:16 - modeling.trainer - INFO - train - iter 1858750: loss 2.8316, time 6.79s
06-11 11:16 - modeling.trainer - INFO - train - iter 1858800: loss 2.8356, time 6.85s
06-11 11:16 - modeling.trainer - INFO - train - iter 1858850: loss 2.8354, time 6.82s
06-11 11:16 - modeling.trainer - INFO - train - iter 1858900: loss 2.8345, time 6.91s
06-11 11:16 - modeling.trainer - INFO - train - iter 1858950: loss 2.8371, time 6.98s
06-11 11:16 - modeling.trainer - INFO - train - iter 1859000: loss 2.8337, time 6.82s
06-11 11:16 - modeling.trainer - INFO - train - iter 1859050: loss 2.8372, time 6.78s
06-11 11:17 - modeling.trainer - INFO - train - iter 1859100: loss 2.8383, time 6.94s
06-11 11:17 - modeling.trainer - INFO - train - iter 1859150: loss 2.8351, time 7.00s
06-11 11:17 - modeling.trainer - INFO - train - iter 1859200: loss 2.8345, time 7.45s
06-11 11:17 - modeling.trainer - INFO - train - iter 1859250: loss 2.8368, time 6.83s
06-11 11:17 - modeling.trainer - INFO - train - iter 1859300: loss 2.8384, time 6.91s
06-11 11:17 - modeling.trainer - INFO - train - iter 1859350: loss 2.8394, time 6.80s
06-11 11:17 - modeling.trainer - INFO - train - iter 1859400: loss 2.8433, time 6.86s
06-11 11:17 - modeling.trainer - INFO - train - iter 1859450: loss 2.8428, time 6.85s
06-11 11:17 - modeling.trainer - INFO - train - iter 1859500: loss 2.8378, time 6.90s
06-11 11:18 - modeling.trainer - INFO - train - iter 1859550: loss 2.8334, time 6.84s
06-11 11:18 - modeling.trainer - INFO - train - iter 1859600: loss 2.8351, time 6.83s
06-11 11:18 - modeling.trainer - INFO - train - iter 1859650: loss 2.8380, time 6.76s
06-11 11:18 - modeling.trainer - INFO - train - iter 1859700: loss 2.8423, time 6.86s
06-11 11:18 - modeling.trainer - INFO - train - iter 1859750: loss 2.8447, time 6.84s
06-11 11:18 - modeling.trainer - INFO - train - iter 1859800: loss 2.8345, time 6.76s
06-11 11:18 - modeling.trainer - INFO - train - iter 1859850: loss 2.8283, time 6.63s
06-11 11:18 - modeling.trainer - INFO - train - iter 1859900: loss 2.8290, time 6.80s
06-11 11:18 - modeling.trainer - INFO - train - iter 1859950: loss 2.8243, time 6.80s
06-11 11:19 - modeling.trainer - INFO - val - iter 1860000: lm_loss 1.3556, value_loss 0.7348, time_loss 0.6637, loss 2.7541, time 6.83s
06-11 11:19 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-11 11:19 - modeling.trainer - INFO - train - iter 1860000: loss 2.8285, time 17.41s
06-11 11:19 - modeling.trainer - INFO - train - iter 1860050: loss 2.8291, time 6.78s
06-11 11:19 - modeling.trainer - INFO - train - iter 1860100: loss 2.8280, time 6.69s
06-11 11:19 - modeling.trainer - INFO - train - iter 1860150: loss 2.8388, time 6.74s
06-11 11:19 - modeling.trainer - INFO - train - iter 1860200: loss 2.8448, time 7.38s
06-11 11:19 - modeling.trainer - INFO - train - iter 1860250: loss 2.8413, time 6.67s
06-11 11:19 - modeling.trainer - INFO - train - iter 1860300: loss 2.8408, time 6.69s
06-11 11:20 - modeling.trainer - INFO - train - iter 1860350: loss 2.8325, time 6.67s
06-11 11:20 - modeling.trainer - INFO - train - iter 1860400: loss 2.8227, time 6.69s
06-11 11:20 - modeling.trainer - INFO - train - iter 1860450: loss 2.8321, time 6.71s
06-11 11:20 - modeling.trainer - INFO - train - iter 1860500: loss 2.8432, time 6.63s
06-11 11:20 - modeling.trainer - INFO - train - iter 1860550: loss 2.8424, time 6.81s
06-11 11:20 - modeling.trainer - INFO - train - iter 1860600: loss 2.8415, time 6.64s
06-11 11:20 - modeling.trainer - INFO - train - iter 1860650: loss 2.8448, time 6.60s
06-11 11:20 - modeling.trainer - INFO - train - iter 1860700: loss 2.8376, time 6.62s
06-11 11:20 - modeling.trainer - INFO - train - iter 1860750: loss 2.8373, time 6.64s
06-11 11:21 - modeling.trainer - INFO - train - iter 1860800: loss 2.8389, time 6.71s
06-11 11:21 - modeling.trainer - INFO - train - iter 1860850: loss 2.8323, time 6.65s
06-11 11:21 - modeling.trainer - INFO - train - iter 1860900: loss 2.8352, time 6.65s
06-11 11:21 - modeling.trainer - INFO - train - iter 1860950: loss 2.8439, time 6.66s
06-11 11:21 - modeling.trainer - INFO - train - iter 1861000: loss 2.8489, time 6.55s
