text
stringlengths
54
260
06-12 04:02 - modeling.trainer - INFO - train - iter 1950850: loss 2.8303, time 5.25s
06-12 04:02 - modeling.trainer - INFO - train - iter 1950900: loss 2.8398, time 5.29s
06-12 04:02 - modeling.trainer - INFO - train - iter 1950950: loss 2.8420, time 5.24s
06-12 04:02 - modeling.trainer - INFO - train - iter 1951000: loss 2.8412, time 5.22s
06-12 04:02 - modeling.trainer - INFO - train - iter 1951050: loss 2.8473, time 5.22s
06-12 04:02 - modeling.trainer - INFO - train - iter 1951100: loss 2.8400, time 5.22s
06-12 04:02 - modeling.trainer - INFO - train - iter 1951150: loss 2.8376, time 5.22s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951200: loss 2.8336, time 5.21s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951250: loss 2.8228, time 5.21s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951300: loss 2.8283, time 5.20s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951350: loss 2.8388, time 5.22s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951400: loss 2.8393, time 5.22s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951450: loss 2.8457, time 5.22s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951500: loss 2.8481, time 5.25s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951550: loss 2.8350, time 5.22s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951600: loss 2.8286, time 5.94s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951650: loss 2.8261, time 5.22s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951700: loss 2.8338, time 5.22s
06-12 04:03 - modeling.trainer - INFO - train - iter 1951750: loss 2.8431, time 5.23s
06-12 04:04 - modeling.trainer - INFO - train - iter 1951800: loss 2.8343, time 5.21s
06-12 04:04 - modeling.trainer - INFO - train - iter 1951850: loss 2.8243, time 5.20s
06-12 04:04 - modeling.trainer - INFO - train - iter 1951900: loss 2.8240, time 5.22s
06-12 04:04 - modeling.trainer - INFO - train - iter 1951950: loss 2.8275, time 5.22s
06-12 04:04 - modeling.trainer - INFO - train - iter 1952000: loss 2.8338, time 5.23s
06-12 04:04 - modeling.trainer - INFO - train - iter 1952050: loss 2.8367, time 5.22s
06-12 04:04 - modeling.trainer - INFO - train - iter 1952100: loss 2.8359, time 5.20s
06-12 04:04 - modeling.trainer - INFO - train - iter 1952150: loss 2.8223, time 5.21s
06-12 04:04 - modeling.trainer - INFO - train - iter 1952200: loss 2.8166, time 5.22s
06-12 04:04 - modeling.trainer - INFO - train - iter 1952250: loss 2.8239, time 5.35s
06-12 04:04 - modeling.trainer - INFO - train - iter 1952300: loss 2.8326, time 5.23s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952350: loss 2.8396, time 5.24s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952400: loss 2.8345, time 5.21s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952450: loss 2.8358, time 5.23s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952500: loss 2.8385, time 5.22s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952550: loss 2.8400, time 5.23s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952600: loss 2.8364, time 5.27s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952650: loss 2.8285, time 5.24s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952700: loss 2.8298, time 5.21s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952750: loss 2.8378, time 5.22s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952800: loss 2.8390, time 5.22s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952850: loss 2.8287, time 5.21s
06-12 04:05 - modeling.trainer - INFO - train - iter 1952900: loss 2.8341, time 5.22s
06-12 04:06 - modeling.trainer - INFO - train - iter 1952950: loss 2.8340, time 5.22s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953000: loss 2.8233, time 5.22s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953050: loss 2.8248, time 5.22s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953100: loss 2.8317, time 5.25s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953150: loss 2.8286, time 5.22s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953200: loss 2.8285, time 5.24s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953250: loss 2.8385, time 5.23s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953300: loss 2.8339, time 5.23s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953350: loss 2.8328, time 5.85s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953400: loss 2.8328, time 5.21s
06-12 04:06 - modeling.trainer - INFO - train - iter 1953450: loss 2.8285, time 5.22s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953500: loss 2.8245, time 5.22s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953550: loss 2.8254, time 5.24s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953600: loss 2.8330, time 5.25s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953650: loss 2.8371, time 5.21s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953700: loss 2.8328, time 5.20s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953750: loss 2.8333, time 5.22s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953800: loss 2.8344, time 5.21s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953850: loss 2.8356, time 5.21s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953900: loss 2.8351, time 5.23s
06-12 04:07 - modeling.trainer - INFO - train - iter 1953950: loss 2.8280, time 5.20s
06-12 04:07 - modeling.trainer - INFO - train - iter 1954000: loss 2.8260, time 5.22s
06-12 04:07 - modeling.trainer - INFO - train - iter 1954050: loss 2.8403, time 5.20s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954100: loss 2.8404, time 5.21s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954150: loss 2.8255, time 5.26s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954200: loss 2.8316, time 5.22s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954250: loss 2.8401, time 5.22s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954300: loss 2.8319, time 5.24s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954350: loss 2.8303, time 5.23s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954400: loss 2.8352, time 5.23s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954450: loss 2.8265, time 5.24s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954500: loss 2.8306, time 5.22s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954550: loss 2.8353, time 5.24s
06-12 04:08 - modeling.trainer - INFO - train - iter 1954600: loss 2.8325, time 5.22s
06-12 04:09 - modeling.trainer - INFO - train - iter 1954650: loss 2.8300, time 5.21s
06-12 04:09 - modeling.trainer - INFO - train - iter 1954700: loss 2.8313, time 5.21s
06-12 04:09 - modeling.trainer - INFO - train - iter 1954750: loss 2.8301, time 5.22s
06-12 04:09 - modeling.trainer - INFO - train - iter 1954800: loss 2.8284, time 5.21s
06-12 04:09 - modeling.trainer - INFO - train - iter 1954850: loss 2.8334, time 5.22s
06-12 04:09 - modeling.trainer - INFO - train - iter 1954900: loss 2.8362, time 5.22s
06-12 04:09 - modeling.trainer - INFO - train - iter 1954950: loss 2.8339, time 5.23s
06-12 04:09 - modeling.trainer - INFO - train - iter 1955000: loss 2.8377, time 5.22s
06-12 04:09 - modeling.trainer - INFO - train - iter 1955050: loss 2.8500, time 5.89s
06-12 04:09 - modeling.trainer - INFO - train - iter 1955100: loss 2.8491, time 5.22s
06-12 04:09 - modeling.trainer - INFO - train - iter 1955150: loss 2.8315, time 5.21s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955200: loss 2.8331, time 5.25s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955250: loss 2.8355, time 5.24s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955300: loss 2.8289, time 5.24s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955350: loss 2.8252, time 5.22s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955400: loss 2.8299, time 5.18s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955450: loss 2.8402, time 5.21s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955500: loss 2.8318, time 5.20s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955550: loss 2.8309, time 5.23s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955600: loss 2.8290, time 5.22s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955650: loss 2.8261, time 5.21s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955700: loss 2.8259, time 5.20s
06-12 04:10 - modeling.trainer - INFO - train - iter 1955750: loss 2.8268, time 5.20s
06-12 04:11 - modeling.trainer - INFO - train - iter 1955800: loss 2.8326, time 5.23s