text
stringlengths 54
260
|
---|
06-12 03:09 - modeling.trainer - INFO - train - iter 1921250: loss 2.8385, time 5.49s
|
06-12 03:09 - modeling.trainer - INFO - train - iter 1921300: loss 2.8311, time 5.46s
|
06-12 03:09 - modeling.trainer - INFO - train - iter 1921350: loss 2.8253, time 5.52s
|
06-12 03:09 - modeling.trainer - INFO - train - iter 1921400: loss 2.8327, time 5.58s
|
06-12 03:09 - modeling.trainer - INFO - train - iter 1921450: loss 2.8377, time 5.53s
|
06-12 03:09 - modeling.trainer - INFO - train - iter 1921500: loss 2.8322, time 5.51s
|
06-12 03:09 - modeling.trainer - INFO - train - iter 1921550: loss 2.8265, time 5.53s
|
06-12 03:09 - modeling.trainer - INFO - train - iter 1921600: loss 2.8244, time 5.48s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1921650: loss 2.8185, time 5.52s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1921700: loss 2.8141, time 5.50s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1921750: loss 2.8221, time 5.50s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1921800: loss 2.8322, time 5.47s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1921850: loss 2.8388, time 5.43s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1921900: loss 2.8444, time 5.44s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1921950: loss 2.8324, time 6.21s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1922000: loss 2.8312, time 5.49s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1922050: loss 2.8376, time 5.42s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1922100: loss 2.8252, time 5.43s
|
06-12 03:10 - modeling.trainer - INFO - train - iter 1922150: loss 2.8297, time 5.45s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922200: loss 2.8290, time 5.46s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922250: loss 2.8308, time 5.48s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922300: loss 2.8321, time 5.45s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922350: loss 2.8336, time 5.44s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922400: loss 2.8354, time 5.49s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922450: loss 2.8348, time 5.42s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922500: loss 2.8406, time 5.49s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922550: loss 2.8436, time 5.40s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922600: loss 2.8450, time 5.40s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922650: loss 2.8378, time 5.45s
|
06-12 03:11 - modeling.trainer - INFO - train - iter 1922700: loss 2.8356, time 5.40s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1922750: loss 2.8336, time 5.48s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1922800: loss 2.8333, time 5.48s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1922850: loss 2.8366, time 5.44s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1922900: loss 2.8346, time 5.56s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1922950: loss 2.8312, time 5.47s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1923000: loss 2.8269, time 5.44s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1923050: loss 2.8274, time 5.40s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1923100: loss 2.8219, time 5.50s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1923150: loss 2.8204, time 5.46s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1923200: loss 2.8380, time 5.41s
|
06-12 03:12 - modeling.trainer - INFO - train - iter 1923250: loss 2.8477, time 5.46s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923300: loss 2.8442, time 5.51s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923350: loss 2.8352, time 5.45s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923400: loss 2.8308, time 5.46s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923450: loss 2.8281, time 5.42s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923500: loss 2.8293, time 5.41s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923550: loss 2.8296, time 5.42s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923600: loss 2.8282, time 5.45s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923650: loss 2.8199, time 5.39s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923700: loss 2.8198, time 6.05s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923750: loss 2.8326, time 5.38s
|
06-12 03:13 - modeling.trainer - INFO - train - iter 1923800: loss 2.8392, time 5.34s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1923850: loss 2.8350, time 5.37s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1923900: loss 2.8252, time 5.40s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1923950: loss 2.8301, time 5.41s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1924000: loss 2.8342, time 5.36s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1924050: loss 2.8339, time 5.39s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1924100: loss 2.8312, time 5.39s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1924150: loss 2.8303, time 5.38s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1924200: loss 2.8465, time 5.45s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1924250: loss 2.8448, time 5.39s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1924300: loss 2.8389, time 5.36s
|
06-12 03:14 - modeling.trainer - INFO - train - iter 1924350: loss 2.8369, time 5.38s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924400: loss 2.8306, time 5.34s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924450: loss 2.8430, time 5.44s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924500: loss 2.8386, time 5.40s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924550: loss 2.8275, time 5.40s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924600: loss 2.8317, time 5.38s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924650: loss 2.8296, time 5.40s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924700: loss 2.8320, time 5.42s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924750: loss 2.8321, time 5.36s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924800: loss 2.8349, time 5.40s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924850: loss 2.8420, time 5.37s
|
06-12 03:15 - modeling.trainer - INFO - train - iter 1924900: loss 2.8375, time 5.37s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1924950: loss 2.8375, time 5.40s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925000: loss 2.8341, time 5.42s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925050: loss 2.8322, time 5.37s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925100: loss 2.8332, time 5.38s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925150: loss 2.8315, time 5.35s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925200: loss 2.8304, time 5.38s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925250: loss 2.8349, time 5.35s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925300: loss 2.8370, time 5.36s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925350: loss 2.8323, time 5.35s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925400: loss 2.8457, time 5.43s
|
06-12 03:16 - modeling.trainer - INFO - train - iter 1925450: loss 2.8457, time 6.20s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925500: loss 2.8244, time 5.35s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925550: loss 2.8272, time 5.35s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925600: loss 2.8356, time 5.39s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925650: loss 2.8384, time 5.36s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925700: loss 2.8383, time 5.36s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925750: loss 2.8367, time 5.35s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925800: loss 2.8327, time 5.41s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925850: loss 2.8286, time 5.40s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925900: loss 2.8368, time 5.39s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1925950: loss 2.8384, time 5.40s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1926000: loss 2.8389, time 5.39s
|
06-12 03:17 - modeling.trainer - INFO - train - iter 1926050: loss 2.8449, time 5.36s
|
06-12 03:18 - modeling.trainer - INFO - train - iter 1926100: loss 2.8403, time 5.35s
|
06-12 03:18 - modeling.trainer - INFO - train - iter 1926150: loss 2.8338, time 5.33s
|
06-12 03:18 - modeling.trainer - INFO - train - iter 1926200: loss 2.8349, time 5.39s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.