06-11 11:21 - modeling.trainer - INFO - train - iter 1861050: loss 2.8332, time 6.60s
06-11 11:21 - modeling.trainer - INFO - train - iter 1861100: loss 2.8276, time 6.59s
06-11 11:21 - modeling.trainer - INFO - train - iter 1861150: loss 2.8311, time 6.55s
06-11 11:21 - modeling.trainer - INFO - train - iter 1861200: loss 2.8303, time 6.58s
06-11 11:22 - modeling.trainer - INFO - train - iter 1861250: loss 2.8477, time 6.62s
06-11 11:22 - modeling.trainer - INFO - train - iter 1861300: loss 2.8471, time 6.59s
06-11 11:22 - modeling.trainer - INFO - train - iter 1861350: loss 2.8337, time 6.63s
06-11 11:22 - modeling.trainer - INFO - train - iter 1861400: loss 2.8368, time 6.62s
06-11 11:22 - modeling.trainer - INFO - train - iter 1861450: loss 2.8323, time 6.69s
06-11 11:22 - modeling.trainer - INFO - train - iter 1861500: loss 2.8292, time 6.70s
06-11 11:22 - modeling.trainer - INFO - train - iter 1861550: loss 2.8434, time 6.64s
06-11 11:22 - modeling.trainer - INFO - train - iter 1861600: loss 2.8424, time 6.66s
06-11 11:22 - modeling.trainer - INFO - train - iter 1861650: loss 2.8357, time 6.63s
06-11 11:23 - modeling.trainer - INFO - train - iter 1861700: loss 2.8454, time 6.56s
06-11 11:23 - modeling.trainer - INFO - train - iter 1861750: loss 2.8441, time 6.65s
06-11 11:23 - modeling.trainer - INFO - train - iter 1861800: loss 2.8299, time 6.63s
06-11 11:23 - modeling.trainer - INFO - train - iter 1861850: loss 2.8378, time 6.64s
06-11 11:23 - modeling.trainer - INFO - train - iter 1861900: loss 2.8441, time 6.59s
06-11 11:23 - modeling.trainer - INFO - train - iter 1861950: loss 2.8375, time 7.31s
06-11 11:23 - modeling.trainer - INFO - train - iter 1862000: loss 2.8300, time 6.56s
06-11 11:23 - modeling.trainer - INFO - train - iter 1862050: loss 2.8292, time 6.64s
06-11 11:23 - modeling.trainer - INFO - train - iter 1862100: loss 2.8405, time 6.58s
06-11 11:24 - modeling.trainer - INFO - train - iter 1862150: loss 2.8384, time 6.62s
06-11 11:24 - modeling.trainer - INFO - train - iter 1862200: loss 2.8358, time 6.56s
06-11 11:24 - modeling.trainer - INFO - train - iter 1862250: loss 2.8385, time 6.51s
06-11 11:24 - modeling.trainer - INFO - train - iter 1862300: loss 2.8394, time 6.60s
06-11 11:24 - modeling.trainer - INFO - train - iter 1862350: loss 2.8424, time 6.54s
06-11 11:24 - modeling.trainer - INFO - train - iter 1862400: loss 2.8437, time 6.61s
06-11 11:24 - modeling.trainer - INFO - train - iter 1862450: loss 2.8442, time 6.59s
06-11 11:24 - modeling.trainer - INFO - train - iter 1862500: loss 2.8456, time 6.67s
06-11 11:24 - modeling.trainer - INFO - train - iter 1862550: loss 2.8453, time 6.68s
06-11 11:25 - modeling.trainer - INFO - train - iter 1862600: loss 2.8385, time 6.65s
06-11 11:25 - modeling.trainer - INFO - train - iter 1862650: loss 2.8361, time 6.49s
06-11 11:25 - modeling.trainer - INFO - train - iter 1862700: loss 2.8419, time 6.53s
06-11 11:25 - modeling.trainer - INFO - train - iter 1862750: loss 2.8364, time 6.59s
06-11 11:25 - modeling.trainer - INFO - train - iter 1862800: loss 2.8335, time 6.53s
06-11 11:25 - modeling.trainer - INFO - train - iter 1862850: loss 2.8317, time 6.55s
06-11 11:25 - modeling.trainer - INFO - train - iter 1862900: loss 2.8288, time 6.50s
06-11 11:25 - modeling.trainer - INFO - train - iter 1862950: loss 2.8318, time 6.59s
06-11 11:25 - modeling.trainer - INFO - train - iter 1863000: loss 2.8311, time 6.51s
06-11 11:26 - modeling.trainer - INFO - train - iter 1863050: loss 2.8295, time 6.58s
06-11 11:26 - modeling.trainer - INFO - train - iter 1863100: loss 2.8342, time 6.65s
06-11 11:26 - modeling.trainer - INFO - train - iter 1863150: loss 2.8317, time 6.58s
06-11 11:26 - modeling.trainer - INFO - train - iter 1863200: loss 2.8248, time 6.56s
06-11 11:26 - modeling.trainer - INFO - train - iter 1863250: loss 2.8335, time 6.58s
06-11 11:26 - modeling.trainer - INFO - train - iter 1863300: loss 2.8435, time 6.60s
06-11 11:26 - modeling.trainer - INFO - train - iter 1863350: loss 2.8398, time 6.57s
06-11 11:26 - modeling.trainer - INFO - train - iter 1863400: loss 2.8319, time 6.53s
06-11 11:26 - modeling.trainer - INFO - train - iter 1863450: loss 2.8249, time 6.61s